

G-TwYST Study A

Combined chronic toxicity and carcinogenicity study in rats fed GM maize NK603

Statistical report, 12 months data

Paul W. Goedhart & Hilko van der Voet

G-TwYST (EU grant agreement no: 632165) Deliverable 4.3d

Biometris report 35.02.18

https://doi.org/10.18174/455208

UNIVERSITY & RESEARCH

February 2018

G-TwYST Study A

Combined chronic toxicity and carcinogenicity study in rats fed GM maize NK603

Statistical report, 12 months data

Paul W. Goedhart & Hilko van der Voet

Biometris, one of the largest groups of quantitative scientists in North-Western Europe, develops statistical and mathematical methods for the quantification of biological processes and processes in our living environment. These methods are applied and validated in practice and are often available as software packages. In addition, we provide education at the undergraduate, Master, PhD, and PostDoc levels, as well as training and consultancy for industry. We cover a wide range of application areas, from gene to ecosystem and from product to production chain. Our goal is to bring quantitative methods to life.

Biometris is the full integration of the chair groups Applied Mathematics (Molenaar) and Applied Statistics (Van Eeuwijk) with the Wageningen Plant Research business unit Biometris (Wehrens).

For more information please visit the website <u>www.biometris.nl</u> or contact:

Biometris, Wageningen University & Research P.O. Box 16 6700 AA Wageningen, The Netherlands Visiting address: Buildingnumber 107 Droevendaalsesteeg 1, 6708 PD Wageningen, The Netherlands Phone: +31 317 480798 or +31 317 486001 E-mail: biometris@wur.nl

Contents

A	bstract												
1	Intro	ductio	n										
2	Data												
	2.1	Data obtained after 12 months in G-TwYST study A 3											
	2.2	Grow	wth curves and feed intake										
	2.3	Outlie	ers and checking of ANOVA assumptions	8									
	2.4	Sumn	ary tables										
3	Statis	nalysis											
3.1 Equiv			alence testing using historical data	16									
	3.2	Equiv	alence testing using target effect sizes										
	3.3	Classi	cal statistical analysis										
	3.4	Stand	lardized effect sizes										
	3.5	Facto	rial analysis	47									
	3.6	Corre	lation analysis	49									
R	eferenc	es		54									
Li	st of Ta	bles											
Li	st of Fig	ures		57									
A	ppendix	: 1.	Growth curves per animal pair										
A	ppendix	2.	Feed consumption per cage										
A	ppendix	3.	Graphs of cage means on the original scale	114									
A	ppendix	4.	Graphs of cage means on the log scale	126									
A	ppendix	5.	Normal probability plots of residuals after ANOVA	138									
A	ppendix	6.	Graphs of residuals versus fitted values after ANOVA	146									
A	ppendix	7.	Estimated differences between GMO feeds and the control feed	154									
A	ppendix	8.	8. Intervals for equivalence tests										
A	ppendix	<u>(</u> 9.	P-values for difference tests between GMO feeds and the control feed	163									
A	ppendix	: 10.	Tests for normality and homogeneity of variance	167									
A	ppendix	: 11.	Statistical analysis of data including outliers										

Abstract

The purpose of oral toxicity study A in the EU project G-TwYST was to assess the chronic and carcinogenic effects of genetically modified (GM) maize NK 603, grown both with and without the use of RoundUp, when fed to rats for a period of two years at incorporation rates of 11% and 33% in the feed. The effects were assessed relative to the responses for rats fed the near-isogenic non-GM maize, and the differences were compared.

The results of G-TwYST study A, except for the histopathological results which are reported separately, are given in five reports: four specific reports about the statistical analysis for data measured after 3, 6, 12 and 24 months, and a main report summarising all study results (Goedhart & van der Voet 2018). This report is about the results after 12 months.

The differences between feeding groups were compared, using a recently developed method for equivalence testing, to differences between non-GM feeds obtained in previous studies performed in the EU project GRACE. No historical data for 12 months old rats were available. Therefore it was only possible to perform equivalence tests using the 3 months data from the GRACE study as reference data. However, variation within the dose groups was much larger after 12 months than after 3 months for many endpoints, which obstructed the use of equivalence tests with historical references. It is concluded that reference data for 12 months would need to be collected for this type of equivalence testing in chronic animal studies.

This report also contains results for equivalence testing using external target effect sizes for a limited set of variables, results for classical statistical analysis of differences, graphs of standardised effect sizes such as performed in the GRACE study and results of a factorial analysis.

1 Introduction

The purpose of oral toxicity study A in the EU project G-TwYST was to assess the effects of genetically modified (GM) maize NK 603, grown both with and without the use of RoundUp, when fed to rats for a period of one year (chronic toxicity study) and two years (carcinogenicity study), at incorporation rates of 11% and 33% in the feed. The effects of the GM maize were assessed relative to the responses for rats fed the near-isogenic non-GM maize. The chronic toxicity and carcinogenicity study ran in parallel. At 12 months part of the rats were euthanized and their organs were obtained, weighted and examined by the G-TwYST histopathological expert. The remaining rats were kept until 24 months, or until premature death, and were then assessed in the same way.

Rat weights and feed intake were measured weekly or bi-weekly. Haematology, clinical biochemistry in blood and urine, differential white blood cell counts, and urine volume and colour were obtained for a subset of animals after 3, 6, 12 and 24 months. This report describes in detail the results of the statistical analyses for the following data obtained after 12 months:

- Body weight at 6 months, growth rate months 6-12, mean feed intake (35 cages/group);
- Haematology (20 cages/group);
- Clinical biochemistry in blood (20 cages/group);
- Clinical biochemistry in urine (15 cages/group);
- Urine volume and colour (15 cages/group);
- Organ weights as percentage of body weight (10 cages/group).

This report is organised as follows. Section 2 describes the data obtained after 12 months, initial data pre-processing, graphical summaries of growth and feed intake over time, outlier identification and checking of assumptions which are made in the statistical analysis. Section 3 presents detailed results of the statistical analyses. More details are provided in several appendices to this report. For a description of the statistical methods, and for a summary and discussion of results for all months, the reader is referred to the main study A report (Goedhart & van der Voet 2018).

2 Data

2.1 Data obtained after 12 months in G-TwYST study A

The available files for the data obtained after 12 months in G-TwYST study A are given in Table 1. Note that the animal weights and intakes for months 7-9 and for months 10-12 were given in separate files. There were also "*Tab_10*" and "*Tab_12*" files with relative organ weights; and it was checked that these indeed contain absolute organ weights divided by the last observed weight. GenStat programs "*12-Males.gen*" and "*12-Females.gen*" were used to combine all the data into single Excel files, separately for males and females. All animals survived the first 12 months, except for 7 male and 9 female rats (Table 2). It is assumed that these premature deaths are not connected to the experiment.

Some CHOL and cHGB were given as bounds; the number of such values are given in Table 3. The original Excel files with the haematology data (*Tab_5* and *Tab_6*) contain remarks given in Table 4. Values with such remarks were set to missing, see for Table 6 for details. For most Urine variables

only a limited number of values have been observed, see Table 5. It is evident that a statistical analysis of uColour, uBil, uNit, uProtein, uGlu, uHemogl and uUrobili is not very useful. Therefore, only the Urine variables uVol, uVolW, uLeu, uOsmoll, uKeton and upH were statistically analysed.

Data files after 9 months	Date	Time	Size (b)
Tab_1_G_TwYST_2yr st_A_9_mon_Body weight_Mal.xlsx	09-01-2017	15:44	185,641
Tab_2_G_TwYST_2yr st_A_9_mon_Body weight_Fem.xlsx	09-01-2017	15:45	184,803
Correct data_rev_1_Feed consumption_12_mon_G_TwYST_A_Females.xlsx	20-10-2017	07:08	164,942
Correkt data_rev_1_Feed consumption_12_mon_G_TwYST_A_Males.xlsx	20-09-2017	12:00	168,346
Data files after 12 months	Date	Time	Size (b)
Tab_1_G_TwYST_2yr st_A_12_mon_Body weight_Mal.xlsx	20-01-2017	09:59	122,835
Tab_2_G_TwYST_2yr st_A_12_mon_Body weight_Fem.xlsx	10-01-2017	10:26	127,372
Correct data_rev_1_Feed consumption_12_mon_G_TwYST_A_Females.xlsx	20-10-2017	07:08	164,942
Correkt data_rev_1_Feed consumption_12_mon_G_TwYST_A_Males.xlsx	20-09-2017	12:00	168,346
Tab_5_G_TwYST_2yr st_12 mon_Haemat_Mal.xlsx	04-01-2017	14:08	83,193
Tab_6_G_TwYST_2yr st_12 mon_Haemat_Fem.xlsx	04-01-2017	15:14	86,254
Tab_7a_G_TwYST_2yr st_A_12 mon_Clin_Chem_bl_Mal.xlsx	04-01-2017	14:07	101,064
Tab_7b_G_TwYST_2yr st_A_12 mon_Clin_Chem_ur_Mal.xlsx	04-01-2017	14:06	87,697
Tab_8a_G_TwYST_2yr st_A_12 mon_Clin_Chem_bl_Fem.xlsx	04-01-2017	15:34	102,362
Tab_8b_G_TwYST_2yr st_A_12 mon_Clin_Chem_ur_Fem.xlsx	04-01-2017	15:38	88,887
Bl_ur_12 mon_G_TwYST_2yr st_A_Fem_time course.xlsx	11-01-2017	15:18	116,198
Bl_ur_12 mon_G_TwYST_2yr st_A_Mal_time course.xlsx	11-01-2017	15:21	113,188
Tab_9_G_TwYST_2yr st_A_Abs_organ weights_Mal.xlsx	10-01-2017	10:52	48,673
Tab_11_G_TwYST_2yr st_A_Abs_weight organs_Fem.xlsx	10-01-2017	10:50	40,189

Table 1Data files for G-TwYST study A after 9/12 months.

Table 2	Animals that died before the end of month 12.

Sex	Rat	Cage	Feed	Day of Death
Female	610	555	NK11-	86
Female	785	643	Control	98
Male	199	100	NK11+	182
Female	667	584	NK11+	202
Male	148	74	NK11+	231
Female	632	566	NK11-	238
Male	101	51	NK11-	245
Female	848	674	Control	245
Female	745	623	NK33-	299
Female	613	557	NK11-	323
Female	804	652	Control	332
Male	2	1	NK33+	347
Male	85	43	NK11-	351
Male	33	17	NK33+	352
Male	228	114	NK33-	363
Female	770	635	NK33-	363

Variable			Males			Females							
Valiable	Con	NK11-	NK33-	NK11+	NK33+	Con	NK11-	NK33-	NK11+	NK33+			
CHOL < 1.16	-	-	-	-	-	-	-	-	-	-			
cHGB < 27.5	-	1	2	2	-	6	11	7	4	9			
cHGB > 522.5	-	-	-	-	-	-	-	-	-	-			
ALP < 0.17	-	-	-	-	-	1	-	-	-	1			

 Table 3
 Number of animals for which bounded values were provided.

Table 4Remarks by SZU in original Excel data files; the accompanying values have been set to
missing.

Variable	Remark
WBC	High count WBC
WBC	High count of WBC and PLT, no calculated lymphocytes
WBC	Low WBC and platelet count, probably due to microclots
HGB	No calculated HGB (low blood)
PLT	Low platelet count, probably due to microclots
PLT	High count PLT
PLT	High count of WBC and PLT, no calculated lymphocytes
PLT	Low WBC and platelet count, probably due to microclots

Table 5Urine variables with only a limited set of observed values which are given in the heading
of each sub-tables The table entries give the number of times each value occurs for male
and female rats. Only uLeu and uKeton were statistically analysed.

uColour	Missing	1	2	3		
Male	204	-	145	1		
Female	199	2	147	2		
uBil	Missing	0				
Male	203	147				
Female	199	151				
uLeu	Missing	0	25	100	500	
Male	203	5	28	66	48	
Female	199	43	51	42	15	
uNit	Missing	0				
Male	203	147				
Female	199	151				
uProtein	Missing	0.00	0.25	0.75	1.50	5.00
Male	203	99	22	6	14	6
Female	199	128	14	8	1	-
uGlu	Missing	1				
203	203	147	5	8	28	203
199	199	151	3	2	7	199
uHemogl	Missing	0	10	25	50	250
Male	203	98	8	5	8	28
Female	199	132	7	3	2	7
uKeton	Missing	0.0	0.5	1.5		
Male	203	66	37	44		
Female	199	110	32	9		

uUrobili	Missing	1		
Male	203	147		
Female	199	151		

2.2 Growth curves and feed intake

For each individual rat a simple linear regression, $Weight = \alpha + \beta$ Week, was fitted to the observed weights between weeks 27 and 52, and the growthRate was defined as $\gamma = \log(\beta)$. In Appendix 1 the observed weights are graphically displayed along with the fitted line and, in the bottom right corner, the resulting estimate of the growth rate γ . Initially, absolute standardized residuals, resulting from the fitted curve, which were larger than 3, were marked and these were checked for errors by SZU. This led to some corrections. The corrections are listed in Table 6. The linear regression line generally fits very well, especially for male rats. Only for male rats 74, 301 and 341 one or more observed weights differ more than 5% from the fitted values, as is depicted by the larger plotting symbols in Appendix 1. However, such discrepancies were observed for 88 female rats. For female rats 841 and 843 the estimate of β was negative; this estimate was replaced by 0.217 which is half the minimum of all other estimates. For these two female rats these values are marked as outliers. The final weight Weight_52 and the growthRate parameter γ were statistically analysed. The mean weight for each feeding group is given in Figure 1, while the mean weight gain per day per animal in each week is given in Figure 2. Feed consumption for each cage in units g/animal/day is depicted in Appendix 2. The mean feed consumption for each feeding group is given in Figure 3.

Figure 1 Mean body weights versus week for each feeding group for male rats (left) and for female rats (right).

Figure 2 Mean body weights gain (g/day/animal) versus week for each feeding group for male rats (left) and for female rats (right).

Figure 3 Mean feed consumption (g/day/animal) versus week for each feeding group for male rats (left) and for female rats (right).

2.3 Outliers and checking of ANOVA assumptions

These analyses and changes to the data were made before the feeding group codes were unblinded. The cage means, after a log transformation, for each observed variable were statistically analysed by means of an analysis of variance using the model "Block + Group" according to the randomized block design. Grubbs' outlier test at the 1% level was sequentially applied to the residuals to detect outliers. This resulted in a number of outliers which were first presented to the study director and then to the G-TwYST coordinator. Outliers were classified as either (1) typos or physiologically improbable values or (2) values that might be realistic. For the first category the values were set to missing, effectively removing the outlier completely. For the second category a statistical analysis without and with these outlier was performed. The analyses presented in this report are without the outliers. Analyses including outliers are presented in Appendix 11. Table 6 lists all the initially modified values and outliers. Residual plots which include the outliers (i.e. including the yellow values in Table 6) are given in Figure 4. From this it is clear that these are indeed outliers; note that the outliers for growthRate in females are due to negative regression coefficients in the linear regression of weights.

Table 6Values that have been modified, deleted, or were considered as possible outliers, before
unblinding of the feeding groups. Values which are not coloured were modified or
deleted following comments of SZU. The red and yellow values were presented to the
G-TwYST coordinator. He decided which values should be deleted (red) and which values
should be considered as possible outliers (yellow). Comments by the authors of this
report are given in black, while comments of the G-TwYST coordinator are given in red.

Sex	Variable	Animal	Cage	oldValue	newValue	Comment
Males	WBC	35	18	2.9	delete	Comment in datafile: microclots
Males	WBC	59	30	14.6	delete	Comment in datafile: highCount
Males	WBC	81	41	15.6	delete	Comment in datafile: highCount
Males	WBC	89	45	14.6	delete	Comment in datafile: highCount
Males	PLT	35	18	177	delete	Comment in datafile: microclots
Males	PLT	59	30	1576	delete	Comment in datafile: highCount
Males	PLT	89	45	1524	delete	Comment in datafile: highCount
Males	Weight_35	101	51	415.23	delete	Rat died between week 35 and 37
Males	Feed_35	101	51	13.64	delete	Rat died between week 35 and 37
Males	Weight_33	148	74	383.61	delete	Rat died between week 33 and 35
Males	Feed_33	148	74	11.07	delete	Rat died between week 33 and 35
Males	Weight_45	2	1	602.09	delete	Rat died between week 49 and 51
Males	Weight_47	2	1	534.66	delete	Rat died between week 49 and 51
Males	Weight_49	2	1	493.23	delete	Rat died between week 49 and 51
Males	Feed_45	2	1	19.49	delete	Rat died between week 49 and 51
Males	Feed_47	2	1	15.08	delete	Rat died between week 49 and 51
Males	Feed_49	2	1	16.56	delete	Rat died between week 49 and 51
Males	Feed_51	33	17	22.18	delete	Rat died between week 49 and 51
Males	Weight_51	228	114	537.05	delete	Rat died between week 51 and 54
Males	Feed_51	228	114	15.21	delete	Rat died between week 51 and 52
Males	Feed_52	228	114	22.77	delete	Rat died between week 51 and 52
Males	Weight_29	222	111	598.55	559.55	Mistake in copying from primary
Males	growthRate	86	43	1.823	outlier	Grubbs' test significant (p=0.001)

Males	RBC	35	18	5.06	outlier	Same animal 35; smallest value; the value is still realistic
Males	HGB	35	18	11.2	outlier	Same animal 35; smallest value; the value is still realistic
Males	нст	35	18	32.2	outlier	Same animal 35; smallest value; the value is still realistic
Males	Crea	156	78	74.9	outlier	Largest value; if Urea is also high, could indicate renal insufficiency
Males	Testis_R	160	80	0.5066	outlier	Extremely small value; the value is still realistic
Males	Testis_L	160	80	0.4908	outlier	Extremely small value; the value is still realistic
Males	Testis	160	80	0.4987	outlier	Extremely small value; the value is still realistic
Males	Kidney_L	224	112	3.1137	1.55685	Weight of BOTH kidneys; corrected such that the sum equals 3.1137
Sex	Variable	Animal	Cage	oldValue	newValue	Comment
Females	WBC	506	503	*	delete	Comment in datafile: noBlood
Females	WBC	680	590	41.7	delete	Comment in datafile: highCount
Females	WBC	726	613	*	delete	Comment in datafile: clottedBlood
Females	WBC	846	673	1.6	delete	Comment in datafile: microclots
Females	WBC	799	650	24.1	delete	Comment in datafile: highCount
Females	HGB	654	577	1	delete	Comment in datafile: lowBlood
Females	PLT	680	590	1959	delete	Comment in datafile: highCount
Females	PLT	799	650	1872	delete	Comment in datafile: highCount
Females	PLT	846	673	61	delete	Comment in datafile: microclots
Females	Weight_33	632	566	260.8	delete	Rat died between week 33 and 35
Females	Feed_35	632	566	17.51	delete	Rat died between week 33 and 35
Females	Feed_29	667	584	24.76	delete	Rat died between week 27 and 29
Females	Feed_35	847	674	25.79	delete	Rat died between week 33 and 35
Females	Feed_45	613	557	11.48	delete	Rat died between week 45 and 47
Females	Feed_52	770	635	26.49	delete	Rat died between week 45 and 48
Females	Weight_47	804	652	264.77	delete	Rat died between week 47 and 49
Females	Feed_47	803	652	11.79	delete	Rat died between week 47 and 49
Females	Feed_49	803	652	25.11	delete	Rat died between week 47 and 49
Females	Weight_39	786	643	248.57	298.57	Mistake in copying from primary
Females	growthRate	841	671	-1.528	outlier	Estimate β is negative
Females	growthRate	843	672	-1.528	outlier	Estimate β is negative
Females	MCV	718	609	67.7	outlier	Animal 718 has consistent large
Females	RBC	588	544	4.75	delete	Same animal 588; smallest value in
Females	HGB	588	544	5.9	delete	Same animal 588; two smallest
Females	НСТ	588	544	26.6	delete	Same animal 588; smallest value in
						this month; un-physiologically low
Females	МСН	588	544	12.4	delete	values in this month are considered outliers (see animals 588, 654 & 762); because extremely low HGB

Females	МСНС	588	544	22.2	delete	Same animal 588; three smallest values in this month are considered outliers (see animals 588, 654 & 762); because extremely low HGB
Females	МСН	654	577	1.3	delete	Same animal 654; three smallest values in this month are considered outliers (see animals 588, 654 & 762); un-physiologically low value
Females	МСНС	654	577	2.3	delete	Same animal 654; three smallest values in this month are considered outliers (see animals 588, 654 & 762); un-physiologically low value
Females	HGB	762	631	8.4	delete	Same animal 762; two smallest values in this month are considered outliers (see animals 588 & 762); extremely low HGB
Females	МСН	762	631	11	delete	Same animal 762; three smallest values in this month are considered outliers (see animals 588, 654 & 762); because of very low HGB
Females	мснс	762	631	18.7	delete	Same animal 762; three smallest values in this month are considered outliers (see animals 588, 654 & 762); because of extremely low HGB
Females	LYMR	585 54		41.1	outlier	Only a single value in this cage; There is a smaller value; outlier
Females	LYMA	846	673	1.2	outlier	Smallest value in this month; outlier

Without these outliers cage means on the original scale are given in Appendix 3, while cage means after a log transformation of the individual data are given in Appendix 4. Normal probability plots of the ANOVA residuals, of an analysis on cage means after log transformation, are given in Appendix 5. To aid interpretation a 99% envelope is added to the probability plots, such that only values outside the envelop might be suspicious. Appendix 6 gives plots of residuals versus fitted values after the same analysis of variance. These residual plots are generally satisfactory implying that the ANOVA assumptions, homogeneity of variance and, less importantly, normality, are generally fulfilled.

2.4 Summary tables

Summary tables, on the original non-transformed scale, of number of observations, means, standard deviations and coefficients of variation (%), classified by the feeding groups, are given in Table 7 for males and in Table 8 for females. These tables were obtained by first calculating cage means and then calculating the summary statistics. The number of cages per feeding group is 35 for weights, 20 for haematology, differential WBC and clinical biochemistry, and 10 for Urine data.

-0.35

-0.70

0.84

1.215

1.59

11

Weights	Weights Control					NK11-			NK33-			NK11+				NK33+				
Male	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV
Weight_52	35	599	41.6	6.9	35	586	60.3	10.3	35	598	56.2	9.4	35	597	54.2	9.1	35	614	60.0	9.8
growthRate	35	1.37	0.21	15.5	34	1.32	0.27	20.1	35	1.39	0.23	16.6	35	1.38	0.24	17.2	35	1.50	0.26	17.6
FeedMean	35	19.4	0.89	4.6	35	18.6	1.33	7.2	34	19.0	1.46	7.7	35	18.8	1.38	7.3	35	19.7	1.47	7.4
Haematology		Co	ntrol			N	IK11-			NK33-			NK11+				NK33+			
Male	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV
WBC	20	7.66	1.59	20.8	20	7.20	1.50	20.9	20	8.57	1.59	18.6	20	7.81	1.18	15.1	20	8.15	1.08	13.2
RBC	20	8.48	0.27	3.2	20	8.50	0.35	4.1	20	8.45	0.38	4.5	20	8.65	0.35	4.0	20	8.58	0.44	5.2
HGB	20	15.8	0.26	1.7	20	15.9	0.50	3.1	20	15.9	0.49	3.1	20	16.0	0.45	2.8	20	16.0	0.61	3.8
НСТ	20	46.1	1.29	2.8	20	46.3	1.53	3.3	20	46.5	2.07	4.5	20	47.2	1.35	2.9	20	46.8	2.15	4.6
MCV	20	54.4	1.55	2.9	20	54.6	1.56	2.9	20	55.0	1.56	2.8	20	54.6	1.52	2.8	20	54.8	1.20	2.2
MCH	20	18.7	0.63	3.4	20	18.8	0.73	3.9	20	18.8	0.74	3.9	20	18.5	0.76	4.1	20	18.7	0.65	3.5
MCHC	20	34.3	0.57	1.7	20	34.3	0.76	2.2	20	34.2	0.90	2.6	20	33.9	0.64	1.9	20	34.2	0.72	2.1
PLT	20	814	66.5	8.2	20	807	60.7	7.5	20	879	84.5	9.6	20	834	80.8	9.7	20	883	83.6	9.5
LYMR	20	66.9	8.77	13.1	20	66.8	5.02	7.5	20	69.5	8.88	12.8	20	67.5	8.09	12.0	20	65.5	7.83	12.0
LYMA	20	5.13	1.25	24.4	20	4.98	1.18	23.8	20	5.90	1.23	20.9	20	5.25	0.85	16.2	20	5.31	1.10	20.7
ClinChem			C	Control	NK11-			NK33-			NK11+				NK33+					
Male	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV
ALP	20	1.23	0.22	17.7	20	1.33	0.26	19.5	20	1.26	0.21	16.3	20	1.31	0.21	16.1	20	1.26	0.22	17.7
ALT	20	0.66	0.11	17.2	20	0.68	0.19	28.6	20	0.64	0.11	16.9	20	0.72	0.18	24.6	20	0.69	0.14	19.8
AST	20	2.30	0.38	16.6	20	2.39	0.52	21.8	20	2.29	0.33	14.6	20	2.28	0.54	23.8	20	2.32	0.58	25.0
BIL	20	7.10	1.62	22.8	20	6.82	1.02	15.0	20	6.94	1.03	14.8	20	6.71	1.15	17.1	20	7.20	1.14	15.8
ALB	20	37.7	1.22	3.2	20	37.4	1.05	2.8	20	38.0	1.02	2.7	20	37.5	1.10	2.9	20	37.5	1.37	3.6
TP	20	69.0	1.80	2.6	20	68.4	1.79	2.6	20	69.3	1.51	2.2	20	68.8	2.05	3.0	20	68.8	1.80	2.6
Glu	20	5.35	0.59	11.1	20	5.43	0.82	15.1	20	5.26	0.47	8.9	20	5.69	1.16	20.4	20	5.40	0.60	11.2
CHOL	20	2.74	0.35	12.8	20	2.82	0.38	13.6	20	2.85	0.50	17.4	20	2.64	0.45	17.1	20	2.88	0.65	22.6
TAG	20	1.78	0.59	33.0	20	1.82	0.45	24.6	20	2.01	0.58	28.6	20	2.05	0.67	32.5	20	2.01	0.56	28.0
Crea	20	43.7	4.80	11.0	20	42.1	3.30	7.8	20	43.1	2.49	5.8	20	42.1	3.35	7.9	20	42.3	3.66	8.6
Urea	20	4.37	0.39	9.0	20	4.32	0.49	11.4	20	4.38	0.46	10.6	20	4.58	0.58	12.6	20	4.28	0.54	12.7
cHGB	20	65.0	33.7	51.8	20	57.3	16.3	28.4	20	66.6	20.6	31.0	20	67.6	33.3	49.3	20	65.9	22.8	34.7

Table 7Summary statistics for male rats classified by the feeding groups: number of cages (N), means (Mean), standard deviations (Sd) and
coefficients of variation (CV). The summary statistics are obtained from cage means.

Ca	20	2.54	0.034	1.3	20	2.55	0.051	2.0	20	2.55	0.045	1.8	20	2.54	0.062	2.4	20	2.54	0.043	1.7	
Cl	20	104	1.31	1.3	20	103	1.54	1.5	20	102	1.33	1.3	20	103	1.80	1.8	20	103	1.65	1.6	
К	20	4.80	0.34	7.1	20	4.77	0.23	4.8	20	4.88	0.30	6.1	20	4.81	0.26	5.4	20	4.80	0.27	5.7	
Na	20	143	2.07	1.4	20	144	1.84	1.3	20	143	1.55	1.1	20	144	2.28	1.6	20	143	2.74	1.9	
Р	20	1.77	0.17	9.5	20	1.67	0.19	11.2	20	1.81	0.28	15.2	20	1.71	0.17	9.8	20	1.69	0.16	9.3	
Urine		Co	ontrol	-		N	IK11-			NK33-				N	K11+			NK33+			
Male	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV													
uVol	15	15.6	3.48	22.4	15	15.2	2.70	17.8	15	12.9	3.28	25.4	16	13.1	4.12	31.4	15	14.8	3.05	20.6	
uVolW	15	2.67	0.69	25.7	15	2.63	0.57	21.6	15	2.19	0.57	26.1	16	2.21	0.74	33.2	15	2.48	0.62	24.9	
uLeu	15	276	153	55.5	15	174	141	80.9	15	285	141	49.4	16	157	138	87.8	15	168	146	86.6	
uOsmoll	15	561	107	19.0	15	558	114	20.4	15	646	94	14.5	16	650	172	26.5	15	595	85	14.4	
uKeton	15	0.52	0.39	76.4	15	0.55	0.48	87.9	15	0.92	0.28	30.3	16	0.36	0.36	101.5	15	0.55	0.46	82.8	
upH	15	6.77	0.29	4.3	15	6.63	0.34	5.1	15	6.82	0.36	5.3	16	6.88	0.38	5.5	15	6.62	0.43	6.5	
Organs		Co	ontrol	-	Γ	NK11-				N	IK33-			N	IK11+		Γ	N	K33+		
Male	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV													
Kidney	10	0.45	0.042	9.5	10	0.47	0.037	7.7	10	0.48	0.082	17.1	10	0.45	0.050	11.1	10	0.45	0.044	9.8	
Spleen	10	0.17	0.018	10.6	10	0.17	0.013	7.7	10	0.18	0.017	9.6	10	0.17	0.031	18.6	10	0.17	0.017	10.1	
Liver	10	2.10	0.19	9.2	10	2.08	0.21	10.2	10	2.11	0.14	6.5	10	2.09	0.12	5.8	10	2.01	0.20	10.0	
AdrenGl	10	0.0088	0.0008	8.8	10	0.0094	0.0008	8.4	10	0.0095	0.0013	13.4	10	0.0083	0.0008	9.9	10	0.0091	0.0010	10.5	
Heart	10	0.20	0.011	5.4	10	0.21	0.020	9.2	10	0.22	0.024	10.9	10	0.20	0.008	4.1	10	0.20	0.012	6.2	
Testis	10	0.64	0.045	7.1	10	0.69	0.082	11.9	10	0.65	0.077	11.8	10	0.65	0.059	9.2	10	0.68	0.078	11.5	
Epididymis	10	0.22	0.024	11.1	10	0.24	0.028	11.5	10	0.22	0.030	13.3	10	0.21	0.027	13.1	10	0.23	0.030	13.2	
Brain	10	0.38	0.028	7.4	10	0.40	0.045	11.2	10	0.39	0.038	9.8	10	0.37	0.041	11.2	10	0.39	0.039	10.1	

Weights	s Control				NK11-				NK33-			NK11+				NK33+				
Female	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV
Weight_52	35	340	37.0	10.9	35	333	31.8	9.5	35	339	32.2	9.5	35	336	35.6	10.6	35	336	31.1	9.3
growthRate	35	0.98	0.32	33.0	35	0.88	0.35	39.3	35	1.03	0.34	32.7	35	0.97	0.37	37.8	35	0.95	0.31	33.1
FeedMean	35	14.2	0.94	6.6	35	13.9	1.17	8.4	34	14.3	0.95	6.7	35	13.9	1.02	7.3	35	14.4	0.92	6.4
Haematology		Co	ontrol		NK11-				NK33-				NK11+				NK33+			
Female	N	Mean	Sd	CV	N	Mean	Sd	CV	N	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV
WBC	20	5.57	1.34	24.0	20	5.94	1.53	25.8	20	5.13	0.96	18.7	20	5.45	1.19	21.8	20	5.88	1.28	21.8
RBC	20	7.37	0.36	4.9	20	7.37	0.31	4.2	20	7.44	0.35	4.8	20	7.55	0.29	3.9	20	7.54	0.25	3.3
HGB	20	15.4	0.53	3.4	20	15.4	0.52	3.4	20	15.5	0.51	3.3	20	15.6	0.48	3.1	20	15.5	0.54	3.5
НСТ	20	43.2	2.00	4.6	20	43.4	1.90	4.4	20	43.8	1.63	3.7	20	44.1	1.56	3.5	20	43.9	1.38	3.1
MCV	20	58.7	0.86	1.5	20	58.9	1.16	2.0	20	58.7	1.25	2.1	20	58.4	0.98	1.7	20	58.2	1.19	2.0
MCH	20	21.0	0.55	2.6	20	21.0	0.60	2.9	20	20.8	0.75	3.6	20	20.6	0.42	2.0	20	20.6	0.50	2.4
МСНС	20	35.8	0.72	2.0	20	35.6	0.86	2.4	20	35.3	0.73	2.1	20	35.2	0.63	1.8	20	35.4	0.82	2.3
PLT	20	755	75	10.0	20	792	103	13.0	20	751	74	9.9	20	764	79	10.3	20	784	97	12.4
LYMR	20	69.9	7.41	10.6	19	70.0	5.44	7.8	20	71.4	7.50	10.5	20	70.0	6.10	8.7	20	70.6	3.68	5.2
LYMA	20	3.86	0.97	25.0	20	3.92	0.63	16.1	20	3.57	0.60	16.9	20	3.78	0.67	17.7	20	4.04	0.80	19.8
ClinChem		Co	ontrol		NK11-					NK33-				N	K11+			N	K33+	
Female	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV
ALP	20	0.59	0.13	22.7	20	0.55	0.08	14.8	20	0.60	0.16	27.2	20	0.59	0.13	21.4	20	0.54	0.12	21.7
ALT	20	0.74	0.18	24.2	20	0.70	0.18	26.0	20	0.71	0.15	21.3	20	0.65	0.27	40.9	20	0.72	0.13	17.7
AST	20	2.59	0.62	23.8	20	2.52	0.49	19.6	20	2.69	0.50	18.8	20	2.55	0.81	31.7	20	2.73	0.73	26.6
BIL	20	8.33	2.33	27.9	20	7.68	1.57	20.4	20	7.76	1.35	17.4	20	7.92	1.46	18.4	20	8.03	2.72	33.9
ALB	20	42.4	1.91	4.5	20	42.5	2.12	5.0	20	43.0	2.14	5.0	20	43.3	3.00	6.9	20	42.4	2.16	5.1
TP	20	71.9	2.11	2.9	20	71.8	2.30	3.2	20	72.1	2.23	3.1	20	71.9	2.63	3.7	20	71.7	2.72	3.8
Glu	20	5.03	0.87	17.4	20	5.04	0.60	11.9	20	4.75	0.71	15.0	20	5.10	0.70	13.7	20	5.18	0.84	16.3
CHOL	20	2.64	0.50	19.0	20	2.61	0.50	19.1	20	2.57	0.47	18.3	20	2.47	0.45	18.3	20	2.49	0.36	14.6
TAG	20	0.96	0.22	22.7	20	0.90	0.23	25.8	20	1.01	0.31	30.2	20	1.21	1.08	89.1	20	0.98	0.25	25.2
Crea	20	43.2	4.47	10.3	20	45.4	3.66	8.1	20	45.2	3.86	8.5	20	46.1	4.99	10.8	20	44.3	3.46	7.8
Urea	20	4.63	0.44	9.5	20	4.99	0.48	9.5	20	5.17	0.57	10.9	20	5.05	0.68	13.5	20	4.98	0.54	10.9
cHGB	20	54.0	35.1	65.1	20	43.1	13.5	31.3	20	47.3	18.1	38.3	20	50.8	29.2	57.5	20	52.4	37.8	72.2

Table 8Summary statistics for female rats classified by the feeding groups: number of cages (N), means (Mean), standard deviations (Sd) and
coefficients of variation (CV). The summary statistics are obtained from cage means.

Ca	20	2.57	0.042	1.7	20	2.58	0.049	1.9	20	2.58	0.054	2.1	20	2.59	0.058	2.2	20	2.56	0.032	1.2		
Cl	20	101	1.52	1.5	20	101	1.24	1.2	20	100	1.43	1.4	20	100	1.50	1.5	20	101	1.66	1.7		
К	20	4.36	0.28	6.5	20	4.38	0.40	9.1	20	4.36	0.29	6.7	20	4.37	0.39	8.9	20	4.42	0.52	11.7		
Na	20	141	1.92	1.4	20	142	2.28	1.6	20	142	1.80	1.3	20	142	2.17	1.5	20	142	2.30	1.6		
Р	20	1.45	0.23	16.1	20	1.46	0.22	15.4	20	1.56	0.24	15.4	20	1.57	0.37	23.3	20	1.42	0.25	17.6		
Urine	rine Control					NK11-			NK33-				NK11+					NK33+				
Female	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV		
uVol	15	13.6	2.52	18.5	16	14.0	5.66	40.4	16	13.1	3.71	28.4	15	14.1	4.89	34.7	15	12.7	3.36	26.4		
uVolW	15	4.00	0.72	17.9	16	4.28	1.63	38.1	16	3.91	1.26	32.1	15	4.27	1.83	43.0	15	3.87	1.01	26.1		
uLeu	15	66	88	133.0	16	84	92	110.4	16	134	148	110.2	15	79	100	126.3	15	73	96	131.4		
uOsmoll	15	491	77	15.7	16	498	120	24.1	16	534	185	34.7	15	482	109	22.7	15	531	115	21.7		
uKeton	15	0.15	0.21	138.0	16	0.27	0.38	143.6	16	0.28	0.33	116.5	15	0.05	0.10	207.0	15	0.20	0.24	117.6		
upH	15	6.53	0.28	4.3	16	6.44	0.40	6.3	16	6.42	0.35	5.5	15	6.70	0.33	4.9	15	6.42	0.29	4.6		
Organs		Co	ontrol	-	NK11-				_	Ν	K33-			N	K11+		Γ	N	K33+			
Female	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV		
Kidney	10	0.48	0.051	10.7	10	0.51	0.038	7.4	10	0.50	0.045	9.0	10	0.52	0.050	9.7	10	0.52	0.037	7.1		
Spleen	10	0.20	0.027	13.5	10	0.21	0.019	9.2	10	0.19	0.027	14.2	10	0.20	0.027	13.2	10	0.22	0.048	21.9		
Liver	10	2.01	0.19	9.5	10	2.05	0.18	8.8	10	2.02	0.15	7.3	10	2.06	0.11	5.3	10	2.06	0.15	7.3		
AdrenGl	10	0.019	0.0030	15.7	10	0.019	0.0016	8.3	10	0.019	0.0029	15.0	10	0.020	0.0034	17.4	10	0.020	0.0034	17.0		
Heart	10	0.25	0.022	8.8	10	0.26	0.018	6.7	10	0.27	0.032	11.9	10	0.26	0.017	6.7	10	0.26	0.016	5.9		
Uterus	10	0.26	0.062	23.9	10	0.28	0.071	25.8	10	0.24	0.056	23.7	10	0.25	0.052	20.4	10	0.25	0.048	19.1		
Ovary	10	0.018	0.0060	33.5	10	0.019	0.0033	17.4	10	0.021	0.0038	18.4	10	0.021	0.0066	31.5	10	0.021	0.0056	26.1		
Brain	10	0.59	0.061	10.2	10	0.65	0.069	10.6	10	0.64	0.067	10.5	10	0.64	0.060	9.3	10	0.65	0.038	5.8		

3 Statistical analysis

The statistical methods are described in the main study A report (Goedhart & van der Voet 2018).

3.1 Equivalence testing using historical data

Equivalence testing was only performed for those variables that were also observed in the GRACE study. Note that this is a comparison between data obtained after 12 months for the current study, and data obtained after 3 months for the historical GRACE study. It should be noted that the residual variances between cages may be much larger after 12 months than after 3 months (Figure 17). This in indicated by a yellow background colour of the endpoint labels in Figure 5 to Figure 8, and it shows that the model for equivalence testing which compares the current 12 months data to reference data obtained after 3 months data is not useful. The results reported in this section are only meant to illustrate this fact and are given for completeness only.

The sample size in the current study, i.e. the number of cages per feeding group, equals 35 for the weight variables, 20 for haematology and clinical biochemistry, and 10 for relative organ weights. These sample sizes were used as the regulatory replication n_0 in the equivalence analysis. Moreover regulatory values $\alpha = 0.05$ and $\beta = 0.05$ were employed. Equivalence testing was only performed for those variables that were also observed in the GRACE study. Note that this is a comparison between data obtained after 12 months for the current study, and data obtained after 3 months for the historical GRACE study.

Each GMO feed was tested for equivalence with respect to the control feed. The DWE intervals showing the main results of the equivalence tests for 34 variables are given in Figure 5 to Figure 8. The hypothesis of no difference is rejected in case the interval does not contain zero, which is denoted by fuchsia coloured estimates. The non-equivalence hypothesis is rejected when the interval fully lies inside the interval (-1,1). For further interpretation the 95% confidence intervals for the ratios are given in Table 9 and Table 10. These confidence intervals at the ratio scale are also given in Figure 9 to Figure 16, with inclusion of the estimated equivalence limits (red bars) and their uncertainty (blue bars). Note that the latter graphs cannot be used directly for performing the equivalence test. However, they show the effects and equivalence limits at a more familiar scale.

Among 8×34 = 272 equivalence tests, there were 65 failures (24%) to prove equivalence (i.e. reject the hypothesis of non-equivalence). This high rate is mostly due to the fact that the residual variances after 12 months in the current study were often much larger than the residual variance after 3 months in the historical studies. The ratio of these residual variances (variance ratio or VR) was larger than 150% in 33 of the 68 cases (49%), in particular for the relative organ weights (Figure 17). These endpoints with much more variation explain 63 of the 65 failures to prove equivalence, including 2 endpoints where the median estimate was outside the equivalence limits (Ovary, females NK33- and NK33+). For the other 63 cases of non-proven equivalence, the median estimate is within the equivalence limits, and thus, according to the terminology of EFSA (2011a), equivalence is still more likely than lack of equivalence. Only for 2 cases with a residual variance ratio smaller than 150%, a failure to prove equivalence occurs (FeedMean, male NK11-, and Brain, female NK11-)

Although not the primary result of the equivalence analysis, it can also be observed from the fuchsia symbols in Figure 5 to Figure 8 and from Table 9 and Table 10 that, for those variables for which the equivalence test is performed, the number of significant differences, employing classical two-sided t-tests at the 5% level, equals 31 (11% of 272 difference tests, 13 for males and 18 for females). For the following cases both a significant difference and a failure to show equivalence occurred: FeedMean (NK11-) and Epididymus (NK11-) in males, and in females for MCHC (NK33-, NK11+), Kidney (NK11+, NK33+), Heart (NK33-) and Brain (NK11-, NK33+).

For all difference tests, i.e. including those for which the equivalence test was not performed, 38 out of 352 t-tests were significant which is 11% of the tests.

Figure 5 Equivalence testing of NK11- and NK33- versus the control feed for males. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 9, Figure 9 and Figure 10 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.

Figure 6 Equivalence testing of NK11+ and NK33+ versus the control feed for males. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 9, Figure 11 and Figure 12 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.

Figure 7 Equivalence testing of NK11- and NK33- versus the control feed for females. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 10, Figure 13 and Figure 14 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.

Table 9 95% Confidence interval plus estimate for the ratio ∆ of the GMO feeds versus the Control feed for males. Intervals are based on an ANOVA with 5 feeding groups. Ratios with corresponding Intervals that do not encompass the value 1 are coloured red; this is equivalent to a significant difference according to a t-test with significance level 5%.

Weights	NK1	1- vs Cont	trol	NK3	3- vs Cont	trol	NK1	1+ vs Con	trol	NK33+ vs Control			
Males	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
Weight_52	0.943	0.975	1.008	0.961	0.994	1.028	0.961	0.994	1.028	0.988	1.022	1.057	
growthRate	0.861	0.956	1.060	0.922	1.022	1.132	0.909	1.007	1.117	1.020	1.131	1.254	
FeedMean	0.931	0.958	0.985	0.948	0.975	1.003	0.941	0.968	0.996	0.986	1.014	1.043	
Haematology	NK1	1- vs Con	trol	NK3	3- vs Con	trol	NK1	1+ vs Con	trol	NK33+ vs Control			
Males	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
WBC	0.840	0.941	1.054	0.997	1.116	1.250	0.910	1.021	1.146	0.960	1.075	1.204	
RBC	0.976	1.001	1.027	0.971	0.996	1.022	0.996	1.022	1.049	0.985	1.011	1.037	
HGB	0.989	1.005	1.022	0.988	1.005	1.021	0.996	1.013	1.030	0.992	1.008	1.025	
HCT	0.985	1.005	1.025	0.987	1.007	1.028	1.005	1.026	1.047	0.993	1.014	1.034	
MCV	0.986	1.004	1.021	0.994	1.011	1.029	0.986	1.004	1.022	0.990	1.007	1.025	
MCH	0.981	1.005	1.029	0.985	1.009	1.033	0.967	0.991	1.016	0.979	1.003	1.027	
MCHC	0.989	1.001	1.012	0.985	0.997	1.009	0.975	0.987	0.999	0.984	0.996	1.007	
PLT	0.933	0.989	1.048	1.015	1.076	1.141	0.969	1.028	1.090	1.021	1.082	1.147	
LYMR	0.938	1.003	1.073	0.972	1.040	1.112	0.953	1.020	1.092	0.918	0.981	1.049	
LYMA	0.850	0.965	1.095	1.021	1.159	1.316	0.916	1.042	1.185	0.911	1.034	1.174	
ClinChem	NK1	1- vs Con	trol	NK3	3- vs Con	trol	NK1	1+ vs Con	trol	NK3	3+ vs Con	trol	
Males	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
ALP	0.965	1.070	1.186	0.928	1.028	1.139	0.960	1.065	1.182	0.926	1.026	1.137	
ALT	0.915	1.012	1.119	0.883	0.977	1.080	0.950	1.052	1.166	0.937	1.036	1.146	
AST	0.922	1.020	1.128	0.899	0.994	1.100	0.847	0.939	1.040	0.892	0.987	1.092	
BIL	0.900	0.974	1.055	0.914	0.989	1.071	0.871	0.944	1.023	0.946	1.024	1.109	
ALB	0.974	0.992	1.011	0.991	1.009	1.027	0.979	0.997	1.016	0.977	0.995	1.013	
TP	0.977	0.991	1.006	0.991	1.005	1.020	0.983	0.997	1.011	0.983	0.997	1.012	
Glu	0.934	1.004	1.080	0.916	0.985	1.059	0.973	1.047	1.127	0.936	1.006	1.082	
CHOL	0.933	1.030	1.138	0.931	1.029	1.137	0.872	0.964	1.067	0.935	1.033	1.141	
TAG	0.880	1.027	1.199	0.963	1.124	1.312	1.009	1.181	1.382	0.976	1.139	1.329	
Crea	0.918	0.964	1.013	0.941	0.988	1.038	0.920	0.966	1.016	0.923	0.969	1.018	
Urea	0.930	0.987	1.047	0.942	0.999	1.060	0.984	1.045	1.110	0.919	0.975	1.034	

cHGB	0.769	0.927	1.118	0.877	1.057	1.275	0.851	1.029	1.245	0.869	1.047	1.262	
Ca	0.990	1.000	1.010	0.993	1.003	1.012	0.990	1.000	1.010	0.987	0.997	1.006	
Cl	0.987	0.995	1.002	0.981	0.989	0.996	0.984	0.992	0.999	0.985	0.992	1.000	
К	0.964	0.996	1.029	0.983	1.015	1.049	0.972	1.005	1.039	0.969	1.001	1.034	
Na	0.993	1.000	1.008	0.991	0.998	1.006	0.993	1.000	1.008	0.992	1.000	1.007	
Р	0.887	0.941	0.998	0.960	1.019	1.080	0.903	0.959	1.018	0.899	0.954	1.012	
Urine	NK1	1- vs Con	trol	NK33- vs Control			NK1	1+ vs Con	trol	NK33+ vs Control			
Males	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
uVol	0.860	1.003	1.170	0.716	0.835	0.974	0.734	0.856	0.998	0.823	0.960	1.120	
uVolW	0.860	1.007	1.181	0.710	0.832	0.975	0.712	0.834	0.977	0.801	0.939	1.100	
uLeu	0.350	0.606	1.051	0.585	1.014	1.757	0.345	0.598	1.036	0.337	0.585	1.013	
uOsmoll	0.882	1.012	1.161	1.031	1.182	1.357	0.998	1.145	1.314	0.942	1.081	1.240	
uKeton	0.715	1.029	1.480	1.168	1.680	2.417	0.552	0.794	1.142	0.748	1.076	1.548	
upH	0.666	0.875	1.151	0.800	1.051	1.382	0.841	1.105	1.453	0.655	0.861	1.132	
Organs	NK1	1- vs Con	trol	NK3	3- vs Con	trol	NK1	1+ vs Con	trol	NK33+ vs Control			
Males	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
Kidney	0.963	1.060	1.167	0.964	1.062	1.169	0.906	0.997	1.098	0.915	1.008	1.110	
Spleen	0.932	1.043	1.168	0.974	1.090	1.221	0.880	0.986	1.104	0.907	1.016	1.138	
Liver	0.927	0.996	1.070	0.941	1.011	1.086	0.932	1.001	1.076	0.890	0.957	1.028	
AdrenGl	0.984	1.067	1.157	0.987	1.070	1.161	0.867	0.940	1.019	0.949	1.028	1.115	
Heart	0.972	1.037	1.107	0.996	1.063	1.135	0.939	1.003	1.070	0.926	0.989	1.055	
Testis	0.990	1.075	1.167	0.938	1.019	1.106	0.934	1.013	1.100	0.969	1.052	1.142	
Epididymis	1.004	1.116	1.240	0.924	1.027	1.141	0.851	0.946	1.052	0.925	1.028	1.142	
Brain	0.990	1.057	1.128	0.951	1.016	1.084	0.905	0.967	1.032	0.946	1.010	1.078	

Table 10 95% Confidence interval plus estimate for the ratio Δ of the GMO feeds versus the Control feed for females. Intervals are based on an ANOVA with 5 feeding groups. Ratios with corresponding Intervals that do not encompass the value 1 are coloured red; this is equivalent to a significant difference according to a t-test with significance level 5%.

Weights	s NK11- vs Control			NK3	3- vs Cont	trol	NK1	1+ vs Con	trol	NK33+ vs Control			
Females	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
Weight_52	0.944	0.980	1.018	0.960	0.997	1.036	0.950	0.986	1.024	0.952	0.989	1.027	
growthRate	0.776	0.903	1.051	0.904	1.052	1.224	0.848	0.986	1.148	0.828	0.963	1.121	
FeedMean	0.952	0.981	1.010	0.977	1.007	1.037	0.953	0.982	1.012	0.986	1.016	1.046	
Haematology	NK1	1- vs Con	trol	NK3	3- vs Con	trol	NK1	1+ vs Con	trol	NK33+ vs Control			
Females	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
WBC	0.940	1.062	1.200	0.825	0.932	1.053	0.856	0.965	1.089	0.938	1.055	1.187	
RBC	0.976	1.003	1.030	0.986	1.013	1.041	0.999	1.026	1.053	0.998	1.024	1.051	
HGB	0.981	1.003	1.025	0.981	1.003	1.025	0.987	1.009	1.031	0.985	1.006	1.028	
HCT	0.985	1.009	1.034	0.992	1.016	1.041	0.996	1.020	1.045	0.991	1.015	1.039	
MCV	0.993	1.005	1.017	0.988	1.000	1.012	0.983	0.994	1.006	0.980	0.991	1.003	
MCH	0.983	1.000	1.018	0.973	0.990	1.008	0.965	0.982	0.999	0.966	0.982	0.999	
MCHC	0.981	0.994	1.007	0.974	0.987	1.000	0.973	0.985	0.998	0.979	0.991	1.004	
PLT	0.970	1.030	1.093	0.947	1.005	1.067	0.956	1.013	1.075	0.977	1.034	1.096	
LYMR	0.954	1.006	1.061	0.958	1.009	1.063	0.958	1.008	1.061	0.967	1.017	1.069	
LYMA	0.917	1.026	1.148	0.844	0.944	1.056	0.877	0.979	1.093	0.945	1.053	1.173	
ClinChem	NK1	1- vs Con	trol	NK3	3- vs Cont	trol	NK1	1+ vs Con	trol	NK3	3+ vs Con	trol	
Females	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
ALP	0.869	0.983	1.113	0.901	1.020	1.154	0.898	1.014	1.145	0.834	0.940	1.059	
ALT	0.809	0.946	1.107	0.848	0.992	1.160	0.750	0.875	1.021	0.851	0.989	1.151	
AST	0.867	0.990	1.129	0.907	1.036	1.182	0.849	0.966	1.100	0.923	1.049	1.191	
BIL	0.840	0.924	1.017	0.874	0.962	1.058	0.879	0.965	1.060	0.870	0.954	1.046	
ALB	0.972	1.004	1.037	0.980	1.013	1.046	0.983	1.015	1.048	0.969	1.000	1.032	
TP	0.979	0.999	1.018	0.984	1.003	1.023	0.978	0.997	1.016	0.978	0.996	1.015	
Glu	0.938	1.010	1.087	0.897	0.965	1.039	0.965	1.037	1.115	0.962	1.032	1.108	
CHOL	0.889	0.987	1.096	0.854	0.949	1.054	0.831	0.921	1.021	0.863	0.955	1.056	
TAG	0.826	0.974	1.148	0.851	1.002	1.181	0.839	0.986	1.159	0.868	1.017	1.192	
Crea	0.998	1.052	1.110	0.984	1.038	1.095	1.006	1.060	1.118	0.978	1.029	1.084	
Urea	1.015	1.081	1.151	1.038	1.106	1.177	1.034	1.100	1.170	1.012	1.075	1.142	

cHGB	0.731	0.884	1.068	0.811	0.981	1.185	0.800	0.964	1.161	0.807	0.969	1.162	
Са	0.991	1.003	1.015	0.994	1.006	1.018	0.994	1.006	1.017	0.986	0.998	1.009	
Cl	0.999	1.008	1.017	0.991	1.000	1.009	0.990	0.998	1.007	0.991	0.999	1.008	
К	0.959	1.010	1.065	0.962	1.014	1.068	0.955	1.005	1.058	0.958	1.007	1.059	
Na	1.001	1.007	1.012	1.001	1.007	1.013	0.999	1.004	1.010	0.998	1.003	1.009	
Р	0.906	1.011	1.129	0.965	1.078	1.204	0.944	1.053	1.173	0.880	0.979	1.089	
Urine	NK1	1- vs Con	trol	NK3	3- vs Cont	trol	NK1	1+ vs Con	trol	NK33+ vs Control			
Females	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
uVol	0.738	0.898	1.092	0.824	0.998	1.208	0.833	1.008	1.221	0.771	0.934	1.131	
uVolW	0.775	0.948	1.160	0.830	1.011	1.232	0.842	1.025	1.249	0.795	0.969	1.180	
uLeu	0.555	1.036	1.935	0.816	1.504	2.770	0.493	0.909	1.674	0.606	1.116	2.056	
uOsmoll	0.875	1.037	1.230	0.846	0.999	1.180	0.817	0.964	1.139	0.903	1.067	1.259	
uKeton	0.886	1.169	1.541	0.876	1.148	1.505	0.641	0.840	1.100	0.852	1.116	1.463	
upH	0.715	0.895	1.121	0.738	0.920	1.147	0.948	1.181	1.472	0.714	0.890	1.109	
Organs	NK1	1- vs Con	trol	NK3	3- vs Cont	trol	NK1	1+ vs Con	trol	NK33+ vs Control			
Females	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
Kidney	0.996	1.071	1.152	0.974	1.048	1.127	1.006	1.081	1.163	1.007	1.083	1.165	
Spleen	0.965	1.087	1.224	0.874	0.984	1.108	0.925	1.042	1.173	0.981	1.105	1.245	
Liver	0.960	1.025	1.094	0.947	1.011	1.080	0.967	1.032	1.102	0.968	1.034	1.104	
AdrenGl	0.911	1.031	1.167	0.892	1.010	1.143	0.919	1.040	1.178	0.932	1.055	1.195	
Heart	0.995	1.063	1.136	1.014	1.083	1.157	0.977	1.043	1.115	0.997	1.065	1.138	
Uterus	0.851	1.053	1.304	0.726	0.899	1.113	0.808	1.000	1.239	0.797	0.987	1.223	
Ovary	0.867	1.110	1.420	0.940	1.202	1.539	0.922	1.180	1.509	0.963	1.233	1.577	
Brain	1.032	1.100	1.173	1.012	1.079	1.151	1.018	1.085	1.157	1.033	1.102	1.175	

Figure 9 95% confidence intervals for the ratio of NK11- and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

Figure 10 95% confidence intervals for the ratio of NK33- and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

Figure 11 95% confidence intervals for the ratio of NK11+ and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

Figure 12 95% confidence intervals for the ratio of NK33+ and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

Figure 13 95% confidence intervals for the ratio of NK11- and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

Figure 14 95% confidence intervals for the ratio of NK33- and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

Figure 15 95% confidence intervals for the ratio of NK11+ and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

Figure 16 95% confidence intervals for the ratio of NK33+ and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text).

Figure 17 Residual variance (sig2F or σ_F^2) in the current G-TwYST A study as a percentage of the residual variance (sig2E or σ_E^2) in the historical GRACE studies for males (top panel) and females (bottom panel).

3.2 Equivalence testing using target effect sizes

90% confidence intervals for 9 variables, with equivalence limits according to the targeted effect sizes in Hong *et al.* (2017), are given in Figure 18 for males and in Figure 19 for females. Note that these are 90% intervals, rather than the 95% intervals in Figure 9 to Figure 16. In all cases the null hypothesis of non-equivalence is rejected with most p-values smaller than 0.001 (Table 11).

Figure 18 90% confidence intervals for the ratio of the mean of the GMO feed and the control feed for selected variables for males along with equivalence intervals defined by targeted effect sizes of Hong *et al.* (2017).

G-TwYST Study A Statistical report month 12

Figure 19 90% confidence intervals for the ratio of the mean of the GMO feed and the control feed for selected variables for females along with equivalence intervals defined by targeted effect sizes of Hong *et al.* (2017).

Table 11P-values of equivalence tests for the ratio of the mean of the GMO feed versus the mean
of the control feed using targeted effect sizes of Hong *et al.* (2017) as equivalence limits.
P-values smaller than 0.01/0.05 have a gold/yellow background.

Variable		Ma	ales		Females					
Variable	NK11-	NK33-	NK11+	NK33+	NK11-	NK33-	NK11+	NK33+		
Weight_52	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
WBC	0.000	0.005	0.000	0.001	0.001	0.000	0.000	0.000		
LYMA	0.000	0.038	0.001	0.000	0.000	0.000	0.000	0.000		
ALP	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Crea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Urea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
CHOL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Kidney	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000		
Liver	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

3.3 Classical statistical analysis

A classical analysis of variance was performed on the cage means after log transforming the data. Note that the ANOVA residuals were already assessed by means of a normal probability plot (Appendix 5) and a plot of residuals versus fitted values (Appendix 6). Table 12 (males) and Table 13 (females) present the results of the t-tests, of Dunnett's tests and of Wilcoxon tests for the 44 variables divided in five groups. For ease of interpretation results are expressed as means and coefficients of variation on the original scale, rather than as means and standard deviations on the log scale. Note however that 95% confidence intervals on the ratio scale are given in Table 9 (males) and Table 10 (females).

Results of the t-test and Dunnett's test for the difference are summarized by letters which indicate significance at 5% and at 1%. Results for the non-parametric Wilcoxon test, where each test only uses data for the specific GM feed and the non-GM Control feed, are summarized in the same way. Exact p-values for these tests are given in Appendix 9.

It can be seen (Table 12 and Table 13) that the relative precision of variables ranges from high to low precision. CVs smaller than 10% are observed for many variables, while CVs larger than 50% are observed for cHGB, uLeu and uKeton. For cHGB, growthRate, uLeu and uKeton there is a large difference in precision for males and females.

In 46 cases (13% of the 352 comparisons) a difference was significant in at least one of the tests at the 5% level. On their own, Dunnett's test resulted in 10 significant differences (2.8%), the t-test resulted in 38 significant differences (11%), and Wilcoxon's test resulted in 32 significant differences (9%). Note that cells coloured red in Table 9 and Table 10, with 95% confidence intervals for ratios, correspond to cells coloured red in Table 12 and Table 13 with letters "t", "T", "d" or "D".

Results of the Shapiro-Wilks test for normality and Bartlett's and Levene's test for homogeneity of variance are given in Appendix 10. Bartlett's' test is significant at the 5% level for males for 3 variables (FeedMean, HGB, Glu) and for females also for 3 variables (LYMR, TAG, uKeton). Levene's test is significant for uOsmoll in males, and for 5 variables in females (LYMR, TAG, uOsmoll, uKeton, Ovary). This implies that the important assumption of homogeneity of variance is generally fulfilled.

For these significant cases, one might resort to Wilcoxon's test which is, for these cases, only significant for FeedMean in males (NK11-, NK33- and NK11+).

The Shapiro-Wilks test for non-normality for separate feeding groups (Appendix 10) is frequently significant. However the normality assumptions is not very important. Moreover normal probability plots (Appendix 5) and plots of residuals versus fitted values (Appendix 6) were generally satisfactory. Also, graphs of cage means on the log scale in Appendix 4 indicate that significance of non-normality seems mostly due to one outlying observation in a feeding group.

3.4 Standardized effect sizes

SES intervals were calculated for all 44 variables. Results for the four treatment groups, separately for males and females, are given in Figure 20 to Figure 23. The number of intervals that extend outside the -/+ 1 SD limits equals 141 out of 352 (40%).

Table 12Means and coefficient of variation (CV) for male rats. Means of GM feeds which are significantly different from the non-GM Control feed are
marked, with red background colouring, as follows: D: P<0.01 by Dunnett-test, d: P<0.05 by Dunnett-test, T: P<0.01 by t-test but not by
Dunnett-test, t: P<0.05 by t-test but not by Dunnett-test, W: P<0.01 by Wilcoxon signed rank test, w: P<0.05 by Wilcoxon signed rank test.
Dunnett- and t-tests are based on an ANOVA with 5 treatment groups, while Wilcoxon tests only uses data for the specific GM feed and the
control feed.

Weights	Con	trol	NK11-		NK33-			NK11+			NK33+			
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
Weight_52	599.1	6.9	586.1	10.3		597.7	9.4		596.8	9.1		614.1	9.8	
growthRate	1.372	15.5	1.322	20.1		1.394	16.6		1.380	17.2		1.495	17.6	tw
FeedMean	19.42	4.6	18.63	7.2	dTW	19.02	7.7	w	18.83	7.3	tW	19.73	7.4	
Haematology	Con	trol		NK11-			NK33-		NK11+			NK33+		
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
WBC	7.657	20.8	7.197	20.9		8.570	18.6		7.807	15.1		8.155	13.2	
RBC	8.482	3.2	8.496	4.1		8.453	4.5		8.647	4.0		8.582	5.2	
HGB	15.82	1.7	15.91	3.1		15.90	3.1		15.99	2.8		15.96	3.8	
HCT	46.12	2.8	46.34	3.3		46.49	4.5		47.19	2.9	tw	46.77	4.6	
MCV	54.41	2.9	54.61	2.9		55.03	2.8		54.63	2.8		54.81	2.2	
MCH	18.68	3.4	18.77	3.9		18.85	3.9		18.53	4.1		18.74	3.5	
MCHC	34.33	1.7	34.35	2.2		34.23	2.6		33.89	1.9	tw	34.18	2.1	
PLT	813.8	8.2	807.0	7.5		878.7	9.6	d	834.4	9.7		882.5	9.5	dTW
LYMR	66.92	13.1	66.78	7.5		69.53	12.8		67.55	12.0		65.49	12.0	
LYMA	5.127	24.4	4.978	23.8		5.900	20.9	t	5.255	16.2		5.315	20.7	
ClinChem	Con	trol		NK11-		NK33-			NK11+			NK33+		
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
ALP	1.231	17.7	1.332	19.5		1.262	16.3		1.312	16.1		1.263	17.7	
ALT	0.659	17.2	0.679	28.6		0.643	16.9		0.720	24.6		0.690	19.8	
AST	2.304	16.6	2.386	21.8		2.291	14.6		2.281	23.8		2.319	25.0	
BIL	7.100	22.8	6.820	15.0		6.942	14.8		6.712	17.1		7.197	15.8	
ALB	37.66	3.2	37.38	2.8		37.99	2.7		37.46	2.9		37.46	3.6	
TP	68.99	2.6	68.40	2.6		69.34	2.2		68.77	3.0		68.81	2.6	
Glu	5.354	11.1	5.426	15.1		5.263	8.9		5.687	20.4		5.396	11.2	
CHOL	2.738	12.8	2.820	13.6		2.854	17.4		2.643	17.1		2.882	22.6	
TAG	1.781	33.0	1.821	24.6		2.011	28.6		2.048	32.5	tw	2.008	28.0	

Crea	43.72	11.0	42.08	7.8		43.05	5.8		42.12	7.9		42.28	8.6	
Urea	4.372	9.0	4.323	11.4		4.376	10.6		4.579	12.6		4.282	12.7	
cHGB	65.01	51.8	57.30	28.4		66.60	31.0		67.57	49.3		65.92	34.7	
Са	2.545	1.3	2.545	2.0		2.552	1.8		2.542	2.4		2.537	1.7	
Cl	103.6	1.3	103.0	1.5		102.4	1.3	dTW	102.6	1.8	tw	102.8	1.6	t
К	4.805	7.1	4.775	4.8		4.880	6.1		4.815	5.4		4.803	5.7	
Na	143.5	1.4	143.5	1.3		143.2	1.1		143.6	1.6		143.4	1.9	
Р	1.775	9.5	1.672	11.2	tW	1.812	15.2		1.713	9.8		1.693	9.3	w
Urine	Con	trol		NK11-			NK33-			NK11+			NK33+	
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
uVol	15.57	22.4	15.23	17.8		12.90	25.4	t	13.09	31.4	t	14.80	20.6	
uVolW	2.672	25.7	2.625	21.6		2.193	26.1	t	2.212	33.2	t	2.475	24.9	
uLeu	275.8	55.5	174.2	80.9		285.0	49.4		157.0	87.8	w	168.3	86.6	
uOsmoll	560.6	19.0	558.0	20.4		645.6	14.5	t	649.6	26.5		594.8	14.4	
uKeton	0.517	76.4	0.550	87.9		0.917	30.3	dTw	0.359	101.5		0.550	82.8	
upH	6.767	4.3	6.633	5.1		6.817	5.3		6.875	5.5		6.617	6.5	
Organs	Con	trol		NK11-		NK33-		NK11+			NK33+			
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
Kidney	0.447	9.5	0.472	7.7	w	0.477	17.1		0.446	11.1		0.449	9.8	
Spleen	0.166	10.6	0.173	7.7		0.181	9.6		0.166	18.6		0.169	10.1	
Liver	2.101	9.2	2.084	10.2		2.113	6.5		2.088	5.8		2.006	10.0	
AdrenGl	0.00883	8.8	0.00942	8.4	w	0.00948	13.4		0.00832	9.9		0.00913	10.5	
Heart	0.204	5.4	0.212	9.2		0.218	10.9		0.205	4.1		0.202	6.2	
Testis	0.640	7.1	0.691	11.9		0.653	11.8		0.649	9.2		0.676	11.5	
Epididymis	0.218	11.1	0.244	11.5	tw	0.224	13.3		0.207	13.1		0.225	13.2	
Brain	0.382	7.4	0.404	11.2		0.389	9.8		0.370	11.2		0.386	10.1	

Table 13Means and coefficient of variation (CV) for female rats. Means of GMO feeds which are significantly different from the Control feed are
marked, with red background colouring, as follows: D: P<0.01 by Dunnett-test, d: P<0.05 by Dunnett-test, T: P<0.01 by t-test but not by
Dunnett-test, t: P<0.05 by t-test but not by Dunnett-test, W: P<0.01 by Wilcoxon signed rank test, w: P<0.05 by Wilcoxon signed rank test.
Note that Dunnett- and t-tests are based on a ANOVA with 5 treatment groups, while Wilcoxon tests only uses data for the specific GM feed
and the control feed.

Weights	Con	trol	NK11-			NK33-			NK11+			NK33+			
Females	Mean	CV	Mean	CV	Sig										
Weight_52	340.3	10.9	332.9	9.5		339.1	9.5		335.7	10.6		336.0	9.3		
growthRate	0.984	33.0	0.882	39.3		1.034	32.7		0.970	37.8		0.946	33.1		
FeedMean	14.18	6.6	13.93	8.4		14.29	6.7		13.94	7.3		14.41	6.4		
Haematology	Con	trol		NK11-			NK33-			NK11+			NK33+		
Females	Mean	CV	Mean	CV	Sig										
WBC	5.565	24.0	5.935	25.8		5.130	18.7		5.447	21.8		5.877	21.8		
RBC	7.368	4.9	7.368	4.2		7.444	4.8		7.547	3.9	w	7.543	3.3		
HGB	15.45	3.4	15.44	3.4		15.46	3.3		15.57	3.1		15.54	3.5		
HCT	43.23	4.6	43.43	4.4		43.79	3.7	w	44.06	3.5		43.87	3.1		
MCV	58.70	1.5	58.94	2.0		58.71	2.1		58.41	1.7		58.19	2.0		
MCH	20.99	2.6	21.00	2.9		20.81	3.6		20.62	2.0	tW	20.61	2.4	t	
MCHC	35.76	2.0	35.58	2.4		35.32	2.1	tw	35.25	1.8	tw	35.45	2.3		
PLT	755.1	10.0	792.4	13.0		751.4	9.9		764.1	10.3		783.7	12.4		
LYMR	69.94	10.6	70.03	7.8		71.43	10.5		70.00	8.7		70.64	5.2		
LYMA	3.863	25.0	3.915	16.1		3.575	16.9		3.778	17.7		4.035	19.8		
ClinChem	Con	trol		NK11-		NK33-			NK11+			NK33+			
Females	Mean	CV	Mean	CV	Sig										
ALP	0.586	22.7	0.549	14.8		0.602	27.2		0.593	21.4		0.542	21.7		
ALT	0.736	24.2	0.695	26.0		0.709	21.3		0.650	40.9		0.723	17.7		
AST	2.586	23.8	2.515	19.6		2.688	18.8		2.545	31.7		2.730	26.6		
BIL	8.332	27.9	7.678	20.4		7.758	17.4		7.922	18.4		8.027	33.9		
ALB	42.38	4.5	42.51	5.0		43.03	5.0		43.29	6.9		42.38	5.1		
ТР	71.89	2.9	71.81	3.2		72.14	3.1		71.93	3.7		71.66	3.8		
Glu	5.028	17.4	5.043	11.9		4.745	15.0		5.103	13.7		5.175	16.3		
CHOL	2.638	19.0	2.607	19.1		2.574	18.3		2.474	18.3		2.487	14.6		
TAG	0.956	22.7	0.901	25.8		1.011	30.2		1.211	89.1		0.976	25.2		

Crea	43.19	10.3	45.45	8.1		45.17	8.5		46.10	10.8	t	44.27	7.8	
Urea	4.634	9.5	4.986	9.5	tW	5.169	10.9	Dw	5.052	13.5	dTw	4.981	10.9	tw
cHGB	54.00	65.1	43.06	31.3		47.27	38.3		50.78	57.5		52.42	72.2	
Ca	2.570	1.7	2.575	1.9		2.583	2.1		2.586	2.2		2.563	1.2	
Cl	100.6	1.5	101.3	1.2		100.5	1.4		100.2	1.5		100.5	1.7	
К	4.362	6.5	4.380	9.1		4.363	6.7		4.365	8.9		4.422	11.7	
Na	141.2	1.4	142.0	1.6	t	142.3	1.3	t	141.9	1.5		141.7	1.6	
Р	1.450	16.1	1.456	15.4		1.562	15.4		1.573	23.3		1.424	17.6	
Urine	Con	trol		NK11-			NK33-	_		NK11+			NK33+	
Females	Mean	CV	Mean	CV	Sig									
uVol	13.60	18.5	14.00	40.4		13.06	28.4		14.10	34.7		12.73	26.4	
uVolW	4.003	17.9	4.280	38.1		3.914	32.1		4.271	43.0		3.874	26.1	
uLeu	65.8	133.0	83.6	110.4		134.4	110.2		79.2	126.3		73.3	131.4	
uOsmoll	490.6	15.7	497.8	24.1		533.7	34.7		482.0	22.7		531.1	21.7	
uKeton	0.150	138.0	0.266	143.6		0.281	116.5		0.050	207.0		0.200	117.6	
upH	6.533	4.3	6.438	6.3		6.422	5.5		6.700	4.9		6.417	4.6	
Organs	Con	trol		NK11-			NK33-		NK11+			NK33+		
Females	Mean	CV	Mean	CV	Sig									
Kidney	0.480	10.7	0.512	7.4		0.502	9.0		0.517	9.7	tw	0.518	7.1	tw
Spleen	0.197	13.5	0.211	9.2		0.192	14.2		0.203	13.2		0.220	21.9	
Liver	2.005	9.5	2.051	8.8		2.017	7.3		2.063	5.3		2.064	7.3	
AdrenGl	0.0189	15.7	0.0192	8.3		0.0190	15.0		0.0196	17.4		0.0199	17.0	
Heart	0.248	8.8	0.263	6.7	w	0.271	11.9	t	0.258	6.7		0.264	5.9	
Uterus	0.261	23.9	0.277	25.8		0.237	23.7		0.253	20.4		0.254	19.1	
Ovary	0.0179	33.5	0.0192	17.4		0.0207	18.4		0.0209	31.5		0.0214	26.1	
Brain	0.592	10.2	0.651	10.6	dTW	0.640	10.5	t	0.643	9.3	dw	0.651	5.8	dTW

Figure 20 Confidence intervals for Standardized Effect Sized (SES) for male rats for GMO feeds NK11- and NK33- versus the control feed.

Figure 21 Confidence intervals for Standardized Effect Sized (SES) for male rats for GMO feeds NK11+ and NK33+ versus the control feed.

Figure 22 Confidence intervals for Standardized Effect Sized (SES) for female rats for GMO feeds NK11- and NK33- versus the control feed.

Figure 23 Confidence intervals for Standardized Effect Sized (SES) for female rats for GMO feeds NK11+ and NK33+ versus the control feed.

3.5 Factorial analysis

The significance results from fitting the factorial model to the 44 variables are given in Table 14. The ratios for the significant cases are shown in Table 15 and

Table 16. As an example, consider the results for WBC which has a significant GM inclusion rate effect for males and a significant interaction for females. The effect of a higher GM inclusion rate is positive for males with a mean WBC value which is 12% higher at a GM inclusion rate of 33% as compared to a rate of 11% (Table 15). For females the effect of GM inclusion rate is negative for GM feeds without Roundup (1.00 to 0.88, i.e. -12%,

Table 16), while the effect is positive for GM feeds with Roundup (0.91 to 0.99, i.e. +9%,

Table 16). The only main significant GM inclusion rate effects larger than 10% were observed for WBC and uKeton in males. A significant Roundup main effects larger than 10% was observed for uKeton both in males and females.

The p-values in Table 14 can be summarized as follows. In 8 out of 88 cases (9%) there was a significant difference at the 5% level between the mean of the GM feeds and the non-GM control feed. In 11 cases (12.5%) there was a significant interaction term at the 5% level. In these latter cases the main effects should not be used for assessing effects of GM inclusion rate or Roundup. Among the remaining 77 cases, i.e. where the interaction is not significant, there were 6 cases (7.8%) with a significant differences between GM inclusion rates, and 11 cases (14.3%) with a significant difference between the GM feeds with and without roundup.

Response		М	ales		Females					
Weights	GMO	InclRate	Roundup	Interact	GMO	InclRate	Roundup	Interact		
Weight_52	0.771	0.055	0.051	0.723	0.432	0.474	0.922	0.588		
growthRate	0.520	0.015	0.038	0.510	0.674	0.238	0.995	0.107		
FeedMean	0.056	0.002	0.014	0.158	0.750	0.005	0.637	0.724		
Haematology	GMO	InclRate	Roundup	Interact	GMO	InclRate	Roundup	Interact		
WBC	0.419	0.006	0.574	0.133	0.964	0.571	0.700	0.004		
RBC	0.454	0.390	0.052	0.748	0.080	0.613	0.043	0.480		
HGB	0.237	0.679	0.344	0.786	0.499	0.867	0.499	0.844		
HCT	0.106	0.517	0.059	0.298	0.075	0.890	0.510	0.416		
MCV	0.342	0.363	0.752	0.725	0.580	0.274	0.011	0.842		
MCH	0.846	0.346	0.244	0.656	0.057	0.371	0.014	0.329		
MCHC	0.273	0.546	0.069	0.140	0.020	0.860	0.632	0.114		
PLT	0.066	0.001	0.273	0.421	0.316	0.917	0.743	0.223		
LYMR	0.681	0.953	0.378	0.112	0.583	0.704	0.757	0.872		
LYMA	0.346	0.048	0.669	0.032	0.991	0.883	0.367	0.026		
ClinChem	GMO	InclRate	Roundup	Interact	GMO	InclRate	Roundup	Interact		
ALP	0.252	0.277	0.928	0.977	0.790	0.602	0.502	0.140		
ALT	0.631	0.463	0.165	0.778	0.336	0.081	0.409	0.434		
AST	0.693	0.725	0.199	0.283	0.838	0.118	0.892	0.657		
BIL	0.569	0.081	0.954	0.234	0.130	0.631	0.548	0.385		
ALB	0.806	0.280	0.466	0.129	0.482	0.752	0.910	0.237		
TP	0.680	0.149	0.813	0.186	0.842	0.753	0.480	0.688		

Table 14P values for significance of effects obtained with the factorial model. P-values smaller
than 0.01/0.05 have a gold/yellow background.

Glu	0.713	0.246	0.216	0.691	0.676	0.272	0.041	0.366
CHOL	0.726	0.328	0.370	0.312	0.182	0.947	0.329	0.248
TAG	0.071	0.613	0.159	0.243	0.926	0.552	0.782	0.983
Crea	0.138	0.419	0.614	0.536	0.019	0.189	0.980	0.630
Urea	0.964	0.170	0.426	0.051	0.000	0.991	0.772	0.240
cHGB	0.850	0.254	0.470	0.383	0.416	0.352	0.520	0.394
Ca	0.977	0.881	0.384	0.368	0.441	0.436	0.454	0.124
Cl	0.006	0.339	0.929	0.196	0.626	0.199	0.051	0.081
К	0.747	0.485	0.802	0.317	0.616	0.872	0.733	0.975
Na	0.893	0.565	0.781	0.776	0.008	0.814	0.105	0.683
Р	0.154	0.075	0.255	0.041	0.444	0.890	0.406	0.047
Urine	GMO	InclRate	Roundup	Interact	GMO	InclRate	Roundup	Interact
uVol	0.118	0.517	0.855	0.006	0.539	0.818	0.689	0.147
uVolW	0.087	0.503	0.531	0.006	0.865	0.958	0.782	0.350
uLeu	0.072	0.195	0.138	0.160	0.603	0.147	0.277	0.673
uOsmoll	0.066	0.301	0.717	0.027	0.791	0.553	0.943	0.203
uKeton	0.486	0.002	0.006	0.455	0.559	0.130	0.044	0.089
upH	0.752	0.720	0.857	0.024	0.651	0.076	0.091	0.033
Organs	GMO	InclRate	Roundup	Interact	GMO	InclRate	Roundup	Interact
Kidney	0.417	0.855	0.102	0.895	0.021	0.685	0.409	0.650
Spleen	0.465	0.353	0.115	0.862	0.268	0.628	0.381	0.063
Liver	0.747	0.550	0.325	0.228	0.331	0.792	0.526	0.750
AdrenGl	0.437	0.107	0.005	0.130	0.491	0.940	0.548	0.686
Heart	0.388	0.810	0.025	0.400	0.022	0.402	0.448	0.968
Testis	0.235	0.772	0.641	0.121	0.841	0.256	0.776	0.335
Epididymis	0.515	0.996	0.032	0.031	0.093	0.474	0.619	0.834
Brain	0.649	0.933	0.044	0.074	0.001	0.926	0.873	0.452

Table 15Ratios for significant variables at the 5% level in the factorial analysis for males. Main
effects are "GM vs Contrl" (ratio of the mean of the four GM feeds vs the control feed),
"33 vs 11" (ratio of the two GM feeds with 33% GM inclusion rate vs the two feeds with
11% GM inclusion rate) and "+RU vs -RU" (ratio of the two GM feeds with roundup vs
the two feeds without roundup). The interaction ratios are scaled such that NK11-
equals 1. The InclRate and RndUp main effects are only given when the interaction is not
significant.

Males	Verieble	GM vs	33 vs	+RU vs		Intera	action	
Group	variable	Contrl	11	-RU	NK11-	NK33-	NK11+	NK33+
Weights	growthRate	-	1.10	1.08	-	-	-	-
Weights	FeedMean	-	1.03	1.03	-	-	-	-
Haematology	WBC	-	1.12	-	-	-	-	-
Haematology	PLT	-	1.07	-	-	-	-	-
Haematology	LYMA	-	-	-	1.00	1.20	1.08	1.07
ClinChem	Cl	0.99	-	-	-	-	-	-
ClinChem	Р	-	-	-	1.00	1.08	1.02	1.01
Urine	uVol	-	-	-	1.00	0.83	0.85	0.96
Urine	uVolW	-	-	-	1.00	0.83	0.83	0.93
Urine	uOsmoll	-	-	-	1.00	1.17	1.13	1.07
Urine	uKeton	-	1.49	0.70	-	-	-	-
Urine	upH	-	-	-	1.00	1.20	1.26	0.98

Organs	AdrenGl	-	-	0.92	-	-	-	-
Organs	Heart	-	-	0.95	-	-	-	-
Organs	Epididymis	-	-	-	1.00	0.92	0.85	0.92
Organs	Brain	-	-	0.95	-	-	-	-

Table 16Ratios for significant variables at the 5% level in the factorial analysis for females. Main
effects are "GM vs Contrl" (ratio of the mean of the four GM feeds vs the control feed),
"33 vs 11" (ratio of the two GM feeds with 33% GM inclusion rate vs the two feeds with
11% GM inclusion rate) and "+RU vs -RU" (ratio of the two GM feeds with roundup vs
the two feeds without roundup). The interaction ratios are scaled such that NK11-
equals 1. The InclRate and RndUp main effects are only given when the interaction is not
significant.

Females	Variable	GM vs	33 vs	+RU vs		Intera	action	
Group	Variable	Contrl	11	-RU	NK11-	NK33-	NK11+	NK33+
Weights	FeedMean	-	1.03	-	-	-	-	-
Haematology	WBC	-	-	-	1.00	0.88	0.91	0.99
Haematology	RBC	-	-	1.02	-	-	-	-
Haematology	MCV	-	-	0.99	-	-	-	-
Haematology	MCH	-	-	0.99	-	-	-	-
Haematology	MCHC	0.99	-	-	-	-	-	-
Haematology	LYMA	-	-	-	1.00	0.92	0.95	1.03
ClinChem	Glu	-	-	1.05	-	-	-	-
ClinChem	Crea	1.04	-	-	-	-	-	-
ClinChem	Urea	1.09	-	-	-	-	-	-
ClinChem	Na	1.01	-	-	-	-	-	-
ClinChem	Р	-	-	-	1.00	1.07	1.04	0.97
Urine	uKeton	-	-	0.84	-	-	-	-
Urine	upH	-	-	-	1.00	1.03	1.32	0.99
Organs	Kidney	1.07	-	-	-	-	-	-
Organs	Heart	1.06	-	-	-	-	-	-
Organs	Brain	1.09	-	-	-	-	-	-

3.6 Correlation analysis

The correlation plots for three liver-related and three kidney-related variables in males and females are shown in Figure 24 - Figure 27. For males there were significant positive correlations between Urea and Crea for all comparisons (Figure 25), without accompanying correlations with the relative Kidney weights. Further significant (positive) correlations were found between ALP and CHOL in males, and between Kidney and Urea in females. Simultaneous exceedance of the threshold for two variables was only observed for Kidney and Urea for a single cage in females; the accompanying Crea value was close to the threshold for this cage.

Figure 24 Pairwise results for variables with set target effect sizes related to liver damage in Males. In each row there are four graphs corresponding to the four GM feed groups. Points represent the ratio of the cage mean for the GM group vs. the cage mean for the control feed in ten blocks. Horizontal and vertical lines represent a ratio of 1 and the target effect sizes from Hong et al. (2017).

Figure 25 Pairwise results for variables with set target effect sizes related to kidney damage in Males. In each row there are four graphs corresponding to the four GM feed groups. Points represent the ratio of the cage mean for the GM group vs. the cage mean for the control feed in ten blocks. Horizontal and vertical lines represent a ratio of 1 and the target effect sizes from Hong et al. (2017).

Figure 26 Pairwise results for variables with set target effect sizes related to liver damage in Females. In each row there are four graphs corresponding to the four GM feed groups. Points represent the ratio of the cage mean for the GM group vs. the cage mean for the control feed in ten blocks. Horizontal and vertical lines represent a ratio of 1 and the target effect sizes from Hong et al. (2017).

Figure 27 Pairwise results for variables with set target effect sizes related to kidney damage in Females. In each row there are four graphs corresponding to the four GM feed groups. Points represent the ratio of the cage mean for the GM group vs. the cage mean for the control feed in ten blocks. Horizontal and vertical lines represent a ratio of 1 and the target effect sizes from Hong et al. (2017).

References

- Goedhart, P.W. & van der Voet, H. (2017). G TwYST Study B. A 90-day toxicity study in rats fed GM maize NK603. Statistical report. Report 31.10.17, Biometris, Wageningen, The Netherlands.
- Goedhart, P.W. & van der Voet, H. (2018). G TwYST Study A. Combined chronic toxicity and carcinogenicity study in rats fed GM maize NK603. Main statistical report. Report 32.02.18, Biometris, Wageningen, The Netherlands.
- EFSA (2011a). Scientific Opinion on Guidance for risk assessment of food and feed from genetically modified plants. EFSA Journal 2011;9(5): 2150. [37 pp.] http://dx.doi.org/10.2903/j.efsa.2011.2150.
- Hong B, Du Y, Mukerji P, Roper JM, Appenzeller LM (2017). Safety assessment of food and feed from GM crops in Europe: Evaluating EFSA's alternative framework for the rat 90-day feeding study. Journal of Agricultural and Food Chemistry, 65(27): 5545-5560.
 http://dx.doi.org/10.1021/acs.jafc.7b01492.

List of Tables

- Table 1Data files for G-TwYST study A after 9/12 months.
- Table 2 Animals that died before the end of month 12.
- Table 3Number of animals for which bounded values were provided.
- Table 4Remarks by SZU in original Excel data files; the accompanying values have been set to
missing.
- Table 5Urine variables with only a limited set of observed values which are given in the heading
of each sub-tables The table entries give the number of times each value occurs for male
and female rats.
- Table 6Values that have been modified, deleted, or were considered as possible outliers, before
unblinding of the feeding groups. Values which are not coloured were modified or deleted
following comments of SZU. The red and yellow values were presented to the G-TwYST
coordinator. He decided which values should be deleted (red) and which values should be
considered as possible outliers (yellow). Comments by the authors of this report are given
in black, while comments of the G-TwYST coordinator are given in red.
- Table 7Summary statistics for male rats classified by the feeding groups: number of cages (N),
means (Mean), standard deviations (Sd) and coefficients of variation (CV). The summary
statistics are obtained from cage means.
- Table 8Summary statistics for female rats classified by the feeding groups: number of cages (N),
means (Mean), standard deviations (Sd) and coefficients of variation (CV). The summary
statistics are obtained from cage means.
- Table 9 95% Confidence interval plus estimate for the ratio ∆ of the GMO feeds versus the Control feed for males. Intervals are based on an ANOVA with 5 feeding groups. Ratios with corresponding Intervals that do not encompass the value 1 are coloured red; this is equivalent to a significant difference according to a t-test with significance level 5%.
- Table 10 95% Confidence interval plus estimate for the ratio Δ of the GMO feeds versus the Control feed for females. Intervals are based on an ANOVA with 5 feeding groups. Ratios with corresponding Intervals that do not encompass the value 1 are coloured red; this is equivalent to a significant difference according to a t-test with significance level 5%.
- Table 11 P-values of equivalence tests for the ratio of the mean of the GMO feed versus the mean of the control feed using targeted effect sizes of Hong *et al.* (2017) as equivalence limits.
 P-values smaller than 0.01/0.05 have a gold/yellow background.
- Table 12 Means and coefficient of variation (CV) for male rats. Means of GM feeds which are significantly different from the non-GM Control feed are marked, with red background colouring, as follows: D: P<0.01 by Dunnett-test, d: P<0.05 by Dunnett-test, T: P<0.01 by t-test but not by Dunnett-test, t: P<0.05 by t-test but not by Dunnett-test, W: P<0.01 by Wilcoxon signed rank test, w: P<0.05 by Wilcoxon signed rank test. Dunnett- and t-tests are based on an ANOVA with 5 treatment groups</p>

- Table 13 Means and coefficient of variation (CV) for female rats. Means of GMO feeds which are significantly different from the Control feed are marked, with red background colouring, as follows: D: P<0.01 by Dunnett-test, d: P<0.05 by Dunnett-test, T: P<0.01 by t-test but not by Dunnett-test, t: P<0.05 by t-test but not by Dunnett-test, W: P<0.01 by Wilcoxon signed rank test, w: P<0.05 by Wilcoxon signed rank test. Note that Dunnett- and t-tests are based on a ANOVA with 5 treatment groups, while Wilcoxon tests only uses data for the specific GM feed and the control feed.
- Table 14P values for significance of effects obtained with the factorial model. P-values smaller
than 0.01/0.05 have a gold/yellow background.
- Table 15Ratios for significant variables at the 5% level in the factorial analysis for males. Main
effects are "GM vs Contrl" (ratio of the mean of the four GM feeds vs the control feed),
"33 vs 11" (ratio of the two GM feeds with 33% GM inclusion rate vs the two feeds with
11% GM inclusion rate) and "+RU vs -RU" (ratio of the two GM feeds with roundup vs the
two feeds without roundup). The interaction ratios are scaled such that NK11- equals 1.
The InclRate and RndUp main effects are only given when the interaction is not
significant.
- Table 16Ratios for significant variables at the 5% level in the factorial analysis for females. Main
effects are "GM vs Contrl" (ratio of the mean of the four GM feeds vs the control feed),
"33 vs 11" (ratio of the two GM feeds with 33% GM inclusion rate vs the two feeds with
11% GM inclusion rate) and "+RU vs -RU" (ratio of the two GM feeds with roundup vs the
two feeds without roundup). The interaction ratios are scaled such that NK11- equals 1.
The InclRate and RndUp main effects are only given when the interaction is not
significant.

List of Figures

- Figure 1 Mean body weights versus week for each feeding group for male rats (left) and for female rats (right).
- Figure 2 Mean body weights gain (g/day/animal) versus week for each feeding group for male rats (left) and for female rats (right).
- Figure 3 Mean feed consumption (g/day/animal) versus week for each feeding group for male rats (left) and for female rats (right).
- Figure 4 Residuals along the y-axis versus fitted values along the x-axis resulting from an analysis of variance on cage means after log transforming the data. Solid symbols denote outliers found by sequentially applying Grubbs' outlier test at the 1% level to the residuals.
- Figure 5 Equivalence testing of NK11- and NK33- versus the control feed for males. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 9, Figure 9 and Figure 10 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.
- Figure 6 Equivalence testing of NK11+ and NK33+ versus the control feed for males. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 9, Figure 11 and Figure 12 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.
- Figure 7 Equivalence testing of NK11- and NK33- versus the control feed for females. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 10, Figure 13 and Figure 14 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.
- Figure 8 Equivalence testing of NK11+ and NK33+ versus the control feed for females. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 10, Figure 15 and Figure 16 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.
- Figure 9 95% confidence intervals for the ratio of NK11- and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 10 95% confidence intervals for the ratio of NK33- and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

- Figure 11 95% confidence intervals for the ratio of NK11+ and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 12 95% confidence intervals for the ratio of NK33+ and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 13 95% confidence intervals for the ratio of NK11- and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 14 95% confidence intervals for the ratio of NK33- and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 15 95% confidence intervals for the ratio of NK11+ and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 16 95% confidence intervals for the ratio of NK33+ and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text).
- Figure 17 Residual variance (sig2F or σ_F^2) in the current G-TwYST A study as a percentage of the residual variance (sig2E or σ_E^2) in the historical GRACE studies for males (top panel) and females (bottom panel)
- Figure 18 90% confidence intervals for the ratio of the mean of the GMO feed and the control feed for selected variables for males along with equivalence intervals defined by targeted effect sizes of Hong *et al.* (2017).
- Figure 19 90% confidence intervals for the ratio of the mean of the GMO feed and the control feed for selected variables for females along with equivalence intervals defined by targeted effect sizes of Hong *et al.* (2017)
- Figure 20 Confidence intervals for Standardized Effect Sized (SES) for male rats for GMO feeds NK11- and NK33- versus the control feed.
- Figure 21 Confidence intervals for Standardized Effect Sized (SES) for male rats for GMO feeds NK11+ and NK33+ versus the control feed.
- Figure 22 Confidence intervals for Standardized Effect Sized (SES) for female rats for GMO feeds NK11- and NK33- versus the control feed.
- Figure 23 Confidence intervals for Standardized Effect Sized (SES) for female rats for GMO feeds NK11+ and NK33+ versus the control feed.

- Figure 24 Pairwise results for variables with set target effect sizes related to liver damage in Males. In each row there are four graphs corresponding to the four GM feed groups. Points represent the ratio of the cage mean for the GM group vs. the cage mean for the control feed in ten blocks. Horizontal and vertical lines represent a ratio of 1 and the target effect sizes from Hong et al. (2017).
- Figure 25 Pairwise results for variables with set target effect sizes related to kidney damage in Males. In each row there are four graphs corresponding to the four GM feed groups. Points represent the ratio of the cage mean for the GM group vs. the cage mean for the control feed in ten blocks. Horizontal and vertical lines represent a ratio of 1 and the target effect sizes from Hong et al. (2017).
- Figure 26 Pairwise results for variables with set target effect sizes related to liver damage in Females. In each row there are four graphs corresponding to the four GM feed groups. Points represent the ratio of the cage mean for the GM group vs. the cage mean for the control feed in ten blocks. Horizontal and vertical lines represent a ratio of 1 and the target effect sizes from Hong et al. (2017).
- Figure 27 Pairwise results for variables with set target effect sizes related to kidney damage in Females. In each row there are four graphs corresponding to the four GM feed groups. Points represent the ratio of the cage mean for the GM group vs. the cage mean for the control feed in ten blocks. Horizontal and vertical lines represent a ratio of 1 and the target effect sizes from Hong et al. (2017).

Appendix 1. Growth curves per animal pair

Appendix 2. Feed consumption per cage

Study A - Feed Consumption weeks 27 - 52 Male

Appendix 3. Graphs of cage means on the original scale

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Appendix 4. Graphs of cage means on the log scale

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Red symbols denote means for feeding groups while the red line denotes the overall mean.

Residuals are obtained from ANOVA of cage means (log scale). A 99% confidence envelop is added.

Residuals are obtained from ANOVA of cage means (log scale). A 99% confidence envelop is added.

Residuals are obtained from ANOVA of cage means (log scale). A 99% confidence envelop is added.

Residuals are obtained from ANOVA of cage means (log scale). A 99% confidence envelop is added.

Residuals are obtained from ANOVA of cage means (log scale). A 99% confidence envelop is added.

Appendix 5. Normal probability plots of residuals after ANOVA (continued)

Residuals are obtained from ANOVA of cage means (log scale). A 99% confidence envelop is added.

Study A month 12 - Normal Probability Plot Female

Appendix 5. Normal probability plots of residuals after ANOVA (continued)

Residuals are obtained from ANOVA of cage means (log scale). A 99% confidence envelop is added.

Study A month 12 - Normal Probability Plot Female

Appendix 5. Normal probability plots of residuals after ANOVA (continued)

Residuals are obtained from ANOVA of cage means (log scale). A 99% confidence envelop is added.

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Study A month 12 - Residuals vs Fittedvalues Female

Appendix 7. Estimated differences between GMO feeds and the control feed

The differences are given along with the residual sums of squares SS_F based on ANOVA on cage means after a log-transform. The degrees of freedom for the residual sums of squares equals 136 for Weight_13, growthRate and FeedMean, 76 for the other Male variables, and 75 for the other Female variables. Degrees of freedom are sometimes one less due to an occasional missing cage mean.

Mariahla			Male rats			Female rats				
variable	NK11-	NK33-	NK11+	NK33+	SS_F	NK11-	NK33-	NK11+	NK33+	SS_F
Weight_52	-0.0254	-0.0063	-0.0059	0.0218	0.8692	-0.0198	-0.0027	-0.0138	-0.0114	0.8692
FeedMean	-0.0432	-0.0253	-0.0324	0.0140	0.5322	-0.0195	0.0069	-0.0182	0.0156	0.5322
WBC	-0.0607	0.1100	0.0209	0.0725	2.4769	0.0605	-0.0705	-0.0352	0.0533	2.4769
RBC	0.0011	-0.0037	0.0216	0.0110	0.1197	0.0029	0.0129	0.0257	0.0240	0.1197
HGB	0.0054	0.0045	0.0125	0.0084	0.0802	0.0028	0.0030	0.0086	0.0062	0.0802
НСТ	0.0047	0.0075	0.0255	0.0136	0.0992	0.0091	0.0162	0.0201	0.0150	0.0992
MCV	0.0036	0.0113	0.0038	0.0072	0.0246	0.0050	0.0001	-0.0055	-0.0089	0.0246
MCH	0.0046	0.0088	-0.0089	0.0027	0.0505	0.0002	-0.0098	-0.0185	-0.0181	0.0505
MCHC	0.0005	-0.0031	-0.0130	-0.0045	0.0291	-0.0062	-0.0134	-0.0146	-0.0089	0.0291
PLT	-0.0113	0.0733	0.0274	0.0793	0.5907	0.0296	0.0055	0.0133	0.0338	0.5907
LYMA	-0.0359	0.1479	0.0412	0.0334	2.0886	0.0258	-0.0574	-0.0214	0.0516	2.0886
ALP	0.0675	0.0276	0.0631	0.0253	2.5449	-0.0167	0.0196	0.0138	-0.0623	2.5449
ALT	0.0121	-0.0235	0.0509	0.0353	4.0788	-0.0552	-0.0084	-0.1330	-0.0106	4.0788
AST	0.0199	-0.0056	-0.0634	-0.0130	2.8953	-0.0105	0.0350	-0.0344	0.0474	2.8953
BIL	-0.0263	-0.0106	-0.0578	0.0241	1.5103	-0.0789	-0.0390	-0.0356	-0.0469	1.5103
ALB	-0.0077	0.0088	-0.0026	-0.0055	0.1771	0.0041	0.0128	0.0148	-0.0002	0.1771
ТР	-0.0086	0.0052	-0.0031	-0.0026	0.0624	-0.0014	0.0029	-0.0032	-0.0037	0.0624
Glu	0.0044	-0.0150	0.0460	0.0064	0.8968	0.0096	-0.0354	0.0362	0.0317	0.8968
CHOL	0.0297	0.0285	-0.0362	0.0325	1.8216	-0.0127	-0.0525	-0.0818	-0.0464	1.8216
TAG	0.0265	0.1168	0.1663	0.1300	4.4734	-0.0265	0.0023	-0.0139	0.0171	4.4734
Crea	-0.0362	-0.0120	-0.0342	-0.0310	0.4750	0.0510	0.0372	0.0585	0.0289	0.4750
Urea	-0.0133	-0.0011	0.0439	-0.0253	0.6561	0.0780	0.1003	0.0952	0.0721	0.6561
cHGB	-0.0754	0.0558	0.0289	0.0460	5.9418	-0.1237	-0.0197	-0.0369	-0.0319	5.9418
Са	0.0001	0.0026	0.0002	-0.0034	0.0225	0.0030	0.0058	0.0059	-0.0024	0.0225
Cl	-0.0054	-0.0112	-0.0085	-0.0076	0.0128	0.0083	0.0000	-0.0018	-0.0006	0.0128
К	-0.0042	0.0153	0.0045	0.0010	0.4542	0.0102	0.0135	0.0052	0.0073	0.4542
Na	0.0004	-0.0019	0.0004	-0.0004	0.0054	0.0066	0.0069	0.0044	0.0033	0.0054
Р	-0.0608	0.0184	-0.0419	-0.0473	2.0237	0.0113	0.0750	0.0513	-0.0215	2.0237
Kidney	0.0582	0.0599	-0.0027	0.0079	0.2316	0.0687	0.0467	0.0783	0.0796	0.2316
Spleen	0.0423	0.0864	-0.0144	0.0159	0.6181	0.0837	-0.0162	0.0408	0.1002	0.6181
Liver	-0.0044	0.0112	0.0013	-0.0444	0.1887	0.0246	0.0112	0.0319	0.0332	0.1887
AdrenGl	0.0651	0.0681	-0.0622	0.0281	0.6723	0.0309	0.0100	0.0395	0.0539	0.6723
Heart	0.0363	0.0611	0.0025	-0.0113	0.1926	0.0612	0.0799	0.0426	0.0631	0.1926
Testis	0.0722	0.0184	0.0133	0.0504	1.9999					
Uterus						0.0520	-0.1070	0.0005	-0.0127	1.9999
Epididymis Ovary	0.1096	0.0266	-0.0553	0.0273	2.6593	0.1040	0.1843	0.1652	0.2092	2.6593
, Brain	0.0555	0.0155	-0.0340	0.0099	0.1810	0.0953	0.0762	0.0819	0.0969	0.1810

Appendix 8. Intervals for equivalence tests

95% Confidence interval plus estimate for the ratio Δ of a GMO feed versus the control feed, 95% Confidence interval plus median for (upper) equivalence limits, and the confidence interval plus median for Δ on the ELSD scale. Red background colouring indicates significant differences, green background colouring indicates significant equivalences (in all remaining cases equivalence is still more likely than not).

Males NK11- versus Control												
Weights	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale			
Males NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
Weight_52	0.943	0.975	1.008	1.017	1.056	1.109	-2.000	-0.478	0.222			
FeedMean	0.931	0.958	0.985	1.037	1.080	1.161	-1.141	-0.554	-0.166			
Haematology	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale			
Males NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
WBC	0.840	0.941	1.054	1.455	1.651	2.407	-0.321	-0.115	0.105			
RBC	0.976	1.001	1.027	1.083	1.109	1.144	-0.245	0.010	0.258			
HGB	0.989	1.005	1.022	1.079	1.100	1.146	-0.118	0.055	0.208			
НСТ	0.985	1.005	1.025	1.089	1.112	1.148	-0.149	0.044	0.212			
MCV	0.986	1.004	1.021	1.005	1.024	1.039	-2.000	0.255	2.000			
MCH	0.981	1.005	1.029	1.010	1.036	1.060	-2.000	0.150	2.000			
MCHC	0.989	1.001	1.012	1.019	1.031	1.050	-0.406	0.017	0.428			
PLT	0.933	0.989	1.048	1.621	1.787	2.042	-0.108	-0.019	0.081			
LYMA	0.850	0.965	1.095	1.395	1.587	2.213	-0.323	-0.074	0.201			
ClinChem	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale			
Males NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
ALP	0.965	1.070	1.186	1.289	1.413	1.586	-0.103	0.194	0.466			
ALT	0.915	1.012	1.119	1.059	1.186	1.326	-1.266	0.075	2.000			
AST	0.922	1.020	1.128	1.216	1.337	1.528	-0.295	0.067	0.396			
ALB	0.974	0.992	1.011	1.102	1.127	1.161	-0.196	-0.065	0.088			
ТР	0.977	0.991	1.006	1.075	1.093	1.120	-0.236	-0.096	0.064			
Glu	0.934	1.004	1.080	1.281	1.382	1.649	-0.217	0.012	0.231			
CHOL	0.933	1.030	1.138	1.087	1.230	1.576	-0.426	0.136	0.782			
TAG	0.880	1.027	1.199	1.736	2.120	4.335	-0.174	0.033	0.224			
Crea	0.918	0.964	1.013	1.282	1.362	1.567	-0.255	-0.114	0.041			
Urea	0.930	0.987	1.047	1.191	1.278	1.612	-0.274	-0.050	0.191			
Са	0.990	1.000	1.010	1.131	1.161	1.237	-0.064	0.001	0.065			
Cl	0.987	0.995	1.002	1.102	1.124	1.171	-0.101	-0.045	0.018			
К	0.964	0.996	1.029	1.225	1.280	1.366	-0.139	-0.017	0.117			
Na	0.993	1.000	1.008	1.112	1.136	1.185	-0.056	0.003	0.060			
Р	0.887	0.941	0.998	1.165	1.235	1.416	-0.555	-0.279	-0.009			
Organs	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale			
Males NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
Kidney	0.963	1.060	1.167	1.024	1.110	1.284	-2.000	0.907	2.000			
Spleen	0.932	1.043	1.168	1.070	1.184	1.329	-0.573	0.253	1.348			
Liver	0.927	0.996	1.070	1.032	1.101	1.189	-2.000	-0.048	2.000			
AdrenGl	0.984	1.067	1.157	1.279	1.371	1.568	-0.047	0.202	0.436			
Heart	0.972	1.037	1.107	1.059	1.121	1.223	-0.283	0.309	0.978			
Testis	0.990	1.075	1.167	1.112	1.185	1.274	-0.060	0.420	0.936			
Epididymis	1.004	1.116	1.240	1.058	1.162	1.375	0.033	0.754	2.000			
Brain	0.990	1.057	1.128	1.055	1.120	1.234	-0.095	0.481	1.276			

Males NK33- versus Control												
Weights	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	O scale			
Males NK33-	lower	esti	upper	lower	median	upper	lower	median	upper			
Weight_52	0.961	0.994	1.028	1.017	1.063	1.109	-2.000	-0.121	2.000			
FeedMean	0.948	0.975	1.003	1.037	1.080	1.162	-0.798	-0.321	0.036			
Haematology	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale			
Males NK33-	lower	esti	upper	lower	median	upper	lower	median	upper			
WBC	0.997	1.116	1.250	1.455	1.650	2.389	-0.007	0.211	0.433			
RBC	0.971	0.996	1.022	1.083	1.109	1.144	-0.267	-0.035	0.221			
HGB	0.988	1.005	1.021	1.079	1.100	1.146	-0.127	0.047	0.200			
НСТ	0.987	1.007	1.028	1.089	1.112	1.148	-0.122	0.070	0.237			
MCV	0.994	1.011	1.029	1.005	1.024	1.047	-2.000	0.815	2.000			
MCH	0.985	1.009	1.033	1.010	1.037	1.060	-2.000	0.285	2.000			
MCHC	0.985	0.997	1.009	1.018	1.030	1.050	-0.482	-0.100	0.308			
PLT	1.015	1.076	1.141	1.622	1.786	2.041	0.026	0.126	0.216			
LYMA	1.021	1.159	1.316	1.396	1.587	2.217	0.043	0.310	0.591			
ClinChem	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale			
Males NK33-	lower	esti	upper	lower	median	upper	lower	median	upper			
ALP	0.928	1.028	1.139	1.289	1.413	1.585	-0.224	0.079	0.347			
ALT	0.883	0.977	1.080	1.060	1.186	1.326	-2.000	-0.145	0.876			
AST	0.899	0.994	1.100	1.217	1.337	1.529	-0.372	-0.019	0.349			
ALB	0.991	1.009	1.027	1.102	1.127	1.161	-0.080	0.073	0.204			
ТР	0.991	1.005	1.020	1.075	1.093	1.120	-0.103	0.058	0.198			
Glu	0.916	0.985	1.059	1.282	1.381	1.647	-0.248	-0.045	0.180			
CHOL	0.931	1.029	1.137	1.087	1.230	1.576	-0.436	0.130	0.771			
TAG	0.963	1.124	1.312	1.735	2.122	4.306	-0.049	0.146	0.345			
Crea	0.941	0.988	1.038	1.282	1.362	1.564	-0.176	-0.038	0.120			
Urea	0.942	0.999	1.060	1.191	1.278	1.611	-0.251	-0.004	0.246			
Са	0.993	1.003	1.012	1.131	1.161	1.237	-0.047	0.017	0.074			
Cl	0.981	0.989	0.996	1.102	1.124	1.172	-0.153	-0.094	-0.031			
К	0.983	1.015	1.049	1.225	1.280	1.366	-0.072	0.061	0.176			
Na	0.991	0.998	1.006	1.112	1.136	1.185	-0.066	-0.015	0.044			
Р	0.960	1.019	1.080	1.165	1.235	1.415	-0.193	0.085	0.336			
Organs	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	O scale			
Males NK33-	lower	esti	upper	lower	median	upper	lower	median	upper			
Kidney	0.964	1.062	1.169	1.024	1.110	1.288	-2.000	0.940	2.000			
Spleen	0.974	1.090	1.221	1.069	1.184	1.368	-0.191	0.519	1.827			
Liver	0.941	1.011	1.086	1.033	1.101	1.188	-2.000	0.122	2.000			
AdrenGl	0.987	1.070	1.161	1.279	1.370	1.565	-0.038	0.211	0.445			
Heart	0.996	1.063	1.135	1.059	1.122	1.221	-0.039	0.523	1.278			
Testis	0.938	1.019	1.106	1.112	1.185	1.273	-0.407	0.109	0.581			
Epididymis	0.924	1.027	1.141	1.058	1.161	1.269	-0.830	0.183	1.576			
Brain	0.951	1.016	1.084	1.055	1.119	1.235	-0.547	0.131	0.818			

	Males NK11+ versus Control												
Weights	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	O scale				
Males NK11+	lower	esti	upper	lower	median	upper	lower	median	upper				
Weight_52	0.961	0.994	1.028	1.017	1.063	1.108	-2.000	-0.113	2.000				
FeedMean	0.941	0.968	0.996	1.038	1.080	1.162	-0.927	-0.410	-0.051				
Haematology	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale				
Males NK11+	lower	esti	upper	lower	median	upper	lower	median	upper				
WBC	0.910	1.021	1.146	1.457	1.652	2.408	-0.186	0.039	0.246				
RBC	0.996	1.022	1.049	1.083	1.109	1.144	-0.040	0.207	0.436				
HGB	0.996	1.013	1.030	1.079	1.100	1.146	-0.044	0.127	0.287				
НСТ	1.005	1.026	1.047	1.089	1.112	1.148	0.049	0.237	0.413				
MCV	0.986	1.004	1.022	1.005	1.024	1.040	-2.000	0.265	2.000				
MCH	0.967	0.991	1.016	1.010	1.037	1.060	-2.000	-0.288	2.000				
MCHC	0.975	0.987	0.999	1.018	1.031	1.050	-0.872	-0.424	-0.041				
PLT	0.969	1.028	1.090	1.621	1.787	2.042	-0.053	0.047	0.133				
LYMA	0.916	1.042	1.185	1.394	1.587	2.224	-0.187	0.085	0.334				
ClinChem	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale				
Males NK11+	lower	esti	upper	lower	median	upper	lower	median	upper				
ALP	0.960	1.065	1.182	1.289	1.412	1.584	-0.118	0.181	0.454				
ALT	0.950	1.052	1.166	1.060	1.186	1.327	-0.410	0.314	2.000				
AST	0.847	0.939	1.040	1.217	1.337	1.528	-0.549	-0.214	0.129				
ALB	0.979	0.997	1.016	1.103	1.127	1.161	-0.161	-0.021	0.133				
ТР	0.983	0.997	1.011	1.075	1.093	1.120	-0.178	-0.035	0.126				
Glu	0.973	1.047	1.127	1.282	1.381	1.650	-0.081	0.138	0.339				
CHOL	0.872	0.964	1.067	1.088	1.227	1.574	-0.831	-0.168	0.380				
TAG	1.009	1.181	1.382	1.737	2.123	4.346	0.014	0.209	0.419				
Crea	0.920	0.966	1.016	1.282	1.362	1.569	-0.247	-0.107	0.048				
Urea	0.984	1.045	1.110	1.191	1.278	1.614	-0.060	0.169	0.405				
Са	0.990	1.000	1.010	1.131	1.161	1.237	-0.064	0.002	0.065				
Cl	0.984	0.992	0.999	1.102	1.124	1.172	-0.128	-0.071	-0.009				
К	0.972	1.005	1.039	1.225	1.280	1.367	-0.116	0.018	0.139				
Na	0.993	1.000	1.008	1.112	1.136	1.186	-0.056	0.003	0.060				
Р	0.903	0.959	1.018	1.164	1.235	1.415	-0.455	-0.193	0.078				
Organs	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	I for ∆ ELSI	D scale				
Males NK11+	lower	esti	upper	lower	median	upper	lower	median	upper				
Kidney	0.906	0.997	1.098	1.024	1.110	1.208	-2.000	-0.033	2.000				
Spleen	0.880	0.986	1.104	1.069	1.184	1.330	-1.159	-0.085	0.892				
Liver	0.932	1.001	1.076	1.032	1.101	1.190	-2.000	0.013	2.000				
AdrenGl	0.867	0.940	1.019	1.279	1.371	1.565	-0.423	-0.193	0.058				
Heart	0.939	1.003	1.070	1.059	1.122	1.224	-0.675	0.018	0.702				
Testis	0.934	1.013	1.100	1.112	1.185	1.273	-0.446	0.079	0.558				
Epididymis	0.851	0.946	1.052	1.058	1.162	1.259	-1.928	-0.381	0.451				
Brain	0.905	0.967	1.032	1 055	1,119	1.235	-0 995	-0.292	0.315				

Males NK33+ versus Control											
Weights	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	O scale		
Males NK33+	lower	esti	upper	lower	median	upper	lower	median	upper		
Weight_52	0.988	1.022	1.057	1.017	1.063	1.108	-0.341	0.414	2.000		
FeedMean	0.986	1.014	1.043	1.039	1.080	1.162	-0.202	0.176	0.589		
Haematology	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale		
Males NK33+	lower	esti	upper	lower	median	upper	lower	median	upper		
WBC	0.960	1.075	1.204	1.458	1.651	2.377	-0.081	0.138	0.347		
RBC	0.985	1.011	1.037	1.083	1.109	1.144	-0.146	0.106	0.326		
HGB	0.992	1.008	1.025	1.079	1.100	1.146	-0.086	0.086	0.240		
НСТ	0.993	1.014	1.034	1.089	1.112	1.148	-0.061	0.127	0.294		
MCV	0.990	1.007	1.025	1.005	1.024	1.043	-2.000	0.514	2.000		
MCH	0.979	1.003	1.027	1.010	1.037	1.060	-2.000	0.089	2.000		
MCHC	0.984	0.996	1.007	1.019	1.031	1.050	-0.526	-0.144	0.254		
PLT	1.021	1.082	1.147	1.622	1.786	2.042	0.035	0.136	0.226		
LYMA	0.911	1.034	1.174	1.397	1.588	2.221	-0.208	0.069	0.321		
ClinChem	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale		
Males NK33+	lower	esti	upper	lower	median	upper	lower	median	upper		
ALP	0.926	1.026	1.137	1.289	1.413	1.586	-0.231	0.072	0.342		
ALT	0.937	1.036	1.146	1.059	1.186	1.324	-0.653	0.216	2.000		
AST	0.892	0.987	1.092	1.217	1.337	1.530	-0.382	-0.044	0.325		
ALB	0.977	0.995	1.013	1.102	1.127	1.161	-0.178	-0.045	0.107		
ТР	0.983	0.997	1.012	1.075	1.093	1.120	-0.173	-0.028	0.134		
Glu	0.936	1.006	1.082	1.281	1.382	1.648	-0.208	0.019	0.233		
CHOL	0.935	1.033	1.141	1.088	1.230	1.567	-0.407	0.149	0.805		
TAG	0.976	1.139	1.329	1.736	2.122	4.344	-0.030	0.162	0.365		
Crea	0.923	0.969	1.018	1.282	1.362	1.569	-0.237	-0.098	0.057		
Urea	0.919	0.975	1.034	1.191	1.278	1.617	-0.319	-0.097	0.139		
Са	0.987	0.997	1.006	1.131	1.161	1.236	-0.078	-0.022	0.042		
Cl	0.985	0.992	1.000	1.102	1.124	1.172	-0.120	-0.064	-0.002		
К	0.969	1.001	1.034	1.225	1.280	1.367	-0.132	0.004	0.135		
Na	0.992	1.000	1.007	1.112	1.136	1.186	-0.060	-0.003	0.056		
Р	0.899	0.954	1.012	1.165	1.235	1.419	-0.485	-0.217	0.055		
Organs	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale		
Males NK33+	lower	esti	upper	lower	median	upper	lower	median	upper		
Kidney	0.915	1.008	1.110	1.024	1.111	1.222	-2.000	0.119	2.000		
Spleen	0.907	1.016	1.138	1.070	1.184	1.331	-0.871	0.095	1.161		
Liver	0.890	0.957	1.028	1.033	1.101	1.190	-2.000	-0.486	0.397		
AdrenGl	0.949	1.028	1.115	1.279	1.371	1.568	-0.171	0.086	0.312		
Heart	0.926	0.989	1.055	1.059	1.122	1.222	-0.741	-0.095	0.563		
Testis	0.969	1.052	1.142	1.112	1.185	1.272	-0.198	0.293	0.774		
Epididymis	0.925	1.028	1.142	1.059	1.162	1.269	-0.834	0.185	1.591		
Brain	0.946	1.010	1.078	1 055	1,119	1.233	-0.611	0.083	0.767		

Females NK11- versus Control Weights Interval for FO limit Interval for A FUSD code												
Weights	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale			
Females NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
Weight_52	0.944	0.980	1.018	1.027	1.078	1.142	-1.914	-0.266	0.321			
FeedMean	0.952	0.981	1.010	1.071	1.111	1.206	-0.457	-0.178	0.097			
Haematology	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale			
Females NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
WBC	0.940	1.062	1.200	1.519	1.717	2.264	-0.105	0.108	0.303			
RBC	0.976	1.003	1.030	1.041	1.069	1.117	-0.384	0.041	0.441			
HGB	0.981	1.003	1.025	1.037	1.058	1.088	-0.349	0.048	0.417			
НСТ	0.985	1.009	1.034	1.018	1.046	1.085	-0.418	0.204	1.024			
MCV	0.993	1.005	1.017	1.028	1.039	1.053	-0.180	0.129	0.406			
МСН	0.983	1.000	1.018	1.047	1.063	1.086	-0.278	0.004	0.283			
MCHC	0.981	0.994	1.007	1.010	1.024	1.037	-0.984	-0.261	0.327			
PLT	0.970	1.030	1.093	1.371	1.473	1.635	-0.072	0.076	0.205			
LYMA	0.917	1.026	1.148	1.511	1.694	2.196	-0.159	0.047	0.230			
ClinChem	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale			
Females NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
ALP	0.869	0.983	1.113	1.136	1.289	1.456	-0.590	-0.066	0.477			
ALT	0.809	0.946	1.107	1.446	1.657	1.977	-0.378	-0.108	0.199			
AST	0.867	0.990	1.129	1.302	1.464	1.704	-0.360	-0.026	0.324			
ALB	0.972	1.004	1.037	1.182	1.226	1.287	-0.136	0.020	0.162			
ТР	0.979	0.999	1.018	1.160	1.201	1.325	-0.105	-0.007	0.096			
Glu	0.938	1.010	1.087	1.283	1.375	1.536	-0.196	0.030	0.234			
CHOL	0.889	0.987	1.096	1.098	1.226	1.405	-0.658	-0.063	0.547			
TAG	0.826	0.974	1.148	1.760	2.062	2.751	-0.236	-0.036	0.187			
Crea	0.998	1.052	1.110	1.265	1.354	1.678	-0.001	0.162	0.325			
Urea	1.015	1.081	1.151	1.227	1.325	1.733	0.053	0.264	0.493			
Са	0.991	1.003	1.015	1.125	1.169	1.371	-0.052	0.018	0.082			
Cl	0.999	1.008	1.017	1.055	1.068	1.086	-0.004	0.125	0.240			
К	0.959	1.010	1.065	1.199	1.264	1.423	-0.173	0.042	0.238			
Na	1.001	1.007	1.012	1.055	1.067	1.093	0.016	0.100	0.179			
Р	0.906	1.011	1.129	1.085	1.227	1.437	-0.671	0.055	0.808			
Organs	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale			
Females NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
Kidney	0.996	1.071	1.152	1.046	1.115	1.206	-0.045	0.643	1.901			
Spleen	0.965	1.087	1.224	1.120	1.236	1.355	-0.181	0.397	1.037			
Liver	0.960	1.025	1.094	1.143	1.202	1.314	-0.229	0.131	0.454			
AdrenGl	0.911	1.031	1.167	1.211	1.328	1.472	-0.350	0.108	0.517			
Heart	0.995	1.063	1.136	1.076	1.134	1.197	-0.042	0.481	1.081			
Uterus	0.851	1.053	1.304	1.188	1.427	1.700	-0.559	0.146	0.842			
Ovary	0.867	1.110	1.420	1.066	1.360	1.826	-2.000	0.567	2.000			
Brain	1.032	1,100	1,173	1.112	1,167	1,249	0.195	0.609	1.067			

	Females NK33- versus Control Weights Interval for ratio A Interval for EQ limit Interval for A ELSD scale												
Weights	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	O scale				
Females NK33-	lower	esti	upper	lower	median	upper	lower	median	upper				
Weight_52	0.960	0.997	1.036	1.027	1.078	1.141	-1.399	-0.037	0.994				
FeedMean	0.977	1.007	1.037	1.071	1.111	1.205	-0.230	0.063	0.334				
								-					
Females NK33-	lower	esti	upper	lower	median	upper	lower	median	upper				
WBC	0.825	0.932	1.053	1.519	1.716	2.261	-0.321	-0.126	0.088				
RBC	0.986	1.013	1.041	1.041	1.069	1.118	-0.207	0.188	0.576				
HGB	0.981	1.003	1.025	1.037	1.058	1.088	-0.345	0.050	0.419				
НСТ	0.992	1.016	1.041	1.018	1.046	1.085	-0.191	0.363	1.293				
MCV	0.988	1.000	1.012	1.028	1.039	1.054	-0.317	0.004	0.320				
МСН	0.973	0.990	1.008	1.047	1.063	1.086	-0.407	-0.158	0.114				
MCHC	0.974	0.987	1.000	1.010	1.024	1.037	-1.471	-0.560	-0.026				
PLT	0.947	1.005	1.067	1.371	1.472	1.635	-0.137	0.013	0.153				
LYMA	0.844	0.944	1.056	1.511	1.694	2.189	-0.287	-0.107	0.096				
ClinChem	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale				
Females NK33-	lower	esti	upper	lower	median	upper	lower	median	upper				
ALP	0.901	1.020	1.154	1.136	1.289	1.456	-0.465	0.075	0.594				
ALT	0.848	0.992	1.160	1.446	1.658	1.978	-0.314	-0.016	0.294				
AST	0.907	1.036	1.182	1.300	1.463	1.708	-0.252	0.090	0.402				
ALB	0.980	1.013	1.046	1.182	1.226	1.286	-0.093	0.062	0.195				
ТР	0.984	1.003	1.023	1.160	1.201	1.326	-0.087	0.015	0.107				
Glu	0.897	0.965	1.039	1.283	1.375	1.537	-0.305	-0.109	0.111				
CHOL	0.854	0.949	1.054	1.098	1.226	1.407	-0.876	-0.252	0.273				
TAG	0.851	1.002	1.181	1.760	2.062	2.759	-0.222	0.003	0.225				
Crea	0.984	1.038	1.095	1.265	1.354	1.680	-0.046	0.118	0.275				
Urea	1.038	1.106	1.177	1.227	1.325	1.727	0.115	0.343	0.588				
Ca	0.994	1.006	1.018	1.125	1.169	1.368	-0.034	0.034	0.100				
Cl	0.991	1.000	1.009	1.055	1.068	1.086	-0.131	0.000	0.131				
К	0.962	1.014	1.068	1.200	1.264	1.420	-0.157	0.056	0.247				
Na	1.001	1.007	1.013	1.055	1.067	1.093	0.021	0.105	0.182				
Р	0.965	1.078	1.204	1.086	1.226	1.436	-0.178	0.369	1.243				
Organs	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	I for ∆ ELSI	D scale				
Females NK33-	lower	esti	upper	lower	median	upper	lower	median	upper				
Kidney	0.974	1.048	1.127	1.046	1.115	1.207	-0.288	0.438	1.547				
Spleen	0.874	0.984	1.108	1.120	1.236	1.350	-0.691	-0.077	0.562				
Liver	0.947	1.011	1.080	1.143	1.202	1.314	-0.308	0.059	0.394				
AdrenGl	0.892	1.010	1.143	1.211	1.328	1.471	-0.436	0.034	0.478				
Heart	1.014	1.083	1.157	1.076	1.135	1.197	0.106	0.629	1.261				
Uterus	0.726	0.899	1.113	1.186	1.425	1.700	-1.023	-0.300	0.342				
Ovary	0.940	1.202	1.539	1.066	1.359	1.970	-2.000	1.038	2.000				
Brain	1.012	1.079	1,151	1.113	1,167	1,249	0.072	0.485	0.919				

Females NK11+ versus Control											
Weights	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale		
Females NK11+	lower	esti	upper	lower	median	upper	lower	median	upper		
Weight_52	0.950	0.986	1.024	1.026	1.078	1.141	-1.644	-0.184	0.470		
FeedMean	0.953	0.982	1.012	1.071	1.111	1.206	-0.444	-0.167	0.113		
Haematology	Inter	val for rati	io Δ	Inter	val for EQ	limit	Interva	I for ∆ ELSI	D scale		
Females NK11+	lower	esti	upper	lower	median	upper	lower	median	upper		
WBC	0.856	0.965	1.089	1.519	1.717	2.261	-0.257	-0.063	0.154		
RBC	0.999	1.026	1.053	1.041	1.069	1.118	-0.003	0.377	0.814		
HGB	0.987	1.009	1.031	1.037	1.058	1.088	-0.233	0.148	0.504		
НСТ	0.996	1.020	1.045	1.018	1.046	1.085	-0.085	0.453	1.478		
MCV	0.983	0.994	1.006	1.028	1.039	1.054	-0.420	-0.142	0.167		
MCH	0.965	0.982	0.999	1.047	1.063	1.087	-0.561	-0.297	-0.025		
MCHC	0.973	0.985	0.998	1.010	1.024	1.037	-1.564	-0.610	-0.081		
PLT	0.956	1.013	1.075	1.371	1.473	1.637	-0.115	0.034	0.165		
LYMA	0.877	0.979	1.093	1.510	1.695	2.202	-0.225	-0.039	0.168		
ClinChem	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale		
Females NK11+	lower	esti	upper	lower	median	upper	lower	median	upper		
ALP	0.898	1.014	1.145	1.136	1.289	1.456	-0.494	0.053	0.586		
ALT	0.750	0.875	1.021	1.447	1.659	1.977	-0.544	-0.260	0.036		
AST	0.849	0.966	1.100	1.300	1.464	1.707	-0.399	-0.089	0.256		
ALB	0.983	1.015	1.048	1.181	1.226	1.287	-0.083	0.072	0.206		
ТР	0.978	0.997	1.016	1.160	1.201	1.327	-0.108	-0.017	0.084		
Glu	0.965	1.037	1.115	1.283	1.375	1.536	-0.110	0.112	0.309		
CHOL	0.831	0.921	1.021	1.097	1.226	1.403	-1.077	-0.396	0.097		
TAG	0.839	0.986	1.159	1.759	2.063	2.757	-0.227	-0.018	0.204		
Crea	1.006	1.060	1.118	1.265	1.354	1.680	0.021	0.185	0.350		
Urea	1.034	1.100	1.170	1.227	1.325	1.731	0.100	0.325	0.564		
Са	0.994	1.006	1.017	1.125	1.169	1.371	-0.034	0.035	0.101		
Cl	0.990	0.998	1.007	1.055	1.068	1.086	-0.142	-0.028	0.104		
К	0.955	1.005	1.058	1.199	1.264	1.421	-0.197	0.022	0.225		
Na	0.999	1.004	1.010	1.055	1.067	1.093	-0.016	0.067	0.142		
Р	0.944	1.053	1.173	1.087	1.227	1.437	-0.332	0.251	1.040		
Organs	Inter	val for rat	io Δ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale		
Females NK11+	lower	esti	upper	lower	median	upper	lower	median	upper		
Kidney	1.006	1.081	1.163	1.046	1.115	1.211	0.054	0.734	2.000		
Spleen	0.925	1.042	1.173	1.121	1.236	1.349	-0.420	0.193	0.789		
Liver	0.967	1.032	1.102	1.143	1.202	1.314	-0.191	0.170	0.494		
AdrenGl	0.919	1.040	1.178	1.211	1.328	1.473	-0.316	0.137	0.547		
Heart	0.977	1.043	1.115	1.075	1.134	1.195	-0.199	0.335	0.894		
Uterus	0.808	1.000	1.239	1.188	1.427	1.705	-0.770	0.001	0.777		
Ovary	0.922	1.180	1.509	1.066	1.359	1.928	-2.000	0.919	2.000		
Brain	1.018	1.085	1,157	1,112	1,167	1.247	0 1 1 0	0.522	0.966		

Females NK33+ versus Control											
Weights	Inter	val for rati	ioΔ	Inter	val for EQ	limit	Interva	l for ∆ ELSI	D scale		
Females NK33+	lower	esti	upper	lower	median	upper	lower	median	upper		
Weight_52	0.952	0.989	1.027	1.026	1.078	1.142	-1.668	-0.154	0.564		
FeedMean	0.986	1.016	1.046	1.071	1.111	1.204	-0.136	0.144	0.417		
Haematology	Inter	val for rat	ioΔ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale		
Females NK33+	lower	esti	upper	lower	median	upper	lower	median	upper		
WBC	0.938	1.055	1.187	1.519	1.717	2.261	-0.120	0.096	0.290		
RBC	0.998	1.024	1.051	1.041	1.069	1.118	-0.028	0.351	0.782		
HGB	0.985	1.006	1.028	1.037	1.058	1.088	-0.283	0.106	0.460		
НСТ	0.991	1.015	1.039	1.017	1.046	1.084	-0.226	0.339	1.256		
MCV	0.980	0.991	1.003	1.028	1.039	1.054	-0.515	-0.228	0.077		
МСН	0.966	0.982	0.999	1.047	1.063	1.086	-0.552	-0.291	-0.022		
MCHC	0.979	0.991	1.004	1.010	1.024	1.037	-1.154	-0.372	0.178		
PLT	0.977	1.034	1.096	1.371	1.472	1.635	-0.061	0.087	0.216		
LYMA	0.945	1.053	1.173	1.510	1.695	2.195	-0.107	0.095	0.276		
ClinChem	Inter	val for rat	ioΔ	Inter	val for EQ	limit	Interva	for Δ ELSI	D scale		
Females NK33+	lower	esti	upper	lower	median	upper	lower	median	upper		
ALP	0.834	0.940	1.059	1.137	1.288	1.456	-0.781	-0.245	0.249		
ALT	0.851	0.989	1.151	1.447	1.657	1.975	-0.316	-0.021	0.290		
AST	0.923	1.049	1.191	1.301	1.464	1.707	-0.216	0.123	0.431		
ALB	0.969	1.000	1.032	1.182	1.226	1.287	-0.157	0.000	0.157		
ТР	0.978	0.996	1.015	1.160	1.201	1.324	-0.111	-0.019	0.083		
Glu	0.962	1.032	1.108	1.283	1.375	1.536	-0.125	0.097	0.295		
CHOL	0.863	0.955	1.056	1.097	1.226	1.403	-0.832	-0.225	0.309		
TAG	0.868	1.017	1.192	1.762	2.063	2.740	-0.198	0.023	0.228		
Crea	0.978	1.029	1.084	1.265	1.353	1.679	-0.073	0.091	0.244		
Urea	1.012	1.075	1.142	1.228	1.325	1.730	0.036	0.243	0.468		
Са	0.986	0.998	1.009	1.125	1.169	1.365	-0.079	-0.014	0.056		
Cl	0.991	0.999	1.008	1.055	1.068	1.086	-0.132	-0.008	0.122		
К	0.958	1.007	1.059	1.199	1.264	1.422	-0.187	0.030	0.228		
Na	0.998	1.003	1.009	1.055	1.067	1.093	-0.033	0.050	0.124		
Р	0.880	0.979	1.089	1.086	1.224	1.435	-0.832	-0.106	0.565		
Organs	Inter	val for rati	ioΔ	Inter	val for EQ	limit	Interva	I for ∆ ELSI	D scale		
Females NK33+	lower	esti	upper	lower	median	upper	lower	median	upper		
Kidney	1.007	1.083	1.165	1.046	1.115	1.209	0.066	0.747	2.000		
Spleen	0.981	1.105	1.245	1.120	1.235	1.356	-0.096	0.470	1.145		
Liver	0.968	1.034	1.104	1.144	1.202	1.313	-0.177	0.175	0.499		
AdrenGl	0.932	1.055	1.195	1.211	1.328	1.471	-0.264	0.188	0.595		
Heart	0.997	1.065	1.138	1.076	1.134	1.198	-0.024	0.498	1.102		
Uterus	0.797	0.987	1.223	1.187	1.427	1.704	-0.790	-0.036	0.721		
Ovary	0.963	1.233	1.577	1.066	1.361	2.009	-0.354	1.185	2.000		
Brain	1.033	1,102	1,175	1 112	1 167	1.248	0 204	0.618	1.081		

Appendix 9. P-values for difference tests between GMO feeds and the control feed

Difference tests are based on log transformed cage means. P-values are given for Dunnett tests (Dunnet), for t-tests and for Wilcoxon signed rank tests (Wilcox). P-values smaller than 0.01/0.05 have a gold/yellow background.

Weights		NK11-			NK33-			NK11+			NK33+	
Males	Dunnet	t-test	Wilcox									
Weight_52	0.380	0.140	0.225	0.988	0.714	0.512	0.991	0.731	0.610	0.516	0.204	0.252
growthRate	0.802	0.389	0.499	0.983	0.682	0.968	1.000	0.887	0.903	0.066	0.020	0.017
FeedMean	0.010	0.003	0.003	0.236	0.080	0.021	0.081	0.025	0.008	0.723	0.327	0.280
Haematology		NK11-			NK33-			NK11+			NK33+	
Males	Dunnet	t-test	Wilcox									
WBC	0.668	0.290	0.294	0.175	0.057	0.202	0.989	0.719	0.465	0.522	0.207	0.475
RBC	1.000	0.931	0.674	0.995	0.775	0.648	0.295	0.103	0.123	0.810	0.397	0.756
HGB	0.919	0.524	0.571	0.953	0.589	0.433	0.396	0.147	0.112	0.705	0.315	0.457
HCT	0.973	0.644	0.784	0.874	0.463	0.498	0.052	0.015	0.020	0.476	0.184	0.261
MCV	0.983	0.683	0.648	0.513	0.202	0.143	0.981	0.673	0.798	0.827	0.413	0.123
MCH	0.987	0.703	0.674	0.879	0.468	0.277	0.879	0.469	0.441	0.998	0.821	0.648
MCHC	1.000	0.929	0.841	0.959	0.604	0.475	0.104	0.032	0.023	0.860	0.447	0.701
PLT	0.986	0.700	0.898	0.048	0.014	0.064	0.765	0.359	0.145	0.029	0.008	0.006
LYMR	1.000	0.928	0.898	0.601	0.250	0.349	0.940	0.562	0.515	0.947	0.575	0.701
LYMA	0.947	0.574	0.312	0.075	0.023	0.083	0.920	0.526	0.395	0.958	0.601	1.000
ClinChem		NK11-			NK33-			NK11+			NK33+	
Males	Dunnet	t-test	Wilcox									
ALP	0.496	0.194	0.143	0.955	0.594	0.784	0.570	0.233	0.258	0.967	0.625	0.648
ALT	0.998	0.811	0.898	0.973	0.644	0.475	0.719	0.325	0.332	0.893	0.487	0.622
AST	0.985	0.696	0.498	1.000	0.913	0.898	0.549	0.222	0.293	0.997	0.797	0.898
BIL	0.911	0.512	0.927	0.997	0.792	0.898	0.420	0.158	0.113	0.933	0.548	0.522
ALB	0.816	0.402	0.268	0.735	0.337	0.261	0.996	0.781	1.000	0.935	0.552	0.452
ТР	0.572	0.234	0.368	0.881	0.471	0.729	0.979	0.667	0.651	0.989	0.720	0.522
Glu	1.000	0.905	0.985	0.983	0.682	0.294	0.544	0.219	0.541	0.999	0.862	0.985
CHOL	0.936	0.554	0.245	0.944	0.570	0.674	0.887	0.478	0.798	0.915	0.517	0.841

TAG	0.991	0.734	0.622	0.374	0.137	0.133	0.122	0.038	0.029	0.282	0.098	0.058
Crea	0.389	0.144	0.261	0.968	0.627	0.648	0.455	0.174	0.145	0.526	0.209	0.475
Urea	0.976	0.656	0.475	1.000	0.971	0.841	0.403	0.150	0.196	0.810	0.397	0.475
cHGB	0.838	0.424	0.841	0.936	0.554	0.154	0.994	0.763	0.465	0.967	0.625	0.522
Ca	1.000	0.985	0.898	0.954	0.590	0.452	1.000	0.965	0.922	0.898	0.493	0.622
Cl	0.416	0.156	0.105	0.013	0.004	0.004	0.093	0.029	0.024	0.141	0.045	0.126
K	0.997	0.801	1.000	0.762	0.357	0.430	0.996	0.788	0.925	1.000	0.954	0.952
Na	1.000	0.923	0.481	0.965	0.620	0.816	1.000	0.924	0.794	1.000	0.913	0.365
Р	0.135	0.043	0.006	0.925	0.534	0.927	0.440	0.167	0.134	0.318	0.113	0.036
Urine		NK11-			NK33-			NK11+			NK33+	
Males	Dunnet	t-test	Wilcox									
uVol	1.000	0.966	1.000	0.073	0.022	0.079	0.147	0.048	0.078	0.957	0.599	0.890
uVolW	1.000	0.926	0.934	0.077	0.024	0.107	0.083	0.026	0.055	0.840	0.427	0.599
uLeu	0.218	0.074	0.064	1.000	0.960	0.937	0.198	0.066	0.012	0.169	0.055	0.166
uOsmoll	0.999	0.862	0.599	0.059	0.018	0.064	0.163	0.053	0.151	0.615	0.260	0.421
uKeton	1.000	0.877	0.783	0.021	0.006	0.018	0.522	0.208	0.227	0.983	0.688	0.494
upH	0.729	0.333	0.319	0.988	0.716	0.842	0.876	0.467	0.557	0.644	0.277	0.259
Organs		NK11-			NK33-			NK11+			NK33+	
Males	Dunnet	t-test	Wilcox									
Kidney	0.557	0.228	0.014	0.533	0.215	0.492	1.000	0.955	1.000	0.999	0.868	1.000
Spleen	0.862	0.453	0.232	0.354	0.130	0.105	0.997	0.798	1.000	0.995	0.778	1.000
Liver	1.000	0.902	0.922	0.993	0.754	0.770	1.000	0.971	0.770	0.536	0.217	0.131
AdrenGl	0.310	0.111	0.027	0.274	0.096	0.160	0.349	0.128	0.193	0.889	0.486	0.625
Heart	0.622	0.265	0.625	0.193	0.065	0.232	1.000	0.938	1.000	0.990	0.727	0.770
Testis	0.239	0.082	0.064	0.974	0.652	0.770	0.992	0.744	1.000	0.542	0.220	0.160
Epididymis	0.131	0.042	0.027	0.961	0.612	1.000	0.670	0.295	0.375	0.957	0.603	0.492
Brain	0.268	0.094	0.160	0.969	0.634	0.922	0.676	0.299	0.322	0.994	0.762	0.432

Appendix 9. P-values for difference tests between GMO feeds and the control feed (continued)

Difference tests are based on log transformed cage means. P-values are given for Dunnett tests (Dunnet), for t-tests and for Wilcoxon signed rank tests (Wilcox). P-values smaller than 0.01/0.05 have a gold/yellow background.

Weights		NK11-			NK33-			NK11+			NK33+	
Females	Dunnet	t-test	Wilcox									
Weight_52	0.688	0.303	0.451	1.000	0.887	0.802	0.883	0.473	0.599	0.936	0.552	0.501
growthRate	0.481	0.187	0.334	0.912	0.513	0.491	0.999	0.860	0.929	0.968	0.628	0.765
FeedMean	0.503	0.197	0.245	0.975	0.651	0.601	0.562	0.228	0.265	0.683	0.300	0.184
Haematology		NK11-			NK33-			NK11+			NK33+	
Females	Dunnet	t-test	Wilcox									
WBC	0.726	0.327	0.671	0.611	0.253	0.054	0.941	0.561	0.441	0.781	0.369	0.349
RBC	0.999	0.833	0.734	0.747	0.343	0.081	0.174	0.056	0.045	0.208	0.069	0.090
HGB	0.997	0.801	0.899	0.997	0.790	0.442	0.844	0.428	0.374	0.943	0.564	0.784
HCT	0.876	0.462	0.702	0.493	0.191	0.016	0.288	0.100	0.096	0.527	0.208	0.294
MCV	0.831	0.415	0.347	1.000	0.985	0.899	0.771	0.361	0.332	0.377	0.137	0.070
MCH	1.000	0.977	0.932	0.630	0.265	0.304	0.112	0.035	0.008	0.115	0.036	0.064
MCHC	0.760	0.353	0.347	0.148	0.047	0.030	0.091	0.028	0.016	0.447	0.169	0.189
PLT	0.725	0.326	0.369	0.999	0.856	0.702	0.976	0.653	0.768	0.595	0.245	0.701
LYMR	0.999	0.831	0.854	0.991	0.733	0.734	0.994	0.756	0.984	0.913	0.511	0.546
LYMA	0.975	0.648	0.899	0.703	0.311	0.167	0.986	0.700	0.568	0.750	0.345	0.452
ClinChem		NK11-			NK33-			NK11+			NK33+	
Females	Dunnet	t-test	Wilcox									
ALP	0.997	0.789	0.671	0.994	0.753	1.000	0.998	0.822	0.595	0.689	0.302	0.498
ALT	0.894	0.485	0.393	1.000	0.915	0.495	0.262	0.090	0.156	1.000	0.889	0.409
AST	1.000	0.874	0.899	0.958	0.599	0.442	0.958	0.599	0.651	0.874	0.460	0.498
BIL	0.298	0.104	0.181	0.834	0.417	0.799	0.867	0.452	0.984	0.706	0.313	0.133
ALB	0.997	0.804	0.523	0.855	0.438	0.246	0.771	0.362	0.332	1.000	0.990	0.784
ТР	1.000	0.888	0.966	0.995	0.767	0.640	0.992	0.737	0.953	0.985	0.695	0.571
Glu	0.997	0.796	0.799	0.744	0.340	0.766	0.717	0.321	0.241	0.788	0.375	0.812
CHOL	0.998	0.809	0.551	0.717	0.321	0.393	0.332	0.118	0.060	0.773	0.363	0.409

TAG	0.993	0.748	0.523	1.000	0.978	0.932	0.999	0.864	0.860	0.999	0.830	0.546
Crea	0.187	0.061	0.130	0.449	0.170	0.393	0.096	0.030	0.123	0.634	0.267	0.409
Urea	0.053	0.016	0.001	0.008	0.002	0.024	0.011	0.003	0.020	0.068	0.020	0.036
cHGB	0.504	0.196	0.196	0.999	0.836	1.000	0.985	0.694	0.984	0.991	0.728	0.588
Са	0.960	0.604	0.442	0.722	0.324	0.468	0.698	0.308	0.352	0.980	0.668	0.277
Cl	0.199	0.065	0.074	1.000	0.997	0.798	0.982	0.676	0.828	1.000	0.897	1.000
К	0.986	0.698	0.865	0.962	0.609	0.570	0.999	0.839	0.922	0.995	0.773	0.898
Na	0.079	0.024	0.099	0.062	0.019	0.058	0.336	0.120	0.163	0.576	0.234	0.268
Р	0.999	0.839	0.899	0.471	0.180	0.196	0.756	0.349	0.541	0.984	0.688	0.729
Urine	NK11-				NK33-			NK11+		NK33+		
Females	Dunnet	t-test	Wilcox	Dunnet	t-test	Wilcox	Dunnet	t-test	Wilcox	Dunnet	t-test	Wilcox
uVol	0.640	0.273	0.286	1.000	0.982	0.820	1.000	0.933	0.851	0.885	0.476	0.679
uVolW	0.957	0.600	0.808	1.000	0.912	0.934	0.997	0.801	0.890	0.993	0.750	0.639
uLeu	1.000	0.910	0.918	0.480	0.186	0.344	0.993	0.754	0.918	0.989	0.720	0.844
uOsmoll	0.979	0.666	0.542	1.000	0.992	0.934	0.978	0.662	0.934	0.853	0.440	0.454
uKeton	0.623	0.263	0.348	0.698	0.311	0.438	0.509	0.201	0.120	0.833	0.419	0.399
upH	0.722	0.327	0.433	0.864	0.452	0.365	0.369	0.135	0.204	0.671	0.293	0.233
Organs		NK11-			NK33-			NK11+			NK33+	
Females	Dunnet	t-test	Wilcox	Dunnet	t-test	Wilcox	Dunnet	t-test	Wilcox	Dunnet	t-test	Wilcox
Kidney	0.189	0.063	0.105	0.505	0.201	0.557	0.112	0.036	0.037	0.104	0.033	0.037
Spleen	0.425	0.162	0.105	0.996	0.784	0.770	0.893	0.490	0.432	0.273	0.096	0.084
Liver	0.861	0.452	0.557	0.991	0.732	0.846	0.723	0.331	0.375	0.696	0.312	0.322
AdrenGl	0.962	0.616	0.770	0.999	0.870	0.846	0.915	0.522	0.625	0.791	0.384	0.193
Heart	0.205	0.069	0. <mark>0</mark> 37	0.064	0.020	0.105	0.506	0.201	0.105	0.184	0.062	0.084
Uterus	0.966	0.625	1.000	0.703	0.317	0.322	1.000	0.996	1.000	1.000	0.905	1.000
Ovary	0.807	0.398	0.375	0.373	0.138	0.131	0.468	0.183	0.275	0.268	0.094	0.322
Brain	0.017	0.005	0.010	0.070	0.022	0.064	0.047	0.014	0.049	0.015	0.004	0.004

Appendix 10. Tests for normality and homogeneity of variance

P-values for the Shapiro-Wilks (SW) normality test are given separately for each feeding group, and also for the ANOVA residuals. In addition P-values for Bartlett and Levene test for homogeneity of variance are given. P-values smaller than 0.01/0.05 have a gold/yellow background.

Male Weights	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
Weight_52	0.294	0.742	0.642	0.766	0.771	0.150	0.232	0.189
growthRate	0.589	0.338	0.572	0.684	0.496	0.158	0.670	0.713
FeedMean	0.556	0.314	0.251	0.529	0.230	0.595	0.042	0.082
Male Haematology	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
WBC	0.296	0.090	0.263	0.073	0.313	0.444	0.298	0.081
RBC	0.281	0.774	0.605	0.705	0.680	0.174	0.392	0.445
HGB	0.478	0.032	0.495	0.624	0.771	0.574	0.018	0.063
НСТ	0.879	0.356	0.893	0.956	0.368	0.985	0.077	0.238
MCV	0.000	0.043	0.837	0.418	0.093	0.030	0.719	0.745
MCH	0.000	0.070	0.406	0.581	0.637	0.019	0.832	0.473
MCHC	0.409	0.334	0.470	0.129	0.908	0.620	0.345	0.644
PLT	0.116	0.093	0.334	0.779	0.132	0.874	0.662	0.635
LYMR	0.871	0.280	0.572	0.165	0.960	0.829	0.159	0.175
LYMA	0.433	0.272	0.767	0.044	0.755	0.433	0.734	0.251
Male ClinChem	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
ALP	0.739	0.441	0.632	0.093	0.978	0.794	0.988	0.999
ALT	0.414	0.315	0.836	0.251	0.084	0.353	0.694	0.882
AST	0.928	0.776	0.034	0.167	0.985	0.979	0.148	0.183
BIL	0.078	0.957	0.145	0.004	0.701	0.205	0.780	0.948
ALB	0.727	0.828	0.908	0.467	0.644	0.064	0.719	0.802
ТР	0.749	0.431	0.141	0.433	0.262	0.559	0.766	0.654
Glu	0.477	0.432	0.990	0.228	0.642	0.185	0.024	0.131
CHOL	0.084	0.101	0.916	0.790	0.700	0.168	0.227	0.248
TAG	0.732	0.136	0.008	0.963	0.530	0.014	0.910	0.932
Crea	0.764	0.048	0.890	0.507	0.535	0.843	0.133	0.088

Urea	0.059	0.930	0.758	0.947	0.033	0.300	0.500	0.819
cHGB	0.080	0.708	0.379	0.669	0.790	0.108	0.546	0.806
Са	0.280	0.249	0.269	0.910	0.486	0.879	0.137	0.238
Cl	0.394	0.459	0.268	0.523	0.636	0.425	0.606	0.737
К	0.835	0.527	0.524	0.641	0.766	0.771	0.625	0.677
Na	0.040	0.033	0.564	0.045	0.007	0.018	0.159	0.255
Р	0.617	0.413	0.001	0.709	0.645	0.162	0.484	0.803
Male Urine	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
uVol	0.054	0.832	0.570	0.333	0.895	0.382	0.392	0.610
uVolW	0.037	0.338	0.023	0.071	0.790	0.526	0.628	0.302
uLeu	0.050	0.659	0.098	0.079	0.236	0.749	0.960	0.981
uOsmoll	0.269	0.228	0.011	0.153	0.051	0.539	0.170	0.037
uKeton	0.039	0.040	0.002	0.002	0.274	0.297	0.228	0.060
upH	0.003	0.052	0.023	0.003	0.233	0.503	0.690	0.457
Male Organs	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
Kidney	0.738	0.163	0.333	0.083	0.211	0.201	0.199	0.214
Spleen	0.743	0.921	0.017	0.678	0.432	0.493	0.064	0.325
Liver	0.016	0.097	0.304	0.575	0.000	0.007	0.639	0.932
AdrenGl	0.730	0.776	0.758	0.246	0.500	0.377	0.706	0.762
Heart	0.074	0.484	0.175	0.595	0.056	0.182	0.056	0.112
Testis	0.010	0.988	0.484	0.357	0.663	0.171	0.695	0.379
Epididymis	0.034	0.784	0.018	0.439	0.329	0.706	0.970	0.760
Brain	0.384	0.693	0.855	0.854	0.711	0.698	0.815	0.642

Appendix 10. Tests for normality and homogeneity of variance (continued)

P-values for the Shapiro-Wilks (SW) normality test are given separately for each feeding group, and also for the ANOVA residuals. In addition P-values for Bartlett and Levene test for homogeneity of variance are given. P-values smaller than 0.01/0.05 have a gold/yellow background.

Female Weights	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
Weight_52	0.233	0.180	0.845	0.248	0.215	0.690	0.751	0.982
growthRate	0.672	0.407	0.156	0.001	0.842	0.262	0.913	0.958
FeedMean	0.131	0.743	0.665	0.246	0.392	0.397	0.507	0.837
Female Haematology	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
WBC	0.898	0.052	0.067	0.848	0.135	0.388	0.850	0.929
RBC	0.245	0.452	0.086	0.667	0.412	0.845	0.480	0.499
HGB	0.083	0.219	0.194	0.040	0.579	0.057	0.981	0.916
НСТ	0.342	0.673	0.737	0.877	0.339	0.474	0.479	0.596
MCV	0.256	0.054	0.560	0.159	0.236	0.271	0.480	0.722
MCH	0.594	0.761	0.339	0.481	0.534	0.595	0.165	0.500
MCHC	0.764	0.003	0.585	0.909	0.140	0.132	0.759	0.993
PLT	0.190	0.012	0.639	0.133	0.460	0.301	0.785	0.563
LYMR	0.288	0.667	0.702	0.270	0.353	0.003	0.012	0.028
LYMA	0.994	0.102	0.493	0.817	0.142	0.775	0.240	0.253
Female ClinChem	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
ALP	0.843	0.914	0.245	0.391	0.081	0.017	0.229	0.650
ALT	0.284	0.293	0.461	0.061	0.202	0.605	0.231	0.492
AST	0.562	0.245	0.234	0.172	0.263	0.035	0.366	0.289
BIL	0.032	0.020	0.063	0.253	0.012	0.009	0.593	0.989
ALB	0.737	0.012	0.748	0.517	0.069	0.562	0.384	0.223
TP	0.179	0.052	0.972	0.806	0.007	0.106	0.836	0.979
Glu	0.346	0.729	0.808	0.904	0.720	0.347	0.432	0.426
CHOL	0.566	0.500	0.656	0.241	0.433	0.261	0.944	0.812
TAG	0.458	0.496	0.775	0.003	0.037	0.118	0.000	0.001
Crea	0.555	0.193	0.717	0.502	0.769	0.678	0.605	0.391

Urea	0.928	0.033	0.525	0.688	0.838	0.372	0.423	0.684
cHGB	0.260	0.313	0.150	0.004	0.066	0.004	0.685	0.876
Са	0.779	0.788	0.166	0.497	0.999	0.252	0.112	0.188
Cl	0.299	0.614	0.412	0.482	0.159	0.341	0.767	0.942
К	0.043	0.910	0.331	0.292	0.658	0.721	0.131	0.137
Na	0.267	0.182	0.001	0.040	0.751	0.476	0.786	0.739
Р	0.330	0.540	0.107	0.663	0.654	0.691	0.774	0.555
Female Urine	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
uVol	0.132	0.311	0.485	0.283	0.991	0.330	0.127	0.245
uVolW	0.022	0.488	0.607	0.165	0.194	0.433	0.102	0.295
uLeu	0.016	0.139	0.220	0.317	0.003	0.149	0.535	0.235
uOsmoll	0.122	0.127	0.997	0.057	0.558	0.642	0.071	0.044
uKeton	0.001	0.001	0.010	0.000	0.003	0.664	0.014	0.002
upH	0.276	0.141	0.278	0.129	0.126	0.905	0.668	0.771
Female Organs	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
Kidney	0.964	0.856	0.102	0.138	0.968	0.051	0.727	0.484
Spleen	0.594	0.159	0.756	0.598	0.302	0.005	0.559	0.950
Liver	0.515	0.988	0.518	0.220	0.291	0.810	0.587	0.679
AdrenGl	0.321	0.811	0.812	0.802	0.685	0.233	0.268	0.286
Heart	0.527	0.393	0.693	0.114	0.612	0.753	0.245	0.365
Uterus	0.352	0.132	0.782	0.451	0.550	0.950	0.879	0.774
Ovary	0.297	0.207	0.033	0.216	0.472	0.209	0.266	0.041
Brain	0.088	0.428	0.614	0.509	0.540	0.747	0.434	0.574

Appendix 11. Statistical analysis of data including outliers

For male animals there are outlying values for growthRate (1×), RBC (1×), HGB (1×), HCT (1×), Crea (1×) and Testis (1×), while for females there are outlying values for growthRate (2×), MCV (1×), LYMR (1×) and LYMA (1×); see Table 6 for a list of outliers. Equivalence tests, using the historical GRACE data, were not considered to be useful for the 12 months data and were therefore not repeated. Results of the classical analysis without and with outliers are given in the tables below. Note that the top tables are identical to the values in Table 12 and Table 13.

Conclusion: there are no essential differences between the analysis with and without outliers.

Without Outliers	control		NK11-			NK33-				NK11+		NK33+		
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
growthRate	1.372	15.5	1.322	20.1		1.394	16.6		1.380	17.2		1.495	17.6	tw
RBC	8.482	3.2	8.496	4.1		8.453	4.5		8.647	4.0		8.582	5.2	
HGB	15.82	1.7	15.91	3.1		15.90	3.1		15.99	2.8		15.96	3.8	
НСТ	46.12	2.8	46.34	3.3		46.49	4.5		47.19	2.9	tw	46.77	4.6	
Crea	43.72	11.0	42.08	7.8		43.05	5.8		42.12	7.9		42.28	8.6	
Testis	0.640	7.1	0.691	11.9		0.653	11.8		0.649	9.2		0.676	11.5	
			NK11-											
With Outliers	Con	trol		NK11-			NK33-			NK11+			NK33+	-
With Outliers Males	Con Mean	trol CV	Mean	NK11-	Sig	Mean	NK33- CV	Sig	Mean	NK11+ CV	Sig	Mean	NK33+ CV	Sig
With Outliers Males growthRate	Con Mean 1.372	trol CV 15.5	Mean 1.292	NK11- CV 24.3	Sig	Mean 1.394	NK33- CV 16.6	Sig	Mean 1.380	NK11+ CV 17.2	Sig	Mean 1.495	NK33+ CV 17.6	Sig tw
With Outliers Males growthRate RBC	Con Mean 1.372 8.482	trol CV 15.5 3.2	Mean 1.292 8.496	NK11- CV 24.3 4.1	Sig	Mean 1.394 8.453	NK33- CV 16.6 4.5	Sig	Mean 1.380 8.647	NK11+ CV 17.2 4.0	Sig	Mean 1.495 8.475	NK33+ CV 17.6 6.0	Sig tw
With Outliers Males growthRate RBC HGB	Con Mean 1.372 8.482 15.82	trol CV 15.5 3.2 1.7	Mean 1.292 8.496 15.91	NK11- CV 24.3 4.1 3.1	Sig	Mean 1.394 8.453 15.90	NK33- CV 16.6 4.5 3.1	Sig	Mean 1.380 8.647 15.99	NK11+ CV 17.2 4.0 2.8	Sig	Mean 1.495 8.475 15.82	NK33+ CV 17.6 6.0 4.5	Sig tw
With Outliers Males growthRate RBC HGB HCT	Con Mean 1.372 8.482 15.82 46.12	trol CV 15.5 3.2 1.7 2.8	Mean 1.292 8.496 15.91 46.34	NK11- CV 24.3 4.1 3.1 3.3	Sig	Mean 1.394 8.453 15.90 46.49	NK33- CV 16.6 4.5 3.1 4.5	Sig	Mean 1.380 8.647 15.99 47.19	NK11+ CV 17.2 4.0 2.8 2.9	Sig	Mean 1.495 8.475 15.82 46.33	NK33+ CV 17.6 6.0 4.5 5.2	Sig tw
With Outliers Males growthRate RBC HGB HCT Crea	Con Mean 1.372 8.482 15.82 46.12 43.72	trol CV 15.5 3.2 1.7 2.8 11.0	Mean 1.292 8.496 15.91 46.34 42.08	NK11- CV 24.3 4.1 3.1 3.3 7.8	Sig	Mean 1.394 8.453 15.90 46.49 43.05	NK33- CV 16.6 4.5 3.1 4.5 5.8	Sig	Mean 1.380 8.647 15.99 47.19 42.77	NK11+ CV 17.2 4.0 2.8 2.9 12.6	Sig tw	Mean 1.495 8.475 15.82 46.33 42.28	NK33+ CV 17.6 6.0 4.5 5.2 8.6	Sig tw

Without Outliers	Control		Control NK11-			NK33-				NK11+		NK33+		
Females	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
growthRate	0.984	33.0	0.882	39.3		1.034	32.7		0.970	37.8		0.946	33.1	1
MCV	58.70	1.5	58.94	2.0		58.71	2.1		58.41	1.7		58.19	2.0	1
LYMR	69.94	10.6	70.03	7.8		71.43	10.5		70.00	8.7		70.64	5.2	
LYMA	3.863	25.0	3.915	16.1		3.575	16.9		3.778	17.7		4.035	19.8	
With Outliers	Con	itrol		NK11-		NK33-			NK11+			NK33+		
Females	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
growthRate	0.922	50.3	0.882	39.3		1.034	32.7		0.970	37.8		0.946	33.1	
MCV	58.70	1.5	58.94	2.0		58.90	2.9		58.41	1.7		58.19	2.0	1
LYMR	69.94	10.6	68.58	12.2		71.43	10.5		70.00	8.7		70.64	5.2	1
LYMA	3.840	26.4	3.915	16.1		3.575	16.9		3.778	17.7		4.035	19.8	1