

G-TwYST Study A

Combined chronic toxicity and carcinogenicity study in rats fed GM maize NK603

Statistical report, 3 months data

Paul W. Goedhart & Hilko van der Voet

G-TwYST (EU grant agreement no: 632165) Deliverable 4.3b

Biometris report 33.10.17

February 2018

https://doi.org/10.18174/455206

G-TwYST Study A

Combined chronic toxicity and carcinogenicity study in rats fed GM maize NK603

Statistical report, 3 months data

Paul W. Goedhart & Hilko van der Voet

Biometris, one of the largest groups of quantitative scientists in North-Western Europe, develops statistical and mathematical methods for the quantification of biological processes and processes in our living environment. These methods are applied and validated in practice and are often available as software packages. In addition, we provide education at the undergraduate, Master, PhD, and PostDoc levels, as well as training and consultancy for industry. We cover a wide range of application areas, from gene to ecosystem and from product to production chain. Our goal is to bring quantitative methods to life.

Biometris is the full integration of the chair groups Applied Mathematics (Molenaar) and Applied Statistics (Van Eeuwijk) with the Wageningen Plant Research business unit Biometris (Wehrens).

For more information please visit the website www.biometris.nl or contact:

Biometris, Wageningen University & Research P.O. Box 16 6700 AA Wageningen, The Netherlands

Visiting address:
Buildingnumber 107
Droevendaalsesteeg 1, 6708 PD Wageningen, The Netherlands

Phone: +31 317 480798 or +31 317 486001

E-mail: biometris@wur.nl

Contents

Abstrac	t		2
1 Intro	oductio	on	3
2 Data	a		3
2.1	Data	obtained after 3 months in G-TwYST study A	3
2.2	Grov	vth curves and feed intake	5
2.3	Outl	iers and checking of ANOVA assumptions	7
2.4	Sum	mary tables	10
3 Stat	istical	analysis	14
3.1	Equi	valence testing using historical data	14
3.2	Equi	valence testing using target effect sizes	30
3.3	Class	sical statistical analysis	33
3.4	Stan	dardized effect sizes	33
3.5	Facto	orial analysis	41
Referen	ces		44
List of T	ables		45
List of F	igures.		47
Append	ix 1.	Growth curves per animal pair	49
Append	ix 2.	Feed consumption per cage	85
Append	ix 3.	Graphs of cage means on the original scale	103
Append	ix 4.	Graphs of cage means on the log scale	115
Append	ix 5.	Normal probability plots of residuals after ANOVA	127
Append	ix 6.	Graphs of residuals versus fitted values after ANOVA	133
Append	ix 7.	Estimated differences between GMO feeds and the control feed	139
Append	ix 8.	Intervals for equivalence tests	140
Append	ix 9.	P-values for difference tests between GMO feeds and the control feed	148
Append	ix 10.	Tests for normality and homogeneity of variance	151
Append	ix 11.	Statistical analysis of data including outliers	154

Abstract

The purpose of oral toxicity study A in the EU project G-TwYST was to assess the chronic and carcinogenic effects of genetically modified (GM) maize NK 603, grown both with and without the use of RoundUp, when fed to rats for a period of two years at incorporation rates of 11% and 33% in the feed. The effects were assessed relative to the responses for rats fed the near-isogenic non-GM maize, and the differences were compared, using a recently developed method for equivalence testing, to differences between non-GM feeds obtained in previous studies performed in the EU project GRACE.

The results of G-TwYST study A, except for the histopathological results which are reported separately, are given in five reports: four specific reports about the statistical analysis for data measured after 3, 6, 12 and 24 months, and a main report summarising all study results (Goedhart & van der Voet 2018). This report is about the results after 3 months.

Given tentative settings for regulatory parameters, for a set of 216 comparisons involving body weights, feed intake, haematology and clinical chemistry, equivalence was established in 94% of cases, close to the nominal confidence level of the test which was 95%. Equivalence was found to be more likely than lack of equivalence in 100% of cases.

In addition to this primary analysis, this report also contains results for equivalence testing using external target effect sizes for a limited set of variables, results for classical statistical analysis of differences, graphs of standardised effect sizes such as performed in the GRACE study and results of a factorial analysis.

1 Introduction

The purpose of oral toxicity study A in the EU project G-TwYST was to assess the effects of genetically modified (GM) maize NK 603, grown both with and without the use of RoundUp, when fed to rats for a period of one year (chronic toxicity study) and two years (carcinogenicity study), at incorporation rates of 11% and 33% in the feed. The effects of the GM maize were assessed relative to the responses for rats fed the near-isogenic non-GM maize. The chronic toxicity and carcinogenicity study ran in parallel. At 12 months part of the rats were euthanized and their organs were obtained, weighted and examined by the G-TwYST histopathological expert. The remaining rats were kept until 24 months, or until premature death, and were then assessed in the same way.

Rat weights and feed intake were measured weekly or bi-weekly. Haematology, clinical biochemistry in blood and urine, differential white blood cell counts, and urine volume and colour were obtained for a subset of animals after 3, 6, 12 and 24 months. This report describes in detail the results of the statistical analyses for the following data obtained after 3 months:

- Body weight at 3 months, growth rate first 3 months, mean feed intake (35 cages/group);
- Haematology (20 cages/group);
- Clinical biochemistry in blood (20 cages/group);
- Clinical biochemistry in urine (10 cages/group);
- Urine volume and colour (10 cages/group).

This report is organised as follows. Section 2 describes the data obtained after 3 months, initial data pre-processing, graphical summaries of growth and feed intake over time, outlier identification and checking of assumptions which are made in the statistical analysis. Section 3 presents detailed results of the statistical analyses. More details are provided in several appendices to this report. For a description of the statistical methods, and for a summary and discussion of results for all months, the reader is referred to the main study A report (Goedhart & van der Voet 2018).

2 Data

2.1 Data obtained after 3 months in G-TwYST study A

The available files for the data obtained after 3 months in G-TwYST study A are given in Table 1. GenStat programs "03-Males.gen" and "03-Females.gen" were used to combine all the data into single Excel files, separately for males and females. All animals survived the first 3 months, except for one female rat (Table 2). It is assumed that this single premature death is not connected to the experiment.

Some CHOL and cHGB were given as bounds; the number of such values are given in Table 3. The original Excel files with the haematology data (Tab_5 and Tab_6) contain remarks given in Table 4. Values with such remarks were set to missing, see for Table 6 for details. For most Urine variables only a limited number of values have been observed, see Table 5. It is evident that a statistical analysis of uColour, uBil, uNit, uProtein, uGlu, uHemogl and uUrobili is not very useful. Therefore, only the Urine variables uVol, uVolW, uLeu, uOsmoll, uKeton and upH were statistically analysed.

Table 1 Data files for G-TwYST study A after 3 months.

Data files after 3 months	Date	Time	Size (b)
Tab_1_G_TwYST_2yr st_A_3_month_Body weight_Mal.xlsx	13-04-2017	11:14	270,434
Tab_2_G_TwYST_2yr st_A_3_month_Body weight_Fem.xlsx	13-04-2017	11:14	281,135
Correct data_rev_1_Feed consumption_12_mon_G_TwYST_A_Females.xlsx	20-10-2017	07:08	164,942
Correkt data_rev_1_Feed consumption_12_mon_G_TwYST_A_Males.xlsx	20-09-2017	12:00	168,346
Tab_5_G_TwYST_2yr st_A_3 month_Haematology_Mal.xlsx	03-01-2017	10:44	86,416
Tab_6_G_TwYST_2yr st_A_3 month_Haematology_Fem.xlsx	03-01-2017	10:46	86,525
Tab_7a_G_TwYST_2yr st_A_3 month_Clin_Chem_bl_Mal.xlsx	03-01-2017	10:48	100,197
Tab_7b_G_TwYST_2yr st_A_3 month_Clin_Chem_ur_Mal.xlsx	03-01-2017	10:49	83,115
Tab_8a_G_TwYST_2yr st_A_3 month_Clin_Chem_bl_Fem.xlsx	03-01-2017	10:51	100,248
Tab_8b_G_TwYST_2yr st_A_3 month_Clin_Chem_ur_Fem.xlsx	03-01-2017	10:52	83,070
Blood_ur_3 month_G_TwYST_2yr st_A_Fem_time image.xlsx	11-01-2017	15:00	94,320
Blood_ur_3 month_G_TwYST_2yr st_A_Mal_time image.xlsx	11-01-2017	15:03	95,985

Table 2 Animals that died before the end of month 3.

Sex	Rat	Cage	Feed	Day of Death
Female	610	555	NK11-	86

Table 3 Number of animals for which bounded values were provided. These bounds are given in the first column.

Variable			Males			Females								
Valiable	Con	NK11-	NK33-	NK11+	NK33+	Con	NK11-	NK33-	NK11+	NK33+				
CHOL < 1.16	-	-	-	-	-	1	4	3	1	3				
cHGB < 27.5	1	1	2	-	1	-	1	-	-	-				
cHGB > 522.5	1	1	1	1	-	1	-	-	-	-				

Table 4 Remarks by SZU in original Excel data files; the accompanying values have been set to missing.

Variable	Remark
WBC	High count WBC
WBC	High count of WBC and PLT, no calculated lymphocytes
WBC	Low WBC and platelet count, probably due to microclots
HGB	No calculated HGB (low blood)
PLT	Low platelet count, probably due to microclots
PLT	High count PLT
PLT	High count of WBC and PLT, no calculated lymphocytes
PLT	Low WBC and platelet count, probably due to microclots

Table 5 Urine variables with only a limited set of observed values which are given in the heading of each sub-table. The table entries give the number of times each value occurs for male and female rats. Only uLeu and uKeton were statistically analysed.

		-			
uColour	Missing	2	3		
Male	250	99	1		
Female	250	100	-		
uBil	Missing	0			
Male	250	100			
Female	250	100			
uLeu	Missing	0	25	100	
Male	250	63	33	4	
Female	250	81	14	5	
uNit	Missing	0	1		
Male	250	99	1		
Female	250	100	-		
uProtein	Missing	0.00	0.25	0.75	
Male	250	99	-	1	
Female	250	99	1	-	
uGlu	Missing	1			
Male	250	100			
Female	250	100			
uHemogl	Missing	0	10	25	250
Male	250	94	3	2	1
Female	250	98	1	1	-
uKeton	Missing	0.0	0.5	1.5	5.0
Male	250	31	27	39	3
Female	250	82	10	8	-
uUrobili	Missing	1			
uorobiii					
Male	250	100			

2.2 Growth curves and feed intake

For each individual rat an exponential growth curve A+B R^{Week} was fitted to the observed weights. A re-parameterization of this curve is given by A+B $\exp(-\gamma\ Week)$ with the growth rate γ defined by $\gamma=-\log(R)$. In Appendix 1 the observed weights are graphically displayed along with the fitted curve and, in the bottom right corner, the resulting estimate of the growth rate γ . Initially, absolute standardized residuals, resulting from the fitted curve, which were larger than 3, were marked and these were checked for errors by SZU. This led to some corrections especially for weights at the start of the experiment, see Table 6. In G-TwYST study B (Goedhart & van der Voet 2017) it was found that removing weights with large residuals only led to slightly different estimates of the growth rate. It was therefore decided to keep the weights with the large residuals. Note that in general the exponential curve fits very well and therefore the weights can be summarized by the final observed weights at week 13 and the estimated growth rate γ , further called growthRate. Thus only Weight_13 and growthRate were statistically analysed. The mean weight for each feeding group is given in Figure 1, while the mean weight gain per day per animal in each week is given in Figure 2. Feed consumption for each cage in units g/animal/day is graphically depicted in Appendix 2. The mean feed consumption for each feeding group is given in Figure 3.

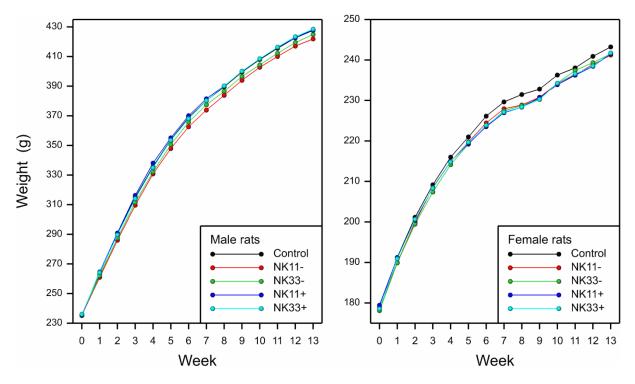


Figure 1 Mean body weights versus week for each feeding group for male rats (left) and for female rats (right).

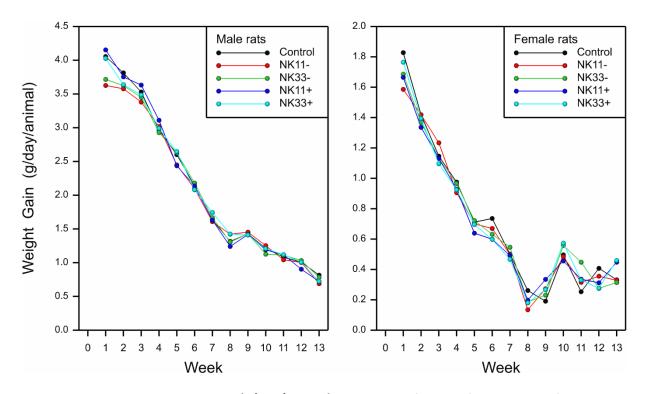


Figure 2 Mean body weights gain (g/day/animal) versus week for each feeding group for male rats (left) and for female rats (right).

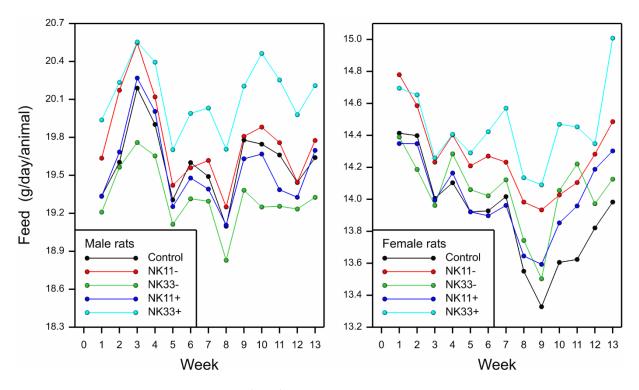


Figure 3 Mean feed consumption (g/day/animal) versus week for each feeding group for male rats (left) and for female rats (right).

2.3 Outliers and checking of ANOVA assumptions

These analyses and changes to the data were made before the feeding group codes were unblinded. The cage means, after a log transformation, for each observed variable were statistically analysed by an analysis of variance using the model "Block + Group" according to the randomized block design. Grubbs' outlier test at the 1% level was sequentially applied to the residuals to detect outliers. This resulted in a number of outliers which were first presented to the study director and then to the G-TwYST coordinator. Outliers were classified as either (1) typos or physiologically improbable values or (2) values that might be realistic. For the first category the values were set to missing, effectively removing the outlier completely. For the second category a statistical analysis without and with these outlier was performed. The analyses presented in this report are without the outliers. Analyses including outliers are presented in Appendix 11. Table 6 lists all the initially modified values and outliers. Residual plots which include the outliers (i.e. including the yellow values in Table 6) are given in Figure 4. From this it is clear that these are indeed outliers.

Without these outliers cage means on the original scale are given in Appendix 3, while cage means after a log transformation of the individual data are given in Appendix 4. Normal probability plots of the ANOVA residuals, of an analysis on cage means after log transformation, are given in Appendix 5. To aid interpretation a 99% envelope is added to the probability plots, such that only values outside the envelop might be suspicious. Appendix 6 gives plots of residuals versus fitted values after the same analysis of variance. These residual plots are generally satisfactory implying that the ANOVA assumptions, homogeneity of variance and, less importantly, normality, are generally fulfilled.

Table 6 Values that have been modified, deleted, or were considered as possible outliers, before unblinding of the feeding groups. Values which are not coloured were modified or deleted following comments of SZU. The red and yellow values were presented to the G-TwYST coordinator. He decided which values should be deleted (red) and which values should be considered as possible outliers (yellow). Comments by the authors of this report are given in black, while comments of the G-TwYST coordinator are given in red.

Sex	Variable	Animal	Cage	oldValue	newValue	Comment
Male	PLT	7	4	516	delete	SZU comment in datafile: microclots
Male	PLT	79	40	494	delete	SZU comment in datafile: microclots
Male	PLT	209	105	245	delete	SZU comment in datafile: microclots
Male	PLT	231	116	305	delete	SZU comment in datafile: microclots
Male	PLT	282	141	386	delete	SZU comment in datafile: microclots
Male	PLT	299	150	31	delete	SZU comment in datafile: microclots
Male	PLT	320	160	224	delete	SZU comment in datafile: microclots
Male	WBC	98	49	19.8	delete	SZU comment in datafile: highCount
Male	Feed_2	173	87	11.6	delete	Apparent typo
Male	HGB	231	116	1.4	delete	Same animal 231; Extremely small
Male	MCH	231	116	1.6	delete	Same animal 231; Extremely small
Male	MCHC	231	116	3	delete	Same animal 231; Extremely small
Male	Na	293	147	155	outlier	Two large values in same the cage
Male	Na	294	147	152	outlier	Two large values in same the cage
Sex	Variable	Animal	Cage	oldValue	newValue	Comment
Female	PLT	521	511	237	delete	SZU comment in datafile: microclots
Female	PLT	522	511	174	delete	SZU comment in datafile: microclots
Female	PLT	588	544	1901	delete	SZU comment in datafile: highCount
Female	PLT	738	619	71	delete	SZU comment in datafile: microclots
Female	PLT	846	673	204	delete	SZU comment in datafile: microclots
Female	WBC	565	533	15.6	delete	SZU comment in datafile: highCount
Female	WBC	588	544	13.7	delete	SZU comment in datafile: highCount
Female	Weight_0	517	509	202	177.19	SZU comment: mistake in copying
Female	Weight_0	518	509	208.01	177.19	SZU comment: mistake in copying
Female	Weight_0	587	544	206.96	177.12	SZU comment: mistake in copying
Female	Weight_0	588	544	210.31	176.99	SZU comment: mistake in copying
Female	Weight_0	657	579	199.01	176.30	SZU comment: mistake in copying
Female	Weight_0	658	579	209.86	175.75	SZU comment: mistake in copying
Female	Weight_0	727	614	212.66	175.70	SZU comment: mistake in copying
Female	Weight_0	728	614	214.99	175.38	SZU comment: mistake in copying
Female	Weight_0	797	649	219.51	175.16	SZU comment: mistake in copying
Female	Weight_6	544	522	257.76	237.76	SZU comment: mistake in copying
Female	Weight_8	513	507	282.77	228.77	SZU comment: mistake in copying
Female	Weight_13	758	629	260.44	260.55	SZU comment: mistake in copying
Female	growthRate	569	535	0.347	outlier	Two large growthRates in the same cage
Female	growthRate	570	535	0.363	outlier	Two large growthRates in the same cage
Female	growthRate	583	542	0.713	outlier	Extremely large growthRate
Female	RBC	622	561	4.66	outlier	Same animal 622; very small; low value, still realistic, anaemia?
Female	HGB	622	561	10.8	outlier	Same animal 622; very small; low value, still realistic, anaemia?

Female	НСТ	622	561	31.1	outlier	Same animal 622; very small; low value, still realistic, anaemia?
Female	MCV	718	609	67.3	outlier	Animal 718 has consistent large values in months 3, 6, 12; agree, possible outlier
Female	PLT	807	654	239	delete	239 is by far the smallest value, delete
Female	BIL	714	607	22.4	outlier	One value is even larger; can be realistic, haemolysis?
Female	BIL	846	673	32.8	outlier	In other months there are larger values; can be realistic, haemolysis?
Female	cHGB	714	607	456.752	outlier	522.5 is upper limit of method; I agree, possible outlier
Female	cHGB	846	673	522.5	outlier	There is one larger value; I agree, possible outlier
Female	Р	662	581	3.77	outlier	Only a single value in this cage; There are larger values; I agree, possible outlier

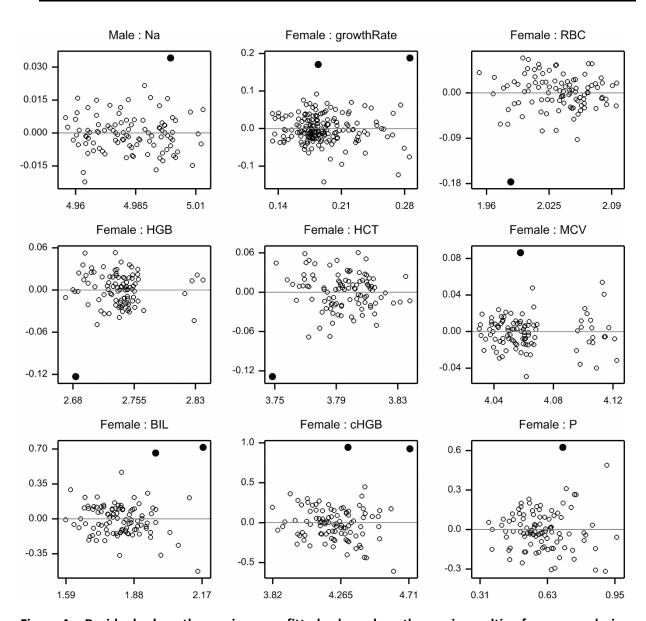


Figure 4 Residuals along the y-axis versus fitted values along the x-axis resulting from an analysis of variance on cage means after log transforming the data. Solid symbols denote outliers found by sequentially applying Grubbs' outlier test at the 1% level to the residuals.

2.4 Summary tables

Summary tables, on the original non-transformed scale, of number of observations, means, standard deviations and coefficients of variation (%), classified by the feeding groups, are given in Table 7 for males and in Table 8 for females. These tables were obtained by first calculating cage means and then calculating the summary statistics. The number of cages per feeding group is 35. However for haematology and clinical biochemistry data are only available for 20 cages, while urine data is available for 10 cages per feeding group.

Table 7 Summary statistics for male rats classified by the feeding groups: number of cages (N), means (Mean), standard deviations (Sd) and coefficients of variation (CV). The summary statistics are obtained from cage means.

Weights						N	IK11-			N	K33-		NK11+					NK33+				
Male	Ν	Mean	Sd	CV	N	Mean	Sd	CV	N	Mean	Sd	CV	N	Mean	Sd	CV	N	Mean	Sd	CV		
Weight_13	35	428	24.9	5.8	35	422	27.0	6.4	35	425	30.4	7.1	35	428	28.4	6.6	35	428	27.8	6.5		
growthRate	35	0.15	0.018	12.0	35	0.14	0.022	15.9	35	0.14	0.023	16.1	35	0.15	0.016	10.6	35	0.15	0.015	10.5		
FeedMean	35	19.6	0.91	4.6	35	19.8	1.09	5.5	35	19.3	1.11	5.7	35	19.6	1.03	5.2	35	20.1	1.27	6.3		
Haematology		Co	ntrol			N	IK11-			N	K33-			N	K11+			N	K33+			
Male	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV		
WBC	20	10.1	1.37	13.6	20	10.2	2.08	20.5	20	11.5	1.44	12.5	20	10.9	2.39	21.8	20	11.2	2.60	23.3		
RBC	20	8.64	0.32	3.6	20	8.58	0.28	3.3	20	8.61	0.25	2.9	20	8.67	0.27	3.1	20	8.60	0.29	3.3		
HGB	20	16.2	0.50	3.1	20	16.1	0.42	2.6	20	16.2	0.40	2.5	20	16.0	0.43	2.7	20	16.2	0.45	2.8		
HCT	20	46.5	1.66	3.6	20	46.1	1.23	2.7	20	46.5	1.36	2.9	20	46.7	1.31	2.8	20	46.6	1.52	3.3		
MCV	20	53.9	1.44	2.7	20	53.8	1.45	2.7	20	54.0	1.20	2.2	20	53.8	1.20	2.2	20	54.2	1.19	2.2		
MCH	20	18.7	0.65	3.5	20	18.7	0.69	3.7	20	18.9	0.55	2.9	20	18.5	0.49	2.7	20	18.8	0.66	3.5		
MCHC	20	34.8	0.54	1.6	20	34.8	0.56	1.6	20	34.9	0.52	1.5	20	34.4	0.50	1.5	20	34.7	0.76	2.2		
PLT	20	824	123	14.9	20	847	106	12.5	20	870	124	14.3	20	860	67	7.8	20	888	107	12.1		
LYMR	20	73.3	5.21	7.1	20	72.5	5.90	8.1	20	72.2	6.84	9.5	20	73.2	4.60	6.3	20	73.7	3.74	5.1		
LYMA	20	7.39	1.11	15.0	20	7.52	1.85	24.7	20	8.26	1.34	16.2	20	7.98	1.84	23.1	20	8.24	2.14	26.0		
ClinChem		Co	ntrol			N	IK11-			NK33-				N	K11+			N	K33+			
Male	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV		
ALP	20	1.51	0.33	22.0	20	1.54	0.37	24.0	20	1.47	0.26	17.9	20	1.48	0.24	16.2	20	1.56	0.41	26.2		
ALT	20	0.66	0.10	14.7	20	0.68	0.16	23.5	20	0.64	0.11	17.1	20	0.64	0.10	14.9	20	0.64	0.10	16.1		
AST	20	2.27	0.47	20.7	20	2.25	0.34	15.1	20	2.18	0.30	13.6	20	2.08	0.48	23.1	20	2.12	0.28	13.4		
BIL	20	6.81	3.90	57.3	20	7.16	3.12	43.6	20	7.26	4.72		20	6.68	4.63	69.3	20	6.94	4.32	62.3		
ALB	20	39.7	1.92	4.8	20	39.2	2.27	5.8	20	39.4	1.86	4.7	20	38.8	1.44	3.7	20	39.9	2.78	7.0		
TP	20	67.7	2.12	3.1	20	67.6	2.57	3.8	20	67.1	2.06	3.1	20	67.4	1.86	2.8	20	68.0	3.04	4.5		
Glu	20	5.99	0.83	13.9	20	5.86	0.73	12.4	20	5.86	0.91	15.6	20	6.12	0.79	13.0	20	6.24	0.91	14.6		
CHOL	20	2.13	0.21	9.8	20	2.17	0.22	10.3	20	2.14	0.25	11.8	20	2.08	0.22	10.7	20	2.17	0.24	11.2		
TAG	20	1.01	0.23	23.1	20	1.14	0.34	29.5	20	1.14	0.33	28.8	20	1.16	0.37	31.9	20	1.03	0.25	24.6		
Crea	20	37.4	4.34	11.6	20	35.4	4.64	13.1	20	35.9	5.59	15.6	20	36.2	4.29	11.9	20	36.0	4.79	13.3		
Urea	20	5.85	0.65	11.2	20	5.61	1.06	18.8	20	5.70	0.85	14.9	20	5.69	0.68		20	5.78	0.58	10.0		
cHGB	20	85	54.3	64.0	20	100	63.6	63.4	20	94	66.1	70.4	20	87	63.1	72.7	20	95	82.7	87.5		

Ca	20	2.54	0.096	3.8	20	2.55	0.087	3.4	20	2.55	0.094	3.7	20	2.54	0.084	3.3	20	2.54	0.095	3.7
Cl	20	104	2.72	2.6	20	104	1.63	1.6	20	104	1.98	1.9	20	103	1.46	1.4	20	105	2.09	2.0
K	20	5.34	0.62	11.6	20	5.42	0.55	10.1	20	5.39	0.74	13.6	20	5.35	0.53	10.0	20	5.47	0.86	15.8
Na	19	146	3.28	2.3	20	145	2.20	1.5	20	146	1.90	1.3	20	146	2.15	1.5	20	146	2.33	1.6
Р	20	2.57	0.22	8.4	20	2.43	0.25	10.3	20	2.56	0.34	13.1	20	2.48	0.19	7.7	20	2.47	0.27	10.8
Urine		Co	ntrol			N	K11-			N	K33-	-		N	K11+			N	K33+	
Male	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	N	Mean	Sd	CV	Ν	Mean	Sd	CV
uVol	10	26.4	7.22	27.3	10	26.3	5.47	20.8	10	21.4	9.08	42.5	10	24.9	5.34	21.5	10	26.0	6.97	26.8
uVolW	10	6.30	1.93	30.6	10	6.29	1.62	25.8	10	5.04	1.97	39.1	10	5.93	1.75	29.5	10	6.01	1.43	23.9
uLeu	10	7.5	10.5	140.5	10	6.2	10.6	170.0	10	21.2	23.6	111.1	10	8.8	11.9	135.5	10	17.5	19.7	112.7
uOsmoll	10	324	105	32.4	10	296	67	22.5	10	394	132	33.5	10	338	90	26.5	10	362	226	62.4
uKeton	10	0.83	0.97	117.0	10	0.82	0.74	89.3	10	1.12	0.54	48.3	10	0.70	0.54	76.8	10	0.88	0.99	113.7
upH	10	6.90	0.17	2.5	10	6.72	0.22	3.3	10	6.88	0.21	3.1	10	6.85	0.54	7.9	10	6.75	0.26	3.9

Table 8 Summary statistics for female rats classified by the feeding groups: number of cages (N), means (Mean), standard deviations (Sd) and coefficients of variation (CV). The summary statistics are obtained from cage means.

Weights						N	K11-			N	K33-			N	K11+		NK33+				
Female	N	Mean	Sd	CV	Ν	Mean	Sd	CV	N	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	
Weight_13	35	243	13.3	5.5	35	241	12.8	5.3	35	242	13.2	5.5	35	242	15.0	6.2	35	242	14.8	6.1	
growthRate	35	0.19	0.041	20.8	35	0.19	0.049	25.9	35	0.19	0.047	25.4	35	0.18	0.042	23.2	34	0.18	0.046	25.1	
FeedMean	35	13.9	0.75	5.4	35	14.3	0.98	6.9	35	14.0	0.90	6.4	35	14.0	0.90	6.4	35	14.4	0.94	6.5	
Haematology		Co	ntrol			N	K11-			N	K33-			N	K11+			N	K33+		
Female	N	Mean	Sd	CV	Ν	Mean	Sd	CV	N	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	
WBC	20	7.54	1.63	21.6	20	7.88	1.24	15.7	20	7.80	2.24	28.8	20	7.28	1.12	15.4	20	8.02	1.36	16.9	
RBC	20	7.62	0.33	4.3	20	7.62	0.31	4.0	20	7.73	0.35	4.6	20	7.70	0.29	3.7	20	7.73	0.37	4.8	
HGB	20	15.5	0.59	3.8	20	15.4	0.52	3.4	20	15.6	0.57	3.7	20	15.4	0.52	3.4	20	15.4	0.51	3.3	
НСТ	20	44.4	1.31	2.9	20	44.2	1.35	3.1	20	44.9	1.03	2.3	20	44.6	1.09	2.5	20	44.8	1.74	3.9	
MCV	20	58.4	2.27	3.9	20	58.4	1.50	2.6	20	58.0	1.90	3.3	20	58.0	1.52	2.6	20	58.0	1.73	3.0	
MCH	20	20.4	1.15	5.6	20	20.4	1.10	5.4	20	20.2	0.89	4.4	20	20.0	0.86	4.3	20	20.0	0.76	3.8	
MCHC	20	34.9	0.94	2.7	20	34.9	1.52	4.3	20	34.8	0.99	2.8	20	34.6	1.14	3.3	20	34.5	0.95	2.7	
PLT	20	828	71.1	8.6	20	799	81.0	10.1	20	787	87.4	11.1	20	813	83.9	10.3	19	846	78.8	9.3	
LYMR	20	73.7	5.05	6.9	20	71.3	7.26	10.2	20	72.7	6.30	8.7	20	72.5	8.03	11.1	20	74.1	6.25	8.4	

G-TwYST Study A Statistical report month 3

LYMA	20	5.56	1.22	22.0	20	5.69	1.15	20.3	20	5.57	1.41	25.4	20	5.22	0.83	15.8	20	6.02	1.38	22.8
ClinChem		Co	ntrol			N	K11-			N	K33-			N	K11+			N	K33+	
Female	Ν	Mean	Sd	CV	N	Mean	Sd	CV	N	Mean	Sd	CV	Ν	Mean	Sd	CV	N	Mean	Sd	CV
ALP	20	0.68	0.14	20.3	20	0.69	0.13	18.8	20	0.71	0.18	25.5	20	0.73	0.14	18.6	20	0.71	0.21	29.4
ALT	20	0.52	0.12	22.9	20	0.53	0.16	29.5	20	0.51	0.10	19.8	20	0.48	0.08	16.3	20	0.57	0.14	24.4
AST	20	2.14	0.37	17.5	20	2.11	0.40	19.1	20	2.28	0.30	13.3	20	2.09	0.36	17.1	20	2.43	0.48	19.8
BIL	20	6.36	1.03	16.2	20	5.89	0.88	15.0	20	6.87	2.03	29.5	20	6.14	1.36	22.1	20	6.39	1.27	19.9
ALB	20	45.8	2.87	6.3	20	45.8	4.52	9.9	20	45.7	2.96	6.5	20	46.0	3.10	6.7	20	45.2	4.50	10.0
TP	20	71.3	3.34	4.7	20	70.7	4.41	6.2	20	70.8	3.13	4.4	20	71.5	3.64	5.1	20	70.9	4.01	5.7
Glu	20	5.15	0.53	10.4	20	5.20	0.81	15.6	20	4.93	0.74	15.0	20	5.20	0.77	14.9	20	4.89	0.57	11.6
CHOL	20	1.98	0.34	17.0	20	1.90	0.33	17.2	20	1.83	0.34	18.7	20	1.78	0.22	12.5	20	1.85	0.33	17.6
TAG	20	0.70	0.13	18.7	20	0.68	0.16	23.3	20	0.63	0.11	17.0	20	0.61	0.13	20.8	20	0.65	0.08	12.2
Crea	20	44.5	4.04	9.1	20	46.2	5.08	11.0	20	45.2	3.43	7.6	20	47.2	5.23	11.1	20	46.0	4.87	10.6
Urea	20	5.76	0.54	9.4	20	5.89	0.83	14.2	20	5.83	0.51	8.8	20	5.88	0.50	8.4	20	6.13	0.81	13.2
cHGB	20	72.1	18.9	26.2	20	68.4	13.6	19.9	20	85.3	33.3	39.1	20	61.9	11.9	19.2	20	72.4	18.1	25.0
Ca	20	2.51	0.062	2.5	20	2.52	0.076	3.0	20	2.53	0.073	2.9	20	2.52	0.076	3.0	20	2.52	0.062	2.5
Cl	20	100	2.44	2.4	20	101	2.70	2.7	20	101	1.99	2.0	20	101	3.49	3.4	20	101	2.94	2.9
K	20	4.46	0.41	9.1	20	4.52	0.27	6.0	20	4.54	0.32	7.0	20	4.46	0.39	8.7	20	4.57	0.39	8.6
Na	20	142	2.14	1.5	20	143	2.52	1.8	20	143	2.49	1.7	20	143	2.98	2.1	20	143	2.77	1.9
Р	20	1.78	0.33	18.8	20	1.87	0.25	13.7	20	2.00	0.33	16.2	19	1.77	0.43	24.5	20	1.96	0.64	32.9
Urine		Co	ntrol			N	K11-			N	K33-			N	K11+			N	K33+	
Female	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV	N	Mean	Sd	CV	Ν	Mean	Sd	CV	Ν	Mean	Sd	CV
uVol	10	20.2	5.12	25.3	10	19.1	6.02	31.6	10	23.7	6.54	27.7	10	18.2	7.78	42.7	10	16.4	6.10	37.1
uVolW	10	8.45	1.78	21.1	10	7.98	2.27	28.4	10	9.71	2.62	27.0	10	7.45	3.18	42.7	10	6.88	2.46	35.7
uLeu	10	8.8	15.6	178.8	10	5.0	6.5	129.1	10	10.0	16.5	164.6	10	12.5	20.4	163.3	10	6.2	15.9	253.9
uOsmoll	10	323	56	17.5	10	334	120	35.9	10	288	98	33.9	10	391	98	25.2	10	399	107	26.7
uKeton	10	0.10	0.24	241.5	10	0.05	0.11	210.8	10	0.17	0.31	178.8	10	0.33	0.37	115.0	10	0.20	0.31	153.7
upH	10	6.40	0.32	4.9	10	6.15	0.32	5.1	10	6.42	0.29	4.5	10	6.25	0.26	4.2	10	6.38	0.52	8.1

3 Statistical analysis

The statistical methods are described in the main study A report (Goedhart & van der Voet 2018).

3.1 Equivalence testing using historical data

The sample size in the current study, i.e. the number of cages per feeding group, equals 35 for the weight variables and 20 for haematology and clinical biochemistry. These sample sizes were used as the regulatory replication n_0 in the equivalence analysis. Moreover regulatory values $\alpha=0.05$ and $\beta=0.05$ were employed. Equivalence testing was only performed for those variables that were also observed in the GRACE study.

Each GMO feed was tested for equivalence with respect to the control feed. The DWE intervals showing the main results of the equivalence tests for 27 variables are given in Figure 5 to Figure 8. The hypothesis of no difference is rejected in case the interval does not contain zero, which is denoted by fuchsia coloured estimates. The non-equivalence hypothesis is rejected when the interval fully lies inside the interval (-1,1). For further interpretation the 95% confidence intervals for the ratios are given in Table 9 and Table 10. These confidence intervals at the ratio scale are also given in Figure 9 to Figure 16, with inclusion of the estimated equivalence limits (red bars) and their uncertainty (blue bars). Note that the latter graphs cannot be used directly for performing the equivalence test. However, they show the effects and equivalence limits at a more familiar scale.

The DWE equivalence test depends, among other things, on the ratio of the residual variance of the current study and the residual variance of the historical studies. In case this variance ratio (VR) is small the corresponding DWE interval will generally be short, and when VR is large the interval will large. The ratio of the residual variances is given in Figure 17. Large ratios are observed in males for MCV and MCHC, and in females for growthRate, MCHC, CHOL and P.

Among 8×27 = 216 equivalence tests, there were 13 failures (6%) to prove equivalence (i.e. reject the hypothesis of non-equivalence), which is close to the 5% level of the test. In all these 13 cases the median estimate was within the equivalence limits, therefore equivalence is still more likely than lack of equivalence according to the terminology of EFSA (2011a). These 13 cases were observed for MCV (4x) in males, while the remaining 9 cases are observed in females for growthRate (4x), MCHC (1x), CHOL (3x) and P (1x). From Figure 17 it can be seen that these are all cases where, on average, G-TwYST study A was less precise than the historical GRACE study.

Although not the primary result of the equivalence analysis, it can also be observed from the fuchsia symbols in Figure 5 to Figure 8 and from Table 9 and Table 10 that, for those variables for which the equivalence test is performed, the number of significant differences, employing classical two-sided t-tests at the 5% level, equals 13 (6% of 216 difference tests, 3 for males and 10 for females), which is again close to the 5% level of the test. Only in two of these cases (females P for NK33-, females CHOL for NK11+) there was both a significant difference and a failure to show equivalence.

For all difference tests, i.e. including those for which the equivalence test was not performed, 17 out of 288 t-tests were significant which is 6% of the tests (Table 9 and Table 10).

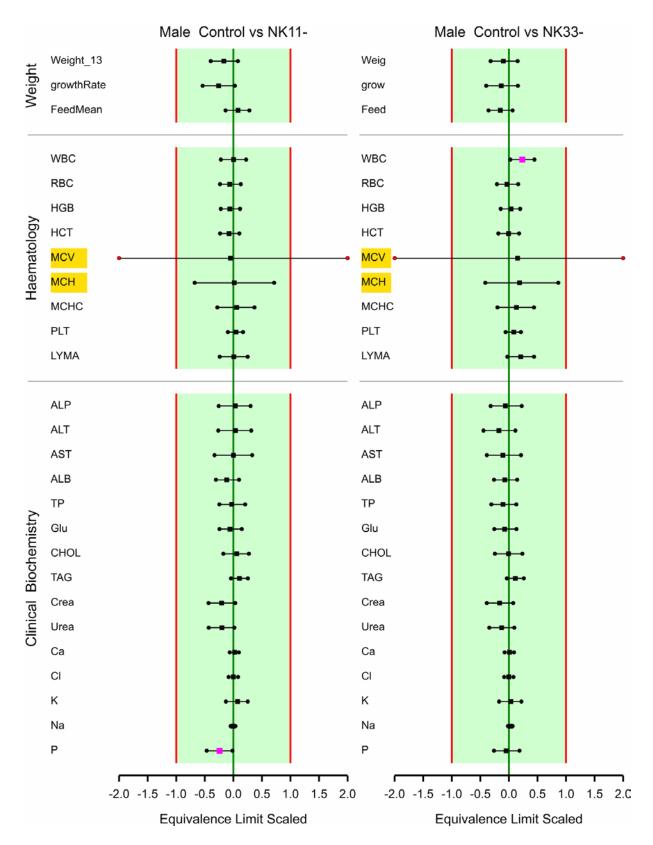


Figure 5 Equivalence testing of NK11- and NK33- versus the control feed for males. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 9, Figure 9 and Figure 10 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.

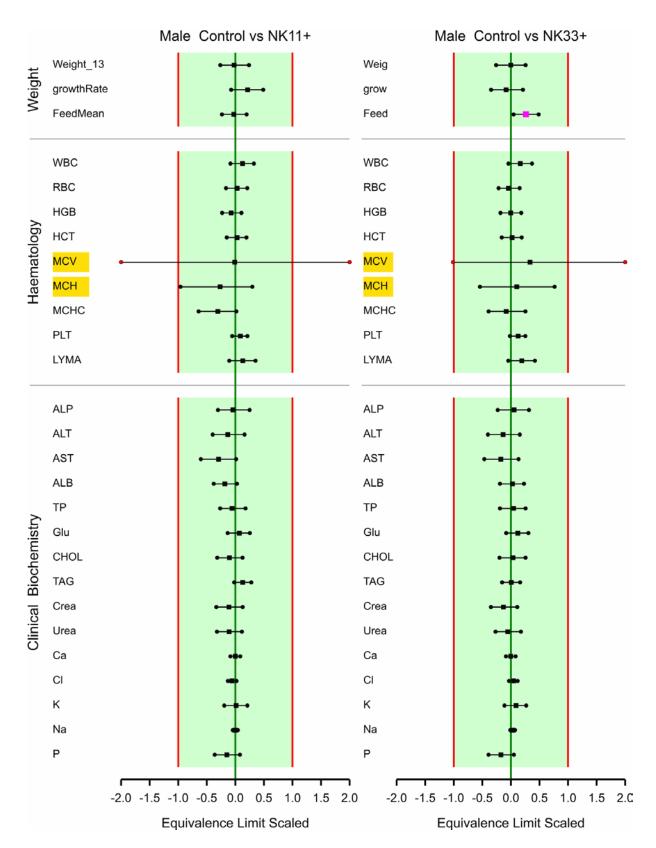


Figure 6 Equivalence testing of NK11+ and NK33+ versus the control feed for males. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 9, Figure 11 and Figure 12 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.

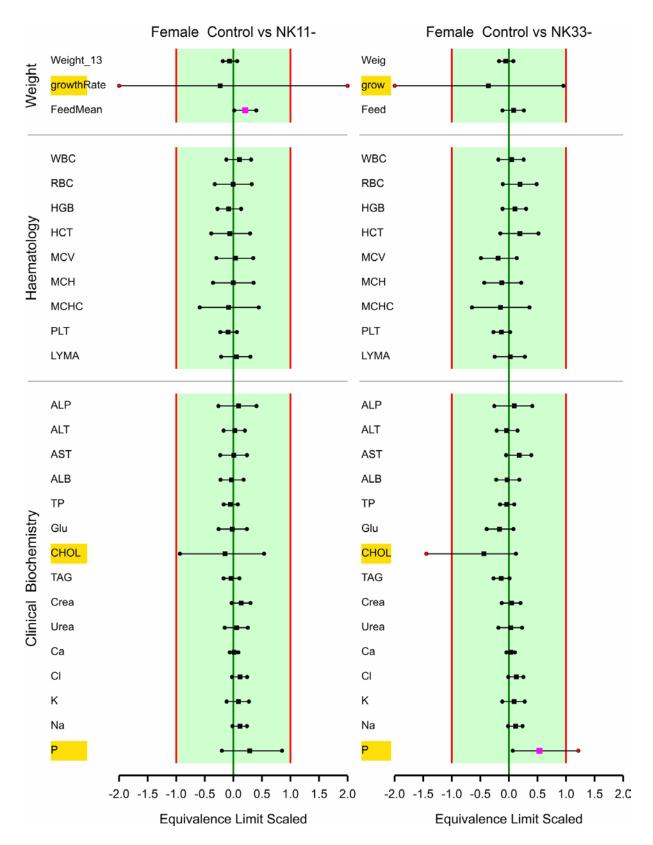


Figure 7 Equivalence testing of NK11- and NK33- versus the control feed for females. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 10, Figure 13 and Figure 14 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.

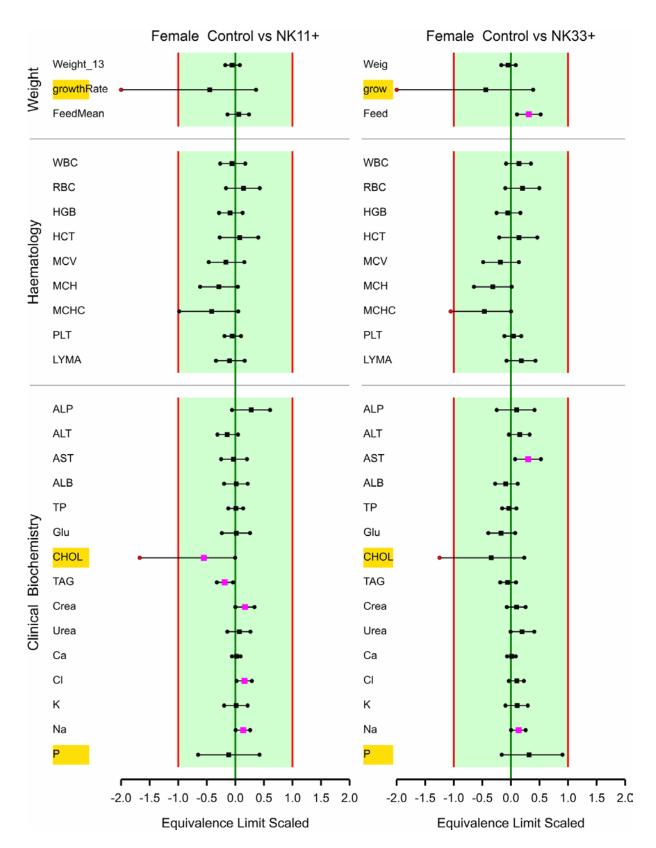


Figure 8 Equivalence testing of NK11+ and NK33+ versus the control feed for females. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 10, Figure 15 and Figure 16 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.

Table 9 95% Confidence interval plus estimate for the ratio Δ of the GMO feeds versus the Control feed for males. Intervals are based on an ANOVA with 5 feeding groups. Ratios with corresponding Intervals that do not encompass the value 1 are coloured red; this is equivalent to a significant difference according to a t-test with significance level 5%.

Weights	NK1	1- vs Cont	rol	NK3	NK33- vs Control			NK11+ vs Control			NK33+ vs Control			
Males	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper		
Weight_13	0.962	0.985	1.007	0.969	0.991	1.014	0.975	0.998	1.021	0.977	1.000	1.023		
growthRate	0.984	0.992	1.001	0.987	0.996	1.005	0.998	1.007	1.015	0.989	0.997	1.006		
FeedMean	0.987	1.008	1.029	0.965	0.985	1.006	0.977	0.997	1.018	1.005	1.026	1.048		
Haematology	NK1	1- vs Cont	rol	NK3	3- vs Cont	trol	NK1	1+ vs Con	trol	NK3	NK33+ vs Control			
Males	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper		
WBC	0.899	1.003	1.119	1.013	1.131	1.261	0.958	1.069	1.193	0.978	1.091	1.217		
RBC	0.972	0.993	1.014	0.976	0.996	1.017	0.983	1.003	1.025	0.975	0.995	1.016		
HGB	0.977	0.994	1.011	0.987	1.004	1.021	0.976	0.993	1.010	0.983	1.000	1.017		
HCT	0.973	0.992	1.011	0.980	0.999	1.019	0.984	1.003	1.023	0.983	1.002	1.022		
MCV	0.983	0.999	1.015	0.987	1.003	1.019	0.984	1.000	1.016	0.991	1.007	1.023		
MCH	0.980	1.001	1.022	0.986	1.008	1.029	0.968	0.989	1.011	0.983	1.004	1.026		
MCHC	0.991	1.002	1.013	0.994	1.004	1.015	0.980	0.990	1.001	0.987	0.997	1.008		
PLT	0.947	1.027	1.113	0.969	1.050	1.138	0.970	1.051	1.139	0.991	1.074	1.164		
LYMR	0.947	0.987	1.029	0.939	0.979	1.020	0.956	0.997	1.039	0.965	1.005	1.048		
LYMA	0.895	1.005	1.128	0.987	1.108	1.243	0.950	1.067	1.198	0.979	1.099	1.234		
ClinChem	NK1	1- vs Cont	rol	NK33- vs Control		NK11+ vs Control			NK3	3+ vs Con	trol			
Males	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper		
ALP	0.917	1.012	1.117	0.886	0.978	1.080	0.892	0.985	1.087	0.924	1.020	1.126		
ALT	0.942	1.009	1.080	0.896	0.959	1.027	0.905	0.969	1.037	0.904	0.968	1.036		
AST	0.910	1.000	1.099	0.881	0.968	1.064	0.831	0.914	1.004	0.862	0.947	1.040		
BIL	0.873	1.046	1.253	0.873	1.046	1.253	0.788	0.944	1.131	0.847	1.015	1.216		
ALB	0.963	0.987	1.011	0.968	0.992	1.016	0.955	0.979	1.003	0.979	1.003	1.028		
TP	0.978	0.998	1.017	0.972	0.991	1.011	0.976	0.995	1.015	0.985	1.004	1.024		
Glu	0.916	0.980	1.049	0.911	0.975	1.044	0.957	1.024	1.096	0.973	1.042	1.115		
CHOL	0.955	1.017	1.083	0.937	0.998	1.063	0.912	0.971	1.034	0.949	1.011	1.076		
TAG	0.968	1.093	1.235	0.972	1.098	1.240	0.984	1.112	1.256	0.890	1.006	1.136		
Crea	0.878	0.941	1.010	0.889	0.953	1.022	0.902	0.967	1.037	0.897	0.962	1.032		
Urea	0.896	0.949	1.005	0.914	0.967	1.024	0.918	0.972	1.029	0.931	0.985	1.043		

cHGB	0.864	1.121	1.455	0.828	1.075	1.395	0.725	0.941	1.221	0.815	1.057	1.372
Ca	0.991	1.003	1.016	0.989	1.002	1.014	0.987	1.000	1.013	0.987	0.999	1.012
Cl	0.991	1.000	1.009	0.990	1.000	1.009	0.984	0.993	1.002	0.996	1.006	1.015
K	0.970	1.018	1.067	0.961	1.008	1.057	0.957	1.003	1.052	0.974	1.022	1.071
Na	0.993	0.999	1.005	0.998	1.004	1.009	0.994	1.000	1.006	0.999	1.004	1.010
Р	0.899	0.947	0.997	0.939	0.989	1.041	0.918	0.967	1.018	0.913	0.961	1.012
Urine	NK1	1- vs Con	trol	NK3	NK33- vs Control			1+ vs Con	trol	NK33+ vs Control		
Males	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper
uVol	0.797	1.020	1.305	0.606	0.776	0.992	0.734	0.939	1.201	0.741	0.949	1.213
uVolW	0.795	1.028	1.331	0.604	0.782	1.012	0.725	0.938	1.214	0.721	0.932	1.206
uLeu	0.662	0.947	1.353	1.028	1.469	2.100	0.739	1.056	1.510	0.871	1.246	1.781
uOsmoll	0.730	0.940	1.209	0.929	1.196	1.539	0.830	1.068	1.375	0.793	1.020	1.313
uKeton	0.660	1.145	1.984	1.034	1.793	3.109	0.652	1.130	1.960	0.689	1.194	2.070
upH	0.641	0.839	1.099	0.745	0.975	1.277	0.726	0.951	1.246	0.657	0.861	1.127

Table 10 95% Confidence interval plus estimate for the ratio Δ of the GMO feeds versus the Control feed for females. Intervals are based on an ANOVA with 5 feeding groups. Ratios with corresponding Intervals that do not encompass the value 1 are coloured red; this is equivalent to a significant difference according to a t-test with significance level 5%.

Weights	NK11- vs Control			NK3	3- vs Cont	rol	NK1	1+ vs Con	trol	NK33+ vs Control				
Females	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper		
Weight_13	0.975	0.991	1.008	0.976	0.993	1.010	0.976	0.993	1.010	0.977	0.994	1.011		
growthRate	0.975	0.994	1.012	0.972	0.990	1.009	0.970	0.988	1.006	0.970	0.988	1.007		
FeedMean	1.002	1.026	1.050	0.987	1.010	1.034	0.984	1.008	1.032	1.014	1.039	1.063		
Haematology	NK1	1- vs Con	trol	NK3	NK33- vs Control			NK11+ vs Control			NK33+ vs Control			
Females	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper		
WBC	0.935	1.060	1.201	0.908	1.027	1.162	0.856	0.969	1.096	0.956	1.081	1.222		
RBC	0.977	1.000	1.023	0.992	1.015	1.038	0.988	1.011	1.034	0.993	1.015	1.038		
HGB	0.980	0.994	1.009	0.993	1.007	1.022	0.979	0.994	1.008	0.982	0.996	1.011		
HCT	0.978	0.996	1.016	0.992	1.011	1.030	0.986	1.004	1.023	0.989	1.008	1.027		
MCV	0.989	1.001	1.014	0.981	0.993	1.005	0.982	0.994	1.006	0.981	0.993	1.005		
MCH	0.980	1.000	1.020	0.974	0.993	1.012	0.964	0.983	1.002	0.963	0.982	1.001		
MCHC	0.986	0.998	1.010	0.984	0.996	1.008	0.977	0.989	1.001	0.976	0.988	1.000		

	-												
PLT	0.908	0.965	1.025	0.895	0.950	1.008	0.922	0.979	1.039	0.958	1.017	1.081	
LYMR	0.919	0.961	1.006	0.941	0.984	1.029	0.936	0.979	1.023	0.959	1.003	1.049	
LYMA	0.899	1.029	1.177	0.887	1.013	1.156	0.832	0.949	1.083	0.962	1.098	1.253	
ClinChem	NK1	1- vs Cont	rol	NK3	3- vs Cont	rol	NK1	1+ vs Con	trol	NK33+ vs Control			
Females	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
ALP	0.928	1.027	1.137	0.931	1.028	1.136	0.983	1.086	1.200	0.932	1.030	1.138	
ALT	0.909	1.014	1.131	0.877	0.977	1.087	0.829	0.922	1.027	0.980	1.091	1.215	
AST	0.908	1.003	1.108	0.980	1.081	1.192	0.894	0.986	1.087	1.032	1.138	1.255	
BIL	0.829	0.927	1.038	0.945	1.056	1.179	0.860	0.960	1.073	0.901	1.007	1.124	
ALB	0.953	0.994	1.036	0.954	0.994	1.036	0.963	1.003	1.045	0.943	0.982	1.023	
TP	0.966	0.990	1.015	0.969	0.993	1.017	0.978	1.002	1.026	0.970	0.993	1.017	
Glu	0.919	0.994	1.075	0.879	0.949	1.025	0.931	1.005	1.086	0.877	0.947	1.023	
CHOL	0.873	0.972	1.082	0.827	0.919	1.021	0.809	0.899	0.999	0.842	0.936	1.040	
TAG	0.863	0.969	1.088	0.803	0.900	1.008	0.772	0.865	0.969	0.853	0.956	1.071	
Crea	0.990	1.044	1.102	0.963	1.015	1.070	1.000	1.054	1.111	0.979	1.032	1.088	
Urea	0.958	1.018	1.082	0.951	1.010	1.072	0.962	1.021	1.084	0.998	1.060	1.125	
cHGB	0.831	0.956	1.098	0.996	1.142	1.310	0.768	0.880	1.010	0.902	1.034	1.186	
Ca	0.990	1.003	1.015	0.993	1.006	1.018	0.991	1.003	1.016	0.990	1.002	1.014	
Cl	0.998	1.008	1.017	0.999	1.009	1.018	1.001	1.011	1.020	0.998	1.007	1.016	
K	0.972	1.022	1.074	0.973	1.022	1.074	0.955	1.003	1.054	0.978	1.027	1.079	
Na	0.999	1.008	1.016	0.999	1.008	1.016	1.000	1.009	1.017	1.000	1.009	1.017	
Р	0.960	1.064	1.180	1.015	1.123	1.242	0.879	0.975	1.080	0.969	1.072	1.186	
Urine	NK1	1- vs Cont	rol	NK3	3- vs Cont	rol	NK1	1+ vs Con	trol	NK33+ vs Control			
Females	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	Lower	Ratio	Upper	
uVol	0.710	0.943	1.251	0.911	1.198	1.574	0.675	0.888	1.167	0.648	0.851	1.119	
uVolW	0.719	0.949	1.253	0.903	1.180	1.543	0.665	0.869	1.137	0.650	0.850	1.112	
uLeu	0.629	0.913	1.324	0.737	1.056	1.514	0.737	1.056	1.514	0.625	0.896	1.284	
uOsmoll	0.818	1.075	1.413	0.653	0.851	1.108	0.929	1.210	1.576	0.963	1.254	1.634	
uKeton	0.722	1.017	1.434	0.791	1.102	1.536	1.028	1.432	1.996	0.836	1.164	1.623	
upH	0.544	0.750	1.034	0.752	1.025	1.398	0.631	0.861	1.174	0.715	0.975	1.330	

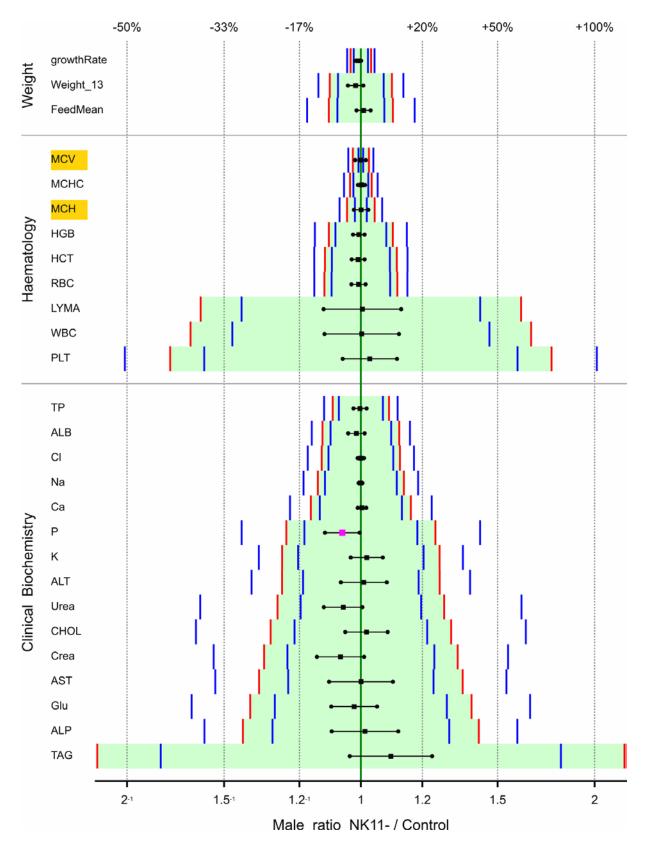


Figure 9 95% confidence intervals for the ratio of NK11- and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

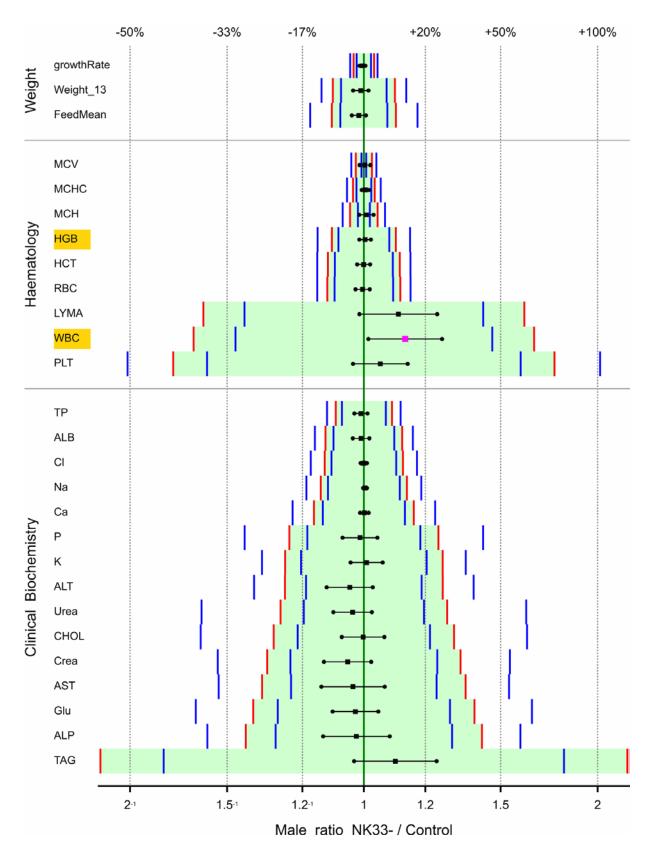


Figure 10 95% confidence intervals for the ratio of NK33- and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

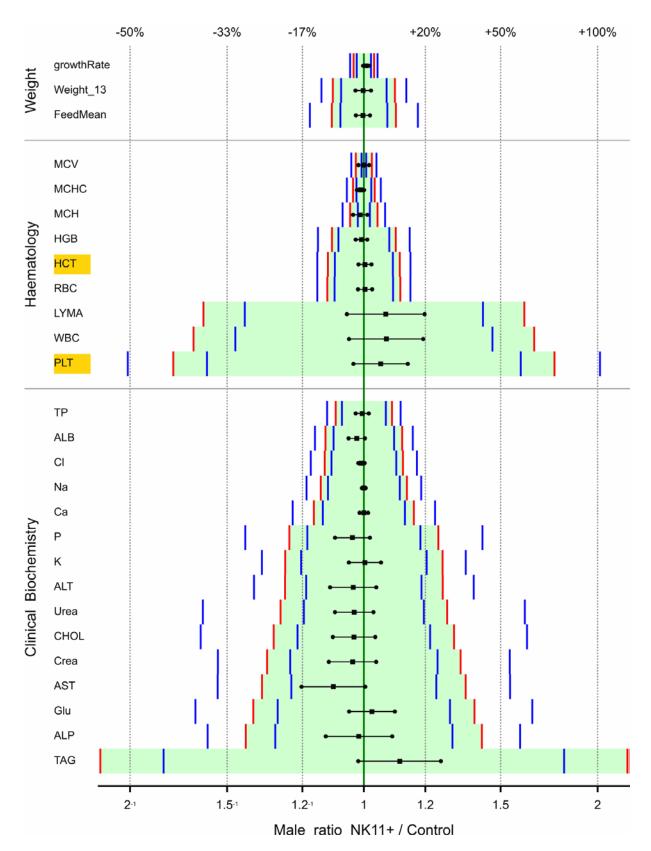


Figure 11 95% confidence intervals for the ratio of NK11+ and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

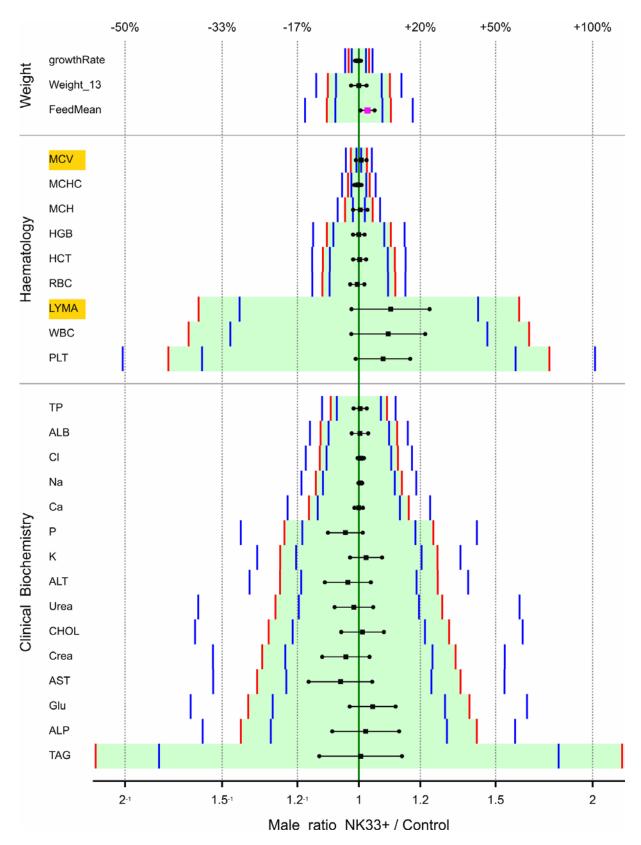


Figure 12 95% confidence intervals for the ratio of NK33+ and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

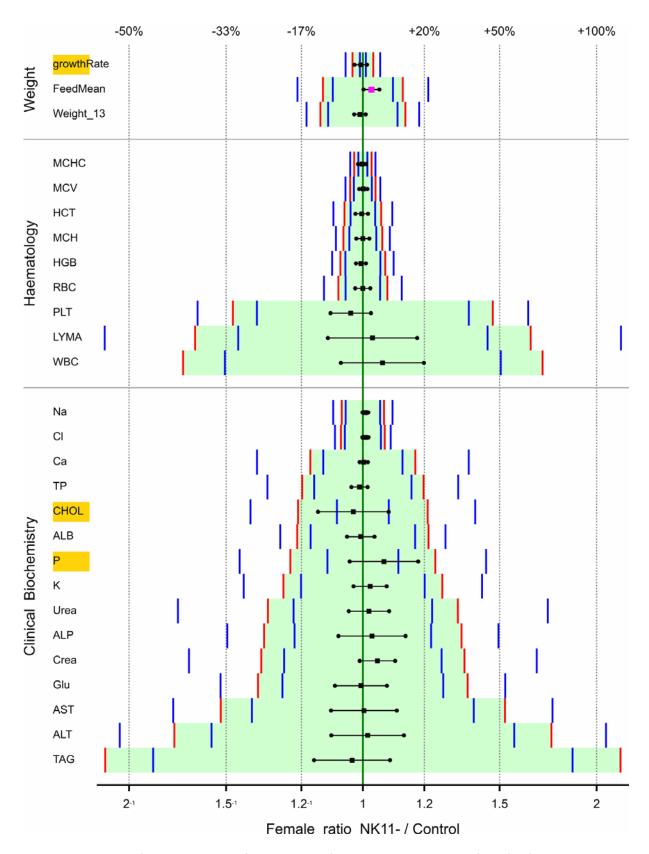


Figure 13 95% confidence intervals for the ratio of NK11- and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).



Figure 14 95% confidence intervals for the ratio of NK33- and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

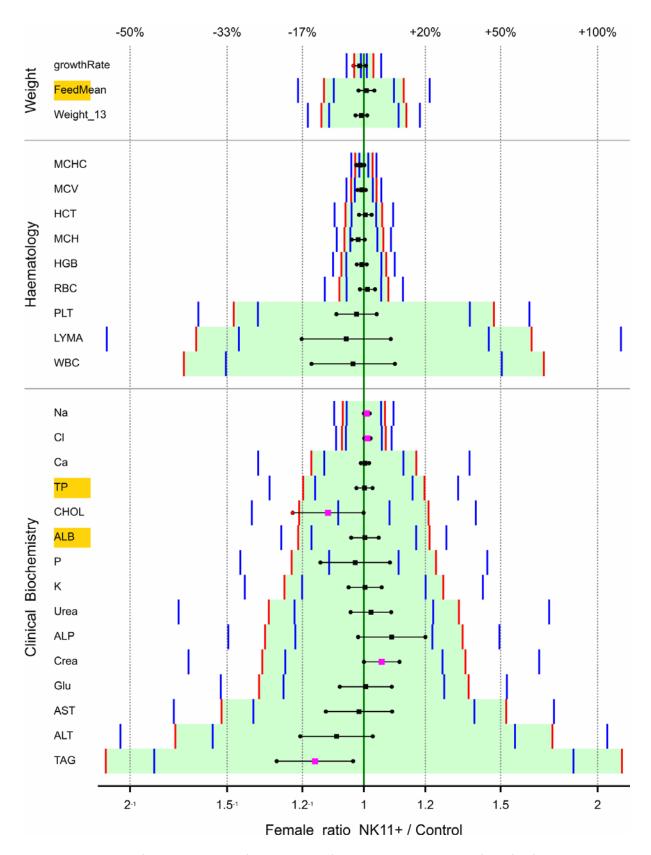


Figure 15 95% confidence intervals for the ratio of NK11+ and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

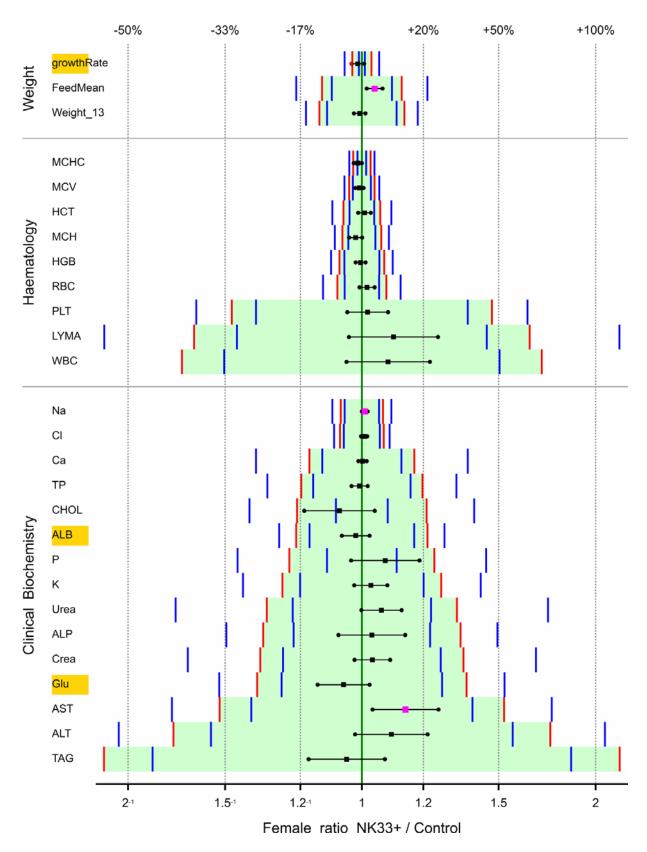


Figure 16 95% confidence intervals for the ratio of NK33+ and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text).

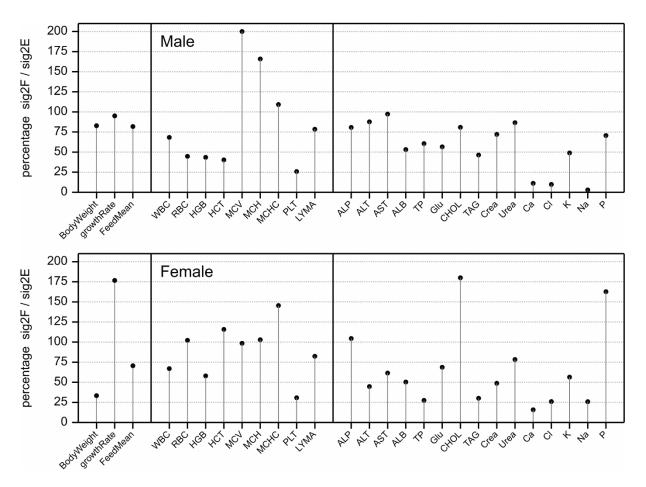


Figure 17 Residual variance (sig2F or σ_F^2) in the current G-TwYST A study as a percentage of the residual variance (sig2E or σ_E^2) in the historical GRACE studies for males (top panel) and females (bottom panel).

3.2 Equivalence testing using target effect sizes

90% confidence intervals for 7 variables, with equivalence limits according to the targeted effect sizes in Hong *et al.* (2017), are given in Figure 18 for males and in Figure 19 for females. Note that these are 90% intervals, rather than the 95% intervals in Figure 9 to Figure 16. In all cases the null hypothesis of non-equivalence is rejected with a p-value smaller than 0.01 (Table 11).

Table 11 P-values of equivalence tests for the ratio of the mean of the GMO feed versus the mean of the control feed using targeted effect sizes of Hong *et al.* (2017) as equivalence limits. P-values smaller than 0.01/0.05 have a gold/yellow background.

Variable		Ma	les		Females						
variable	NK11-	NK33-	NK11+	NK33+	NK11-	NK33-	NK11+	NK33+			
Weight_13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
WBC	0.000	0.007	0.000	0.001	0.001	0.000	0.000	0.002			
LYMA	0.000	0.004	0.001	0.002	0.000	0.000	0.000	0.007			
ALP	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Crea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Urea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
CHOL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			

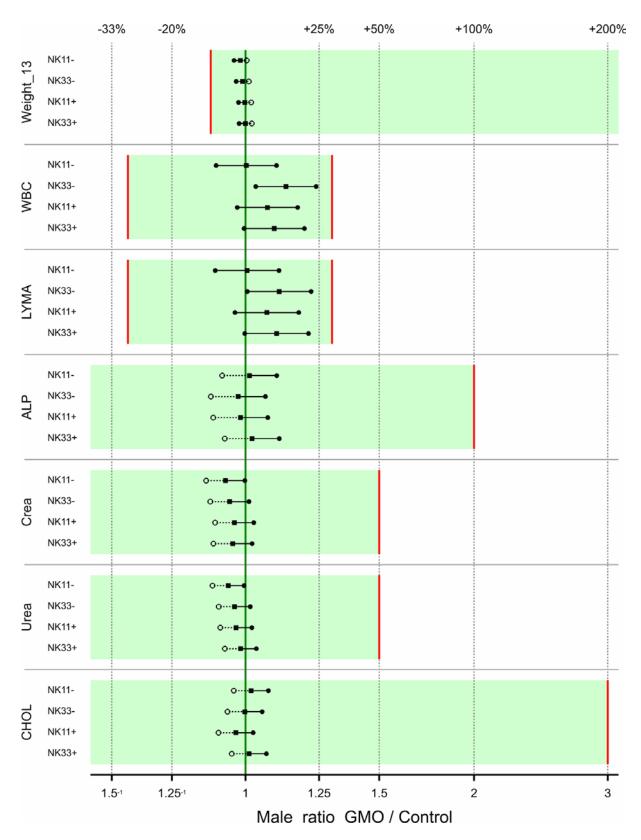


Figure 18 90% confidence intervals for the ratio of the mean of the GMO feed and the control feed for selected variables for males along with equivalence intervals defined by targeted effect sizes of Hong *et al.* (2017).

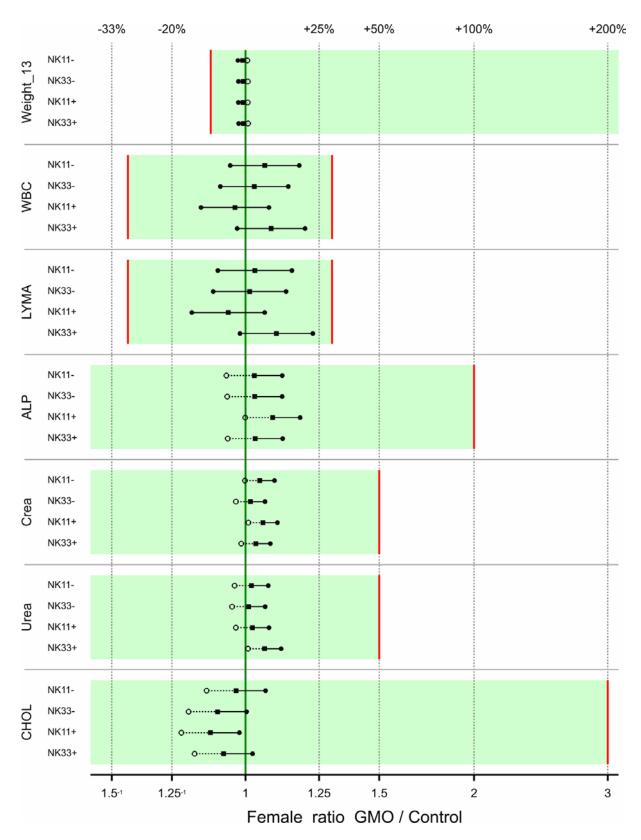


Figure 19 90% confidence intervals for the ratio of the mean of the GMO feed and the control feed for selected variables for females along with equivalence intervals defined by targeted effect sizes of Hong *et al.* (2017).

3.3 Classical statistical analysis

A classical analysis of variance was performed on the cage means after log transforming the data. Note that the ANOVA residuals were already assessed by means of a normal probability plot (Appendix 5) and a plot of residuals versus fitted values (Appendix 6). Table 12 (males) and Table 13 (females) present the results of the t-tests, of Dunnett's tests and of Wilcoxon tests for the 36 variables divided in four groups. For ease of interpretation results are expressed as means and coefficients of variation on the original scale, rather than as means and standard deviations on the log scale. Note however that 95% confidence intervals on the ratio scale are given in Table 9 (males) and Table 10 (females).

Results of the t-test and Dunnett's test for the difference are summarized by letters which indicate significance at 5% and at 1%. Results for the non-parametric Wilcoxon test, where each test only uses data for the specific GM feed and the non-GM Control feed, are summarized in the same way. Exact p-values for these tests are given in Appendix 9.

It can be seen (Table 12 and Table 13) that the relative precision of variables ranges from high to low precision. For example CVs smaller than 5% are observed for e.g. HGB, MCV, MCHC, TP and Na, while CVs larger than 50% are found for cHGB, uLeu and uKeton. For some variables there is a difference in precision for males and females, e.g. BIL for males has a CV in the range 44-69%, while for females the range equals 15-30%.

In 26 cases (9.0% of the 288 comparisons) a difference was significant in at least one of the tests at the 5% level. On their own, Dunnett's test resulted in 3 significant differences (1.0%), the t-test resulted in 17 significant differences (5.9%), and Wilcoxon's test resulted in 19 significant differences (6.6%). Note that cells coloured red in Table 9 and Table 10, with 95% confidence intervals for ratios, correspond to cells coloured red in Table 12 and Table 13 with letters "t", "T", "d" or "D".

Results of the Shapiro-Wilks test for normality and Bartlett's and Levene's test for homogeneity of variance are given in Appendix 10. Bartlett's' test is significant at the 5% level for males for 4 variables (WBC, PLT, LYMR, upH) and for females for 0 variables. Levene's test is significant for WBC and CI (males), and WBC (females). This implies the important assumption of homogeneity of variance is generally fulfilled. For these significant cases, one might resort to Wilcoxon's test which is significant for WBC in males (NK33-) and PLT in males (NK33+).

The Shapiro-Wilks test for non-normality for separate feeding groups (Appendix 10) is frequently significant. However the normality assumptions is not very important. Moreover normal probability plots (Appendix 5) and plots of residuals versus fitted values (Appendix 6) were generally satisfactory. Also, graphs of cage means on the log scale in Appendix 4 indicate that significance of non-normality seems mostly due to one outlying observation in a feeding group.

3.4 Standardized effect sizes

SES intervals were calculated for all 36 variables. Results for the four treatment groups, separately for males and females, are given in Figure 20 to Figure 23. The number of intervals that extend outside the -/+ 1 SD limits equals 106 out of 288 (37%).

Table 12 Means and coefficient of variation (CV) for male rats. Means of GM feeds which are significantly different from the non-GM Control feed are marked, with red background colouring, as follows: D: P<0.01 by Dunnett-test, d: P<0.05 by Dunnett-test, T: P<0.01 by t-test but not by Dunnett-test, t: P<0.05 by t-test but not by Dunnett-test, W: P<0.01 by Wilcoxon signed rank test, w: P<0.05 by Wilcoxon signed rank test. Dunnett- and t-tests are based on an ANOVA with 5 treatment groups, while Wilcoxon tests only uses data for the specific GM feed and the control feed.

Weights	Con	trol		NK11-			NK33-			NK11+		NK33+			
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	
Weight_13	428.3	5.8	421.8	6.4		424.8	7.1		427.6	6.6		428.4	6.5		
growthRate	0.148	12.0	0.140	15.9		0.144	16.1		0.154	10.6		0.145	10.5		
FeedMean	19.60	4.6	19.77	5.5		19.32	5.7		19.55	5.2		20.13	6.3	tw	
Haematology	Con	trol		NK11-			NK33-			NK11+		NK33+			
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	
WBC	10.09	13.6	10.17	20.5		11.47	12.5	tW	10.93	21.8		11.16	23.3		
RBC	8.641	3.6	8.580	3.3		8.606	2.9		8.672	3.1		8.603	3.3		
HGB	16.16	3.1	16.06	2.6		16.22	2.5		16.04	2.7		16.16	2.8		
HCT	46.53	3.6	46.13	2.7		46.48	2.9		46.66	2.8		46.63	3.3		
MCV	53.86	2.7	53.80	2.7		54.03	2.2		53.84	2.2		54.23	2.2		
MCH	18.72	3.5	18.74	3.7		18.87	2.9		18.53	2.7		18.81	3.5		
MCHC	34.75	1.6	34.82	1.6		34.91	1.5		34.41	1.5		34.66	2.2		
PLT	824.5	14.9	846.8	12.5		869.5	14.3		860.5	7.8		887.7	12.1	W	
LYMR	73.34	7.1	72.54	8.1		72.16	9.5		73.17	6.3		73.67	5.1		
LYMA	7.388	15.0	7.520	24.7		8.258	16.2		7.982	23.1		8.245	26.0		
ClinChem	Con	trol		NK11-			NK33-		NK11+			NK33+			
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	
ALP	1.508	22.0	1.544	24.0		1.466	17.9		1.475	16.2		1.556	26.2		
ALT	0.662	14.7	0.679	23.5		0.638	17.1		0.642	14.9		0.643	16.1		
AST	2.269	20.7	2.252	15.1		2.181	13.6		2.082	23.1		2.125	13.4		
BIL	6.810	57.3	7.162	43.6		7.265	65.0		6.683	69.3		6.935	62.3		
ALB	39.71	4.8	39.19	5.8		39.38	4.7		38.84	3.7	W	39.87	7.0		
TP	67.72	3.1	67.56	3.8		67.13	3.1		67.37	2.8		68.01	4.5		
Glu	5.990	13.9	5.856	12.4		5.863	15.6		6.122	13.0		6.243	14.6		
CHOL	2.134	9.8	2.169	10.3		2.136	11.8		2.077	10.7		2.167	11.2		
TAG	1.014	23.1	1.138	29.5		1.144	28.8		1.160	31.9		1.031	24.6		

Crea	37.37	11.6	35.44	13.1		35.87	15.6		36.23	11.9		35.98	13.3	
Urea	5.851	11.2	5.611	18.8		5.697	14.9		5.691	12.0		5.776	10.0	
cHGB	84.8	64.0	100.4	63.4		93.9	70.4		86.8	72.7		94.5	87.5	
Ca	2.545	3.8	2.553	3.4		2.548	3.7		2.545	3.3		2.544	3.7	
Cl	104.1	2.6	104.1	1.6		104.1	1.9		103.4	1.4		104.7	2.0	
K	5.342	11.6	5.425	10.1		5.395	13.6		5.350	10.0		5.467	15.8	
Na	145.6	2.3	145.5	1.5		146.1	1.3		145.6	1.5		146.2	1.6	
Р	2.568	8.4	2.431	10.3	tw	2.557	13.1		2.482	7.7		2.473	10.8	
Urine	Con	trol		NK11-			NK33-			NK11+			NK33+	
Urine Males	Con Mean	trol	Mean	NK11-	Sig	Mean	NK33- CV	Sig	Mean	NK11+ CV	Sig	Mean	NK33+	Sig
					Sig			Sig	Mean 24.85		Sig			Sig
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig t		CV	Sig	Mean	CV	Sig
Males uVol	Mean 26.40	CV 27.3	Mean 26.25	CV 20.8	Sig	Mean 21.35	CV 42.5	Sig t	24.85	CV 21.5	Sig	Mean 25.95	CV 26.8	Sig
Males uVol uVolW	Mean 26.40 6.296	27.3 30.6	Mean 26.25 6.292	20.8 25.8	Sig	Mean 21.35 5.044	CV 42.5 39.1	Sig t	24.85 5.929	CV 21.5 29.5	Sig	Mean 25.95 6.014	26.8 23.9	Sig
Males uVol uVolW uLeu	Mean 26.40 6.296 7.50	27.3 30.6 140.5	Mean 26.25 6.292 6.25	CV 20.8 25.8 170.0	Sig	Mean 21.35 5.044 21.25	CV 42.5 39.1 111.1	Sig t t	24.85 5.929 8.75	CV 21.5 29.5 135.5	Sig	Mean 25.95 6.014 17.50	CV 26.8 23.9 112.7	Sig

Table 13 Means and coefficient of variation (CV) for female rats. Means of GMO feeds which are significantly different from the Control feed are marked, with red background colouring, as follows: D: P<0.01 by Dunnett-test, d: P<0.05 by Dunnett-test, T: P<0.01 by t-test but not by Dunnett-test, t: P<0.05 by t-test but not by Dunnett-test, W: P<0.01 by Wilcoxon signed rank test, w: P<0.05 by Wilcoxon signed rank test. Note that Dunnett- and t-tests are based on a ANOVA with 5 treatment groups, while Wilcoxon tests only uses data for the specific GM feed and the control feed.

Weights	Control		NK11-		NK33-		NK11+			NK33+				
Females	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
Weight_13	243.2	5.5	241.1	5.3		241.5	5.5		241.5	6.2		241.7	6.1	
growthRate	0.195	20.8	0.189	25.9		0.185	25.4		0.183	23.2		0.184	25.1	
FeedMean	13.90	5.4	14.27	6.9	tw	14.05	6.4		14.01	6.4		14.45	6.5	DW
Haematology	Con	trol		NK11-		NK33-			NK11+		NK33+			
Females	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
WBC	7.543	21.6	7.878	15.7		7.798	28.8		7.282	15.4		8.020	16.9	
RBC	7.618	4.3	7.618	4.0		7.731	4.6		7.697	3.7		7.734	4.8	
HGB	15.51	3.8	15.42	3.4		15.61	3.7		15.41	3.4		15.44	3.3	

HCT	44.41	2.9	44.23	3.1		44.89	2.3		44.60	2.5		44.78	3.9	
MCV	58.41	3.9	58.38	2.6		57.97	3.3		58.01	2.6		57.97	3.0	
MCH	20.40	5.6	20.39	5.4		20.23	4.4		20.04	4.3	W	20.00	3.8	
MCHC	34.92	2.7	34.90	4.3		34.79	2.8		34.55	3.3	W	34.51	2.7	
PLT	827.8	8.6	798.6	10.1		787.0	11.1		812.9	10.3		846.2	9.3	
LYMR	73.75	6.9	71.34	10.2		72.70	8.7		72.47	11.1		74.08	8.4	
LYMA	5.562	22.0	5.690	20.3		5.570	25.4		5.225	15.8		6.025	22.8	
ClinChem	Con	trol		NK11-			NK33-			NK11+			NK33+	
Females	Mean	CV	Mean	CV	Sig									
ALP	0.681	20.3	0.694	18.8		0.709	25.5		0.733	18.6		0.711	29.4	
ALT	0.522	22.9	0.532	29.5		0.507	19.8		0.475	16.3		0.569	24.4	
AST	2.136	17.5	2.115	19.1		2.282	13.3		2.091	17.1		2.428	19.8	dw
BIL	6.360	16.2	5.888	15.0		6.875	29.5		6.145	22.1		6.387	19.9	
ALB	45.85	6.3	45.84	9.9		45.67	6.5		46.02	6.7		45.16	10.0	
TP	71.34	4.7	70.66	6.2		70.84	4.4		71.48	5.1		70.89	5.7	
Glu	5.148	10.4	5.199	15.6		4.932	15.0		5.201	14.9		4.892	11.6	
CHOL	1.980	17.0	1.900	17.2		1.827	18.7		1.778	12.5	t	1.852	17.6	
TAG	0.696	18.7	0.677	23.3		0.626	17.0	W	0.608	20.8	d	0.655	12.2	
Crea	44.49	9.1	46.16	11.0		45.24	7.6		47.16	11.1	tw	46.01	10.6	
Urea	5.760	9.4	5.886	14.2		5.834	8.8		5.878	8.4		6.133	13.2	W
cHGB	72.05	26.2	68.40	19.9		85.25	39.1		61.89	19.2	W	72.43	25.0	
Ca	2.513	2.5	2.522	3.0		2.528	2.9		2.522	3.0		2.518	2.5	
Cl	100.3	2.4	101.0	2.7		101.1	2.0	W	101.4	3.4	t	101.0	2.9	
K	4.458	9.1	4.520	6.0		4.543	7.0		4.463	8.7		4.568	8.6	
Na	141.9	1.5	143.0	1.8		143.0	1.7	W	143.2	2.1	tw	143.2	1.9	tw
Р	1.780	18.8	1.865	13.7		2.002	16.2	tW	1.765	24.5		1.957	32.9	
Urine	Con	trol		NK11-			NK33-		NK11+			NK33+		
Females	Mean	CV	Mean	CV	Sig									
uVol	20.25	25.3	19.05	31.6		23.65	27.7		18.20	42.7		16.45	37.1	
uVolW	8.453	21.1	7.980	28.4		9.711	27.0		7.449	42.7		6.878	35.7	
uLeu	8.75	178.8	5.00	129.1		10.00	164.6		12.50	163.3		6.25	253.9	
uOsmoll	323.1	17.5	333.8	35.9		287.9	33.9		390.9	25.2		398.9	26.7	
uKeton	0.100	241.5	0.050	210.8		0.175	178.8		0.325	115.0	t	0.200	153.7	
upH	6.400	4.9	6.150	5.1		6.425	4.5		6.250	4.2		6.375	8.1	

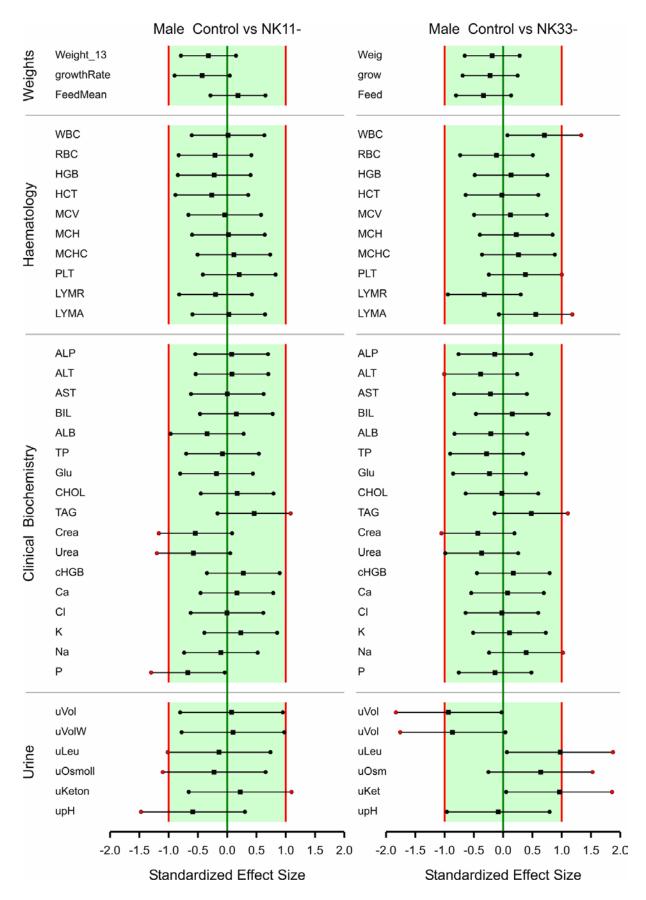


Figure 20 Confidence intervals for Standardized Effect Sized (SES) for male rats for GMO feeds NK11- and NK33- versus the control feed.

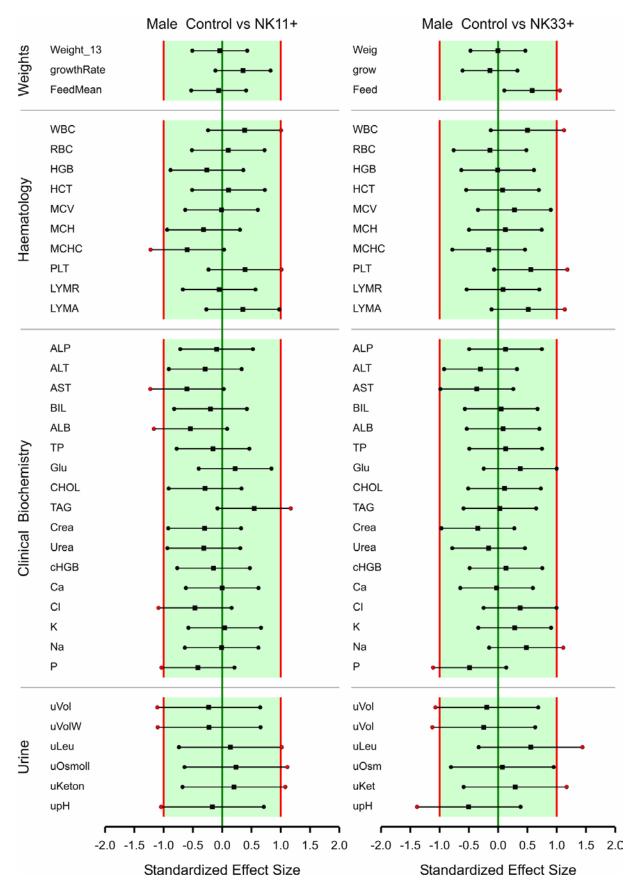


Figure 21 Confidence intervals for Standardized Effect Sized (SES) for male rats for GMO feeds NK11+ and NK33+ versus the control feed.

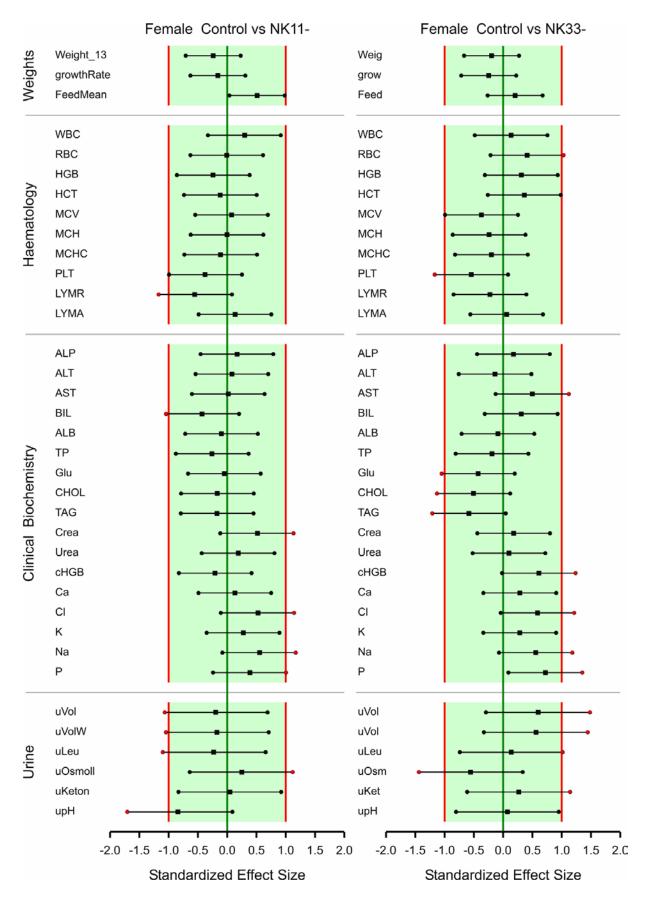


Figure 22 Confidence intervals for Standardized Effect Sized (SES) for female rats for GMO feeds NK11- and NK33- versus the control feed.

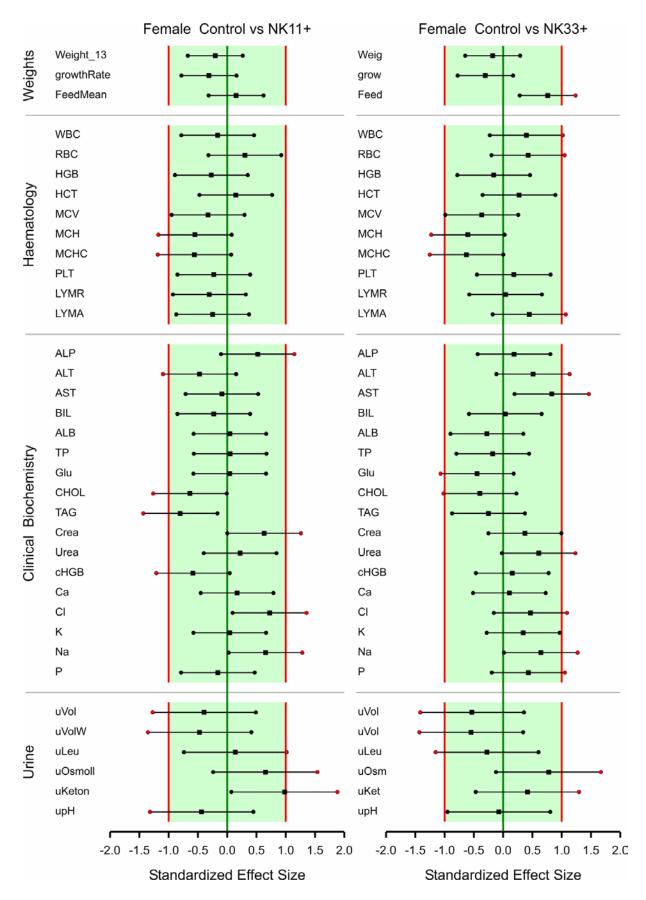


Figure 23 Confidence intervals for Standardized Effect Sized (SES) for female rats for GMO feeds NK11+ and NK33+ versus the control feed.

3.5 Factorial analysis

The significance results from fitting the factorial model to the 36 variables are given in Table 14. The ratios for the significant cases are shown in Table 15 and Table 16.

As an example, consider the results for FeedMean. The interaction was significant for both males and females. The effect of GM inclusion rate was negative for GM feeds without Roundup, while it was positive for GM feeds with Roundup. However the differences were quite small. Larger interaction effects were found for ALT and TAG in females. Main significant GM inclusion rate effects larger than 10% were observed for uLeu (males) and AST, cHGB and upH (females). Significant main Roundup effect larger than 10% were observed for uVol, uVolW and upH (females).

The p-values in Table 14 can be summarized as follows. In 3 out of 72 cases (4.2%) there was a significant difference at the 5% level between the mean of the GM feeds and the non-GM feed. In 5 cases (7%) there was a significant interaction term at the 5% level. In these latter cases the main effects should not be used for assessing effects of GM inclusion rate or Roundup. Among the remaining 67 cases, i.e. where the interaction is not significant, there were 7 cases (10%) with a significant differences between GM inclusion rates, and 8 cases (11%) with a significant difference between the GM feeds with and without Roundup.

Table 14 P values for significance of effects obtained with the factorial model. P-values smaller than 0.01/0.05 have a gold/yellow background.

Response		M	ales		Females						
Weights	GMO	InclRate	Roundup	Interact	GMO	InclRate	Roundup	Interact			
Weight_13	0.465	0.613	0.173	0.777	0.280	0.842	0.872	0.962			
growthRate	0.567	0.393	0.011	0.040	0.178	0.815	0.534	0.779			
FeedMean	0.627	0.717	0.049	0.001	0.033	0.371	0.561	0.008			
Haematology	GMO	InclRate	Roundup	Interact	GMO	InclRate	Roundup	Interact			
WBC	0.113	0.074	0.715	0.204	0.494	0.366	0.644	0.101			
RBC	0.721	0.743	0.522	0.452	0.250	0.219	0.457	0.505			
HGB	0.723	0.176	0.682	0.817	0.711	0.134	0.252	0.314			
HCT	0.920	0.638	0.300	0.539	0.501	0.168	0.688	0.413			
MCV	0.728	0.310	0.682	0.784	0.314	0.272	0.366	0.354			
MCH	0.960	0.153	0.328	0.593	0.156	0.513	0.041	0.674			
MCHC	0.702	0.196	0.013	0.522	0.128	0.723	0.048	0.960			
PLT	0.129	0.445	0.421	0.989	0.325	0.577	0.049	0.188			
LYMR	0.625	0.979	0.220	0.566	0.288	0.126	0.242	0.966			
LYMA	0.151	0.126	0.528	0.412	0.687	0.160	1.000	0.081			
ClinChem	GMO	InclRate	Roundup	Interact	GMO	InclRate	Roundup	Interact			
ALP	0.973	0.993	0.831	0.328	0.284	0.456	0.407	0.432			
ALT	0.373	0.289	0.519	0.311	0.983	0.083	0.825	0.007			
AST	0.241	0.966	0.096	0.311	0.202	0.002	0.607	0.315			
BIL	0.869	0.574	0.306	0.573	0.748	0.024	0.871	0.281			
ALB	0.315	0.093	0.833	0.272	0.669	0.472	0.917	0.448			
TP	0.696	0.852	0.457	0.278	0.556	0.715	0.463	0.498			
Glu	0.856	0.812	0.026	0.644	0.372	0.050	0.867	0.803			
CHOL	0.973	0.637	0.456	0.189	0.083	0.830	0.417	0.192			
TAG	0.133	0.270	0.415	0.232	0.067	0.744	0.504	0.031			
Crea	0.108	0.882	0.464	0.724	0.086	0.177	0.481	0.860			
Urea	0.159	0.422	0.301	0.896	0.256	0.495	0.219	0.280			
cHGB	0.664	0.688	0.303	0.393	0.976	0.001	0.061	0.857			
Ca	0.831	0.795	0.550	0.885	0.478	0.840	0.744	0.625			
Cl	0.909	0.069	0.885	0.059	0.021	0.649	0.861	0.469			
K	0.507	0.794	0.974	0.418	0.336	0.482	0.695	0.510			
Na	0.451	0.029	0.677	0.985	0.016	0.982	0.669	0.977			
Р	0.091	0.305	0.835	0.178	0.161	0.037	0.058	0.559			
Urine	GMO	InclRate	Roundup	Interact	GMO	InclRate	Roundup	Interact			
uVol	0.369	0.133	0.495	0.107	0.699	0.286	0.034	0.132			
uVolW	0.387	0.128	0.644	0.145	0.641	0.281	0.025	0.187			
uLeu	0.285	0.020	0.827	0.278	0.866	0.936	0.936	0.202			
uOsmoll	0.611	0.275	0.863	0.112	0.410	0.268	0.007	0.133			
uKeton	0.243	0.198	0.282	0.312	0.213	0.571	0.080	0.200			
upH	0.348	0.792	1.000	0.192	0.349	0.041	0.676	0.371			

Table 15 Ratios for significant variables at the 5% level in the factorial analysis for males. Main effects are "GM vs Contrl" (ratio of the mean of the four GM feeds vs the control feed), "33 vs 11" (ratio of the two GM feeds with 33% GM inclusion rate vs the two feeds with 11% GM inclusion rate) and "+RU vs -RU" (ratio of the two GM feeds with roundup vs the two feeds without roundup). The interaction ratios are scaled such that NK11-equals 1. The InclRate and RndUp main effects are only given when the interaction is not significant.

Males	Variable	GM vs	33 vs	+RU vs	Interaction					
Group	Variable	Contrl	11	-RU	NK11-	NK33-	NK11+	NK33+		
Weights	growthRate	-	1	-	1.00	1.00	1.01	1.01		
Weights	FeedMean	1	1	-	1.00	0.98	0.99	1.02		
Haematology	MCHC	1	1	0.99	1	1	-	1		
ClinChem	Glu	ı	1	1.06	ı	ı	-	ı		
ClinChem	Na	1	1.00	-	-	-	-	-		
Urine	uLeu	1	1.35	-	-	-	-	-		

Table 16 Ratios for significant variables at the 5% level in the factorial analysis for females. Main effects are "GM vs Contrl" (ratio of the mean of the four GM feeds vs the control feed), "33 vs 11" (ratio of the two GM feeds with 33% GM inclusion rate vs the two feeds with 11% GM inclusion rate) and "+RU vs -RU" (ratio of the two GM feeds with roundup vs the two feeds without roundup). The interaction ratios are scaled such that NK11-equals 1. The InclRate and RndUp main effects are only given when the interaction is not significant.

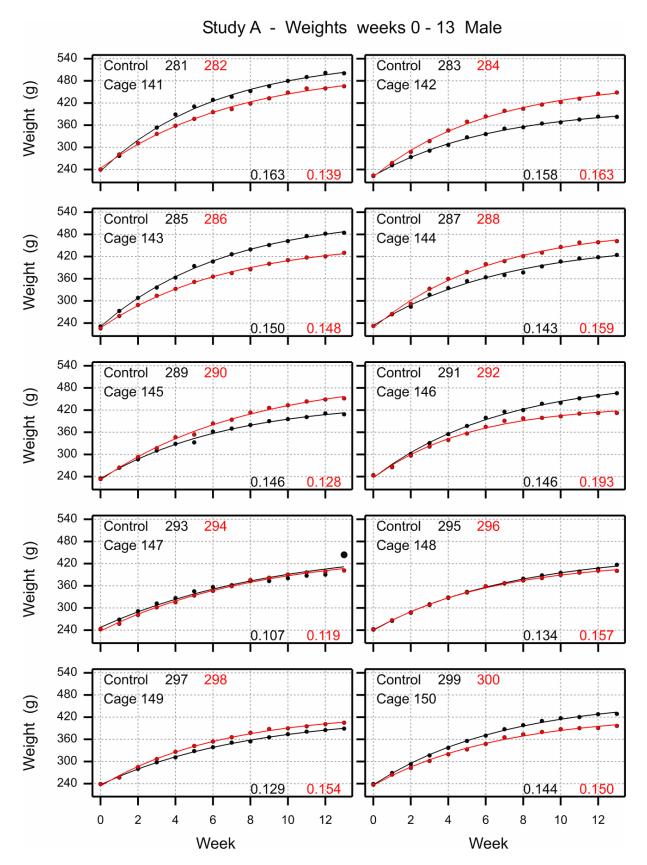
Females	Variable	GM vs 33 vs		+RU vs	Interaction					
Group	variable	Contrl	11	-RU	NK11-	NK33-	NK11+	NK33+		
Weights	FeedMean	1.02	-	-	1.00	0.98	0.98	1.01		
Haematology	MCH	-	1	0.99	-	1	1	-		
Haematology	MCHC	1	1	0.99	1	1	1	-		
Haematology	PLT	-	-	1.04	-	-	-	-		
ClinChem	ALT	-	1	-	1.00	0.96	0.91	1.08		
ClinChem	AST	-	1.12	-	-	-	-	-		
ClinChem	BIL	-	1.09	-	-	-	-	-		
ClinChem	TAG	-	-	-	1.00	0.93	0.89	0.99		
ClinChem	cHGB	-	1.19	-	-	-	-	-		
ClinChem	Cl	1.01	1	-	-	ı	1	-		
ClinChem	Na	1.01	1	-	1	1	1	-		
ClinChem	Р	-	1.08	-	-	-	-	-		
Urine	uVol	-	-	0.82	-	-	-	-		
Urine	uVolW	-	1	0.81	-	1	1	-		
Urine	uOsmoll	-		1.29	-	1	1	-		
Urine	upH	-	1.24	-	-	-	-	-		

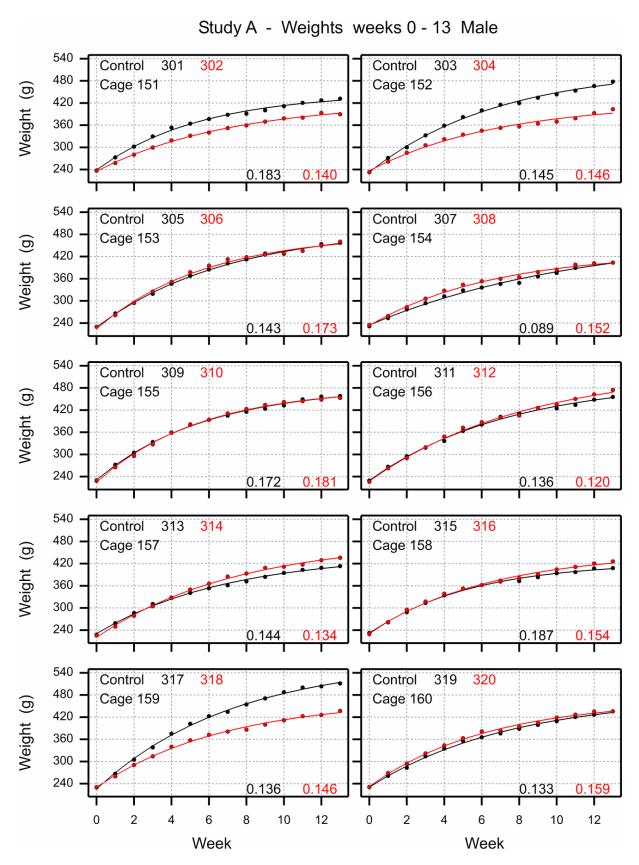
References

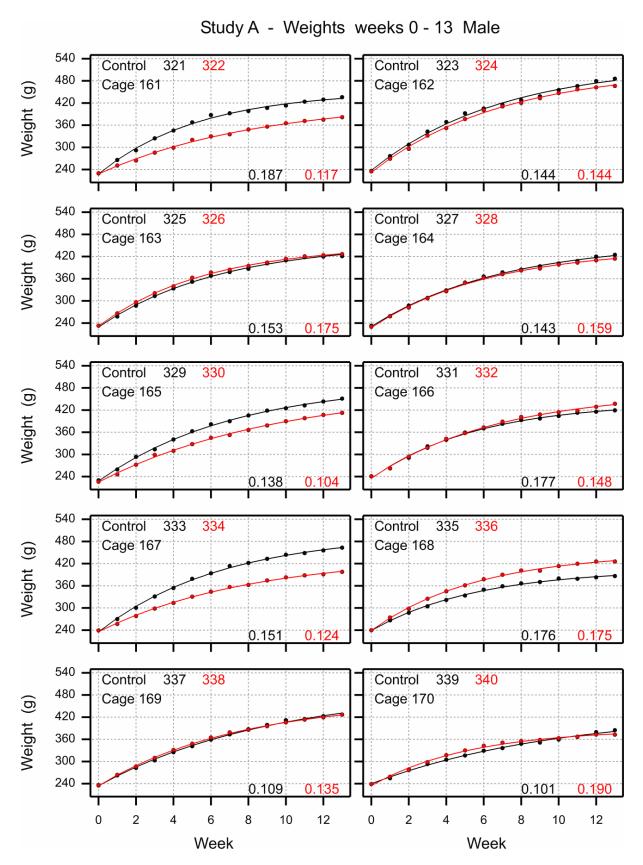
- Goedhart, P.W. & van der Voet, H. (2017). G TwYST Study B. A 90-day toxicity study in rats fed GM maize NK603. Statistical report. Report 31.10.17, Biometris, Wageningen, The Netherlands.
- Goedhart, P.W. & van der Voet, H. (2018). G TwYST Study A. Combined chronic toxicity and carcinogenicity study in rats fed GM maize NK603. Main statistical report. Report 32.02.18, Biometris, Wageningen, The Netherlands.
- EFSA (2011a). Scientific Opinion on Guidance for risk assessment of food and feed from genetically modified plants. EFSA Journal 2011;9(5): 2150. [37 pp.] http://dx.doi.org/10.2903/j.efsa.2011.2150.
- Hong B, Du Y, Mukerji P, Roper JM, Appenzeller LM (2017). Safety assessment of food and feed from GM crops in Europe: Evaluating EFSA's alternative framework for the rat 90-day feeding study. Journal of Agricultural and Food Chemistry, 65(27): 5545-5560. http://dx.doi.org/10.1021/acs.jafc.7b01492.

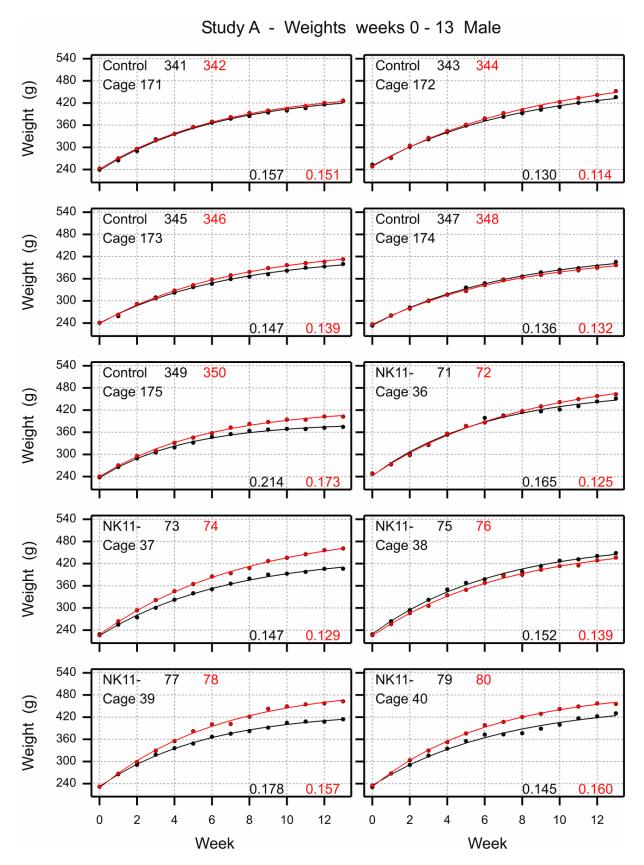
List of Tables

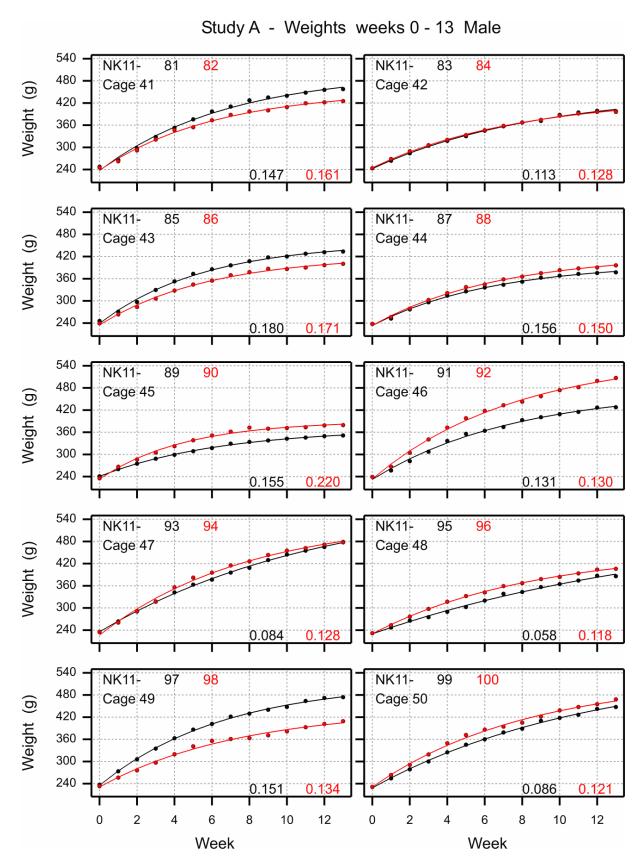
- Table 1 Data files for G-TwYST study A after 3 months.
- Table 2 Animals that died before the end of month 3.
- Table 3 Number of animals for which bounded values were provided.
- Table 4 Remarks by SZU in original Excel data files; the accompanying values have been set to missing.
- Table 5 Urine variables with only a limited set of observed values which are given in the heading of each sub-table. The table entries give the number of times each value occurs for male and female rats.
- Table 6 Values that have been modified, deleted, or were considered as possible outliers, before unblinding of the feeding groups. Values which are not coloured were modified or deleted following comments of SZU. The red and yellow values were presented to the G-TwYST coordinator. He decided which values should be deleted (red) and which values should be considered as possible outliers (yellow). Comments by the authors of this report are given in black, while comments of the G-TwYST coordinator are given in red.
- Table 7 Summary statistics for male rats classified by the feeding groups: number of cages (N), means (Mean), standard deviations (Sd) and coefficients of variation (CV). The summary statistics are obtained from cage means.
- Table 8 Summary statistics for female rats classified by the feeding groups: number of cages (N), means (Mean), standard deviations (Sd) and coefficients of variation (CV). The summary statistics are obtained from cage means.
- Table 9 95% Confidence interval plus estimate for the ratio Δ of the GMO feeds versus the Control feed for males. Intervals are based on an ANOVA with 5 feeding groups. Ratios with corresponding Intervals that do not encompass the value 1 are coloured red; this is equivalent to a significant difference according to a t-test with significance level 5%.
- Table 10 95% Confidence interval plus estimate for the ratio Δ of the GMO feeds versus the Control feed for females. Intervals are based on an ANOVA with 5 feeding groups. Ratios with corresponding Intervals that do not encompass the value 1 are coloured red; this is equivalent to a significant difference according to a t-test with significance level 5%.
- Table 11 P-values of equivalence tests for the ratio of the mean of the GMO feed versus the mean of the control feed using targeted effect sizes of Hong *et al.* (2017) as equivalence limits. P-values smaller than 0.01/0.05 have a gold/yellow background.
- Table 12 Means and coefficient of variation (CV) for male rats. Means of GM feeds which are significantly different from the non-GM Control feed are marked, with red background colouring, as follows: D: P<0.01 by Dunnett-test, d: P<0.05 by Dunnett-test, T: P<0.01 by t-test but not by Dunnett-test, W: P<0.01 by Wilcoxon signed rank test, w: P<0.05 by Wilcoxon signed rank test. Dunnett- and t-tests are based on an ANOVA with 5 treatment groups

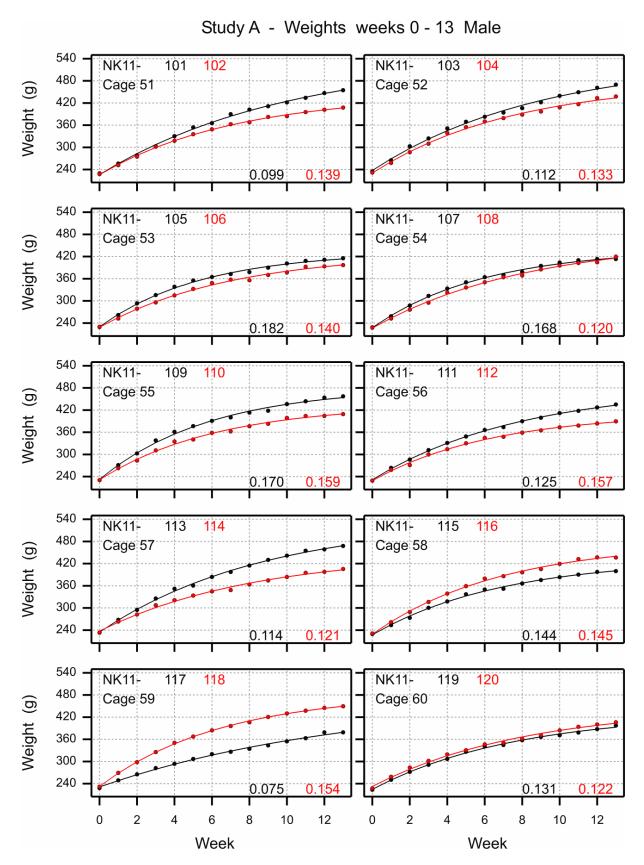

- Table 13 Means and coefficient of variation (CV) for female rats. Means of GMO feeds which are significantly different from the Control feed are marked, with red background colouring, as follows: D: P<0.01 by Dunnett-test, d: P<0.05 by Dunnett-test, T: P<0.01 by t-test but not by Dunnett-test, W: P<0.01 by Wilcoxon signed rank test, w: P<0.05 by Wilcoxon signed rank test. Note that Dunnett- and t-tests are based on a ANOVA with 5 treatment groups, while Wilcoxon tests only uses data for the specific GM feed and the control feed.
- Table 14 P values for significance of effects obtained with the factorial model. P-values smaller than 0.01/0.05 have a gold/yellow background.
- Table 15 Ratios for significant variables at the 5% level in the factorial analysis for males. Main effects are "GM vs Contrl" (ratio of the mean of the four GM feeds vs the control feed), "33 vs 11" (ratio of the two GM feeds with 33% GM inclusion rate vs the two feeds with 11% GM inclusion rate) and "+RU vs -RU" (ratio of the two GM feeds with roundup vs the two feeds without roundup). The interaction ratios are scaled such that NK11- equals 1. The InclRate and RndUp main effects are only given when the interaction is not significant.
- Table 16 Ratios for significant variables at the 5% level in the factorial analysis for females. Main effects are "GM vs Contrl" (ratio of the mean of the four GM feeds vs the control feed), "33 vs 11" (ratio of the two GM feeds with 33% GM inclusion rate vs the two feeds with 11% GM inclusion rate) and "+RU vs -RU" (ratio of the two GM feeds with roundup vs the two feeds without roundup). The interaction ratios are scaled such that NK11- equals 1. The InclRate and RndUp main effects are only given when the interaction is not significant.

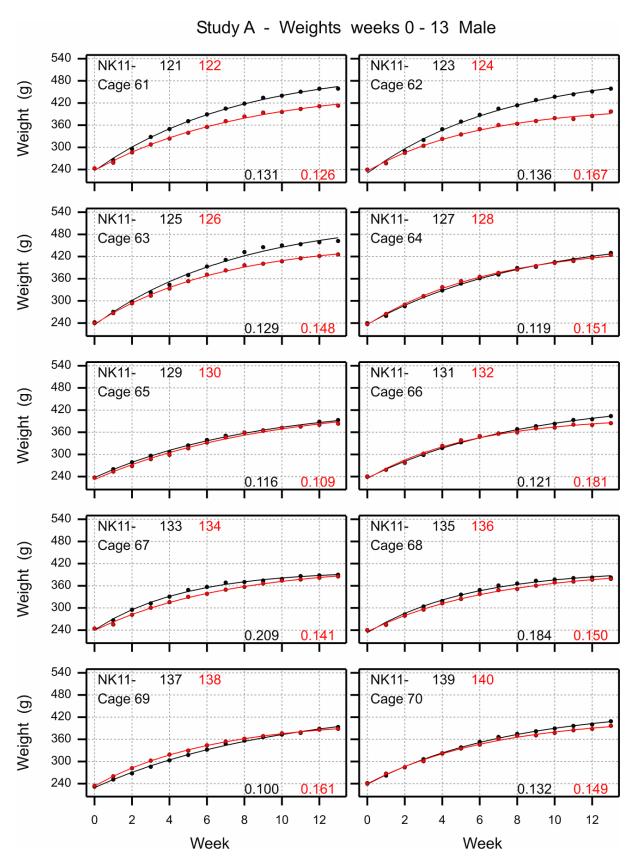

List of Figures

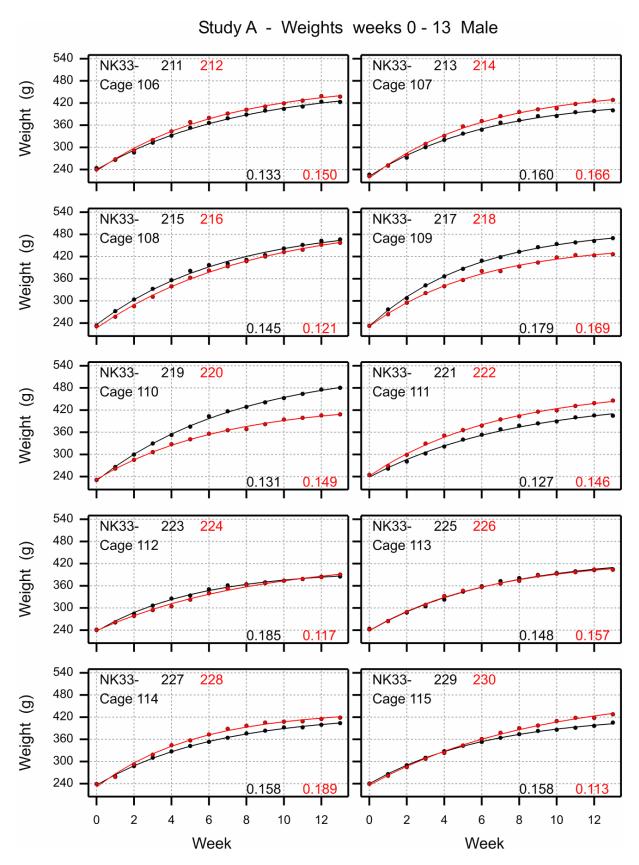

- Figure 1 Mean body weights versus week for each feeding group for male rats (left) and for female rats (right).
- Figure 2 Mean body weights gain (g/day/animal) versus week for each feeding group for male rats (left) and for female rats (right).
- Figure 3 Mean feed consumption (g/day/animal) versus week for each feeding group for male rats (left) and for female rats (right).
- Figure 4 Residuals along the y-axis versus fitted values along the x-axis resulting from an analysis of variance on cage means after log transforming the data. Solid symbols denote outliers found by sequentially applying Grubbs' outlier test at the 1% level to the residuals.
- Figure 5 Equivalence testing of NK11- and NK33- versus the control feed for males. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 9, Figure 9 and Figure 10 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.
- Figure 6 Equivalence testing of NK11+ and NK33+ versus the control feed for males. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 9, Figure 11 and Figure 12 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.
- Figure 7 Equivalence testing of NK11- and NK33- versus the control feed for females. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 10, Figure 13 and Figure 14 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.
- Figure 8 Equivalence testing of NK11+ and NK33+ versus the control feed for females. For estimates (square symbols) on the left of zero the GM feed has a smaller mean than the control feed. See Table 10, Figure 15 and Figure 16 for further interpretation. Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%). Fuchsia coloured symbols denote a significant difference.
- Figure 9 95% confidence intervals for the ratio of NK11- and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 10 95% confidence intervals for the ratio of NK33- and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).

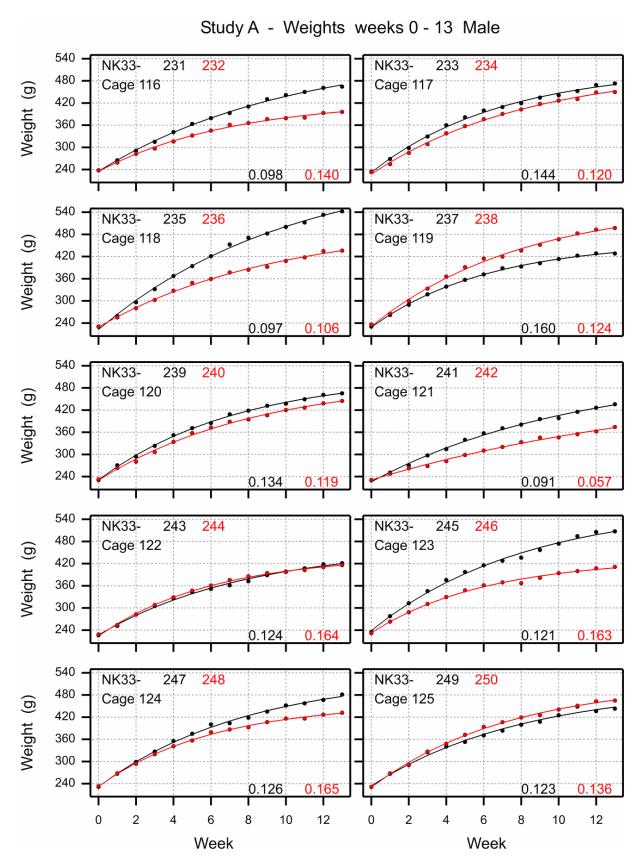

- Figure 11 95% confidence intervals for the ratio of NK11+ and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 12 95% confidence intervals for the ratio of NK33+ and the Control feed for males with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 13 95% confidence intervals for the ratio of NK11- and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 14 95% confidence intervals for the ratio of NK33- and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 15 95% confidence intervals for the ratio of NK11+ and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text). Endpoints labelled with a golden background have a large residual variance compared to the historical studies (VR>150%).
- Figure 16 95% confidence intervals for the ratio of NK33+ and the Control feed for females with added intervals for the equivalence limits (blue and red bars, see text).
- Figure 17 Residual variance (sig2F or σ_F^2) in the current G-TwYST A study as a percentage of the residual variance (sig2E or σ_E^2) in the historical GRACE studies for males (top panel) and females (bottom panel)
- Figure 18 90% confidence intervals for the ratio of the mean of the GMO feed and the control feed for selected variables for males along with equivalence intervals defined by targeted effect sizes of Hong *et al.* (2017)
- Figure 19 90% confidence intervals for the ratio of the mean of the GMO feed and the control feed for selected variables for females along with equivalence intervals defined by targeted effect sizes of Hong *et al.* (2017)
- Figure 20 Confidence intervals for Standardized Effect Sized (SES) for male rats for GMO feeds NK11- and NK33- versus the control feed.
- Figure 21 Confidence intervals for Standardized Effect Sized (SES) for male rats for GMO feeds NK11+ and NK33+ versus the control feed.
- Figure 22 Confidence intervals for Standardized Effect Sized (SES) for female rats for GMO feeds NK11- and NK33- versus the control feed.
- Figure 23 Confidence intervals for Standardized Effect Sized (SES) for female rats for GMO feeds NK11+ and NK33+ versus the control feed.

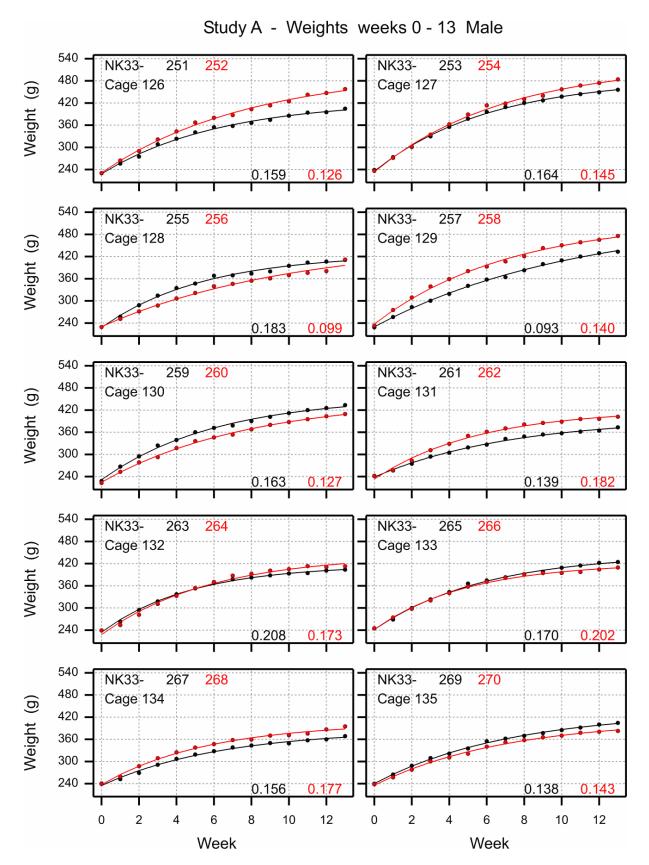

Appendix 1. Growth curves per animal pair

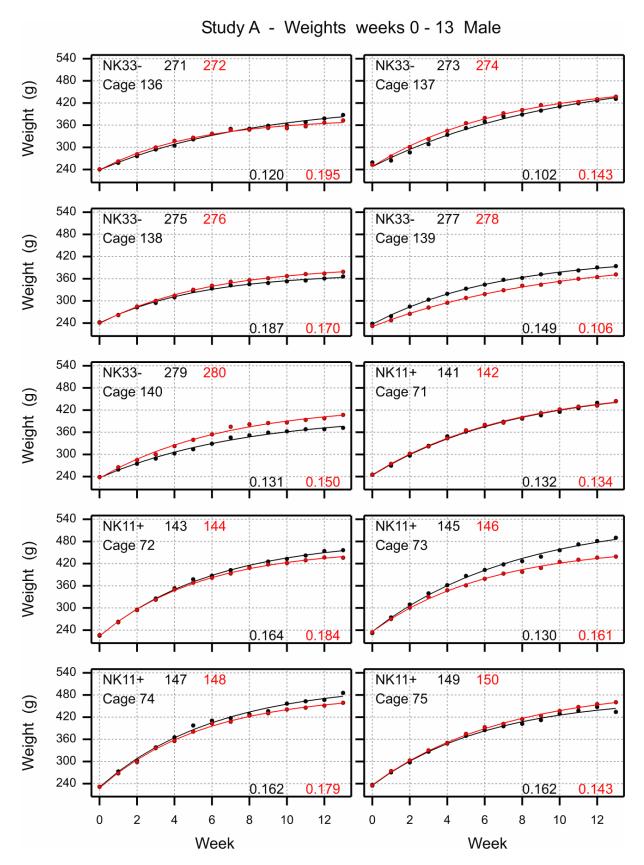


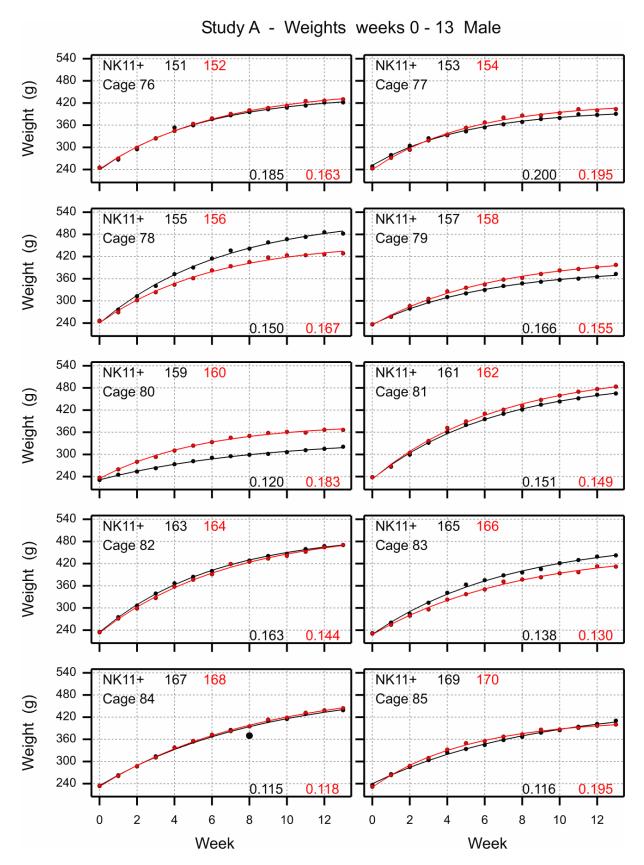


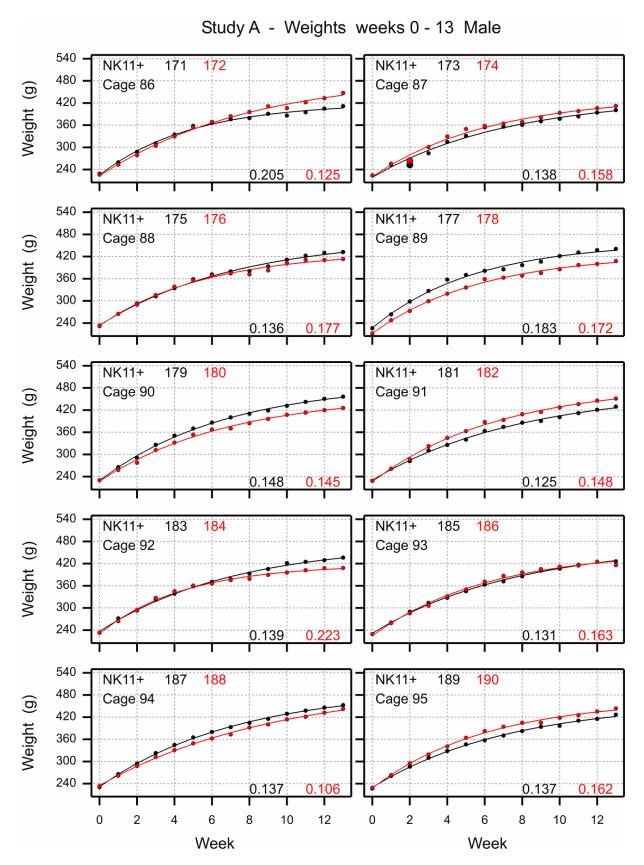


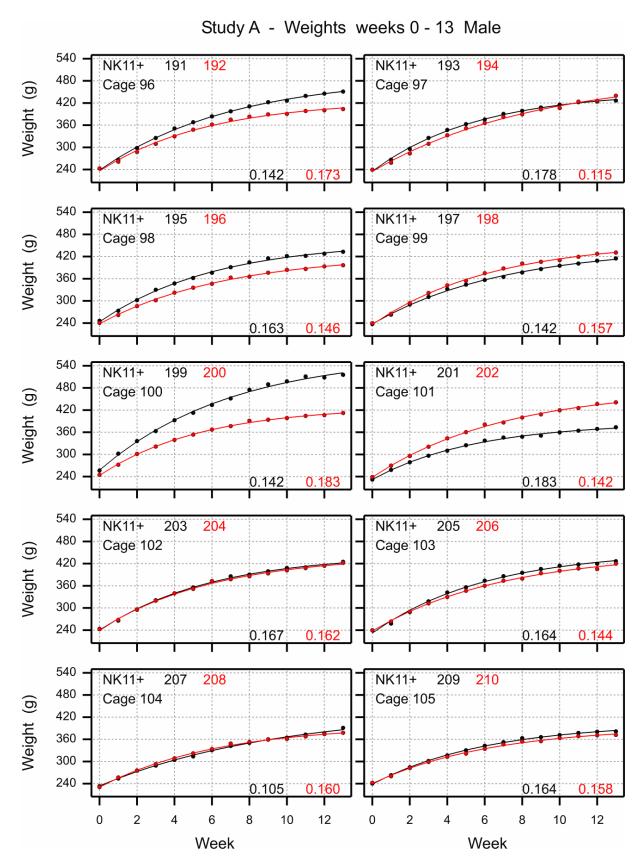


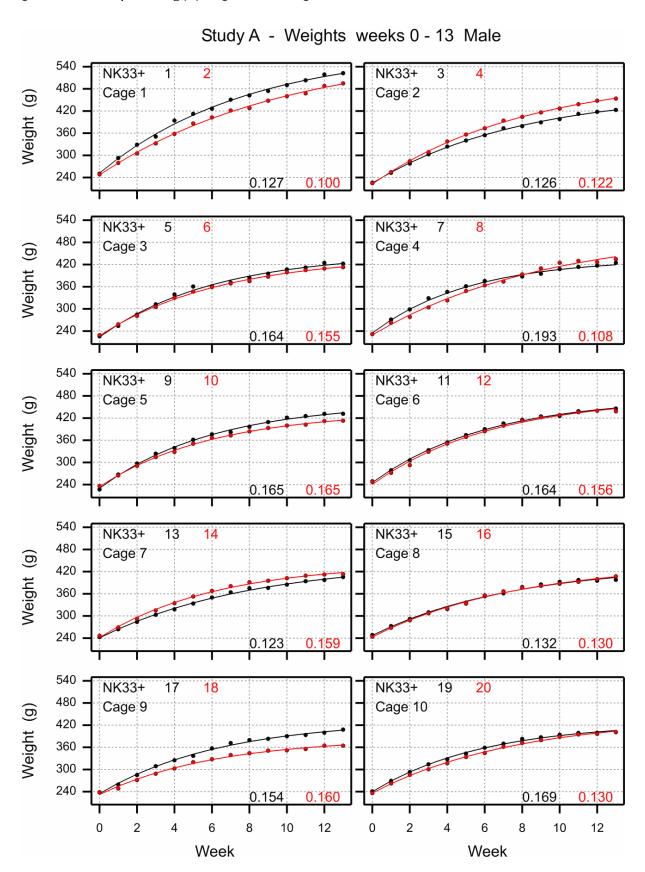


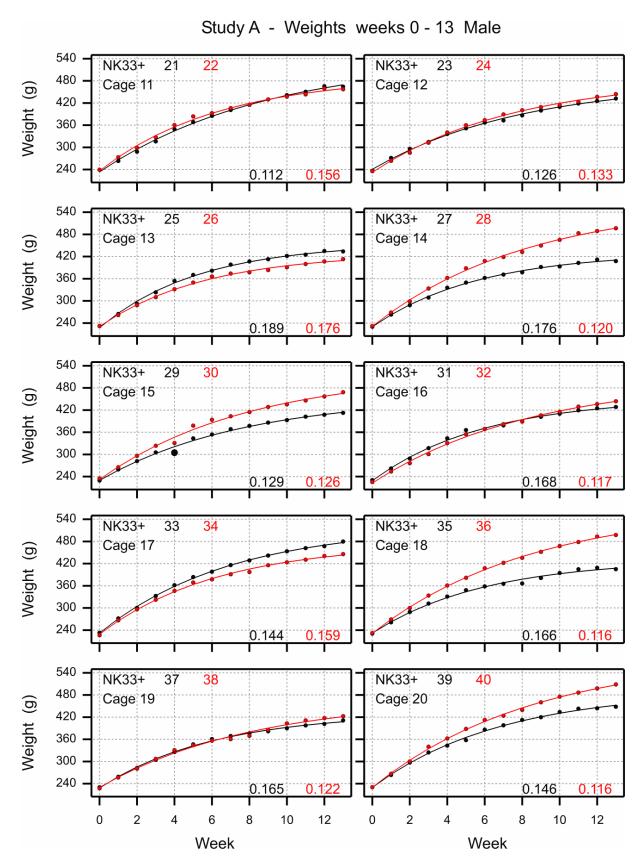


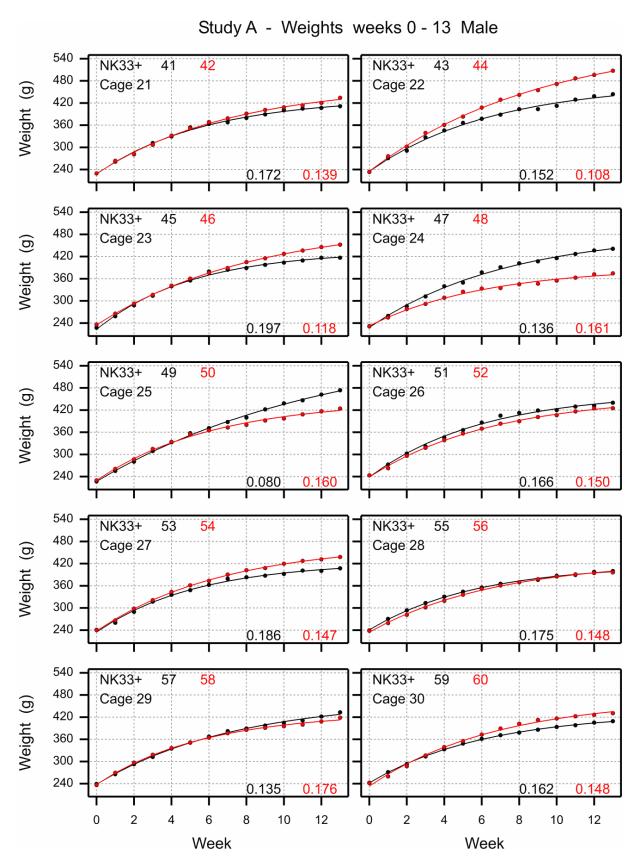


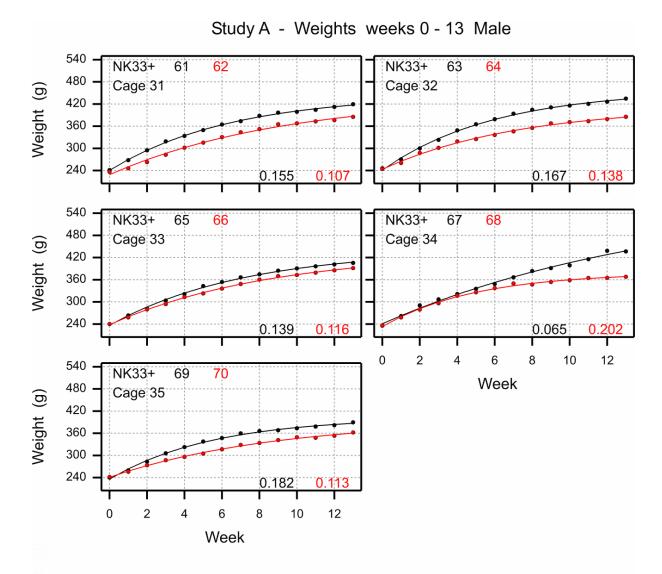


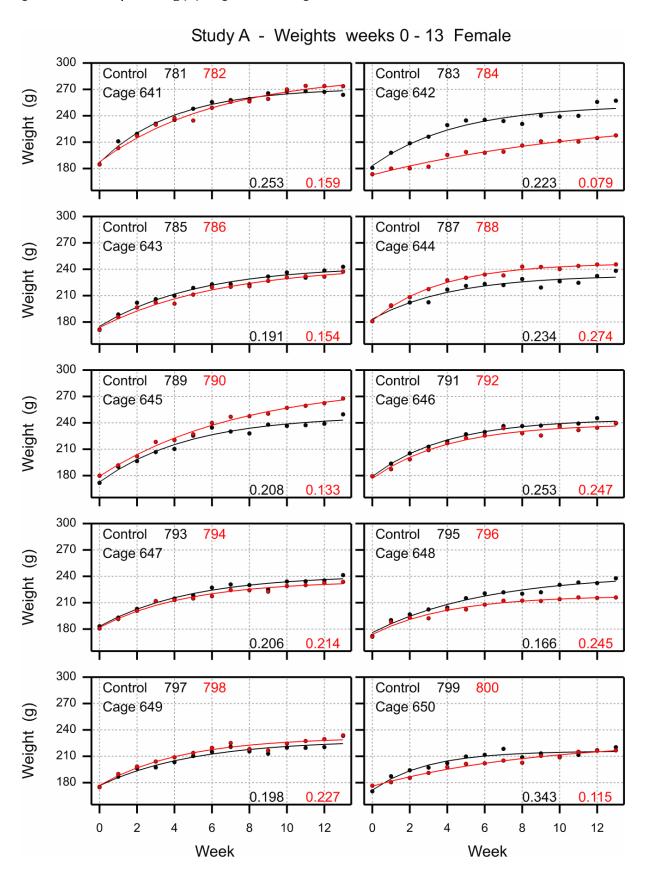


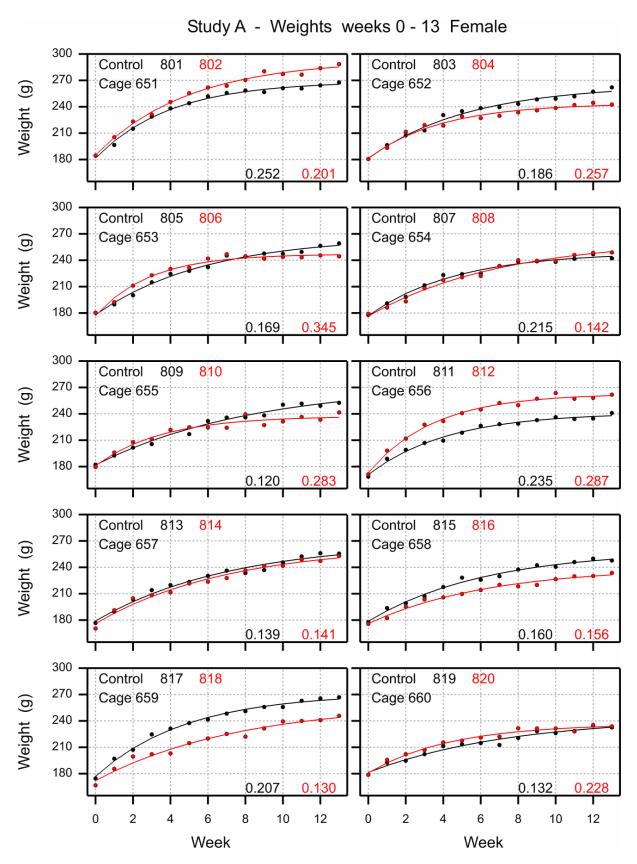


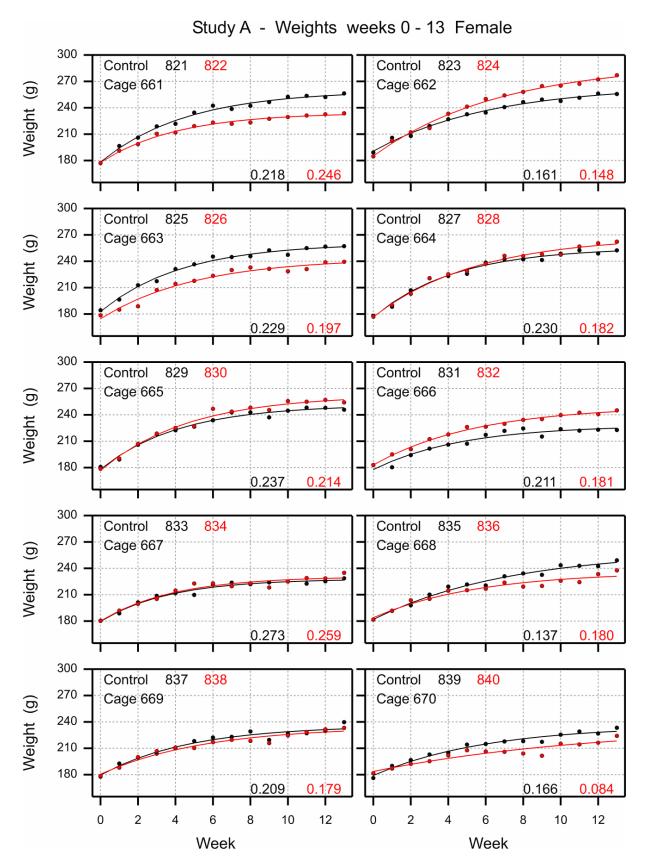


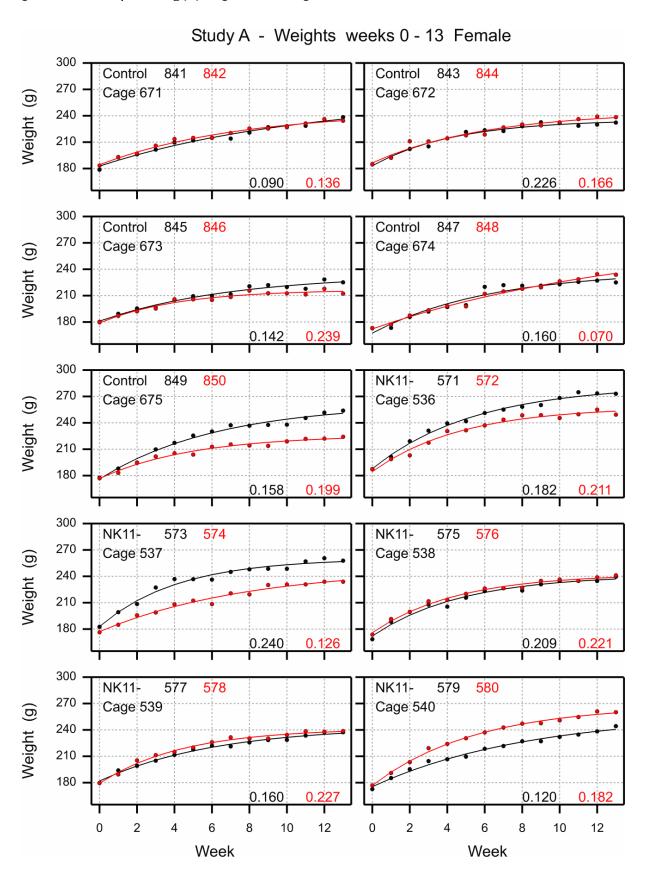


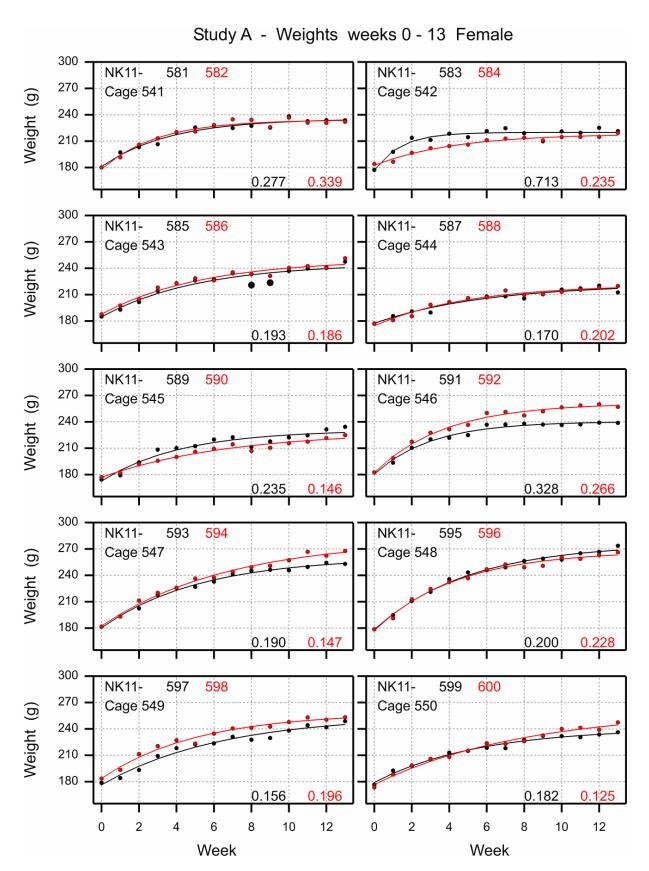


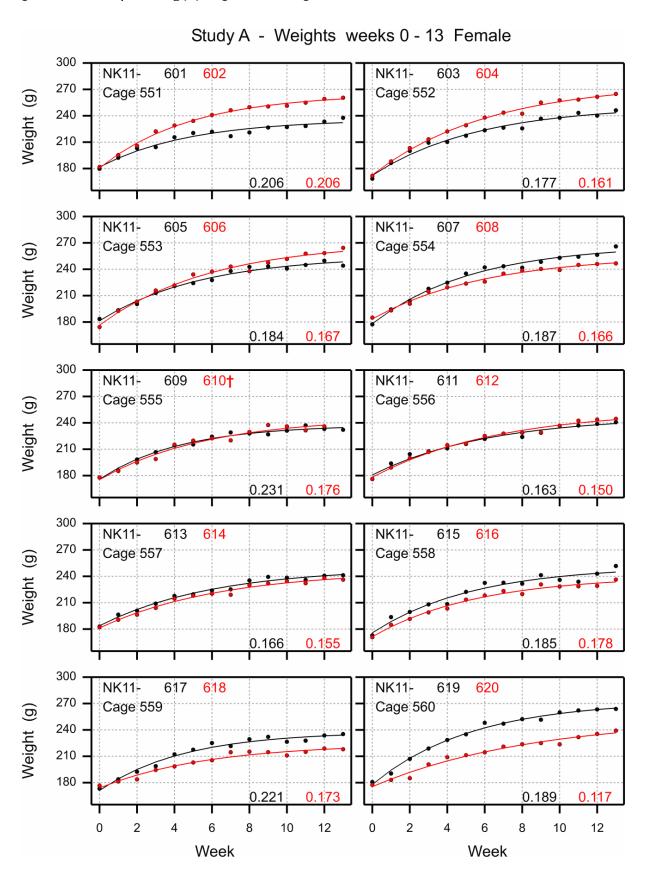


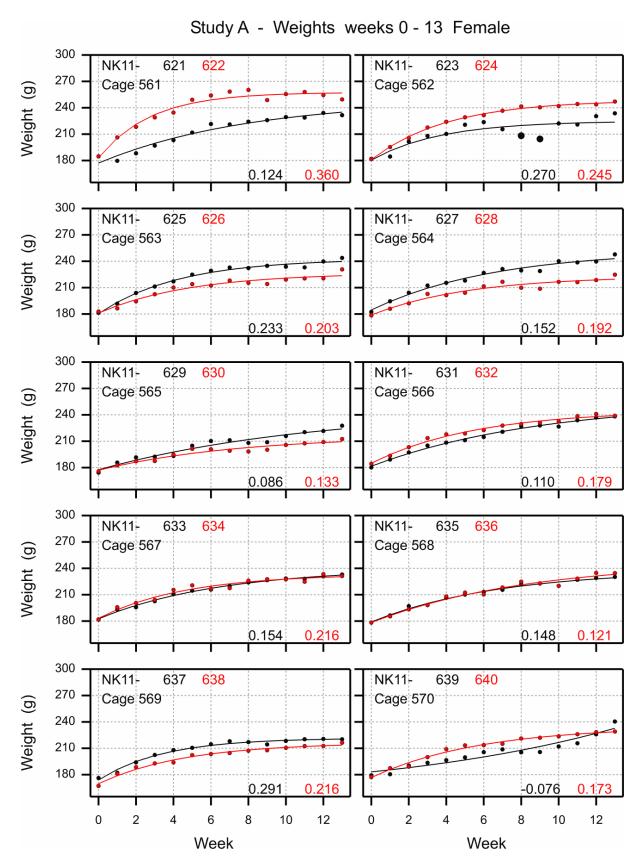


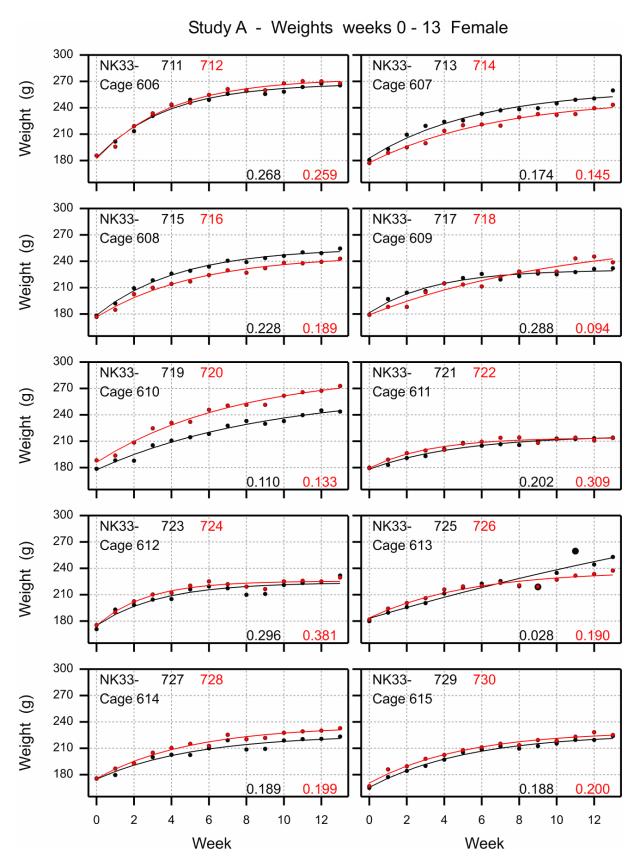


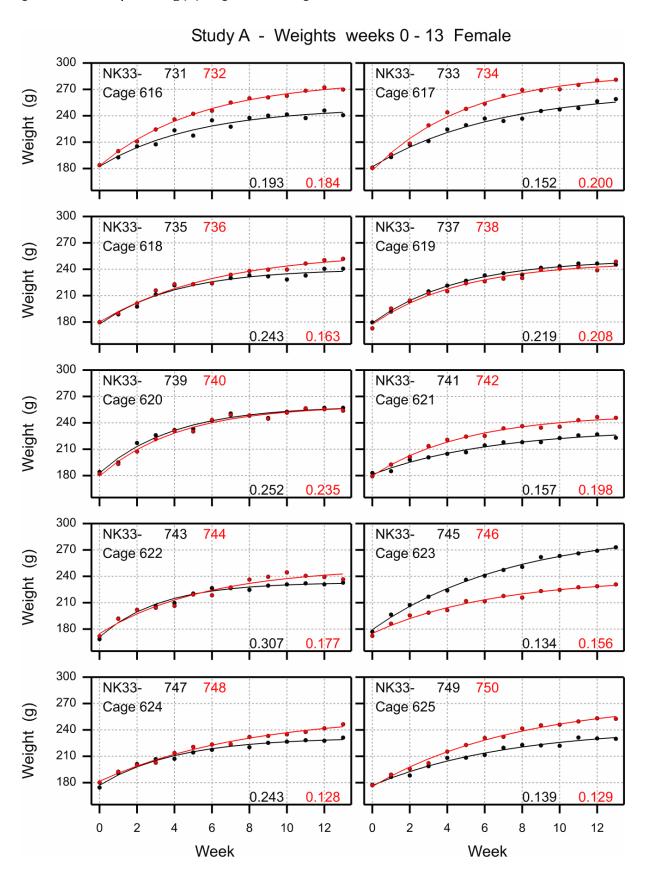


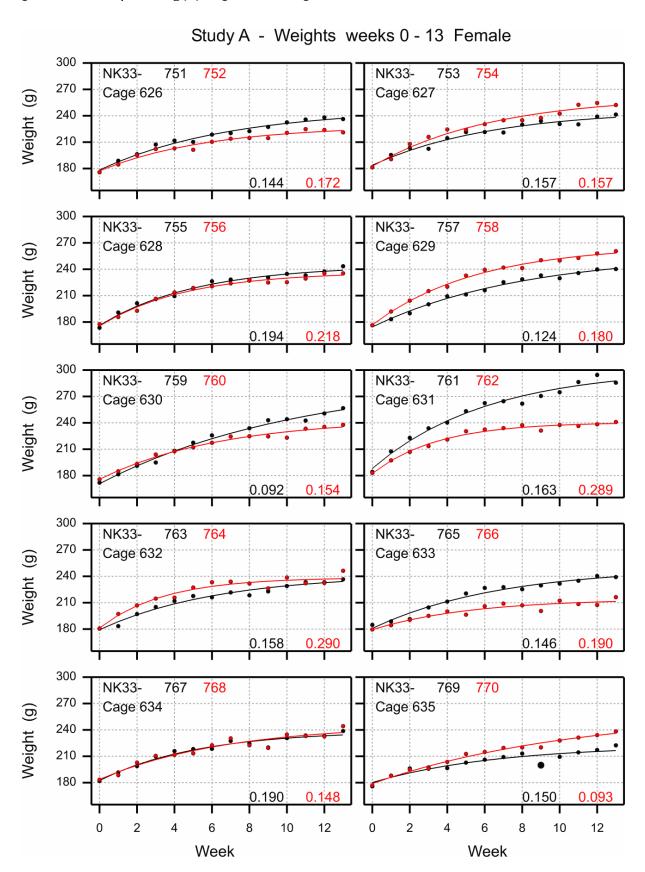

66

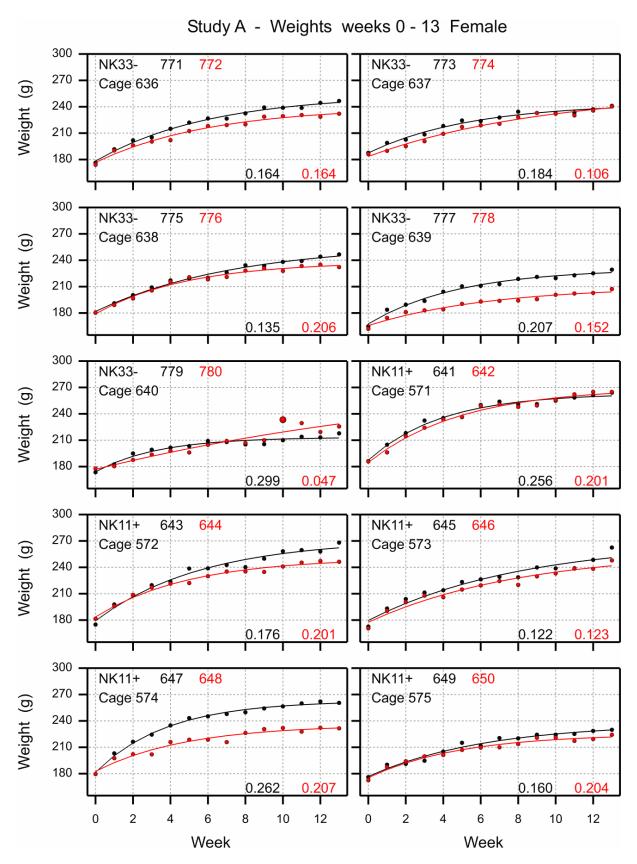


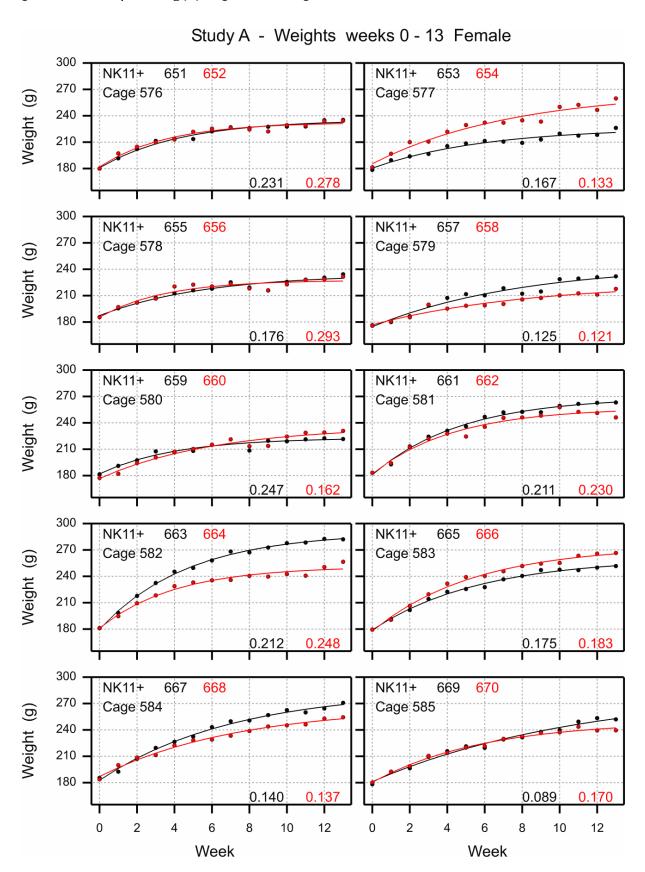


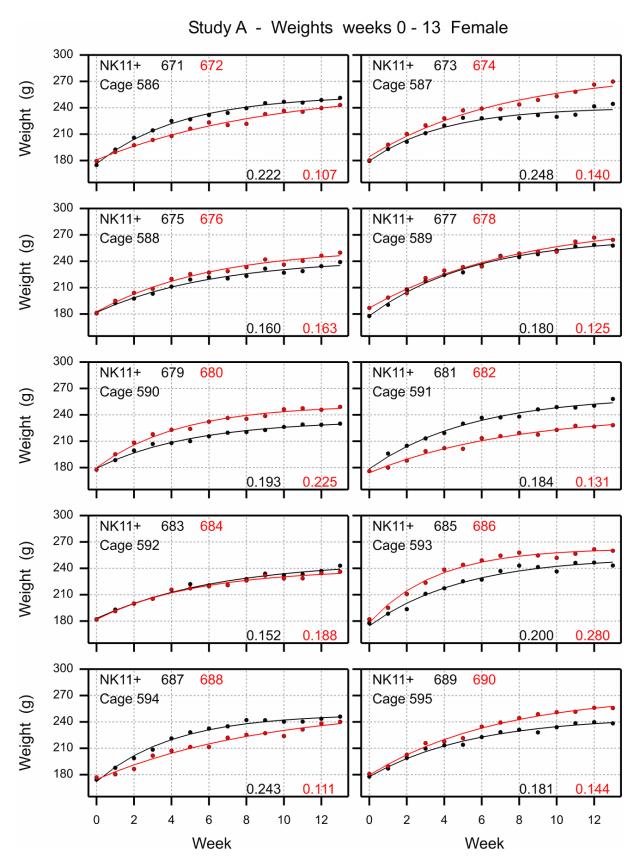


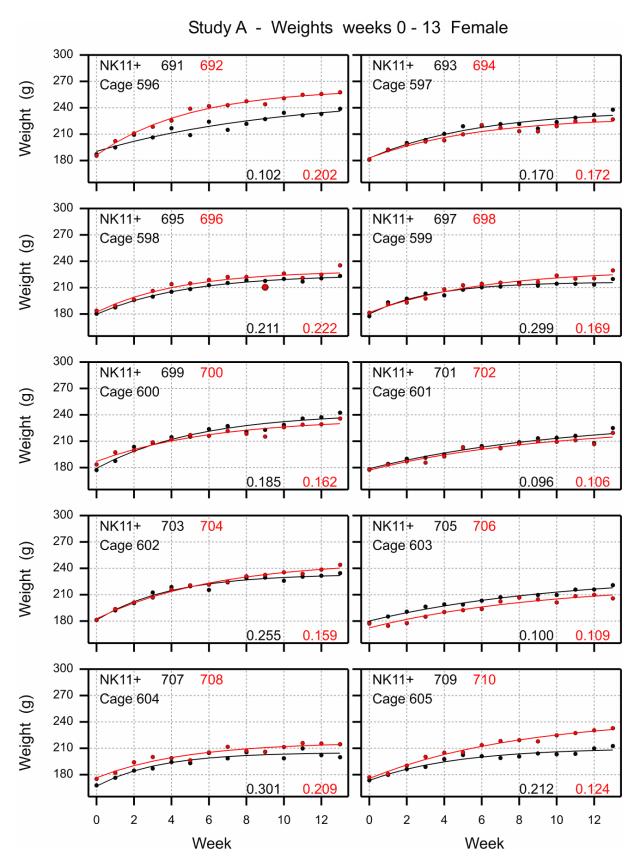


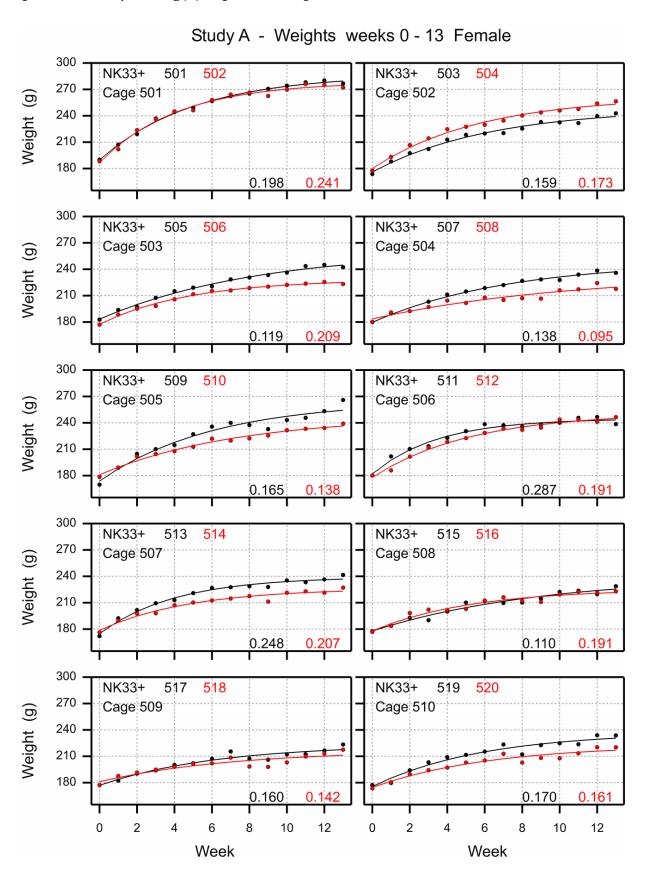


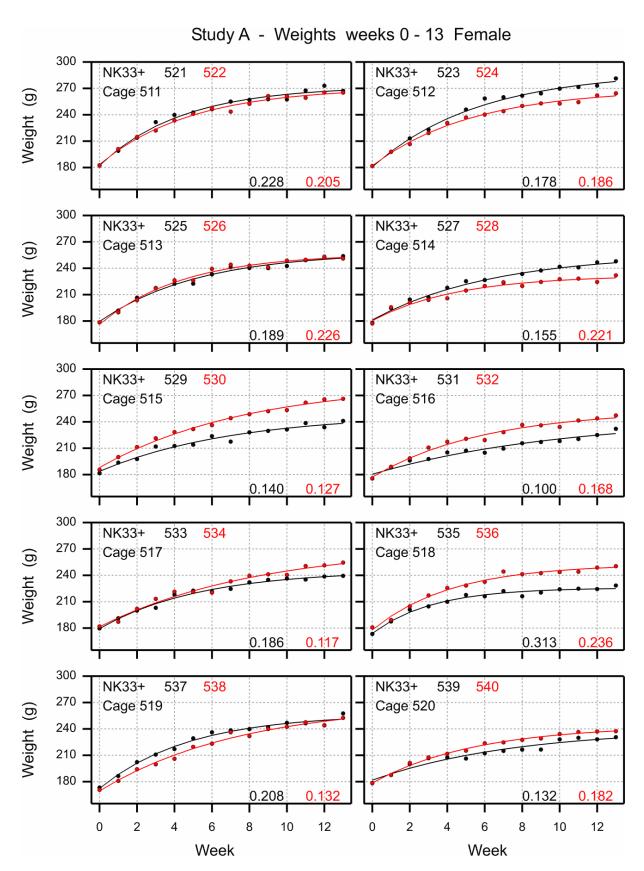


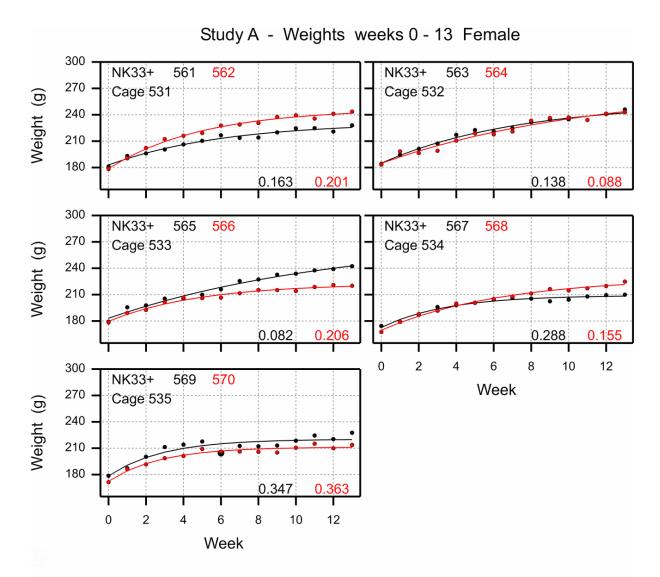












Appendix 2. Feed consumption per cage

Feed (g/day/animal) Control Control Week Week

Study A - Feed Consumption weeks 0 - 13 Male

Feed (g/day/animal) Control Control Feed (g/day/animal) Control Control Feed (g/day/animal) Control Control Feed (g/day/animal) Control Control Feed (g/day/animal) NK11-NK11-Week Week

Study A - Feed Consumption weeks 0 - 13 Male

Feed (g/day/animal) NK11-NK11-Feed (g/day/animal) NK11-NK11-Feed (g/day/animal) NK11-NK11-Feed (g/day/animal) NK11-NK11-NK11-Feed (g/day/animal) NK11-Week Week

Study A - Feed Consumption weeks 0 - 13 Male

Feed (g/day/animal) NK11-NK11-Feed (g/day/animal) NK11-NK11-Feed (g/day/animal) NK11-NK11-Feed (g/day/animal) NK33-NK33-Feed (g/day/animal) NK33-NK33-Week Week

Study A - Feed Consumption weeks 0 - 13 Male

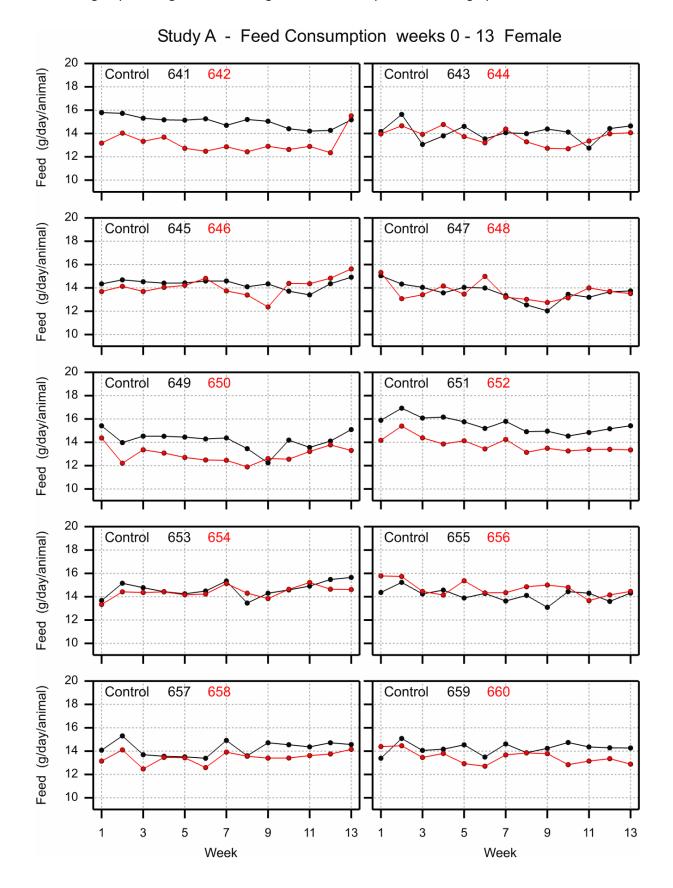
Feed (g/day/animal) NK33-NK33-Feed (g/day/animal) NK33-NK33-Feed (g/day/animal) NK33-NK33-Feed (g/day/animal) NK33-NK33-Feed (g/day/animal) NK33-NK33-Week Week

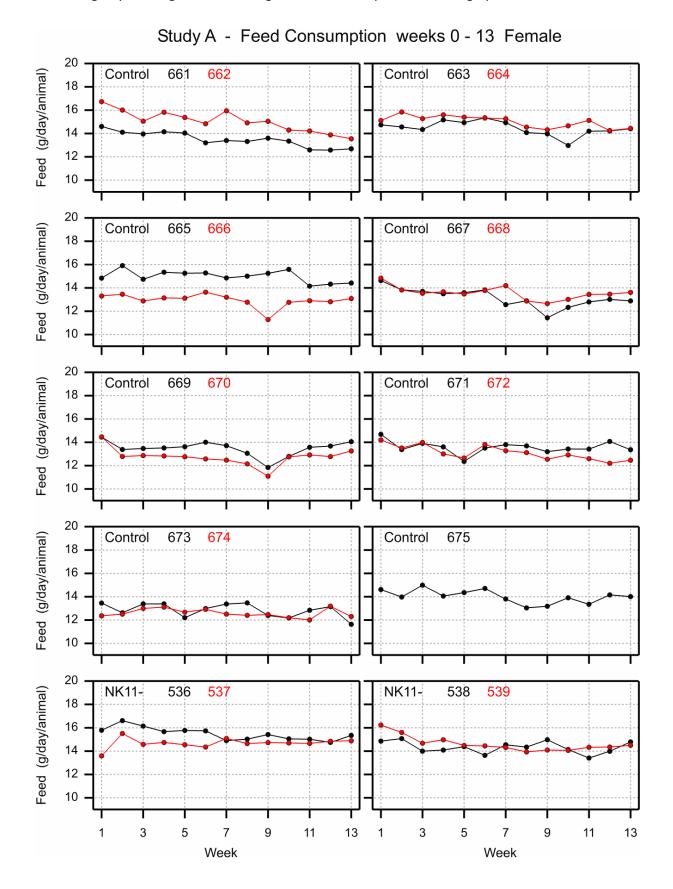
Study A - Feed Consumption weeks 0 - 13 Male

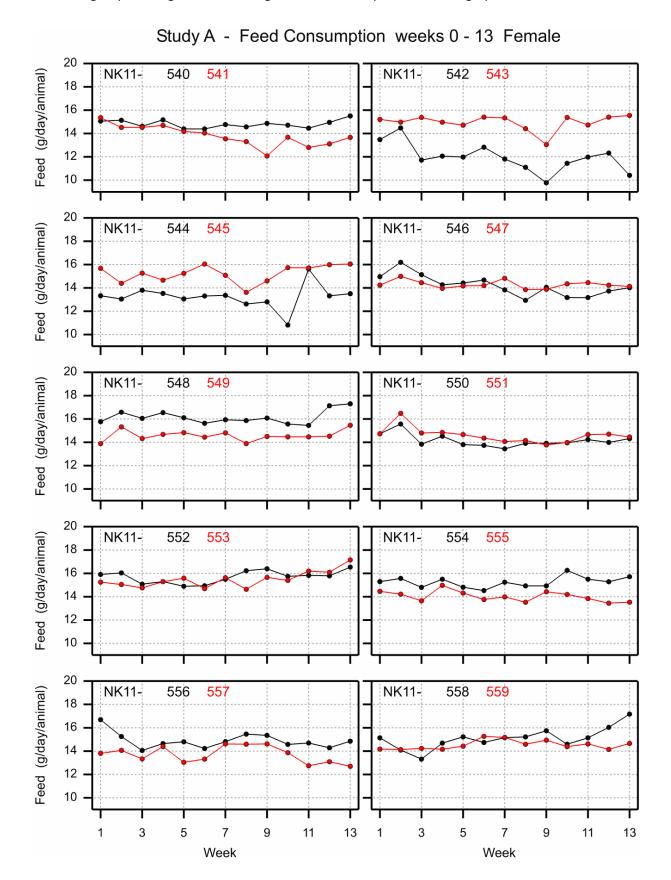
Feed (g/day/animal) NK33-NK33-Feed (g/day/animal) NK33-NK33-Feed (g/day/animal) NK11+ Feed (g/day/animal) NK11+ NK11+ Feed (g/day/animal) NK11+ NK11+ Week Week

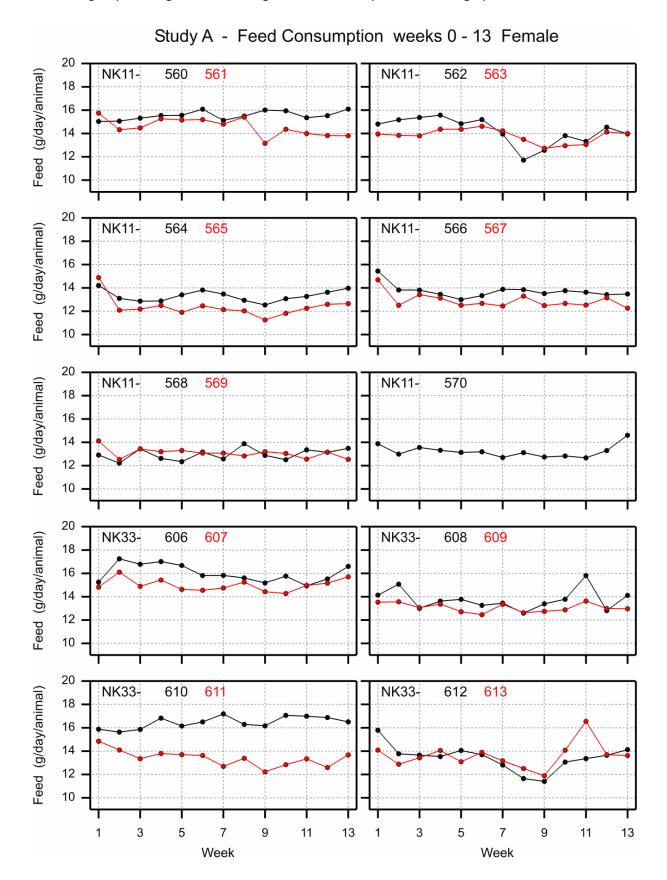
Study A - Feed Consumption weeks 0 - 13 Male

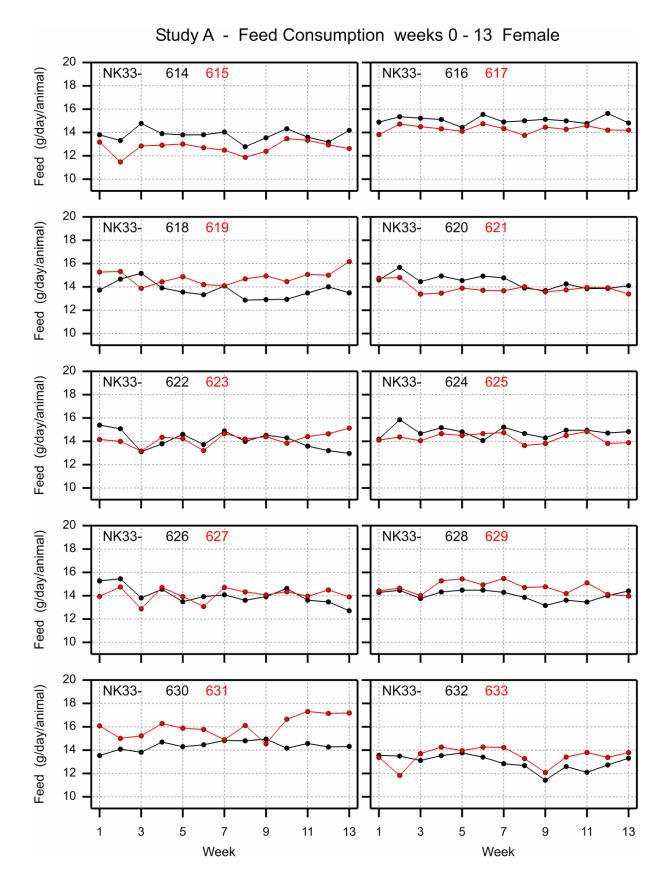
Feed (g/day/animal) NK11+ NK11+ Week Week

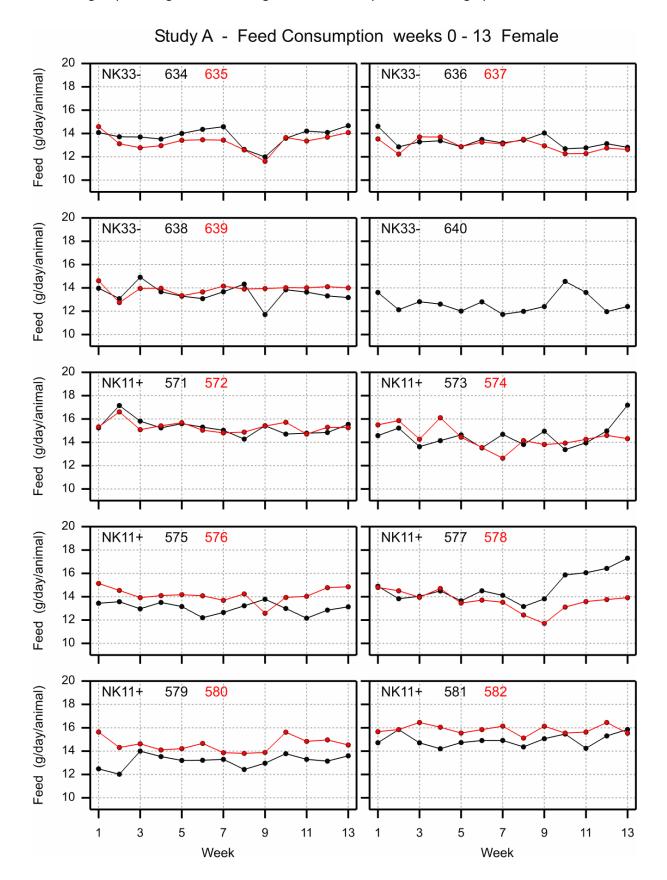

Study A - Feed Consumption weeks 0 - 13 Male

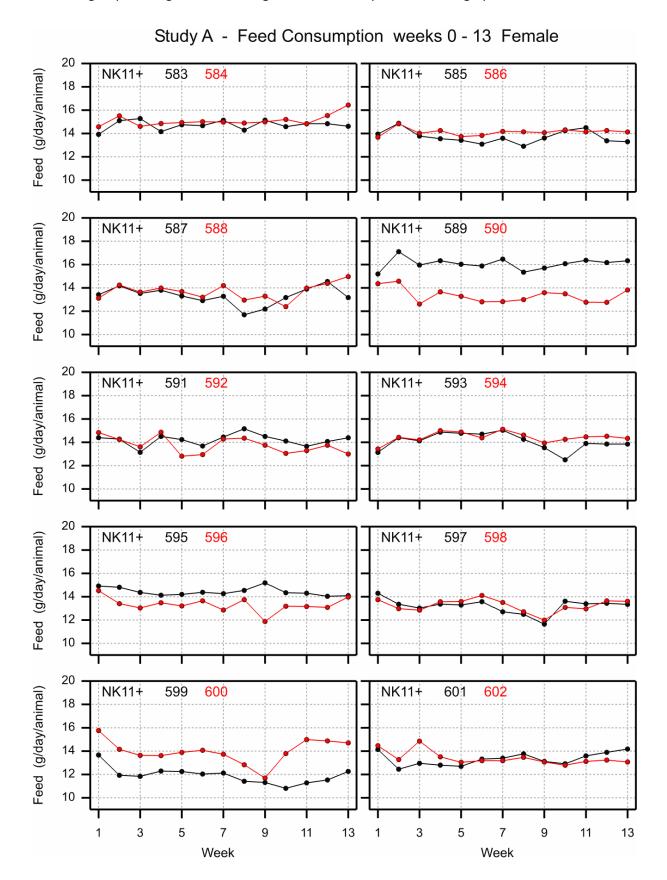

Feed (g/day/animal) NK11+ Feed (g/day/animal) NK33+ NK33+ Feed (g/day/animal) NK33+ NK33+ Feed (g/day/animal) NK33+ NK33+ Feed (g/day/animal) NK33+ NK33+ Week Week

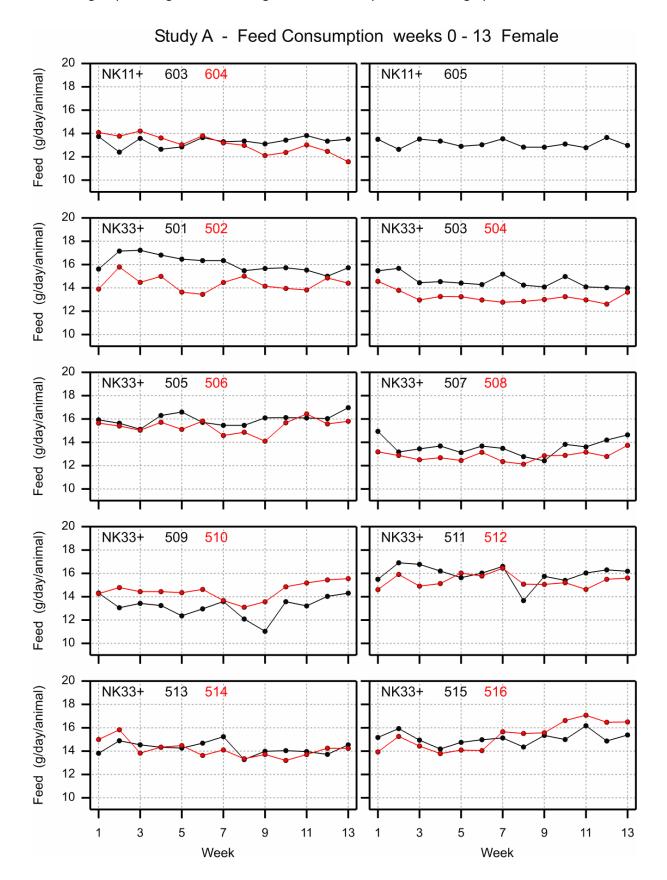

Study A - Feed Consumption weeks 0 - 13 Male

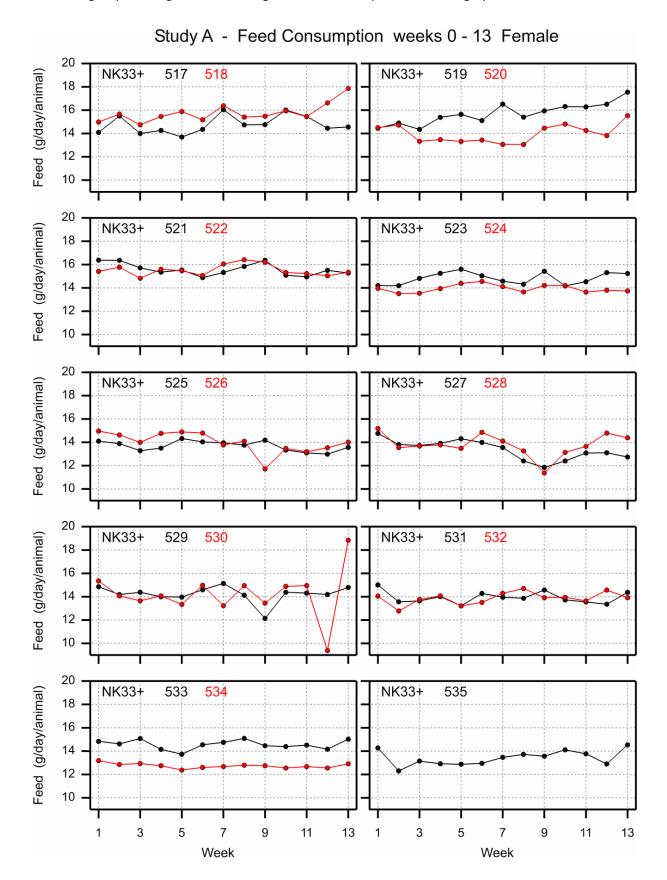

Feed (g/day/animal) NK33+ NK33+ Feed (g/day/animal) NK33+ NK33+ NK33+ Feed (g/day/animal) NK33+ Feed (g/day/animal) NK33+ NK33+ Feed (g/day/animal) NK33+ NK33+ Week Week

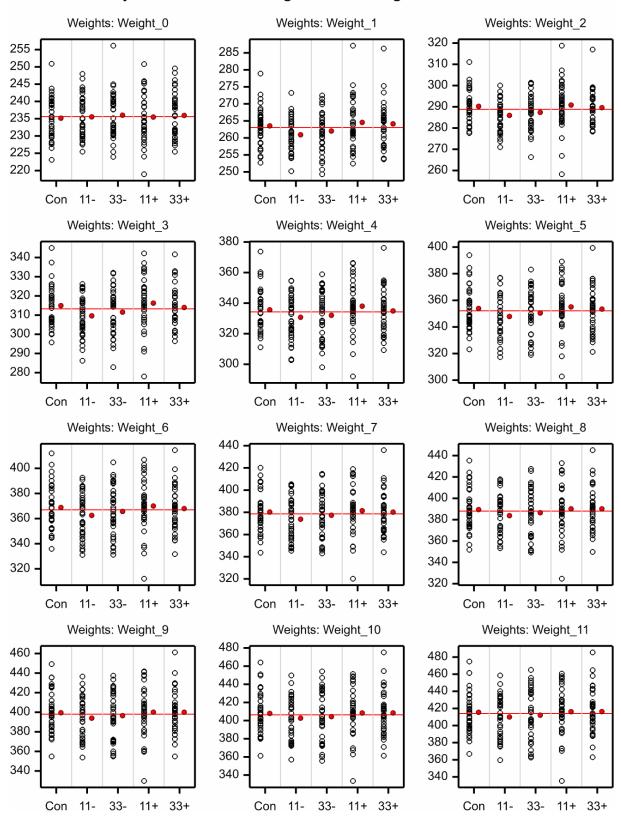

Study A - Feed Consumption weeks 0 - 13 Male

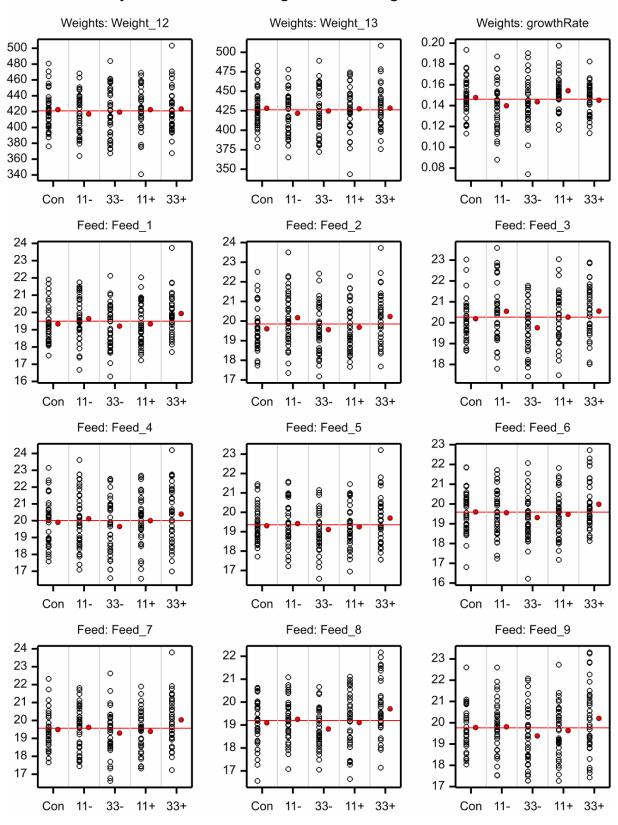




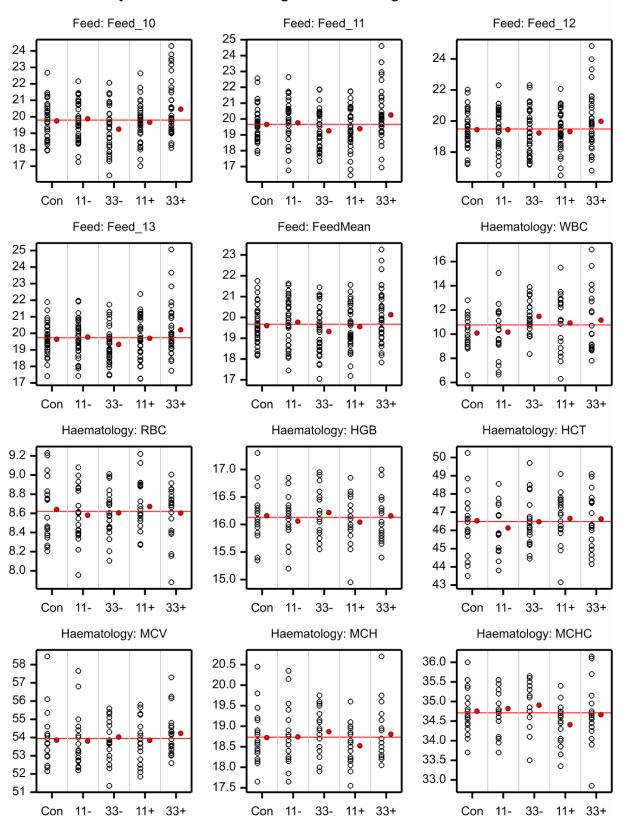




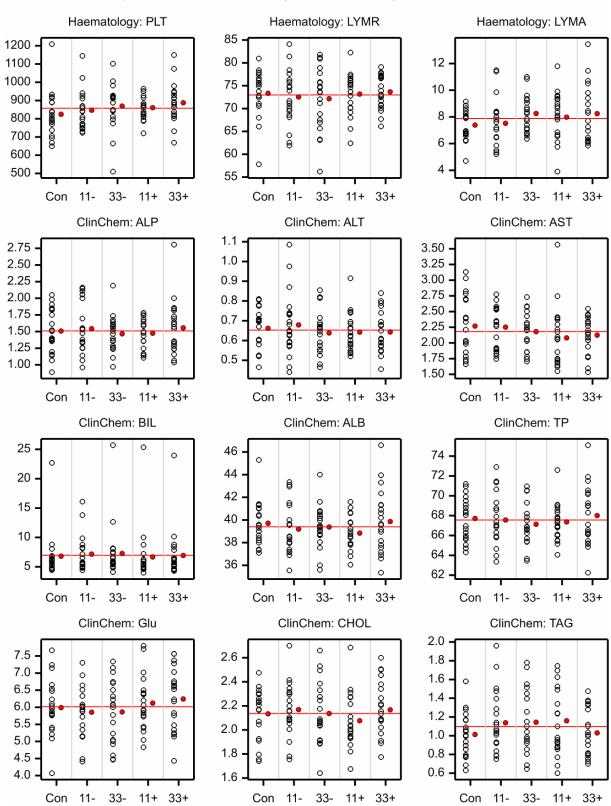



Appendix 3. Graphs of cage means on the original scale

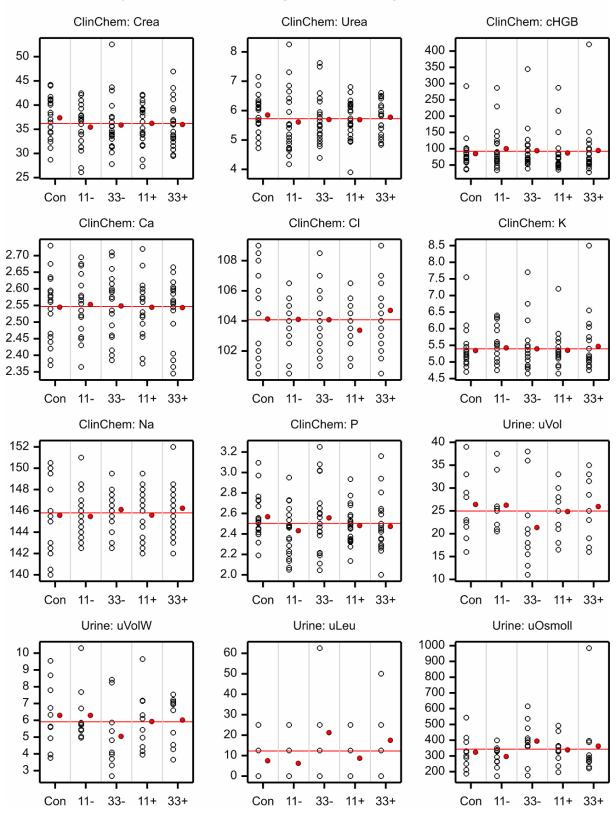
Red symbols denote means for feeding groups while the red line denotes the overall mean.


Appendix 3. Graphs of cage means on the original scale (continued)

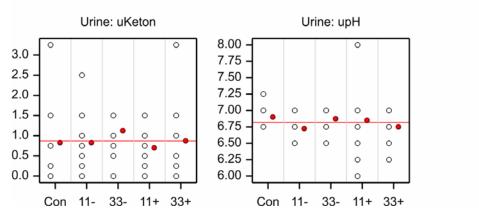
Red symbols denote means for feeding groups while the red line denotes the overall mean.

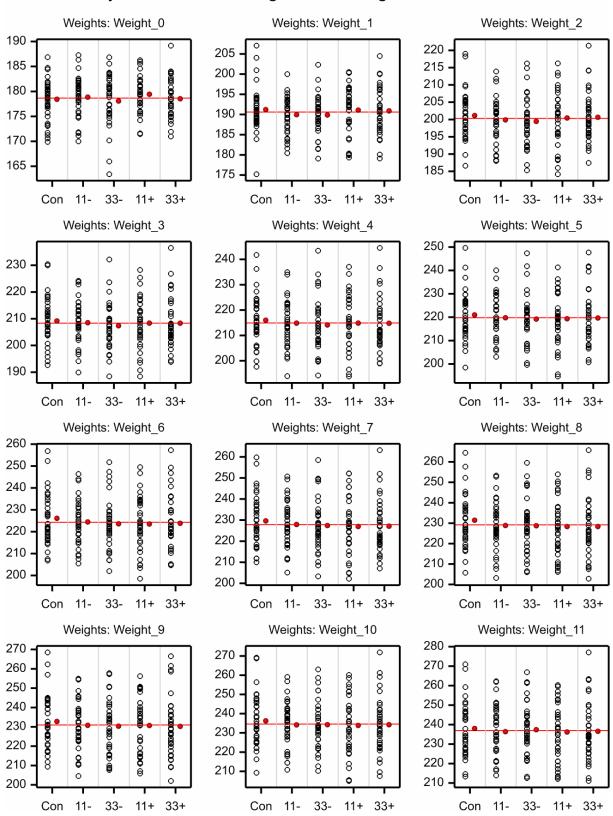

Appendix 3. Graphs of cage means on the original scale (continued)

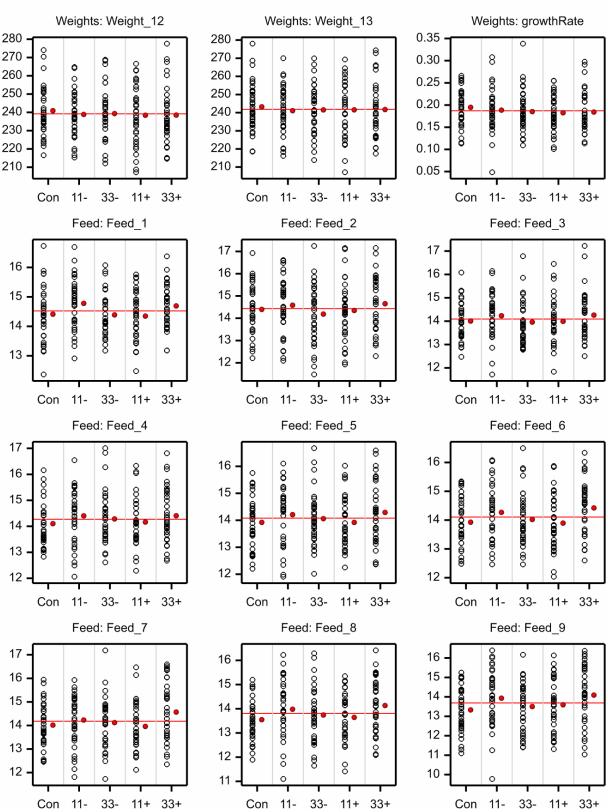
Red symbols denote means for feeding groups while the red line denotes the overall mean.

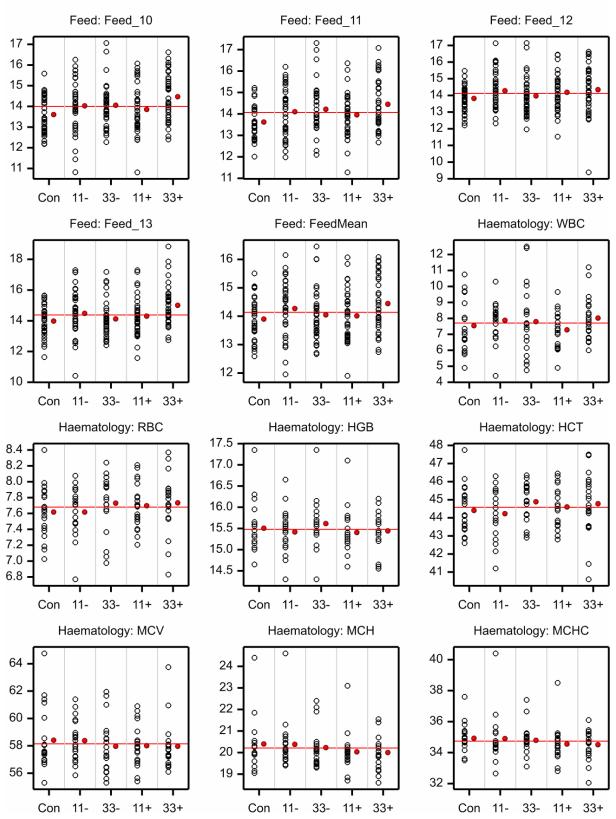


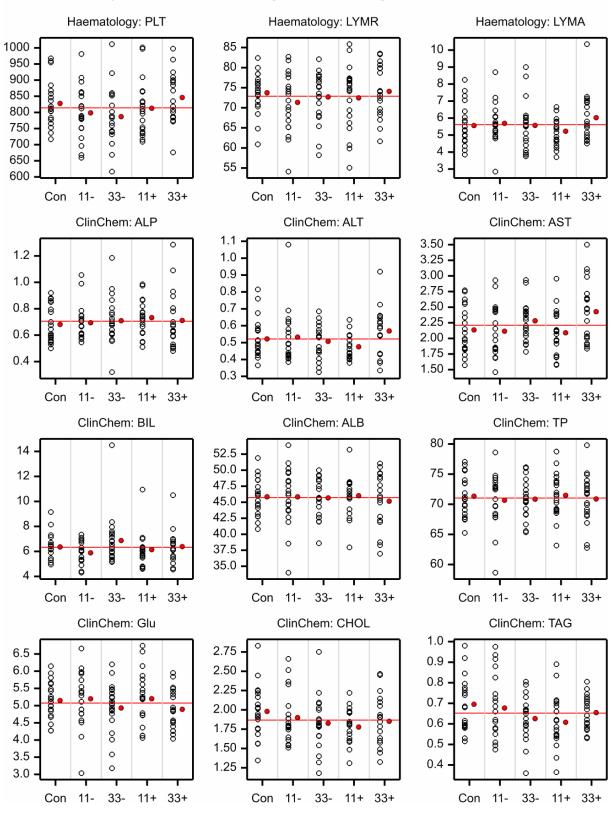
Appendix 3. Graphs of cage means on the original scale (continued)


Red symbols denote means for feeding groups while the red line denotes the overall mean.

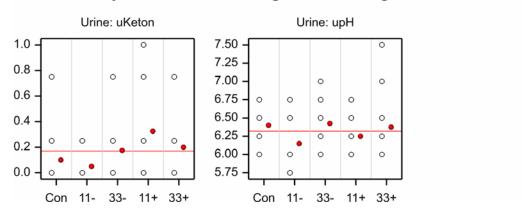


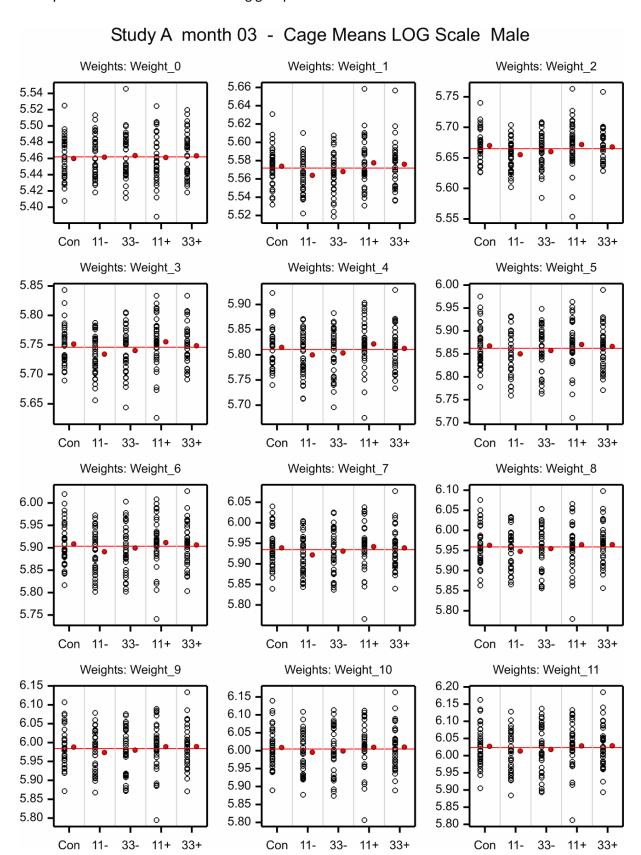

Red symbols denote means for feeding groups while the red line denotes the overall mean.

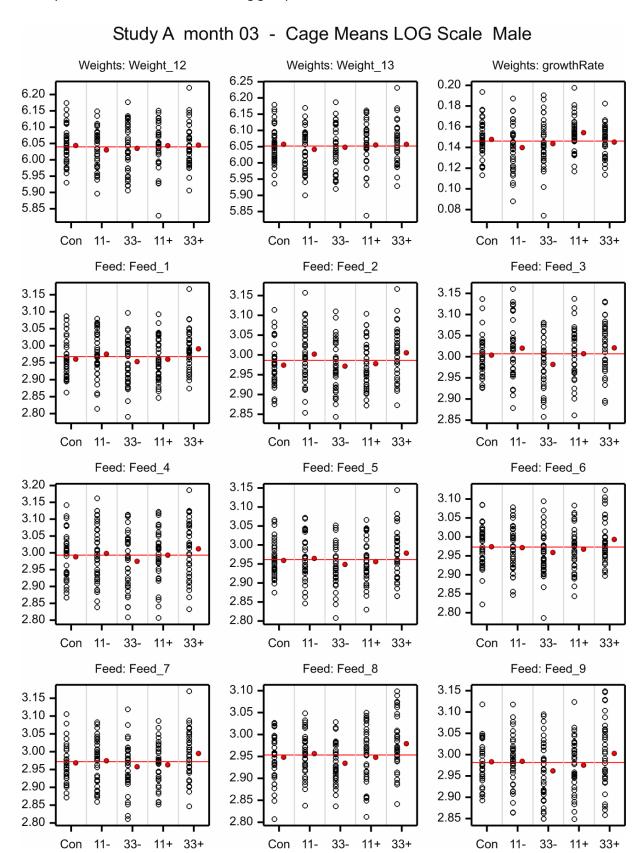

Red symbols denote means for feeding groups while the red line denotes the overall mean.

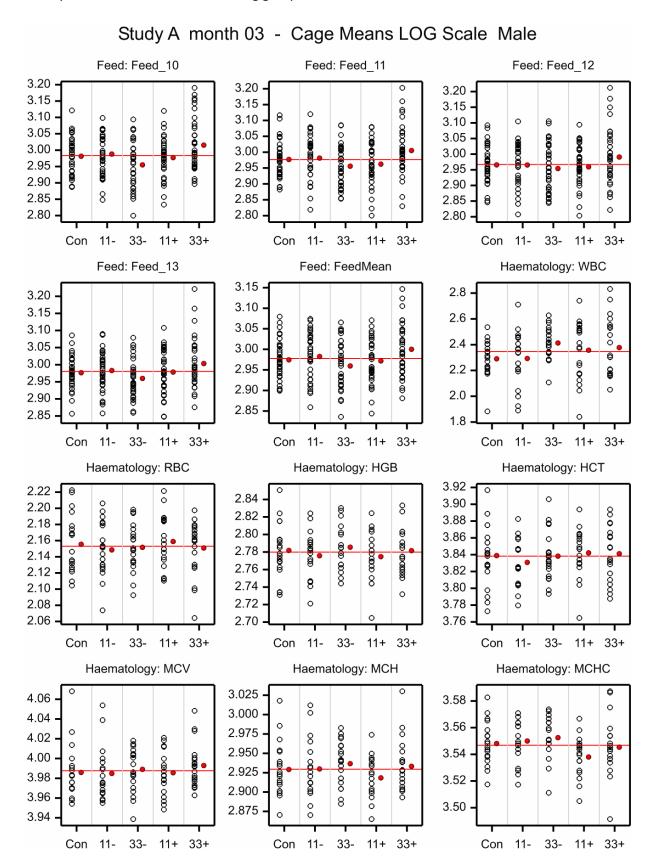

Red symbols denote means for feeding groups while the red line denotes the overall mean.

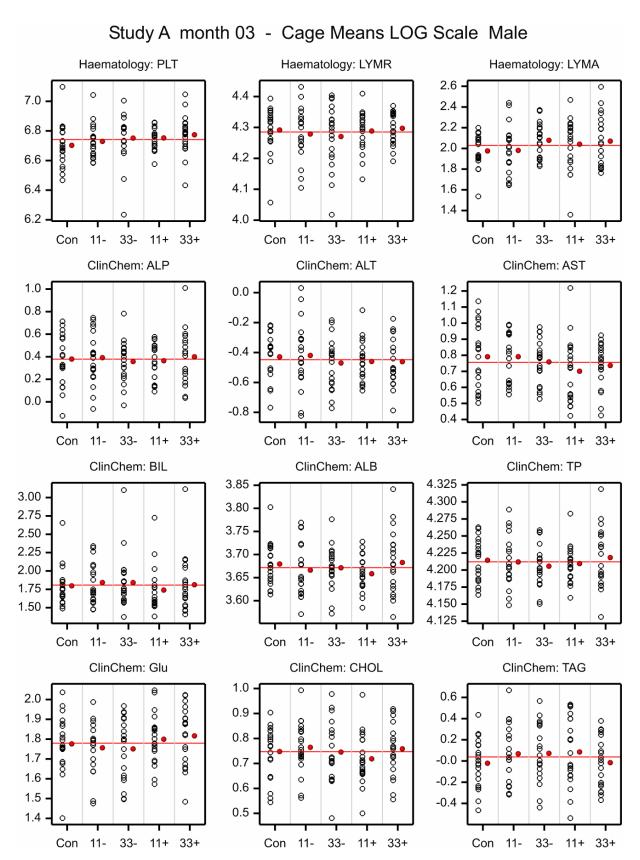

Red symbols denote means for feeding groups while the red line denotes the overall mean.

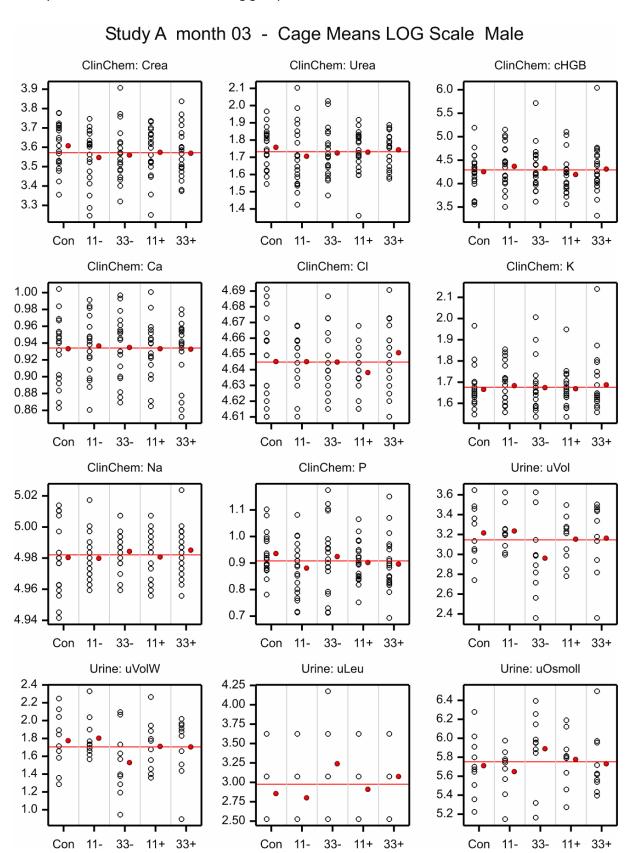

Red symbols denote means for feeding groups while the red line denotes the overall mean.

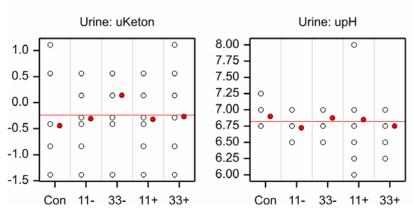

Red symbols denote means for feeding groups while the red line denotes the overall mean.

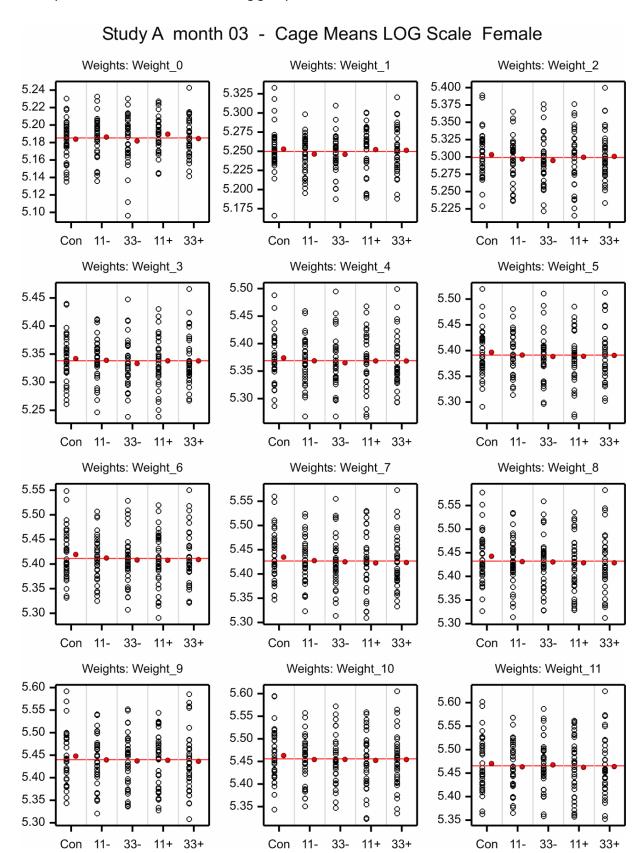


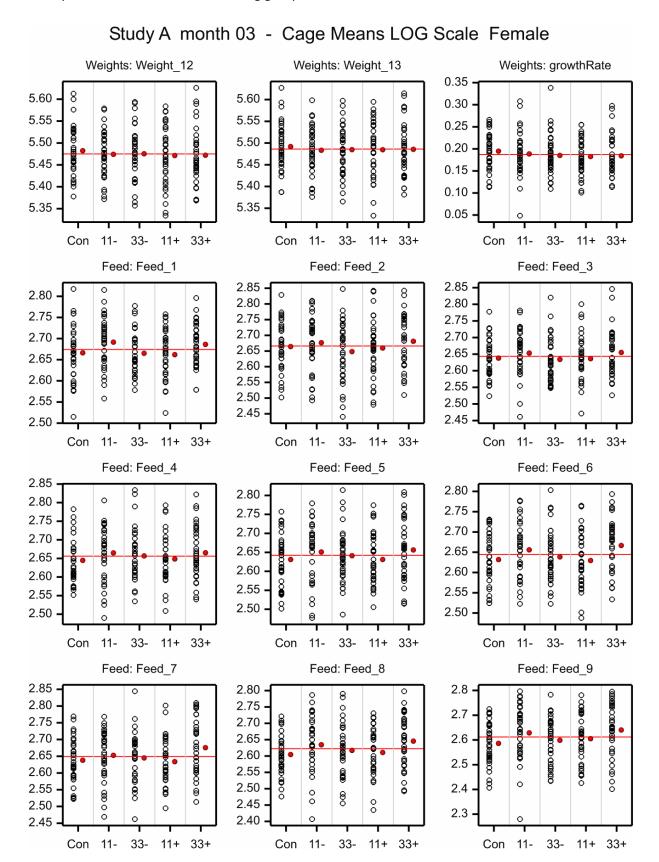

Red symbols denote means for feeding groups while the red line denotes the overall mean.

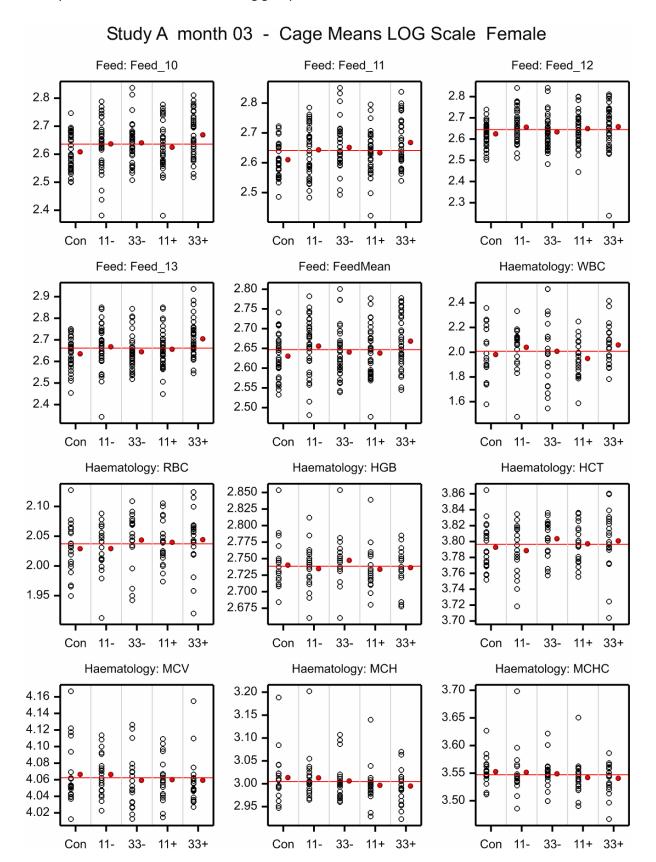


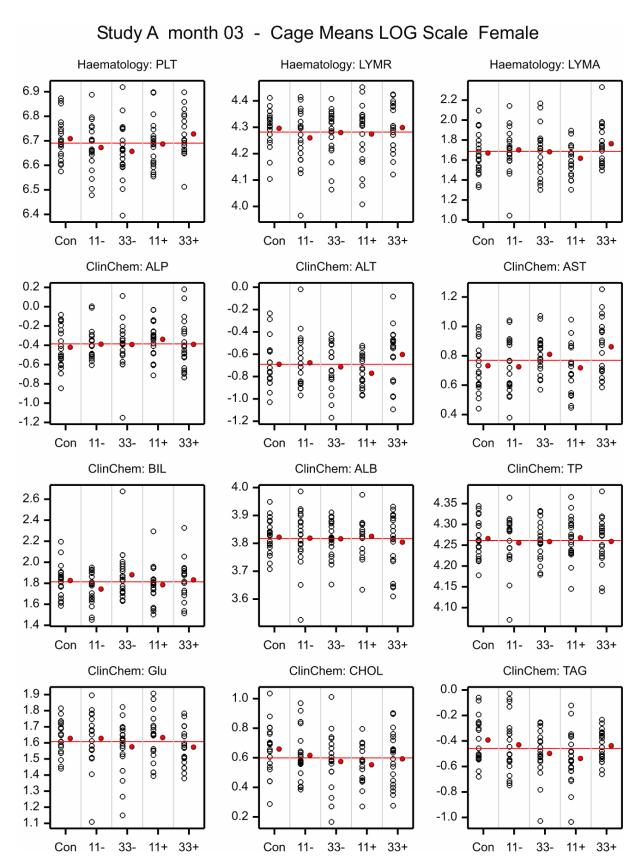

Appendix 4. Graphs of cage means on the log scale

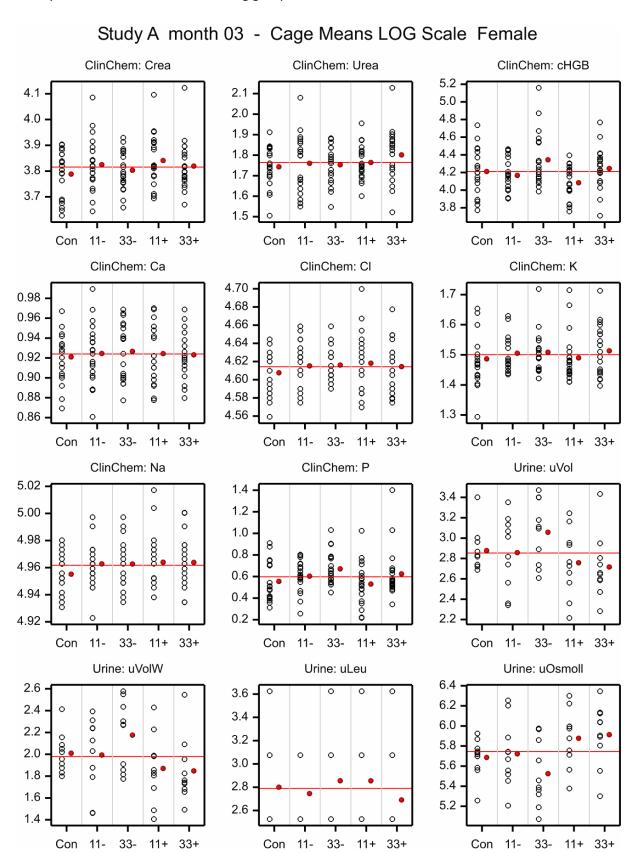


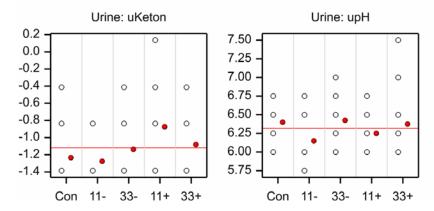


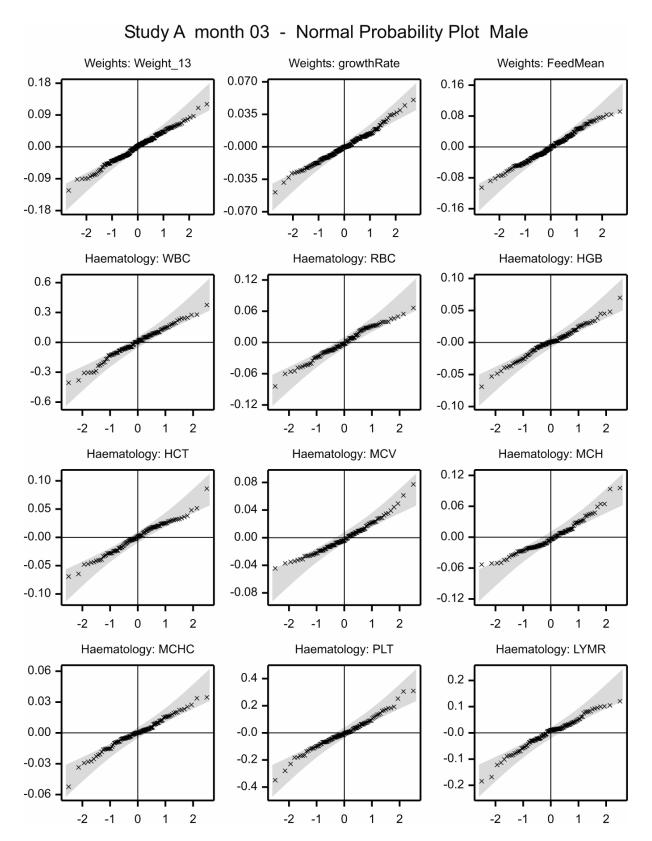


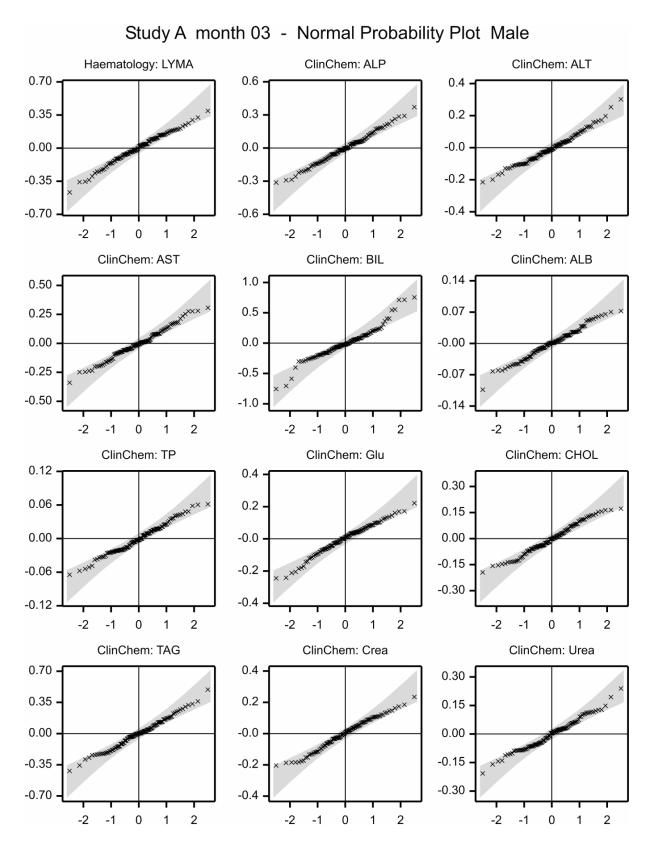

Red symbols denote means for feeding groups while the red line denotes the overall mean.

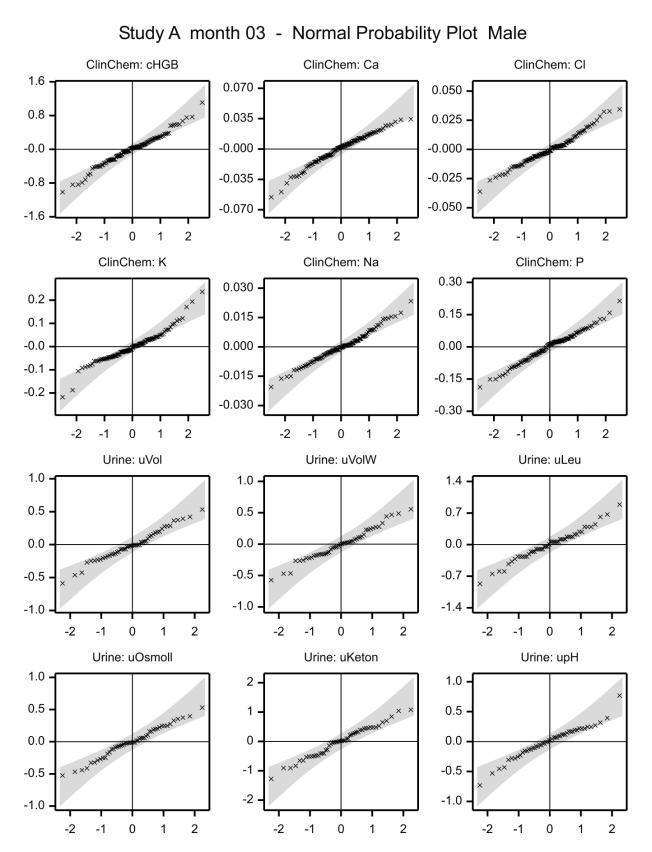

Study A month 03 - Cage Means LOG Scale Male

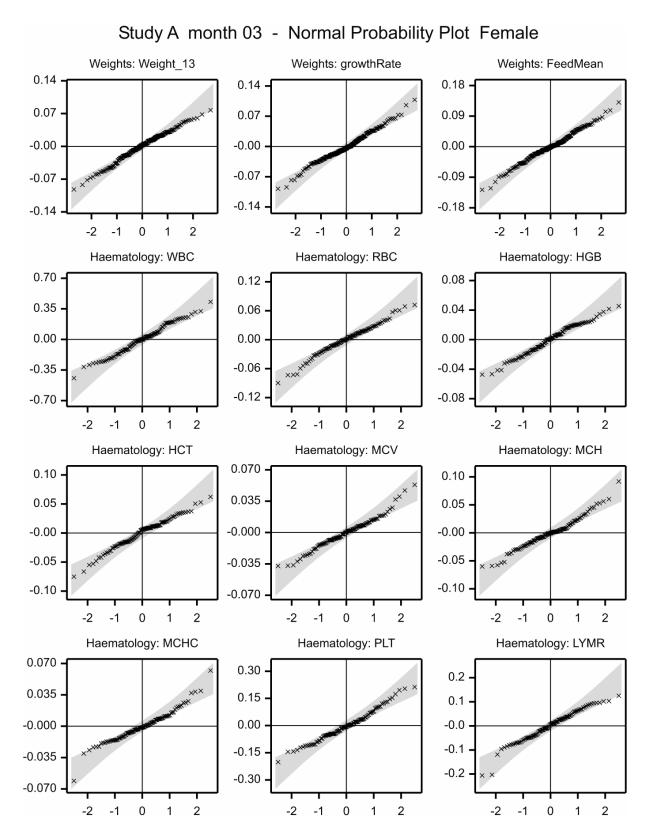


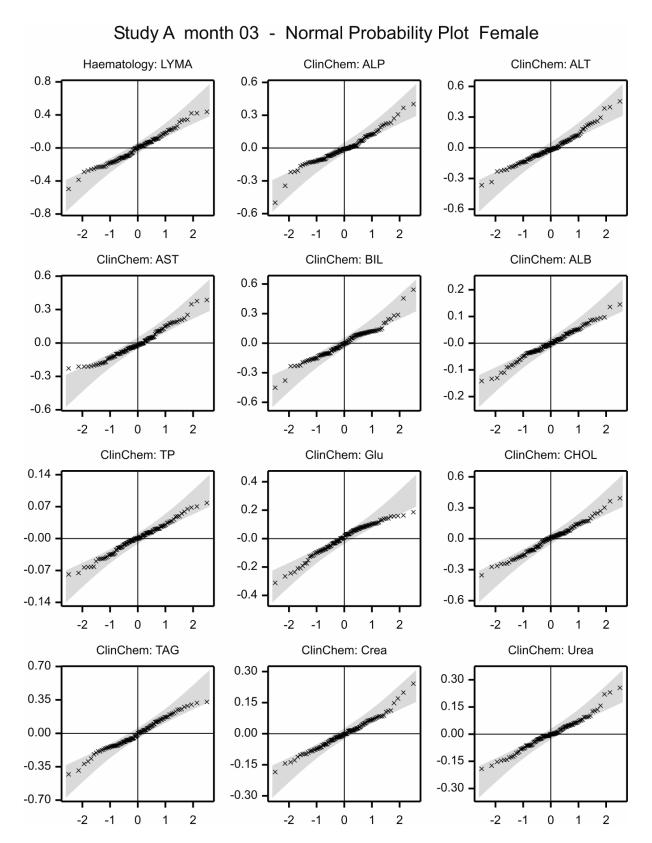


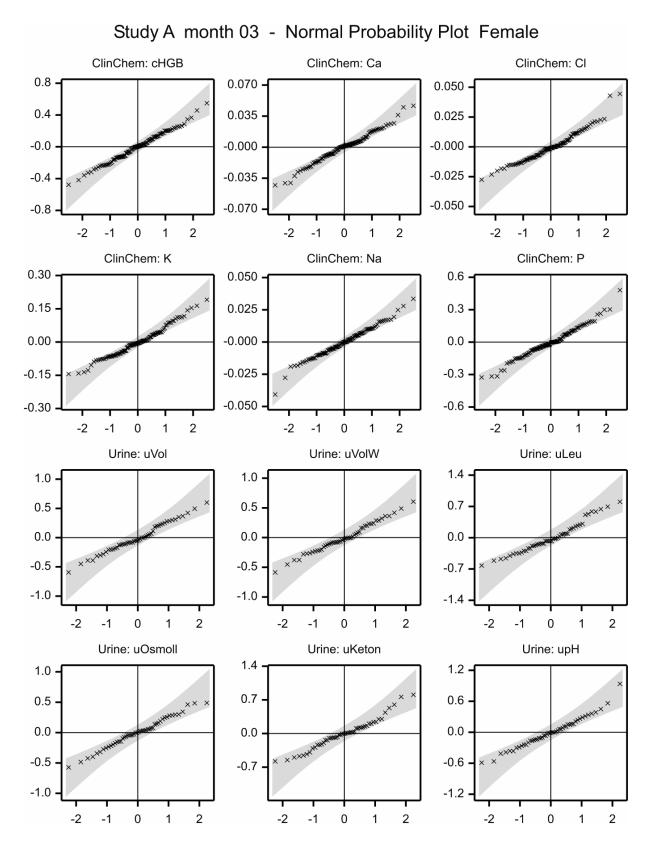







Red symbols denote means for feeding groups while the red line denotes the overall mean.





-0.000

-0.025

-0.050

3.53

Appendix 6. Graphs of residuals versus fitted values after ANOVA

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Study A month 03 - Residuals vs Fittedvalues Male Weights: Weight_13 Weights: growthRate Weights: FeedMean 0.10 0.12 0.050 0.05 0.06 0.025 -0.00 0.00 -0.000 -0.05 -0.06 -0.025 -0.10 -0.12 -0.050 0.145 0.17 3.05 5.95 6.045 6.14 0.12 2.89 2.97 Haematology: WBC Haematology: RBC Haematology: HGB 0.4 0.070 0.04 0.2 0.035 0.00 -0.0 -0.000 -0.04 -0.2 -0.035 -0.08 -0.4 -0.070 2.65 2.16 2.785 2.81 2.12 2.385 2.13 2.19 2.76 Haematology: HCT Haematology: MCV Haematology: MCH 0.10 0.08 0.08 0.04 0.04 0.05 0.00 0.00 0.00 -0.04 00 -0.04 -0.05 3.82 3.845 3.87 3.98 3.995 4.01 2.90 2.93 2.96 Haematology: MCHC Haematology: PLT Haematology: LYMR 0.30 0.1 0.025 0.15

6.70

0.00

-0.15

-0.30

6.54

3.56

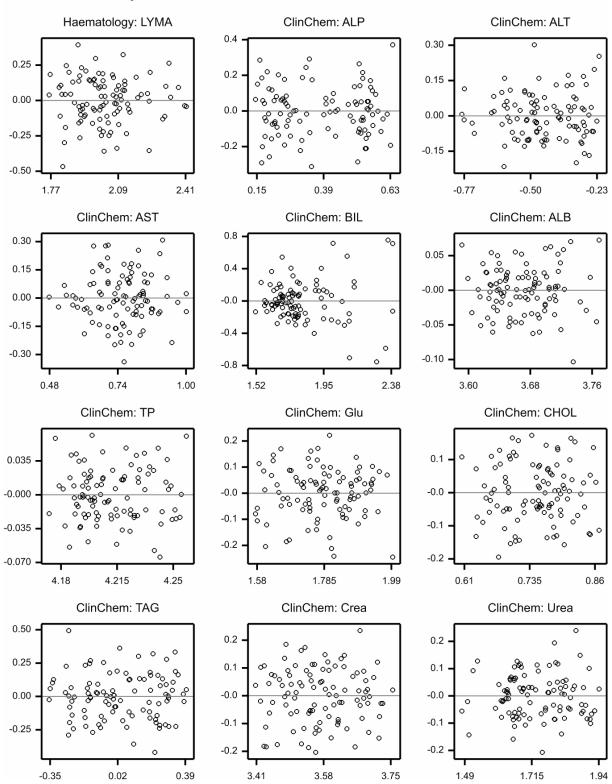
3.545

-0.0

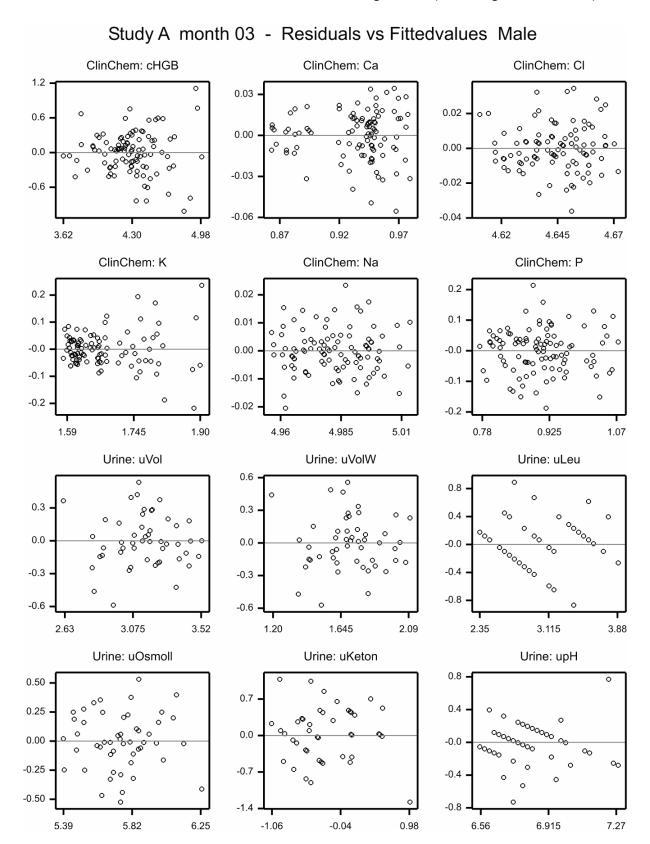
-0.1

-0.2

4.19

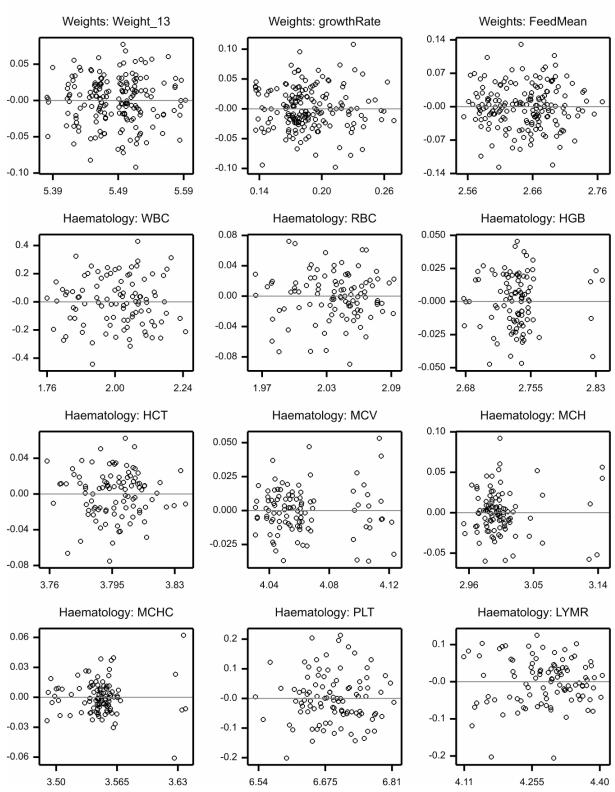

4.28

4.37

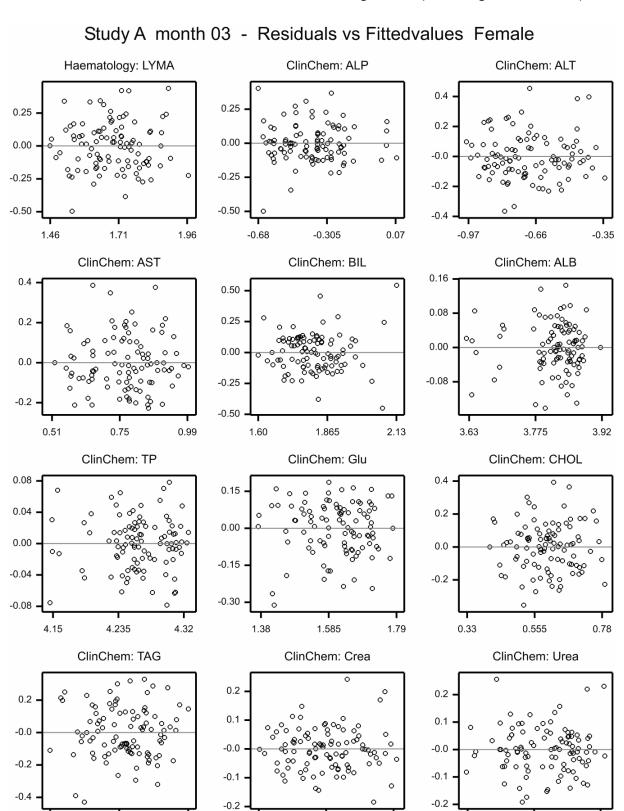

6.86

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Study A month 03 - Residuals vs Fittedvalues Male



Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).



Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Study A month 03 - Residuals vs Fittedvalues Female

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

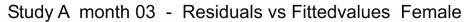
3.815

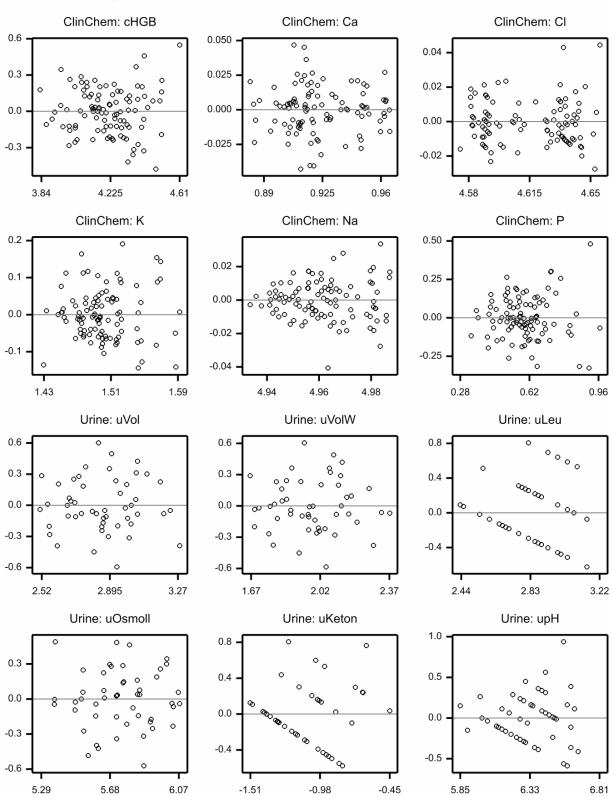
3.94

1.59

1.74

1.89


3.69


-0.73

-0.48

-0.23

Residuals and fitted values are obtained from ANOVA of cage means (after a log transformation).

Appendix 7. Estimated differences between GMO feeds and the control feed

The differences are given along with the residual sums of squares SS_F based on ANOVA on cage means after a log-transform. The degrees of freedom for the residual sums of squares equals 136 for Weight_13, growthRate and FeedMean, 76 for the other Male variables, and 75 for the other Female variables. Degrees of freedom are sometimes one less due to an occasional missing cage mean.

Variable		٦	Male rats			Female rats					
variable	NK11-	NK33-	NK11+	NK33+	SS_F	NK11-	NK33-	NK11+	NK33+	SS_F	
Weight_13	-0.0155	-0.0091	-0.0020	-0.0002	0.3192	-0.0086	-0.0071	-0.0074	-0.0064	0.1771	
growthRate	-0.0079	-0.0041	0.0066	-0.0026	0.0463	-0.0063	-0.0097	-0.0123	-0.0119	0.2078	
FeedMean	0.0081	-0.0148	-0.0027	0.0257	0.2663	0.0254	0.0102	0.0075	0.0379	0.3366	
WBC	0.0025	0.1227	0.0666	0.0872	2.2987	0.0584	0.0267	-0.0319	0.0777	2.8669	
RBC	-0.0070	-0.0038	0.0034	-0.0046	0.0843	-0.0003	0.0146	0.0107	0.0152	0.0947	
HGB	-0.0060	0.0037	-0.0071	-0.0002	0.0559	-0.0056	0.0072	-0.0063	-0.0038	0.0403	
НСТ	-0.0081	-0.0006	0.0033	0.0023	0.0708	-0.0035	0.0107	0.0043	0.0080	0.0655	
MCV	-0.0011	0.0031	-0.0003	0.0070	0.0480	0.0015	-0.0071	-0.0063	-0.0071	0.0279	
MCH	0.0007	0.0076	-0.0108	0.0042	0.0865	-0.0001	-0.0074	-0.0169	-0.0185	0.0704	
MCHC	0.0019	0.0044	-0.0101	-0.0027	0.0215	-0.0022	-0.0038	-0.0107	-0.0120	0.0275	
PLT	0.0264	0.0487	0.0499	0.0715	1.2457	-0.0358	-0.0516	-0.0217	0.0173	0.6638	
LYMA	0.0049	0.1023	0.0648	0.0944	2.5624	0.0284	0.0126	-0.0523	0.0937	3.3012	
ALP	0.0120	-0.0222	-0.0150	0.0198	1.8731	0.0268	0.0279	0.0825	0.0294	1.8731	
ALT	0.0089	-0.0417	-0.0315	-0.0327	2.1798	0.0139	-0.0236	-0.0807	0.0872	2.1798	
AST	0.0003	-0.0324	-0.0903	-0.0547	1.8135	0.0029	0.0775	-0.0142	0.1293	1.8135	
BIL	0.0450	0.0448	-0.0575	0.0150	2.3118	-0.0754	0.0543	-0.0404	0.0065	2.3118	
ALB	-0.0133	-0.0082	-0.0211	0.0033	0.3157	-0.0064	-0.0058	0.0030	-0.0180	0.3157	
TP	-0.0025	-0.0087	-0.0049	0.0040	0.1081	-0.0099	-0.0072	0.0019	-0.0068	0.1081	
Glu	-0.0197	-0.0251	0.0238	0.0407	1.1188	-0.0060	-0.0522	0.0053	-0.0544	1.1188	
CHOL	0.0170	-0.0020	-0.0293	0.0109	2.0887	-0.0285	-0.0846	-0.1064	-0.0664	2.0887	
TAG	0.0893	0.0933	0.1060	0.0056	2.4446	-0.0315	-0.1056	-0.1449	-0.0454	2.4446	
Crea	-0.0606	-0.0481	-0.0335	-0.0386	0.5248	0.0432	0.0150	0.0528	0.0312	0.5248	
Urea	-0.0523	-0.0333	-0.0285	-0.0148	0.6799	0.0180	0.0095	0.0210	0.0579	0.6799	
cHGB	0.1142	0.0719	-0.0613	0.0556	3.5481	-0.0454	0.1328	-0.1274	0.0339	3.5481	
Ca	0.0033	0.0015	0.0000	-0.0005	0.0285	0.0026	0.0056	0.0033	0.0021	0.0285	
Cl	-0.0001	-0.0003	-0.0070	0.0056	0.0158	0.0077	0.0085	0.0105	0.0068	0.0158	
K	0.0175	0.0082	0.0032	0.0214	0.4559	0.0215	0.0221	0.0034	0.0267	0.4559	
Na	-0.0010	0.0035	-0.0001	0.0043	0.0136	0.0075	0.0075	0.0088	0.0087	0.0136	
P	-0.0550	-0.0113	-0.0339	-0.0399	1.9047	0.0624	0.1160	-0.0257	0.0692	1.9047	

Appendix 8. Intervals for equivalence tests

95% Confidence interval plus estimate for the ratio Δ of a GMO feed versus the control feed, 95% Confidence interval plus median for (upper) equivalence limits, and the confidence interval plus median for Δ on the ELSD scale. Red background colouring indicates significant differences, green background colouring indicates significant equivalences (in all remaining cases equivalence is still more likely than not).

Males NK11- versus Control										
Weights	Inter	val for rati	ίο Δ	Inter	val for EQ l	limit	Interval for Δ ELSD scale			
Males NK11-	lower	esti	upper	lower	median	upper	lower	median	upper	
Weight_13	0.962	0.985	1.007	1.070	1.096	1.134	-0.396	-0.166	0.080	
growthRate	0.984	0.992	1.001	1.021	1.031	1.041	-0.538	-0.258	0.027	
FeedMean	0.987	1.008	1.029	1.072	1.100	1.173	-0.136	0.082	0.281	
Haematology	Interval for ratio Δ			Inter	val for EQ l	limit	Interval for Δ ELSD scale			
Males NK11-	lower	esti	upper	lower	median	upper	lower	median	upper	
WBC	0.899	1.003	1.119	1.464	1.657	2.399	-0.218	0.005	0.224	
RBC	0.972	0.993	1.014	1.091	1.114	1.148	-0.233	-0.064	0.130	
HGB	0.977	0.994	1.011	1.078	1.099	1.146	-0.219	-0.062	0.117	
HCT	0.973	0.992	1.011	1.090	1.112	1.148	-0.232	-0.075	0.105	
MCV	0.983	0.999	1.015	1.007	1.024	1.038	-2.000	-0.050	2.000	
MCH	0.980	1.001	1.022	1.018	1.042	1.065	-0.677	0.017	0.715	
MCHC	0.991	1.002	1.013	1.022	1.033	1.051	-0.280	0.059	0.370	
PLT	0.947	1.027	1.113	1.591	1.760	2.013	-0.096	0.046	0.170	
LYMA	0.895	1.005	1.128	1.424	1.608	2.224	-0.238	0.009	0.251	
ClinChem	Inter	val for rati	ίο Δ	Inter	Interval for EQ limit			Interval for Δ ELSD scale		
Males NK11-	lower	esti	upper	lower	median	upper	lower	median	upper	
ALP	0.917	1.012	1.117	1.300	1.419	1.590	-0.256	0.035	0.301	
ALT	0.942	1.009	1.080	1.187	1.263	1.383	-0.264	0.037	0.313	
AST	0.910	1.000	1.099	1.240	1.352	1.540	-0.329	0.002	0.330	
ALB	0.963	0.987	1.011	1.094	1.120	1.157	-0.305	-0.116	0.099	
TP	0.978	0.998	1.017	1.067	1.087	1.115	-0.245	-0.029	0.207	
Glu	0.916	0.980	1.049	1.290	1.388	1.652	-0.242	-0.059	0.147	
CHOL	0.955	1.017	1.083	1.217	1.307	1.631	-0.175	0.060	0.272	
TAG	0.968	1.093	1.235	1.810	2.185	4.394	-0.041	0.107	0.254	
Crea	0.878	0.941	1.010	1.243	1.332	1.547	-0.434	-0.205	0.033	
Urea	0.896	0.949	1.005	1.196	1.280	1.610	-0.431	-0.200	0.018	
Ca	0.991	1.003	1.016	1.129	1.160	1.234	-0.063	0.022	0.097	
Cl	0.991	1.000	1.009	1.101	1.123	1.171	-0.083	-0.001	0.082	
K	0.970	1.018	1.067	1.204	1.263	1.353	-0.130	0.074	0.252	
Na	0.993	0.999	1.005	1.112	1.136	1.185	-0.048	-0.007	0.037	
Р	0.899	0.947	0.997	1.182	1.247	1.424	-0.466	-0.241	-0.016	

Appendix 8. Intervals for equivalence tests (continued)

Males NK33- versus Control										
Weights	Inter	val for rati	ο Δ	Inter	val for EQ	limit	Interval for Δ ELSD scale			
Males NK33-	lower	esti	upper	lower	median	upper	lower	median	upper	
Weight_13	0.969	0.991	1.014	1.070	1.096	1.134	-0.320	-0.097	0.153	
growthRate	0.987	0.996	1.005	1.021	1.031	1.041	-0.398	-0.134	0.157	
FeedMean	0.965	0.985	1.006	1.072	1.100	1.172	-0.357	-0.150	0.064	
Haematology	Interval for ratio Δ			Inter	val for EQ	limit	Interval for Δ ELSD scale			
Males NK33-	lower	esti	upper	lower	median	upper	lower	median	upper	
WBC	1.013	1.131	1.261	1.463	1.657	2.392	0.025	0.234	0.447	
RBC	0.976	0.996	1.017	1.091	1.114	1.148	-0.209	-0.034	0.163	
HGB	0.987	1.004	1.021	1.078	1.099	1.147	-0.143	0.038	0.198	
HCT	0.980	0.999	1.019	1.090	1.112	1.148	-0.184	-0.006	0.178	
MCV	0.987	1.003	1.019	1.007	1.024	1.038	-2.000	0.152	2.000	
MCH	0.986	1.008	1.029	1.018	1.042	1.065	-0.413	0.186	0.864	
MCHC	0.994	1.004	1.015	1.022	1.033	1.051	-0.200	0.132	0.439	
PLT	0.969	1.050	1.138	1.592	1.760	2.015	-0.057	0.086	0.210	
LYMA	0.987	1.108	1.243	1.425	1.609	2.232	-0.027	0.207	0.440	
ClinChem	Inter	val for rati	ο Δ	Inter	Interval for EQ limit			Interval for Δ ELSD scale		
Males NK33-	lower	esti	upper	lower	median	upper	lower	median	upper	
ALP	0.886	0.978	1.080	1.299	1.419	1.590	-0.319	-0.062	0.225	
ALT	0.896	0.959	1.027	1.187	1.263	1.385	-0.445	-0.175	0.114	
AST	0.881	0.968	1.064	1.241	1.352	1.538	-0.387	-0.105	0.212	
ALB	0.968	0.992	1.016	1.094	1.120	1.156	-0.261	-0.071	0.144	
TP	0.972	0.991	1.011	1.067	1.087	1.115	-0.307	-0.103	0.130	
Glu	0.911	0.975	1.044	1.291	1.388	1.646	-0.255	-0.074	0.132	
CHOL	0.937	0.998	1.063	1.217	1.306	1.622	-0.245	-0.007	0.235	
TAG	0.972	1.098	1.240	1.810	2.184	4.348	-0.035	0.113	0.261	
Crea	0.889	0.953	1.022	1.243	1.332	1.542	-0.387	-0.163	0.075	
Urea	0.914	0.967	1.024	1.195	1.280	1.618	-0.343	-0.127	0.095	
Ca	0.989	1.002	1.014	1.129	1.160	1.235	-0.076	0.010	0.089	
Cl	0.990	1.000	1.009	1.101	1.123	1.171	-0.082	-0.003	0.080	
K	0.961	1.008	1.057	1.205	1.263	1.353	-0.172	0.034	0.219	
Na	0.998	1.004	1.009	1.112	1.136	1.186	-0.017	0.027	0.066	
Р	0.939	0.989	1.041	1.182	1.247	1.424	-0.261	-0.049	0.185	

Appendix 8. Intervals for equivalence tests (continued)

Males NK11+ versus Control									
Weights	Inter	val for rati	ο Δ	Inter	val for EQ	limit	Interval for Δ ELSD scale		
Males NK11+	lower	esti	upper	lower	median	upper	lower	median	upper
Weight_13	0.975	0.998	1.021	1.070	1.096	1.134	-0.263	-0.021	0.238
growthRate	0.998	1.007	1.015	1.021	1.031	1.041	-0.073	0.215	0.488
FeedMean	0.977	0.997	1.018	1.072	1.100	1.174	-0.234	-0.027	0.197
Haematology	Interval for ratio Δ			Inter	val for EQ	limit	Interval for ∆ ELSD scale		
Males NK11+	lower	esti	upper	lower	median	upper	lower	median	upper
WBC	0.958	1.069	1.193	1.464	1.657	2.402	-0.086	0.126	0.324
RBC	0.983	1.003	1.025	1.091	1.114	1.148	-0.163	0.032	0.209
HGB	0.976	0.993	1.010	1.078	1.099	1.146	-0.231	-0.073	0.107
HCT	0.984	1.003	1.023	1.090	1.112	1.148	-0.150	0.030	0.194
MCV	0.984	1.000	1.016	1.007	1.024	1.038	-2.000	-0.011	2.000
MCH	0.968	0.989	1.011	1.018	1.041	1.065	-0.960	-0.266	0.297
MCHC	0.980	0.990	1.001	1.022	1.033	1.052	-0.643	-0.306	0.017
PLT	0.970	1.051	1.139	1.592	1.760	2.014	-0.055	0.088	0.211
LYMA	0.950	1.067	1.198	1.424	1.609	2.237	-0.106	0.131	0.353
ClinChem	Inter	val for rati	ο Δ	Inter	val for EQ	limit	Interval for Δ ELSD scale		
Males NK11+	lower	esti	upper	lower	median	upper	lower	median	upper
ALP	0.892	0.985	1.087	1.300	1.419	1.589	-0.304	-0.042	0.249
ALT	0.905	0.969	1.037	1.186	1.263	1.385	-0.397	-0.132	0.161
AST	0.831	0.914	1.004	1.240	1.352	1.543	-0.603	-0.294	0.014
ALB	0.955	0.979	1.003	1.094	1.120	1.156	-0.378	-0.184	0.028
TP	0.976	0.995	1.015	1.067	1.087	1.115	-0.266	-0.058	0.178
Glu	0.957	1.024	1.096	1.291	1.388	1.648	-0.134	0.070	0.253
CHOL	0.912	0.971	1.034	1.217	1.307	1.622	-0.318	-0.103	0.126
TAG	0.984	1.112	1.256	1.811	2.184	4.324	-0.020	0.129	0.279
Crea	0.902	0.967	1.037	1.244	1.332	1.541	-0.333	-0.112	0.128
Urea	0.918	0.972	1.029	1.195	1.280	1.612	-0.322	-0.108	0.115
Ca	0.987	1.000	1.013	1.129	1.160	1.235	-0.086	0.000	0.086
Cl	0.984	0.993	1.002	1.101	1.123	1.170	-0.131	-0.059	0.021
K	0.957	1.003	1.052	1.205	1.263	1.353	-0.194	0.013	0.210
Na	0.994	1.000	1.006	1.112	1.136	1.185	-0.045	-0.001	0.044
Р	0.918	0.967	1.018	1.182	1.247	1.421	-0.361	-0.148	0.080

Appendix 8. Intervals for equivalence tests (continued)

		N	1ales NK	(33+ ver	sus Cont	rol			
Weights	Inter	val for rati	ίο Δ	Inter	val for EQ l	limit	Interva	l for Δ ELSI) scale
Males NK33+	lower	esti	upper	lower	median	upper	lower	median	upper
Weight_13	0.977	1.000	1.023	1.070	1.096	1.135	-0.259	-0.002	0.257
growthRate	0.989	0.997	1.006	1.021	1.031	1.041	-0.347	-0.084	0.210
FeedMean	1.005	1.026	1.048	1.072	1.100	1.173	0.047	0.262	0.486
Haematology	Inter	val for rati	ίο Δ	Inter	val for EQ l	limit	Interva	l for Δ ELSI) scale
Males NK33+	lower	esti	upper	lower	median	upper	lower	median	upper
WBC	0.978	1.091	1.217	1.464	1.657	2.399	-0.043	0.165	0.370
RBC	0.975	0.995	1.016	1.091	1.114	1.148	-0.215	-0.043	0.153
HGB	0.983	1.000	1.017	1.078	1.099	1.145	-0.183	-0.003	0.181
HCT	0.983	1.002	1.022	1.090	1.112	1.149	-0.160	0.021	0.189
MCV	0.991	1.007	1.023	1.007	1.024	1.039	-1.013	0.335	2.000
MCH	0.983	1.004	1.026	1.018	1.042	1.065	-0.542	0.102	0.765
MCHC	0.987	0.997	1.008	1.022	1.033	1.051	-0.390	-0.082	0.254
PLT	0.991	1.074	1.164	1.592	1.759	2.014	-0.017	0.126	0.252
LYMA	0.979	1.099	1.234	1.424	1.608	2.234	-0.045	0.191	0.420
ClinChem	Inter	val for rati	ίο Δ	Inter	val for EQ l	limit	Interva	for Δ ELSI) scale
Males NK33+	lower	esti	upper	lower	median	upper	lower	median	upper
ALP	0.924	1.020	1.126	1.298	1.419	1.589	-0.231	0.057	0.316
ALT	0.904	0.968	1.036	1.187	1.263	1.383	-0.402	-0.137	0.156
AST	0.862	0.947	1.040	1.240	1.352	1.540	-0.466	-0.177	0.133
ALB	0.979	1.003	1.028	1.094	1.120	1.156	-0.191	0.028	0.229
TP	0.985	1.004	1.024	1.067	1.087	1.115	-0.191	0.046	0.257
Glu	0.973	1.042	1.115	1.291	1.388	1.646	-0.083	0.121	0.306
CHOL	0.949	1.011	1.076	1.217	1.307	1.625	-0.199	0.038	0.256
TAG	0.890	1.006	1.136	1.808	2.183	4.366	-0.153	0.007	0.161
Crea	0.897	0.962	1.032	1.244	1.332	1.541	-0.350	-0.130	0.111
Urea	0.931	0.985	1.043	1.195	1.280	1.610	-0.269	-0.056	0.175
Ca	0.987	0.999	1.012	1.130	1.160	1.235	-0.086	-0.003	0.082
Cl	0.996	1.006	1.015	1.101	1.123	1.171	-0.033	0.047	0.118
К	0.974	1.022	1.071	1.204	1.263	1.352	-0.112	0.090	0.268
Na	0.999	1.004	1.010	1.112	1.136	1.186	-0.011	0.033	0.073
Р									

Appendix 8. Intervals for equivalence tests (continued)

	Females NK11- versus Control											
Weights	Inter	val for rati			val for EQ		Interva	l for Δ ELSI) scale			
Females NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
Weight_13	0.975	0.991	1.008	1.108	1.134	1.182	-0.185	-0.068	0.067			
growthRate	0.975	0.994	1.012	1.009	1.031	1.053	-2.000	-0.231	2.000			
FeedMean	1.002	1.026	1.050	1.093	1.126	1.214	0.015	0.208	0.401			
Haematology	Inter	val for rati	ίο Δ	Inter	val for EQ	limit	Interva	for Δ ELSI) scale			
Females NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
WBC	0.935	1.060	1.201	1.505	1.704	2.243	-0.123	0.106	0.311			
RBC	0.977	1.000	1.023	1.053	1.075	1.122	-0.325	-0.004	0.321			
HGB	0.980	0.994	1.009	1.053	1.069	1.095	-0.277	-0.083	0.137			
HCT	0.978	0.996	1.016	1.037	1.056	1.091	-0.387	-0.063	0.293			
MCV	0.989	1.001	1.014	1.027	1.038	1.053	-0.297	0.037	0.349			
MCH	0.980	1.000	1.020	1.041	1.059	1.083	-0.355	-0.001	0.354			
MCHC	0.986	0.998	1.010	1.013	1.026	1.038	-0.587	-0.084	0.445			
PLT	0.908	0.965	1.025	1.369	1.470	1.633	-0.228	-0.092	0.061			
LYMA	0.899	1.029	1.177	1.447	1.644	2.150	-0.214	0.055	0.298			
ClinChem	Inter	val for rati	ίο Δ	Inter	val for EQ	limit	Interva	l for Δ ELS[) scale			
Females NK11-	lower	esti	upper	lower	median	upper	lower	median	upper			
ALP	0.928	1.027	1.137	1.224	1.340	1.495	-0.261	0.091	0.405			
ALT	0.909	1.014	1.131	1.566	1.749	2.056	-0.171	0.025	0.202			
AST	0.908	1.003	1.108	1.389	1.524	1.755	-0.230	0.008	0.238			
ALB	0.953	0.994	1.036	1.168	1.215	1.277	-0.224	-0.033	0.180			
TP	0.966	0.990	1.015	1.155	1.197	1.327	-0.170	-0.053	0.077			
Glu	0.919	0.994	1.075	1.269	1.364	1.525	-0.258	-0.018	0.237			
CHOL	0.873	0.972	1.082	1.080	1.212	1.395	-0.935	-0.145	0.537			
TAG	0.863	0.969	1.088	1.862	2.147	2.832	-0.171	-0.041	0.106			
Crea	0.990	1.044	1.102	1.263	1.351	1.675	-0.030	0.138	0.300			
Urea	0.958	1.018	1.082	1.228	1.325	1.730	-0.151	0.059	0.253			
Ca	0.990	1.003	1.015	1.125	1.168	1.369	-0.062	0.015	0.087			
Cl	0.998	1.008	1.017	1.055	1.067	1.086	-0.023	0.117	0.241			
K	0.972	1.022	1.074	1.201	1.265	1.424	-0.118	0.089	0.273			
Na	0.999	1.008	1.016	1.052	1.065	1.092	-0.015	0.117	0.238			
Р	0.960	1.064	1.180	1.111	1.240	1.441	-0.201	0.286	0.852			

Appendix 8. Intervals for equivalence tests (continued)

		Fe	males N	IK33- ve	rsus Con	trol			
Weights	Inter	val for rati	ο Δ	Inter	val for EQ l	limit	Interva	l for Δ ELSI) scale
Females NK33-	lower	esti	upper	lower	median	upper	lower	median	upper
Weight_13	0.976	0.993	1.010	1.108	1.134	1.181	-0.173	-0.056	0.078
growthRate	0.972	0.990	1.009	1.009	1.029	1.052	-2.000	-0.359	0.955
FeedMean	0.987	1.010	1.034	1.093	1.125	1.215	-0.112	0.083	0.262
Haematology	Inter	val for rati	ο Δ	Inter	val for EQ l	limit	Interva	l for Δ ELSI) scale
Females NK33-	lower	esti	upper	lower	median	upper	lower	median	upper
WBC	0.908	1.027	1.162	1.505	1.704	2.256	-0.184	0.049	0.258
RBC	0.992	1.015	1.038	1.052	1.075	1.122	-0.106	0.195	0.485
HGB	0.993	1.007	1.022	1.053	1.069	1.095	-0.111	0.106	0.300
HCT	0.992	1.011	1.030	1.037	1.056	1.091	-0.150	0.192	0.517
MCV	0.981	0.993	1.005	1.027	1.038	1.053	-0.489	-0.189	0.137
MCH	0.974	0.993	1.012	1.041	1.059	1.083	-0.431	-0.125	0.215
MCHC	0.984	0.996	1.008	1.013	1.026	1.038	-0.645	-0.147	0.360
PLT	0.895	0.950	1.008	1.369	1.471	1.632	-0.270	-0.132	0.021
LYMA	0.887	1.013	1.156	1.448	1.645	2.151	-0.248	0.025	0.279
ClinChem	Inter	val for rati	ίο Δ	Inter	val for EQ l	limit	Interva	l for Δ ELS[) scale
Females NK33-	lower	esti	upper	lower	median	upper	lower	median	upper
ALP	0.931	1.028	1.136	1.225	1.340	1.495	-0.255	0.095	0.409
ALT	0.877	0.977	1.087	1.565	1.748	2.057	-0.214	-0.041	0.152
AST	0.980	1.081	1.192	1.388	1.525	1.758	-0.050	0.181	0.392
ALB	0.954	0.994	1.036	1.168	1.215	1.277	-0.222	-0.030	0.183
TP	0.969	0.993	1.017	1.155	1.197	1.323	-0.155	-0.038	0.094
Glu	0.879	0.949	1.025	1.269	1.364	1.528	-0.389	-0.166	0.079
CHOL	0.827	0.919	1.021	1.079	1.212	1.394	-1.445	-0.438	0.123
TAG	0.803	0.900	1.008	1.862	2.148	2.828	-0.269	-0.135	0.011
Crea	0.963	1.015	1.070	1.263	1.352	1.675	-0.126	0.048	0.203
Urea	0.951	1.010	1.072	1.228	1.325	1.727	-0.184	0.031	0.230
Ca	0.993	1.006	1.018	1.124	1.169	1.372	-0.043	0.033	0.105
Cl	0.999	1.009	1.018	1.055	1.067	1.086	-0.011	0.130	0.254
K	0.973	1.022	1.074	1.201	1.265	1.420	-0.116	0.092	0.277
Na	0.999	1.008	1.016	1.052	1.065	1.091	-0.015	0.117	0.239
Р	1.015	1.123	1.242	1.110	1.240	1.443	0.067	0.534	1.215

Appendix 8. Intervals for equivalence tests (continued)

		Fe	males N	K11+ ve	rsus Con	trol			
Weights	Inter	val for rati	ο Δ	Inter	val for EQ l	limit	Interva	l for Δ ELSI) scale
Females NK11+	lower	esti	upper	lower	median	upper	lower	median	upper
Weight_13	0.976	0.993	1.010	1.109	1.134	1.181	-0.176	-0.058	0.078
growthRate	0.970	0.988	1.006	1.009	1.029	1.053	-2.000	-0.448	0.362
FeedMean	0.984	1.008	1.032	1.093	1.125	1.216	-0.136	0.061	0.239
Haematology	Inter	val for rati	ο Δ	Inter	val for EQ l	limit	Interva	l for Δ ELSI) scale
Females NK11+	lower	esti	upper	lower	median	upper	lower	median	upper
WBC	0.856	0.969	1.096	1.505	1.705	2.267	-0.265	-0.059	0.174
RBC	0.988	1.011	1.034	1.053	1.075	1.123	-0.163	0.143	0.428
HGB	0.979	0.994	1.008	1.053	1.069	1.096	-0.285	-0.093	0.127
HCT	0.986	1.004	1.023	1.037	1.056	1.091	-0.273	0.076	0.401
MCV	0.982	0.994	1.006	1.027	1.038	1.053	-0.466	-0.166	0.157
MCH	0.964	0.983	1.002	1.041	1.059	1.084	-0.617	-0.289	0.043
MCHC	0.977	0.989	1.001	1.013	1.026	1.038	-0.983	-0.415	0.050
PLT	0.922	0.979	1.039	1.369	1.471	1.634	-0.190	-0.055	0.099
LYMA	0.832	0.949	1.083	1.448	1.644	2.143	-0.339	-0.102	0.163
ClinChem	Inter	val for rati	ίο Δ	Inter	val for EQ l	limit	Interva	l for Δ ELS[) scale
Females NK11+	lower	esti	upper	lower	median	upper	lower	median	upper
ALP	0.983	1.086	1.200	1.225	1.340	1.495	-0.059	0.278	0.608
ALT	0.829	0.922	1.027	1.565	1.749	2.058	-0.314	-0.143	0.047
AST	0.894	0.986	1.087	1.388	1.525	1.757	-0.249	-0.033	0.203
ALB	0.963	1.003	1.045	1.168	1.215	1.277	-0.198	0.016	0.216
TP	0.978	1.002	1.026	1.155	1.197	1.323	-0.123	0.010	0.136
Glu	0.931	1.005	1.086	1.269	1.364	1.528	-0.236	0.017	0.257
CHOL	0.809	0.899	0.999	1.079	1.212	1.394	-1.675	-0.551	-0.004
TAG	0.772	0.865	0.969	1.862	2.149	2.834	-0.323	-0.186	-0.040
Crea	1.000	1.054	1.111	1.262	1.351	1.682	0.001	0.169	0.334
Urea	0.962	1.021	1.084	1.228	1.325	1.732	-0.140	0.070	0.264
Ca	0.991	1.003	1.016	1.124	1.168	1.368	-0.059	0.019	0.091
Cl	1.001	1.011	1.020	1.055	1.067	1.086	0.021	0.161	0.289
K	0.955	1.003	1.054	1.201	1.266	1.423	-0.196	0.014	0.215
Na	1.000	1.009	1.017	1.052	1.065	1.092	0.005	0.138	0.260
Р	0.879	0.975	1.080	1.108	1.239	1.442	-0.651	-0.116	0.423

Appendix 8. Intervals for equivalence tests (continued)

	Females NK33+ versus Control												
Weights	Inter	val for rati	ίο Δ	Inter	val for EQ	limit	Interva	l for Δ ELSI) scale				
Females NK33+	lower	esti	upper	lower	median	upper	lower	median	upper				
Weight_13	0.977	0.994	1.011	1.109	1.134	1.180	-0.168	-0.050	0.085				
growthRate	0.970	0.988	1.007	1.009	1.029	1.053	-2.000	-0.440	0.389				
FeedMean	1.014	1.039	1.063	1.093	1.125	1.215	0.107	0.313	0.521				
Haematology	Inter	val for rati	ίο Δ	Inter	val for EQ	limit	Interva	l for Δ ELSI) scale				
Females NK33+	lower	esti	upper	lower	median	upper	lower	median	upper				
WBC	0.956	1.081	1.222	1.504	1.705	2.258	-0.085	0.142	0.351				
RBC	0.993	1.015	1.038	1.052	1.075	1.122	-0.098	0.203	0.498				
HGB	0.982	0.996	1.011	1.053	1.069	1.096	-0.251	-0.055	0.166				
HCT	0.989	1.008	1.027	1.037	1.056	1.091	-0.204	0.142	0.462				
MCV	0.981	0.993	1.005	1.027	1.038	1.053	-0.485	-0.184	0.140				
MCH	0.963	0.982	1.001	1.041	1.059	1.083	-0.647	-0.317	0.014				
MCHC	0.976	0.988	1.000	1.013	1.026	1.038	-1.055	-0.464	0.001				
PLT	0.958	1.017	1.081	1.369	1.471	1.634	-0.113	0.044	0.181				
LYMA	0.962	1.098	1.253	1.448	1.644	2.146	-0.076	0.183	0.430				
ClinChem	Inter	val for rati	ίο Δ	Inter	val for EQ	limit	Interva	for Δ ELSI) scale				
Females NK33+	lower	esti	upper	lower	median	upper	lower	median	upper				
ALP	0.932	1.030	1.138	1.224	1.340	1.494	-0.248	0.100	0.414				
ALT	0.980	1.091	1.215	1.564	1.748	2.056	-0.035	0.155	0.327				
AST	1.032	1.138	1.255	1.388	1.525	1.756	0.074	0.302	0.526				
ALB	0.943	0.982	1.023	1.168	1.215	1.278	-0.275	-0.092	0.119				
TP	0.970	0.993	1.017	1.155	1.197	1.324	-0.153	-0.036	0.096				
Glu	0.877	0.947	1.023	1.269	1.364	1.526	-0.396	-0.172	0.074				
CHOL	0.842	0.936	1.040	1.080	1.212	1.395	-1.250	-0.344	0.234				
TAG	0.853	0.956	1.071	1.860	2.148	2.821	-0.186	-0.058	0.089				
Crea	0.979	1.032	1.088	1.263	1.351	1.676	-0.071	0.099	0.256				
Urea	0.998	1.060	1.125	1.228	1.325	1.737	-0.005	0.195	0.410				
Ca	0.990	1.002	1.014	1.124	1.168	1.369	-0.066	0.012	0.085				
Cl	0.998	1.007	1.016	1.055	1.067	1.086	-0.036	0.103	0.227				
К	0.978	1.027	1.079	1.201	1.265	1.422	-0.096	0.110	0.295				
Na	1.000	1.009	1.017	1.052	1.065	1.091	0.003	0.136	0.258				
Р	0.969	1.072	1.186	1.109	1.240	1.446	-0.160	0.318	0.903				

Appendix 9. P-values for difference tests between GMO feeds and the control feed

Difference tests are based on log transformed cage means. P-values are given for Dunnett tests (Dunnet), for t-tests and for Wilcoxon signed rank tests (Wilcox). P-values smaller than 0.01/0.05 have a gold/yellow background.

Weights		NK11-			NK33-			NK11+		NK33+			
Males	Dunnet	t-test	Wilcox										
Weight_13	0.471	0.182	0.225	0.849	0.435	0.544	0.999	0.862	0.827	1.000	0.987	0.728	
growthRate	0.225	0.076	0.163	0.758	0.354	0.422	0.379	0.139	0.207	0.940	0.561	0.599	
FeedMean	0.858	0.444	0.565	0.432	0.163	0.093	0.997	0.800	0.942	0.055	0.016	0.020	
Haematology		NK11-			NK33-			NK11+			NK33+		
Males	Dunnet	t-test	Wilcox										
WBC	1.000	0.963	0.956	0.093	0.029	0.004	0.563	0.230	0.330	0.327	0.117	0.133	
RBC	0.909	0.510	0.648	0.989	0.720	0.956	0.992	0.744	0.729	0.977	0.661	0.898	
HGB	0.891	0.485	0.522	0.979	0.669	0.368	0.823	0.410	0.784	1.000	0.979	0.701	
HCT	0.820	0.407	0.409	1.000	0.949	0.812	0.991	0.735	0.475	0.998	0.813	0.596	
MCV	1.000	0.894	0.812	0.985	0.694	0.330	1.000	0.971	0.701	0.791	0.381	0.202	
MCH	1.000	0.947	0.985	0.888	0.481	0.430	0.705	0.316	0.409	0.985	0.696	0.622	
MCHC	0.989	0.719	0.498	0.823	0.410	0.498	0.188	0.062	0.058	0.961	0.609	0.729	
PLT	0.914	0.517	0.956	0.569	0.233	0.154	0.548	0.222	0.070	0.239	0.082	0.021	
LYMR	0.922	0.530	0.571	0.698	0.311	0.498	0.999	0.870	0.452	0.997	0.793	0.784	
LYMA	1.000	0.933	0.985	0.241	0.082	0.064	0.630	0.268	0.231	0.305	0.108	0.189	
ClinChem		NK11-			NK33-			NK11+			NK33+		
Males	Dunnet	t-test	Wilcox										
ALP	0.998	0.809	0.729	0.976	0.656	0.475	0.994	0.763	0.869	0.984	0.691	0.898	
ALT	0.997	0.796	0.898	0.559	0.227	0.090	0.766	0.361	0.261	0.743	0.343	0.277	
AST	1.000	0.995	0.784	0.899	0.495	0.430	0.183	0.060	0.143	0.603	0.252	0.349	
BIL	0.966	0.622	0.985	0.966	0.623	0.956	0.921	0.528	0.277	0.999	0.869	0.729	
ALB	0.652	0.281	0.245	0.908	0.508	0.475	0.261	0.090	0.044	0.997	0.791	0.784	
TP	0.997	0.800	0.841	0.782	0.373	0.430	0.965	0.620	0.622	0.983	0.685	0.674	
Glu	0.941	0.564	0.452	0.873	0.463	0.294	0.893	0.487	0.368	0.574	0.235	0.498	
CHOL	0.954	0.591	0.622	1.000	0.949	0.956	0.761	0.356	0.430	0.991	0.731	0.927	

TAG	0.402	0.150	0.083	0.362	0.132	0.189	0.256	0.088	0.165	1.000	0.927	0.756
Crea	0.258	0.089	0.177	0.457	0.176	0.123	0.745	0.344	0.409	0.643	0.276	0.349
Urea	0.214	0.072	0.189	0.599	0.250	0.154	0.716	0.323	0.312	0.960	0.607	0.409
cHGB	0.796	0.386	0.701	0.951	0.584	0.927	0.972	0.641	0.330	0.980	0.672	0.927
Ca	0.958	0.601	0.648	0.998	0.812	0.622	1.000	0.998	0.927	1.000	0.933	0.985
Cl	1.000	0.991	0.869	1.000	0.947	0.888	0.392	0.145	0.173	0.579	0.239	0.368
K	0.875	0.465	0.409	0.991	0.732	0.701	1.000	0.893	0.927	0.782	0.373	0.622
Na	0.991	0.737	1.000	0.549	0.225	0.258	1.000	0.974	0.856	0.370	0.138	0.156
Р	0.116	0.037	0.024	0.978	0.664	0.841	0.493	0.193	0.090	0.349	0.127	0.070
Urine		NK11-			NK33-			NK11+			NK33+	
Males	Dunnet	t-test	Wilcox									
uVol	0.999	0.870	1.000	0.135	0.044	0.232	0.960	0.608	0.922	0.978	0.666	1.000
uVolW	0.998	0.826	1.000	0.182	0.061	0.322	0.963	0.618	1.000	0.949	0.584	0.846
uLeu	0.994	0.757	0.854	0.112	0.036	0.206	0.994	0.757	0.850	0.542	0.220	0.387
uOsmoll	0.964	0.620	0.557	0.420	0.160	0.432	0.956	0.601	0.922	1.000	0.873	0.922
uKeton	0.965	0.622	0.726	0.120	0.038	0.148	0.975	0.655	0.726	0.912	0.518	0.483
upH	0.496	0.196	0.086	0.999	0.852	1.000	0.987	0.709	0.730	0.625	0.267	0.188

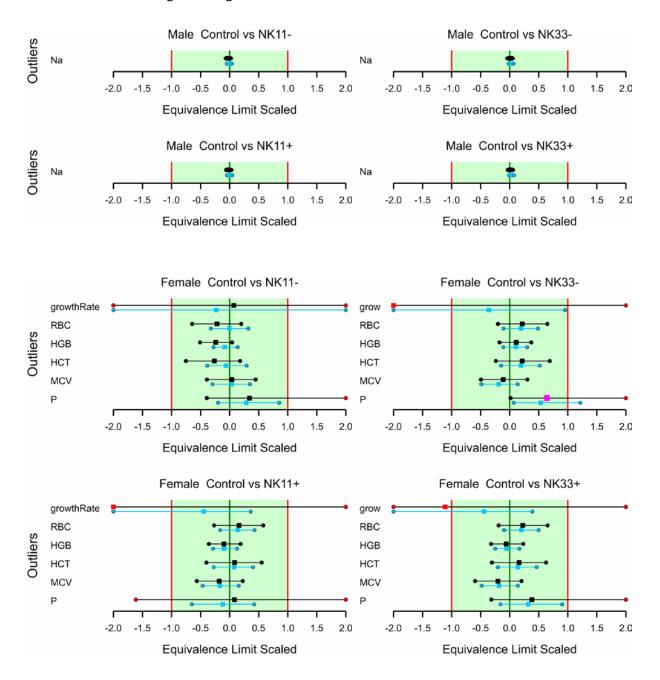
Weights		NK11-		NK33-				NK11+		NK33+			
Females	Dunnet	t-test	Wilcox										
Weight_13	0.710	0.318	0.385	0.824	0.409	0.461	0.807	0.394	0.728	0.869	0.456	0.368	
growthRate	0.908	0.506	0.385	0.690	0.304	0.201	0.496	0.194	0.168	0.526	0.209	0.256	
FeedMean	0.110	0.034	0.024	0.806	0.393	0.692	0.921	0.527	0.668	0.007	0.002	0.003	
Haematology		NK11-			NK33-			NK11+			NK33+		
Females	Dunnet	t-test	Wilcox										
WBC	0.761	0.356	0.258	0.979	0.667	0.927	0.961	0.607	0.674	0.533	0.213	0.368	
RBC	1.000	0.979	0.798	0.506	0.199	0.189	0.743	0.342	0.097	0.470	0.181	0.261	
HGB	0.866	0.453	0.623	0.724	0.328	0.097	0.806	0.393	0.165	0.962	0.610	0.596	
HCT	0.988	0.712	0.651	0.610	0.255	0.064	0.973	0.644	0.368	0.806	0.394	0.701	
MCV	0.998	0.815	0.798	0.592	0.245	0.294	0.688	0.303	0.430	0.603	0.251	0.430	

MCH 1.000 0.992 0.860 0.863 0.449 0.245 0.249 0.085 0.030 0.184 0.06 MCHC 0.990 0.724 0.258 0.921 0.528 0.261 0.236 0.080 0.048 0.157 0.05 PLT 0.590 0.243 0.123 0.260 0.089 0.114 0.881 0.470 0.388 0.945 0.57 LYMR 0.256 0.088 0.104 0.887 0.478 0.784 0.735 0.336 0.388 1.000 0.89 LYMA 0.981 0.675 0.374 0.999 0.850 0.898 0.847 0.433 0.409 0.429 0.16	0.083 0.709 0.841
PLT 0.590 0.243 0.123 0.260 0.089 0.114 0.881 0.470 0.388 0.945 0.57 LYMR 0.256 0.088 0.104 0.887 0.478 0.784 0.735 0.336 0.388 1.000 0.88	0.709 0.841
LYMR 0.256 0.088 0.104 0.887 0.478 0.784 0.735 0.336 0.388 1.000 0.89	0.841
IYMA 0.981 0.675 0.374 0.999 0.850 0.898 0.847 0.433 0.409 0.429 0.16	0.312
2111111 01302 01073 01371 01333 01030 01030 01103 01103 01123 01123	
ClinChem NK11- NK33- NK11+ NK33-	
Females Dunnet t-test Wilcox Dunnet t-test Wilcox Dunnet t-test Wilcox Dunnet t-te	t Wilcox
ALP 0.957 0.599 0.798 0.948 0.578 0.409 0.294 0.103 0.080 0.938 0.55	0.841
ALT 0.997 0.800 0.595 0.978 0.662 0.927 0.377 0.138 0.076 0.310 0.11	0.123
AST 1.000 0.954 0.984 0.333 0.119 0.133 0.995 0.774 0.674 0.036 0.01	0.027
BIL 0.478 0.185 0.490 0.728 0.331 0.622 0.879 0.469 0.498 1.000 0.90	7 0.841
ALB 0.994 0.759 0.829 0.996 0.780 0.522 1.000 0.884 0.927 0.793 0.38	0.546
TP 0.835 0.420 0.709 0.933 0.548 0.330 1.000 0.874 0.784 0.947 0.57	0.622
Glu 1.000 0.879 0.891 0.469 0.181 0.261 1.000 0.891 0.869 0.432 0.16	0.133
CHOL 0.957 0.597 0.465 0.318 0.113 0.123 0.147 0.047 0.058 0.532 0.21	0.277
TAG 0.953 0.588 0.798 0.205 0.068 0.030 0.045 0.013 0.064 0.844 0.42	0.498
Crea 0.315 0.112 0.145 0.945 0.571 0.368 0.153 0.049 0.040 0.586 0.24	0.349
Urea 0.938 0.557 0.515 0.993 0.753 0.812 0.893 0.487 0.231 0.177 0.05	0.048
cHGB 0.915 0.518 0.709 0.175 0.057 0.177 0.204 0.068 0.036 0.966 0.62	0.927
Ca 0.982 0.681 0.760 0.779 0.370 0.330 0.955 0.593 0.812 0.992 0.73	0.927
CI 0.299 0.105 0.156 0.202 0.067 0.030 0.081 0.025 0.103 0.390 0.14	0.154
K 0.806 0.393 0.374 0.781 0.372 0.261 1.000 0.890 0.869 0.655 0.28	0.452
Na 0.258 0.089 0.055 0.240 0.082 0.015 0.131 0.041 0.016 0.141 0.04	0.024
P 0.566 0.230 0.210 0.082 0.025 0.008 0.965 0.620 0.418 0.462 0.17	0.202
Urine NK11- NK33- NK11+ NK33-	
Females Dunnet t-test Wilcox Dunnet t-test Wilcox Dunnet t-test Wilcox Dunnet t-test	t Wilcox
uVol 0.980 0.673 0.820 0.485 0.190 0.160 0.791 0.383 0.375 0.582 0.24	0.232
uVolW 0.987 0.706 0.910 0.539 0.217 0.232 0.675 0.297 0.275 0.559 0.22	0.275
uLeu 0.964 0.620 0.824 0.994 0.758 0.713 0.994 0.758 0.830 0.927 0.53	0.346
uOsmoll 0.954 0.593 0.820 0.547 0.222 0.232 0.406 0.152 0.084 0.260 0.09	0.084
uKeton 1.000 0.920 1.000 0.936 0.556 0.679 0.110 0.035 0.054 0.761 0.35	0.341
upH 0.227 0.077 0.054 0.999 0.871 0.931 0.728 0.333 0.254 0.999 0.87	0.672

Appendix 10. Tests for normality and homogeneity of variance

P-values for the Shapiro-Wilks (SW) normality test are given separately for each feeding group, and also for the ANOVA residuals. In addition P-values for Bartlett and Levene test for homogeneity of variance are given. P-values smaller than 0.01/0.05 have a gold/yellow background.

Male Weights	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
Weight_13	0.806	0.770	0.290	0.043	0.739	0.894	0.800	0.602
growthRate	0.719	0.998	0.233	0.662	0.614	0.440	0.054	0.251
FeedMean	0.419	0.467	0.584	0.806	0.944	0.529	0.492	0.377
Male Haematology	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
WBC	0.121	0.526	0.872	0.334	0.156	0.464	0.028	0.004
RBC	0.225	0.721	0.879	0.535	0.059	0.533	0.910	0.742
HGB	0.650	0.808	0.730	0.707	0.405	0.847	0.916	0.932
НСТ	0.887	0.645	0.285	0.330	0.565	0.315	0.720	0.734
MCV	0.003	0.015	0.252	0.442	0.051	0.029	0.832	0.898
MCH	0.283	0.243	0.714	0.944	0.044	0.002	0.646	0.944
MCHC	0.987	0.194	0.090	0.836	0.341	0.255	0.331	0.652
PLT	0.253	0.141	0.002	0.293	0.456	0.364	0.039	0.523
LYMR	0.012	0.874	0.287	0.395	0.245	0.070	0.046	0.100
LYMA	0.088	0.374	0.431	0.195	0.137	0.780	0.115	0.105
Male ClinChem	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
ALP	0.504	0.641	0.836	0.081	0.468	0.960	0.408	0.466
ALT	0.297	0.850	0.638	0.482	0.781	0.329	0.251	0.367
AST	0.209	0.016	0.392	0.149	0.135	0.649	0.221	0.059
BIL	0.002	0.122	0.000	0.001	0.001	0.001	0.337	0.739
ALB	0.225	0.274	0.557	0.982	0.949	0.536	0.080	0.063
TP	0.398	0.719	0.413	0.468	0.848	0.538	0.205	0.085
Glu	0.580	0.220	0.148	0.855	0.405	0.328	0.894	0.548
CHOL	0.078	0.671	0.629	0.560	0.514	0.206	0.953	0.906
TAG	0.998	0.553	0.823	0.303	0.245	0.843	0.609	0.330
Crea	0.458	0.228	0.482	0.143	0.670	0.336	0.954	0.990


Urea	0.935	0.599	0.547	0.112	0.326	0.455	0.095	0.124
cHGB	0.412	0.850	0.059	0.096	0.036	0.306	0.591	0.767
Ca	0.496	0.665	0.738	0.775	0.004	0.079	0.968	0.933
Cl	0.190	0.273	0.452	0.664	0.850	0.308	0.071	0.016
K	0.002	0.112	0.003	0.012	0.000	0.001	0.267	0.449
Na	0.218	0.302	0.718	0.738	0.810	0.611	0.148	0.190
Р	0.747	0.804	0.498	0.911	0.475	0.827	0.068	0.093
Male Urine	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
Male Urine uVol	SW Control 0.937	SW NK11- 0.179	SW NK33- 0.799	SW NK11+ 0.749	SW NK33+ 0.086	SW residual 0.806	Bartlett 0.235	Levene 0.302
uVol	0.937	0.179	0.799	0.749	0.086	0.806	0.235	0.302
uVol uVolW	0.937 0.899	0.179 0.062	0.799 0.795	0.749 0.694	0.086 0.032	0.806 0.572	0.235 0.694	0.302 0.621
uVol uVolW uLeu	0.937 0.899 0.001	0.179 0.062 0.000	0.799 0.795 0.124	0.749 0.694 0.001	0.086 0.032 0.006	0.806 0.572 0.787	0.235 0.694 0.877	0.302 0.621 0.674

Female Weights	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
Weight_13	0.852	0.884	0.992	0.679	0.392	0.326	0.823	0.784
growthRate	0.659	0.140	0.073	0.401	0.023	0.381	0.814	0.984
FeedMean	0.670	0.572	0.142	0.327	0.324	0.725	0.644	0.704
Female Haematology	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
WBC	0.551	0.013	0.739	0.975	0.687	0.635	0.064	0.049
RBC	0.940	0.145	0.017	0.807	0.119	0.343	0.780	0.972
HGB	0.012	0.978	0.013	0.011	0.102	0.349	0.984	0.968
НСТ	0.349	0.593	0.136	0.629	0.236	0.319	0.139	0.317
MCV	0.006	0.840	0.190	0.513	0.000	0.109	0.407	0.438
MCH	0.001	0.000	0.001	0.000	0.935	0.078	0.614	0.914
MCHC	0.124	0.000	0.027	0.001	0.252	0.003	0.254	0.875
PLT	0.369	0.984	0.843	0.146	0.577	0.279	0.797	0.968
LYMR	0.187	0.285	0.059	0.178	0.512	0.022	0.265	0.230

LYMA	0.770	0.099	0.429	0.780	0.082	0.521	0.665	0.843
Female ClinChem	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
ALP	0.450	0.018	0.075	0.819	0.275	0.009	0.249	0.403
ALT	0.284	0.044	0.420	0.161	0.208	0.069	0.243	0.422
AST	0.447	0.379	0.735	0.763	0.410	0.013	0.547	0.253
BIL	0.293	0.305	0.001	0.061	0.171	0.016	0.291	0.810
ALB	0.998	0.130	0.385	0.049	0.048	0.812	0.058	0.075
TP	0.676	0.048	0.561	0.938	0.608	0.811	0.487	0.650
Glu	0.957	0.055	0.058	0.701	0.857	0.007	0.125	0.441
CHOL	0.975	0.106	0.545	0.923	0.798	0.856	0.528	0.720
TAG	0.249	0.253	0.056	0.863	0.600	0.416	0.130	0.210
Crea	0.043	0.763	0.832	0.279	0.020	0.342	0.628	0.695
Urea	0.620	0.377	0.596	0.984	0.429	0.137	0.100	0.055
cHGB	0.919	0.128	0.019	0.382	0.820	0.971	0.170	0.368
Ca	0.904	1.000	0.076	0.162	0.744	0.452	0.826	0.399
Cl	0.190	0.256	0.162	0.341	0.264	0.004	0.201	0.164
K	0.390	0.060	0.007	0.001	0.223	0.161	0.423	0.432
Na	0.386	0.665	0.822	0.036	0.371	0.488	0.737	0.817
Р	0.070	0.272	0.131	0.722	0.000	0.232	0.185	0.600
Female Urine	SW Control	SW NK11-	SW NK33-	SW NK11+	SW NK33+	SW residual	Bartlett	Levene
uVol	0.014	0.534	0.374	0.937	0.224	0.854	0.669	0.404
uVolW	0.357	0.226	0.145	0.891	0.072	0.928	0.495	0.317
uLeu	0.002	0.000	0.001	0.001	0.000	0.114	0.632	0.307
uOsmoll	0.204	0.701	0.359	0.917	0.550	0.856	0.556	0.437
uKeton	0.000	0.000	0.000	0.086	0.002	0.180	0.214	0.101
upH	0.042	0.012	0.328	0.074	0.008	0.481	0.240	0.189

Appendix 11. Statistical analysis of data including outliers

For male animals there are outlying values for Na (2×), while for females there are outlying values for growthRate (3×), RBC (1×), HGB (1×), HCT (1×), MCV (1×), BIL (2×), cHGB (2×) and P (1×); see Table 6 for a list of outliers. The results of the equivalence tests, using the historical GRACE data, are given below; the black lines are for the analysis including outliers while the blue lines are for the analysis without outliers as in Figure 5 - Figure 8.

Results of the classical analysis without and with outliers are given in the tables below. Note that the top tables are identical to the values in Table 12 and Table 13.

G-TwYST Study A Statistical report month 3 appendices

Without Outliers	Control		NK11-			NK33-			NK11+			NK33+		
Males	Mean	CV	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig	Mean	CV	Sig
Na	145.6	2.3	145.5	1.5		146.1	1.3		145.6	1.5		146.2	1.6	
With Outliers	Con	trol		NK11-			NK33-			NK11+			NK33+	
With Outliers Males	Con Mean	trol CV	Mean	NK11- CV	Sig	Mean	NK33- CV	Sig	Mean	NK11+	Sig	Mean	NK33+	Sig

Without Outliers	Control		NK11-			NK33-			NK11+			NK33+		
Females	Mean	CV	Mean	CV	Sig									
growthRate	0.195	20.8	0.189	25.9		0.185	25.4		0.183	23.2		0.184	25.1	
RBC	7.618	4.3	7.618	4.0		7.731	4.6		7.697	3.7		7.734	4.8	
HGB	15.51	3.8	15.42	3.4		15.61	3.7		15.41	3.4		15.44	3.3	
НСТ	44.41	2.9	44.23	3.1		44.89	2.3		44.60	2.5		44.78	3.9	
MCV	58.41	3.9	58.38	2.6		57.97	3.3		58.01	2.6		57.97	3.0	
BIL	6.360	16.2	5.888	15.0		6.875	29.5		6.145	22.1		6.387	19.9	
cHGB	72.05	26.2	68.40	19.9		85.25	39.1		61.89	19.2	W	72.43	25.0	
Р	1.780	18.8	1.865	13.7		2.002	16.2	tW	1.765	24.5		1.957	32.9	
With Outliers	Control		NK11-			NK33-			NK11+			NK33+		
Females	Mean	CV	Mean	CV	Sig									
growthRate	0.195	20.8	0.195	35.0		0.185	25.4		0.183	23.2		0.189	28.5	
RBC	7.618	4.3	7.534	5.4		7.731	4.6		7.697	3.7		7.734	4.8	
HGB	15.51	3.8	15.30	4.7		15.61	3.7		15.41	3.4		15.44	3.3	
НСТ	44.41	2.9	43.89	4.4		44.89	2.3		44.60	2.5		44.78	3.9	
MCV	58.41	3.9	58.38	2.6		58.17	3.8		58.01	2.6		57.97	3.0	
BIL	7.033	43.7	5.888	15.0		7.072	40.2		6.145	22.1		6.387	19.9	
cHGB	83.36	64.2	68.40	19.9		92.32	63.4		61.89	19.2	tw	72.43	25.0	
Р	1.780	18.8	1.865	13.7		2.002	16.2	tW	1.865	32.9		1.957	32.9	

Conclusion: for males there are no difference between the analysis with and without outliers. For females there are hardly any differences; only for P equivalence cannot be established for any of the GM feeding groups.