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Abstract 12 

Besides their unique ability to depolymerize cell wall components, white-rot fungi are 13 

known to assimilate nitrogenous compounds from substrates. This modification may 14 

change protein solubility and fermentation in the rumen. To investigate this, the crude 15 

protein (CP) in fungal treated wheat straw (3 fungal species, 2 strains each) was fractioned 16 

according to the Cornell Net Carbohydrate and Protein System (CNCPS) and assessed 17 

for in vitro protein fermentation using a modified gas production technique (IVGPN). 18 

Results showed that fungi increased fraction A (instantaneously soluble CP; ~2.6 times) 19 

and B1 (rapidly degradable; ~1.2 times); and decreased the slowly degradable fraction B3 20 

(~41.6%) and unavailable fraction C (~48.3%). The IVGPN of straw treated with 21 

Ceriporiopsis subvermispora strains were not different to the control, but increased by 22 

30.2 to 47.1% in Pleurotus eryngii and Lentinula edodes strains. The IVGPN was 23 

significantly (P < 0.01) correlated to all fractions of CP, except fraction B1 and B2 24 

(intermediately degradable). All fungi also increased the arginine (~56%) and lysine 25 

(~15%) contents. This study shows the importance of assessing the protein solubilization 26 

by different fungal strains, which can uncover unique mechanisms in the cell wall 27 

depolymerization. 28 

 29 

Keywords: White-rot fungi; different strains/species; protein fractionation; in vitro gas 30 

production; wheat straw; ruminant feed.  31 
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1. Introduction 32 

In recent years, white-rot fungi such as Ceriporiopsis subvermispora and Lentinula 33 

edodes, have been studied for their ability to improve the degradability of agricultural 34 

biomass in ruminants (Tuyen et al., 2013; Van Kuijk et al., 2015a). These reports 35 

demonstrate clearly that these fungi are able to modify cell wall properties by selectively 36 

degrading lignin and increase the amount of potentially fermentable structural 37 

carbohydrates. However, little attention has been paid to the effect of the fungal 38 

pretreatment on other nutrients in the biomass, particularly protein. Literature shows an 39 

increase of total protein content in fungal-treated biomass (Arora and Sharma, 2011; 40 

Sharma and Arora, 2010). Although the protein content in biomass such as wheat straw 41 

is low (~16.1 g/kg on dry matter basis) (Nayan et al., 2018), the knowledge on fungal 42 

modification of protein availability and solubility is useful and can be applied on various 43 

biomasses and even forages. Fungi are known for their capabilities in assimilating 44 

nitrogen (N) from the substrate (Davis and Wong, 2010). Although ammonium and 45 

glutamine are their preferred nitrogenous compounds, fungi can also use N from various 46 

other sources, such as nitrate, urea and amines, to synthesize protein (Tudzynski, 2014). 47 

We hypothesize that the modification and assimilation of nitrogenous compounds by 48 

fungi may change the solubility and availability of protein in the wheat straw for rumen 49 

microbes. 50 

Rumen microbes are able to degrade protein from the feed or directly use ammonia 51 

and other non-protein nitrogen (NPN) compounds to synthesize microbial N. Utilization 52 

of protein from the feed, however, depends on varying proportions of its soluble and 53 

insoluble fractions. Different fractions of crude protein in feed have been estimated using 54 

the Cornell Net Carbohydrate and Protein System (CNCPS) (Licitra et al., 1996; Sniffen 55 

et al., 1992). This method allows partitioning of feed protein into five fractions: Non-56 

protein nitrogen (NPN; fraction A), available true protein (fraction B1, B2 and B3) and 57 

unavailable protein (fraction C), which are different in their inherent rates of degradation 58 

in the rumen. Fraction A and B1 are rapidly degraded, while fraction B2 is fermented at 59 

lower rates and can escape the rumen. Fraction B3 is degraded more slowly due to its 60 

association with cell walls and a large proportion escapes the rumen. Fraction C is highly 61 

resistant to breakdown in the rumen.  62 

Characterization of the rumen fermentability of the protein fraction in fungal-treated 63 

wheat straw has hitherto not been studied. There are a number of in vitro techniques to 64 

estimate rumen protein fermentation, including enzymatic techniques (Aufrère et al., 65 
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1991; Cone et al., 2004). A modified in vitro gas production technique has also been used 66 

to estimate protein fermentation characteristics in the rumen (Cone et al., 2009) and large 67 

intestine of pigs (Cone et al., 2005). Cone et al. (2009) concluded that there was a good 68 

relationship (R2= 0.85) between the gas production data and the amount of rumen escape 69 

protein determined with the nylon bag technique. In brief, the modified technique 70 

involves a pre-incubation of diluted rumen fluid with rapidly fermentable carbohydrates 71 

in a N-free buffer medium. The approach ensures N to be the limiting factor for microbial 72 

growth, so that the subsequent fermentation (and gas production) depend on the 73 

availability of N in the samples.  74 

To test the above-mentioned hypothesis, this study aimed to: (1) study the 75 

solubilization of the crude protein content, using the Net Carbohydrate and Protein 76 

System; (2) evaluate the protein fermentation characteristics, using a modified gas 77 

production technique as described by Cone et al. (2009); and (3) determine the changes 78 

in the amino acid composition of the wheat straw, treated with different fungal strains. 79 

 80 

2. Materials and Methods 81 

2.1. Preparation of the fungal-treated wheat straw 82 

The fungal-treated samples used in the present study were part of a previous 83 

experiment (Nayan et al., 2018) where selection of the best performing fungal strains to 84 

improve the nutritive value of wheat straw was studied. Two high potential strains from 85 

three different fungal species, based on in vitro degradability in rumen fluid, were selected 86 

for the present study: CS1 (CBS 347.63) and CS12 (ME-485) strains of Ceriporiopsis 87 

subvermispora; PE3 (Mycelia2600) and PE6 (AL04) of Pleurotus eryngii and LE8 (sh 88 

03/08) and LE10 (LE75) of Lentinula edodes. A detailed procedure for fungal strain 89 

preparation and pretreatment of the wheat straw has been previously described (Nayan et 90 

al., 2017). In brief, all strains were grown on malt extract agar and a part of the fungal 91 

colony was used as an inoculum to prepare the spawn for each fungus on autoclaved 92 

sorghum grains. The inoculated grains was incubated at 24°C until a complete 93 

colonization for 4 to 5 weeks. Wheat straw was chopped into approximately 3 cm pieces 94 

and soaked in water for 3 days at room temperature. After draining the excess water, the 95 

straw was distributed into 2.1 L micropropagation containers (Combiness, Nevele, 96 

Belgium). After autoclaving at 121°C for 1 h, the straw was inoculated with the prepared 97 

spawn at 10% of the dry weight of the straw in the container. The wheat straw was 98 

incubated in triplicate at 24°C for 7 weeks in a climate-controlled chamber. After the 99 
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incubation, all samples were freeze-dried and ground over a 1 mm sieve, using a cross 100 

beater mill (100AN, Peppink, Olst, the Netherlands).  101 

2.2. Crude protein fractionation 102 

Crude protein (CP) fractionation was performed according to procedures described 103 

by Licitra et al. (1996), with modifications. Samples were analyzed for total N by Kjeldahl 104 

analysis (ISO 5983, 2005) and crude protein was calculated as N × 6.25. The non-protein 105 

nitrogen (NPN) was obtained by precipitation of true protein in the sample with 10% 106 

(w/v) trichloroacetic acid (TCA) for 30 min. After washing 2 times with TCA, the N 107 

content in the residues was determined and the NPN was calculated by subtracting 108 

residual N from total N. The soluble N was determined by incubating the samples with 109 

phosphate-borate buffer (containing 13.79 g/l NaH2PO4∙2H2O and 8.91 g/l 110 

Na2B4O7∙10H2O at pH 6.8) at 37°C for 3 h. After incubation, the samples were filtered 111 

(Whatman 541, Maidstone, UK) and residual N was determined to yield the insoluble N 112 

fraction. The CP contents were presented as absolute amounts, i.e. g per 100 g of starting 113 

organic matter (OM). The absolute amount was calculated from the remaining amount 114 

(g) of freeze-dried sample, which was corrected for the dry matter content. Neutral 115 

detergent insoluble nitrogen (NDIN) and acid detergent insoluble nitrogen (ADIN) were 116 

determined by N analysis of the neutral detergent fiber (NDF) and acid detergent fiber 117 

(ADF) residues (Van Soest et al., 1991), respectively. All five fractions in Cornell Net 118 

Carbohydrate and Protein System (CNCPS) were expressed as a percentage of total CP 119 

and were calculated according to Sniffen et al. (1992). These fractions are illustrated in 120 

Fig. 1.  121 

2.3. Modified in vitro gas production  122 

The modified in vitro gas production technique (IVGPN) was performed according to 123 

the procedures described by Cone et al. (2009). Rumen fluid was collected from non-124 

lactating cows, fed concentrate and grass silage ad libitum. The N-free buffer/mineral 125 

solution contained 10.03 g/l NaHCO3, 1.43 g/l Na2HPO4, 1.55 g/l KH2PO4, 0.15 g/l 126 

MgSO4·7H2O, 0.52 g/l Na2S, 0.017 g/l CaCl2·2H2O, 0.015 g/l MnCl2·4H2O, 0.002 g/l 127 

CoCl3·6H2O, 0.012 g/l FeCl3·6H2O and 0.125 mg/l resazurin. The rumen fluid was 128 

diluted 1:19 with buffer/mineral solution to minimize the N input from the rumen fluid. 129 

The buffered rumen fluid was pre-incubated with 10 g/l rapidly fermentable 130 

carbohydrates, consisting of 3.33 g/l glucose, 3.33 g/l xylose and 3.33 g/l soluble starch, 131 

for 5 h at 37°C in a 5 L bottle, under continuous flushing with CO2. During this pre-132 

incubation, all available N from the rumen fluid was incorporated into bacterial N 133 
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components in order to make N limiting for microbial growth. The pre-incubation was 134 

also carried out in four 250-ml bottles connected to the gas production equipment for 135 

recording the gas production data. After 5 h of pre-incubation, 60 ml of buffered rumen 136 

fluid, together with the excess carbohydrates, was added to the bottles with pre-weighed 137 

samples containing exactly 5 mg of N (sample DM weight ranged from 1.4 to 2.2 g). 138 

Samples were incubated for 72 h and the gas production data were registered 139 

automatically. At the end of the incubation, a sample of rumen fluid from each bottle (600 140 

µl) was mixed with 10% trichloroacetic acid (TCA) to determine the ammonia-N (NH3-141 

N) content spectrophotometrically at 623 nm. The kinetic parameters were determined by 142 

fitting the gas production data to a monophasic model (Groot et al., 1996).  143 

2.4. Chemical composition and amino acids determination 144 

Samples were dried for 4 h in an oven at 103°C to determine the dry matter (DM) 145 

content (ISO 6496, 1999) with ash content determined after combustion at 550°C for 3 h 146 

in a muffle furnace (ISO 5984, 2002). The fiber contents – exclusive of residual ash, were 147 

determined using Van Soest et al. (1991), with modification. Neutral detergent fiber 148 

(aNDFom) was determined using a heat-stable amylase (thermamyl) and alcalase. Acid 149 

detergent fiber (ADFom) and acid detergent lignin (solubilize cellulose with sulphuric 150 

acid; lignin-(sa)), were also determined using the standard method. Amino acids were 151 

analyzed using the standard AOAC method (AOAC, 2000). The protein in the samples 152 

were hydrolyzed with 6 M hydrochloric acids before the individual amino acid 153 

composition was separated, detected and quantified using high performance liquid 154 

chromatography (HPLC). Tryptophan was not determined. No corrections were made for 155 

amino acid loss during hydrolysis, and amino acid weights were calculated using free 156 

amino acid molecular weights. 157 

2.5. Statistics 158 

Data were analyzed by two-way analysis of variance using the general linear model 159 

in SAS 9.3, followed by post-hoc multiple comparison using least significance 160 

differences. The statistical model used was as follows: 161 

Υijk = μ + SPi + STj(i) + τk(i j) + εijk 162 

where Υijk = response variable ijk, μ = overall mean, SPi = the effect of species i, STj(i) = 163 

the effect of strain j nested within species i, τk(i j) = effect of week k, and  εijk = residual 164 

error with a mean of 0 and variance σ2. SPi was considered a fixed effect, STj(i) and τk(i j) 165 

as random effects. Probability values below 5% were considered significant. Pearson 166 



7 
 

Product-Moment Correlation (r) coefficients were also determined among the measured 167 

variables. 168 

 169 

3. Results  170 

3.1. Chemical composition and fractionation of crude protein 171 

Table 1 summarizes the chemical composition and the fractionation of CP in wheat 172 

straw, treated with different fungal strains. The untreated, autoclaved wheat straw 173 

contained 87.2 ± 0.3 g of organic matter (g) per container. All CP fractionation data are 174 

presented per 100 g of the starting OM. Fungal pretreatment caused a 1.6 to 7.3% decrease 175 

in the total amount of OM by the end of the colonization weeks. The fiber contents were 176 

noticeably lower in all fungal-treated wheat straws, particularly the lignin-(sa) content 177 

which were decreased by 48.5% in CS1-treated straw. After 7 weeks of colonization, the 178 

total amount of CP when expressed per unit starting OM was significantly (P < 0.001) 179 

increased by 23.3 to 30.9% in the fungal-treated wheat straw, compared to the control. 180 

The amount of true protein was lower in straw treated with P. eryngii and L. edodes strains 181 

compared to the control, with the true protein content in PE6-treated straw being 182 

significantly (P = 0.003) lower. CS1 and CS12-treated straw had a significantly (P < 0.01) 183 

higher amount of true protein, compared to the control. On the other hand, the amount of 184 

NPN was significantly (P < 0.01) higher using P. eryngii and L. edodes strains, compared 185 

to C. subvermispora strains. All fungal-treated wheat straw had a significantly (P < 0.001) 186 

higher amount of NPN than the control, except for the CS12-treated straw. 187 

Wheat straw treated with P. eryngii and L. edodes strains were significantly (P < 0.01) 188 

lower in the amount of buffer insoluble protein, compared to C. subvermispora strains. 189 

Contrarily, P. eryngii and L. edodes strains were higher (P < 0.01) in buffer soluble 190 

protein than C. subvermispora strains. All fungal-treated straw contained a higher (P < 191 

0.01) amount of available protein compared to the control. The amount of protein bound 192 

to the cell wall was significantly (P < 0.05) decreased in fungal-treated wheat straw. The 193 

solubilization of the cell wall bound protein resulted in an overall increase of soluble 194 

fractions (A and B1), while the protein fractions related to cell wall (B3 and C) were 195 

decreased by fungal pretreatment. 196 

3.2. In vitro gas production 197 

The IVGP during the 5 h pre-incubation with easily fermentable carbohydrates is 198 

shown in Fig. 2. A rapid increase of IVGP at a rate of 4.9 ml/ h during the first hour was 199 

observed. The rate of IVGP then slowed down to 1.35 ml/h from 2 to 4 h and to 0.9 ml/h 200 
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after 4 h. After 5 h of pre-incubation, the buffered rumen fluid was transferred to the gas 201 

production unit and the 72 h incubation with the samples started. The uncorrected gas 202 

production profiles for all treatments are also shown in Fig. 3. The blanks (N-free buffered 203 

rumen fluid with the remaining of fermentable carbohydrates) maintained a gas 204 

production lower than 10 ml for the first 18 h of incubation. Nonetheless, the gas 205 

production continued in blanks and reached a total IVGP of 34.5 ml after 72 h. Ammonia-206 

N (NH3-N) was below a detectable amount in all samples of rumen fluid for all treatments 207 

after 72 h of incubation. 208 

The corrected gas production profiles (IVGPN) and their kinetic parameters are 209 

summarized in Table 2. The IVGPN of wheat straw treated with P. eryngii and L. edodes 210 

strains was significantly (P < 0.05) higher than with C. subvermispora strains. 211 

Differences in the IVGPN between wheat straw treated with the C. subvermispora strains 212 

and the control were not significant. The IVGPN of CS12-treated straw was even lower 213 

than that of the control, although not significant. The kinetics data showed an overall 214 

better fermentation profile in all fungal-treated wheat straw as indicated by parameters B 215 

(half-time of maximum gas production) and Rm (maximum fractional rate of degradation) 216 

values. 217 

3.3. Changes in amino acids composition 218 

Glutamic acid (Glu), aspartic acid (Asp), histidine (His), alanine (Ala) and glycine 219 

(Gly) were the main amino acids (AAs) present in the untreated (control) wheat straw 220 

(Table 3). Overall, there were no marked changes in the total AA–N content when 221 

expressed on a CP basis, except for PE3-treated straw which showed a significantly (P < 222 

0.05) lower total AA-N content. PE3 significantly (P < 0.01) decreased the total essential 223 

AAs of the straw by 14.1%. However, all fungi did not cause any significant changes in 224 

the non-essential AA content of the straw, although relative decreases were observed in 225 

all samples. The changes in the composition of each AA were mostly species-dependent. 226 

The strain effect was only significant (P < 0.05) for His and methionine (Met). Threonine 227 

(Thr), Asp and proline (Pro), however, were not affected by fungal pretreatment. All fungi 228 

significantly (P < 0.05) increased the arginine (Arg) content of the wheat straw (~56%), 229 

but decreased (P < 0.001) the Gly content (~19%). Ala was decreased (P < 0.05) in wheat 230 

straw treated with CS1 (9%), P. eryngii (~15%) and L. edodes strains (~11%). Glu and 231 

Asp contents of the fungal-treated straw were not different to the control.   232 

 233 

4. Discussion 234 
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The present study encompasses two main parts: (1) fractionation of crude protein 235 

content in fungal-treated wheat straw; and (2) in vitro assessment of protein availability 236 

for the fermentation in the rumen. Results show that fungal colonization leads to an 237 

increase in the total amount of CP. An increase in the absolute amount of CP suggests an 238 

increase of N in the pre-treated straw. This observation needs a further clarification as it 239 

is generally accepted that white-rot fungi are unable to fix atmospheric N and only acquire 240 

N bound in biomolecules. In nature, fungi utilize fixed atmospheric N through their 241 

symbiotic interactions with nitrogen-fixing bacteria and mycorrhizal fungi (Kneip et al., 242 

2007). Since the straw was sterilized, bacteria cannot play a role in N fixation. The 243 

increase in the absolute amount of CP can be attributed to the spawn that was prepared 244 

on sorghum grains, which contains ~12% of crude protein (Neucere and Sumrell, 1980). 245 

The enrichment of the CP content is also due to the expense of other nutrients (Van Kuijk 246 

et al., 2015c). Degraded carbohydrates are converted into fungal biomass and into CO2 247 

leading to a concentration of N content. Due to the quantitative differences in the absolute 248 

amounts of CP (control vs. fungal-treated straw), the fractions are expressed on CP basis 249 

to allow comparison among different treatments. 250 

There was no quantitative difference in the total amount of CP among fungal 251 

treatments. However, the fractionation of the CP provides a unique insight into the 252 

solubilization of protein by different fungal strains. Fungi increased the amount of NPN 253 

(fraction A) of the treated straw. The increase of NPN is likely due to the known 254 

production of nitrogen-containing secondary metabolites compounds by these higher 255 

fungi, such as nitrogen heterocycles, nucleosides, free amino acids (not bound by peptide 256 

bonds) and cyclic peptides (Chen and Liu, 2017). Chitin is also an important NPN 257 

component of fungal biomass (Ravi Kumar, 1999). The inclusion of chitin N from fungal 258 

biomass in fraction A, however, is disputable. Although trichloroacetic (TCA) has been 259 

used as chitin solvent (but at a higher temperature or concentration) (Ravi Kumar, 1999), 260 

the amount of N from chitin that is solubilized by TCA in this trial was inferred as low. 261 

Chitin can also react with α-amino acids to give stable complexes (Tharanathan and 262 

Kittur, 2003), which would end up in the true protein fraction. We assume that fraction A 263 

in this study does not contain chitin and is directly available for the utilization by the 264 

rumen microbes. Therefore, wheat straw treated with CS12, all P. eryngii and L. edodes 265 

strains, had a relatively high content of NPN. 266 

All fungi increased the buffer soluble N fractions (A and B1) of the wheat straw, 267 

especially in P. eryngii and L. edodes treatments. As expected, there was a decrease in 268 
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the cell wall bound proteins (fraction B3 and C). This observation indicates the capability 269 

of fungi to liberate more protein associated with the cell wall. Fraction C is likely 270 

solubilized by fungi as a consequence of cell wall polymers degradation. There is indeed 271 

a clear correlation of a decrease in fraction C to the amount of lignin (r = 0.83; P < 0.001) 272 

and hemicellulose (r = 0.76; P < 0.001) – the main components degraded by fungi, but 273 

not to cellulose. It is worth noting that, cellulose as calculated by subtracting lignin-(sa) 274 

from ADFom using the Van Soest et al. (1991) method, does not exclude chitin (cellulose-275 

like structure with N-acetylglucosamine monomers) from fungal biomass. A complete 276 

hydrolysis of chitin requires a stronger concentrated acid (Einbu and Vårum, 2008). 277 

Protein compounds that are covalently bound to the cell wall, are partly hydrolyzed in the 278 

rumen (Debroas and Blanchart, 1993). Thus, fungal pretreatment can contribute to a 279 

higher availability of protein for the rumen microbes.  280 

In vitro evaluation of protein fermentation in the rumen provides a complementary 281 

finding to the fractionation of protein data. Availability of protein from the gas production 282 

was calculated by correcting the values of gas production with blanks. Gas production of 283 

the blank is caused by N from the rumen fluid and later on by N released because of 284 

microbial turnover (Cone et al., 2009). The incubated samples contained exactly 5 mg N, 285 

which made comparison of N availability between the different samples possible. The gas 286 

production curves showed a curvilinear to almost linear pattern, indicating a gradual 287 

release of N from the samples after the pre-incubation with easily fermentable 288 

carbohydrates (Cone et al., 2009). Therefore, a monophasic fit was used, to determine a 289 

simple kinetic parameter for the 72 h gas production curve. Results show that only the 290 

IVGPN of straw treated with C. subvermispora strains were not different to the control, 291 

but shows a better kinetic profile, i.e. a higher fractional rate of the substrate degradation 292 

(Rm). The IVGPN was significantly (P < 0.01) correlated to all fractions of CP, except 293 

fraction B1 and B2. Figure 4 shows the correlation plots of IVGPN with fraction A, B1, 294 

B3 and C. We also found significant correlations of IVGPN to all measured variables, i.e. 295 

NPN (r = 0.78; P < 0.001), buffer soluble protein (r = 0.68; P < 0.001), NDIP (r = -0.49; 296 

P < 0.001) and ADIP (r = -0.44; P < 0.001). These observations further support the 297 

reliability of using a modified gas production technique in estimating the availability of 298 

protein in vitro (Cone et al., 2009, 2005). Meanwhile, ammonia-N was below the 299 

detection level in the rumen fluid samples, indicating an efficient conversion of available 300 

N to microbial N (Cone et al., 1997). This is due to the limited amount of available N in 301 
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the buffered rumen fluid, with the only N coming from the samples, which is the limiting 302 

factor for microbial growth. 303 

In total, 17 amino acids (AAs) were determined, of which 9 of them are essential for 304 

ruminants (Kung and Rode, 1996). All fungi increased the Arg and Lys content of the 305 

straw. It is inferred that these AAs are part of the building blocks of fungal protein. These 306 

AAs play various roles in the fungal growth and metabolisms, which will not be discussed 307 

here. The present study could not provide an accurate view on the roles of each AA in 308 

fungi as it requires a more advanced and in-depth study, such as gene expression. An 309 

increase in Lys, as one of the limiting AAs in ruminants (Kung and Rode, 1996), is 310 

valuable although its total amount in the treated wheat straw may be insignificant. 311 

However, fungi did not show a favorable effect on Met, another limiting AA for 312 

ruminants. There were variable changes among different fungal strains on other AAs. 313 

Some fungi incorporate them in their protein building blocks, while others may use them 314 

as a substrate for various biological functions. The total fractions of N in AAs (AA–N) 315 

from the total N (from Kjeldahl) showed no significant changes, except a significantly (P 316 

< 0.05) lower fraction observed for PE3-treated wheat straw. A lower AA–N/total N 317 

fraction in most fungal-treated straw also indicates an increase in NPN fraction. 318 

Nonetheless, the partitioning of protein in fungal-treated wheat straw needs a further 319 

study using a more robust and accurate method, for instance using a 15N-labeling methods.  320 

The outcome of this study underlines the need to further investigate the ability of fungi 321 

to liberate cell wall bound protein and make it more available for the fermentation in the 322 

rumen. The relationship between the changes in cell wall polymers to the availability of 323 

protein is of great interest. Results indicate a good correlation among them. However, the 324 

relationship of available protein with the extent of available carbohydrate “enrichment” 325 

(total carbohydrate to lignin ratio in the remaining materials) and in vitro degradability of 326 

the total OM, remains unclear. For instance, our previous trial showed that CS1 increased 327 

the fermentable OM of the straw by ~38%, which is significantly (P < 0.001) higher than 328 

PE6 treatment (Nayan et al., 2018). However, PE6 had the highest IVGPN and a higher 329 

amount of NPN and available protein than CS1. The differences in NDIP and ADIP 330 

between the two fungi were not significant. It is certain that a higher fermentability of the 331 

total OM is more important compared to the improvement in utilization of protein, 332 

although the latter is also of a great interest. In the literature, ligninolytic enzyme activity 333 

of Phanerochaete chrysosporium is suppressed by a high N concentration, while 334 

Pleurotus ostreatus shows a high activity (Leatham and Kent Kirk, 1983). Van Kuijk et 335 
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al. (2015c) did not find a significant improvement in the extent of lignin degradation and 336 

in vitro degradability with urea supplementation for C. subvermispora and L. edodes 337 

treatments. Removal of N from hemp with protease improved the selective delignification 338 

by Bjerkandera sp. (Dorado et al., 2001). These reports clearly indicate a large variation 339 

among different fungal species in metabolizing protein and affect their selectivity in 340 

lignin degradation. In the comparison between CS1 and PE6, CS1 released most of the 341 

protein from the cell wall (fraction B3 and C), but resulted in a lower protein availability 342 

(fraction A and B1). Instead, CS1-treated straw showed a higher buffer insoluble fraction 343 

(B2) compared to PE6. This is probably a mechanism possessed by CS1 to stimulate a 344 

higher production of lignin degrading enzymes that may explain its higher selectivity than 345 

PE6. Nonetheless, lower protein availability for the fermentation in the rumen is not 346 

necessarily a shortcoming as it may also mean that the substrate contains a higher amount 347 

of rumen protected protein. This protein can pass through the rumen and may be digested 348 

and absorbed in the small intestine of ruminants. 349 

 350 

5.  Conclusions 351 

Wheat straw treated with P. eryngii and L. edodes strains resulted in a higher protein 352 

availability for fermentation in the rumen. C. subvermispora strains on the other hand, 353 

did not improve the protein availability. All fungi resulted in a relative enrichment of the 354 

protein content. The fungi also increased the arginine and lysine content of the wheat 355 

straw. Fractionation of protein and in vitro evaluation of protein fermentation in rumen 356 

fluid are reliable parameters in assessing protein solubilization by different fungal strains. 357 

 358 
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Figure Captions 463 

 464 

Fig. 1. Fractionation of total crude protein, based on Sniffen et al. (1992). P: protein; 465 

NDIP: neutral detergent insoluble protein; ADIP: acid detergent insoluble protein; NPN: 466 

non-protein nitrogen.  467 
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 468 

Fig. 2. In vitro gas production during pre-incubation with easily fermentable 469 

carbohydrates for 5 h. Error bars indicate standard deviation.  470 
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 471 

Fig. 3. In vitro gas production for all fungal-treated wheat straw in comparison to 472 

untreated wheat straw (control, ) and a blank, being buffered rumen fluid without 473 

sample (-).The gas production profile were not corrected for the blanks.  474 
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  475 

  476 
Fig. 4. Correlations among the in vitro gas production (IVGPN), soluble protein fractions 477 

(A and B1) and cell wall bound protein fractions (B3 and C) with respective Pearson’s r 478 

and P values. Each point represent mean value for each treatment with ‘’ indicates 479 

control.  480 
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Table 1. Chemical composition and crude protein fractions of wheat straw, treated with different fungal strains for 7 weeks, in comparison to 
untreated straw (control). 

Parameters Control 
CS strain   PE strain  LE strain 

RSME 
P value  

1 12   3 6   8 10 Sp St Time               
DM (g/kg) 213.9c 199.9a 209.1bc  213.6bc 209.8c  199.7a 201.8a 2.90 <0.001 0.017 <0.001               
Chemical composition (g/kg DM) 

aNDFom  871.7f 701.2a 761.8b  803.9d 828.0e  772.7b 790.0c 6.94 <0.001 <0.001 <0.001 
ADFom  585.7c 544.7a 563.6b  571.3b 589.2c  590.8c 587.4c 4.76 <0.001 0.004 <0.001 
Lignin-(sa) 83.9d 43.2a 62.3c  63.7c 65.3c  54.6b 60.7c 2.97 <0.001 0.150 <0.001 
CP  16.1a 22.3b 20.1ab  21.9b 20.5ab  21.6b 22.5b 2.87 0.034 0.235 0.017 
Ash 33.3a 42.5e 40.6cd  41.3de 39.5bc  39.0b 39.5bc 0.80 <0.001 0.052 <0.001 

              

Amount of protein (g/100 g of starting OM) † 
Total CP 1.7a 2.2b 2.1b  2.2b 2.1b  2.1b 2.2b 0.07 <0.001 0.001 <0.001 
True protein 1.5bc 1.7d 1.7d  1.5c 1.3a  1.4ab 1.5bc 0.07 <0.001 <0.001 <0.001 
Non-protein nitrogen 0.2a 0.4b 0.3ab  0.6c 0.8d  0.7cd 0.7cd 0.08 <0.001 0.124 <0.001 
Buffer insoluble protein 1.4de 1.5ef 1.6f  

1.4cd 1.2a  1.2ab 1.3bc 0.07 <0.001 0.001 <0.001 
Buffer soluble protein 0.2a 0.7c 0.5b  0.8d 0.9d  0.9d 0.9d 0.08 <0.001 0.058 <0.001 
NDIP 1.2c 0.7a 1.0b  0.9b 0.7a  0.7a 0.7a 0.06 <0.001 <0.001 <0.001 
ADIP 0.8d 0.5a 0.7c  0.6bc 0.5ab  0.5ab 0.6bc 0.07 <0.001 <0.001 <0.001 

              

Protein fractions (% CP) * 
A 10.5a 20.6b 15.2ab  29.2c 37.7d  32.2c 31.0c 3.20 <0.001 0.010 <0.001 
B1 4.4a 9.6ab 9.0ab  9.0ab 6.6ab  9.2ab 11.0b 3.52 0.508 0.037 <0.001 
B2 15.2a 36.1d 27.3c  19.6ab 20.2ab  27.1c 24.5bc 3.16 <0.001 <0.001 <0.001 
B3 19.8c 12.4ab 15.7bc  16.0bc 10.0ab  8.0a 7.2a 3.68 <0.001 0.305 <0.001 
C 50.2c 21.4a 32.7b  26.2a 25.6a  23.5a 26.4a 3.26 <0.001 <0.001 <0.001 

                            

Values with different superscripts within a row are significantly (P < 0.05) different. aNDFom: neutral detergent fiber – exclusive of ash; ADFom: acid 
detergent fiber – exclusive of ash; CP: crude protein (N × 6.25); NDIP: neutral detergent insoluble protein; ADIP: acid detergent insoluble protein; St: strains; 
Sp: species. 
† Calculated based on the remaining DM (g) after a fungal pretreatment. 
* Fractionation of crude protein (as a percentage of CP) based on Sniffen et al. (1992). 
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 481 

Table 2. Total in vitro gas production after 72 h of incubation in buffered rumen fluid and its kinetic parameters for wheat straw treated with 
different fungal strains for 7 weeks, in comparison to untreated straw (control). 

Parameters Control 
CS strain  PE strain  LE strain 

RSME 
P value 

1 12   3 6   8 10 Sp St Time 
              

IVGPN (ml/ 5 mg N) 54.3a 59.9a 52.1a  70.8b 79.9b  71.7b 76.8b 5.44 <0.001 <0.001 <0.001 
              

Kinetics *              
B 23.1c 17.6ab 15.9ab  16.6ab 14.8a  18.5b 18.5b 2.01 <0.001 0.062 0.005 
C 1.41a 1.31a 1.23a  1.47ab 1.44ab  1.74c 1.66bc 0.14 <0.001 0.295 0.025 
tRm 12.2bcd 7.2ab 4.9a  9.9abcd 8.4abc  15.5d 14.5cd 3.75 <0.001 0.249 0.622 
Rm 0.034a 0.044b 0.049bc  0.048bc 0.053c  0.048bc 0.046b 0.004 <0.001 0.025 <0.001 
                            

Values with different superscripts within row are significantly (P < 0.05) different. 
IVGPN: Total in vitro gas production (modified technique) corrected for blanks; B: half time of the maximum gas production (h); C: parameters determine 
curvature of the graph; tRm: time of the maximum fractional rate of substrate degradation (h); Rm: maximum fractional rate of substrate degradation (h-1); St: 
strains; Sp: species. 
* Fitted to a monophasic curve (Groot et al., 1996). 
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Table 3. Content (g/100 g CP) of amino acids (AA) in control (untreated) and fungal-treated wheat straw after 7 weeks of colonization. 

Parameters Control CS strain  PE strain  LE strain RSME 1 12  3 6  8 10  
                 

Essential AA                  
Arg 1.42a 2.68d +++ 2.22bc +++  1.89b ++ 2.36cd +++  2.09bc ++ 2.09bc ++ 0.21 
His 4.69b 6.08c ++ 4.61b ‒  2.72a ‒ ‒ 2.88a ‒ ‒  3.55a ‒ ‒ 3.54a ‒ ‒ 0.54 
Ileu 2.70bc 2.71bc + 2.63b ‒  2.37a ‒ 2.29a ‒  2.98d + 2.87cd + 0.14 
Leu 4.14abc 4.51bcd + 4.82cd +  3.46ab ‒ 3.07a ‒ ‒  5.71d ++ 4.62bcd + 0.73 
Lys 2.24a 2.41ab + 2.37ab +  2.58bcd + 2.57bcd +  2.79d ++ 2.69cd ++ 0.14 
Met 1.68bc 1.23ab ‒ ‒ 1.20ab ‒ ‒  1.09a ‒ ‒ 1.96c +  1.62abc ‒ 1.38ab ‒ 0.32 
Phe 2.05ab 2.04ab ‒ 2.00ab ‒  1.87a ‒ 1.80a ‒  2.55b ++ 2.46b ++ 0.34 
Thr 2.92a 2.94a + 2.83a ‒  2.83a ‒ 3.04a +  3.08a + 3.12a + 0.19 
Val 4.17b 3.79a ‒ 3.87ab ‒  3.54a ‒ 3.50a ‒  3.79a ‒ 3.85ab ‒ 0.22 

Non-essential AA                 
Ala 4.59c 4.18ab ‒ 4.27bc ‒  4.01ab ‒ 3.82a ‒  4.11ab ‒ 4.04ab ‒ 0.23 
Asp 7.78ab 7.68ab ‒ 6.85a ‒  7.38ab ‒ 8.00b +  7.81ab + 7.79ab + 0.65 
Cys 2.43a 1.87a ‒ ‒ 2.04a ‒  2.06a ‒ 2.51a +  2.22a ‒ 2.37a ‒ 0.38 
Glu 10.81ab 11.04ab + 11.97b +  11.82ab + 10.43a ‒  10.75ab ‒ 11.70ab + 0.86 
Gly 4.19b 3.47a ‒ 3.37a ‒  3.39a ‒ 3.48a ‒  3.27a ‒ ‒ 3.29a ‒ ‒ 0.18 
Pro 3.28a 2.87a ‒ 2.74a ‒  3.04a ‒ 2.98a ‒  3.46a + 3.40a + 0.65 
Ser 3.39a 3.24a ‒ 3.13a ‒  3.09a ‒ 3.10a ‒  3.41a + 3.42a + 0.21 
Tyr 1.50c 0.88ab ‒ ‒ 0.87a ‒ ‒  0.83a ‒ ‒ 0.87a ‒ ‒  1.26bc ‒ 1.12abc ‒ ‒ 0.23 

                 

Total AA–N*                  
DM basis (g/kg DM) 1.56a 2.23e ++ 1.90bc ++  1.90bc ++ 1.82b +  2.06cde ++ 2.13de ++ 0.12 
Fraction from total N  0.60bc 0.62c + 0.59abc ‒  0.54a ‒ 0.55ab ‒  0.60bc ‒ 0.59abc ‒ 0.03 
CP basis (g N/ 100 g CP) 9.58bc 9.98c + 9.43abc ‒  8.67a ‒ 8.85ab ‒  9.53bc ‒ 9.49abc ‒ 0.49 

                                

Values with different superscripts within row are significantly (P < 0.05) different. Relative changes of AA contents from control are indicated: More than 50% 
increase (+++), 20 to 50% increase (++), 0 to 20% increase (+), less than 20% decrease (–) and more than 20% decrease (– –). 
* Calculated as the sum of the total moles times number of N atoms in amino acids multiplied by 14. 
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