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Summary 
 
Microalgae have the potential of becoming an important potential resource for different industrial 
applications, such as in food supplements, CO2 capture, and wastewater treatment or as renewable 
energy source. There are different growth variables that need to be considered when trying to model 
microalgae growth. Many research studies focussed on controlling the variables: O2, light, pH, CO2, 
mixing and temperature to create the ideal conditions for microalgae with different control methods.  
 
The current study focussed on temperature as the control variable on microalgae production. The 
control method used in the current research study was optimal control. The aim of the study was to 
find out how the optimal input trajectory changed under different circumstances. These different 
circumstances were created by making different scenarios. The different scenarios obtained location, 
season and variation during a day in a closed outdoor photobioreactor.  
 
The model used in this research consisted of two models; temperature model from Fernández et al. 
(2014) and microalgae biomass growth model from Slegers et al. (2013b).The model was analysed 
and results showed that the model was a stiff system. The model was adapted by using pseudo-
steady-state for the heater system. The proposed software Tomlab, turned out not to be suitable for 
this system because the results shown were unreliable. Optimization of piecewise linear trajectories 
showed results with a positive profit and a microalgae growth higher than in the uncontrolled system 
simulation. Therefore, piecewise linear trajectories was used to compare the optimal input trajectory 
with the different scenarios. The different scenarios contain two locations, three seasons and 
variation during a day. The locations Spain and the Netherlands were taken as potential grow 
location both having their own temperature and light intensity profile. To accurately model the 
temperature variation over the year, also seasonal variations are taken into account. The variation 
during a day is represented by a noise on the light intensity which resembling cloud coverage.  
 
The results of the control input trajectories have a strong peak at the beginning of the day to get the 
ambient temperature until the optimal temperature, followed by cooling or heating depending on 
the ambient temperature. The days ends with a high peak. In general, the same peaks are observable 
in the control input trajectories for the different scenarios but in different sizes and on different 
moments. The peaks depends per scenario on the light availability and ambient temperature. The 
results show that in both locations the control input trajectory for the season spring resembles the 
control input trajectory for the season fall. In the location the Netherlands, the heating starts earlier 
due to the colder outdoor conditions. However, even though heating starts earlier the optimal 
temperature is reached later in comparison to the location Spain. In Spain, photo-inhibition plays a 
role. 
 
In this research, with the price of microalgae being € 25/kg, cost of heating € 0.04/kWh and cost of 
cooling € 0.02/kWh, the cost function shows the highest profit for the summer in the Netherlands, 
namely € 150,27 per day. The costs for heating and cooling in all scenarios are approximately 
between € 31,- and € 54,-  per day. The lowest profit of the six scenarios is also in the Netherlands, in 
the fall. All profits are positive indicating that with the price of microalgae and for heating and 
cooling taken in this case, it is profitable for the microalgae production to keep the temperature in 
the photobioreactor at an optimal temperature.  
 
This study shows that the location and season in growing microalgae does contribute to the optimal 
input trajectory. When it comes to the day-to-day variation piecewise linear trajectories is not a 
suitable method to use, giving inaccurate results. Nevertheless, when it comes to locations and 
seasons, heuristic rules have been made for temperature control with piecewise linear trajectories.  
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1 Introduction  
Microalgae are becoming an important potential resource for different industrial applications. In 
these industrial applications, there are two different options possible; microalgae biomass can be the 
desired product or the metabolite. The microalgae biomass is used in food supplements or animal 
food, while the metabolite is for example used for pharmaceutical or nutraceutical applications, like 
vitamins or proteins. Other applications such as CO2 capture, wastewater treatment or as a 
renewable energy source have also been observed. This shows the great potential of microalgae 
(Bernard, 2011; De la Hoz Siegler et al., 2012; Ugwu et al., 2008). The reason that microalgae stand 
out compared to other plants is their behaviour, which is predictable due to the interaction between 
biology (microalgae development and respiration) and physics (light attenuation and hydrodynamics) 
(Bernard, 2011).  
 
There are different culture types in which microalgae can grow, under indoor and outdoor 
circumstances. The advantage of an indoor environment is the high level of controllability. However, 
this high degree of control makes the production of microalgae expensive. Placing microalgae 
production outside may be cheaper. This is, however, not always possible depending on the local 
climate conditions, since this affects the production. For example, the yearly outdoor areal biomass 
productivities for the microalga P. tricornutum in different reactors (raceway ponds, horizontal tubes, 
vertical tubes, flat panels) all have a higher biomass production in Spain compared to in the 
Netherlands (Slegers et al., 2011, 2013a, 2013b). Indicating that in the Netherlands microalgae 
production cannot reach the same amount of biomass concentration under outdoor conditions. 
However, it should be noted that the temperature in Spain is not ideal as well, since in the summer 
the temperature reaches such high levels that production is not possible without cooling the reactor. 
To make optimal conditions in both locations the production costs will increase, making the 
microalgae less interesting for the different industrial applications.  

1.1 Microalgae growth variables 
Microalgae growth is affected by various physical, chemical and biological factors. Factors that 
influence growth are for example light, energy supply, availability of CO2, O2-concentration, mixing, 
and control of environmental parameters like temperature (heating and cooling), pH and nutrients 
(Mehlitz, 2009; Suh et al., 2003).  
 
To reduce the production costs, accurate operation, low-cost resources and optimization of the 
design will be important according to Fernández et al. (2014). Some examples to reduce costs are: 
coupling of microalgae production with combustion power plants or other CO2 sources to sequester 
greenhouse gas emissions, utilizing nutrients from wastewater treatment facilities, or low quality 
water. When it comes to improving the design of the photobioreactor for optimal production, a lot of 
research has already been done. Optimization of the design can be achieved by selecting a certain 
type of algae and reactor, which determines the growth characteristics, appropriate for the 
cultivation conditions.  
 
Worldwide there are two different cultivation systems used for the production of microalgae: open 
raceways ponds and closed photobioreactors. Open raceway ponds are basic cultivation systems. 
Biomass productivities in raceway ponds are low, there is a high risk of contamination and the 
production is highly dependent on the environment. However, open raceways ponds do have low 
construction and operating costs (Slegers et al., 2013b).In contrast to the open raceways ponds, the 
closed photobioreactor has more control of the cultivation conditions. There are different types of 
closed photobioreactors: tubular, flat and bubble column. There are a couple of advantages of the 
photobioreactor, but the main one is that higher biomass production is obtained and contamination 
is easily prevented. Although, one major setback of the closed photobioreactor is the lack of 
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efficiency with utilizing solar energy for biomass production. Other disadvantages of the closed 
photobioreactors are the high capital costs when it comes to controlling the conditions for the 
microalgae growth (Svaldenis, 2014; Ugwu et al., 2008). 
 
To fully understand and later on control the productivity potential of microalgae, models must be 
constructed. Many growth kinetic models have been developed to describe the microalgae growth 
(Lee et al., 2015). The economic costs of algae cultivation are highly sensitive to the productivity of 
microalgae and to maintaining a steady operation. In literature, there are different articles that 
attempt to create optimal conditions, by controlling several factors. Most of these studies on 
optimization of microalgae cultivation are based on trial-and-error and/or design heuristics (Malek et 
al., 2015). As mentioned before, the microalgae growth is affected by various factors. In the following 
paragraphs, the effect of the factors O2, light, pH and CO2, mixing and temperature on microalgae 
production will be discussed by comparing available literature studies on how to control these 
factors and with which control methods. 
 
Effect of O2  
During photosynthesis, O2 is produced because microalgae, similar to plants, assimilate inorganic 
carbon into organic matter which produces O2. The photosynthetic reaction is driven by energy from 
sunlight. Hu et al. (2012) developed a kinetic model to describe the dynamic characteristics of O2 - 
concentration and its influence on the growth of microalgae in bioreactors. This was done in a 
closed-loop photobioreactor with a Linear-Quadratic Gaussian (LQG) servo controller, for O2, which 
was optimized throughout simulation.  
 
Effect of light  
Light is needed for photosynthesis to occur, which can be supplied in different ways; natural light 
(sunlight) or artificial light. However, there are some disadvantages with both methods. Too much 
light intensity may result in photo-inhibition, which is light-induced reduction of growth (Béchet et 
al., 2013). Other phenomena that can occur with too much light intensity is overheating, which will 
cause the microalgae to perish. The duration of light in outdoor cultivation depends on the climate 
conditions, while at indoor conditions the light intensity can be altered with the use of artificial 
illumination.  
 
Effect of pH and CO2  
The optimal pH range for microalgae is between seven and nine, although some species have a pH in 
a more acid or basic range. It is crucial to maintain the culture pH in the optimal range so that cellular 
process can continue. An acceptable pH can be accomplished by aerating the culture. In case of high 
density microalgae, the addition of carbon dioxide (pure CO2 or high CO2 flue gases), allows to correct 
for increasing pH (Wang et al., 2012). Model Predictive Control (MPC) in tubular photobioreactors for 
pH and solar radiation is done in order to achieve desired regulation properties and trying to 
minimise CO2 losses (Berenguel et al. (2004). The same objective can be found in the study by 
Fernández et al. (2010), but the latter also indicates the issues that occur in modelling and controlling 
of the pH. Instead of the control method MPC Fernández et al. (2010) uses a Proportional–Integral 
(PI) control system with pulse width modulation (PWM) combined with a feedforward term to 
compensate for the solar radiation influence. Bernard (2011) focuses more on describing the hurdles 
and challenges for modelling and control of CO2.  
 
Effect of mixing  
Mixing is an operation factor, which ensures that all cells of the population are equally exposed to 
light and nutrients. It avoids thermal stratification, improves gas exchange between the culture 
medium and the air, and prevents sedimentation. Mixing can be achieved by different methods, for 
example stirring by aerating, pumping, mechanical agitation (e.g. paddle wheels) or a combination of 
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these methods. The method which is used depends on scale and choice of the cultivation system 
(Wang et al., 2012).  
 
Effect of temperature  
Temperature is a measured environmental variable, and an important factor that affects the 
performance of microalgae growth. Every microalgae species has an optimal temperature, which is 
generally between 15 °C and 30 °C. This value may vary with the composition of the culture medium 
and the strain. When the temperature is below 15 °C microalgae growth will slow down, but when 
the temperature is higher than 30 °C microalgae growth will stop. Different control methods for 
control temperature are mentioned by Wang et al. (2012). This paper mentions the following control 
methods: shading of tubes with dark sheets, spraying of water when the culture temperature 
exceeds a certain value, submerging the entire solar tubes under water or installing a heat 
exchanger.  
 
In conclusion, literature shows that there have been efforts done in controlling factors such as, O2, 
pH, CO2, mixing and temperature or a combination of these factors, in order to optimize production 
of microalgae. In the paper by Guterman et al. (1990), the following parameters were controlled; 
light intensity, optical density, pH and temperature on microalgae growth. An on-line optimization 
and control procedure was used. Another article which uses also more than one control factor is De 
la Hoz Siegler et al. (2012). In this article, the focus lies on optimization of biomass and oil production 
using an adaptive, non-linear model. For parameter estimation, off-line measurements of the carbon 
source and biomass concentrations were used. Using of an algorithm, the optimal strategy was 
recalculated by means of a shrinking horizon approach. These articles show that model based 
optimization is a valuable tool for improving the economic performance of microalgae production.  
 
Optimizing microalgae production is done with different control methods. However, optimal control 
is rarely applied. Van Straten et al. (2010) is one of the few who uses optimal control. In his paper, 
the control variable is the dilution rate, and light intensity is taken as external input. However, next 
to light, temperature is the most important limiting factor in outdoor systems. The effect of 
temperature on laboratory scale is well documented, but the effects in outdoor conditions are not 
yet sufficiently documented (Mata et al., 2010). Therefore, in this research temperature was chosen 
as control variable. As external inputs, ambient temperature and light intensity in an outdoor closed 
photobioreactor were chosen. In outdoor cultivation systems, the light intensity and ambient 
temperature will vary with time and per location. Ambient temperature is generally low in winter 
and high in summer, therefore requiring temperature regulation (heating and cooling), to create a 
continuous optimal temperature condition for the microalgae to grow. Heating and cooling will 
create additional costs. Therefore, a trade-off should be made between the costs of heating and 
cooling and the additional biomass that will be produced. Hence, the control objective is to efficiently 
use the sunlight and ambient temperature associated with the circumstances of the location to 
increase the biomass production as much as possible without increasing the energy costs. In optimal 
control, the control objective focuses on how to calculate the control input in such a way that the 
controlled system shows a desired behaviour. 
 

1.2 Research aim  
The aim of this research is to find the optimal input trajectory that satisfies the control objective. The 
optimal input trajectory will show the optimal temperature setting throughout time, with the 
intention to make optimal use of the outdoor temperature and light conditions in different 
situations. The outdoor conditions will depend on different factors. In this research, the focus is on 
the following factors: variation during a day, location and season. This because the daily passage of 
the sun together with local weather, for example cloud coverage, influence light intensity and the 
ambient temperature. The location of the photobioreactor is a critical factor for the amount of light. 
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The efficiency of the photobioreactor depends on the local climate and therefore the location 
significantly contributes to the cultivation. The locations chosen are Spain and the Netherlands. To 
accurately model the temperature variation over the year, also seasonal variations are taken into 
account. Considering the aforementioned variables, the effects of weather disturbances on the 
optimal input trajectory should become more visible. It is hypothesised that for the location in Spain 
more cooling would be necessary compared to the location in the Netherlands, making the cooler 
seasons in Spain more preferable.  

1.3 Research questions  
The following research questions will be addressed in this research.   
 

- What is the optimal input trajectory for a standard situation?  
- How is the optimal input trajectory affected by the variation during a day, location and 

season? 
- Is it possible to translate the optimal control strategies for different situations into heuristic 

control rules?   

1.4 Approach  
In order to answer the research questions the following approach will be applied: a closed tubular 
photobioreactor system with degassing and a heat exchanger will be used. In order to simulate what 
happens in an outdoor closed photobioreactor, the growth model from Slegers et al. (2013b) and the 
dynamic model from Fernández et al. (2014) will be combined. When the model is designed, optimal 
control will be applied to calculate the optimal input trajectory for a certain temperature and light 
intensity to create a standard situation. After this, the different variations; variation during a day, 
locations and seasons, will be added. The optimal input trajectories will be calculated to evaluate 
how the trajectory is affected by the different variables. These results will be analysed and evaluated 
to see if it can be translate into heuristic control rules for the different situations.  
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2 Fundamental models   
The following chapter gives details on the equations and parameters of the temperature model from 
Fernández et al. (2014) and the microalgae production model from Slegers et al. (2013b) that is used 
in this research. The purpose of using these models is to get an accurate representation of what 
happens in an outdoor closed photobioreactor. The model that is described will exist of two 
mathematical models, the temperature model and biomass model with ambient temperature and 
light intensity as disturbances inputs depending on the climate conditions and the temperature as 
control variable. The model in this research will provide information on how the temperature 
distribution and the biomass production behaves with different ambient temperatures and light 
intensities.  
In this chapter, first both models will be explained and analysed. Next, optimal control will be 
explained, as this is the method used to calculate the optimal control input trajectory. Finally, the 
different scenarios that were made will be given. The model equations and microalgae characteristics 
are developed from literature and coded in Matlab and Tomlab.  
 

2.1 Materials  
In this research, the microalga T. pseudonana was used, which has an optimal temperature of 
24.73 °C (Slegers et al., 2013b).When the temperature exceeds the optimal temperature, the 
microalgae growth rate decreases. This decrease can generally be explained by heat stress. A bell-
shaped growth curve is observed for describing temperature response of microalgae growth rate 
(Ras et al., 2013). Next to the optimal temperature, the microalga also has a lethal temperature, 
which is for this type of microalga 31.40 °C (Slegers et al., 2013b).The biomass production will not 
take place  when the temperature is above the lethal temperature. In this research, the focus lies on 
optimal control influencing the temperature of the reactor. Because of this focus, the pH is assumed 
to be ideally controlled at a level considered optimal for the microalgae studied. However, besides 
the pH and carbon supply, microalgae also need nutrients to grow and reproduce. An example of 
these nutrients are nitrogen and phosphorus (Mehlitz, 2009), which are assumed to be non-limiting 
to the microalgae growth in this research.    

2.2 System description  
In this research a closed photobioreactor is used (Figure 2-1), which shows the functioning of the 
system. The photobioreactor exists of two different parts: the bubble column and the tubes, also 
known as solar receivers. The tubes (solar loop) are designed to collect the solar radiation as efficient 
as possible and minimize resistance of the culture flow. In the bubble column a heat exchanger is  
located together with a degasser (Berenguel et al., 2004). In this part of the reactor, perfect mixing is 
assumed. From the bubble column the circulation moves through the tubes (in an upwards 
direction). The assumption is that the tubes are laying down, so the effect of shadowing does not 
apply to this situation. The culture temperature can be controlled by the heat exchanger, which is 
situated in the bubble column, by passing water through it. Heat balances are made for the tubes, 
the bubble column and the heat exchanger. These heat balances take both fluid-dynamics and heat 
transfer phenomena into account. The assumption is that the ambient temperature surrounding the 
photobioreactor is uniform (Fernández et al., 2014). 
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2.3 Temperature model 
In the paper of Fernández et al. (2014), a first principles model of a tubular photobioreactor for 
microalgae production is given. This model represents the physiochemical and biological phenomena 
that take place inside the photobioreactor. The temperature model considers the following variables: 
light availability, culture conditions, mixing and gas-liquid mass transfer. In outdoor cultures, the light 
irradiation and temperature availability depends on the location where the photobioreactor is 
positioned. The following paragraphs will give the equations about the different parts (tubes, bubble 
column and heat exchanger) of the photobioreactor. 
 

2.3.1 Photobioreactor tubes 

The main part inside the photobioreactor where the microalgae can grow are the tubes. The 
temperature inside the tubes will depend on different variables. The solar radiation will heat up the 
tubes, some heat will be lost to the ambient air, and the rest of the heat will arrive from the bubble 
column. The culture moves through the tubes, making it a distributed system, with different 
temperature and biomass on different positions in the tubes. The tubes of the closed 
photobioreactor are designed to collect solar radiation as efficiently as possible. The length of the 
tubes can differ; longer tubes means a larger absorption of solar radiation. However, longer tubes 
causes more heat exchange with the ambient air. This will all depend on the design of the 
photobioreactor. The following equation (Eq. 2.1) is used to describe the heat balance in the tubes, 
which takes the design variables into account. When the total length of the tubes is divided into n 
number of pieces, equation 2.1 will hold for one piece of tube. 
  
 
 
 
 

Figure 2-1: Schematic representation of the closed photobioreactor (from Fernández et al. (2014)) 
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𝜕𝑇(𝑡,𝑥)

𝜕𝑡
=

(−𝑄𝑙𝑖𝑞,𝑡(𝑡,𝑥) 𝐶𝑝  ρ 
𝜕𝑇(𝑡,𝑥)

𝜕𝑥
 + 𝛼𝑡 𝐼0(𝑡) 𝜋 𝑑𝑡 𝑎 𝜕𝑥 + ℎt  𝜋 𝑑𝑡 𝜕𝑥 (𝑇𝑎𝑚𝑏(𝑡)−𝑇(𝑡,𝑥)) )

𝜋 
𝑑𝑡

2

4
  𝜕𝑥  𝐶𝑝  ρ

  

 

(2.3.1) 

 
With 𝑄𝑙𝑖𝑞,𝑡 (m

3 s-1) the volumetric flow rate of liquid in loop, 𝐶𝑝 (J kg-1 °C-1) the heat capacity of the 

growth medium, 𝜌 (kg m-3) the volumetric mass density, 𝑇 (°C) the temperature of the culture, 𝜕𝑥 
(m) total length of the tubes divided by the n number of pieces, 𝐼0 (W m-2) the solar irradiation which 
is modulated by a distribution factor called αt (-), 𝑑𝑡  (m) the loop diameter of the tubes, 𝑎 (-) a 
constant which represents the solar irradiance absorptivity, ℎ𝑡  (J s-1 m-2 °C-1) the coefficient of heat 
transmission between the ambient and the culture temperature and 𝑇𝑎𝑚𝑏 (°C) the ambient 
temperature, which is considered homogeneous in the space around the tubes (Fernández et al., 
2014). 
 
With Equation 2.3.1, the temperature variations in time can be calculated at different places in the 
tubes. The culture moves through the entire tube and ends in the bubble column. In the bubble 
column, perfect mixing is assumed. The following subchapter goes into detail on the differential 
equation of the bubble column.   
 

2.3.2 Photobioreactor bubble column 

The bubble column is positioned next to the tubes (solar receiver) in the photobioreactor. The 
bubble column contains a heat exchanger. The differential equation for the bubble column is given in 
Eq.2.2. The heat difference between inlet and the outlet of the bubble column, the solar radiation 
heating the bubble column, the heat loss with the ambient air, and finally the heat increase due to 
the heat exchanger all these variables influence the temperature in the bubble column.  
 

𝜕𝑇𝑜𝑢𝑡(𝑡)

𝜕𝑡
=     

(−𝑄𝑙𝑖𝑞,𝑏(𝑡) 𝐶𝑝 𝜌 (𝑇𝑜𝑢𝑡(𝑡)−𝑇𝑖𝑛(𝑡)) + 𝛼𝑏 𝐼0(𝑡) 𝑆𝑏 𝑎 +ℎ𝑏 𝑆𝑏(𝑇𝑎𝑚𝑏(𝑡)−𝑇(𝑡))+ℎ𝑒𝑥𝑡 𝑆𝑒𝑥𝑡(𝑇𝑒𝑥𝑡(𝑡)−𝑇𝑜𝑢𝑡(𝑡)) )

 (𝐶𝑝 𝜌 𝑉𝑙𝑖𝑞,𝑏(𝑡))  
  

(2.3.2) 

 
With 𝑄𝑙𝑖𝑞,𝑏  (m

3 s-1) the volumetric flow rate of liquid in the bubble column, 𝑇𝑖𝑛  (°C) and 𝑇𝑜𝑢𝑡 (°C) are 

the culture temperature at the inlet and outlet of the bubble column, α𝑏  (-) is the light distribution 
factor in the bubble column, ℎ𝑏   (J s-1 m-2 °C-1) is the coefficient of heat transmission to the ambient in 
the bubble column, 𝑆𝑏  (m2) is the column area available, ℎ𝑒𝑥𝑡  (J s-1 m-2 °C-1) is the coefficient of heat 
transmission between the heat exchanger situated in the bubble column and the culture 
temperature, 𝑆𝑒𝑥𝑡 (m2) is the heat exchanger area, 𝑇𝑒𝑥𝑡  (°C) is the temperature in the heat exchanger 
and 𝑉𝑙𝑖𝑞,𝑏 (m3) is the liquid bubble column (Fernández et al., 2014). 

 
The temperature derived from the heat exchanger is the average between the temperature that 
comes out of the heat exchanger and the temperature that comes in. How the heat exchanger 
temperature that comes out and into the bubble column is calculated can be seen in the following 
subchapter.   
 

2.3.3 Photobioreactor heat exchanger  

The last temperature heat balance is the one of the heat exchanger. Here the heat that comes out of 
the heat exchanger during a certain amount of time is defined by the difference between the heat 
that comes into and moves out of the heat exchanger, together with the difference between the 
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average heat exchange temperature and the temperature in the bubble column. This is given in the 
following equation (2.3.3).  
 

𝜕𝑇𝑒𝑥𝑡,𝑜𝑢𝑡(𝑡)

𝜕𝑡

=
(−𝑄𝑤(𝑡) 𝜌 𝐶𝑝 (𝑇𝑒𝑥𝑡,𝑜𝑢𝑡(𝑡) − 𝑇𝑒𝑥𝑡,𝑖𝑛(𝑡)  −  ℎ𝑒𝑥𝑡 𝑆𝑒𝑥𝑡 (𝑇𝑒𝑥𝑡(𝑡) − 𝑇𝑜𝑢𝑡(𝑡)))

(𝐶𝑝𝑉𝑒𝑥𝑡) 
 

 

(2.3.3) 

where 𝑄𝑤  (m3 s -1) is the volumetric flow rate of water that crosses through the heat exchanger,  
𝑇𝑒𝑥𝑡,𝑖𝑛 (°C) and 𝑇𝑒𝑥𝑡,𝑜𝑢𝑡 (°C) are the culture temperature at the inlet and outlet of the heat exchanger 
and 𝑉𝑒𝑥𝑡  (L) is the total volume of the heat exchanger (Fernández et al., 2014). 
 
All these equations are used for calculating the temperature in the tubes, bubble column and the 
heat exchanger.  
 

2.4 Microalgae biomass growth model 
 
In previous chapters is explained how various factors influence the overall microalgae growth. More 
information on the growth kinetics of the microalgae can be found in appendix A. In the previous 
subparagraph is explained how the photobioreactor is build up, and what the temperature 
circumstances are in the photobioreactor. These subparagraphs will move into details about the 
microalgae growth, and how this is influenced by light intensity and temperature.  
 
The dynamics of the biomass concentration over time (t) and space (x) are given by:  
 
𝑑𝐶𝑥(𝑡,𝑥)

𝑑𝑡
= (𝜇𝑔𝑟𝑜𝑤𝑡ℎ(𝑡, 𝑥) − 𝑟𝑚(𝑡) − 𝐷(𝑡)) 𝐶𝑥(𝑡, 𝑥)  (2.4.1) 

 
with 𝐶𝑥 (kg m-3) the biomass concentration, µ𝑔𝑟𝑜𝑤𝑡ℎ (s-1) the specific growth rate, 𝐷 (s-1) the dilution 

rate over a period of time, and 𝑟𝑚 (s-1) the maintenance metabolic coefficient, also known as 
respiration rate (Slegers et al., 2013b). 
The growth rate depends on light intensity and temperature with respect to time and place.  
 

𝜇𝑔𝑟𝑜𝑤𝑡ℎ (𝑡, 𝑥)  = 𝑓 (𝐼(𝑡), 𝑇(𝑡))   (2.4.2) 

 
With 𝐼(𝑡) being the light intensity and 𝑇(𝑡) being the culture temperature. In the following 
subparagraphs, the light distribution and the temperature distribution are explained in more detail.  
 

2.4.1 Effect of light distribution   

In the photobioreactor, microalgae are able to grow inside the tubes or the bubble column. In these 
locations, light will fall on the material, which can be reflected, absorbed and transmitted. For 
simplicity, the effect of light scattering on the material was neglected. Microalgae can absorb part of 
the light, which limits their own growth. In addition, during the night the population density of 
microalgae decreases due to respiration and the lack of light (Chisti, 2007).  
Light intensity will decrease along the path length of a closed photobioreactor. The law of Lambert-
Beer can be used to calculate the average light intensity at each location within the microalgae 
culture (Hermanto, 2009).  
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At low densities within the reactor, the intensity of light will increase exponentially according to the 
Lambert-Beer law (Quinn et al., 2011). The Lambert-Beer law can be described as follows.  
 

𝐼 (𝐿) = 𝐼0(𝑡) 𝑒𝑥𝑝(−𝐾𝑎 𝐶𝑥(𝐿))  (2.4.3) 

 
Where 𝐼 (µmol m-2 s-1 ) is the amount of light available at distance 𝐿 (m), 𝐼0 is the light intensity 
incident on reactor wall, 𝐶𝑥 (kg m-3) is biomass concentration where the light intensity reaches, and 
the variable 𝐾𝑎  (m2 kg-1) is the specific light absorption coefficient, which is a specific parameter of 
the algae species.  
 
At higher densities, scattering is important to consider for determining local light intensity according 
to Quinn et al. (2011). In this model, an average light intensity in the reactor was calculated with the 
following equation.  
 

𝐼𝑎𝑣(𝑡, 𝑥) =  𝐼0(𝑡) 𝛼 
1−𝑒𝑥𝑝  (−𝐾𝑎 𝐶𝑥 (𝑡,𝑥) 

𝑑𝑝 

2
)

𝐾𝑎  𝐶𝑥 (𝑡,𝑥) 
𝑑𝑝 

2

  

  

(2.4.4) 

Where 𝑡 presents time, 𝑥 is the space, 𝐼0 is the solar irradiation on an obstacle-free horizontal 

surface, 𝐾𝑎 (m2 kg-1) is the specific light absorption coefficient, 𝐶𝑥 (kg m-3) is the biomass 
concentration, and 𝑑𝑝 (m) is the tube diameter in the p part (where p can be substituted by ‘t’ for the 

tubes and ‘b’ for the bubble column). The diameter is divided by two because the light intensity 
comes in from two different sides. The solar irradiance can be modulated by a distribution factor 𝛼, 
which represents the solar irradiance fraction available in a particular area of the reactor. This factor 
becomes important for the light loss when placing the photobioreactor inside a greenhouse 
(Fernández et al., 2012).  
 
The equations above can be used to establish the light gradient inside the tubes or bubble column. 
To calculate the light inside the bubble column, the diameter and the biomass concentration need to 
be adapted. During photosynthesis, microalgae only use the visible fraction of the light. This fraction 
is better known as photosynthetically active radiation (PAR). In sunlight, PAR accounts for 
approximately 43% of the total spectrum (Lösing, 2011). The sunlight (light irradiance) used in this 
model is expressed in W/m2. However, a conversion is needed to photosynthetic photon flux density 
𝐼𝑃𝐹𝐷  (µmol photons/m2 s), which can be done by a conversion factor of 4.56 µmol/J (Langhans et al., 
1997). For the temperature model, the light intensity was expressed in Einstein unit (µE/m2). 
However, when only considering the visible fraction of light (PAR, 400-800 nm), the Einstein unit is 
equal to µmol photons/m2 s (Langhans et al., 1997). This conversion occurs as photochemical 
reactions are based on the number of photons involved. Therefore, the light energy in µmol photons/ 
m2 s that is available for microalgae photosynthesis is giving in the following equation.  
 

𝐼𝐹𝑃𝐷 = 0.43 ∗ 4.56 ∗ 𝐼𝑎𝑣(𝑡, 𝑥, 𝐶𝑥 , 𝑑𝑝)    (2.4.5) 

 

2.4.2 Effect of temperature on growth  

In this research, the model accounts for the effect of temperature on microalgae growth through the 
following equation. When considering a seasonal and daily cycle, temperature is the environmental 
factor that consistently accounts for the largest part of the variance in growth (Quinn et al., 2011).  
This temperature modelling is expressed with the variable 𝑓𝑇 (-), which is a dimensionless number 
between zero and one. This model assumes that the temperature affects the photosynthesis rate 
(Geider et al., 1997). The temperature factor is given in the following equation.  
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𝑓𝑇 = (
𝑇𝑙𝑒𝑡− 𝑇(𝑡,𝑥)

𝑇𝑙𝑒𝑡−𝑇𝑜𝑝𝑡
)

𝛽𝑇

𝑒𝑥𝑝 (−𝛽𝑇 (
𝑇𝑙𝑒𝑡− 𝑇(𝑡,𝑥)

𝑇𝑙𝑒𝑡−𝑇𝑜𝑝𝑡
− 1))  (2.4.6) 

 
In Eq.(2.4.6), the lethal temperature is represented by 𝑇𝑙𝑒𝑡 (°C), 𝑇𝑜𝑝𝑡 (°C) is the optimal growth 

temperature, and 𝛽𝑇 (-) is the curve modulating constant. All these variables are dependent on the 
type of algae species. 𝑇(𝑡, 𝑥) (°C) is the culture temperature at a certain space and time. The 
temperature factor 𝑓𝑇 (-) represents the influence of the culture temperature on the microalgae 
growth. The fT increases when the temperature increases up to an optimal temperature, and then 
decreases gradually, while varying between zero and one.  
 

2.4.3 Growth rate  

In literature there are different mathematical models given for the growth of microalgae. The most 
known models are Monod model or Droop model. A growth model gives an estimation of the algae 
growth under dynamic light conditions. As seen in equation (2.4.1), the change in biomass 
concentration is dependent on the specific growth rate, dilution rate, and metabolic maintenance 
coefficient. The growth rate model used in this research is based on Slegers et al. (2013b) which uses 
a growth model developed by Geider. In this model, the photosynthetic activity of the microalgae 
and the chlorophyll a:carbon ratio is connected, which is irradiance dependent. The growth rate is 
described by the following equation:  
 

𝜇𝑔𝑟𝑜𝑤𝑡ℎ(𝑡) = 𝑃𝑚
𝑐 (1 − 𝑒𝑥𝑝 (

−𝛼𝑝ℎ𝑜𝑡𝑜 𝐼𝑃𝐹𝐷(𝑡,𝑥) 𝛩𝑎(𝑡,𝑥)

𝑃𝑚
𝑐 ))  (2.4.7) 

 
Where 𝑃𝑚

𝑐  (s-1) is the maximum carbon specific rate of photosynthesis, the functional cross section of 
the photosynthetic apparatus 𝛼 (g C (mol-1 photons) m2 g-1 Chl a), the photon flow density 𝐼𝑃𝐹𝐷 (µmol 
m-2 s-1) and 𝛩𝑎 (g-1Chl a g-1 C), which is the chlorophyll a:carbon ratio (Slegers et al., 2013b). 
 
The functional cross section 𝛼 is used as a constant and the photon flow density depended on the 
outdoor conditions. The following equations show the calculation of the other variables presentation 
in the previous equation. The first equation gives the chlorophyll a:carbon ratio.  
 

𝛩𝑎(𝑡, 𝑥) = 𝛩𝑎,𝑚𝑎𝑥 (
1

1 + 
𝛩𝑎,𝑚𝑎𝑥  𝛼𝑝ℎ𝑜𝑡𝑜  𝐼𝑃𝐹𝐷(𝑡,𝑥 )  𝑎

2 𝑃𝑚
𝑐

)  (2.4.8) 

 
 
Where 𝛩𝑎,𝑚𝑎𝑥 (g-1Chl a g-1 C) is taken as a constant dependent on the microalgae species. The 
maximum carbon specific rate of photosynthesis can be calculated with the following equation:  
 

𝑃𝑚
𝑐 = 𝜇𝑚𝑎𝑥 𝑓𝑇 + 𝑟𝑚   (2.4.9) 

 
The maximum carbon specific rate of photosynthesis depends on the maximum specific growth rate 
𝜇𝑚𝑎𝑥  (s-1) and the maintenance metabolic coefficient 𝑟𝑚  (s-1).  
 
All these formulas are used to calculate the expected biomass concentration with a certain light 
intensity and ambient temperature. However, when it comes to the biomass production inside the 
tubes, the biomass concentration not only depends on time but also on the place in the tubes. Inside 
the bubble column this is not the case, because perfect mixing is assumed. Therefore, the culture 
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temperature when calculating the biomass concentration for the tubes and bubble column differ 
from each other. The biomass concentration in the tubes is calculated with the culture temperature 
and light intensity of the tubes. The biomass concentration in the bubble column is calculated with 
the temperature and light intensity of the bubble column. 
 
In appendix B, an overview of the model parameters with the specific assumptions are presented.  
 

2.5 Analysis of the temperature model and the microalgae biomass growth 

model  
In this research two mathematical models, namely temperature model (chapter 2.3) and biomass 
production model (chapter 2.4) are used and combined into one new model.  
 
In the temperature model, three different heat balances (tubes, bubble column and heat exchanger) 
are considered. The heat balance for the solar receiver is formulated through partial differential 
equations (PDE). This gives a distributed description of the process in the form of a plug flow. The 
second heat balance is the differential equation for the bubble column. This is considered a stirred 
tank that is perfectly mixed and is modelled by an ordinary differential equation (ODE). The third 
heat balance is the heat balance for the heat exchanger, which is also an ODE.  
In the microalgae biomass growth model, the main equation which represents the dynamics of the 
biomass concentration is an ODE. The specific growth rate, which is the first term of the ODE, can be 
calculated with different algebraic equations (equation 2.4 – 2.10). 
 
Analysis of mathematical models.  
Analysis of the properties of the mathematical models gives an indication of the behaviour of the 
system. Analysis of mathematical models can be done in different ways for example through steady 
state, equilibriums, or eigenvalue analysis. The stability of an equilibrium can be calculated by 
eigenvalue analysis (Van Boxtel, 2016).The eigenvalue contains a real and a complex part. The real 

part of the eigenvalue determines the ‘speed’ of the response; 𝑒𝜆𝑅𝑒 𝑡 . Where 𝜆 =
1

𝜏
 , and therefore 

𝜏 =
1

𝜆
 , where τ represents the time the system needs to respond. This system is non-linear, therefore 

linearization should be done for the states at equilibrium point. Another crude method to compare 
orders of magnitudes would be to write each differential equation in the form of:  
 
𝑑𝑥1

𝑑𝑡
= 𝑓(. )𝑥1 + ⋯ →  𝜏1 ≈

1

𝑓(.)
  (2.5.1) 

 
In this system, the amount of differential equations is quite large and becomes complicated because 
of the exponents in the microalgae growth model. Therefore, it was chosen to calculate the response 
time for the different parts of the system. In the temperature model, the three heat balances 
describe the tubes, bubble column and the heat exchanger, respectively. The flow moves through the 
tubes, which has a length of 80 meter and the culture is circulated with 1 m/s using a centrifugal 
pump. Meaning that the response time in the tubes will be 80 seconds. The length of the bubble 
column is, 3.2 meter, giving the response time for the bubble column equal to 3.2 seconds. It is 
known that the heat exchanger is positioned in the bubble column and has approximately have the 
length of the bubble column. This results in a response time for the heat exchanger of 1.6 seconds.  
 
The microalgae growth rate is described in the unit per second. It is known that the growth rate 
depends on the temperature and light intensity, but the maximum growth rate for this type of 
microalgae is equal to 3.81∙10-7 (s-1) (Slegers et al., 2013b).  
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The result of this analysis shows that the system is stiff. A system is stiff, when one of the equations 
moves significantly faster than the other system. From the different response time is it visible that 
the heat exchanger is the one with the highest response time. A stiff system can be resolved in 
different ways. One way is by a pseudo-steady state. This is an assumption that models a small 
portion of the complex system, which contains both a slow and fast reaction. In this system, the slow 
reaction is the reaction in which you are interested is the microalgae biomass production. Moreover, 
the differential equation with the heat exchanger is the reaction with the highest response time 
compared to the other reactions. To apply pseudo-steady-state, the fast reaction is assumed in a 
state of dynamic equilibrium and their derivatives are equal to zero, compared to the other reaction 
(Mott et al., 2000). Therefore, this accumulation is put equal to zero. As the heat exchanger was 
placed in the bubble column, a term in the differential equation for the bubble column represents 
the heat exchanger. After applying pseudo-steady state, this term is replaced with Q.  
 

2.6 Optimal control  
 
There are different types of mathematical models that can be applied for optimization. All these 
methods calculate a certain trajectory for the input. In this research optimal control, also known as 
dynamic optimization is applied on the model. This optimization method finds an optimal solution for 
a quantitative mathematical system. The algae growth is a continuous dynamic system. The dynamics 
are described in terms of a state space model, given in the equation below:   
 

 
𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝑝, 𝑡) 

 
(2.6.1) 

with 𝑥 being a vector of state variables (in this case; temperature in tubes and bubble column, 
biomass concentration in tubes, and biomass concentration in the bubble column), 𝑑 is a vector of 
disturbance variables (in this case; outside air temperature and light intensity), 𝑝 is a vector of the 
parameters of the model,  𝑢 is a control vector (in this case; power), 𝑡 stands for time and 𝑓 is a 
vector function. Both the control variables and the disturbances are time-varying.  
 
For optimization of a system, a control objective is defined in the form of a cost function, which can 
either be minimized or maximized. The cost function is a result of the state variables at the final time 
and the running costs (Arthur E. Bryson, 1999). The cost function 𝐽 is defined as follows in equation 
(2.6.3): 
 

 𝐽 =  Ф [𝑥(𝑡𝑓)] + ∫  L (𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝑝, 𝑡) dt 
tf

t0
  (2.6.2) 

 
Where the first term on the right hand side of equation 2.6.2, represents the terminal conditions and 
the second term the running costs, with the start time 𝑡0 and final time 𝑡𝑓, and initial conditions 

𝑥(𝑡0) specified. Maximization of the cost objective is equal to minimization of the cost function 
multiplied by a factor -1. The optimization problem involves the determination of the control 
input,𝑢(𝑡) which maximizes or minimizes the performance criterion 𝐽 for the given disturbance 
inputs. The choice of control input is limited to a feasible region, defined by constraints of the 
control, constraints of intermediate variables, and constraints of state variables (Van Willigenburg, 
2017). 
 
In this research, the goal of microalgae cultivation is to gain the maximal mass of harvested 
microalgae with the lowest costs for production, which is given by the following cost function J: 
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With 𝑤1 and 𝑤2 representing the weight factors which can be added in order to make a distinction. 
The price of the algae will depend on the market value. In the equation, the produced biomass 
concentration is corrected for the initial condition. The costs are calculated by the amount of energy 
needed to keep the production at a certain level, either by cooling or heating.  
In this case, the optimal control problem has inequality control constraints.  
 

𝑢𝑚𝑖𝑛 ≤  𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥  (2.6.4) 

 
This to indicate the maximal and minimal power needed to cool or heat the photobioreactor. In case 
of optimal control, adding an additional state variable which was previously the running costs is 
better known as the Mayer formulation (Arthur E. Bryson, 1999). By applying the Mayer formulation 
in this system, an extra differential equation is added to present the running cost. The system 
behaviour is determined by 𝑥(𝑡), which is influenced by the disturbance inputs and control 𝑢(𝑡). The 
solution of the system will be found by finding the optimal control trajectory 𝑢𝑜𝑝𝑡 for which 𝐽 = 𝐽𝑜𝑝𝑡.  

 
To solve constrained minimisation problems, Lagrange theory is applied. This theory transforms the 
constrained function minimisation problem into an unconstrained function, thus minimising the 
problem by multiplying each constraint with a Lagrange multiplier. A vector of Lagrange multipliers is 
also called a co-state. With introducing the Lagrange multiplied running costs of the cost function J, a 
new formulation will be created, also known as the Hamiltonian function.  

 
The cost function is now changed into a functional. To find a local minimum of a functional, instead 
of considering partial first derivatives which all have to be zero, it is considered to be very small. The 
new cost function with the Hamiltonian part in combination with the Leibniz’s rule will lead to the 
following co-state equation (Van Willigenburg, 2017). 
 

𝜆�̇� =  −𝐻𝑥 ≡ −𝐿𝑥 − 𝜆𝑇𝑓𝑥  
      

(2.6.6) 
 

Optimality is then achieved when 𝜆𝑇(𝑡𝑓) =  𝜙𝑥  (𝑡𝑓) and 𝐻𝑢 = 0 for 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓. In the software 

application Tomlab, this optimization method is applied. An alternative method would be to use 
piecewise linear trajectory. Hereby, the day is divided into i intervals with linear 
increasing/decreasing energy input. The values of Q at the beginning of the day and at the end of 
each interval are the parameters to be optimized. The control input Q is given by the following 
equation:  

𝑄 = (𝑡 − 𝑡(𝑖 − 1)) ∗
𝑢(𝑖)−𝑢(𝑖−1)

𝑡(𝑖)−𝑡(𝑖−1)
+ 𝑢(𝑖 − 1)   

 
(2.6.7) 

Q can be either have a positive or negative value, respectively indicating if the control input is 
heating or cooling. The constraints placed on the system are that the heater cannot reach values 
higher than 1∙106 (J/s) and for the cooler not lower than 1∙10-6 (J/s). The Matlab function fmincon is 
used to find the optimal input trajectory.  

  

J = −w1 pricealgae(Cxbiomass
(tf) − Cx0) Volume  + w2 ∫ (costcooling + costheating) 

tf

t0
  (2.6.3) 

𝐻(𝑥, 𝑢, 𝑡) =  𝐿(𝑥, 𝑢, 𝑡) + 𝜆𝑇  𝑓(𝑥, 𝑢, 𝑡)  (2.6.5) 
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2.7 Scenario’s  
The growth model for an outdoor closed photobioreactor is used to simulate growth under different 
environmental and system conditions. The following circumstances are investigated: weather types 
(seasons and variation during a day) and locations. The model is simulated for outdoor conditions, 
whereby the climate influences the outcome of the optimal input trajectory. In this subchapter, a 
description is given of the following circumstances that were chosen and tested.  
First, a reference system was made. However, to really test the model and to come up with optimal 
input trajectories for different situations, different scenarios have to be made. In this following 
chapter, the different scenarios that were made are explained.  
 

2.7.1 Locations and seasons   

In the model, one of the disturbance inputs is light irradiance, which is represented as average light 
intensity calculated based on light intensity at the reactor surface. This light intensity is mimicked by 
the positive values of a sine wave, which corresponds with outdoor conditions. The same is done for 
the temperature input.  
 
The wide variability of sunlight in time and space adds further complexity to the optimization and 
control of the cultivation system (Pruvost et al., 2011). Both the lack and abundance of light will 
negatively influence the growth of the algae. The amount of irradiation from the sun that reaches the 
photobioreactor depends on the geographic location and the position of the reactor surface towards 
the sun. The position is influenced by the location of the reactor on earth (latitude and longitude), 
the earth’s movement around the sun (differs during the year), and the earth’s rotation around its 
own axis (diurnal cycle; hour-to-hour, minute-to-minute) (Slegers et al., 2013b). As an example, the 
average daily irradiance in the month of July in Amsterdam (the Netherlands) is 345 W/m2. When 
comparing this to the month December in the same location, this is only 133 W/m2. The location 
matters, as the average daily irradiance in July in Almeria (Spain) is 524 W/m2 and for the month 
December 478 W/m2 (Database). Therefore, the two different locations included in this model are: 
Almeria, Spain (36°50′25″N 2°28′05″W) and Amsterdam, the Netherlands (52°22′N 4°54′E).  
 
The movement of the earth accounts for the climatic differences in the seasons. The following 
seasons are taken into account: spring, summer and fall. The meteorological calendar indicates that 
spring starts on the 1st of March and continues until the 31st of May. For the rest of the seasons, the 
meteorological calendar is used. Between the seasons, the day length as well as the light irradiation 
varies, which is also taken into account. For the information gathered by the meteorological station, 
see Appendix D. The following scenarios were made, where the temperature and the light intensity 
where combined per season per location.  
 

Table 2-1: Seasonal temperature and light intensity details for the different locations. 

Location  Time sun  rise  Time sun down Temperature 

range 

Light intensity  Season  

Almeria  7:00 19:00 10 - 24 °C 0 – 500 W/m2 Spring 

Almeria  7:00 20:00 18 – 31 °C 0 - 600 W/m2 Summer 

Almeria  7:00 19:00 12 – 29 °C 0 - 450 W/m2 Fall 

Amsterdam   7:00 19:00 2  - 17 °C 0 - 300 W/m2 Spring 

Amsterdam   6:00 22:00 10 - 22 °C 0 - 350 W/m2 Summer 

Amsterdam   7:00 19:00 4 – 14 °C 0 - 250 W/m2 Fall 
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The values in this table were applied as a sinus wave. Meaning that the starting value of the sinus 
wave is equal to the first number of the range, and the highest value the temperature or light 
intensity will reach is the second number of the range. The sinus wave will be zero for the light 
intensity before the ‘time sun rise’ and after ‘time sun down’. For the temperature, this is the first 
value of the range. Calculation will take place for the duration of one day, the final time being 24 
hours.   
 
Irradiance in the closed photobioreactor is composed of two fractions; direct light and diffused light. 
Direct light is solar radiation, which reaches a surface under a specific angle of incidence without 
encountering any obstacles in the atmosphere. Diffused light is light that has been scattered by the 
atmosphere and light reflected from other objects before falling on the surface from a variety of 
directions. These obstructions are often caused by clouds. In an ideal situation, temperature and 
irradiance would be investigated separately, to see what their individual effect is on the optimal 
temperature input trajectory. However, there is a connection between them. For example, cold days 
often have an overcast, while on warm days this is correlated with a clear sky. In addition, days in 
different seasons do not have the same daylight length; a sunny day in winter can have less total light 
than a cloudy day in summer.  
 

2.7.2 Variation during a day  

Noise will be added to the sinus wave to represent the cloud coverage. This will only be done for the 
light intensity, because this is affected the most by could coverage. To see the individual effect of 
cloud coverage on light and temperature cold and warm days are create. The following scenarios are 
used are described in the Table 2-2 below.  
 
Table 2-2: Amount of noise added on the seasonal temperature and light intensity 

Number of 

scenario 

Type of 

day 

Season  Temperature  Noise   Location  

7 Cold  Spring 2  - 8 °C  5 % Amsterdam 

8 Cold Spring 2  - 8 °C 10 % Amsterdam 

9 Warm  Spring 8 - 17 °C  5 % Amsterdam 

10 warm Spring 8 - 17 °C 10 % Amsterdam 

 
For the location Amsterdam and the season spring, the day length and light intensity will be used out 
of Table 2-1. Table 2-2 will give the temperature range and the percentage noise that will be applied 
on the light intensity. The percentage noise tries to represent a day more realistic. The percentage 
noise illustrates the cloud cover, which is expressed in percentage of maximum cloud cover. The day 
length from Table 2-1 is based on Slegers et al. (2013b) and the light intensity on the Database of the 
European Commission.  
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3 Results & Discussion 
In this research, different ambient temperatures and light intensities were applied to investigate the 
effect on the optimal input trajectory. This chapter presents the results of these optimal input 
trajectories. The different scenarios that are used are described in subchapter 0. Firstly an 
uncontrolled system simulation is given, after this optimal control is applied with Tomlab and finally 
piecewise linear trajectories. The latter is used to apply the scenarios with, which start with 
differences between locations and seasons and then variation during a day 
 

3.1 Uncontrolled system simulation 
A simulation was completed to get an impression what the temperature range would be and how the 
microalgae would respond to the temperature changes during the day. In this simulation, the control 
input is left out. The disturbance inputs are set on 10-20 °C (temperature range) and with a light 
intensity of 400 W/m2, together with a time sun rise (TSR) on 6:00 and time sun down (TSD) at 18:00. 
The change in temperature and biomass concentration in the tubes (left) and in the bubble column 
(right) over one day is shown in Figure 3-1.   
 
 

In this Figure 3-1, there is no substantial difference between the tubes and bubble column. This is 
caused by the fact that the start values of the tubes and the bubble column are the same and the 
volume is approximately the equivalent. Therefore, the amount of heat gained through the light 
intensity and the ambient temperature are nearly similar. Resulting in no visible difference between 
the temperature trajectory in the tubes and the bubble column. What stands out in both figures is 
that at the beginning the temperature moves down from 15 °C to the lower limit of 10 °C, indicating 
that the start value of the temperature are chosen higher than the ambient temperature causing the 
system to cool down. After TSR, the temperature increases from 15 °C to 33 °C. During the middle of 
the day, the temperature is at its highest, which is expected due to the outdoor circumstances. After 
TSD, the temperature moves down and becomes equal to the ambient temperature.  
 
To conclude, a temperature profile of 15-33 °C is visible, with the temperature in the 
photobioreactor responding to the ambient temperature.  
 

Figure 3-1: Temperature change and biomass concentration in tubes (left) and in the bubble column (right), 
without control input, simulated over one day, with the disturbance inputs being temperature range of 10-20 °C and 
a light intensity of 400 W/m2 together with TSR at 6:00 and TSD at 18:00 (indicate by the vertical lines). 
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The microalgae T. pseudonana has an optimal temperature of 24.73 °C (Slegers et al., 2013b),the 
temperature in the tubes and the bubble column is above this temperature for a certain amount of 
time (as visible in Figure 3-1) during the day. This time is in the middle of the day, which corresponds 
with the fact that the sun is at its highest position during the middle of the day, supplying the most 
heat.  
Next to a certain temperature, microalgae also need light to grow. This light intensity is only supplied 
after TSR. The lack of light is observable (in Figure 3-1, below), by the slightly declining line at the 
beginning and at the end of the biomass concentration graph. This decline can be explained by the 
fact that the respiration rate is higher than the specific growth rate. When there is light, the 
microalgae grow until the temperature in the culture is above the lethal temperature, which for this 
species of microalgae is 31.4 °C (Slegers et al., 2013b). The biomass concentration has a constant 
value in the middle of the day, indicating that the production stopped because the lethal 
temperature is reached. The total biomass growth on one day with the disturbance inputs as chosen 
show an increase of 1.6 kg/m3. This corresponds with values found in literature. Chisti (2007) for 
example reported a volumetric productivity equal to 1.535 kg/m3 per day for a photobioreactor. 
However, Jorquera et al. (2010) gives a volumetric productivity of 0.56 kg/m3 per day for tubular 
photobioreactors. A work by Münkel et al. (2013) indicates that volumetric productivities equal to 
1.25 kg/m3 per day have been reached. All these studies use the same microalgae (T. pseudonana) as 
is used in this research. The difference in biomass growth can be explained by the different operating 
temperature and light intensity and the difference in photobioreactor types (Marsullo et al., 2015). 
 
In sum, the temperature profile corresponds with the ambient temperature and the influence of the 
start values of the temperature is visible. The temperature gives a microalgae production that 
corresponds with value found in literature for this type of reactor and microalgae species. 
Nevertheless, the temperature reaches lethal temperature for a certain amount of hours during the 
day, which shows room for improvement in this case cooling.  
 

3.2 Tomlab 
Optimal control is applied with Tomlab, which is a modelling platform for solving applied 
optimization problems. The model was build, as described in the previous chapters. For Tomlab, the 
same conditions as in the uncontrolled system simulation were applied. In the following Figure 3-2 
and Figure 3-3 the results of the applying optimal control with Tomlab is shown.   
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In Figure 3-2, the temperature profile shows similar as in the simulation that it moves away from the 
start values until the ambient temperature and only after TSR it start heating up. Prominent is that 
the highest point of the temperature is not around the middle of the day (12:00), but later during the 
day (15:00). The maximal temperature in the tubes and the bubble column is around 15 °C. 
Therefore, the assumption can be made that the cooler is active, because known is that with the 
simulation, the maximum temperature becomes 33 °C.  
To conclude, a temperature profile moves down from the initial condition (15 °C) to the ambient 
temperature (10 °C) and moves up. However, instead of reaching the maximal temperature 33 °C it 
remains around 15 °C and later moves back to the ambient temperature.  
 
When comparing the simulation with the temperature profile that Tomlab gives the expectation is 
that, the cooler is on at the middle of the day. However, as seen in Figure 3-3 (which gives the heater 
and cooler trajectory), it is clear that the both of them are constant zero during the entire day. The 
start value for the heater was equal to 3 ∙103 and for the cooler the start value was equal to zero. The 
result can be explained when the initial conditions are already quite profitable. However, even when 
changing the start values for both the heater and cooler or for the temperature and biomass 
concentration the same results of the control input trajectory is seen (Appendix E). Another problem 
occurs when looking at the gradient profile of the temperature for the tubes and the bubble column. 
Even though the control input is equal to zero the entire run, the temperature shows a pattern 
where influence of a control input is visible.   

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-3: Control input trajectory of Tomlab for the reference system 

Figure 3-2: Temperature change and biomass concentration in tubes (left) and in the bubble column (right), with 
control input, simulated by Tomlab over one day, with the disturbance inputs being temperature range of 10-20 °C 
and a light intensity of 400 W/m2 together with TSR at 6:00 and TSD at 18:00(indicate by the vertical lines). 
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The notification given by Tomlab is that optimal conditions are satisfied, and the cost function has a 
return value of € 51,59. The cost function took the revenue of the microalgae minus heating and 
cooling costs, with the microalgae production being around 2 kg/m3 and a price of 25 €/kg and no 
heating and cooling, the returned value of cost function value seems logical. The sum(constr) has a 
value of 0.000006, which indicates that the optimal condition, which is reached, can be assumed to 
be valid. 
 
The microalgae response to the temperature change that is given in Figure 3-2. The production is 
more than seen in the simulation, because the temperature stays below the lethal temperature. 
However, this temperature profile is not preferable even though it gives a higher biomass 
concentration because it does not reach the optimal temperature.  
 
The code corresponding to this run can be found in Appendix F. The other run with different start 
values can be found in Appendix E. These results show that even with different start values the 
control input according to Tomlab should be equal to zero the entire time. The temperature 
presented does not correspond with the influence of the control input. The start values for the 
temperature are higher, expecting more cooling and less heating to be needed. However, the same 
results are shown. The temperature profile is similar to what was shown above. The same 
downwards and upwards movements are visible.  
 
The assumption that the outcome of Tomlab maybe a local minimum is not plausible after two 
results both showing unrealistic values. Taking into account the high amount of collocation points 
(32*8) the expectation was that the system would come up with a fitted control input. But due to the 
long computation time it took, it is plausible to say that in combination with the stiff system, Tomlab 
is not able to generate credible results. This may have to do with the fact that this systems objective 
exist out of two parts (one part which is maximized and the other part being minimized) and 
therefore is not formulated like a typical Tomlab control objective. A typical formulated control 
objective in Tomlab states that value of the system should become as close as possible to a reference 
value. 
 
The conclusion is drawn that Tomlab is not the suitable application for this model, therefore the 
following subchapter will describe the next method tried, piecewise linear.  
 

3.3 Piecewise linear trajectories 
The other method that was applied is piecewise linear. The values of the reference system 
(temperature range 10-20°C, light intensity 400 Wm-2, TSR 6:00 and TSD 18:00) were used to see if 
this method showed better result than the other control method Tomlab. This was the case, (results 
shown in Appendix G) therefore the scenarios (location and season) and scenarios (variation during a 
day) are applied with piecewise linear trajectories.  
 

3.3.1 Results of location and seasons. 

The first scenario is the spring in Almeria (Spain), with a temperature of 10 – 24 °C and light intensity 
of 500 W/m2 with TSR being 7:00 and TSD 19:00 indicated by the vertical lines. The horizontal line 
indicates the optimal temperature for the microalgae T. pseudonana. In Figure 3-4 Figure 3-4the results 
of the first scenario are shown. On the left the temperature change and biomass concentration in the 
tubes and on the right the control input trajectory for this scenario. The graph for the bubble column 
can be found in the Appendix H-Scenario 1. The value of the cost function will be presented later on 
in Table 3-1  
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The results here shows are similar to the results of the uncontrolled system simulation, the 
temperature in the photobioreactor moves back to the ambient temperature before TSR and after 
TSD. There is a high peak needed to get the temperature of the system equal to the optimal 
temperature. When the ambient temperature starts to increase, the cooling starts. It moves down 
again, when the ambient temperature cools down. There is a peak in near the end, this to keep the 
temperature optimal until light not available anymore to make optimal usage of the light.  
 
The second scenario was the summer in Almeria (Spain), with a temperature of 18 – 31 °C and light 
intensity of 600 W/m2 with TSR being 7:00 and TSD 20:00 indicated by the vertical lines. The 
horizontal line indicates the optimal temperature for the microalgae T. pseudonana. In Figure 3-5, 
the results of the second scenario are shown. On the left the temperature change and biomass 
concentration in the tubes and on the right the control input trajectory for this scenario. The graph 
for the bubble column can be found in the Appendix H-Scenario 2. The value of the cost function will 
be presented later on in Table 3-1.  
 

Figure 3-4: Temperature change and biomass concentration in the tubes (left) and the control input trajectory (right) 
simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 1 

Figure 3-5: Temperature change and biomass concentration in the tubes (left) and the control input trajectory (right) 
simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 2 



21 
 

In this scenario, the ambient temperature is higher than the start values of the temperature in the 
system, which results in the temperature rise from 15 to 18 °C. Due to the fact that the ambient 
temperature is this high, the heating peak at the beginning of the day is less compared to previous 
figure (Figure 3-4). The different parts of the tubes are quite far apart from each other, the heating of 
the tubes causes this. The day length of this scenario is increased making light longer available which 
results in more biomass production.  
 
The last scenario for the location Almeria (Spain) was the season fall, with a temperature of 12 – 
29 °C and light intensity of 450 W/m2 with TSR being 7:00 and TSD 19:00 indicated by the vertical 
lines. The horizontal line indicates the optimal temperature for the microalgae T. pseudonana. In 
Figure 3-6 the results of the third scenario are shown. On the left the temperature change and 
biomass concentration in the tubes and on the right the control input trajectory for this scenario. The 
graph for the bubble column can be found in the Appendix H-Scenario 3. The value of the cost 
function will be presented later on in Table 3-1. 
 

The control input trajectory for the fall shows a similar pattern when compare to the control input 
trajectory for the spring. Heating start after TSR with a large peak to reach optimal temperature and 
then when the ambient temperature starts moving up the control input starts cooling. What stands 
out in this figure is the difference between the peaks at the beginning of the day and at the end.  
 
The previous figures (Figure 3-4 until Figure 3-6) showed the results of the location Almeria (Spain), 
the next figures show the results for the location Amsterdam (the Netherlands). The same seasons 
will be presented starting with spring, summer and fall.  
 
In this scenario, the spring in Amsterdam (the Netherlands) is simulated, with a temperature of 2 – 
17 °C and light intensity of 300 W/m2 with TSR being 7:00 and TSD 19:00 indicated by the vertical 
lines. The horizontal line indicates the optimal temperature for the microalgae T. pseudonana. In 
Figure 3-7, the results of the fourth scenario are shown. On the left the temperature change and 
biomass concentration in the tubes and on the right the control input trajectory for this scenario. The 
graph for the bubble column can be found in the Appendix H-Scenario 4. The value of the cost 
function will be presented later on in Table 3-1.  
 

Figure 3-6: Temperature change and biomass concentration in the tubes (left) and the control input trajectory 
(right) simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 3 
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In this scenario is the ambient temperature here is 2 °C until 17 °C, which explains why there is no 
need for cooling. Due to the low ambient temperature, the heating starts earlier than seen before in 
the location Spain. The temperature profile shown here is moves away from the optimal 
temperature and shows a sine wave before reaching optimal temperature again. When comparing 
this scenario to the spring in Almeria, the temperature profile of the tubes show a more similar 
pattern to each other than in Spain.  
 
This scenario is the summer in Amsterdam (the Netherlands), with a temperature of 10 – 22 °C and 
light intensity of 350 W/m2 with TSR being 6:00 and TSD 22:00 indicated by the vertical lines. The 
horizontal line indicates the optimal temperature for the microalgae T. pseudonana. In Figure 3-8 the 
results of the fifth scenario are shown. On the left the temperature change and biomass 
concentration in the tubes and on the right the control input trajectory for this scenario. The graph 
for the bubble column can be found in the Appendix H-Scenario 5. The value of the cost function will 
be presented later on in Table 3-1.   
 

Figure 3-7: Temperature change and biomass concentration in the tubes (left) and the control input trajectory 
(right) simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 4 

Figure 3-8: Temperature change and biomass concentration in the tubes (left) and the control input trajectory 
(right) simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 5 
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In this scenario, the ambient temperature is from 10-22 °C, which requires less time to heating the 
system up to the optimal temperature. When looking at the ambient temperature the expectation is 
that cooling is not necessary, however the light intensity also heats up the photobioreactor making 
cooling required. In this scenario, the day length is 3 hours more than the other scenario, making it 
possible to produce more biomass. This results in a microalgae concentration above 10 kg/m3 
compared to the value around 6 kg/m3 in previous scenarios. The optimal temperature is reached 
almost the entire time between TSR and TSD. In this scenario the microalgae production continues to 
growth after TSD, but this growth is small.  

This is the last scenario for location and seasons, the fall in Amsterdam (the Netherlands), with a 
temperature of 4 - 14 °C and light intensity of 250 W/m2  with TSR being 7:00 and TSD 19:00 indicated 
by the vertical lines. The horizontal line indicates the optimal temperature for the microalgae. In Figure 

3-9Figure 3-9, the results of the sixth scenario are shown. On the left the temperature change and 
biomass concentration in the tubes and on the right the control input trajectory for this scenario. The 
graph for the bubble column can be found in the Appendix H-Scenario 6. The value of the cost 
function will be presented later on in Table 3-1.   
 
 

 

 
In this scenario, heating of the system similar in the other seasons of this location starts before TSR. 
However, it takes the system a while to reach the optimal temperature, when comparing to the 
location Spain. The ambient temperature indicates that only heating is required. The control input 
trajectory shown here resembles the control input trajectory of the fall in the same location.  
 
In the table below (Table 3-1), all the values of the revenue of the microalgae and the cost for 
heating and cooling are given for all the six different scenarios run.  
  

Figure 3-9: Temperature change and biomass concentration in the tubes (left) and the control input trajectory 
(right) simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 6 
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Table 3-1: Results of the cost function of the different scenarios applied for the locations and 
seasons.  

Scenario number 1 2 3 4 5 6 

Temperature trajectory  10 - 24 °C 18-31 °C 12-26 °C 2-17°C 10-22 °C 4-14°C 

Light intensity 
trajectory  

0-500 
W/m2 

0-600 
W/m2 

0-450 
W/m2 

0-250 
W/m2 

0-350  
W/m2 

0-300 
W/m2 

Time sun rise  7:00 7:00 7:00 7:00 6:00 7:00 

Time sun down  19:00 20:00 19:00 19:00 22:00 19:00 

Start values 
at t0 

𝑇𝑡𝑢𝑏𝑒𝑠 15 °C 15 °C 15 °C 15 °C 15 °C 15 °C 

𝐶𝑥𝑡𝑢𝑏𝑒𝑠
 2 kg/m3 2 kg/m3 2 kg/m3 2 kg/m3 2 kg/m3 2 kg/m3 

𝑇𝑏𝑢𝑏𝑏𝑙𝑒 15 °C 15 °C 15 °C 15 °C 15 °C 15 °C 

𝐶𝑥𝑡𝑢𝑏𝑒𝑠
 2 kg/m3 2 kg/m3 2 kg/m3 2 kg/m3 2 kg/m3 2 kg/m3 

Revenue microalgae € 99.32 € 104.31  € 94.80  € 82.95  € 181.93 € 90.70 

Cost power  € 34.48 € 53.21 € 36.31 € 32.27 € 31.66 € 43.74 

Cost function J  € 64.80 € 51.10 € 58.49 € 50.68 € 150.27 € 46.95 

 
The microalgae biomass production differs from the lowest value in spring in the Netherlands to the 
highest value in the summer in the Netherlands. The microalgae revenue for summer in the 
Netherlands stands out with it being 2.2 times larger than the lowest microalgae revenue, which is 
the same location.  When it comes to the cost for cooling and heating, the lowest value is in spring in 
the Netherlands, while the highest value in summer in Spain. Which is as expected, the hypothesis 
was that the summer in Spain could give the highest cost for cooling and heating. The spring in Spain, 
fall in Spain, spring in the Netherlands and summer in the Netherlands, are around the same range of 
cost for heating and cooling. The fall in the Netherlands has lower ambient temperatures requiring 
more heating. The revenue of the microalgae and the cost for heating and cooling result in the profit 
or cost function. The main profit can be seen in the summer in the Netherlands, this is mainly due to 
the high biomass production, which is causes by the larger day length. The lowest profit is for the 
season fall in the Netherlands, which is caused by the fact that the biomass production is quite low 
and the cost for this are relatively high.   

 

3.3.2 Results  variation during a day  

 
The last scenarios were run to see how the system would responded to noise applied on the light 
intensity. The scenarios exist out of warm and cold days with 5% and 10% noise. The details of the 
scenarios are shown in Table 2-2. The results of this section is that it was almost impossible to find a 
start value where the cost function did not give an outcome equal to NaN (which means that the 
value is not recognized as a valid number). For example, when an optimal control input trajectory 
was found and saved but when later was tried to plot these results with the same values Matlab 
indicated that the cost function was equal to NaN. Therefore, no reliable results can be presented.  
 

3.3.3 General discussion points  

In previous sections, the results of this research were presented. In this part, the research the 
general discussion points are described. For the disturbance values only the ambient temperature 
and light intensity were taken into account. Only location, season and variation during a day were 
used, which was represented by a sine wave but therefore only taken direct sunlight into account. 
While scattered, indirect and ground reflection should be something to be considered because it will 
give more light and create more preferable situations (Chen et al., 2011; Slegers et al., 2013b).  
 
In the following figure, the growth rate depending on the temperature is presented, to see how the 
growth rate changes when moving away from the optimal temperature.  
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Figure 3-10: The growth rate (s-1) as a function of the Temperature (°C) for T. pseudonana 

In Figure 3-10 is visible that the growth rate decreases when you are slightly above the optimal 
temperature. In the graphs (Figure 3-4 until Figure 3-9) presented, most of the time the first and/or 
second part of the tube are above the optimal temperature and the remaining parts of the tubes is 
below. In this figure, it is visible that between the temperature of 20-25 °C, the growth rate increases 
from 2.4∙10-5 (s-1) to 3.3∙10-5 (s-1), while from 25-30 °C the growth rate decreases from 3.3∙10-5 (s-1) 
until 8.5∙10-6 (s -1). The results of this figure indicate that is it better to have values slightly lower than 
the optimal temperature compared to higher than the optimal temperature.  
 
Next to the sensitivity of the temperature, there are two different light effects that need to be taken 
into account; light-inhibition and Lambert–Beer in opaque solutions. In the applied scenarios, the 
light intensity ranges from 250-600 W/m2 which corresponds to 491-1176 µmol/m2 s. In Figure 3-11 is 
shown what the microalgae T. pseudonana growth rate is in standard conditions compared to when 
subjected to photo–inhibition. This figure shows that the growth rate decreases after a photon flux 
density lower than 250 µmol/m2 s. In this research, there was no correction done for photo-inhibition 
making this effect visible in the seasons where the light intensity is larger. In the figure, the blue lines 
indicate the light intensity for the location the Netherlands and the red lines for Spain. This shows 
that the growth rate in Spain was lower compared to the Netherlands. Photo-inhibition is the 
explanation why in the Netherlands better results with regards to the microalgae production were 
seen compared to Spain. The microalgae revenue could be improved when the light intensity would 
be reduced.   
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Besides light-inhibition, there was another effect visible when looking at the results. In every graph of 
the scenarios (Figure 3-4 until Figure 3-9) the values directly after TSR and before TSD show a similar 
pattern. The temperature moves straight up and the microalgae concentration is level for a short 
while. This can be contributed to the light intensity, as shown in the Figure 3-12. The light intensity is 
zero before TSR and start moving up when TSR is passed making light come in later.  
 

 

 

 

 

 

 

 
 
 
 

 
 

In Figure 3-11 is shown that low light intensity has a high growth rate but still a level microalgae 
concentration is seen in the results (Figure 3-4 until Figure 3-9) at the beginning and end of the day. 
This is due to the fact that at the beginning of the day the microalgae cells are a small amount. A high 

Figure 3-12: Light intensity (W/m2) during one day with TSR 7:00 and TSD 19:00 

Figure 3-11: Specific growth rate (day-1) with and without photo-inhibition (from Slegers et al. (2013b)) with 

the blue lines being the minimum and maximum light intensity of Amsterdam and the red lines being the 
minimum and maximum light intensity of Almeria.  
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growth rate does not have an added value at that moment because the microalgae cells are low. This 
phenomenon explains the level microalgae concentration at the beginning of the day, for the end of 
the day there is another explanation possible, namely opaque. In this system, Lambert – Beer 
equation is taken into account, meaning that for the relationship between absorbance and 
concentration of the microalgae is adjusted. Nevertheless, opaque will still occur with this high 
amount of microalgae biomass concentration, which results in a level biomass concentration just 
before TSR. This can also be due to the fact that with optimal control it is known that right before 
final time, the results are not considered to be that important and the results are not always desired.  
 
As seen in this research, the most profit can be made in the Netherlands. However, the price of the 
harvest microalgae has a direct correlation to this profit. For example, if the price would decrease 
from 25 €/kg to 5 €/kg, no positive profit would be shown. When it comes to the heater and cooler, 
in this research there efficiency is equal, but the cost for the heater are double compared to the 
cooler. In this research the thermal energy costs are calculated for one day, showing promise for the 
location the Netherlands over the location Spain. However, Ruiz et al. (2016) shows potential for 
Spain by calculating the microalgae production (cultivation and harvesting) cost (€/kg) for the same 
type of photobioreactor to be equal to 8.9 €/kg in the Netherlands and 5.2 €/kg in Spain. In general, 
it is tough that Spain is the better location to production microalgae. However, the species of 
microalgae that is used in this research is known to have a relative slow growth rate compare to 
other microalgae. The optimal temperature of the microalgae is 24.74 °C (Slegers et al., 2013b). 
When looking at the ambient temperature of both locations, it can been seen that the average 
temperature in the Netherlands lays closer to the optimal temperature, therefore already creating a 
preference for the location the Netherlands compared to the location Spain.  
 
When it comes to the methods used, Tomlab is known to be suitable for solving optimal control 
problems, but the result of the control input trajectory was an unreliable result. The outcome of 
Tomlab that is given for the cost function is similar when comparing to the outcome of the cost 
functions of piecewise linear trajectories. However, the optimal control input trajectory not, 
indicating that there may be a mistake when generating the figures of Tomlab. Piecewise linear 
trajectories has a large amount of intervals, due to this high amount the higher the chance there is to 
get stuck in a local minimum. Another problem for this method was to find good starting values for 
the control input. The starting values determine which local minimum the result presents. The 
temperature profile is close to the optimal temperature however, this mainly depends on the initial 
guess given the system and will give a local minimum based on the initial guess.  
 
By only taken into account the temperature as a control factor, the system becomes dependent on a 
single control factor, whereby a slight change will influence the entire system. At this moment, it is 
assumed that the biomass in the reactor will be the same level at the beginning of each day so that 
the same control can be applied every day. Thus assuming that harvesting takes place each day at 
the end of the day, and the amount that is harvest is the final concentration until the start value. A 
lot of research has been done on what type of harvesting is suitable for a certain system (Grognard et 
al., 2014). Next to this the preferable harvesting time is researched (Grognard et al., 2014), including 
the optimal adequate control method (Van Straten et al., 2010). Aforementioned studies show that it 
would be possible to time the moment of harvesting and the amount of harvesting to include also 
optimal harvesting. In the end, the main goal of this research was to find out if production cost could 
be reduced by the implication of optimal control on temperature. However, with cultivation of 
microalgae not only production has to be taken into account but harvest as well. Further research 
should be done to indicate what type of harvest is best suited, in this situation.  
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4 Conclusion  
The research questions made in this research were described as follows: What is the optimal input 
trajectory for a standard situation? How is the optimal input trajectory affected by the season, 
location and variation during a day? And finally; is it possible to translate the optimal control 
strategies for different situations into heuristic control rules? 
 
The mathematical analysis of the model showed that the model was a stiff system. The model was 
adapted by using pseudo-steady-state for the heater exchanger. The proposed software Tomlab, 
turned out not to be suitable for this system because the results shown were unreliable. 
Optimization of piecewise linear trajectories showed results with a positive monetary outcome and 
microalgae growth higher than the uncontrolled system simulation. The standard situation or also 
called reference system has a specific ambient temperature and light intensity. The first research 
question can be answered with the following figure (Figure 4-1) were the optimal input trajectory for 
a standard situation can be seen on the left.  
 

 
The second research question asked was how the optimal control input trajectory was affected by 
location, seasons and variation during a day. In chapter 3.3.1 (location and season) and 3.3.2 
(variation during a day) the results for the different scenarios are given.  
All results have a strong peak at the beginning to get the ambient temperature until the optimal 
temperature, followed by cooling or heating depending on the ambient temperature. The days ends 
with a peak. In general, the same peaks are observable in all the control input trajectories but in 
different sizes and on different moments. The peaks depends per scenario on the light availability 
and ambient temperature. These results show that in both locations the control input trajectory for 
the season spring resembles the control input trajectory for the season fall. In the location the 
Netherlands, the heating starts earlier due to the colder outdoor conditions. However, even though 
heating starts earlier the optimal temperature is reached later in comparison to the location Spain. In 
Spain, photo-inhibition plays a role making the microalgae production less compared to the 
Netherlands.  
 
In this research, with the price of microalgae being € 25/kg, cost of heating € 0.04/kWh and cost of 
cooling € 0.02/kWh, the cost function shows the highest profit for the summer in the Netherlands, 
namely € 150,27 per day. The costs for heating and cooling are approximately between € 31,- and € 
54,- per day. The lowest profit of the six scenarios is also in the Netherlands, in the fall. All profits are 
positive indicating that with the price of microalgae and for heating and cooling taken in this case, it 

Figure 4-1: Temperature change and biomass concentration in the tubes (left) and the control input trajectory 
(right) for the piecewise linear trajectories reference system (temperature range of 10-20 °C, light intensity of 400 
W/m2, TSR being 6:00 and TSD 18:00). 
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is profitable for the microalgae production to keep the temperature in the photobioreactor at an 
optimal temperature.  
 
The results presented in this research lead to the conclusion that the location and season have effect 
on the optimal input trajectory. The heuristic control rules that can be drawn from this research are 
as follows: during the night no heating or cooling is required, this has to do with the effect that 
respiration takes places and the cost of cooling and/or heating are too high. When light is available 
the temperature in the photobioreactor should be at the optimal temperature. It is known when light 
becomes available, making it possible to control the temperature in such way that the optimal 
temperature is reached at the right time. How much controlling of the temperature in the 
photobioreactor is needed depends on the ambient temperature. When the ambient temperature is 
relatively low, the heating should start earlier. The heating and/or cooling to keep the temperature 
at ambient temperature should continue when enough light is available. With the price of the 
microalgae as used in this research it is feasible to keep the temperature at optimal temperature 
when light is available. Price is an important factor, for the different scenarios a minimum price 
should be established to define whether to use optimization or not.  
 
When it comes to the variation during a day, the conclusion can be made that with optimization of 
piecewise linear trajectories no reliable results will be given. The research question when it comes to 
how the optimal input trajectory is affected by variation during a day can therefore not be answered 
and no heuristic rule can be made.    
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5 Recommendations & Outlook 
 
First recommendations will be done for the two main problems that the results show: variation 
during a day and the sensitivity when it comes to the initial guess. A recommendation will be made 
for these problems. Later an outlook will be given when it comes to the future of closed outdoor 
photobioreactors.  
 
This system is based on data, which was represented by sine waves, which represents the main trend 
of outside data but this does not resemble realistic data. The noise that is applied trying to mimic 
variations during the day shows unreliable results. When using real data this may not occur 
therefore, real data should be used to see if a heuristic rule could be made for the variation during a 
day. When a heuristic rule is made, the recommendation is that this rule and together the heuristics 
rules when it comes to location and season should be validated with real data. 
 
Another problem that occurred in this research, is the sensitivity of the initial guess for the 
optimization of piecewise linear trajectories. A recommendation would be to use less time intervals 
or using initial guesses, which resemble each other, so that the same optimal solution will be found 
each time.  
 
When it comes to the systems prospect, the system is profitable in this research however, the 
applied price for microalgae may change in the future. In addition, with unknown prices of the 
future, the outlook will be that the microalgae production system will be coupled with another 
application to reduce costs and make microalgae more competitive for different industrial 
applications. This coupling should be made for the temperature and light intensity. This coupling with 
other applications can for example be with an application that already produces heat. Other 
examples of coupling are with combustion power plants or other CO2 sources or use nutrients from 
wastewater treatment facilities or low quality water (Bernard, 2011; De la Hoz Siegler et al., 2012; 
Ugwu et al., 2008).  
 
Next to temperature, the light should also be coupled or more regulated so that the optimal 
microalgae production could be reached. In this research photo-inhibition occurs, when light 
availability would be more regulated higher microalgae production can be reached. It is known, that 
the light of the sun varies with the weather, seasons and locations making the light intensity supply 
unstable. Artificial light would be a solution, however this is relatively expensive. A 
solution/combination is proposed by Chen et al. (2011). They recommend a light dependent resistor 
(LDR) for online monitoring of the irradiation intensity on the photobioreactor. The light intensity 
from the sun is used for daytime illumination. But, if the light intensity decreased below a certain set 
value (due to clouds/rainy days), an artificial light source (multi-LED light sources) are automatically 
activated. This ensures a continuous, sufficient and stable light supply for inside and outside the 
photobioreactor. It is important to remember that the microalgae do need a dark period in the 
production cycle, but this can be considered in the model. This combination limits the amount of 
electricity consumption needs compared to continuous artificial light. However, to further decrease 
electricity consumption, Chen et al. (2011) proposed to install also solar panels and a wind power 
generator. The solar panels are used to collect solar radiation from the sunlight, but because sunlight 
is not continuously, the wind power generator is used as additional complement. Together, the solar 
panels and wind power generator supply all the energy required by the multi-LED light sources. With 
this system the microalgae cultivation could take place with zero electricity consumption.  
 
Finally, to make microalgae production really compatible in the industrial applications there needs to 
be a production on larger scale. However, when increasing production new constraints and problems 
will pop up (Ugoala et al., 2012).   
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Appendix 

A. Growth kinetics 
 
Microalgae have a different growth pattern than plants. Instead of increasing in size or weight, they 
enlarge in the number of single cells. As descripted, there are various factors that influences the 
microalgae growth. However, when this is not the case and the culture is a homogenous batch 
process, the growth kinetics of the microalgae can be determined. In this homogenous process, 
nutrient supply is limited and nothing is added or removed from the culture.  
 
The microalgae growth goes through a couple of phases: lag phase, exponential phase, declining 
growth phase, stationary phases and death phase. In the first phase, the lag phase, the growth is 
delayed because it takes time for the culture to adjust to the new conditions. After the adjustment, 
the microalgae can/will start growing. This happens in the exponential phase, here the cells grow and 
divide as an exponential function of time. It is important to note that during this phase, neither light 
intensity nor nutrients are limiting factors for the growth. This is followed by cell division which slows 
down becomes light becomes limiting. This causes for an accumulation, which is constant. After this, 
an equilibrium is reached in the stationary phase. The growth is now approaching a limiting value 
(the maximum biomass concentration possible in this system). Processes like storage of carbon 
products take place. The last phase, the death phase, is caused by unfavourable conditions, for 
example depletion of nutrients, overheating, pH disturbance or contamination. In this phase the 
microalgae cell concentration declines rapidly.  
 

 
Figure A-1: The growth phases of microalgae cultures 

All these phases are visible in Figure A-1, in practice the phases are not always as noticeable as 
shown in the Figure A-1. There are certain things that may be different, for example the slope may 
vary in magnitude, length or height. In addition, the transitions from one phase to another may be 
shaped differently. The actual shape of the microalgae growth phases is based on the inoculation 
material, the nutrient concentration, and the environmental conditions such as light intensity, 
temperature and pH (Lee et al., 2015; Mata et al., 2010; Mehlitz, 2009).  
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B. Model parameters summary 
 
The following section presents an overview of the parameters of the model with the specific 
assumptions explained. Model inputs and parameters for photobioreactor are summarized in Table 
B-1 for the temperature model in Table B-2, the values for the light intensity in Table B-3 and for the 
microalgae growth biomass model in Table B-4. 
 
In Table B-1, the values for the parameters of the photobioreactor are given. The values were based 
from the paper of Fernández et al. (2014) which gives a mathematical model for everything that 
happens in a photobioreactor.  
 
Table B-1: The parameters value of the photobioreactor 

Abbreviation Value  Unit  

𝐶𝑝 4183 J kg-1  °C-1 

𝜌 1000 kg m-3 

𝑙𝑒𝑛𝑔𝑡ℎ 80 m 

𝑑𝑏 0.4 m 

ℎ𝑒𝑖𝑔ℎ𝑡𝑏𝑢𝑏𝑏𝑙𝑒  3.2 m 

 
A couple of equations are here presented, which were all needed to in the end come up with the 
dilution rate. The two equation will calculate the volume in the tubes and the bubble column, while 
the formulas followed by these describe how to calculate the dilution rate.  
 

 

𝐹 = 𝑄𝑙𝑖𝑞  (B.3) 

𝑉𝑙𝑖𝑞 =
𝑉

𝑛
  (B.4) 

𝐷 =
𝐹

𝑉
  (B.5) 

Dilution rate is calculated, with the 𝑄𝑙𝑖𝑞 of the temperature model. In the following table the 

parameters for the temperature model are given also based on the paper of Fernández et al. (2014). 
 
 Table B-2: The parameters value of the temperature model 

Abbreviation Value  Unit  

𝛼𝑡 0.9725 Dimensionless 

𝑑𝑡  0.084 m 

𝑎 0.5411 Dimensionless 

ℎ𝑡  30 J s-1 m-2  °C-1 

𝛼𝑏  0.1052 Dimensionless 

𝑆𝑏 4.0212 m2 

ℎ𝑏 11.186 J s-1 m-2  °C-1 

Vliq =  𝜋 
1

2
𝑑𝑡

2 𝑙𝑒𝑛𝑔𝑡ℎ    (B.1) 

Vbubble =  𝜋 
1

4
𝑑𝑏

2 𝑙𝑒𝑛𝑔𝑡ℎ   

 
(B.2) 
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In table B-3 the value is given for the parameter of the lambert-Beer law.  
 

Table B-3: Lambert-Beer law coefficient. 

Abbreviation Value  Unit  Reference  

𝑘𝑎 0.269 (m2 kg-1) (Quinn et al., 2011) 

 

The following table will give the parameters of the biomass model, based on the paper of (Slegers et 
al., 2013b) 
 

Table B-4: The parameters value of the biomass model 

Abbreviation Value  Unit  

𝑟𝑚  5.79∙10-7 s-1 

𝑇𝑙𝑒𝑡 31.40 °C 

𝑇𝑜𝑝𝑡 24.73 °C 

𝛽𝑇
 1.83 Dimensionless  

𝛼𝑝ℎ𝑜𝑡𝑜  10 g C mol-1 photons m2 g-1 Chla  

𝛩𝑚𝑎𝑥 0.08 g-1 Chla g-1 C 

µ𝑚𝑎𝑥 3.81∙10-7 s-1 
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C. Nomenclature 
 

 

 
 
 
 
  

Abbreviation Description  Unit 
𝑎  Constant representing solar irradiance absorptivity (-) 

𝐶𝑝 Volumetric heat capacity of growth medium 
(J kg-1 °C-1) 

𝐶𝑥 Biomass concentration  (Kg m-3) 
𝑑  Vector of disturbance (-) 
𝐷 Dilution rate over time (s-1) 
𝑑𝑏 Diameter tubes  (m) 
𝐷𝑝 Tube diameter in p part (m) 

𝑑𝑡 loop diameter of tubes (m) 
𝑓𝑇 Temperature factor (-) 

ℎ𝑒𝑖𝑔ℎ𝑡𝑏𝑢𝑏𝑏𝑙𝑒 Height of the bubble column  (m) 
ℎ𝑏 Heat transfer coefficient to ambient in bubble column (J s-1 m-2°C-1) 
ℎ𝑡 Heat transfer coefficient to ambient in loop.  (J s-1 m-2°C-1) 

ℎ𝑒𝑥𝑡 Heat transfer coefficient between the heat exchanger in 
bubble column and culture temperature 

(J s-1 m-2°C-1) 

𝐼0 Incident light intensity  (W m-2) 
𝐼𝑃𝐹𝐷 Photon flux density  (μmolm-2s-1) 
𝐾𝑎 Spectrally averaged absorption coefficient of algae  (m2kg-1) 
𝐿 Distance (m) 

𝑃𝐴𝑅  Photosynthetic active radiation  (%) 
𝑃𝑚

𝑐  Maximum carbon specific rate of photosynthesis  (s-1) 
𝑄𝑤  Volumetric flow rate of water crossing through heat exchanger (m3 s-1) 

𝑄𝑙𝑖𝑞,𝑐 Volumetric flow rate liquid bubble column  (m3 s-1) 

𝑄𝑙𝑖𝑞,𝑙 Volumetric flow rate of liquid in loop  (m3 s-1) 

𝑟𝑚  Maintenance metabolic coefficient (s-1) 
𝑆𝑏  Column area available (m2) 

𝑆𝑒𝑥𝑡 Heat exchanger area (m2) 
𝑡 Time (h) 
𝑇 Temperature of culture (°C) 

𝑇𝑎𝑚𝑏  Ambient temperature (°C) 
𝑇𝑖𝑛  Culture temperature at inlet of bubble column (°C) 
𝑇𝑙𝑒𝑡 Lethal temperature (°C) 
𝑇𝑜𝑝𝑡 Optimal temperature (°C) 

𝑇𝑜𝑢𝑡 Culture temperature at outlet of bubble column (°C) 
𝑇𝑒𝑥𝑡  Temperature in heat exchanger (°C) 

𝑣  Liquid velocity (m s-1) 
𝑉𝑙𝑖𝑞,𝑐  Liquid bubble column (m3) 

𝑉𝑒𝑥𝑡 Heat exchanger volume (L) 
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Subscripts Description 

𝐴𝑚𝑏 Ambient 

𝐵 Bubble column  

𝐸𝑥𝑡 Heat exchanger 

𝐿 Loop  

𝐿𝑖𝑞 Liquid 

𝐿𝑒𝑡 Lethal 

𝑀𝑎𝑥 Maximum 

𝑂𝑝𝑡 Optimal 

𝑂𝑢𝑡 Outlet of bubble column 

𝑃𝐹𝐷 Photon Flux Density 

Greek letter Description  Unit 

𝛼𝑡 Distribution solar factor for solar receiver (-) 

𝛼𝑏 Distribution solar factor for the bubble column   (-) 

ß𝑇  Curve modulating constant (-) 

𝜎 

Functional cross section of the photosynthesis 
apparatus 

(g C (mol-1 photons) m2g-1Chla) 

𝜇 Growth rate  (s-1) 

𝜇𝑔𝑟𝑜𝑤𝑡ℎ Specific growth rate (s-1) 

𝜇𝑚𝑎𝑥 Maximal growth rate  (s-1) 

𝛩 Chlorophyll a and carbon ratio in the cell (g-1Chl a g-1 C) 

𝛩𝑚𝑎𝑥 Maximal chlorophyll a and carbon ratio (g-1Chl a g-1 C) 

𝜌 Volumetric mass density (kg m-3) 
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D. Reference for the temperature ranges in scenario. 
 
The temperature range of the scenarios for different seasons is based on data from Yr 
(Merologiskinstiutt). Yr is a joint service by the Norwegian Meteorological Institute and the 
Norwegian Broadcasting Corporation. It gives statistics over one year about the average temperature 
per month and the precipitation. For the location Amsterdam, North Holland (the Netherlands) 
Figure D-1 and Table D-1 give the temperatures and precipitation per month. For the location 
Almeria, Andalucía (Spain) Figure D-2 and Table D-2 are used. It should be noted, that the weather 
station of Almeria is 20 metres above sea level and 37.0 km away from Almeria. The graph and table 
are obtained from the following website : https://www.yr.no/place/Nederland/Nord-
Holland/Amsterdam/statistics.html for the Netherlands for Spain: 
https://www.yr.no/place/Spain/Andaluc%C3%ADa/Almer%C3%ADa/statistics.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D-1: Average temperature per month for the location Amsterdam, North 
Holland (the Netherlands). 

Table D-1: Temperature and precipitation per month given the normal, warmest, coldest 
temperature for the location Amsterdam, North Holland (the Netherlands) 

https://www.yr.no/place/Nederland/Nord-Holland/Amsterdam/statistics.html
https://www.yr.no/place/Nederland/Nord-Holland/Amsterdam/statistics.html
https://www.yr.no/place/Spain/Andaluc%C3%ADa/Almer%C3%ADa/statistics.html
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From this table and graph, the following conclusions were draw when it comes to the temperature 
range for the location Amsterdam, North Holland (the Netherlands). For the season spring (March, 
April, May) the temperature range is 2 – 17 °C, for the season summer (June, July, August) the 
temperature range is 10 – 22 °C and for the season fall (September, October, November) the 
temperature range is 4 – 14 °C.  

 

 

 

 

 

 

 

 

 

 

 

From this table and graph, the following conclusions were draw when it comes to the temperature 

range for the location Almeria, Andalucía (Spain). For the season spring (March, April, May) the 

temperature range is 10 – 24 °C, for the season summer (June, July, August) the temperature range is 

18 – 31 °C and for the season fall (September, October, November) the temperature range is 12 – 

29 °C.  

Figure D-2:  Average temperature per month for the location Almeria, Andalucía (Spain) 

Table D-2: Temperature and precipitation per month given the normal, warmest, coldest 
temperature for the location Almeria, Andalucía (Spain) 
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E. Result of Tomlab with different start values. 
 

 
 

  

Figure E-1: Temperature change and biomass concentration in tubes (left) and in the bubble column (right), with different 
start values for the control input and temperature, simulated by Tomlab over one day, with the disturbance inputs being 
temperature range of 10-20 °C and a light intensity of 400 W/m2 together with TSR at 6:00 and TSD at 18:00 (indicate by the 
vertical lines). 

Figure E-2: Control input trajectory of Tomlab for the reference system, with different start values 
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Figure E-3: Outcome of the cost function (Tomlab 3.2) with different start values.  
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F. Code Tomlab 
 
 %% Optimal control problem, tomlab 
% pseudo applied, no heat exchanger equal  
% lambert-beer equation added 
% new differential equation to remove the biomass concentration at the end 
% of the day.  

  
%% 
% define tomSym variable t (time) and tf (fixed final time) 
n_day = 1;                         % amount of days 
toms t; tf = n_day*24*3600;        % Fixed final time (in seconds)  

       
% Variables to collect intermediate results: 
J = []; sumc = []; cpu = []; 
n = 32*8;                       % amount of collocation points.  
nt = 5 ;                        % tube is divided into 5 pieces. 
% Define & set time axis 
tp = tomPhase('tp', t, 0, tf, n); setPhase(tp); 

  
% Define the state and control vector; n =5;  
% tomStates x1 x2 x3 x4 x5      % temperature in tubes 
% tomStates x6 x7 x8 x9 x10     % biomass in tubes 
% tomStates x11 x12             % Tbubble, Cx bubble 
tomStates x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 
tomControls u1 u2  

  
x = [x1;x2;x3;x4;x5;x6;x7;x8;x9;x10;x11;x12;x13;x14]; 
%% Initial state  
xi = [15;15;15;15;15;2;2;2;2;2;15;2;0;0];   
x0 = {icollocate(x == xi) 
    collocate({u1 == 3e3; u2 == 0})}; 

  
%% model parameters 
model_parameters_final   

            
%% control inputs  
length1 = 80; 
Q_liq = 5e-03;                  % volumetric flow rate of liquid in loop                    

[m3/s] 
Q_w = 5e-04;                    % volumetric flow of water crossing in heat 

exchanger       [m3/s] 

  
% Dilution rate 
F = Q_liq;                      % Flow                                                       
V = V_liq/nt;                   % volume                                                    
D = F/V;                        % diluation rate                                             

    
%% disturbances inputs  
ac = 0.2690;                    % spectrally averaged light absorption 

coefficient          [m2/g]      [slegers] 
tsu = 6*3600; 
tsd = 18*3600; 
tff = (24*3600-tsd + tsu);  

  
rec_f = 4.57*0.43;  
Iin = 400 * rec_f;  
T_w = 10;  
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E0 = Iin*(sin((pi/tff)*(t-tsu)));  
for i = 1:length(E0)   
    ifThenElse(E0(i)<0,0,E0(i));  
end   

  
Tamb = T_w + 10*sin((pi/tff)*(t-tsu)); 
for i = 1:length(Tamb) 
    ifThenElse(Tamb(i)<T_w,T_w,Tamb(i)); 
end  

  
%% biomass tubes 
% T1 with Cx1 (x1 en x6)  
% Lambert - Beer  
% Eaverage = E0 *((1-exp(-alpha*Xdw*B))/(alpha*Xdw*B)); 
li11 = E0*((1-exp(ac*x6*-d_t/2))/(ac*x6*d_t/2)); 

  
y11 = ifThenElse(x1>T_let,T_let,x1);  
f_T11 = ((T_let - y11)/(T_let - T_opt))^beta_T * exp(-beta_T *((T_let - 

y11)/(T_let - T_opt)-1)); 
P_m_c11 = mu_max*f_T11 + r_m ; 
theta11 = theta_max * (1/(1 + (theta_max*alpha_photo*li11*a)/(2*P_m_c11)));  
mu_growth11 = P_m_c11 * (1-exp((-alpha_photo*li11.*a*theta11)/P_m_c11)); 

  
% T2 with Cx2 (x2 en x7)  
li12 = E0*((1-exp(ac*x7*-d_t/2))/(ac*x7*d_t/2)); 

  
y12 = ifThenElse(x2>T_let,T_let,x2);  
f_T12 = ((T_let - y12)/(T_let - T_opt))^beta_T * exp(-beta_T *((T_let - 

y12)/(T_let - T_opt)-1)); 
P_m_c12 = mu_max*f_T12 + r_m ; 
theta12 = theta_max * (1/(1 + (theta_max*alpha_photo*li12*a)/(2*P_m_c12)));  
mu_growth12 = P_m_c12 * (1-exp((-alpha_photo*li12.*a*theta12)/P_m_c12)); 

  
% T3 with Cx3 (x3 en x8)  
li13 = E0*((1-exp(ac*x8*-d_t/2))/(ac*x8*d_t/2)); 

  
y13 = ifThenElse(x3>T_let,T_let,x3);  
f_T13 = ((T_let - y13)/(T_let - T_opt))^beta_T * exp(-beta_T *((T_let - 

y13)/(T_let - T_opt)-1)); 
P_m_c13 = mu_max*f_T13 + r_m ; 
theta13 = theta_max * (1/(1 + (theta_max*alpha_photo*li13*a)/(2*P_m_c13)));  
mu_growth13 = P_m_c13 * (1-exp((-alpha_photo*li13.*a*theta13)/P_m_c13)); 

  
% T4 with Cx4 (x4 en x9)  
li14 = E0*((1-exp(ac*x9*-d_t/2))/(ac*x9*d_t/2)); 

  
y14 = ifThenElse(x4>T_let,T_let,x4);  
f_T14 = ((T_let - y14)/(T_let - T_opt))^beta_T * exp(-beta_T *((T_let - 

y14)/(T_let - T_opt)-1)); 
P_m_c14 = mu_max*f_T14 + r_m ; 
theta14 = theta_max * (1/(1 + (theta_max*alpha_photo*li14*a)/(2*P_m_c14)));  
mu_growth14 = P_m_c14 * (1-exp((-alpha_photo*li14.*a*theta14)/P_m_c14)); 

  
% T5 with Cx5 (x5 en x10) 
li15 = E0*((1-exp(ac*x10*-d_t/2))/(ac*x10*d_t/2)); 

  
y15 = ifThenElse(x5>T_let,T_let,x5);  
f_T15 = ((T_let - y15)/(T_let - T_opt))^beta_T * exp(-beta_T *((T_let - 

y15)/(T_let - T_opt)-1)); 
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P_m_c15 = mu_max*f_T15 + r_m ; 
theta15 = theta_max * (1/(1 + (theta_max*alpha_photo*li15*a)/(2*P_m_c15)));  
mu_growth15 = P_m_c15 * (1-exp((-alpha_photo*li15.*a*theta15)/P_m_c15)); 

          
%% temperature bubble column  
% Q_heat = u1;  
% Q_cool = u2;  

  
%% biomass bubble column  
% Lambert - Beer  
% Eaverage = E0 *((1-exp(-alpha*Xdw*B))/(alpha*Xdw*B)); 
li2 = E0*((1-exp(ac*x12*-d_b/2))/(ac*x12*d_b/2)); 

  
y2 = ifThenElse(x11>T_let,T_let,x11);  
f_T2 = ((T_let - y2)/(T_let - T_opt))^beta_T * exp(-beta_T *((T_let - 

y2)/(T_let - T_opt)-1)); 
P_m_c2 = mu_max*f_T2 + r_m ;  
[theta2] = theta_max * (1/(1 + (theta_max*alpha_photo*li2*a)/(2*P_m_c2)));   
mu_growth2 = P_m_c2 *(1-exp((-alpha_photo*li2.*a*theta2)/P_m_c2));  

  
%% Tomlab equality constraints: ceq 

  
% cost cooling and heating 
cost_c = 0.02;  
cost_h = 0.04;  
% weighting factors, cooling and heating.  
w1 = 1; w2 = 1;  

  
ceq = collocate({  
    dot(x1) == (-Q_liq*rho*Cp*((x1-x11)/delta_x) + 

alpha_t*li11*a*pi*d_t*delta_x - h_t*pi*d_t*delta_x*(x1-

Tamb))/(Cp*pi*d_t^2/4*delta_x*rho); 
    dot(x2) == (-Q_liq*rho*Cp*((x2-x1)/delta_x) + 

alpha_t*li12*a*pi*d_t*delta_x - h_t*pi*d_t*delta_x*(x2-

Tamb))/(Cp*pi*d_t^2/4*delta_x*rho); 
    dot(x3) == (-Q_liq*rho*Cp*((x3-x2)/delta_x) + 

alpha_t*li13*a*pi*d_t*delta_x - h_t*pi*d_t*delta_x*(x3-

Tamb))/(Cp*pi*d_t^2/4*delta_x*rho); 
    dot(x4) == (-Q_liq*rho*Cp*((x4-x3)/delta_x) + 

alpha_t*li14*a*pi*d_t*delta_x - h_t*pi*d_t*delta_x*(x4-

Tamb))/(Cp*pi*d_t^2/4*delta_x*rho); 
    dot(x5) == (-Q_liq*rho*Cp*((x5-x4)/delta_x) + 

alpha_t*li15*a*pi*d_t*delta_x - h_t*pi*d_t*delta_x*(x5-

Tamb))/(Cp*pi*d_t^2/4*delta_x*rho); 
    dot(x6) == (mu_growth11-r_m)*x6 + D*(x12-x6); 
    dot(x7) == (mu_growth12-r_m)*x7 + D*(x6-x7); 
    dot(x8) == (mu_growth13-r_m)*x8 + D*(x7-x8); 
    dot(x9) == (mu_growth14-r_m)*x9 + D*(x8-x9); 
    dot(x10) ==(mu_growth15-r_m)*x10 + D*(x9-x10); 

     
    dot(x11) == (-Q_liq*Cp*rho*(x11-x5)+ alpha_b*li2*S_b*a + h_b*S_b*(Tamb-

x11) + u1 + u2)/(Cp*rho*V_bubble); 
    dot(x12) == (mu_growth2-r_m)*x12 + D*(x10-x12);  

     
    dot(x13) == u1;  
    dot(x14) == -u2; 
    });  

  
%% Boundary conditions  
cbnd = initial(x ==xi); 
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%% Control bounds 
cbox = { 
        0 <= collocate(u1) <= 1e6; 
        -1e6 <= collocate(u2) <= 0 
        };  

  
%% Tomlab objective to be minimized: objective  
price_algae = 25;  % euro/kg 
% weighting factors inside the control objective?  
energy = (final(x13)*0.04 + final(x14)*0.02)/3.6e6/0.8; 
objective = (-w1*price_algae*((final(x6)-2+final(x7)-2+final(x8)-

2+final(x9)-2+final(x10)-2)*V + (final(x12) -2 *V_bubble)))+ w2*energy;  

  
%% solve the problem 

  
options = struct; 
options.name = 'Temperature control'; 
[solution,result] = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);     

             
% Store intermediate results: costs, nonlinear constraints, cpu time 
J    = [J result.f_k]; 
sumc = [sumc sum(abs(result.c_k))]; 
cpu  = [cpu result.CPUtime]; 

  
% Obtain final solution: t, x, u 
% that overwrite the associated tomSym variables 
t  = subs(collocate(t),solution); 
x1 = subs(collocate(x1),solution); 
x2 = subs(collocate(x2),solution); 
x3 = subs(collocate(x3),solution); 
x4 = subs(collocate(x4),solution); 
x5 = subs(collocate(x5),solution); 
x6 = subs(collocate(x6),solution); 
x7 = subs(collocate(x7),solution); 
x8 = subs(collocate(x8),solution); 
x9 = subs(collocate(x9),solution); 
x10 = subs(collocate(x10),solution); 
x11 = subs(collocate(x11),solution); 
x12 = subs(collocate(x12),solution); 
x13 = subs(collocate(x13),solution); 
x14 = subs(collocate(x14),solution); 
u1 = subs(collocate(u1),solution); 
u2 = subs(collocate(u2),solution);  

  
%% plot result 

  
figure(1) 
subplot(2,1,1) 
plot(t/3600,x1,'*-',t/3600,x2,'*-',t/3600,x3,'*-',t/3600,x4,'*-

',t/3600,x5,'*-'); axis([0 24 0 30]) 
legend('x1','x2','x3','x4','x5'); 
xlabel('Time (h)'); 
ylabel('Temperature (°C)');  
title('Temperature in tubes'); 
line([6 6], [0.1 40]) 
line([18 18], [0.1 40]) 

  
subplot(2,1,2) 
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plot(t/3600,x6,'*-',t/3600,x7,'*-',t/3600,x8,'*-',t/3600,x9,'*-

',t/3600,x10,'*-'); axis([0 24 1.5 8]) 
legend('x1','x2','x3','x4','x5'); 
xlabel('Time (h)'); 
ylabel('Biomass (kg/m^3)'); 
title('Biomass in tubes'); 
line([6 6], [0.1 40]) 
line([18 18], [0.1 40]) 

  
figure(2) 
subplot(2,1,1) 
plot(t/3600,x11);axis([0 24 0 30]) 
xlabel('Time (h)'); 
ylabel('Temperature (°C)');  
title('Temperature in bubble column'); 
line([6 6], [0.1 40]) 
line([18 18], [0.1 40]) 

  
subplot(2,1,2) 
plot(t/3600,x12); axis([0 24 1.5 8]) 
xlabel('Time (h)'); 
ylabel('Biomass (kg/m^3)'); 
title('Biomass in bubble column');  
line([6 6], [0.1 40]) 
line([18 18], [0.1 40]) 
%%  
figure(3) 
plot(t/3600,u1,t/3600,u2);axis([0 24 -1e6 1e6]) 
legend('heating', 'cooling');  
xlabel('Time (h)'); 
ylabel('Power (J/s)'); 
title('cool and heat response'); 

  

  

 

  

  

 

Figure F-1: Outcome of the cost function (tomlab 3.2) 
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G. Result of piecewise linear trajectories reference system 
 

 

Figure G-1: Temperature change and biomass concentration in tubes (left) and in the bubble column 
(right) with piecewise linear trajectories over one day for the reference system (temperature range 
of 10-20 °C, light intensity of 400 W/m2, TSR being 6:00 and TSD 18:00).  

Here it is visible that it takes the system time to reach optimal temperature. The temperature is 
equal to the ambient temperature when TSD is reached. The microalgae growth is low when the 
temperature is moving up to optimal temperature. The cost for this heating and cooling trajectory 
are € 22,75, revenue of the microalgae € 76,20 making a profit of € 53,45. The belonging control 
input trajectory is given in the figure below (Figure G-2).  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-2: Control input trajectory for the piecewise linear trajectories reference system 
(temperature range of 10-20 °C, light intensity of 400 W/m2, TSR being 6:00 and TSD 18:00).  
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H. Additional figures of the scenario’s location and seasons 

Scenario 1.  

The first scenario is the spring in Almeria (Spain) simulated, with a temperature of 10 – 24 °C and 
light intensity of 500 W/m2 with TSR being 7:00 and TSD 19:00 indicated by the vertical lines. The 

horizontal line indicates the optimal temperature for the microalgae. In the main text the result of 
the tubes is shown, there the graph on the left gives the temperature change and biomass 
concentration in the bubble column and on the right the control input trajectory.   
 
 

 
 
 
 
 
 

  

Figure H-1: Temperature change and biomass concentration in the bubble column (left) and the control input 
trajectory (right) simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 1 
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Scenario 2.  

The second scenario was the summer in Almeria (Spain) simulated, with a temperature of 18 - 31 °C 
and light intensity of 600 W/m2 with TSR being 7:00 and TSD 20:00 indicated by the vertical lines. The 
horizontal line indicates the optimal temperature for the microalgae. In the main text the result of 
the tubes is shown, there the graph on the left gives the temperature change and biomass 
concentration in the bubble column and on the right the control input trajectory.  

 

 

  

Figure H-2: Temperature change and biomass concentration in the bubble column (left) and the control input trajectory 
(right) simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 2 
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Scenario 3.  

In this scenario is the fall in Almeria (Spain) simulated, with a temperature of 12 – 29 °C and light 
intensity of 450 W/m2 with TSR being 7:00 and TSD 19:00 indicated by the vertical lines. The 
horizontal line indicates the optimal temperature for the microalgae. In the main text the result of 
the tubes is shown, there the graph on the left gives the temperature change and biomass 
concentration in the bubble column and on the right the control input trajectory. 

 

  

  

Figure H-3: Temperature change and biomass concentration in the bubble column (left) and the control input trajectory 
(right) simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 3 
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Scenario 4.  

In this scenario is the spring in Amsterdam (the Netherlands) simulated, with a temperature of 2 – 
17 °C and light intensity of 300 W/m2 with TSR being 7:00 and TSD 19:00 indicated by the vertical 
lines. The horizontal line indicates the optimal temperature for the microalgae. In the main text the 
result of the tubes is shown, there the graph on the left gives the temperature change and biomass 
concentration in the bubble column and on the right the control input trajectory. 
 

 
 
 
  
  

Figure H-4: Temperature change and biomass concentration in the bubble column (left) and the control input 

trajectory (right) simulated with piecewise linear trajectories for one day with the disturbance inputs of 
scenario 4 
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Scenario 5.  

In this scenario is the summer in Amsterdam (the Netherlands) simulated, with a temperature of 10 – 

22 °C and light intensity of 350 W/m2 with TSR being 6:00 and TSD 22:00 indicated by the vertical 

lines. The horizontal line indicates the optimal temperature for the microalgae. In the main text the 
result of the tubes is shown, there the graph on the left gives the temperature change and biomass 
concentration in the bubble column and on the right the control input trajectory.  
 

 

  

Figure H-5: Temperature change and biomass concentration in the bubble column (left) and the control input 

trajectory (right) simulated with piecewise linear trajectories for one day with the disturbance inputs of 
scenario 5 
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Scenario 6.  

In this scenario is the fall in Amsterdam (the Netherlands) simulated, with a temperature of 4 – 14 °C 
and light intensity of 250 W/m2 with TSR being 7:00 and TSD 19: 00 indicated by the vertical lines. 

The horizontal line indicates the optimal temperature for the microalgae. In the main text the result 
of the tubes is shown, there the graph on the left gives the temperature change and biomass 
concentration in the bubble column and on the right the control input trajectory. 
 

 

 
 

 

Figure H-6: Temperature change and biomass concentration in the bubble column (left) and the control input trajectory 
(right) simulated with piecewise linear trajectories for one day with the disturbance inputs of scenario 6 
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