आтиц в это время зцесы мадоко saорые и размножанотся. Buepuыt на звание кулика-сорожи (26.06.05 r. - \& яеликаний 4 пары), периодически здесь раз~ множаются каспмйский зуек в некоторые другие виды. Во время миграмий в районе озера надолго задерживается некоторые северные виды. Так, на прудах Ассоуиашии «Живая природа степи» до 11.07 .07 г. держалось 2 белолобых гуся из стаи в 40 особей, которая отдыхала и кормйлась в районе пруда до 4.05 .07 г. Около одного из о-вов 12.05 .07 г. отмечена надолго задержавшаяся пара краснозобой казарки.

Анализируя размножаюшуеся лимнофпльньие комплексві птиц о-вов, молнно отметить, что наиболсе многочмсленные, постоянные и разнообразньде гнездовые колонии располагаются на больших плоскрих и средних размеров о-вах. Ha крупньх о-вах обынно обитают хищныте млекопитаюомие, препятствуюыие размножению на ния лимнофильньх птиу. На о-вах больших и средних размеров колониальностъ позволяет пернатым успешно зацищаться от хицных птиц. На о-ве Прибрезкный 1.05.08 г. мы наблюодали залетевшего в район о-ва степного орла, которого хохотуньи загнали в воду и здесь добивали мокрого обессилнвшего хищника. Проникновение на этй о-ва хищных млекопитаюния (в холодныи период года, по мелководью в теплый период) приводит к гибели многих птид, оставленицо взрослвни о-вов. Небольшие о-ва также успешно заселяются пернатымми, но разнообразие и общая численность птид здесь обычно меньше. Соединение о-вов с материковой частью и свободньй доступ на них хищных млекопитаююших вызывает исчезновение колонии, что особенно часто наблюдается в последние годы при заметном обмелении озера, его заливов, пересьхании прудов, лиманов.

На озере постоянно образуются новые косы и островки. Около них, как и в районах более крупнытх о-вов, всегда держатся различные чайки, крачки, кулики и другие птицы. Эти островки м о-ва не сразу используются птицами для размножения. Только после прошествия ряда лет, увеличения размеров этих островков, появления растительности птифы начинают здесь размножаться. Эти участки периодически заливаются водой во время штормов и гнезда гибнут. Многие оставшиеся без гнезд птиуы перелетают на более крупные о-ва с колониями м размножаются здесь. Данное явление и некоторые другие (поздняя холодная весна, позднее весеннее освобождение от воды островов и кос,

на которых птнды размножались в пиедиествуюиуие годыл, и др.) служат причинами больнюй растянутости гнездового периода птиу на озере. В кодонияз с апрелямая до июля у одного вида птиц одновременно можно наблодать гнезда с яйцами, птенцами различного возраста. Не летаюшие птенды кряквы, лебедя-шипуяа д некоторых других околоводньхх птиц нногда наблюдаются и в августе.

INVASIOM OP AR ALIEPTREE SPECIES ELAEACRUS ACUSTMEOLAL IN PROJRCT RESRRVRE MVAbLEM OP RURGAMG HN DESERT STEPPE ZOMR

I. Moysivenko, E, Suchik-Wójeikowska, Pieter A. Sim ${ }^{3}$ ${ }^{1}$ Kherson State University (Ukraine, Kherson, Vanvan@ksu.ks.ua)
${ }^{2}$ University of Warsaw
(Poland, Warsaw, barbara.sudnik@uw.edu.pl) ${ }^{3}$ Landscape Centre
(Alterra, Wageningen UR, pieter.slim@wur.nl)

Russian olive or Trebizond (Elacagnus angustifolia L.) date is a small tree or shrub. Nost authors suggest that E. angustifolia originated from the Irano-Turanian region. Russian olive is cultivated as an ornamental and melliferous plant in many country's. The plant was introduced into North America and became a serious nuisance in many of the states, e.g. Nevada, Arizona, Colorado, Nebraska, South Dakota, New Mexico, Idaho, California, Texas, Montana. The threat that the escaping specimens of E. angustifolia pose to the steppe vegetation of Ukraine is often underestimated. In southern Ukraine the species is found mainly in river valleys, riverside terraces, on the slopes and bottoms of canyons and ravines ('balkas'), on shore sand, offshore islands and sandbars. Elaeagnus angustifolia is highly resistant to drought and tolerates elevated salinity levels.

The object of our investigations was E. angustifolia which escaped from windbreaks to grow wild in Pontic desert steppe zone. The aim of the study was to cvaluate the consequences of encroachment of this invasive species into abandoned fields and extensively used pastures where vegetation similar to that of the natural Pontic desert steppe is now regenerating. The rate of this process was assessed based on analysis of phytosociological relevĭs (species
composition and degree of cover); the proportion of alien species was also considered.

The investigations were carried on the area of the project reserve "Valley of Kurgans", situated in the Gola Pristan district (the south-west part of the Kherson Region), 4-5 km south of the border of the Black Sea Biosphere Reserve, between the villages of Ivanivka and Pamyatne ($46^{\circ} 21^{\prime} \mathrm{N}$, $32^{\circ} 07^{\prime} \mathrm{E}$, Fig. 1b). The weakly structured shallow depression, extends from west to east (length ca. 15 km , width 4 km), which is seems to be the continuation (eastem part) of the Yagorlycka Bay. In fact, it is part of the old river-bed of the Dnieper. In the investigated area the natural plant cover consists of Pontic desert steppe vegetation which is found in slightly elevated places and on kurgans abundant on this area. The Pontic desert steppe vegetation occurs in combination with halophytic and subhalophytic communities on solonetz and solonchak soils, and halophyte meadows. The desert steppe was mainly used for pasturage and only in some parts as arable fields, some of which have been gradually abandoned since $1960 \mathrm{~s}-70$ s. The increase of salt in the soil seems to be a result of the contemporary transgression of the Black Sea and the consequence of the previous artificial watering of the fields. After the agricultural fields had been abandoned the area was intensively used as pasture for sheep. There were thousands of sheep at the end of the 1980s. At this time the crisis in Ukrainian agriculture led to changes in the structure of breeding. Herds of sheep were replaced by a much smaller number of cows.

Tree ring measurements enabled the estimation of the age of the protective forest belts in the immediate vicinity of the areas sampled. The oldest planted specimens of Elaeagnus angustifolia and Robinia pseudoacacia were found to be about 47 years old (windbreaks were, therefore, planted in about 1958). The specimens which had escaped from the windbreaks were much younger (most aldest 22 year) than their parent trees (their height did not always correlate with their age). Elacagnus specimens not older than 20 years could establish themselves in places where cultivation and intensive grazing had ceased. This indicates that cultivation and intensive grazing ceased in the period 1983-88. A detailed analysis of the annual ring growth showed that the years 1993 and 2000 were the most unfavourable in terms of tree growth and development.

The analysis of phytosociological material (48 relevms with and without of Russian olive) collected from areas of different land use type and limited anthropogenic pressure show that E. angustifolia can impede the regeneration of the desert steppe. The species creates favourable conditions for the growth of geographically and ecologically alien nithrophilous weeds. It appears that the developing and
ageing specimens of Russian olive contribute to the persistence of weeds which are displaced from the area surrounding the trees. The tree crown provides shade, and the nitrogen-fixing actinomycetes which form a symbiotic association with Elaeagnus (genus Frankia in the root nodules) seem to play an important role in this process. It is generally recognized that most weed species are nitrophilous.

The negative impact of E. angusiffolia increases when it escapes from windbreaks into the wild and encroaches into habitats transformed by man. The tree creates a suitable habitat for weed species (which are much less abundant in the regenerating Pontic desert steppe) by increasing the nitrogen level in soil. When the coverage data were taken into account, a group of relevis with Russian olive from the most strongly altered habitats (abandoned fields) could be easily distinguished. It may be assumed, therefore, that E. angustifolia "preserves" the changes induced by man and slows down the process of regeneration of the steppe in places where anthropogenic activities have ceased. It should be pointed out that only the area in the immediate vicinity of specimens of Russian olive, which were about 20 years old, was analyzed. It cannot be excluded that the impact of the species on its immediate neighbourhood will increase with the specimens' age (although it is not a long-living species).
R. Burda [1] estimates that 84 species of alien trees and shrubs (including E. angustifolia) have become established in the agricultural landscape of Ukraine. Among them 9 species were given the status of agriophyte $=$ neophyte sensu Thellung. Elaeagnus angusitifolia is not included in this group. We suggest that the above species should be regarded as one of the most invasive agriophytes, at least in southern Ukraine.

The study area is close to the Black Sea Biosphere Reserve and should be placed under protection within the reserve or designated as a scenic (landscape) park, where agricultural practices would be limited. The regenerating Pontic desert steppe, as well as fragments of the halophyte and littoral vegetation, could be preserved. Both protected and endangered species are noted in the area studied [2]. The presence of a large number of archacological monuments (134 kurgans!) is an additional argument for protecting this area (we propose its name: "The valley of kurgans"). In this case the abundant presence of Russian olive, which is responsible for transformation of the landscape and "preservation" of anthropogenic changes in the flora of regenerating desert steppe, is highly undesirable. Windbreaks, including those that have been neglected, are not only a regular source of diaspores of E. angustifolia but also create favourable microhabitats for birds, which disperse the fruit over longer
distances. There is no need to maintain the existing windbreaks in the protected areas. On the other hand, the gradual replacement of E. angusitifolia by appropriate 'safe' tree species should be considered in windbreaks located in areas which are still under agricultural use.

REFERENCELIST

1. Burda R. Alien trees and shrubs in the Ukrainian agricultural lanscape / A. Zajacc, M. Zajac \& B. Zemanek. Phytogeographical problems of synanthropic plants. Cracow: Institute of Botany Jagiellonian University, 2003. - P. 11-16.
2. Moysiyenko I.L., Sudnik-Wyicikowska B. The flora of kurgans in the desert steppe zone of southern Ukraine Чорномор. бот. журн. - 2006. - Т.2, № 1. С. 5-35.

> ММВАЗทด AMeEMTMBHORO MPEREGTHOTO BMAA HEAEACRUS ANGUSTIROMAL. - MPOERTMPYEMOMPE3EPEATE «MONMHA KYPTARHOB" (3OHA RYCTBMMBX CTEHEM, ПММНАЯ צRPAMHA)

И.И. Мойсиенио ${ }^{1}$. С. Судмик-Войдияовска ${ }^{2}$ Tlитер Слим ${ }^{3}$
${ }^{1}$ Херсонский государственный университет
(Украина, г. Херсон, Vanvan@ksu.ks.ua)
Варшавский университет
(Попьша, г. Варшава, barbara.sudnik@uw.edu.pl)
${ }^{3}$ Центр по изучению пандшафтов
(Нидерланды, г. Вагенинген, pieter.slim@wur.nl)

Проектируемый региональный ландшафтный парк расположен в Голопристанском районе Херсонской области. Он представляет собой приморскую солончаковую равнину, которая примыкает к восточному берегу Ягордьщкого залива. Территория парка (площадь около 6 тыс. га) имеет большую историко-культурную (здесь расположено 134 кургана ски甲ского времени) и природную (флора сосудистых растений насчитывает свыше 300 видов, включая 7 созофитов) ценность.

Одной из ведущих проблем создаваемого парка есть массовое распространение адвентивного вида растений Elaeagnus angustifolia L., которое вспыхнуло после прекращения промышленного овцеводства, связанного с кризисом начала девяностых годов поошлого столетия. Проникая в естественные пустынностепные сообщест-

ва, Elaeagnия angustifolia вызывает трансформацию естественной среды, в первую очередь евтрофикадию и умброфитизаиию, что приводит к деградации естественной растительности, при этом происходит локальное выпадение видов местной флоры, и, наоборот, проникновение нитрофилвных сорных, в том числе и адвентивных, растений.

BกMตHME ПИPOTEMHOTO AATOPA HA CEOMCTRA TEMHO-HAHTAHOBЫX MOYE 3АПOBEAHOŬ CTEMM «ACRAMMY-HOZA"

E.H. Mopryß, T.h. Уuaqesa
Биосферный заповедник
«Аскания-Нова» им. Ф. Э. Фальц-Фейна УААН (Украина, пгт. Аскания-Нова, askania-zap@ mail.ru)

Формирование и функционирование степньвх экосистем значительным образом обуславлнвается влиянием пирогенного фактора [1]. В условнях южной степи Украиных доминируют летние пожары, которые характеризуются высокой интенсивностью горения и почти полным выгоранием растительного покрова по сравнению с друпими зонами. На территории Биосферного заповедника «Аскания-Нова» степныте пожары - частое явление. Это позволило нам провести анализ почвенных показателей (содержание гумуса, $\mathrm{\rho H}$, солевой состав водной вытяжки) участков природного ядра с различным постпирогенным периодом: через 6 лет (2001 г.), через 2 года (2005 г.), в год исследования (2007 г.), с повторным горением: через 6 лет и через 3 года (2001 г. +2004 г.), а также негорелый вариант (контроль).

Полученные данные показали, что все исследуемые варианты горевших темно-каштановых остаточно солонцеватых почв характеризовались повышенным содержанием гумуса в верхнем $0-5$ см слое с последуюшим очень резким снижением вниз профиля. При сравнении среднего содержания тумуса в 0.30 см слое почвы горелых участков с их негорелым аналогом (у кв. 43) отмечается превышение содержания гумуса на участке, горевшим 2 года назад (кв. 42), - на $0,87 \%$ и на участке, горевшим 6 лет назад (уч. Северный) - на $0,66 \%$. По мнению А.И. Попова [2;3], такое явление объясняется термической коагуляцией колоидов гуминовых веществ и, как результат, их переходом в закон-

