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ABSTRACT 

Background: Elevated plasma triglycerides are increasingly viewed as a causal risk factor for 

coronary artery disease. One protein that raises plasma triglyceride levels and that has 

emerged as a modulator of coronary artery disease risk is angiopoietin-like 4 (ANGPTL4). 

ANGPTL4 raises plasma triglyceride levels by inhibiting lipoprotein lipase (LPL), the 

enzyme that catalyzes the hydrolysis of circulating triglycerides on the capillary endothelium.  

Objective: The objective of the current study was to assess the association between 

ANGPTL4 and LPL in human adipose tissue, and to examine the influence of nutritional 

status on ANGPTL4 expression.  

Methods:  We determined ANGPTL4 and LPL mRNA and protein levels in different adipose 

tissue depots in a large number of severely obese patients who underwent bariatric surgery. 

Furthermore, in 72 abdominally obese subjects, we measured ANGPTL4 and LPL mRNA 

levels in subcutaneous adipose tissue in the fasted and post-prandial state. 

Results: ANGPTL4 mRNA levels were highest in subcutaneous adipose tissue, whereas LPL 

mRNA levels were highest in mesenteric adipose tissue. ANGPTL4 and LPL mRNA levels 

were strongly positively associated in all three adipose tissue depots. In contrast, ANGPTL4 

and LPL protein levels were negatively correlated in subcutaneous adipose tissue, suggesting 

a suppressive effect of ANGPTL4 on LPL protein abundance in subcutaneous adipose tissue. 

ANGPTL4 mRNA levels were 38% higher in the fasted compared to the post-prandial state.  

Conclusion: Our data provide valuable insights into the relationship between ANGPTL4 and 

LPL in human adipose tissue, as well as the physiological function and regulation of 

ANGPTL4 in humans.   

 

Keywords: Lipid metabolism, human adipose tissue, ANGPTL4, LPL, triglycerides.  
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INTRODUCTION 
 
Coronary artery disease is a major cause of morbidity and mortality worldwide 1. Despite 

significant progress in the diagnosis, prevention and treatment of coronary artery disease, 

novel and effective treatments are needed to further reduce cardiovascular disease rates. 

Elevated plasma triglycerides are increasingly viewed as a causal risk factor for coronary 

artery disease 2. Consequently, targeting plasma triglycerides may be a viable approach to 

lower coronary artery disease risk. One protein that regulates plasma triglyceride levels and 

that has recently emerged as a modulator of coronary artery disease risk is angiopoietin-like 4 

(ANGPTL4). Specifically, studies have shown that carriers of the inactivating variant E40K 

in the ANGPTL4 gene are at reduced risk of developing coronary artery disease 3,4. 

ANGPTL4 is a member of the angiopoietin-like protein family that also includes 

angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 8 (ANGPTL8) 5. ANGPTL4 likely 

modulates coronary artery disease risk by raising plasma triglyceride levels via inhibition of 

lipoprotein lipase (LPL), the enzyme that catalyzes the hydrolysis of circulating triglycerides 

on the capillary endothelium 6. ANGPTL4 inhibits LPL by promoting the unfolding of LPL, 

which in turn leads to the dissociation of the catalytically active LPL dimer into inactive and 

unstable monomers 7,8. Besides ANGPTL4, ANGPTL3 and ANGPTL8 also potently inhibit 

LPL activity and increase plasma triglyceride levels 5. Notably, inactivation of ANGPTL3 via 

monoclonal antibodies and anti-sense oligonucleotides markedly reduces circulating levels of 

triglycerides and LDL cholesterol in humans 9,10. Accordingly, ANGPTL3 and ANGPTL4 

hold considerable promise as pharmacological targets for coronary artery disease. 

 

As mentioned above, carriers of the E40K variant in the ANGPTL4 gene have significantly 

lower plasma triglyceride levels, as well as elevated HDL cholesterol levels. However, 

despite the strong genetic evidence for a role of ANGPTL4 in regulating plasma triglycerides 
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in humans, the relation between circulating ANGPTL4 and plasma triglyceride levels remains 

somewhat ambiguous 11–14. These and other observations have raised questions about the role 

of circulating ANGPTL4 in the regulation of LPL activity on the capillary endothelium. 

Indeed, several mouse studies indicate that locally expressed ANGPTL4 is important for 

regulating tissue LPL activity 15–17. For example, the elevated expression of ANGPTL4 in 

adipose tissue during fasting likely accounts for the inhibition of adipose tissue LPL activity 

and the reduced uptake of TG-derived fatty acids in adipose tissue during fasting 17,18. 

Moreover, we recently showed that, in mouse adipocytes, ANGTPL4 lowers the amount of 

LPL protein by promoting the intracellular degradation of mature glycosylated LPL 19. Little 

is known about the regulation of ANGPTL4 mRNA and protein in human adipose tissue, and 

on its relationship with LPL. Accordingly, the objective of the current study was to assess the 

association between ANGPTL4 and LPL in human adipose tissue, by using material of 

different adipose tissue depots that was obtained from a large number of severely obese 

patients undergoing bariatric surgery. In addition, we investigated the relationship between 

ANGPTL3, ANGPTL4 and ANGPTL8 mRNA levels in liver material obtained from a 

subgroup of patients. Furthermore, we investigated the correlation between the above 

parameters and lipid and ANGPTL4 levels in blood plasma. Finally, in a separate study, we 

examined the influence of nutritional status on ANGPTL4, ANGPTL8, and LPL mRNA levels.  
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MATERIALS & METHODS   

 

MONDIAL study  

The MONDIAL study (acronym for Markers of Organ health in Non-diabetic and Diabetics; 

Intestine, Adipose tissue & Liver) is a cross-sectional study in male and female patients 

undergoing bariatric surgery at Rijnstate hospital/ Vitalys clinics in Arnhem, the Netherlands. 

The study aimed to determine the health of adipose tissue depots, the liver, and the intestine, 

with a focus on examining potential differences in organ health between diabetics and non-

diabetics, and to search for novel biomarkers for metabolic diseases. The collection of 

material was conducted in 15 patients in 2012 and in 61 patients in 2015. Tissue samples were 

obtained from residual biological material from patients who underwent either a primary 

laparoscopic Roux-en-Y gastric bypass or a primary laparoscopic gastric sleeve procedure, 

deployed to induce weight loss and to alleviate co-morbidities of obesity. Both procedures 

were performed laparoscopically. Patients met the criteria for surgery from the 

Interdisciplinary European Guidelines for Surgery for Severe (Morbid) Obesity, amongst 

others aged 18-60, a BMI of over 40kg/m2 or a BMI between 35 and 40kg/m2 with co-

morbidity that is expected to improve after surgically-induced weight loss, a history of 

longstanding obesity (>5 years), proven failed attempts to lose weight in a conventional way, 

or primarily successful weight loss with eventual weight regain, and the intention to adhere to 

a postoperative follow-up program 20. For the MONDIAL study, we excluded non-Caucasian 

patients and targeted further recruitment of patients to obtain an equal ratio of females and 

males, as well as diabetics and non-diabetics. Patients were informed by their surgeon and one 

of the researchers about the study during a pre-operative visit two months prior to the surgical 

procedure, after which they could give a written acknowledgement of informed consent to 

participate. Participation included the consent that residual material would be used for 
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scientific research and the withdrawal of a fasting blood sample before surgery. The blood 

sample was drawn prior to the administration of anesthetics on the operating table. Blood was 

collected in a 6mL EDTA tube, after which the sample was centrifuged at 1500*g at 4 °C to 

obtain plasma. Patients were informed that their decision to participate was totally voluntary 

and that they could withdraw at any time without giving a reason. Withdrawal would not 

affect their regular medical treatment. The study was approved by the local ethics committee 

of Rijnstate hospital.  

 

Bellyfat study 

The Bellyfat study was approved by the Medical Ethics Committee of Wageningen University 

and registered at ClinicalTrials.gov, identifier: NCT02194504. In short, 110 healthy 

participants aged 40-70 years with abdominal obesity (BMI >27kg/m2 or waist circumference 

>88cm for females, >102cm for males) were randomly assigned to one of three different 

energy-restricted diets. Here, we only report baseline data prior to the intervention. Subjects 

came to our department in the morning in the fasted state. After blood sampling and collection 

of a subcutaneous adipose tissue biopsy, subjects were given an in-house prepared mixed 

meal consisting of 76.3g carbohydrates, 17.6g protein, and 60.0g fat. Four hours later, a 

second subcutaneous adipose tissue biopsy was taken, after making a new incision. The 

subcutaneous adipose tissue samples were obtained by needle biopsy from the periumbilical 

area under local anesthesia. The samples were rinsed to eliminate blood and were 

immediately frozen in liquid nitrogen. All samples were stored in aliquots at −80°C.  

 

RNA isolation & qPCR 

Total RNA from residual material of the liver, the subcutaneous adipose tissue, the mesenteric 

adipose tissue and the omental adipose tissue from patients included in the MONDIAL study 
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was isolated using TRIzol reagent (Life Technologies Europe BV, Bleiswijk, the Netherlands) 

and purified using the Qiagen RNeasy Mini kit (Qiagen, Venlo, the Netherlands). Quality of 

the isolated RNA was verified using an Agilent 2100 bioanalyzer (Agilent Technologies, 

Amsterdam, NL). Next, 500 ng of RNA was reverse transcribed using the First-Strand cDNA 

Synthesis Kit (Thermo Scientific, Landsmeer, the Netherlands). Real-time PCR was carried 

out using SensiMix (Bioline, GC Biotech, Alphen aan de Rijn, the Netherlands) on a CFX 

384 Bio-Rad thermal cycler (Bio-Rad, Veenendaal, the Netherlands). Primer sequences can 

be found in Supplemental Table 1. 36B4 and BACTIN were used as housekeeping genes for 

the adipose tissue depots, whereas CYPA was used as housekeeping gene for the liver.  

 

Microarray analysis 

Purified RNA (100 ng) from subcutaneous adipose tissue of subjects included in the Bellyfat 

study was labeled with the Ambion WT expression kit (Invitrogen) and hybridized to an 

Affymetrix Human Gene 1.1 ST array plate (Affymetrix, Santa Clara, CA). Hybridization, 

washing, and scanning were carried out on an Affymetrix GeneTitan platform according to 

the instruction by the manufacturer. Analysis of microarray data was carried out as previously 

described 21. The complete analysis of the microarray data from the Bellyfat study will be 

presented elsewhere. 

 

Western blots 

Protein lysates were made of residual material of the subcutaneous adipose tissue depot of 

patients included in the MONDIAL study and of whom sufficient material was available. Part 

of the material was lysed in RIPA lysis buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% 

NP-40, 1% sodium; deoxycholate, 0.1% SDS; Thermo Scientific) supplemented with protease 

and phosphatase inhibitors (Roche, Woerden, The Netherlands) to make 30% protein lysates. 
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After a 30-minute incubation on ice, the lysates were spun down at 13.000 rpm in order to get 

rid of non-dissolved material and fat. Following the transfer of the infranatant to a clean tube, 

this procedure was repeated twice to get rid of excess fat. Protein concentrations of lysates 

were determined with BCA reagent (Thermo Scientific) and subsequently adjusted to a 

concentration of 2.5 µg/µL. Next, lysates were mixed with 2x LSB loading buffer and 

denatured at 95 °C for 5 minutes. For each patient, 5 µg of protein was loaded per lane on 26-

wells Criterion 8-16% TGX gels (Bio-Rad) and separated by SDS gel electrophoresis. 

Separated proteins were transferred to a PVDF membrane by means of a Transblot Turbo 

System (Bio-Rad). Primary antibodies [goat anti-human LPL antibody (Santa Cruz 

Biotechnology, #Y-20) or goat anti-LPL antibody (kind gift from Anne Beigneux, #88B8 22); 

and rabbit anti-human ANGPTL4 antibody 23) were used at a ratio of 1:750 (#Y-20) or 1:1000 

(#88B8 and anti-human ANGPTL4) and incubated overnight at 4 °C. Corresponding 

secondary antibodies (HRP-conjugated) (Sigma-Aldrich) were used at a 1:5000 dilution. 

Importantly, all samples were analyzed simultaneously to avoid variation. All incubations 

were done in Tris-buffered saline, pH 7.5, with 0.1% Tween-20 (TBS-T) and 5% dry milk, 

whereas all washing steps were done in TBS-T without dry milk. Blots were visualized using 

the ChemiDoc MP system (Bio-Rad) and Clarity ECL substrate (Bio-Rad). Quantification of 

bands was performed using ImageLab software (Bio-Rad). Of note, due to the absence of 

visual bands for ANGPTL4 (n=1) and LPL (n=2), protein data of three patients were excluded 

from subsequent statistical analyses.  

 

Plasma metabolites 

Plasma concentrations of triglycerides (Instruchemie, Delfzijl, the Netherlands) and free fatty 

acids (Wako Chemicals, Neuss, Germany; HR(2) Kit) in fasted plasma samples of patients 

included in the MONDIAL study were determined following the manufacturers’ instructions. 
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Plasma concentrations of glucose were determined on the morning of the operation using 

Accu-Chek meters (Roche). Plasma ANGPTL4 levels were determined as described 

previously 24 using an anti-human ANGPTL4 polyclonal goat IgG antibody (AF3485; R&D 

Systems, Abingdon, United Kingdom). Briefly, 96-wells plates were coated with anti-

ANGPTL4 antibody and incubated overnight at 4 ˚C. The next day, 100 µL of 20-fold diluted 

human plasma was applied and incubated at room temperature for 2 hours. Next, 100 µL of 

biotinylated anti-human ANGPTL4 polyclonal goat IgG antibody (BAF3485; R&D Systems) 

was added to each well and incubated at room temperature for 2 hours, followed by the 

addition of streptavidin-conjugated HRP for 20 min. Tetramethylbenzidine substrate reagent 

was added for 6 min, where after the reaction was stopped by adding 50 µL of 10% H2SO4. 

The absorbance was measured at 450 nm. 

 

Statistical analyses  

Statistical analyses were performed using GraphPad software (La Jolla, California, United 

States). A Kruskal-Wallis test followed by a Dunn’s test was used to compare ANGPTL4 and 

LPL expression values in different adipose tissue depots. To determine the correlation 

coefficients between multiple parameters, we employed non-parametric Spearman’s 

correlations. P-values of < 0.05 were considered statistically significant. Differences in (log-

transformed) subcutaneous adipose tissue gene expression between the fasted and post-

prandial state were evaluated using a paired Student’s t-test. 
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RESULTS 
 
Patient’s characteristics of the MONDIAL study 

Patient characteristics of the MONDIAL study are shown in Table 1. Age of the participants 

varied between 21 and 69 years old. Participants were almost equally distributed among men 

(46%) and women (54%). The mean body weight and BMI were 129.0 ± 18.9 kg and 42.7 ± 

5.3 kg/m2, respectively (means ± SD).	The mean fasting plasma glucose concentration was 

7.8 ± 2.8 mmol/Liter. 

 

mRNA levels of ANGPTL3, ANGPTL4 and ANGPTL8 are not correlated in human liver 

ANGPTL4 is abundantly secreted into the circulation by the liver, where its expression is 

regulated by the transcription factor PPARA 25. Interestingly, in the human liver material, no 

correlation was found between the mRNA levels of ANGPTL4 and PPARA (Figure 1A). 

Also, no correlation was found between mRNA levels of ANGPTL4 and ANGPTL3 or 

ANGPTL8 (Figure 1B). The correlations between the gene expression levels of ANGPTL3, 

ANGPTL4, ANGPTL8 and PPARA with various plasma parameters are depicted in Figure 

1C. Notably, no significant correlation was found between hepatic ANGPTL4 mRNA levels 

and the plasma ANGPTL4 concentration or between hepatic ANGPTL4 mRNA levels and the 

plasma triglyceride concentration (Figure 1C, Supplemental Figure 1A & 1B).  

 

Expression levels of ANGPTL4 are highest in the subcutaneous adipose tissue  

Expression of ANGPTL4 in human and mouse adipose tissue is comparatively high 17,18,25. 

Interestingly, in our study, ANGPTL4 mRNA levels were significantly higher in the 

subcutaneous adipose tissue depot than in the omental and mesenteric adipose tissue depots 

(Figure 2A). In contrast, mRNA levels of LPL were highest in the mesenteric adipose tissue 

depot (Figure 2B).   
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Strikingly, we observed a highly significant correlation between ANGPTL4 mRNA 

levels in the subcutaneous adipose tissue depot and ANGPTL4 mRNA levels in the omental 

and mesenteric adipose tissue depots (Figure 2C). Similarly, the LPL mRNA levels in the 

subcutaneous adipose tissue were significantly correlated with LPL mRNA in the omental and 

mesenteric adipose tissue depots (Figure 2D).  

 

Expression levels of ANGPTL4 and LPL are positively correlated in the omental and 

subcutaneous adipose tissue. 

ANGPTL4 potently inhibits LPL in the adipose tissue of mice, but data on the relationship 

between ANGPTL4 and LPL expression in human adipose tissue are scarce 17. We observed a 

highly significant, positive correlation between ANGPTL4 mRNA levels and LPL mRNA 

levels in the omental and subcutaneous adipose tissue depots (Figure 3A and Figure 3B), but 

not in the mesenteric adipose tissue depot (Figure 3C). Given that both LPL and ANGPTL4 

are under positive control of the transcription factor PPARγ, we examined the association 

between the mRNA levels of ANGPTL4 and LPL, respectively, and PPARG mRNA levels in 

the different adipose tissue depots 6,25,26. Whereas ANGPTL4 mRNA levels in the various fat 

depots showed only a weak or no correlation with PPARG mRNA (Figure 3D; 

Supplemental Figure 2A), LPL mRNA levels were strongly and significantly correlated with 

PPARG mRNA levels in all three adipose tissue depots (Figure 3D, Supplemental Figure 

2B). An overview of the correlations between ANGPTL4, LPL, and PPARG mRNA levels in 

the three different adipose tissue depots, as well as various plasma parameters, is shown in 

Figure 3D. Specifically, we found no association between the mRNA levels of ANGPTL4 in 

the subcutaneous, omental and mesenteric adipose tissue depots and the plasma ANGPTL4 

concentration or plasma triglyceride concentration (Figure 3D, Supplemental Figure 1C & 

1D). 
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Protein levels of LPL and ANGPTL4 are negatively correlated in subcutaneous adipose tissue  

To determine the relationship between the protein levels of LPL and ANGPTL4 in human 

adipose tissue, we measured LPL and ANGPTL4 protein in the subcutaneous adipose tissue 

by Western blot using validated antibodies against ANGPTL4 and LPL (Supplemental 

Figures 3 & 4). As previously shown, ANGPTL4 was only detectable in human adipose 

tissue as the full-length protein 23. After quantification, a significant negative correlation was 

observed between ANGPTL4 and LPL protein level (R=-0.2314, p=0.0461) (Figure 4, 

Supplemental Figure 4). We also attempted to determine the levels of mature glycosylated 

LPL by means of treatment of the adipose tissue lysates with the endoglycosidase Endo H, an 

enzyme that removes high mannose carbohydrates from glycosylated asparagine residues and 

that is thus expected to act upon immature, but not mature glycosylated LPL. Unfortunately, 

in contrast to mouse adipose tissue and previously published data 19, no reduction in LPL 

weight upon treatment with Endo H was detected, suggesting that most of the LPL found in 

the human subcutaneous adipose tissue is in the mature glycosylated form (Supplemental 

Figure 5) 27–30.  

 

ANGPTL4 mRNA levels are higher in the fasted than the post-prandial state in subcutaneous 

adipose tissue 

ANGPTL4 was initially cloned as the Fasting-Induced Adipose Factor 25. While the induction 

of ANGPTL4 mRNA and protein by fasting in adipose tissue is evident in mouse studies 

17,18,25, it is unclear whether ANGPTL4 is also upregulated by fasting in human adipose tissue. 

To answer that question, we measured ANGPTL4 mRNA in subcutaneous adipose tissue 

biopsies taken from 72 human subjects after an overnight fast and 4 hours after receiving a 

mixed meal. ANGPTL4 mRNA levels were 38% higher in the fasted state compared to the 
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post-prandial state (P<1*10-15) (Figure 5). By contrast, mRNA levels of ANGPTL8 were 64% 

lower in the fasted state compared to the post-prandial state (P<1*10-22) (Figure 5). LPL 

mRNA levels were not significantly different between the fasted and post-prandial state 

(Figure 5). These data indicate that ANGPTL4 expression in human adipose tissue is induced 

by fasting, whereas ANGPTL8 expression is reduced by fasting. 
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DISCUSSION 
 
This study was conducted to clarify the regulation of ANGPTL4 and LPL in human adipose 

tissue using residual material of omental, mesenteric and subcutaneous adipose tissue 

obtained from a large cohort of severely obese patients undergoing bariatric surgery. In 

addition, we aimed to examine the influence of nutritional status on ANGPTL4 mRNA levels 

in human subcutaneous adipose tissue. ANGPTL4 mRNA levels were highest in the 

subcutaneous adipose tissue depot, whereas LPL mRNA levels were highest in the mesenteric 

adipose tissue depot. ANGPTL4 and LPL mRNA levels were strongly positively associated in 

all three adipose tissue depots. In contrast, ANGPTL4 and LPL protein levels in subcutaneous 

adipose tissue were negatively correlated. Finally, consumption of a mixed meal significant 

reduced ANGPTL4 mRNA levels in human subcutaneous adipose tissue. 

 

Consistent with earlier observations in mouse adipose tissue17,18,25 our results for the first time 

demonstrate that fasting increases ANGPTL4 mRNA expression in human adipose tissue. 

Studies using mouse models have demonstrated that the upregulation of ANGPTL4 in adipose 

tissue during fasting leads to a reduction in local LPL activity and a concomitant decrease in 

the hydrolysis of circulating triglycerides 17,18,31. As a consequence, circulating lipids are 

diverted away from storage in adipose tissue to other tissues. Based on the data presented 

here, a similar role can be envisioned for ANGPTL4 in human adipose tissue.  

 

Previously, we demonstrated that ANGPTL4 decreases the levels of LPL protein in mouse 

adipose tissue, which is likely achieved by promoting the intracellular degradation of LPL 19. 

Here, we find a significant negative correlation between ANGPTL4 and LPL protein in 

human subcutaneous adipose tissue. It is reasonable to suggest that this negative correlation 

may be a reflection of the stimulatory effect of ANGPTL4 on LPL degradation, which would 
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imply that ANGPTL4 regulates LPL protein abundance in human adipose tissue as well. To 

further investigate the suppressive effect of ANGPTL4 on LPL protein abundance in human 

fat, it would have been very worthwhile to be able to study the effect of feeding status on 

ANGPTL4 and LPL protein levels in human subcutaneous adipose tissue. Unfortunately, not 

enough adipose tissue samples were left to measure ANGPTL4 and LPL protein levels. Also, 

given the unhealthy metabolic phenotype of the patients included in the MONDIAL study, the 

negative correlation between ANGPTL4 and LPL protein levels requires confirmation in 

adipose tissue of lean individuals.   

 

In our in vitro and mouse studies we observed that ANGPTL4 specifically reduced the level 

of mature glycosylated, but not immature glycosylated LPL 19. Surprisingly, only mature 

glycosylated LPL could be detected in human adipose tissue. In addition, the migration of 

LPL was only modestly reduced following the removal of all asparagine-linked glycosylation 

by PNGase F, suggesting that LPL in the subcutaneous adipose tissue of our patients was only 

glycosylated at one of the two potential glycosylation sites 32 (Supplemental Figure 4). 

These data are in disagreement with previously published studies showing that LPL in human 

adipose tissue has two glycosylation chains that are primarily of the immature kind 28–30. 

Further studies into the exact nature of the glycosylation side chains of human adipose tissue 

LPL, by using endoglycosidases with different specificities such as Endo F1, Endo F2 or 

PNGase A, might provide an explication for this discrepancy 28–30.  

 

In contrast to the negative correlation between adipose tissue ANGPTL4 and LPL at the 

protein level, we observed a strong positive correlation between ANGPTL4 and LPL at the 

gene expression level. The positive correlation between ANGPTL4 and LPL mRNA may be 

due to a common transcription factor that drives the expression of both genes. One candidate 
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is PPARG, as both LPL and ANGPTL4 are established PPARG target genes in adipose tissue 

25,26,33. Yet, despite a highly significant correlation between LPL and PPARG mRNA levels, 

we only found a modest correlation between ANGPTL4 and PPARG mRNA. An alternative 

candidate is the glucocorticoid receptor. Indeed, glucocorticoids have been shown to increase 

LPL mRNA in human adipose organ cultures 34 and to upregulate ANGPTL4 mRNA in 

human primary adipocytes 35.  

 

Our study indicated that ANGPTL4 mRNA levels were highest in the subcutaneous adipose 

tissue depot, whereas LPL mRNA levels were highest in the mesenteric adipose tissue depot. 

Consequently, the ratio of LPL to ANGPTL4 mRNA was highest in the mesenteric fat. A high 

ratio of LPL to ANGPTL4 is expected to favor fat storage. The molecular basis for the 

difference in absolute ANGPTL4 mRNA levels between the fat depots is unclear, but might be 

related to differences in oxygen levels or inflammatory status between the depots, as hypoxia 

and inflammatory mediators have been shown to influence ANGPTL4 mRNA levels 36–39. 

Interestingly, we observed a clear positive correlation in ANGPTL4 mRNA levels between the 

different adipose tissue depots, suggesting that subject-specific mechanisms driving 

ANGPTL4 mRNA expression are active across the three fat depots. Whether the above 

observations can be generalized to lean individuals or are specific to obese individuals 

remains unclear. 

 

In our study, we failed to observe a significant positive correlation between the concentration 

of ANGPTL4 in plasma and ANGPTL4 mRNA levels in liver and adipose tissue. These data 

suggest that the plasma concentration of ANGPTL4 is not primarily driven by hepatic and/or 

adipose ANGPTL4 mRNA levels. Previously, we found that the liver-specific activation of 

ANGPTL4 transcription by the PPARα agonist fenofibrate increased plasma ANGPTL4 
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concentrations in human subjects 24. These data suggest that changes in ANGPTL4 

production in human liver can influence plasma ANGPTL4 concentrations. In a cross-

sectional study, however, other factors may overpower the influence of tissue-specific 

ANGPTL4 mRNA levels on the plasma ANGPTL4 concentration.  

 

ANGPTL4 and the related ANGPTL3 and ANGPTL8 share a common structure and the 

capacity to regulate LPL activity and plasma triglycerides, but to what extent their 

physiological functions are interconnected remains unclear 5,40–42. Our data indicate that 

ANGPTL3, ANGPTL4 and ANGPTL8 expression levels are differentially regulated in human 

liver, as we did not observe a significant correlation between liver ANGPTL4 mRNA levels 

and liver ANGPTL3 and ANGPTL8 mRNA levels. These data corroborate previous studies 

showing that ANGPTL4 mRNA, and ANGPTL8 mRNA in liver are oppositely regulated by 

insulin and during physiological conditions such as fasting and refeeding 43–45. Furthermore, it 

has been demonstrated that ANGPTL4 is an established PPARA target gene in the liver, 

whereas ANGPTL3, and possibly also ANGPTL8, are LXR target genes 25,46,47. Strikingly, we 

found that, opposite to ANGPTL4, ANGPTL8 mRNA in human adipose tissue is very 

significantly increased upon feeding. These data are consistent with previous data showing 

that ANGPTL8 mRNA in human adipose tissue is highly induced by insulin 48. Taken 

together, the differential regulation and lack of association between ANGPTL4 mRNA and 

ANGPTL3/ANGPTL8 mRNA suggests that the corresponding proteins likely impact plasma 

LPL activity and plasma triglyceride levels during different physiological conditions 5. 

 

In conclusion, we report a negative correlation between ANGPTL4 and LPL protein levels in 

human subcutaneous adipose tissue, which might reflect a suppressive effect of ANGPTL4 on 

LPL protein abundance. In addition, we found that adipose tissue ANGPTL4 mRNA levels 



	 18	

were significantly lower in the fed state compared to the fasted state. These data provide 

valuable insights into the physiological function of ANGPTL4 in humans.  
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Table 1 : Patient Characteristics. Data are presented as mean ± SD, except 1 which is presented as 
range. Fasting glucose was determined by the Laboratory of Clinical Chemistry and Haematology, 
Rijnstate Hospital, Arnhem, The Netherlands. For plasma triglyceride and free fatty acids: n=59.  
 
 

Patient characteristics (n=76) 

Gender, n males (%)  

For females: menstrual state  

 Premenopausal, n females (% of total females) 

 Postmenopausal, n females (% of total females) 

 Unknown, n females (% of total females) 

35 (46%) 

 

15 (37%)  

12 (29%)  

14 (34%) 

Diagnosed with type 2 diabetes, n cases (%)  

Medication:  

 Insulin injection, n patients (% of total diabetics) 

 Metformin, n patients (% of total diabetics)  

 Glimepiride (sulfonylurea), n patients (% of total diabetics) 

 Unknown, n patients (% of total diabetics) 

 Combination therapy  

 Metformin + Glimepiride (sulfonylurea), n patients (% of total diabetics) 

 Metformin + Gliclazide (sulfonylurea), n patients (% of total diabetics) 

30 (39%)  

 

1 (3%) 

16 (53%) 

4 (13%) 

2 (7%) 

 

3 (10%) 

4 (13%) 

Age at surgery, range in years1  21 - 69 

Weight, kg  129.0 ± 18.9 

BMI, kg/m2 42.7 ± 5.3 

Waist circumference, cm 133.6 ± 15.4 

Fasting plasma glucose, mmol/L  7.8 ± 2.8 

Fasting plasma triglycerides, mmol/L 2.4 ± 2.1 

Fasting plasma free fatty acids, mmol/L  0.90 ± 0.34 
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Figure Legends   
 
 
Figure 1. mRNA levels of ANGPTL3, ANGPTL4 and ANGPTL8 are not correlated in 
human liver. 
 (A) Correlation between liver PPARA mRNA levels and liver ANGPTL4 mRNA levels in 
liver material obtained from patients undergoing bariatric surgery (n=59). (B) Correlation 
between liver ANGPTL4 mRNA levels and liver ANGPTL3 and ANGPTL8 mRNA levels in 
liver material obtained from patients undergoing bariatric surgery (n=59). (C) Correlation heat 
map of ANGPTL4, ANGPTL3, ANGPTL8, and PPARA mRNA levels, plasma ANGPTL4 
concentrations, fasting plasma glucose levels, plasma levels of non-esterified fatty acids 
(NEFA) and plasma triglyceride (TG) concentration  (n=59). Significant correlations are 
indicated with a black box. Correlations were analyzed by Spearman’s R, p-values of <0.05 
were considered statistically significant.   
 
Figure 2. Expression levels of ANGPTL4 are highest in the subcutaneous adipose tissue.  
 (A) ANGPTL4 mRNA levels in residual material of the omental, subcutaneous and 
mesenteric adipose tissue depots obtained from patients undergoing bariatric surgery (n=75). 
(B) LPL mRNA levels in residual material of the omental, subcutaneous and mesenteric 
adipose tissue depots obtained from patients undergoing bariatric surgery (n=75). (C) 
Correlation between ANGPTL4 mRNA levels in the subcutaneous adipose tissue (AT) and 
ANGPTL4 mRNA levels in the omental and mesenteric adipose tissue depots (n=75). A.U. 
signifies Arbitrary Units (D) Correlation between LPL mRNA levels in the subcutaneous 
adipose tissue (AT) and LPL mRNA levels in the omental and mesenteric adipose tissue 
depots (n=75). A.U. signifies Arbitrary Units. Differences in ANGPTL4 and LPL mRNA 
levels between different adipose tissue depots were analyzed by a Kruskal-Wallis ANOVA 
followed by a Dunn’s test for multiple comparisons. **  p<0.01, *** p<0.001, **** 
p<0.0001. Correlations between ANGPTL4 and LPL mRNA levels between different adipose 
tissue depots were analyzed by Spearman’s R, p-values of <0.05 were considered statistically 
significant. 
 
Figure 3. Expression levels of ANGPTL4 and LPL are positively correlated in the 
omental and subcutaneous adipose tissue. 
 (A) Correlation between ANGPTL4 mRNA levels and LPL mRNA levels in the omental 
adipose tissue (AT) depots of patients undergoing bariatric surgery (n=75). (B) Correlation 
between ANGPTL4 mRNA levels and LPL mRNA levels in the subcutaneous adipose tissue 
(AT) depots of patients undergoing bariatric surgery (n=76). (C) Correlation between 
ANGPTL4 mRNA levels and LPL mRNA levels in the mesenteric adipose tissue depots of 
patients undergoing bariatric surgery (n=76). (D) Correlation heat map of ANGPTL4, LPL 
and PPARG mRNA levels in the omental, subcutaneous and mesenteric adipose tissue depots, 
plasma ANGPTL4 concentrations, fasting plasma glucose levels, plasma levels of non-
esterified fatty acids (NEFA) and plasma triglyceride (TG) levels (n=76 for gene expression 
correlations in the omental adipose tissue, n=75 for gene expression analyses in the 
subcutaneous and mesenteric adipose tissue depots, and n=59 for correlations with plasma 
parameters). Significant correlations are indicated with a black box. Correlations were 
analyzed by Spearman’s R, p-values of <0.05 were considered statistically significant.   
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Figure 4. Protein levels of LPL and ANGPTL4 are negatively correlated in 
subcutaneous adipose tissue.  
 (A) Representative Western blots for LPL and ANGPTL4 in the subcutaneous adipose tissue 
depot of nine patients undergoing bariatric surgery (see Supplemental Figure 4 for the 
Western blots of all patients). (B) Correlation of protein levels of LPL and ANGPTL4 in the 
subcutaneous adipose tissue of patients undergoing bariatric surgery, as determined by the 
quantification of Western blots (n=54). Correlation was analyzed by Spearman’s R, p-values 
of <0.05 were considered statistically significant.    
 
 
Figure 5. ANGPTL4 mRNA levels are higher in the fasted than the post-prandial state 
in subcutaneous adipose tissue. 
mRNA expression levels of ANGPTL4, ANGPTL8 and LPL in subcutaneous adipose tissue of 
72 subjects for which baseline fat biopsies were available. Biopsies were taken after an 
overnight fast, and 4 hours after consumption of a mixed meal consisting of 76.3g 
carbohydrates, 17.6g protein, and 60.0g fat (post-prandial). Expression levels were 
determined using Affymetrix microarray analysis. A single line represents one subject. 
ANGPTL4 mRNA levels were 38% higher in the fasted state compared to the post-prandial 
state (Paired Student’s t-test, P<1*10-15). ANGPTL8 mRNA levels were 64% lower in the 
fasted state compared to the post-prandial state (Paired Student’s t-test, P<1*10-22). LPL 
mRNA levels were not significantly different between the fasted and post-prandial state. 
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