

CURRENT STATUS OF RISK ASSESSMENT METHODOLOGIES FOR SOIL ORGANIC MATTER DECLINE IN EUROPE

G. Tóth ¹, P. Kuikman ², P. Ehlert ², W. Chardon ², C. van Beek ²

¹Joint Research Centre, Institute for Environmant and Sustainability

²Alterra, Soil Science Centre, PO Box 47, 6700 AA Wageningen, The Netherlands

Risk assessment methodologies

Generally should consist of the following consecutive steps:

- 1. Definition of concept of risk regarding soil organic matter decline (with threshold/reference values etc.)
- 2. Data gathering (via direct measurements)
- 3. Data processing (via simulation models, pedo-transfer functions, regression statistics etc the data is processed into the targeted risk indicator).
- 4. Data interpretation (the risk indicator is compared to a certain threshold value)
- 5. Risk perception (the deviation of the risk indicator from the threshold value is assessed).

Status of (Risk) Assessment Methodologies on soil organic matter decline in the European Union

Status Risk Assessment Methodologies	Countries
Official assessment in development	Belgium (Flanders), France, Slovak republic, Spain,
	United Kingdom
Assessment used by an institution	Belgium (Wallonia), Slovak republic, Slovenia,
	Slovak Republic

*Slovak republic reported an official RAM in development as well as RAM used by an institution.

Danmark, Greece, Germany indicated no assessment is being used or developed

Organic carbon in soil: what can we learn?

Lesson 1. Soils are different in carbon content.

Lesson 2. Even good inventory soil data should be supplemented by user-friendly interpretation.

Source: Hiederer et al., 2004

FINAL RAMSOIL MEETING 26/01/2009 BRUSSELS

oint

OPEAN COMMISSION

oint Research Centre

Current status of RAMS: the problems

- **Research Centre** Differ in design and scale
 - The issue of threshold values:
 - No common method for deriving threshold values
 - Differ from each other, due to differences in
 - data collection, derivation method, scope of use, function
 - There is a debate about the neccesity of threshold values

Methods of assessment

- Empirical, observational
 - Transparent; simple; costs depend on the scale
 - Offten no bulk density info; lack of treshold for critical values; changing methods over time
- Mechanistic models
 - (dynamic equilibrium models towards a steady state)
 - Rate of change might differ as well as SOC/SOM level in steady state
 - More complex and less transparent
 - Differing time and spatial scale and data demand, but generally cost effective

Components of RAMs for SOM decline 1. Data gathering

- Sampling schemes
 - Systematic schemes, monitoring,
 - Non-systematic schemes
 - General soil survey / for characterizing soil types
 - Non systematic grid, no regular monitoring
 - Data from advisory datasets
 - Usually field scale for fertilizer recommendations

Components of RAMs for SOM decline 1. Data gathering

Scales of (systematic and non-systematic) sampling schemes

Country	Scale
Belgium (Flanders)	1:1,000,000
Belgium (Wallonia)	1:20,000, 1:25,0000
France	1:250,000 to 1:1,000,000
Greece	1:5,000
Poland	1:10,000
Slovak republic	1:400,000
Slovenia	1:10,000, 1:20,000, 1:25,000
Spain	1:50,000
United Kingdom	1:250,000

FINAL RAMSOIL MEETING 26/01/2009 BRUSSELS

Components of RAMs for SOM decline 1. Data gathering

- Frequency and history of sampling
 - 3-5 years, earliest monitoring set up 15 years ago
- Determination of SOM/SOC
 - destructive/on-destructive methods (various)

Components of RAMs for SOM decline 2. Data processing

Observational research, statistical analysis

- comparison to historical data
 - (problem of changing analythical methods over time)

Modelling approaches

- mono-component models (total SOC)
- multi-component models (different fractions)

Components of RAMs for SOM decline 3. Data interpretation

- Target specific
 - soil fertility, soil health, soil degradation, carbon sequestration etc.
- Variouse treshold values (*where exists*)

Most frequently used is 2% (SOC)
(this threshold is developed for structural stability universal use of this value can be questioned)

Components of RAMs for SOM decline 4. Risk perseption

- No official RAM in the EU27
- Multiple thresholds are needed

(diverse climatic, soil, land use systems in Europe)

• Research is needed to establish regional thresholds

CONCLUSION

Harmonization is possible (only) if based on an agreement about:

- Risk perception
- Method of derivation
- Reference values
- Use of threshold values (multiple thresholds)

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre

Thank you!

