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1. Abstract
The current standard of land cover classification is to assign each pixel to one land
cover class, which at coarse resolution causes loss of information about mixed land
cover. Fuzzy land cover classification, which assigns fractions of each land cover
class to each pixel, can deal with mixed pixels. However, so far its application has
been limited to city-scale areas and four or fewer classes.
In this paper, the classification accuracy and processing speed were compared for
three fuzzy classification machine learning algorithms: random forest regression,
fuzzy c-means, neural networks. The algorithms were used to classify the whole
boreal-temperate forest gradient zone between Finland and Lithuania into nine
land cover classes. Results showed that all of the tested algorithms are able to
achieve similarly high classification accuracy. Random forest regression accuracy
was the highest, but its processing speed was the lowest. The results are a
milestone for creating a global fuzzy land cover classification product incorporating
user-specific requirements.

2. Data and methods
6 spectral and 4 temporal metrics were derived from the full 100 m Proba-V
surface reflectance archive over tile X20Y01. EUDEM was used to derive 4
terrestrial metrics. In addition, a water mask was derived from the Proba-V quality
control layers. These 15 metrics (see figure 1, Y axis) were input into machine
learning models (fuzzy c-means, random forest regression, neural networks) for
predicting the fraction of each of the 9 land cover classes in each pixel: cultivated
land, deciduous trees, evergreen trees, shrubs, grasslands, barren, wetland,
built-up and water. The models were trained and validated on 480 sample points
collected through manual high-resolution satellite and aerial image interpretation.
All processing was done on a Proba-V MEP virtual machine with 32 threads and 32
GiB RAM.

0

5

10

15

20

●

C
ul

tiv
at

ed

D
ec

. t
re

es

E
vg

r. 
tr

ee
s

S
hr

ub
s

G
ra

ss

B
ar

re
n

W
et

la
nd

B
ui

lt−
up

W
at

er

Red
NIR

Blue
SWIR
LSWI

Water mask
Elevation

Slope
Aspect

TPI
Mean NDVI

Phase (1)
Amplitude (1)

Phase (2)
Amplitude (2)

10

20

5

10

11

1

6

8

1

3

11

7

10

3

17

9

8

1

7

4

0

0

10

2

5

10

3

8

7

8

13

13

7

9

10

1

2

8

−2

7

21

4

6

0

1

6

8

3

7

4

0

2

3

4

10

13

1

3

0

−2

7

7

5

6

5

2

6

8

4

4

8

3

6

2

6

13

7

13

9

10

2

3

8

5

4

15

8

9

8

2

13

10

10

8

11

−1

8

21

0

3

19

4

9

15

4

14

7

15

8

8

1

5

7

2

4

11

7

10

9

2

6

19

4

18

6

7

9

13

7

4

14

3

8

3

5

Figure 1. Covariate permutation importance for holdout random forest
regression. X axis: all covariates used in this study, Y axis: all classes used in this
study. Values indicate the increase in prediction RMSE when a given covariate is
shuffled: higher values mean higher importance of the covariate.

3. Results
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Figure 2. Results of full-tile fuzzy classification. Left: true colour Google
imagery of the study area; middle: random forest regression algorithm; right:
neural network algorithm. The colours represent classes: cultivated land (red),
deciduous trees (green), evergreen trees (blue).
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Figure 3. Close-up of fuzzy classification in the area surrounding the city of
Rīga, Latvia. Left: true colour Google imagery; middle: random forest regression
algorithm; right: neural network algorithm. The colours represent classes: built-up
(red), wetlands (green), water (blue).

4. Conclusion
Random forest regression was the most accurate (MAE: 11.7%), but not
significantly more than fuzzy c-means (MAE: 12.0%) and neural networks (MAE:
12.7%). The prediction times were very different: 1229, 42 and 25 minutes
respectively to process an entire tile. Thus random forest regression was the most
accurate but slowest algorithm, neural networks was the least accurate and
fastest. All of these algorithms produced spatially consistent output. All types of
covariates were important to include in the models, with the exception of terrain
aspect and the Proba-V water mask (see figure 1).

5. Discussion
Fractional land cover mapping is capable of representing smooth transitions
between classes in space (and time), and users can produce customised discrete
maps by defining their own rules. Larger scale application of fuzzy classification is
needed to test whether it is computationally feasible for global mapping and
whether model accuracies change depending on the area of interest. This will be
investigated in the future as part of the Copernicus Global Land Operations
“Vegetation and Energy” (CGLOPS) project.
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