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A B S T R A C T

In this paper we present effects of four paired agricultural management practices (organic matter (OM) addition
versus no organic matter input, no-tillage (NT) versus conventional tillage, crop rotation versus monoculture,
and organic agriculture versus conventional agriculture) on five key soil quality indicators, i.e., soil organic
matter (SOM) content, pH, aggregate stability, earthworms (numbers) and crop yield. We have considered or-
ganic matter addition, no-tillage, crop rotation and organic agriculture as “promising practices”; no organic
matter input, conventional tillage, monoculture and conventional farming were taken as the respective refer-
ences or “standard practice” (baseline). Relative effects were analysed through indicator response ratio (RR)
under each paired practice. For this we considered data of 30 long-term experiments collected from 13 case
study sites in Europe and China as collated in the framework of the EU-China funded iSQAPER project. These
were complemented with data from 42 long-term experiments across China and 402 observations of long-term
trials published in the literature. Out of these, we only considered experiments covering at least five years. The
results show that OM addition favourably affected all the indicators under consideration. The most favourable
effect was reported on earthworm numbers, followed by yield, SOM content and soil aggregate stability. For pH,
effects depended on soil type; OM input favourably affected the pH of acidic soils, whereas no clear trend was
observed under NT. NT generally led to increased aggregate stability and greater SOM content in upper soil
horizons. However, the magnitude of the relative effects varied, e.g. with soil texture. No-tillage practices en-
hanced earthworm populations, but not where herbicides or pesticides were applied to combat weeds and pests.
Overall, in this review, yield slightly decreased under NT. Crop rotation had a positive effect on SOM content and
yield; rotation with ley very positively influenced earthworms’ numbers. Overall, crop rotation had little impact
on soil pH and aggregate stability − depending on the type of intercrop; alternatively, rotation of arable crops
only resulted in adverse effects. A clear positive trend was observed for earthworm abundance under organic
agriculture. Further, organic agriculture generally resulted in increased aggregate stability and greater SOM
content. Overall, no clear trend was found for pH; a decrease in yield was observed under organic agriculture in
this review.
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1. Introduction

Soil is increasingly recognized as a non-renewable resource on a
human life scale because, once degraded it’s regeneration is an ex-
tremely slow process (Camarsa et al., 2014; Lal, 2015). Given the im-
portance of soils for crop and livestock production as well as for pro-
viding wider ecosystem services for local and global societies,
maintaining the soil in good condition is of vital importance. To
manage the use of agricultural soils well, decision-makers need science-
based, easy-to-apply and cost-effective tools to assess changes in soil
quality and function.

The European Commission, the Government of China and the
Government of Switzerland co-funded the research project “Interactive
Soil Quality Assessment in Europe and China for Agricultural Productivity
and Environmental Resilience” (iSQAPER), which aims to develop an
interactive soil quality assessment tool (SQAPP) that accounts for the
impact of agricultural land management practices on soil properties and
functions. The ultimate aim is to provide agricultural land users with
options for cost-effective agricultural management activities which
enhance soil quality and crop productivity.

The concept of soil quality includes assessment of soil properties
and processes as they relate to the ability of soil to function effectively
as a component of a healthy ecosystem (Bünemann et al., 2018). Spe-
cific functions and subsequent values provided by ecosystems are
variable and rely on numerous soil physical, chemical, and biological
properties and processes, which can differ across spatial and temporal
scales (Doran, 2002; Nannipieri et al., 2003; Van Diepeningen et al.,
2006; Spiegel et al., 2015). As such, selection of a standard set of spe-
cific properties as indicators of soil quality can be complex and varies
among agricultural systems and management purposes. According to
Islam and Weil (2000), soil quality is best assessed by soil properties
that are neither so stable as to be insensitive to management, nor so
easily changed as to give little indication of long-term alterations.

Understanding interacting effects of agricultural management
practices on soil quality indicators (SQI) is essential for the develop-
ment of SQAPP. Such effects can be best analysed from data of agri-
cultural long-term experiments (LTE), where soils are experimentally
manipulated to identify the key drivers of soil change. These trials allow
to study changes over time of soil properties under various types of
treatment (e.g. plough/no-tillage) and their respective intensities (e.g.
ploughing frequency).

The present study has been performed to analyse and summarise the
data of a large range of LTEs. Our hypothesis was that sufficient data for
promising soil quality indicators can be extracted in order to show
trends over time as a basis for further, generic decision-making on re-
commended agricultural practices.

2. Data and methods

2.1. Selection of soil quality indicators and agricultural management
practices

Based on an earlier review by Bünemann et al. (2018) in the iS-
QAPER project framework, and work by Spiegel et al. (2015), we have
initially chosen six soil quality indicators. Main considerations in
making this selection were:

• Changes in soil quality and fertility are gradual and significant ef-
fects of land use and management generally cannot be measured
within at least five years after their introduction; hence, long-term
experiments (LTEs) are of critical importance. Focus will be on
“dynamic” over “static” indicators as only the former can reflect
changes within a reasonable time span.

• Most indicators are soil and site specific (e.g. soil organic matter
content and pH), so it is essential that experiments have been done
under comparable conditions (e.g. LTEs with split-plot design, or at

least with neighbouring parcels) under identical soil and climate
conditions.

• It is necessary to distinguish between short-term effects and long-
term changes in soil quality indicators.

• Indicators can be related to potential changes in soil functions and
soil threats.

• It is important not only to identify the most appropriate bio-physical
indicators, but also to ensure that farmers and land managers can
easily understand and relate to these indicators so that they may be
used to support on-farm management decisions.

The selected soil quality indicators were: soil organic matter (SOM)
content, pH, aggregate stability, water-holding capacity and (number
of) earthworms. Yield, although not a soil property, is also considered
here as it is a good measure for soil quality and a primary concern to
farmers.

Five agricultural management practices were chosen as “pro-
mising”: organic matter addition, no-tillage, crop rotation, irrigation,
and—at the system level—organic agriculture. For each LTE, we com-
pared results with respect to the corresponding “standard practice”
(reference): no organic matter input, conventional tillage, monoculture,
non-irrigation, and conventional farming.

2.2. Data collection and literature review

LTEs are indispensable for assessing effects of agricultural man-
agement practices on changes in soil quality. We have collated data of
30 long-term experiments from the 13 iSQAPER project partners in
Europe and China. Data collated for each LTE included: location, cli-
mate, land use, soil data, trial factors, management systems, assess-
ments done, sample storage and analysis. The average duration of the
LTEs under consideration was 19 years (range: 5–34 years). The earliest
LTE began in 1964 and most of these LTE’s are still ongoing. Details on
the trials included are provided as Supplementary information in Table
S1.

The above data were complemented with analytical data from 42
long-term agricultural experiments across China covering over 30 years
of observations and various management practices (Xu et al., 2015a,
2015b).

To augment our database, we performed an extensive literature
review, including over 900 publications and reports using web-based
search engines Google Scholar, ScienceDirect, ISI Web of Science,
ResearchGate, and Scopus. Publications in Chinese were retrieved using
the China Knowledge Resource Integrated (CNKI) database (http://eng.
oversea.cnki.net/kns55/). Key search terms used included organic
matter addition (crop residue, straw return, green manure, farmyard
manure, compost, slurry), crop rotation, no-tillage, organic agriculture,
organic farming, and combination with the chosen soil properties and
yield.

The resulting publications were documented using an open source
reference manager (Mendeley.com) and subsequently screened for their
relevance for the present review. Key elements of the selected studies
(402 observations) were entered into a Microsoft Excel database. The
corresponding data and literature references are documented in
Supplementary Table S2.

2.3. Data analysis and visualization

Effects of management practices on the selected soil quality in-
dicators were assessed on the basis of both the iSQAPER LTE data
(Supplementary Table S1), and the data extracted from the literature
review including analytical results from the LTEs of China
(Supplementary Table S2).

For the LTE’s, we calculated response ratios (RR) for each indicator
under a paired practice. For example, SOM content under NT
(Treatment 2) was divided by SOM content under conventional tillage
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(Treatment 1 as a reference). For some experiments, results were re-
ported as soil organic carbon (SOM=1.724 * SOC, according to van
Bemmelen (1890)), so the ratios are comparable.

Measurements were made at variable intervals depending on the
objective of each experiment. As indicated, for this study, the duration
of each experiment should be at least five years. For this, we have first
analysed the data using the following procedure; if there are:

• ≥ 3 measurements (92% of the LTE observations), then we calcu-
lated the average RR for the last three measurements (e.g. total 5
measurements over 14 years, period 2002–2015, last three mea-
surements in 2008, 2012, 2015).

• two measurements (8% of the LTE observations), then we calculated
the average RR for both measurements.

For data extracted from the literature review and the supplementary
LTEs of China, we also calculated the RR for each soil quality indicator
under a paired practice as indicated above, for example, aggregate
stability under crop rotation divided by aggregate stability under
monoculture for the given LTE’s.

Due to a lack of data, the previously selected indicator of water-
holding capacity was excluded as well as the paired practice of irriga-
tion/non-irrigation.

In total, response ratios for 354 paired observations have been
calculated (Table 1). Inherently, the number of observations was biased
by relying on available data. For example, we found more data for
changes in yield, SOM content and pH than for (number of) earth-
worms. This represents a known limitation for this type of descriptive
studies.

To limit the influence of possible data outliers, medians instead of
means were employed to visualise the response ratios per treatment.
‘Flower petal’ diagrams were generated for each paired management
practices. All analyses and visualisations were performed using R scripts
(R Development Core Team, 2008).

3. Results and discussion

Overall, there are clear trends and relative changes in the five in-
dicators as affected by the four paired practices (Table 1, Fig. 1A–D),
but the spread is large (Fig. 2). A ratio of 1 or close to 1 in Fig. 1 in-
dicates there was no change or no difference between “promising” and
“standard practices” (blue line);> 1 indicates a ‘positive’ change (in-
crease) vis-à-vis the respective reference practice, while< 1 points at a
‘negative’ change (decrease). For most indicators, a median ratio> 1 is
considered favourable from a soil quality perspective. However, pH
results have to be interpreted more cautiously depending on the pH
range (i.e. acidic, neutral or basic) of the soil type and the crop involved
under consideration. Also, while the differences are very pronounced
for earthworms, the magnitude thereof has to be interpreted with care
because of the generally low number and high spread of observations.

3.1. Organic matter addition versus no organic matter input

OM addition favourably affected all five soil quality indicators
under consideration as shown in Fig. 1A. The most favourable effect
was reported for earthworm numbers, followed by yield, SOM content
and soil aggregate stability. For pH, effects depended on soil type, for
example OM input may favourably affect the pH of acidic soils. These
results are similar to those reported in other reviews (Khaleel et al.,
1981; Haynes and Naidu, 1998; Abiven et al., 2009).

Increases in SOM content depend on the amount and types of OM
applied, and the duration of application. The equivalent amount of
tested organic materials, i.e., compost, farmyard manure and slurry
application increased SOM contents by 37%, 23% and 21%, respec-
tively in the upper 10 cm and values tended to increase with the
duration of experiments (> 10 years compared to<10 years) until a
new equilibrium was reached (Spiegel et al., 2015). Based on analyses
of 42 LTE’s from China, Xu et al. (2015a, 2015b) concluded that straw
application of 7.5–12Mg ha−1 y−1 was needed to restore the SOM
content to initial levels under current cultivation practices. From a
practical perspective, however, it should be noted that such amounts of

Table 1
Descriptive statistics for impact of selected management practices on specific soil quality indicators (response ratios, dimensionless).

Paired Management Practices Indicators Response Ratio

Mean Q1a Median Q3b Minimum Maximum SDc Skewness Nd

Organic matter addition versus no organic matter input Yield 1.67 1.12 1.37 1.66 0.95 7.72 1.19 3.79 54
SOMe 1.39 1.15 1.29 1.50 1.00 2.51 0.33 1.36 63
pH 1.03 0.99 1.01 1.05 0.95 1.25 0.07 1.37 38
Earthworms(numbers) 2.45 1.44 1.69 2.79 1.25 5.57 1.67 0.96 6
Aggregate stability 1.42 1.09 1.23 1.67 0.91 2.38 0.48 0.82 16

No tillage versus tillage Yield 0.99 0.94 0.98 1.01 0.74 1.40 0.12 1.30 50
SOM 1.46 1.10 1.20 1.57 0.93 3.85 0.69 2.27 18
pH 1.02 1.01 1.02 1.03 1.00 1.03 0.02 0.00 2
Earthworms(numbers) 1.53 1.22 1.53 1.84 0.91 2.15 0.62 0.00 3
Aggregate stability 1.45 1.09 1.12 1.30 0.82 3.86 0.92 1.91 9

Crop rotation versus mono-cultivation Yield 1.31 1.13 1.17 1.28 0.98 2.57 0.40 2.26 14
SOM 1.41 1.00 1.25 1.49 0.89 3.00 0.61 1.45 15
pH 1.01 0.98 1.01 1.04 0.97 1.04 0.04 −0.07 4
Earthworms(numbers) 1.73 1.18 1.73 2.27 0.63 2.82 1.55 0.00 2
Aggregate stability 1.45 0.90 0.97 1.53 0.77 3.10 1.10 0.73 4

Organic versus conventional agriculture Yield 0.96 0.75 0.89 1.09 0.54 1.66 0.30 0.81 13
SOM 1.31 1.01 1.12 1.18 0.98 3.06 0.56 2.00 22
pH 1.00 0.98 1.00 1.02 0.92 1.06 0.04 −0.25 12
Earthworms(numbers) 1.75 1.63 1.93 1.97 1.32 2.00 0.37 −0.37 3
Aggregate stability 1.31 1.19 1.34 1.40 0.99 1.61 0.22 −0.11 6

a Q1, first quartile.
b Q3, third quartile.
c SD, standard deviation.
d N, number of observations.
e SOM, soil organic matter.
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straw may not always be available for application on the land (e.g. used
for cooking and brick making).

3.2. No-tillage versus conventional tillage

No-Tillage (NT) comprises land cultivation with little or no soil
surface disturbance, the only disturbance being during planting. Fig. 1B
shows the impact of NT on the selected soil quality indicators compared
to conventional tillage. NT generally led to increased aggregate stability
and greater SOM content. With respect to the SOM content, the median
RR for the whole data set (n=19) is 1.21 (Fig. 2, no-tillage versus
tillage). Median RR values for SOM range from 1.02 for maize (n=3),
1.20 for winter wheat (n= 6), 2.12 for barley (n=64) and 1.48 for
other crops (n= 11). NT practices enhanced earthworm populations,
but not always where herbicides or pesticides were applied to combat
weeds and pests. Overall, in this review, yield slightly decreased under
NT with a median RR of 0.98. For winter wheat, the median RR is 0.81
(n=38), for maize is 0.85 (n= 3). Overall, however, the sample po-
pulations were too small to adequately tease out such effects.

Similarly, other studies indicated that no-tillage led to improve-
ments in soil quality in the upper soil layer by improving soil structure
and enhancing soil biological activity, nutrient cycling and reducing
bulk density (Hamza and Anderson, 2005), thus improving soil water
holding capacity, water infiltration, water use efficiency (e.g. Islam and

Weil, 2000; Pittelkow et al., 2015) and aggregate stability (Aziz et al.,
2013). For yields, there were no clear trends, as such are ultimately
determined by many interacting factors (Pittelkow et al., 2015; Zhao
et al., 2017), such as crop type, the detailed consideration of which was
beyond the scope of this review.

Tillage per se does not directly affect soil pH. Rather, effects of
tillage on pH depend on the prevailing climatic conditions, parent
material, soil type, and management factors such as the application of
chemical fertilizers or lime. For example, wet compacted soils favour
denitrification. Such soils may show a reduction in pH, making other
nutrients less available to crops (Cookson et al., 2008; Lal, 1997;
Rahman et al., 2008; Rasmussen, 1999).

A change or difference in tillage practices can result in changes in
biological, chemical and physical properties of soil, affecting the soil
function (Chan, 2001; Islam and Weil, 2000) and its capacity to provide
ecosystem services (Funk et al., 2015; Palm et al., 2014). In this context,
NT represents a relatively widely adopted soil management practice in
Australia, South America, US and Canada, but not in Europe.

3.3. Crop rotation versus monoculture

Crop rotation had an overall positive effect on earthworms
(number), SOM content and yield (Fig. 1C), but it had little impact on
soil pH and aggregate stability – depending on the type of crop. Limited

Fig. 1. Long-term effects of agricultural management practices on soil properties: A, organic matter addition versus no organic matter input; B, no-tillage versus
conventional tillage; C, crop rotation versus monoculture; and D, organic agriculture versus conventional agriculture. Relative effects are expressed as median of
ratios and visualised with different colours: orange, median ≤1; light green, 1 < median< 1.5; and dark green, median> 1.5. Values> 1 indicate positive effects.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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impact of rotation on soil pH was also reported by Spiegel et al. (2015).
Favourable effects of crop rotation on SOM levels and yield were

reported by various reviews (e.g., Bullock, 1992; West and Post, 2002;
Jarecki and Lal, 2003), and neutral impacts on SOM content by Spiegel
et al. (2015). The limited effect of rotation on aggregate stability was
presented in other studies (Arrigo et al., 1993; Castro Filho et al., 2002;
Spiegel et al., 2015). Conversely, for 22 LTE’s in Europe, Guzmán et al.
(2015) observed a negative impact of crop rotation on aggregate sta-
bility, i.e., response ratio (rotation/mono-cropping= 0.77) and no clear
trend in earthworm numbers.

3.4. Organic versus conventional agriculture

Fig. 1D shows a clear positive trend for earthworm abundance under
organic agriculture. Organic agriculture generally resulted in increased
aggregate stability and greater SOM content. Overall, no clear trend
was found for pH.

A decrease in yield under organic agriculture was observed, with
median values indicating an ‘organic yield gap’ of 11%. These results
are similar to those reported by Gunst et al. (2007), Zhang et al. (2007),
Scoones and Elsaesser (2008), Mondelaers et al. (2009), Stolze et al.
(2000), Gomiero et al. (2011), Gattinger et al. (2012), Romanyà et al.
(2012), Seufert et al. (2012), Song et al. (2012), Tuomisto et al. (2012),
Wortman et al. (2012) and Ponisio et al. (2014). Alternatively, some
studies reported no significant differences in yield under organic cul-
tivation compared to conventional agriculture (e.g. Eyhorn et al.,
2007), or even higher under organic management (Melero et al., 2006).

Although the ‘organic yield gap’ is widely reported, it is also re-
cognised that judicious land management can help to decrease it. For
example, Ponisio et al. (2014) reported that agricultural diversification
practices (multi-cropping and crop rotations) substantially reduced the
yield gap when the methods were applied in purely organic systems.
Other studies have shown that organically managed cropping systems
have lower long-term yield variability (Smolik et al., 1995; Lotter et al.,
2003).

Nine local studies on the effect of organic farming on soil pH
(Condron et al., 2000; Gosling and Shepherd, 2005; Marinari et al.,
2006; Melero et al., 2006; Eyhorn et al., 2007; Heinze et al., 2010;
Reganold et al., 2010; Ge et al., 2011; Domagala-Swiatkiewicz and
Gastol, 2013) confirm how remarkably small soil pH differences are
between organic and conventional systems (on similar soils). In six out
of the nine cases, pH is slightly but not significantly lower in organic
systems, with all observed differences being<0.4 units. In the Swiss
DOK experiment, soil pH was slightly higher in the organic systems
(Mäder et al., 2002). Generally, soil pH depends on the soil type and its
buffering capacity, and the type of organic fertilizer or soil amendment
applied. It is therefore of paramount importance to specifically consider
the local soil and management conditions.

There is a close relationship between organic matter content and
aggregate stability (Loveland and Webb, 2003). Various studies con-
firmed that organic farming significantly improved aggregate stability
compared to conventional systems (Jordahl and Karlen, 1993;
Gerhardt, 1997; Siegrist et al., 1998; Mäder et al., 2002; Schjønning
et al., 2002; Williams and Petticrew, 2009). Besides enhancing soil
water retention, organic farming seems to improve water use efficiency,
especially under drought conditions this can lead to organic crops out-
yielding conventional crops by 70–90% (Lotter et al., 2003; Gomiero
et al., 2011). Finally, higher organic input under organic farming sys-
tems leads to a more vibrant soil life, which in turn creates a more
stable soil structure (Tsiafouli et al., 2014).

4. Conclusions and recommendations

Our study has confirmed that land management practices influence
soil quality indicators in various ways. There are clear trends and re-
lative changes in the five indicators as determined by the four-paired

Fig. 2. Spreads of the observations, with median values (in the boxes) and
lower and upper quartiles per management intervention and land quality in-
dicator (AS: aggregate stability; SOM: soil organic matter).
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practices. However, the magnitude of the trends and direction of the
indicator changes vary with the different management practices.

Several management practices had negative effects on soil quality
indicators. For example, yield levels were lower under organic farming
as compared to conventional farming and, to a lesser extent, no-tillage
compared to conventional tillage. However, the yield reduction could
be marginal, if other principles of conservation agriculture such as
proper residue management and crop rotation are applied.

Conversely, there are also positive aspects under organic farming
such as higher marketing price and reduced environmental damages.
Therefore, to evaluate whether it is judicious to convert conventional
farming to organic farming, socio-economic aspects will have to be
considered in combination with soil quality impacts.

Under the framework chosen, earthworm numbers appear to be the
most sensitive indicator for the four paired management practices and
positively affected by all the promising practices in comparison to the
corresponding standard practices. SOM content responds positively to
all the promising practices in comparison to the references. Aggregate
stability and yield are less sensitive to the practices, and soil pH appears
to be the least sensitive indicator.

The agricultural practices chosen (e.g. organic matter input) re-
present categories rather than specific treatments (e.g. addition of
farmyard manure, compost, green manure, crop residue, or slurry).
Although details on the various different treatments under those cate-
gories were documented in the literature review database (Table S2), a
full-blown meta-analysis was beyond the intention and scope of re-
search performed for the iSQAPER project and current manuscript.

LTE’s are an invaluable source of information and at the basis of
understanding the mechanisms and magnitude of soil change. Given the
ever increasing pressures on agricultural land, every effort possible
should be undertaken to maintain, enhance, and connect existing LTE’s,
and where possible invest to extend their network.

Opposite to our hypothesis, the potential for deducing meaningful
trends for soil quality indicators from agricultural management prac-
tices was restricted by using currently available LTE data as the only
source of information. Main reasons are the large study area with its
huge range of pedo-climatic conditions, and the heterogeneous setup of
LTEs making comparison of data difficult or impossible. Efforts such as
the systematic mapping of evidence relating to the impacts of agri-
cultural management on SOC described by Haddaway et al. (2015) are
promising and should be extended to collate data about other soil
quality relevant indicators.

Finally, it should be noted that farmers often know very well which
specific soil parameters are the most relevant for their particular si-
tuation. Therefore, the view of land managers should be taken into
account when evaluating various sets of indicators for soil quality (Lima
et al., 2013; Palm et al., 2014), necessitating a transdisciplinary and
participatory approach.
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