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Abstract

Crop yield data are often available as statistics of areas, such as adminis-

trative units, generated by national agricultural surveys and censuses. This

paper shows that such areal data can be used in area-to-point kriging (ATP

kriging) to estimate the crop yield at the nodes of a fine grid that discretizes

the study area, so that a more detailed map of the crop yield is obtained.

The theory behind ATP kriging is explained, and illustrated with a one-

dimensional simulation study and two real-world case studies. Vegetation,

precipitation, temperature and soil data were used as potential covariates in

the spatial trend part of the geostatistical model. ATP kriging requires the
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covariogram at point support, which can be recovered from the areal data

by restricted maximum likelihood. The standard errors of the estimated var-

iogram parameters can then be obtained by the Fisher information matrix.

The average yields of only 17 administrative units in Shandong province

(China) were not enough to obtain reliable estimates of the covariogram at

point support. Also the ranges of the regional averages of the covariates were

very narrow, so that the model must be extrapolated in the largest part of

the study area. We were more confident about the covariogram parameters

estimated from 45 provinces in Burkina Faso. We conclude that ATP krig-

ing is an interesting method for disaggregation of spatially averaged crop

yields. Contrary to other downscaling methods ATP kriging is founded on

statistical theory, and consequently provides estimates of the precision of the

disaggregated yields. Shortcomings are related to the uncertainty in the esti-

mated covariogram parameters, as well as to the extrapolation of the model

outside the range of the regional means of the covariates. Opportunities for

future advancements are the use of modelled yields as covariates and the in-

troduction of expert knowledge at different levels. For the latter a Bayesian

approach to ATP kriging can be advantageous, introducing prior knowledge

about the model parameters, as well as accounting for uncertainty about the

model parameters.

Keywords:
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1. Introduction1

Global change processes raise new estimation problems challenging con-2

ventional statistical methods. New problems require, for instance, recovering3

information from available aggregate agricultural statistics, and other avail-4

able evidence, through disaggregation or downscaling methods (Fischer et al.,5

2006). There is a broad range of applications requiring such spatially down-6

scaled statistics and foremost, crop area, yield or production data, which have7

been summarized for instance in You et al. (2014). These include food secu-8

rity, climate change, livestock production systems, technical change, ecosys-9

tem service valuation. For instance, in the context of yield gap analysis (van10

Ittersum et al., 2013) there is the need to evaluate the difference between11

actual yield (usually with reference to official statistics) and yield potential12

(usually obtained as the outcome of crop modelling). In general, applications13

generating spatially explicit gridded data respond to the need of adequately14

accounting for the geographical distribution of environmental, management15

and socio-economic conditions. This is regarded as a pre-requisite for more16

effective policies and interventions aimed at improving rural well-being, and17

for revealing untapped opportunities and shaping spatially-explicit responses18

to such opportunities (You et al., 2014).19

For generating gridded maps Goerlich and Cantarino (2013) distinguish20

between ‘bottom-up’ and ‘top-down’ approaches. For a ‘bottom-up’ approach21

adequate individual georeferenced data must be available. In ‘bottom-up’22

approaches for generating gridded estimates of crop production, the product23

of crop areas and yields, remote sensing techniques are increasingly used. As24

to yields, current methods include direct estimation of proxies to yields, such25
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as total biomass, vegetation indices and more complex yield indices. Indirect26

methods envisage for instance the assimilation of auxiliary variables derived27

from remote sensing in crop models. However, the ability of current methods28

for estimating crop yields is limited for many crops and geographies (Lobel,29

2013).30

In the case of ‘top-down’ methods only areal unit data are available and31

disaggregation techniques should be used. Most countries in the world have32

such aggregated data, but only at national and, at the most, at sub-regional33

levels. Production statistics are generated from national agricultural surveys34

and censuses. Their sampling frameworks however, usually limit the spatial35

units at which statistics can be reported within acceptable levels of statisti-36

cal confidence. Therefore, a spatial disaggregation approach is sought which37

attempts to generate allocations of crop production at finer scales, possibly38

down to the scale of individual grid units. In other words, such methods39

try to resolve one of the major analytical weaknesses of regional and global40

agricultural studies, the inability to objectively downscale production statis-41

tics into spatial units such as agro-ecological zones or watersheds, and down42

to units (e.g. gridded products) having spatial resolutions finer than the43

original reporting units.44

Spatial disaggregation methods that are relevant for our purposes include45

areal interpolation from simple area weighting to binary or poly-categorical46

dasymetric disaggregation, see Gallego et al. (2011) and Goerlich and Can-47

tarino (2013), methods based on cross-entropy (You et al., 2014), statistical48

and geo-statistical methods, among which are kriging methods. The methods49

above have been applied to several application fields and variables, including50
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population densities and cropped area. However, with the exception of the51

cited cross-entropy method, there have been so far no applications related52

to the down-scaling of crop yields or production. Kriging methods that dis-53

aggregate observations of the spatial means of subareas into predictions at54

points are referred to as area-to-point (ATP) kriging methods. The use of55

spatially averaged data for spatial prediction of the values at points (e.g.56

the nodes of a fine discretisation grid covering the study area) by ATP krig-57

ing has received much interest in the scientific literature since 2000, see e.g.58

Gotway and Young (2002); Kyriakidis (2004); Kyriakidis and Yoo (2005);59

Gotway and Young (2007); Goovaerts (2008, 2011); Orton et al. (2012).60

The predictions obtained with ATP kriging are coherent, also referred61

to as mass-preserving or pycnophylactic (Kyriakidis, 2004). This means that62

the average of point predictions within any arbitrary area with known spatial63

mean is equal to that spatial mean. This is a desirable property when the64

areal data can be assumed errorless observations of the spatial means, think65

for instance of the values of pixels of remotely sensed images.66

The theory of ATP kriging is well established, and its potentials have been67

shown in many application areas, for instance in soil science (Schirrmann68

et al., 2012; Brus et al., 2014), spatial socio-economic studies (Nagle, 2010),69

disease mapping (Lin et al., 2014) and environmental health studies (VoPham70

et al., 2016). We are not aware of papers explaining how this statistical71

technique can be used for spatial disaggregation of polygon maps of average72

crop yields. Therefore, the aim of this paper is to draw the attention of73

agronomist to this technique, to explain the basics of ATP kriging as in a74

tutorial, and to illustrate it with a simulation study and two real-world case75
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studies.76

2. Theory77

As a stepping stone for explaining how values at points can be predicted78

from averages of blocks by ATP kriging, we first explain how values at points79

can be predicted from measurements at points by point kriging. Strictly80

speaking the points need not be infinitely small units but can also be small81

areas, think of pixels. What is essential in point kriging is that the size and82

geometry (referred to as the support) of the measurement units equals that83

of the prediction units.84

2.1. Point kriging85

In geostatistics the value of our variable of interest Z at a location s is86

modeled as the sum of the expected value, µ, and a random error (residual)87

at that location, ε(s):88

Z(s) = µ+ ε(s). (1)

The model is extended with a description of the probability distribution of89

the residuals. It is assumed that the residuals have a normal distribution90

with zero mean and a constant variance σ2. Contrary to classical statistics,91

in geostatistics the residuals at any pair of locations are not assumed inde-92

pendent. The covariance of the residuals is modeled by a parametric function93

of the length (and direction) of the vector separating two locations.94

A slightly more complicated model is obtained by replacing the expected95

value µ by a linear combination of covariates related to the variable of inter-96

est, think of remote sensing imagery such as a vegetation index, or rainfall97
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estimates:98

Z(s) =

p∑
k=0

βkxk(s) + ε(s), (2)

with βk the regression coefficient for covariate xk, xk(s) the value of covariate99

xk at location s, and p the number of covariates. By convention x0(s) = 1 so100

that β0 is an intercept. In this model the expectation is not a constant, as101

before, but varies in space as the covariates show spatial variation. The non-102

constant expectation is referred to as the spatial trend. This trend component103

models the large-scale spatial structures. The small-scale spatial structure104

not accounted for by the spatial trend is modeled as a random effect, by the105

covariance of the residuals.106

We note here that when we refer to a covariate as being on point sup-107

port, we mean that it is extracted from a map of that covariate at a par-108

ticular point. However, that map could itself represent some attribute at a109

larger spatial support. For instance, one covariate could come from a digital110

elevation model, produced on a 10-m grid, with the value for each pixel rep-111

resenting the average elevation over that grid cell, while another covariate112

could be related to climate, with a map available on a much coarser scale,113

each pixel of which would represent the average conditions within perhaps114

5-km grid cells.115

Using this model the value of the variable of interest at a target location116

s0 is predicted by117

Ẑ(s0) =

p∑
k=0

β̂kxk(s0) +
n∑

i=1

λi

[
Z(si)−

p∑
k=0

β̂kxk(si)

]
, (3)

with β̂k the estimated regression coefficient, n the number of sampling lo-118

cations, and λi the weight attached to the residual at sampling location si.119
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The first component of this predictor is the estimated expectation at the120

new location using the covariate values at this location and the estimated121

regression coefficients, and the second component is a weighted sum of the122

residuals at the sampling locations.123

The question now is how to compute the weights λi. These weights are de-124

rived by minimizing the variance of the prediction error under the constraint125

that the prediction is unbiased. It can be shown that an unbiased prediction126

is obtained when the sum of the weights equals 1 (
∑n

i=1 λi = 1), and when for127

all p covariates the weighted sum of the covariate values at the sampling loca-128

tions equals the covariate value at the target location (
∑n

i=1 λixk(si) = xk(s0)129

for all k = 1 · · · p). The constrained minimization problem can be redefined130

into an unconstrained minimization problem as follows. Each of the q = p+1131

constraints mentioned above is multiplied by a constant. These constants,132

referred to as Lagrange multipliers, are unknown and must be estimated.133

The resulting terms are added to the variance of the prediction error, lead-134

ing to a new minimization criterion. Setting the partial derivatives of this135

criterion with respect to the weights and the Lagrange multipliers to 0, leads136

to a set of n+ q equations (Webster and Oliver, 2007):137

n∑
j=1

λj Cov(si, sj) +
∑p

k=0 νkx(sj) = Cov(si, s0) , i = 1, . . . , n

n∑
i=1

λixk(si) = xk(s0) , k = 0, . . . , p
, (4)

with Cov(si, sj) the covariance between sampling points si and sj, Cov(si, s0)138

the covariance between sampling point si and target point s0, and νk, k =139

0, . . . , p Lagrange multipliers. Note that the covariances are covariances of140

residuals, i.e. of the data minus the spatial trend component (Eq. 2). It is141
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convenient to represent this system of equations in matrix notation:142  Css Xs

XT
s 0

 λ

ν

 =

 cs,s0

xs0

 , (5)

with Css the n × n matrix of residual covariances between the sampling143

points, cs,s0 the n × 1 vector of residual covariances between the sampling144

points and the target point, Xs the n × q matrix of covariate values at the145

sampling points, xs0 the q × 1 vector of covariate values at the target point,146

0 the q× q matrix of zeroes, λ the n×1 vector with weights, and ν the q×1147

vector with Lagrange multipliers.148

2.2. Area-to-point kriging149

Now we consider the case where the observations consist of averages of150

blocks. These block averages, Z̄(Bi) for block Bi of the m data blocks, are151

defined in terms of a point-support variable, Z(s), by152

Z̄(Bi) =
1

|Bi|

∫
s∈Bi

Z(s)ds, (6)

with |Bi| the surface area of block Bi. Combining this definition with that153

of the point-support variable (Eq. 2), a statistical model can be written for154

the areal-support data155

Z̄(Bi) =
1

|Bi|

∫
s∈Bi

p∑
k=0

βkxk(s) + ε(s)ds. (7)

This expression can be re-arranged to give156

Z̄(Bi) =

p∑
k=0

βkx̄k(Bi) + ε̄(Bi), (8)
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where x̄k(Bi) = 1
|Bi|

∫
s∈Bi xk(s)ds is the block Bi average of the covariate157

xk, and ε̄(Bi) = 1
|Bi|

∫
s∈Bi ε(s)ds the block average of the residuals. Recall158

that the distribution of the residuals on point support was assumed normal,159

with zero mean, constant variance σ2 and with covariance between any pair160

of locations modelled by a parametric function of their separation vector.161

Based on this assumption, the statistical properties of ε̄(Bi) can be derived.162

It too is normally distributed with mean zero. The covariance for ε̄(Bi) and163

ε̄(Bj) is (Kyriakidis and Yoo, 2005)164

Cov(ε̄(Bi), ε̄(Bj)) =
1

|Bi||Bj|

∫
s∈Bi

∫
t∈Bj

C(s, t)dsdt, (9)

where C(s, t) is the point-support covariance function applied for points s165

and t that sweep blocks Bi and Bj, respectively. The covariance for Bi and Bi166

gives the variance; note that this variance is not the same for each block, due167

to their different sizes and geometries. Also, the covariance between a point-168

support variable and areal-support variable can be calculated as (Kyriakidis169

and Yoo, 2005)170

Cov(ε(s), ε̄(Bj)) =
1

|Bj|

∫
t∈Bj

C(s, t)dt. (10)

In practice, all of the above integrals can be approximated by summations171

over a large number of points that discretize the blocks. For example,172

x̄k(Bi) =
1

|Bi|

∫
s∈Bi

xk(s)ds ≈ 1

Li

Li∑
l=1

xk(si,l), (11)

where si,l is the ith of the Li points that discretize block Bi. Eqs 7 and 8173

provide a model to relate point-support values of the covariates to block-174

support data of the primary variable.175
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The value at the target point-location is predicted by176

Ẑ(s0) =

p∑
k=0

β̂kxk(s0) +
m∑
i=1

λi

[
Z̄(Bi)−

p∑
k=0

β̂kx̄k(Bi)

]
, (12)

with m the number of observed blocks. The first component is equal to the177

first component of the point kriging predictor, but the second component178

differs. It equals a weighted average of the m residuals of the blocks. These179

residuals are computed as the difference between the observed means and180

a linear combination of the averages of the predictors of the blocks. Opti-181

mal weights are obtained by minimizing the variance of the prediction error182

and requiring that the prediction must be unbiased. Unbiasedness is now183

guaranteed by constraining the sum of the weights sum to 1 and so that184 ∑n
i=1 λix̄k(Bi) = xk(s0) for all k = 1 · · · p. The optimal weights can be ob-185

tained by solving186  CBB XB

X
T

B 0

 λ

ν

 =

 cBs0

xs0

 , (13)

with CBB the m × m matrix of average residual covariances between the187

blocks, cBs0 the m × 1 vector of average residual covariances between the188

blocks and the target point, and XB the m × q matrix of average covariate189

values for the blocks. Comparing Eqs. 13 and 5 shows that the point-wise190

covariances in Eq. 5 have been replaced by average covariances between the191

blocks and the target point in Eq. 13. In practice the average covariance192

between a block Bi and the target point s0 can be approximated by selecting a193

large number, say S, points fully randomly from the block Bi, computing the194

covariance between each of the S points and the target point, and averaging195

the S covariances at point support. The average covariance between two196
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blocks can be approximated similarly, by random selection of S points from197

both blocks, and forming S pairs of points. This shows that we must know198

the covariogram (covariance function) or variogram at point support. The199

next subsection explains how this covariogram can be estimated from the200

areal data.201

Given the covariogram at point support, the variance of the prediction202

error equals203

Var
(
Ẑ(s0)− Z(s0)

)
= Cov(0)− λTcBs0 − λTXB ν, (14)

with Cov(0) the covariance at distance 0, referred to as the a priori variance.204

2.3. Estimating the covariogram parameters and regression coefficients205

A hurdle in ATP kriging is the calibration of the covariogram (or vari-206

ogram) at point support. Kyriakidis (2004) and Kyriakidis and Yoo (2005)207

suggest likelihood methods to infer the point support variogram. Goovaerts208

(2008) proposed to estimate this variogram by an iterative method-of-moments209

method. The method seeks the point-support variogram model by minimiz-210

ing the difference between the theoretically regularized variogram model and211

the method-of-moments variogram model fitted to the areal data. More re-212

cently Orton et al. (2012) presented estimation of the covariogram at point213

support by restricted maximum likelihood (REML). Assuming a multivariate214

normal distribution of the residuals, the restricted log-likelihood multiplied215

by -2 equals216

−2ln`(Z | θ) = constant + ln | CBB | +ln | XT

BC
−1

BB XB | +z̄TTBBz̄, (15)

with Z the (unobserved) values of the response variable at point locations,217

θ the vector with covariogram parameters, z̄ the m× 1 vector with averages218
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of the response variable for the blocks, and219

TBB = C
−1

BB −C
−1

B,B XB

[
X

T

BC
−1

BB XB

]−1

X
T

BC
−1

BB . (16)

The restricted log-likelihood is not a function of the regression coefficients but220

of the covariogram parameters only. The regression coefficients are integrated221

out, i.e. the restricted log-likelihood is the log of the expected value over all222

possible values of the regression coefficients.223

With an exponential variogram, which has two parameters, the distance224

parameter φ and the sill σ2, minimization of the negative restricted log-225

likelihood is a one-dimensional problem. This is because for any given value226

of φ, the value of σ2 that minimizes the negative restricted log-likelihood can227

be computed by228

z̄TTBBz̄

n− q
, (17)

in which the covariance matrix CBB in TBB (Eq. 16) is computed with a sill229

of one.230

The variance of the covariogram parameters can be estimated by the231

inverse of the Fisher information matrix (Pardo-Igúzquiza and Dowd, 2001).232

For REML estimation of the covariogram parameters, the ijth element of233

the Fisher information matrix is given by (Zimmerman, 2006)234

1

2
tr

(
TBB

δCBB
δθi

TBB
δCBB
δθj

)
. (18)

Given the REML estimates of the covariogram parameters the regression235

coefficients are estimated by Generalized Least Squares (GLS):236

β̂ =
(
X

T
C

−1

BB X
)−1

X
T
C

−1

BB z. (19)
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The variance of the estimated regression coefficients equals237

Var(β̂) =
(
X

T
C

−1

BB X
)−1

. (20)

This variance is for the estimated parameters of the covariogram; in other238

words uncertainty about the covariogram parameters is not accounted for in239

this estimated variance of the regression coefficients.240

2.4. Extrapolation241

A potential risk of using covariates in ATP kriging is extrapolation of the242

model. Extrapolation occurs when for one or more covariates the values at243

a prediction location is outside the range of the covariate values in the data244

used for estimating the model parameters. This is a well-known problem in245

linear regression. In ATP kriging this problem can even be more serious be-246

cause the covariate data are averages of regions, having smaller ranges than247

individual covariate values at points. A simple approach to avoid extrapo-248

lation would be to check whether for all covariates the covariate values are249

within the ranges of the covariates in the calibration data. However, this250

univariate approach is insufficient. Think of two correlated covariates, and a251

prediction location with a value for the first covariate just below the maxi-252

mum of that covariate in the calibration data, and for the second covariate253

a value just above the minimum of that covariate in the calibration data.254

When correlation between the two variables is strong, the probability that255

this combination of covariate values is not present in the calibration data256

is large, and as a consequence there is still a risk of extrapolation. This is257

referred to as hidden extrapolation. A superior, multivariate approach is to258

compute the scaled distance of a prediction point to the centre of the cloud of259
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calibration data, in the space spanned by the covariates (Montgomery et al.,260

2001):261

d = xT
0

[
X

T

BXB

]−1

x0 (21)

with x0 a vector of length q with the covariate values at a prediction location.262

This distance is then compared with the maximum scaled distance of the263

calibration data to its centre, which can be computed by264

dmax = max{diag(X
T

B

[
X

T

BXB

]−1

XB)} (22)

We use d − dmax as a measure for the extrapolation. For points with d −265

dmax > 0, the model is extrapolated and the ATP kriging predictions and266

their kriging standard deviations must be interpreted with care, i.e. we267

actually are more uncertain about the crop yield than indicated by the kriging268

standard deviation, because we rely on a linear relation beyond the domain269

of the model.270

3. Simulation study271

This section illustrates ATP-kriging with a simple simulation study. We272

simulated data using a statistical model, details of which are given below.273

The simulated data are used as reality, i.e. as errorless values at points of the274

variable of interest. Areas are then defined, and for each area the simulated275

values at all points within that area is used to compute the average of that276

area. These averages are subsequently used to recover again the values at277

the points by ATP-kriging. The ATP-kriging predictions can be compared278

with the simulated values to compute the prediction errors.279
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We simulated values at 2000 equally spaced nodes (with spacing of 0.05280

distance units) along a transect of length 100 distance units (Fig. 1). At281

each node a pair of observations is simulated, consisting of the value of the282

variable of interest zi and a correlated covariate xi. Values of covariate x were283

simulated with an exponential variogram with a sill of 2 and a distance pa-284

rameter of 10 distance units (practical range: 30 distance units). A constant285

of 10 was added to the simulated x values. Then residuals ε were simulated286

using an exponential variogram with a sill of 0.5 and a practical range of 5287

units. The simulated ε values were added to the simulated x values to give288

the simulated values of the variable of interest z. The correlation coefficient289

of the simulated x and z values was 0.85. The transect was split into 10290

sections of equal length. The means of all simulated z values within sections291

were computed; these are shown in Figure 1 as a stepwise function.292

We then predicted the simulated values of the z in two ways, using the293

section means of z only, without using the covariate x (ATP kriging without294

trend), and using the section means of z together with the simulated x values295

(ATP kriging with trend). The variogram used in kriging is the same as used296

in simulation. More specific, the variogram of z used in prediction equals the297

sum of the variogram of x and the variogram of ε.298

The upper figure in Fig. 1 shows the results for ATP kriging without299

trend. The sharp boundaries of the stepwise line are smoothed by the ATP300

kriging. The kriging predictions roughly follow the simulated z values, but301

the prediction errors generally are quite large. The mean squared prediction302

error (MSE) equals 0.625. The width of the prediction interval is somewhat303

larger near the boundaries of the sections as compared to the centres. Intu-304
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itively this makes sense as near the boundaries we are in a transition zone.305

The predictions obtained with ATP kriging with trend are much less306

smooth and show more detail. Prediction errors are much smaller than with307

ATP kriging without trend since it exploits the correlation with the covariate:308

the MSE equals 0.162.309

Both for ATP kriging without trend and ATP kriging with trend, for all310

sections the average of the predictions at the nodes within this section is311

exactly equal to the section mean (result not shown), i.e. predictions are312

mass-preserving.313

4. Case study314

4.1. Data315

The case study takes into consideration two different areas: the Province316

of Shandong in China, and the entire Burkina Faso. For Shandong yield317

statistics for the 17 districts are available for winter wheat and maize. These318

are official figures collected from Shandong Statistical Yearbook from 2000-319

2013 provided by Institute of Remote Sensing and Digital Earth, Chinese320

Academy of Sciences (RADI, CAS), and the long term mean covers the period321

2000-2013.322

For Burkina Faso yield statistics refer to the 45 provinces and were ob-323

tained from AGRHYMET and the long term value is also based on the years324

2000-2013.325

Figure 2 show the actual average yields in ton ha−1 of grain maize and326

winter wheat in Shandong province of China, and of millet and sorghum in327
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Burkina Faso. Table 1 shows the minimum, maximum and average of the328

regional mean yields.329

Besides data on the average crop yields we have maps with covariate330

data. Four sets of covariate data can be distinguished: 1. Vegetation331

data 2. Precipitation data 3. Temperature data and 4. Soil data. As332

to the first group we considered vegetation related parameters at a spa-333

tial resolution of approximately 1 by 1 km: for example FAPAR (Gobron334

et al., 2006), as derived from SPOT-VGT and cumulated over the crop335

cycle. The second and third group include crop driving variables namely336

rainfall, radiation and temperature as derived from CHIRPS and ECMWF337

ERA-Interim, also cumulated over the crop cycle. CHIRPS and ECMWF338

ERA-Interim data variables have a spatial resolution of respectively around339

5 by 5 km and 25 by 25 km, respectively. In addition we selected some340

dekad specific variables derived from SPOT-VGT, CHIRPS and ECMWF341

ERA-Interim. These are variables not cumulated over the crop cycle but342

summarizing conditions for a specific 10-day period within the crop cy-343

cle. This selection was based on the performance of these dekad-specific344

covariates in a statistical crop forecast analysis. Data of ECMWF ERA-345

Interim, SPOT-VGT and CHIRPS were collected from the MARS project346

(Micale and Genovese, 2004; de Wit et al., 2010; Meroni et al., 2013), see347

http://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Meteorological data from ECMWF models348

and http://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/SPOT-VEGETATION,349

and U.S. Geological Survey (Funk et al., 2015). All covariate data of the first350

three groups have been aggregated over the years 2000-2013.351

Afterwards data were spatially aggregated from their original resolution352
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to the administrative regions for which the yields are given. The spatial353

aggregation was done based on a land cover map only including (the share354

of) the pixels / grid cells under cropland (GLCshare, class = 2).355

Tables 1 - 4 in the supplement list the set of vegetation and climate data356

used as potential covariates for wheat and maize in Shandong, and sorghum357

and millet in Burkina Faso from which we selected a subset that served as358

predictors in the model. As to the fourth group, the soil data, the following359

variables were included: coarse fragments (vol. % > 2mm), sand (mass %),360

silt (mass %), clay (mass %), bulk density (kg dm−3), total available water361

capacity (cm m−1), cation exchange capacity (CEC; cmolc kg−1 of fine earth362

fraction), pH (measured in water), organic carbon (OC; g kg−1), total N (g363

kg−1) and C/N ratio. The values apply to the soil depth: 0-20 cm. Data364

were derived from the WISE30SEC version 1.0 soil database (Batjes, 2015)365

and aggregated to the administrative regions. Finally, quantitative covariates366

were centered to zero means and scaled to standard deviations of 1, so that367

the importance of covariates can be evaluated on the basis of the absolute368

values of their associated regression coefficients.369

4.2. Implementation of statistical methods370

This section describes how we selected a model, more specifically how we371

selected a subset of covariates from the full list of all covariates. Besides, this372

section describes how we implemented the ATP kriging in practice.373

4.2.1. Model selection and calibration374

Model selection boils down to selecting a combination of covariates that375

serve as predictors xk in Eq. 12. To reduce the total number of possible mod-376
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els the covariates are grouped into four subsets: vegetation, precipitation,377

temperature and soil covariates, see Tables with covariates in supplement.378

We only considered models with a maximum of one covariate per group. So379

we fitted all possible models with four covariates (one from each group), three380

covariates (a covariate from one group is missing), et cetera. Models were381

fitted by maximizing the log-likelihood, accounting for spatial correlation of382

the data. The fitted models were ranked on the basis of Akaike Information383

Criterion (AIC)384

AIC = −2ln(L̂) + 2k (23)

with L̂ the maximized loglikelihood and k the number of model parameters385

(regression coefficients and covariogram parameters). The equation shows386

that there is a penalty for the number of parameters, so that overfitting387

through inclusion of many covariates in the model as predictors, is avoided.388

The best models in terms of AIC were then fitted by restricted maximum389

likelihood (REML) (Lark et al., 2006). Each entry of the matrix with mean390

covariances within and between regions, CBB in Eq. 15, was estimated from391

200 × 200 = 40, 000 randomly selected pairs of points. For each pair the392

covariance is computed, the average of which is used as an estimate of the393

mean covariance. In principle, the model with the lowest AIC was selected.394

However, we also looked at the sign of the estimated regression coefficients.395

In case this sign did not make sense from an agronomic point of view, this396

model was discarded. The deviance was minimized by differential evolution397

using R package DEoptim (Ardia et al., 2012).398
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4.2.2. ATP kriging399

For predicting the values at points by ATP kriging, given the estimated400

covariogram parameters and regression coefficients, we wrote an R script.401

4.2.3. Leave-one-out cross-validation402

Unfortunately we did not have observed yields at point support, so that403

we cannot validate the predicted yields at point support. What we can do404

is validate the predictions at the area support. We did this by leave-one-405

out cross-validation. The regional averages of the yield are left out one-by-406

one. The average yields of the remaining regions are used, together with the407

full-coverage maps of the covariates, to predict the yield at all grid nodes408

discretizing the region that is left out. The average of these predictions at409

point support are then compared with the reported regional average yield.410

4.3. Results of statistical analysis411

4.3.1. Selected models412

The results of the statistical analysis are given in this section and an413

agronomic interpretation is attempted. In case a model contains multiple414

covariates such agronomic interpretation should be done with care when the415

covariates are correlated. For instance, when two covariates are positively416

correlated and both covariates individually have a positive effect on the yield,417

then the sign of the coefficient associated with one of the covariates can even418

become negative.419

Winter wheat and grain maize in Shandong. For winter wheat in China420

(Shandong) the model with the lowest AIC contains the covariates sand,421

CRAIN-CH-17 (rain cumulated over the period 1 January - 20 June), and422
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TMAX-EC-15 (maximum temperature in the period 21 - 31 May) as covari-423

ates (Table 2). For sand and CRAIN-CH-17 the sign was negative, while for424

TMAX-EC-15 it was positive. The negative sign for sand indicates the lower425

capacity of coarse textured soils to retain water and nutrients. Winter wheat426

is fully irrigated and therefore normally water shortage is not a problem.427

But excessive precipitation could harm the crop (e.g. due to water logging,428

increased disease pressure, nutrient leaching, etc.). This might explain the429

negative sign for CRAIN-CH-17. Although the variable represents a cumu-430

lated amount of rain over the growing period, the negative sign may also431

indicate direct damages to the crop caused by excessive rainfall during flow-432

ering and before harvest. Warm and sunny weather is favorable for ripening,433

explaining the positive sign for TMAX-EC-15.434

For grain maize in Shandong the model with the lowest AIC has CRAD-435

EC-28, CRAIN-EC-28, CFAPAR-28 and sand as predictors. The cumulated436

radiation (in this case cumulated over the period 1 July - 10 October, the437

growing season for maize in the area) has a positive effect on the biomass438

production and yield. Grain maize mainly grows on summer rainfall. Thus,439

a positive correlation with rainfall is expected. The coefficient for CFAPAR-440

28 equals -0.0800, so the effect of this covariate is small compared to that441

of the other two covariates. The negative sign can only be explained by the442

positive correlation between CFAPAR-28 and CRAD-EC-28.443

For winter wheat and grain maize in Shandong the fitted distance param-444

eters of the exponential covariograms are small (1.85 and 0.72 km, respec-445

tively; see Figure 1 in supplement), and the fitted sill parameters are very446

large, especially for maize (Table 2). The standard errors of the estimated447

22



covariogram parameters, as obtained by the inverse of the Fisher information448

matrix, are very large when related to their estimated values, especially for449

wheat (Table 2). The very large uncertainty about these parameters is in450

accordance with the scarce data, consisting of the average crop yields for 17451

districts only. For maize also the standard errors of the regression coefficients452

are very large, which can be explained by the large value for the estimated453

sill.454

In REML estimation of the variogram we assume that the residuals at455

point support have multivariate normal distribution. This assumption cannot456

be checked because we do not have point support yield data. What we can457

do is look at the residuals of the mean yields of the regions. If this residual458

distribution is not normal, this suggests that the assumption of normal point-459

support residuals may not be valid. However, if the residual distribution is460

normal, this is not a proof for a normal distribution of the residual yield at461

point support. Q-Q plots of the residuals for grain maize and winter wheat462

show that the residuals of the mean yield are nicely normally distributed (see463

Figure 2 in supplement). The Shapiro-Wilk test statistic for maize equals464

0.953 with a p-value of 0.512, and for wheat 0.972 with a p-value of 0.858.465

Sorghum and millet in Burkina Faso. In the case of sorghum in Burkina Faso466

we selected a model with TMIN-EC-21 (minimum temperatures over the pe-467

riod 21 - 31 July), pH, CFAPAR-27 and CRAIN-EC-27 (FAPAR and rainfall468

cumulated over the growing period i.e. dekads 13-27, indicatively from 1469

May to 30 September) as predictors. This was not the model with the lowest470

AIC (see excel file in supplement for the ten best models). The models with471

smaller AIC were discarded for agronomic reasons. All predictors except472
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pH in the selected model have positive signs. The negative sign for pH can473

be explained by the negative correlation between pH and OC (r = −0.72).474

In general terms, lower pH values lead to accumulation of organic matter.475

Higher organic matter facilitates higher yields, especially when it is scarce476

as it is usually the case in sub-tropical environments. The other predictors477

have a clear agronomic significance, specifically in relation to the growing478

conditions in Burkina Faso. In the first place, the more rainfall over the479

whole growing cycle, the higher the yield. Also, relatively low, suboptimal480

minimum temperatures can reduce the biomass growth. The FAO crop re-481

quirement database (http://ecocrop.fao.org) indicates, for varieties adapted482

to sub-tropical conditions, a minimum temperature (day and night) of 22483

degrees throughout the season. At dekad 21 the southern regions of Burk-484

ina Faso have sub-optimal temperature conditions, below 22 degrees (19-20485

degrees), while the northern zones are well above 22 degrees (23-24 degrees).486

In the case of millet we did not select a model with covariates. The model487

that gave the lowest AIC has two covariate, CRAD-EC-27 (cumulated radi-488

ation over the growing season) and FAPAR-23, both negatively correlated489

with yield. This relation does not have a straightforward agronomic inter-490

pretation. None of the top 40 models was acceptable from an agronomic491

viewpoint (negative sign for coefficients associated with FAPAR, radiation492

or precipitation). Millet, probably due to the marginal conditions in which493

it is cultivated, deserves further investigations on its growth limiting factors494

and the accuracy of the available data to adequately represent them.495

For sorghum the fitted distance parameter of the exponential covariogram496

was 21 km (see Figure 1 in supplement), and the estimated sill parameter497

24



was 0.092 ton2 ha−2 (Table 2). For millet the fitted covariogram parameter498

are 73 km (see Figure 1 in supplement) and 0.102 ton2 ha−2. The much larger499

value for the distance parameter compared to sorghum is because all spatial500

structure in the yield of millet is captured by the covariogram, whereas for501

sorghum part of the spatial structure is explained by the covariates. Com-502

pared to the covariogram parameters of the models for grain maize and wheat503

the relative standard errors of the covariogram parameters are considerably504

smaller.505

Q-Q plots of the residuals of the mean yields for millet and sorghum show506

that the assumption of a normal distribution might be violated (see Figure507

2 in supplement). Based on the Shapiro-Wilk test the null hypothesis of a508

normal distribution is rejected for millet (W = 0.926, p-value 0.0066), but509

not so for sorghum (W = 0.969, p-value 0.26).510

4.3.2. Disaggregated yield maps511

We decided not to make maps with disaggregated yields of winter wheat512

and grain maize in Shandong province for two reasons: 1. the high uncer-513

tainty about the model parameters, see previous section, and 2. to predict514

the yield at points, the model must be extrapolated in a very large part of515

the area (see Figure 4 in supplement).516

Figures 3 and 4 show the ATP kriging predictions of the actual yields of517

sorghum and millet. Areas not cultivated are masked out based on the same518

land cover map and classes described for the spatial aggregation. The map519

of sorghum in Burkina Faso shows more spatial detail than the polygon map520

with average yield due to the use of covariates in the prediction. In the map521

for sorghum sharp transitions can be seen. This can be explained by the use522
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of the soil covariate pH in the prediction. This soil covariate is represented by523

a polygon map: all pixels within a polygon have the same value for the soil524

covariate (Figure 5). The map with predicted yield of millet is a smoothed525

version of the polygon map with average yields for the 45 regions in Burkina526

Faso. No covariates were used in the prediction, which explains the smooth527

surface.528

For both crops in Burkina Faso the averages of the disaggregated yields529

are nearly equal to the average of the reported mean yields of the 45 regions530

(Table 1). Also the 45 regional averages of the predictions at points are very531

close to the reported means (see Figure 3 in supplement). The averages of532

the predictions are not exactly equal to the reported mean yields because the533

discretization points used to calculate average covariances and average values534

of fixed effects were not exactly the same as the prediction grid points (if the535

same points were used, then the relationship should in theory be exact). The536

ranges of the disaggregated yields are wider than the reported regional mean537

yields.538

For both millet and sorghum, the kriging standard errors, computed as539

the square root of the kriging variances, are the smallest in the centre of the540

regions and increase towards their boundaries. For sorghum the standard541

error is also a function of the covariates for the spatial trend. Broadly speak-542

ing, the more extreme the covariate values at a target point compared to543

the average covariate values of the regions, the larger the kriging standard544

error. The large standard errors of predicted sorghum, say > 0.32, corre-545

spond with areas with high pH values (pH > 7.5), see Figure 5. The area546

where the geostatistical model of sorghum is extrapolated corresponds with547
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areas with high (> 7.5) or low (< 5.5) pH (Figure 5). For millet no covariate548

was used in disaggregation by ATP kriging, so in this case there is no risk of549

extrapolation.550

Results of the leave-one-out cross-validation are shown in Figure 6. The551

correlation between the averages of the point-predictions and the reported552

mean yields are moderately strong: r = 0.68 and 0.76, for millet and sorghum,553

respectively. The root mean squared errors of the predictions equal 0.162 and554

0.149 t ha−1 for millet and sorghum, respectively.555

5. Discussion556

ATP kriging is founded on statistical theory, and consequently also pro-557

vides estimates of the precision of the disaggregated yields. This cannot be558

derived from the other downscaling methods indicated in the Introduction.559

Therefore this is the added value of the present application to the down-560

scaling of crop yields. Variables derived from high resolution data sets such561

as numerical weather models (e.g. ECMWF), satellites (e.g. SPOT-VGT,562

CHIRPS) or soil databases are easily accommodated as covariates in ATP563

kriging, increasing the detail of the yield maps resulting from the disaggre-564

gagation method. There are however, a number of limitations and problems565

related to the application of ATP-kriging which are discussed now.566

In both case studies no point data of crop yields were available. Ideally,567

data on the target support are available, so that they can be used in cali-568

brating the model. In REML estimation of the covariogram a multivariate569

normal distribution is assumed, see section 2.3. This assumption can only be570

checked if we have crop yield data at the target support. Besides, if we have571
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crop yield data at the target support, these data can be used for validation,572

see Brus et al. (2014) for an example. In the absence of cop yield data at the573

target support, a critical evaluation of the geostatistical model by agronomy574

experts is of utmost importance.575

In this research we treated the average crop yields of the regions as er-576

rorless data. In practice these averages are often regional means, estimated577

from data collected in national agricultural surveys. In this case we are un-578

certain about the regional means of crop yields. if their uncertainty could be579

quantified by the variance of the estimated mean, then it can be accounted580

for in ATP kriging, as shown by Orton et al. (2012) and Brus et al. (2014).581

The ATP kriging predictions then are not mass-preserving anymore, i.e. the582

average of disaggregated point-predictions in a region are not equal to the583

regional mean.584

The hardest part of the application of ATP kriging is the estimation of585

the (residual) covariogram at the support of the prediction units (target sup-586

port). With real points, i.e. infinitely small areal units as target support,587

the nugget parameter of the covariogram cannot be estimated from the data588

alone (Truong et al., 2014). This is because the contribution of the nugget589

parameter to the matrix with mean covariances within and between regions590

(CBB in Eq. 15) tends to zero when the number of discretisation points of591

a region tends to infinity.1 Also, the uncertainty about the distance param-592

eter of the covariogram is large, especially with a few, large regions. This593

uncertainty about the covariogram parameters is not accounted for in the594

1With target supports larger than points, for instance square grid cells of 1 km2, the

nugget parameter would not disappear from the diagonal elements.
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predictions of the yield at points. Especially the kriging standard deviations595

are sensitive to the covariogram parameters. Therefore the kriging standard596

deviations should be used as a relative measure of uncertainty, not so much as597

an absolute measure. As a follow-up of this research we are testing a Bayesian598

approach to ATP kriging. Advantages of a Bayesian approach are that prior599

(expert) knowledge about the regression coefficients associated with the co-600

variates is easily accommodated as shown by (Truong et al., 2014), and that601

uncertainty about the model parameters is accounted for in the uncertainty602

distribution of the predictions.603

Another point of concern is the extrapolation of the model when covari-604

ates are used as predictors in the model. The model is calibrated on spatial605

averages of crop yields and covariates. Due to the averaging of the covari-606

ates, the range of covariate values becomes smaller than of the underlying607

covariate values at points. As a consequence, the domain of the model is608

smaller than that of a model calibrated on the point data. Broadly speak-609

ing, the fewer the number of regions with spatial averages of crop yields, the610

narrower the range of average covariate values, the smaller the domain of611

the geostatistical model. Apart from the requirements on estimation of the612

covariogram, this sets a lower limit to the number of regions to be used in613

ATP kriging.614

Expert knowledge on the relation between crop yields and the covariates615

was used for grouping the covariates. More expert knowledge should also be616

included for instance by setting plausible yield ranges, avoiding that predicted617

values go beyond physical yield limits or maximum attainable yield levels.618

Such knowledge, especially from national and local experts for the relevant619
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crops, is also important when evaluating more in depth the spatial patterns620

resulting from the disaggregation of crop yields. In future other covariates621

and especially modelled yields could be tested. To the extent that key crop622

yield stresses are captured by the models, these could further help estimating623

actual yields.624

6. Conclusions625

• ATP kriging has potentials for disaggregation of spatially averaged crop626

yields. The advantage over other downscaling methods is that it is627

founded on statistical theory, and consequently also provides estimates628

of the precision of the disaggregated yields.629

• ATP kriging requires the covariogram (or variogram) at the target sup-630

port, which can be recovered from the area data by ML or REML. An631

advantage of ML and REML estimation of the covariogram over the632

deconvolution approach is that the uncertainty about the estimated633

covariogram parameters can be estimated by the Fisher information634

matrix.635

• Uncertainty about the covariogram parameters is not accounted for636

in conventional ATP kriging. This sets a lower limit to the required637

number of regions. For Shandong with average crop yields for 17 regions638

only the standard errors of the variogram parameters were very large;639

For Burkina Faso with crop yield data of 45 regions, our uncertainty640

was considerably smaller.641

• Extrapolation of the model can be a serious problem in ATP kriging,642
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especially when the number of regions is small, so that the range of643

regional averages of covariate values is much smaller than the range of644

the covariate values at the target support645
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Table 1: Minimum, maximum and mean of reported regional mean yields and of disag-

gregated yields in ton ha−1.

Minimum Mean Maximum

Reported regional mean yield

Wheat 4.55 5.66 6.58

Maize 5.57 6.61 7.43

Millet 0.526 0.902 1.60

Sorghum 0.705 1.05 1.69

Disaggregated yield

Millet 0.458 0.931 1.76

Sorghum 0.377 1.07 2.38
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Table 2: Estimated model parameters. In parantheses: standard errors of estimated model

parameters.

Grain maize, Shandong, China

Regresssion coefficients Intercept 6.66 (0.139)

CFAPAR-28 -0.0547 (0.209)

CRAIN-EC-28 0.152 (0.336)

CRAD-EC-28 0.408 (0.365)

sand -0.228 (0.166)

Variogram distance parameter (km) 0.72 (1.55)

sill (ton2 ha−2) 720 (2760)

Winter wheat, Shandong, China

Regresssion coefficients Intercept 5.69 (0.0747)

CRAIN-CH-17 -0.361 (0.0993)

TMAX-EC-15 0.180 (0.0959)

sand -0.332 (0.0786)

Variogram distance parameter (km) 1.85 (13.0)

sill (ton2 ha−2) 37.1 (489)

Millet, Burkina Faso

Regresssion coefficients Intercept 0.962 (0.0848)

Variogram distance parameter (km) 73.0 (26.2)

sill (ton2 ha−2) 0.102 (0.0255)

Sorghum, Burkina Faso

Regresssion coefficients Intercept 1.060 (0.0366)

CFAPAR-27 0.106 (0.0741)

CRAIN-EC-27 0.0830 (0.113)

TMIN-EC-21 0.127 (0.0725)

pH -0.112 (0.0444)

Variogram distance parameter (km) 21.1 (10.1)

sill (ton2 ha−2) 0.0921 (0.0392)
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Figure 1: 1D illustration of ATP kriging without (upper figure) and with trend (lower

figure). Simulated values of the variable of interest z (unobserved) are represented by the

+ symbols, simulated values of covariate x (lower figure) by dots. The data used in ATP

kriging (without trend) are the means of z for the 10 sections (the stepwise line), and in

ATP kriging with trend the means of z for the 10 sections plus the simulated x values.

The solid lines represent the ATP kriging predictions of z. The dashed lines (upper figure)

are the bounds of the 95% prediction interval
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Figure 2: Actual average yield in ton/ha of grain maize and winter wheat in 17 regions

of Shandong province (China), and of millet and sorghum in 45 regions in Burkina Faso.

Masked by non-arable land of GLCshare (all classes except 2)
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Figure 3: Predicted yield and kriging standard deviation for millet in Burkina Faso.

Masked by non-arable land of GLCshare (all classes except 2)
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Figure 4: Predicted yield and kriging standard deviation for sorghum in Burkina Faso.

Masked by non-arable land of GLCshare (all classes except 2)
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Figure 5: Area where model for sorghum is extrapolated, and map of pH
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Figure 6: Scatterplot of average of predicted yield at point support versus reported mean

yield per province for millet and sorghum in Burkina Faso, obtained by leave-one-out

cross-validation.
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