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1.1 Separation processes 

Separation processes are often applied in industry, e.g. for the removal of lactose to 

produce lactose free products [1], to remove salt from sea water [2], fat from milk [1] or 

yeast from beer [3]. This can be done based on different methods and mechanisms like 

centrifugation (density difference), evaporation (partial pressure difference) and 

membrane filtration (mostly size exclusion of one of the components by the pore size) [4]. 

Particles are, contrary to many other components that are molecularly dissolved, present 

as small entities with quite different properties as the fluid in which they are present. This 

makes the separation processes more challenging since particle behaviour is not that well 

documented. When designing innovative separation processes as is done in this thesis, this 

implies that particle behaviour should be put at the centre of the design, and not be 

disregarded as is often currently done.  

In a number of processes, particle behaviour is used as a basis, for example in ratchets and 

fluid skimming devices [5]. Although these techniques have their merit, in general they have 

not been scaled up [5], unlike membrane filtration that has been applied on industrial scale 

since decades, and has proven its reliability. However, membrane filtration is designed 

around overall particle accumulation behaviour, and not specifically around particle 

behaviour in flow that we believe to be a better starting point for design. 

1.2 Membrane separation 

In this study we focus on membrane processes applied to suspensions with particles in the 

range of 0.1 to 10 μm [3,6], and, that in the ultimate process that is elaborated on in the 

discussion section, would need to be separated based on their size. In regular membrane 

filtration, a pressure gradient is applied, which causes the particles to migrate towards the 

membrane through convection, and this can be done at relatively low energy usage [2]. In 

general, the size difference of the particles present in the permeate and retentate is rather 

large; due to particle accumulation on the membrane, the effective pore size is reduced and 

thus influences the actual separation process to a large extent. On the other hand, it would 

be very interesting if particles close in size could be separated effectively; e.g. fat particles 

with a smaller size can improve the creaminess of a product in which then less fat is needed, 

which in turn could lead to reduced caloric load in the products [7–9].  

It is clear that for fractionation of particles close in size, the process needs to be controlled 

more closely than would be needed in a ‘simple’ concentration step. Although often used 
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as a starting point for design, the pore size may actually be less relevant when particles 

accumulate on the membrane. This latter effect is most pronounced in dead-end filtration, 

and can be mitigated to some extent during cross-flow filtration (see Figure 1.1).  

For simplicity reasons we now consider a feed that contains only two sizes of particles, and 

the pore size is such that the small particles can pass the pore, while the large ones cannot. 

In dead-end filtration, the large particles are retained by the membrane, eventually forming 

a cake layer that hinders the transmission of the fluid and the small particles that after a 

certain time will also not be able to pass the membrane anymore. The change in selectivity 

and the decrease in flux are undesired side effects that need to be minimized by e.g. regular 

cleaning. A cross-flow can be applied to generate turbulence, which improves mass transfer 

away from the membrane and allows for control (to some extent) over the thickness of the 

deposited layer. Nevertheless, additional measures need to be taken to maintain flux and 

good selectivity during cross-flow filtration, since also in this case the accumulation layer 

does influence particle retention to a large extent.  

  

 

 

Figure 1.1. Schematic overview of dead-end (left) and cross flow (right) filtration of a bidisperse 
suspension in case of selective transmission of small particles, which effectively corresponds to the 
situation before cake formation takes place. 

1.3 Migration mechanisms 

As mentioned, membrane separation of particles is a complex process; and although some 

successes have been reported [10,11] full fractionation has to the best of our knowledge 

not been reported. Given the descriptions above it is clear that it is very hard to fractionate 
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particles close together in size in a situation in which continuously layers are brought to the 

membrane, and temporarily removed by e.g. back pulsing.  

To achieve fractionation, alternative approaches are needed, and natural particle 

segregation mechanisms are good candidates to serve as starting points for innovative 

process design. If it were possible to make use thereof, this could decrease energy usage 

and thus production costs considerably. In this study we focus on shear induced diffusion 

which is based on the interaction between particles in flow [12]. Besides shear induced 

diffusion, there are two other important migration mechanisms, i.e. Brownian diffusion and 

inertial lift [12]; all will be explained in the next sections, including their characteristic 

dimensionless numbers.  

1.3.1. Brownian diffusion and inertial lift 

Depending on amongst others the size of a particle, and the process conditions, one of the 

previously mentioned mechanisms will be dominating. Particles smaller than 0.1 micron are 

mostly influenced by Brownian diffusion, which makes these particles move around 

arbitrarily in a certain space. Brownian diffusion is typically characterized by the Péclet 

number [13]: 

(1) 

Where  is the shear rate (1/s), a the particle radius (m) and DB the Brownian diffusion 

coefficient (m2/s) which can be written as: 

(2) 

Here k is the Boltzmann constant (J/K), T the temperature (K) and  the suspension viscosity 

(Pa s). At Péclet numbers below one, Brownian diffusion dominates.  

In general, particles larger than 10 micron are mostly influenced by inertial lift that is the 

result of forces exerted by the surrounding fluid. The particle Reynolds number is used to 

characterize inertial lift [13]:  

(3) 
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With ρf and ηf the fluid density (kg/m3) and the fluid viscosity (Pa s), respectively. At a 

particle Reynolds number above one, inertial lift will dominate migration behaviour.  

1.3.2 Shear induced diffusion 

In the previous section, the limits for Brownian diffusion and inertial lift are clearly stated. 

In between, shear induced diffusion is the dominant migration mechanism (see also Figure 

1.2).  

 

 
Figure 1.2. Influence of particle size on the flux for the main migration mechanisms mentioned in 
section 1.3. (Graph is reprinted from Separation and Purification Technology, 174, Karin Schroën; Anna 
van Dinther and Regine Stockmann, Particle migration in laminar shear fields: A new basis for large 
scale separation technology?, 372-388, 2017, with permission from Elsevier, original is from Davis 
[19]). 

Shear induced diffusion is based on the interaction between particles and the rate of 

diffusion will thus be dependent on the volume fraction [14–16]. In the study of amongst 

others van Dinther and coworkers the shear induced diffusion coefficient  ( is given 

by [15,16]:  

(4) 

In this equation  is a diffusion coefficient that increases with particle volume fraction. 

From the equation it is further clear that large particles, and high shear lead to higher overall 
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diffusivity. In general, the particles will move away from the region with the highest shear 

which is the region near the wall. If differently sized particles are present in for example 

equal volume fractions, larger particles will move away from the channel wall faster [17,18], 

and we use this effect to design innovative separation processes. We establish pre-

segregation in a closed channel, and subsequently apply filtration to separate the particles 

that are in close proximity of the pores, as schematically shown in Figure 1.3.  

 

 
Figure 1.3. Schematic view on particle segregation of a bidisperse suspension due to shear induced 
diffusion. 

Experimentally it has been shown that the pores used in the filtration part can be much 

larger than the particles present in the suspension because the segregation is established 

earlier while flowing through the closed channel, and only the layer near the membrane 

needs to be removed [15,17]. To really understand the complexity of shear induced 

diffusion and use it as a basis for process design, also numerical studies are needed in 

combination with experimental validation, and quite some information is available. 

Vollebregt et al. [14,20] and Miller et al. [21] e.g. focused on modelling of concentration 

profiles of monodisperse and/or bidisperse suspensions in a closed channel, while Lyon and 

Leal [22,23] and Semwogerere and coworkers [18] focused on experimental verification of 

this phenomena. Van Dinther and coworkers [15–17] have taken this one step further and 

applied the principle of shear induced diffusion in a filtration set-up similar to the one 

described in Figure 1.3 for bidisperse suspensions. All these studies have contributed to 

improved understanding of shear induced diffusion, but especially for the filtration system 

still a lot of parameters that are essential for process design are unknown. For example pore 

dimensions and placement, and the effect of polydispersity, still need to be investigated, 

and are all in the core of the work presented here.  
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1.4 Research aim and thesis outline 

The general aim of this thesis is to use numerical tools to better understand shear induced 

diffusion and ultimately design novel particle segregation technology. The study focusses 

on both process conditions as well as membrane design, and for this we systematically 

investigate a number of parameters as detailed in the thesis outline that can be found in 

the next section. In the thesis we use a commercially available model to describe not only 

the shear induced diffusion profile in a closed channel but to also look at the porous region. 

Based on our findings we identify the parameters (flow conditions, and membrane 

characteristics) that are of most influence on the separation process.   

A schematic overview of the thesis is shown in Figure 1.4. In the second chapter, a 

computational fluid dynamics (CFD) model is presented that describes the shear induced 

diffusion profile in a closed channel for a monodisperse suspension. This model is validated 

experimentally, and compared to model and experimental results presented in literature. 

In the third chapter the model is used for a rigorous parameter study, in order to get a better 

insight in the effects of process conditions and how these influence transmission and 

recovery of the concentration profile after the pore. In the fourth chapter we zoom in on 

the porous region. By studying pore size, the distance between pores and the number of 

pores we get a better insight in separation efficiency. In the fifth chapter, a polydisperse 

feed consisting of cream particles is used for fractionation purposes in a process that is 

designed based on the findings in previous chapters. The results are compared with those 

obtained with the monodisperse CFD model and guidelines are derived. In the general 

discussion the different chapters are linked, leading to promising directions for future 

research. 

 

 
Figure 1.4. Schematic overview of this thesis. 



Chapter 1 

8 

1.5 References 

[1] A.S. Grandison, M.J. Lewis, Separation processes in the food and biotechnology industries: 
principles and applications, Woodhead, Cambridge, 1996. 

[2] H. Strathmann, Membrane Separation Processes: Current Relevance and Future 
Opportunities, AIChE J. 47 (2001) 1077–1087. 

[3] R.G.M. van der Sman, H.M. Vollebregt, A. Mepschen, T.R. Noordman, Review of hypotheses 
for fouling during beer clarification using membranes, J. Memb. Sci. 396 (2012) 22–31. 

[4] C. Judson King, Separation processes: second edition, Dover Publications, Inc., Mineola, New 
York, 2013. 

[5] J.P. Dijkshoorn, M.A.I. Schutyser, R.M. Wagterveld, C.G.P.H. Schroën, R.M. Boom, A 
comparison of microfiltration and inertia-based microfluidics for large scale suspension 
separation, Sep. Purif. Technol. 173 (2017) 86–92. 

[6] G. Brans, C.G.P.H. Schroën, R.G.M. van der Sman, R.M. Boom, Membrane fractionation of 
milk: State of the art and challenges, J. Memb. Sci. 243 (2004) 263–272. 

[7] G. Gésan-Guiziou, Liquid Milk Proccessing, in Membrane Processing: Dairy and Beverage 
Applications, Blackwell Publishing Ltd, Oxford, UK, 2013. 

[8] K. Meister, M.E. Doyle, Obesity and Food Technology, American Council on Science and 
Health, New York, 2009. 

[9] H. Goudédranche, J. Fauquant, J.-L. Maubois, Fractionation of globular milk fat by membrane 
microfiltration, Lait. 80 (2000) 93–98. 

[10] G. Brans,  a. van Dinther, B. Odum, C.G.P.H. Schroën, R.M. Boom, Transmission and 
fractionation of micro-sized particle suspensions, J. Memb. Sci. 290 (2007) 230–240. 

[11] K. Schroën, A.M.C. van Dinther, S. Bogale, M. Vollebregt, G. Brans, R.M. Boom, Membrane 
Processes for Dairy Fractionation, in: Membr. Technol. Vol. 3 Membr. Food Appl., 2010. 

[12] G. Belfort, R.H. Davis, A.L. Zydney, The behavior of suspensions and macromolecular 
solutions in crossflow microfiltration, J. Memb. Sci. 96 (1994) 1–58.  

[13] R.G.M. van der Sman, Simulations of confined suspension flow at multiple length scales, Soft 
Matter. 5 (2009) 4376–1387. 

[14] H.M. Vollebregt, R.G.M. van der Sman, R.M. Boom, Suspension flow modelling in particle 
migration and microfiltration, Soft Matter. 6 (2010) 6052–6064. 

[15] A.M.C. van Dinther, C.G.P.H. Schroën, R.M. Boom, Separation process for very concentrated 
emulsions and suspensions in the food industry, Innov. Food Sci. Emerg. Technol. 18 (2013) 
177–182. 

[16] A.M.C. van Dinther, C.G.P.H. Schroën, A. Imhof, H.M. Vollebregt, R.M. Boom, Flow-induced 
particle migration in microchannels for improved microfiltration processes, Microfluid. 
Nanofluidics. 15 (2013) 451–465.  

[17] A.M.C. van Dinther, C.G.P.H. Schroën, R.M. Boom, Particle migration leads to deposition-free 
fractionation, J. Memb. Sci. 440 (2013) 58–66. 

[18] D. Semwogerere, E.R. Weeks, Shear-induced particle migration in binary colloidal 
suspensions, Phys. Fluids. 20 (2008). 



Introduction and thesis outline 

9 

[19] R.H. Davis, Modeling of fouling of crossflow microfiltration membranes, Sep. Purif. Methods. 
21 (1992) 75–126. 

[20] H.M. Vollebregt, R.G.M. van der Sman, R.M. Boom, Model for particle migration in bidisperse 
suspensions by use of effective temperature, Faraday Discuss. 158 (2012) 89–103. 

[21] R.M. Miller, J.F. Morris, Normal stress-driven migration and axial development in pressure-
driven flow of concentrated suspensions, J. Nonnewton. Fluid Mech. 135 (2006) 149–165. 

[22] M.K. Lyon, L.G. Leal, An experimental study of the motion of concentrated suspensions in 
two-dimensional channel flow. Part 1. Monodisperse systems, J. Fluid Mech. 363 (1998) 25–
56. 

[23] M.K. Lyon, L.G. Leal, An experimental study of the motion of concentrated suspensions in 
two-dimensional channel flow. Part 2. Bidisperse systems, J. Fluid Mech. 363 (1998) 57–77. 

  



 



 

 

 

 
 

Chapter 2 

From highly specialised to generally available modelling  

of shear induced particle migration  

for flow segregation based separation technology 

 

 

 

 

 

 

 

 

 

This chapter has been published as I. Drijer, T. van de Laar, H.M. Vollebregt, C.G.P.H. 
Schroen, From highly specialised to generally available modelling of shear induced particle 
migration for flow segregation based separation technology, Sep. Purif. Technol. 192 (2018) 
99–109  



Chapter 2 

12 

Abstract 

Shear induced diffusion can be used to induce particle migration in flow, and this may be a 

lead to novel separation technology. Under specific conditions, depending on, amongst 

others, the ratio between channel height and particle diameter, larger particles 

preferentially move to the centre of a channel. It has been demonstrated earlier that 

separation and fractionation can be facilitated by this, leading to lower energy and water 

demand, and prevention of particle accumulation on sieves that have pores that are much 

larger than the particles. This situation is very different from regular (cross-flow) membrane 

filtration, in which particles are retained by the pores, and accumulate in various layers.  

Unfortunately, the underlying mechanisms of particle migration are not that well 

understood, and contradicting results are reported in literature. There is clearly a need for 

a unifying approach that can be used by many; therefore, we developed a CFD computer 

model that can readily be used, unlike the rather inaccessible computer models that are 

mostly reported in literature. We focus on particle-particle interactions of monodisperse 

suspensions in flow, for which we added momentum terms to the general momentum 

equation. We found amongst others that due to shear induced diffusion the particle volume 

fraction will be 1.7 times higher at the centre of the channel compared to the channel wall 

for a bulk particle volume fraction of 50%. Our results describe the experimental results, 

obtained under similar ideal conditions, to a high level of detail. Our findings are also in 

reasonable agreement with other modelling and experimental studies from literature, and 

the discrepancies are most probably due to non-ideal behaviour in the experiments and 

different approaches used in the models. The big advantage of using this software is that 

the model can be adapted readily by researchers not specifically trained in modelling or 

programming, but even more importantly, particle migration can now be used as a starting 

point in separation design since parameter and geometry studies will take less effort using 

this software.  
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2.1 Introduction 

Concentration and segregation of suspensions is needed in different fields, such as 

biotechnology, water treatment, etc. [1]. Also in the food sector it plays an important role, 

e.g. in the dairy industry bacteria need to be separated from the product stream [2] in order 

to obtain a safe product, and in the beer industry yeast is separated to clarify the product 

[3]. Also during fermentation it would be useful to fractionate mature from not fully mature 

species, so they can be sent back to the fermentation vessel to obtain higher productivity. 

Often the concentration and segregation of suspensions, in the range of 1-10 μm, is done 

by microfiltration [1–3], during which convective flow carries the particles toward the 

membrane that retains them, forming a layer that in turn is influenced by various back 

transport mechanisms, amongst which shear induced diffusion [4–6]. We would like to 

stress that there is a clear difference between shear induced diffusion as used for modelling 

of microfiltration, and for segregation in flow; therefore both processes are first discussed.  

2.1.1 Microfiltration  

During classic membrane microfiltration particles are separated from the suspension fluid 

by a membrane. Due to the applied trans-membrane pressure both the fluid and the 

particles are pushed towards the membrane; the liquid permeates through the membrane, 

while the particles remain at the retentate side when the membrane pore size is smaller 

than the size of the particles. Since these particles cannot cross the membrane, they 

accumulate, pores become blocked and a (cake) layer forms [7], which results in flux 

reduction and a change in retention due to the presence of the (cake) layer in combination 

with a possible decrease in effective pore size.  

Accumulation of particles can be mitigated in several ways. One solution would be to 

decrease the concentration of the suspension so that less particles are available to block 

the membrane pores, although this is not always practical to do [8,9]. A back flush can also 

be applied to remove the particles from the membrane [10], or a cross flow can be applied 

that induces back transport of particles (to some extent). Whatever option is chosen, more 

energy, more water or both will be needed [9], and the membrane will have to be cleaned 

regularly. Although this is standard procedure in industry, it would be better if particles 

could be kept from accumulating, leading to an environmentally and economically more 

sustainable situation by extension of the run period and less need for cleaning. 
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2.1.2 Flow segregation 

Instead of using the membrane’s size exclusion mechanism that is responsible for 

accumulation, the intrinsic migration mechanisms of the particles can be considered as 

means to facilitate fractionation or concentration of a suspension. These mechanisms 

include Brownian motion, inertial lift and shear-induced diffusion [7]. In short, Brownian 

motion describes how particles arbitrarily move around in a certain space, which does not 

have a specific direction. Inertial lift takes into account the influence of the fluid flowing 

around the particles; particle movement follows the pressure gradient over the particle, 

which is directed toward the centre of the channel. Shear-induced diffusion considers how 

particles affect the movement of other particles in flow. It is directed towards regions of 

lower shear (middle of the channel), and various complex relations have been given in 

literature as will be shown in the model development section.  

Which of these mechanisms dominates depends on various parameters, that are 

incorporated in the dimensionless particle Reynolds number, defined as: 

(1) 

and the dimensionless Péclet number, defined as: 

(2) 

In which  is the relative velocity between the phases (m/s),  the shear rate (1/s), a the 

particle radius (m), ρf the fluid density (kg/m3), ηf the fluid viscosity (Pa s), and DB the 

Brownian diffusion coefficient (m2/s) defined as: 

(3) 

Here  is the suspension viscosity (Pa s), k the Boltzmann constant (J/K) and T the 

temperature (K). Inertial lift dominates when Rep > 1, and Brownian motion dominates 

when Pe < 1. Hence, for shear induced diffusion to be dominant, Rep < 1 and Pe > 1. For 

particles that are between 1 and 10 micrometre, which are most relevant for microfiltration, 

shear-induced diffusion is the dominant mechanism and, therefore, this study focuses on 

this topic.  
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As mentioned previously, we will use shear-induced diffusion to segregate particles flowing 

in a closed channel. Shear induced diffusion is a result of how particles affect the movement 

of other particles and it scales with the square of the particle size (Table 2.1). With equal 

volume fractions of large and small particles, the larger particles will move faster towards a 

region with low shear, which would be the centre of the channel [11]. In this way, the 

particles can migrate away from the wall in a closed channel before they are exposed to a 

porous section. It can be expected that this will lead to processes that are environmentally 

and economically more sustainable. 

In summary, for microfiltration flux predictions are based on the build-up of various layers 

of particles accumulated on the membrane as a result of amongst others convective flow 

toward the membrane, and cross-flow over the layers that induces back transport. 

Therefore, Kim and Zydney [12] developed a CFD model that gives good insight in the effect 

of a number of transport mechanisms, but given the complexity of the filtration process, 

shear induced diffusivity was not investigated individually. For the flow segregation process 

that we propose here, shear induced diffusivity needs to be described very accurately since 

it is the only transport mechanism, and that puts extra weight on the accuracy of our model. 

To the best of our knowledge, simulation of segregation in flow, as a starting point for novel 

separation design, using commercially available software has not been covered in literature, 

which distinguishes our work from that of others.   

In order to make use of the flow segregation process, we have designed the system that is 

shown in Figure 2.1; pre-migration will take place in the closed channel, and liquid can be 

removed through the pores that are larger than the particles (Figure 2.1) [9,11]. This implies 

that the chances of fouling are reduced, while at the same time higher suspension 

concentrations can be used (that in turn stimulate shear induced diffusion).  

 

Figure 2.1. Schematic view on fractionation due to shear induced diffusion. Based on [30]. (Reprinted 
from Modeling Food Processing Operations, R.M. Klaver, C.G.P.H. Schroën, A review of shear-induced 
particle migration for enhanced filtration and fractionation, 211-233, 2015, with permission from 
Elsevier)    
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As a prerequisite for the design of this novel separation technology, particle migration as a 

result of shear induced diffusivity needs to be described at a high level of detail and ideally 

in a flexible way. For this, both experimental work and computer models are needed, and 

ideally these studies focus on exactly the same system. Previous studies have covered 

monodisperse [13–16], bidisperse [17–19] or polydisperse [20] suspensions, and have 

focused on modelling, on experimental work or both, but mostly there are notable 

discrepancies between experimental data and modelling results.  

In case of modelling, most often the particle phase mass balance is rewritten to insert a 

diffusive flux term [13,21] that describes the principle of shear induced diffusion. However, 

it should be mentioned that the models that are currently available are mostly the author’s 

own written code and are therefore at a level that is only accessible for experts in the field 

of modelling and programming. These models generally do not target to capture these 

effects with commercially available computational fluid dynamics (CFD) programs that are 

much more accessible. At the same time it should be mentioned that commercially available 

CFD software is not that flexible to start off with, since the governing equations cannot 

always be rewritten. Different studies have used CFD to study shear induced diffusivity [4,5], 

but not to describe flow segregation in a closed channel aiming at the development of new 

separation technology [22]. We use the commercial CFD software STARCCM+ to describe 

the diffusive behaviour of monodisperse particles in a closed system which represents the 

entrance section shown in Figure 2.1. This is a logical starting point for the overall process 

design that is part of later studies. We validate our results with experiments that were 

carried out under similar ideal conditions, and compare with available sources from 

literature, and this forms a solid base for future process design in a user friendly software 

environment.   

2.2 Model development 

2.2.1 Governing equations 

In this study the commercial software program STAR-CCM+ was used. The ‘Multiphase 

Segregated Flow Model’, that uses an Euler-Euler formulation, was chosen in order to allow 

fast calculations that we need for extensive parameter studies that are part of future 

research. In this model the finite volume method is used. The user guide of STAR-CCM+ 

describes the following about this method: 
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“In the finite volume method, the solution domain is subdivided into a 
finite number of small control volumes, corresponding to the cells of a 
computational grid. Discrete versions of the integral form of the 
continuum transport equations are applied to each control volume. The 
objective is to obtain a set of linear algebraic equations, with the total 
number of unknowns in each equation system corresponding to the 
number of cells in the grid. The resulting linear equations are then solved 
with an algebraic multigrid solver.” 

The general governing conservation equations, as used in STAR-CCM+, are for continuity: 

(4) 

and for momentum: 

(5) 

In which  is the volume fraction for phase i (-),  the density (kg/m3),  the void fraction (-

),  the velocity (m/s),  the grid velocity (m/s),  the mass transfer rate (kg/(m3·s)),  

the phase mass source term (kg/(m3·s)),  the pressure (Pa),  the gravity factor (m/s2),  

and  the molecular and turbulent stresses (Pa),  the interphase momentum transfer 

per unit volume (N/m3),  the internal forces (N/m3) and  the phase momentum source 

term (N/m3). In addition:  

The effect of shear induced diffusion was inserted by adding a phase momentum source 

term. Further, constant density, no mass transfer between phases, no internal forces, no 

turbulence and no phase mass source term were assumed, which reduces the above 

equations considerably. These assumptions are justified because of laminar flow conditions; 

hard, inert particles which do not react or dissolve and prevention of clogging due to pores 

that are larger than the particles. Below we specify the equations for particles and fluid, for 

both the continuity and momentum equation.  
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Continuity 

Particles:  

(6) 

Fluid: 

(7) 

Momentum 

Particles: 

(8) 

Fluid: 

(9) 

Here  is the drag force (N/m3) and  the force due to shear induced diffusion (N/m3). 

In literature [13,14,21] the principle of shear induced diffusion is often linked to the 

governing equations by rewriting the particle phase mass balance, using: 

(10) 

With  the average velocity (m/s) and  the slip velocity (m/s). This gives: 

(11) 
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In which  is the diffusive flux (m/s). The diffusive flux term is then used to describe the 

shear induced diffusion effect by using formulations based on either the diffusive flux model 

[13,23] with the general equation: 

(12) 

or the suspension balance model [13,14,21], with the following general equation: 

(13) 

Here  is the volume fraction dependent diffusion coefficient (m2/s),  the shear rate 

dependent diffusion coefficient (m2),  the mobility (m2/(Pa·s)),  the particle pressure (Pa) 

and  the normal stress differences (Pa). By assuming no normal stress differences, the 

suspension balance model can be rewritten to [13,17]: 

(14) 

In which  is the excess chemical potential (Pa/m). 

To the best of our knowledge, in STAR-CCM+ the different terms in the governing 

conservation equations cannot by adjusted, therefore another approach is needed. Since, 

the different diffusive flux terms are equivalent as shown by Vollebregt et al. [13] it is 

possible to write the rewritten suspension balance model in terms of the diffusive flux 

model, and add this as a momentum source term to commercial CFD software: 

(15) 

To complete the model, closure relations were used for the viscosity, mobility and the 

diffusion coefficients as presented in Table 2.1.  
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Table 2.1. Closure relations SID momentum term 

Closure 
relation 

Reference Equation 

 Krieger-Dougherty relation   

 Vollebregt et al. [13]   

 Vollebregt et al. [13]   

 Vollebregt et al. [13]   

 Vollebregt et al. [13]   

 Miller et al. [14]   

 

In addition to the shear induced diffusion momentum term, the drag force also needed to 

be specified. In STAR-CCM+ the following generic equation is used: 

(16) 

In which  is the linearized drag coefficient (Pa·s/m2) defined as: 

(17) 

Here  is the standard drag coefficient (-) and  the interfacial area density (1/m).  The 

standard drag coefficient is calculated with:  

(18) 

Where  is the single particle drag coefficient and  the drag correction factor. Different 

options are available for the single particle drag coefficient. In this study the Schiller-

Naumann method was chosen given that hard spherical particles are used, also in the 

experiments. This correlation is in STAR-CCM+ given by: 

(19) 
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Richardson Zaki was chosen for the drag correction factor: ( , since this gives the 

most realistic development profile.  

2.2.2 Process conditions 

The simulations were run in steady state and set up for parallel plate geometries, but the 

method can be applied to other configurations as well. To decrease calculation time 2D 

simulations were done with channel dimensions as listed in Table 2.2. The relatively low 

channel height is to assure conditions in which SID is dominant over other transport 

mechanisms. The channel length is chosen such that the segregation profile is fully 

developed.    

As boundary conditions a velocity inlet, a pressure outlet and a no slip condition at the wall 

were chosen. Since an Euler-Euler formulation was used, the grid size should be larger than 

the particle diameter; we carried out a grid refinement study of which the results are shown 

in Appendix C. To circumvent convergence issues, the nearest neighbour method was used, 

making the value at the wall equal to the value at the centre of the neighbouring cell. Please 

note that this implies that if a large grid size is chosen near the wall, this may give a relatively 

large error in the simulation outcome.  

2.3 Results and discussion 

Vollebregt et al. [13] showed that the different diffusive flux terms are equivalent and that 

the suspension balance model can be rewritten in terms of the diffusive flux model. In the 

current paper, we used the relations given by Vollebregt et al., and found that they were in 

very good agreement for fully developed profiles, as illustrated in Figure 2.2 for 50% 

particles.  

There were differences in the development of the profile, as shown in Figure 2.3 for a 50% 

particle volume fraction and the two previously mentioned relations for the diffusion 

coefficients. The approach of Vollebregt et al. led to faster development of the 

concentration profile, then that based on Morris and Boulay; this effect will not be discussed 

further here, but is mentioned to be complete. For now we focus on fully developed flows, 

using the diffusion coefficients of Vollebregt et al., and compare the model with available 

experimental results that unfortunately are not very abundant, and differ in regard to the 

dimensions used. 
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Figure 2.2. Normalised particle volume fraction (relative to the centre value) vs. the relative channel 
height at steady state conditions (x/2H=1250), for αp,feed=0.5 and H/a=18. Model results with rewritten 
diffusion coefficients of Morris and Boulay by Vollebregt et al.[13] (dashed line), and of Vollebregt et 
al. (solid line)[13]. 

 

 

Figure 2.3. Normalised particle volume fraction (relative to the highest value) vs. the relative channel 
length, for αp,feed=0.5 and H/a=18, for the two diffusion coefficients, both for a position at the wall 
(bottom two lines), and the centre of the channel (top two lines). Our results with the diffusion 
coefficients of Vollebregt et al.[13] is indicated by solid lines, our results with the diffusion coefficients 
of Morris and Boulay adapted by Vollebregt et al.[13] has dashed lines. 
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For monodisperse suspensions, Semwogerere et al. [16], Koh et al. [24] and Lyon and Leal 

[15] have published experimental results, and Semwogerere et al. and Koh et al. have also 

published modelling results that all could be used for validation. Furthermore, Miller et al. 

[14] compared their own model to the experimental results of Lyon and Leal and Dbouk et 

al. [25] compared their CFD model to the model results of Miller et al. [14]. In the next 

paragraphs all these experimental and modelling data will be compared to our results. To 

reach a just conclusion, the bulk particle volume fraction and the ratio between channel 

width and particle radius has been adjusted as much as possible to the actual values used 

in literature (Table 2.2). 

Table 2.2.  Process parameters used for comparison of model and literature data. For a grid refinement 
study see Appendix C.  

Model Channel 
height (μm) 

Particle 
diameter (μm) 

Channel 
height/particle 
diameter 

Number of grid 
cells in y-
direction 
(channel height) 

Semwogerere et al.  50 1.4 35.7  
Our model 50 1.4 35.7 33 
 
Koh et al.    26.3  
Our model 200 7.6 26.3 25 
 
Miller et al.    18  
Our model 200 11.1 18 15 
 
Our experiments 50 2 25  
Our model 50 2 25 23 

2.3.1 Semwogerere et al.  

Semwogerere and colleagues [16] investigated migration of particles inside a channel and 

compared that to a shear induced diffusion model based on the suspension balance model. 

In Figure 2.4, our modelling results are shown, together with those of Semwogerere et al., 

and it is clear that at both entrance lengths the profile is more developed in our model 

compared to that of Semwogerere et al.  
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Figure 2.4. Normalised particle volume fraction (relative to the centre value)  vs. the relative channel 
height at two different channel lengths, for αp,feed=0.26. Model Semwogerere et al. 2007 [16] at 
x/H=1360 (grey dashed line); Model Semwogerere et al. 2007 [16] at x/H=80 (black solid line) (Data 
Semwogerere et al. are taken from Denis Semwogerere, Jeffrey F. Morris and Eric R. Weeks, 
Development of particle migration in pressure-driven flow of a Brownian suspension, The Journal of 
Fluid Mechanics, 581, 437-451, reproduced with permission); our study at x/H=1360 (black dashed 
line); our study at x/H=80 (grey solid line). 

When comparing with the experimental results in Figure 2.5, the model of Semwogerere et 

al. over predicts the rate at which the migration of particles takes place, and in our model 

migration is even faster. The experimental profile at x/H=1360 is in our model reached at 

x/H=40 (Figure 2.5). Semwogerere et al. mentioned that particle charge could influence the 

migration of particles. We also believe that non-ideal particle behaviour could influence 

particle migration as will be discussed in the last section.  

2.3.2 Koh et al.  

Koh et al. [24] present the steady state profile with the corresponding modelling results 

based on the suspension balance model. Figure 2.6 shows that our model is relatively close 

to the modelling results of Koh et al. Furthermore, it is clear that both models under predict 

the experimental data. This is in contrast to our analysis of the data of Semwogerere et al. 

in Figure 2.4 where our model gave an over prediction. As discussed in the previous section, 

this may be due to non-ideal particle behaviour in the experiments, as will be discussed 

later.  
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Figure 2.5. Normalised particle volume fraction (relative to the centre value) vs. the relative channel 
height at different channel lengths, for αp,feed=0.26. Experimental Semwogerere et al. 2007 [16] at 
x/H=1360 ( ); Experimental Semwogerere et al. 2007 [16] at x/H=80 (□); Model Semwogerere et al. 
2007 [16] at x/H=1360 (grey dashed line); Model Semwogerere et al.[16] at x/H=80 (black solid line) 
(Data Semwogerere et al. are taken from Denis Semwogerere, Jeffrey F. Morris and Eric R. Weeks, 
Development of particle migration in pressure-driven flow of a Brownian suspension, The Journal of 
Fluid Mechanics, 581, 437-451, reproduced with permission); our results at x/H=40 (grey solid line).     

 

Figure 2.6. Normalised particle volume fraction (relative to the centre value) vs. the relative channel 
height, for αp,feed=0.3. Experimental Koh et al. 1994 [24] (□) ; Model Koh et al. 1994 [24] (black line) 
(Data Koh et al. are taken from Christopher J. Koh, Philip Hookham and L. G. Leal, An experimental 
investigation of concentrated suspension flows in a rectangular channel, The Journal of Fluid 
Mechanics, 266, 1-32, reproduced with permission); Our results (grey line). 
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2.3.3 Miller et al., Dbouk et al. and Lyon and Leal  

In their article Miller et al. [14] used the suspension balance model to describe the effect of 

shear induced diffusion. They compared their model to the experimental results of Lyon 

and Leal [15], which is also done by Dbouk et al. for their CFD model. These data are shown 

in Figure 2.7 along with the results of our model, and it is clear that the modelling results 

are very comparable. For 0.1 ≤ relative channel height ≤ 0.9 the model describes the 

experimental results well, but outside that range, the models seem to under predict the 

experimental results, which Miller and co-workers attributed to experimental difficulties. 

We think this can also be attributed to additional physics close to the wall that are not yet 

included in the model; this will be put in perspective in the discussion section.  

In addition to the fully developed profile, Miller et al. and Dbouk et al. also showed some 

results on the particle volume fraction as function of the channel length (Figure 2.8). As 

expected, the results of our model based on the diffusion coefficients of Morris and Boulay 

[13,21] are comparable to those of Miller et al. and Dbouk  et al., who use the same data. 

 

Figure 2.7. Normalised particle volume fraction (relative to the centre value) vs. the relative channel 
height, for αp,feed=0.5. Experimental Lyon et al. 1998 [15] taken from Miller et al 2008 [14] (□); Model 
Miller et al. 2008 [14] (grey line) (Data Miller et al. are reprinted from Journal of Non-Newtonian Fluid 
Mechanics, 135, Ryan M. Miller, Jeffrey F. Morris, Normal stress-driven migration and axial 
development in pressure-driven flow of concentrated suspensions, 149–165, 2006, with permission 
from Elsevier); Model Dbouk et al. 2013 [25] (black dotted line) (Data Dbouk et al. are reprinted from 
Journal of Non-Newtonian Fluid Mechanics, 198, T. Dbouk, E. Lemaire, L. Lobry, F. Moukalled, Shear-
induced particle migration: Predictions from experimental evaluation of the particle stress tensor, 78-
95, 2013, with permission from Elsevier); Our results (black line). 
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Figure 2.8. Normalised particle volume fraction (relative to the highest value) vs. the relative channel 
length, for αp,feed=0.5. The black lines are for the centre of the channel, the grey lines for the wall region. 
Solid lines are used for our results with the diffusion coefficients of Vollebregt et al. [13]; dashed lines 
for our results with the diffusion coefficients of Morris and Boulay adapted by Vollebregt et al.[13]; 
dash dotted lines are for model Miller et al. 2008 [14] (Data Miller et al. are reprinted from Journal of 
Non-Newtonian Fluid Mechanics, 135, Ryan M. Miller, Jeffrey F. Morris, Normal stress-driven 
migration and axial development in pressure-driven flow of concentrated suspensions, 149–165, 2006, 
with permission from Elsevier); dash double dotted line for model Dbouk et al. 2013 [25] (Data Dbouk 
et al. are reprinted from Journal of Non-Newtonian Fluid Mechanics, 198, T. Dbouk, E. Lemaire, L. 
Lobry, F. Moukalled, Shear-induced particle migration: Predictions from experimental evaluation of 
the particle stress tensor, 78-95, 2013, with permission from Elsevier).  

2.3.4 Experimental results 

It is clear that the results from literature are not conclusive. Lyon and Leal and Koh et al. 

reach particle volume fractions near the wall close to zero while Semwogerere et al. find 

values far from zero, as is the case in our simulations. Not only the relation for the diffusion 

coefficients will be of influence (see Figures 2.3 and 2.8) but also other equations will 

influence the results, such as the equations for viscosity and shear rate. For the shear rate, 

we used the approach of Miller et al. by adding an extra term that blunts the top of the 

graph; for a sharp peak to occur in practice the particles have to be highly aligned, which is 

not likely. The effect is also less pronounced at higher particle volume fractions where 

continuous interaction between the particles is expected to take place, resulting in a more 

blunted profile. In order to establish a true validation of the model, it was decided to do an 

elaborate experiment (see Appendix A), in which particle-particle and particle-wall 
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interactions in experiment and simulations are optimally matched, which implies no sticking 

of particles to the wall or to each other. The results for the particle volume fraction and the 

velocity are shown in Figure 2.9 and Figure 2.10.  

These results show that there is a very good match, both in regard to velocity and 

concentration gradient, between the experiments and the model. This confirms that control 

over experimental conditions is paramount in model validation, and also in pinpointing 

effects related to shear induced diffusion. These findings make us believe that the 

differences with literature that we noted in the previous sections are most probably due to 

non-ideal particle behaviour that is not covered in any model. The nice agreement that we 

obtained makes us optimistic that we can use this approach to rapidly design processes 

using commercially available software. For future work we will look into the influence of 

process parameters on the separation efficiency.  

2.4 Conclusion 

To describe particle migration under flow due to shear induced diffusion, a momentum term 

is added to commercial CFD software. The model shows an increase in particle volume 

fraction at the centre of the channel of 1.7 compared to the wall at a bulk particle volume 

fraction of 50%. These findings are in very good agreement with our experimental results 

carried out under ideal conditions in which particle-wall interactions were eliminated. 

When comparing with experimental results in literature, larger discrepancies were found 

that are most probably caused by non-ideal particle behaviour. 

The description of particle segregation in flow in a closed channel using CFD is the first step 

toward development of a new separation technology based on this phenomenon, and that 

is expected to be amongst others less energy consuming due to the laminar flow that is 

applied. Since commercially available CFD software is used to describe SID, this is an 

important step towards flexible process design that can be applied in different science areas 

and disciplines.  

 



Modelling particle migration 

29 

 

Figure 2.9. Normalised particle volume fraction (relative to the centre value) vs. the relative channel 
height, for αp,feed=0.5. Experimental results at x/H=800 (□); Model results at x/H=800 (line) 

 

 

Figure 2.10. Velocity vs. the relative channel height, for αp,feed=0.3  Experimental results (□); Model 
results (line). 
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Appendix A: Experimental set up 

We synthesize hard sphere colloidal poly(methyl methacrylate)particles, stabilized by 

poly(hydroxystearic acid) and fluorescently labelled with Nile Red following established 

methods [26,27]. We clean our particle suspension by repeated washing with hexane and 

finally suspended the particles in an index and density matching mixture of decalin, tetralin 

and cyclohexyl bromide, saturated with tetrabutylammonium bromide (260 nM) to screen 

residual charges and ensure hard sphere interactions. The effective volume fraction is 

quantified by sedimentation and assuming random close packing of this sediment.  

We flow these suspensions through glass capillaries with an inner diameter of 50 micron, 

under controlled pressure, and visualize the flow using high-speed confocal microscopy 

(movies recorded at 203 fps). To ensure that we image a fully developed flow profile we 

image at least 2 cm away from the start of the channel. The use of confocal microscopy 

allows us to study the behaviour of each particle separately and with high detail, and we 

use established particle tracking algorithms to locate and follow each particle individually 

[28]. From this individual particle information, we can reconstruct velocity profiles 

accurately by adopting the approach by Duits et al. [29]. To calculate local volume fractions 

we look at the average number density of particles over the width of the channel, where 

we subdivide this width in separate bins. The resulting bins are adapted slightly to match 

the modelling results. 

Appendix B: List of symbols 

Symbol  Description 

   Particle radius      (m) 

   Interfacial area density     (1/m) 

   Linearized drag coefficient    (Pa·s/m2) 

  Standard drag coefficient     (-) 

  Single particle drag coefficient 

  Volume fraction dependent diffusion coefficient  (m2/s) 

  Shear rate dependent diffusion coefficient    (m2) 

  Drag correction factor     (-) 

   Hindered settling function    (-) 

  Drag force on particle phase due to the fluid phase  (N/m3) 

  Internal forces      (N/m3) 
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  Force due to shear induced diffusion   (N/m3) 

g  Gravity factor      (m/s2) 

H  Channel half height     (m) 

  Diffusive flux      (m/s) 

  Mass transfer rate to phase i, from phase j ( ) (kg/(m3·s)) 

  Mass transfer rate to phase j, from phase i ( ) (kg/(m3·s)) 

   Interphase momentum transfer per unit volume  (N/m3) 

  Mobility       (m2/(Pa·s)) 

  Normal stress differences      (Pa) 

  Pressure (assumed equal in both phases)   (Pa) 

  Phase mass source term     (kg/(m3·s)) 

  Phase momentum source term    (N/m3) 

  Grid velocity      (m/s) 

  Velocity of phase i     (m/s) 

  Relative velocity between phases    (m/s) 

   Average velocity      (m/s) 

  Slip velocity      (m/s) 

Greek symbols 

Symbol  Description 

  Volume fraction of phase i    (-) 

   Interaction area density between fluid and particle phase (1/m) 

  Maximum packing density    (-)  

   Relative volume fraction     (-) 

  Shear rate      (1/s) 

   Viscosity of phase i     (Pa s) 

   Intrinsic viscosity      (-) 

  Excess chemical potential     (Pa/m) 

  Particle pressure      (Pa) 

  Density of phase i     (kg/m3) 

 and   Molecular and turbulent stresses, respectively  (Pa) 

  Void fraction      (-) 
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Appendix C: grid refinement study 

To make sure that the grid size does not influence the simulation results a grid refinement 

study is done. Since the development of the SID profile takes place in the y-direction, 

different number of grid cells are used in that dimension. The simulations in the current 

study are compared to different literature data and our own experiments; therefore several 

grid refinement studies needed to be done. The results are shown in Figures 2A1 to 2A4 for 

the comparison to Semwogerere et al., Koh et al., Miller et al. and our own experiments 

respectively. There is a slight difference in the relative volume fraction at the centre of the 

channel but these are all within an acceptable 1.5%. Near the wall, which is the region that 

we are interested in, the differences at higher grid cell numbers are negligible. Therefore 

we can conclude that a fine enough grid is chosen for all simulations.  

 

 

Figure 2A1.  Grid refinement study for the comparison to Semwogerere et al. The relative particle 
volume fraction vs. the channel height at a distance of 3.4 cm from the entrance is shown. Each line 
represents a different number of grid cells for the channel height: 17 grid cells (grey solid line); 21 grid 
cells (black solid line); 25 grid cells (black dashed line); 29 grid cells (grey dashed line) and 33 grid cells 
(black dashed-dotted line). 
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Figure 2A2. Grid refinement study for the comparison to Koh et al. The relative particle volume fraction 
vs. the channel height at a distance of 10 cm from the entrance is shown. Each line represents a 
different number of grid cells for the channel height: 9 grid cells (grey dashed-dotted line); 13 grid cells 
(grey solid line); 17 grid cells (black solid line); 21 grid cells (black dashed line); 23 grid cells (grey 
dashed line) and 25 grid cells (black dashed-dotted line). 

 

Figure 2A3.  Grid refinement study for the comparison to Miller et al. The relative particle volume 
fraction vs. the channel height at a distance of 10 cm from the entrance is shown. Each line represents 
a different number of grid cells for the channel height: 7 grid cells (black solid line); 11 grid cells (black 
dashed line); 13 grid cells (grey dashed line) and 15 grid cells (grey solid line). 
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Figure 2A4.  Grid refinement study for the comparison to our own experiments. The relative particle 
volume fraction vs. the channel height at a distance of 2.5 cm from the entrance is shown. Each line 
represents a different number of grid cells for the channel height: 7 grid cells (black solid line); 11 grid 
cells (grey solid line); 15 grid cells (black dashed line); 19 grid cells (grey dashed line) and 23 grid cells 
(black dashed-dotted line). 
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Modelling shear induced diffusion based particle segregation:  

a basis for novel separation technology  
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Abstract 

Shear induced diffusion based flow segregation is a technique that can be used for 

concentration and fractionation purposes, and it has the potential to become an economical 

and sustainable alternative for e.g. membrane separation. When compared to conventional 

microfiltration, problems related to fouling and cleaning are expected to be minimal.  

To make best use of the opportunities that this technique holds, detailed insights in flow 

and particle behaviour are needed. Modelling this process, allows us to chart particle 

segregation in flow, as well as the effect of suspension removal through a pore, and 

restoration of the flow profile after the pore. As a starting point we take the computational 

fluid dynamics (CFD) model presented in a previous study.  

A difference in channel height to particle diameter ratio influences the entrance length of 

the SID profile as well as its fully developed profile. When extracting liquid through one 

pore, particles are systematically transmitted at lower concentration (59-78%) than present 

in the bulk. The recovery lengths of the SID profile after the pore were short, and thus pores 

can be placed at realistic distances, which forms a good foundation for further design of this 

novel separation technology that will ultimately be applied for fractionation of particles 

taking relatively small differences in diffusive behaviour as a starting point.  
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3.1 Introduction 

The fractionation and concentration of particles is used in many industries [1–3], for which 

different methods are available that mostly depend on the size of the particles that need to 

be separated. Dijkshoorn et al. (2017) distinguish three different categories in their recent 

review: particles smaller than 10 nm that can be separated using adsorption or 

ultrafiltration, particles in the range of 1-10 μm that can be separated by microfiltration or 

specific microfluidic devices, and particles larger than 10 μm that can be separated by 

centrifugation or settling when having sufficient density difference [4]. In the current paper, 

we are interested in separating particles in the range of 1-10 μm and focus on a concept 

that combines insights obtained for microfiltration and microfluidic devices.  

In conventional microfiltration particles are carried towards a membrane via convection, 

where they are then retained creating a concentration polarization layer and, in due time, 

a cake layer. These layers will have an influence on the trans-membrane pressure, which 

results in a reduction of the flux [5,6], and changing retention or selectivity of the membrane 

as function of time [5,6]. In micro-structured devices and channels, particle behaviour in 

flow can also be used to achieve separation or fractionation. For example, deterministic 

ratchets make use of the displacement of particles around precisely placed objects [7]; 

based on a critical size, particles will follow a particular streamline, or be displaced [7]. Fluid 

skimming makes use of fluid flow to carry a particle across a pore (similarly to microfiltration 

at high cross flow), and is termed an industrially promising technique because of its 

scalability by some authors [4,8].  

In the current paper, we focus on shear induced diffusion based segregation that takes place 

in relatively narrow channels, and has been suggested for particle fractionation based on 

experimental observations [9]. Here we use modelling studies to chart process parameter 

effects (e.g. channel dimensions, flow velocity, concentration profiles, and restoration 

thereof after a disturbance) and achieve systematic insights in process behaviour.  

3.1.1 Shear induced diffusion based segregation 

Nowadays, industries not only require and demand a high performance at low costs but also 

look at the environmental impact of their processes. In this sense, making use of the 

principle of shear induced diffusion is an interesting option since it can be operated at much 

lower energy impact than e.g. microfiltration that in itself is already not that high in energy 

impact [9]. Shear induced diffusion (SID) is one of the natural migration mechanisms of 
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particles and relies on collective particle behaviour that directs particles away from a 

channel wall. Next to SID, there is Brownian diffusion and inertial lift [5]; see also Figure 3.1. 

Brownian diffusion includes the tendency of particles to move in a random direction, and 

inertial lift includes the effect of the fluid surrounding the particles, which directs individual 

particles away from the channel wall.  

To distinguish the different particle migration mechanisms, the dimensionless particle 

Reynolds number and Péclet number are used, which are indicative of the ratios between 

the different forces acting on the particles [10]. SID is dominant for particles in the range of 

1 to 10 μm, with a particle Reynolds number lower than one and a Péclet number higher 

than one (Figure 3.1).  

 

 
Figure 3.1. Flux versus the particle diameter for different migration mechanisms (Graph is reprinted 
from Separation and Purification Technology, 174, Karin Schroën; Anna van Dinther and Regine 
Stockmann, Particle migration in laminar shear fields: A new basis for large scale separation 
technology?, 372-388, 2017, with permission from Elsevier, original is from Davis [11]). 

Considerable effort is put into understanding the principle of shear induced diffusion [12–

20] that is especially relevant at high volume fractions and causes particles to interact and 

move towards a region with low shear (i.e. the centre of a channel) [21]. Depending on the 

size and volume fractions of small and large particles the former or latter will predominantly 

move towards the centre of the channel when using particles of different sizes [19]. In a 

monodisperse suspension the particles will concentrate near the centre, which is a lead for 
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novel concentration processes based on shear-induced diffusion when removing the 

particle-free liquid that is close to the wall (Figure 3.2) [16,17].  

 

Figure 3.2. Schematic representation of the segregation principle of shear induced diffusion for a 
bidisperse (left) and monodisperse (right) suspension. 

After the segregation of particles has taken place in a closed channel, a porous section can 

be considered to either concentrate particles, or separate different sized particles in case 

of a bidisperse or polydisperse suspension [21,22]. Since the segregation already takes place 

inside the closed channel, the pores in the porous section do not need to have an exclusion 

effect and can therefore be larger than the size of the particles, unlike regular membrane 

filtration. The large pores have much lower tendency to block, and the formation of a cake 

layer is much less likely to occur, even while working with high particle volume fractions 

[21]. This allows for process intensification, and will reduce cleaning costs, which in turn is 

expected to reduce the environmental impact of the process considerably [22].  

The effect of SID has been experimentally investigated by Van Dinther and coworkers [21–

23], and they found high separation efficiency of a bidisperse suspension in a system 

consisting of a non-porous channel and a porous region, depending on the process 

conditions used. In order to facilitate process design, we have set up and validated a CFD 

model, which describes the effect of SID in a non-porous channel only, for a monodisperse 

suspension in earlier work [10]. In the current study, this CFD model will be used as a starting 

point for the description of the whole process that also consists of a porous section (Figure 

3.3). The particle profile near the pore, and the re-constitution of the concentration profile 

after the pore are of core importance to this novel process; therefore, we focus on these 

aspects. This information will in later studies be used as a basis for fractionation of particles 

that are similar in size. 
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Figure 3.3. Schematic view of the process considered in this study; please note the change in 

concentration profile close to the pore that will be discussed in detail in the results section. 

3.2 Model development  

The interested reader is referred to a previous study [10] for the details of the CFD model 

that describes the SID process and its validation; here, we limit ourselves to a summary, and 

highlight the additions made to the previously established model. The ‘Multiphase 

Segregated Flow Model’ of the commercial CFD software STAR-CCM+ (CD-adapco, London, 

UK) is applied, which uses an Euler-Euler type of formulation that enables us to do the fast 

calculations needed for parameter studies. 

3.2.1 Governing equations 

Because of the Euler-Euler formulation separate equations are used for the particle and 

fluid phase for both momentum and mass. A phase momentum source term describes SID 

for the main channel in these equations. To make use of the principle of SID the flow needs 

to be laminar (turbulence will destroy the concentration profiles). Furthermore, non-

reactive hard and inert particles are used that do not dissolve, and do not stick to the walls. 

The above mentioned conditions allow us to assume that there are no internal forces and 

phase mass source terms. Also, a constant density and an absence of mass transfer between 

phases can be assumed. This results in the equations given next. 

Continuity equation for the fluid: 

(1)
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Continuity equation for the particles:  

(2) 

Momentum equation for the fluid: 

(3) 

Momentum equation for the particles: 

(4) 

Here  is the volume fraction of phase i (-) ,  the density of phase i (kg/m3), 

 the velocity of phase i (m/s),  the grid velocity (m/s),  the pressure (Pa),  the gravity 

vector (m/s2),  the molecular stresses of phase i (Pa),  the drag force (N/m3) and  

the shear induced diffusion force (N/m3). The shear induced diffusion force is given below 

in equation 5 for which the closure relations are given in Table 3.1. 

(5) 

With  the shear rate (1/s),  the volume fraction dependent diffusion coefficient (m2/s), 

 the shear rate dependent diffusion coefficient (m2) and  the mobility (m2/(Pa·s)). The 

drag force is described by the following generic relation:  

(6) 

Here,  is the linearized drag coefficient (Pa·s/m2). For more details about the drag force 

see Table 3.2.  
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To make the key points of our numerical model clearer, a flow chart is presented in Figure 

3.4 that gives the most important points used in our model. 

 

Table 3.1. Closure relations needed for the shear induced diffusion force 

Closure 
relation 

Reference Equation 

 Krieger-Dougherty relation   

 Vollebregt et al. [15]   

 Vollebregt et al. [15]   

 Vollebregt et al. [15]   

 Vollebregt et al. [15]   

 Miller et al. [17]   

 

Table 3.2. Relations used for the drag force 

Closure 
relation 

Reference Equation 

    
    

 Schiller-Naumann method  

 Richardson Zaki   
 

Figure 3.4. Flow chart of the most important steps taken in our shear induced diffusion model. 
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3.2.2 Process conditions  

In the STAR-CCM+ software, we make use of two-dimensional (2D) steady state simulations, 

which decreases the calculation time considerably. Parallel plate geometries are used that 

have a no slip boundary condition at the wall. Furthermore, by using a velocity inlet and a 

negative velocity outlet, we have the option to set the trans-membrane flux to a desired 

value. The nearest neighbour method, in which the two neighbouring values adjacent to the 

wall are set equal, is used to prevent convergence issues.  

The exact dimensions of the channel are different for the parameter studies that were 

carried out (see Table 3.3), but all channels are narrow in order for SID to occur. Typically, 

the pore size is much smaller than the length of the channel. Therefore, the grid size chosen 

for the height of the channel and dimensions of the pore are adjusted such that the process 

can be captured accurately (see grid refinement study in Appendix B). An overview of the 

dimensions is given in Table 3.3.  

 

Table 3.3. Overview of the different dimensions used in the parameter studies.  

  Particle diameter (μm) Grid cell number 
Channel height  50 μm 2 23 
Channel height  100 μm 2 47 
Channel height  100 μm 4 23 
    
Pore length  20 μm 2 9 

3.3. Results and discussion 

In order to arrive at a complete process, the three parts of the overall system are first 

discussed below in individual sections: the non-porous entrance section, the porous section, 

and the recovery section in which the SID profile restores after being disturbed in the porous 

section.  

3.3.1 Entrance Section 

3.3.1.1 Friction factor  

In our previous study [10], it was shown that different diffusion coefficients can have a large 

influence on the development length of the SID profile, but not on the fully developed SID 
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profile. It is expected that the friction factor that is used for both the drag force and the SID 

force has similar effects; therefore, this was tested first. In our model, we use the function: 

 for the SID force (based on Vollebregt et al. [14]), and: 

 for the drag force (standard in STAR-CCM+), and we investigated the 

sensitivity of the model for the functions used.  

Figure 3.5 shows that a difference in friction factor does not influence the fully developed 

profile, but it does change the length needed to reach this profile. This was also observed 

by Miller et al. who changed the exponents in their function for [16]. In Figure 3.5, it 

can be seen that the position at which the particle volume fraction reaches its’ equilibrium 

value is much shorter when using  as compared to  and that is even more strongly 

so when used in conjunction with the SID force that as expected has a bigger influence on 

the development profile when compared to the drag force.  

 

  

Figure 3.5. Particle volume fraction versus the channel height (left) and  the particle volume fraction 
in the centre of the channel versus the channel length (right) for different friction factors for both the 
drag and SID force:  for SID and  for drag (black solid line);  for both SID and drag (grey 
solid line);  for both SID and drag (black dashed line) and for SID and  for drag (grey dashed 
line) 

The choice of the friction coefficient is thus only of influence on the development length, 

but as Vollebregt and coworkers already mentioned there are many different expressions 

for the friction factor in literature [14]. For the process that we eventually want to design, 
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it is important to compare various situations, and we express our results in section 3.3.3 

relative to the entrance length. 

3.3.1.2 Parameter case study 

The four case studies shown in Table 3.4 were carried out to test the influence of velocity, 

channel height, particle diameter and ratio between channel height and particle diameter. 

Table 3.5 shows the parameter ratios that are varied in the different cases.  

 

Table 3.4. Four different case studies to look at the influence of different parameters.  

Case Channel height 
(H) (μm) 

Velocity (mm/s) Particle diameter 
(Dp) (μm) 

Ratio 
H/Dp 

Channel 
length 
(cm) 

1 50 1.0 2 25 4 
2 100 1.0 2 50 10 
3 100 1.0 4 25 8 
4 50 0.5 2 25 4 

 

Table 3.5. Parameter ratios that can be compared between the cases as shown in Table 3.4  

Comparison between cases  Parameters compared 
1 and 2 Difference in H/Dp ratio 
1 and 3 Difference in H and Dp at equal H/Dp ratio 
1 and 4 Difference in velocity 

 

The results for a 30% bulk particle volume fraction are shown in Figure 3.6; the 

concentration at the centre of the channel increases with increasing channel length till it 

reaches a maximum, while the concentration at the wall decreases, which is indicative of 

shear induced diffusion taking place. Taking case 1 as our base case, an increase in channel 

height (case 2), and thus a change in H/Dp ratio, results in reaching a different fully 

developed profile, as was also reported by Miller and coworkers [16]. Although the average 

particle volume fraction stays the same, the absolute number of particles is higher in case 

2, which allows for more particle migration, leading to more particles in the centre, and less 

particles near the wall. Besides, we see that the length needed to develop the SID profile 

changes, because particles need to travel further in case 2, which is in line with findings by 

Miller et al. [16]. Interestingly, at equal channel height/particle diameter ratio (comparison 
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between case 1 and 3) the entrance length changes while the fully developed profile does 

not differ, indicating the relative importance of these factors. Last, we checked the change 

in velocity but this did not influence the profile (case 1 and 4 in Figure 3.6 overlap), and 

indicates that the total number of interactions determines the concentration profile that is 

formed.  

 

  

Figure 3.6.  Particle volume fraction versus the channel length at the channel centreline (left) and at 
10% from the wall (right). Results are shown for a bulk particle volume fraction of 30% and for the 
cases as given in Table 3.4: case 1 (solid line); case 2 (dashed line); case 3 (dashed-dotted line) and 
case 4 (dotted line). Note that case 1 and 4 overlap.   

Furthermore, if we compare different bulk particle volume fractions (Figure 3.7), we 

conclude that the profiles develop faster at higher concentrations, and the differences in 

concentration at the centreline decrease with an increasing bulk particle volume fraction, 

while the opposite is true for the region near the wall. We believe this is caused by the 

limited freedom of movement that particles have at higher particle volume fractions; the 

increase in particle concentration that can be achieved in the centre is a function of the 

initial particle concentration, as illustrated in Figure 3.8. At high volume fractions, the 

particle concentration in the centre may be very close to the maximum packing density 

, while the concentration at the wall is considerably reduced when 

compared to the average concentration. Both effects are beneficial for the novel process 

that we investigate, but they are only useful if the concentration profile re-establishes fast 

after being disturbed by a pore, as is investigated next. It is good to mention that these 
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effects are directly related to pore placement design, which is discussed in the concluding 

section. 

 

  

Figure 3.7. Particle volume fraction versus the channel length at the channel centreline (left) and at 
10% from the wall (right). Results are shown for three different bulk particle volume fractions: 0.1 (light 
grey); 0.3 (dark grey); 0.5 (black) and for the cases as given in Table 3.4: case 1 (solid line); case 2 
(dashed line); case 3 (dashed-dotted line) and case 4 (dotted line). Note, case 1 and 4 overlap.   

 

Figure 3.8. Increase in particle volume fraction at the centre versus the bulk particle volume fraction 
for fully developed profiles for case 4 given in Table 3.4. 
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3.3.2 Porous section 

A pore of 20 μm length is added to the simulation grid. To compare separation efficiency 

the transmission (T) is determined, which is defined as: 

(7)

With  the particle mass flux (kg/m2/s).The results are shown in Figure 3.9 for two 

different channel heights and for permeate volumes that are between 2.5 and 10% of the 

feed, which are realistic values for membrane processes (albeit that for a single pore these 

are impressive amounts). The transmission, ranges from 59% to 78% for different channel 

heights and particle concentrations in the feed. For higher channels, the transmission will 

be slightly lower, which is consistent with the findings discussed in section 3.3.1.2. At high 

feed volume fraction, the concentration in the centre of the channel is close to the 

maximum packing density, and therefore relatively more particles will be present near the 

wall. This results in a higher transmission, as was also expected based on the results shown 

in Figure 3.6.  

 

Figure 3.9. Transmission versus the volume fraction taken form the inlet. Results are shown for a 
channel height of 50 (circles) and 100 (squares) μm and for three different bulk particle volume 
fractions: 0.1 (dark grey); 0.3 (light grey); 0.5 (black). 
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3.3.3 Recovery section 

For a single pore, the results are encouraging, and the next question that needs to be 

answered is how fast the concentration profile re-establishes after the pore, since it is 

disturbed by the porous section, see Figure 3.10 for an illustration. The results are shown 

in Figure 3.11; the method with which the recovery was characterized can be found in 

Appendix C. The centre of the channel is taken as a reference point. Please note, the 

reference point chosen and the extent to which the SID profile is disturbed will have an 

influence on the results, therefore detailed analysis of membrane design are part of ongoing 

research.  

 

 

Figure 3.10. Particle volume fraction versus the relative channel height. The graph gives an indication 
of the shift in the SID profile of a suspension with a 50% bulk particle volume fraction: fully developed 
SID profile before the pore at 9.5 cm (black line, 1); disturbed SID profile just after the pore at ~10 cm 
(light grey line, 2) and the restored SID profile after the pore at 19.5 cm (dark grey line, 3). 

Figure 3.11 shows the relative development length after the pore when compared to the 

entrance section for different volume fractions extracted, and for bulk particle volume 

fractions of 10 and 30 percent. The values for reaching 95% of the fully developed profile 

for a bulk particle volume fraction of 50 percent were zero, indicating that the profiles re-

establish extremely fast, which is essential for process design.  

For lower bulk particle volume fractions, a higher development length is needed but never 

exceeded 42% of that of the closed channel, even if as much as 10% of the liquid was 
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removed. The trends that we see are as expected, with higher concentrations re-

establishing faster, and this is also the case if less liquid is removed. In brief, extraction of 

more volume gives a greater disturbance of the SID profile, which therefore needs longer 

to recover.   

The channel height does not have a great effect on the result; the narrower channels need, 

relative to the development length of the entrance section, slightly longer to re-establish 

but this effect is not as much as expected from Figure 3.7. This is caused by the fact that the 

profile is still rather established after the pore (and near the wall), while it needs to form 

from scratch at the entrance. When looking in the centre of the channel, the effect of 

channel height is much clearer, since more particles need to be moved to re-establish the 

entire profile, as shown in Figure 3.12. For process design this is not very relevant since 

liquid is removed near to the wall, but we show the results here to illustrate that the extent 

to which the profile is distorted and recovers is a strong function of the position in the 

channel.  

 

  

 

Figure 3.11. Relative development length at the centre of the channel (95%) between the recover 
section and the entrance section versus the volume fraction extracted from the inlet for a bulk particle 
volume fraction of 10% (left) and 30% (right). Each graph shows 2 different lines for the different 
channel heights: 50 μm (black) and 100 μm (grey). 
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Figure 3.12. Relative particle volume fraction versus the relative channel height at a fully developed 
profile before the porous region for two different bulk particle volume fractions: 10% (black) and 30% 
(grey) and two different channel heights: 50 μm (solid line) and 100 μm (dashed line). Vertical lines 
indicate the amount of volume extracted, from left to right: 2.5%, 5%, 7.5% and 10%. 

3.3.4 Implications for design 

The various aspects presented here are now related to process design in rather general 

terms. In order for the SID technology to work, the concentration profile needs to be 

established fast and within reasonable distance after entering the system. For all the 

conditions investigated here (10-50% particles, channel heights 50 and 100 μm), this 

requirement is met. The transmissions that are achieved in our systems were for 

monodisperse particles. We expect that if applied for fractionation of bi- or polydisperse 

dispersions the system will become even more interesting. Last but not least, the 

concentration profile re-established fast after the pore, and this indicates that in a full 

process, multiple pores can be placed within realistic distances from each other. Therewith, 

the overall productivity of the process can be enhanced considerably, as we hope to 

establish in future work that is directed toward the simulation of multiple pores leading to 

detailed design of porous regions.  

3.4 Conclusions 

Through simulations we showed that shear induced diffusion can be used in novel 

technology for concentration of suspensions. The ratio of channel height and particle 
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diameter was found to influence the channel length that is needed for the concentration 

profile to establish. Similar trends were found when a pore was added to the simulation 

grid. Particles are transmitted through the pores at concentrations that are considerably 

lower than the bulk concentration, and it is expected that these effects are going to be more 

prominent for bi- or polydisperse suspensions. After the pore, the concentration profile re-

established fast, and in all cases, convincing values were found indicating that pores can be 

positioned at realistic distances from each other as also discussed in the previous section. 

This leads us to conclude that the results that are obtained here form a good foundation for 

more detailed design studies of the porous region, and the process as a whole.  
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Appendix A. List of symbols 

Symbol  Description 

   Particle radius      (m) 

   Interfacial area density     (1/m) 

   Linearized drag coefficient    (Pa·s/m2) 

  Standard drag coefficient     (-) 

  Single particle drag coefficient    (-) 

  Volume fraction dependent diffusion coefficient  (m2/s) 

  Shear rate dependent diffusion coefficient    (m2) 

  Drag correction factor     (-) 

   Hindered settling function    (-) 

Fm,p  Particle mass flux      (kg/(m2·s)) 

  Drag force on particle phase due to the fluid phase  (N/m3) 

  Force due to shear induced diffusion   (N/m3) 

g  Gravity vector      (m/s2) 

  Mobility       (m2/(Pa·s)) 

  Pressure (assumed equal in both phases)   (Pa) 

  Transmission      (-)  

  Grid velocity      (m/s) 

  Velocity of phase i     (m/s) 

Greek symbols 

Symbol  Description 

  Volume fraction of phase i    (-) 

  Maximum packing density    (-)  

   Relative volume fraction     (-) 

  Shear rate      (1/s) 

   Viscosity of phase i     (Pa s) 

   Intrinsic viscosity      (-) 

  Density of phase i     (kg/m3) 

   Molecular stresses     (Pa) 
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Appendix B. Grid refinement study 

Different pore geometries are considered for the parameter studies (Table 3A1) and 

therefore several grid refinement studies needed to be done, of which the results can be 

found in Figures 3A1-3A4. Note that for both the length and height of the pore grid 

refinement was tested. It can be concluded that the grid sizes given in Table 3.3 are chosen 

appropriately.  

 

Table 3A1. Overview of the different dimensions used in the parameter studies.  

Case Channel height (μm) Pore height and 
length (μm) 

Particle diameter 
(μm) 

1 50 - 2 
2 100 - 2 
3 100 - 4 
4 - 20 2 

 

 

Figure 3A1. Grid refinement study for case 1. The relative particle volume fraction versus the channel 
height, measured 2.5 cm from the channel entrance. The grid cell number of the channel height is 
changed: 7 grid cells (black solid line); 11 grid cells (grey solid line); 15 grid cells (black dashed line); 19 
grid cells (grey dashed line) and 23 grid cells (black dashed-dotted line) (Graph is reprinted from 
Separation and Purification Technology, 192, I. Drijer; T. van de Laar; H.M. Vollebregt and C.G.P.H. 
Schroën, From highly specialised to generally available modelling of shear induced particle migration 
for flow segregation based separation technology, 99-109, 2018, with permission from Elsevier). 
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Figure 3A2. Grid refinement study for case 2. The relative particle volume fraction versus the channel 
height, measured 2.5 cm from the channel entrance. The grid cell number of the channel height is 
changed: 37 grid cells (black solid line); 41 grid cells (grey solid line); 45 grid cells (black dashed line); 
47 grid cells (grey dashed line) and 49 grid cells (black dashed-dotted line). 

 

 

Figure 3A3. Grid refinement study for case 3. The relative particle volume fraction versus the channel 
height, measured 2.5 cm from the channel entrance. The grid cell number of the channel height is 
changed: 15 grid cells (black solid line); 19 grid cells (grey solid line); 21 grid cells (black dashed line); 
23 grid cells (grey dashed line) and 27 grid cells (black dashed-dotted line). 



Chapter 3 

60 

 

  

Figure 3A4.Grid refinement study for case 4: the length and height of the pore. The relative particle 
volume fraction versus the channel height, measured at the centre of the pore in the vertical (left) and 
horizontal (right) direction. The grid cell number for both the height (h) and the length (l) is changed: 
h=5 and l=9 (black solid line); h=7 and l=9 (grey solid line); h=9 and l=9 (black dashed line); h=11 and 
l=9 (grey dashed line); h=9 and l=5 (black dashed-dotted line), h=9 and l=7 (grey dashed-dotted line) 
and h=9 and l=7 (black dashed-double dotted line). 

Appendix C. Characterization of recovery length 

The development length for both the entrance section and recovery section are determined 

at the centre of the channel using 95% of the value for a fully developed profile as a target 

(Figure 3A5); we chose this value because this profile is sufficiently developed to be used in 

practice. To be complete, we used a different method than the method introduced by 

Hampton and coworkers [24] because high correlations between the different parameters 

were obtained when using their method.  
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Figure 3A5. Schematic overview of how the entrance length is determined at the centre of the channel 
and at 95% of the fully developed value. SID profile (black solid line); relative particle volume fraction 
for a fully developed profile (horizontal black dotted line); relative particle volume fraction at 95% (grey 
horizontal dotted line); tangent at 95% of the fully developed profile (grey solid line). 
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Abstract 

Shear-induced diffusion based separation processes can be used to concentrate and 

fractionate suspensions. In a closed channel, particles segregate while in flow, and the liquid 

close to the wall can subsequently be siphoned off through a porous region to obtain 

various fractions. In this paper we investigate the design of this porous region (placement 

of membrane pores) in relation to concentration and fractionation efficiency.  

It was found that when pores are placed on both sides of the channel and as much as 0.1 

volume fraction was extracted, the pore size, the pore distance, and the number of pores 

don’t affect transmission. Typically, at a permeate split ratio of 10%, using a 30% feed 

concentration, the transmission is around 0.68. For pores that are placed at only one side 

of the channel the shear induced diffusion profile is disturbed extensively, which is not 

desired. For the ultimate process design, large double-sided pores are recommended, since 

they allow for minimal disturbance and fast recovery of the shear-induced diffusion profile, 

and better control over extraction of the layers close to the wall.   
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4.1 Introduction 

Since 1960, industrial interest for membrane separation grew rapidly [1,2] and different 

types of membrane processes were explored, using gradients in pressure, concentration or 

electrical potential [3]. In this study we focus on the processes based on a pressure gradient 

across the membrane, but contrary to regular process design, we make use of a natural 

migration mechanism that micron-sized particles display.  

4.1.1 Pressure driven membrane separation 

Pressure driven membrane separation can be operated in dead-end and cross-flow mode, 

using the pore size as a gate keeper for component retention. In dead-end filtration the 

membrane is placed perpendicular to the feed flow forcing most of the feed through the 

membrane. In cross-flow filtration, only a small amount of the feed is removed, the so-

called permeate (split), which ranges typically between 1 and 10% of the feed volume; the 

rest of the feed becomes the retentate. The advantage of cross flow filtration is that the 

membrane is less prone to fouling resulting in a more constant flux and less need of 

cleaning. Nevertheless, fouling will still occur and ways to prevent or minimize it need to be 

applied i.e. back flushing [4] and diluting the suspension [5,6] etc. In this study we look at 

an alternative process in which we make use of particle migration in flow to mitigate fouling.  

4.1.2 Flow based separation 

Brownian diffusion, inertial lift and shear induced diffusion are natural migration 

mechanisms based on random movement, influences of the surrounding fluid, and the 

interactions with other particles, respectively [7]. The high cross-flow velocity that induces 

turbulence, as well as the back flushing strategies that are applied in cross-flow filtration 

disturb and even completely cancel out concentration profiles that are the result of natural 

migration processes of particles. This implies that these natural migration mechanisms can 

only be taken as a starting point for design of membrane systems if process conditions are 

chosen that allow for the concentration profiles to persist. Since we are interested in 

concentration and fractionation of particles in the range of 1 to 10 micrometre at high 

particle volume fraction we focus on shear induced diffusion [8,9] and use this mechanism 

to allow migration to occur, so to ‘pre-fractionate’ particles in laminar flow.  
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4.1.2.1 Shear induced diffusion 

Shear induced diffusion is a result of particle interactions; therefore at high particle volume 

fraction the diffusivity is higher [6]. The particles will migrate towards a region with lower 

shear [10]; which implies that in laminar flow particles will move from the channel wall 

towards the channel centre, as schematically shown for a monodisperse suspension in the 

first part of Figure 4.1. Through the pores that are also shown in Figure 4.1, a certain feed 

volume can be removed with lower particle concentration than overall present in the feed. 

These pores can be relatively large, which reduces the propensity of fouling. The interested 

reader is referred through to literature on shear induced diffusion for monodisperse 

suspensions [11–15].  

 

 

Figure 4.1. The principle of shear induced diffusion illustrated for a monodisperse suspension. 

Next to the particle volume fraction, also the particle size has a large influence on the rate 

of migration [6,12]: the larger the particles the higher their migration velocity. This is an 

important effect for concentration processes, but the situation becomes even more 

relevant for fractionation processes. For bidisperse suspensions [16–18] the difference in 

migration velocity between differently sized particles enables size segregation in the 

channel, and the specific removal of for example small particles [10].  

4.1.2.2 Membrane design 

Although the new process that we propose revolves around separation inside a closed 

channel, the permeate split, and the size and placement of pores are expected to influence 

separation efficiency. Due to the trans-membrane flux, the shear induced diffusion profile 

will be affected, and we are interested to which extent this happens, and how much closed 

channel would be needed to restore the profile after a pore. To chart these effects we 
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model monodisperse suspensions. Please keep in mind that the membrane design proposed 

in the current paper is rather different from conventional filtration processes since we take 

shear induced diffusion as a starting point.   

4.2 Shear induced diffusion model 

This study adds to computational findings that we published earlier [15,19]; therefore, we 

briefly recapture the main features of the model in this section.  

4.2.1 Model equations 

Separate equations are used for both phases in the suspension, which is indicative of an 

Euler-Euler type of model. This Euler-Euler formulation is implemented by using the 

‘Multiphase Segregated Flow Model’ of the CFD software STAR-CCM+ where shear induced 

diffusion for the main channel is included in a momentum source term. This results in the 

following equations (for nomenclatures see Appendix A): 

Continuity equation for the fluid: 

(1) 

Continuity equation for the particles:  

(2) 

Momentum equation for the fluid: 

(3) 
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Momentum equation for the particles: 

(4) 

In which  and  (for closure relations see Table 4.1). 

In these equations it is assumed that internal forces, mass transfer as well as mass source 

terms can be omitted and that both phases have a constant density. This assumption is 

made because non-soluble, non-deformable and non-reactive/inert particles are used to 

emulate a filtration system in which laminar flow is needed to create the shear induced 

diffusion profile.   

 

Table 4.1. Closure relations for the shear induced diffusion and drag force term.  

Closure 
relation 

Reference/Description Equation 

 
Krieger-Dougherty 
relation   

 Vollebregt et al. [12]   

 Vollebregt et al. [12]   

 Vollebregt et al. [12]   

 Vollebregt et al. [12]   

 Miller et al. [11]   

   
    
    

 Schiller-Naumann method  

 Richardson Zaki (  
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4.2.2 Process conditions 

The model is applied to rectangular channels that are converted to 2D, and is run at steady 

state conditions. The channel height was 50 micrometre, the channel entrance length 4 

centimetre, the feed particle volume fraction 30% and the particle diameter 2 micrometre. 

The permeate was 10% of the feed; this value was chosen since it is a realistic flow split for 

a regular membrane process, but challenging given the number of pores that are used. 

Furthermore, a 10% flow split is expected to lead to disturbance of the shear induced 

diffusion profile, which we need to quantify. As boundary conditions, a velocity inlet of 1.0 

mm/s, and a negative velocity outlet were chosen which enables us to specify the trans-

membrane flux. To investigate the pore and pitch size and the number of pores, the 

different geometries listed in Table 4.2 were used. 

Because the permeate is 10% of the feed, irrespective of the number of pores used, the 

average pore velocity varies with pore size and number of pores. The permeate velocity is 

calculated with: 

(5) 

 From previous studies it was known that the number of grid cells for the pores and the 

height of the channel need to comply with equation 6 to have a fine enough mesh: 

(6) 

Furthermore, a no-slip boundary condition was used at the wall, and the value for the wall 

was taken equal to its neighbouring cell to ensure good convergence.  
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Table 4.2. Overview of geometries used at 10% permeate extracted from the feed.  

Case  Pore 
length 
(μm) 

Distance 
between 
pores (μm) 

Schematic view of the geometry 

1 10 N.A. 

 

2 20 N.A. 
3 30 N.A. 
4 40 N.A. 
5 80 N.A. 
6 160 N.A. 
7 10 N.A. 

 

8 20 N.A. 
9 30 N.A. 
10 40 N.A. 
11 80 N.A. 
12 160 N.A. 
13 20 40 

 

14 20 60 
15 20 120 
16 20 240 
17 20 550 
18 20 2090 
19 20 4000 
20 20 7000 
21 10 7000 
22 40 7000 
23 80 7000 
24 20 120 

 

25 20 240 
26 20 500 
27 20 2090 
28 20 4000 
29 20 7000 

 

4.3 Results and discussion 

In this study, we investigate pore design through their size, the distance between the pores 

and the number of pores as discussed in the following sections.  
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4.3.1 Pore size 

In this section we vary the pore size of single and double sided pores (pores on one wall or 

on both walls) at 10% permeate split and present effects on transmission (cases 1 to 12 

from Table 4.2) in Figure 4.2. Note that we zoomed in on the y-axis, and that transmission 

is defined relative to the original feed concentration, so 30%.  

 

 

Figure 4.2. Transmission versus pore length for a single pore (cases 1 to 6 in Table 4.2, black squares) 
and for two pores, one on each side of the channel (cases 7 to 12 in Table 4.2, grey squares). 

Figure 4.2 shows that at equal total permeate split similar transmissions are found for all 

pore sizes, which is expected if the shear induced diffusion profile is not disturbed too much. 

Furthermore, placement of pores on both sides of the channels lowers transmission, which 

is caused by the shear induced diffusion profile inside the channel (Figure 4.3). The particle 

volume fraction increases with the distance from the wall, and for cases 1 to 6, 10% 

permeate is extracted from one side of the channel (grey vertical line; see Figure 4.3), 

whereas for cases 7 to 12, only 5% permeate is extracted from both sides (black lines). The 

particle volume fraction at the 10% position is higher than at the 5% position which explains 

the difference in Figure 4.2. Figure 4.3 also shows that the shear induced diffusion profile 

gets more disturbed for single sided pores, which is undesirable for the process we envision, 

therefore we only use double sided pores in the rest of our study.  
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Figure 4.3. Particle volume fraction versus the relative channel height at 10 μm before the pore for 
cases 1 to 6 (light grey line) and cases 7 to 12 (dark grey line). The steady state profile is also given 
(black line). The profiles 10 μm after the pore are given for cases 2 (grey dashed line) and 6 (black 
dashed line). The vertical grey line represents the 10% position, the vertical black lines 5%. 

4.3.2 Profile recovery 

We vary the distance between the pores, at a pore size of 20 μm (cases 13 to 20 from Table 

4.2), and determine the transmission, relative to the initial feed, through the first and 

second pore as shown in Figure 4.4. Note that also here we zoomed in on the y-axis.  

Figure 4.4 shows that the distance between the pores hardly influences transmission, and 

that the transmission through the first pore is only slightly lower than through the second 

pore. The concentration profile near the wall is disturbed minimally resulting in a very fast 

recovery as also shown in Figure 4.3. The transmission values for the first pore are slightly 

lower than shown in Figure 4.2 for one double sided pore, since per pore typically ‘only’ 

2.5% of the feed is removed, which corresponds to lower particle concentrations in the 

permeate (see Figure 4.3). The second pore will have a slightly higher transmission due to 

a small effect caused by the slightly increased feed concentration after the first pore, which 

results in a small change of the shear induced diffusion profile.   

In a previous study [19] we showed that the recovery lengths for single sided pores, were 

up to 42% of the initial entrance length when taking the middle of the channel as a reference 

point. For single sided pores the entire concentration profile is distorted (see Figure 4.3), 

and in this sense the use of double sided pores leads to minimal disturbance of the profile 
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that can restore very fast without the need for unrealistically large pore spacing. The 

restoration length is also a function of other parameters such as the particle volume 

fraction, and the particle size distribution, which need to be taken into account in process 

design. It should be noted that there is a small inconsistency in the recovery profile, but for 

the cases we tested we found an acceptable deviation of around 1%. 

 

 

Figure 4.4. Transmission, relative to the initial feed, through the first (black squares) and second pore 
(grey squares) versus the distance between the pores (cases 13 to 20 in Table 4.2). 

4.3.3 One versus two double-sided pores 

To compare one and two double-sided pores in more detail we compare cases 8, 10-12, and 

20-23. In Figure 4.5, the transmission is plotted as function of the total pore length where 

we again zoomed in on the y-axis; in Figure 4.6 detailed flow profiles are shown. 

Figure 4.5 shows that transmission decreases with pore length. The flow profile through the 

pores is shown in Figure 4.6, and it is clear that at the beginning of a pore more water than 

particles enter the pore, which lowers transmission. This effect remains visible for the 

second pore, although the effect seems to lessen which is most likely caused by the 

previously mentioned slight change in shear induced diffusion profile. Furthermore, shear 

induced-diffusion may lead to a slight positive effect on migration of particles toward the 

middle of the channel while crossing the pore, allowing for reduced transmission for larger 

pore length.  
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Figure 4.5. Transmission versus the total pore length for the following cases as given in Table 4.2: 8, 
10-12 (black squares: one double-sided pores) and 20-23 (grey squares; two double-sided pores) 

4.3.4 Multiple double-sided pores 

In order to evaluate if more pores can be used, or if the effects described before are only 

valid for the first two pores, we consider the use of in total 6 pores (cases 24 to 29 of Table 

4.2, Figure 4.7) where we look at the transmission through each pore relative to the initial 

feed. As in section 4.3.2, it can be seen that the transmission through the first pore is slightly 

lower than through the second pore and the same holds for the second pore compared to 

the third pore; please keep in mind that we zoomed in on the y-axis. As explained before 

this is due to the lower permeate volume extracted per pore (typically 1.67%) and the 

changed shear induced diffusion profile after every pore. It also shows that the transmission 

doesn’t change with increased pore spacing, therewith showing that multiple pores can 

effectively be used, given the pore distances that were investigated. Please remember that 

the porous areas are very small (at most centimetres long), and they only contain few pores, 

whereas 10% of the feed is effectively removed through them. This is in stark contrast to 

microfiltration membranes of e.g. 1 meter long that typically would have > 106 pores per 

membrane length (porosity 50%, pore size 0.1 micrometre). 
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Region depicted in flow profiles for 
one double sided pore 

Region depicted in flow profiles for two double sided 
pores 

   

Case 10 Case 20, first pore Case 20, second pore

   

Case 12 Case 23, first pore Case 23, second pore

 

Figure 4.6. Distribution of the particle volume fraction in the pore for cases 10, 12, 20 and 23 as given 
in Table 4.2. 
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Figure 4.7. Transmission versus the distance between the pores for cases 24 to 29 of Table 4.2 
(indicated with squares, circles, triangles, chequers, plusses and crosses respectively). The black 
symbols give the transmission of the first pore, the dark grey symbols that of the second pore and the 
light grey symbols that of the third pore, all relative to the initial feed. 

4.4 Conclusion 

In this study we looked at the effect of pore placement on the transmission of particles in a 

separation system that uses shear-induced diffusion as an underlying mechanism. When 

using a permeate split ratio of 10%, the overall transmission of particles is around 0.68 at a 

feed concentration of 30%. For pores present on both sides of the channel only a small to 

negligible effect on the transmission was found when changing the pore size, the distance 

between the pores, and the number of pores. This is due to the minimal disturbance of the 

shear induced diffusion profile in combination with its fast recovery after the pore. When 

pores are only present on one side we see a small change in transmission, and a large 

disturbance of the shear induced diffusion profile.  

In this study we used a constant permeate split ratio of 10%. We expect a higher 

transmission when more volume is extracted, due to a change in the shear induced diffusion 

profile in the channel that is expected to be steeper further from the wall. A change in 

transmission, can also be expected for the fractionation of bidisperse and/or polydisperse 

suspensions, although the actual profiles are much harder to predict than for the 

monodisperse suspensions investigated here.  
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Appendix A. List of symbols  

Symbol  Description 

   Particle radius      (m) 

   Interfacial area density     (1/m) 

   Linearized drag coefficient    (Pa·s/m2) 

  Standard drag coefficient     (-) 

  Single particle drag coefficient    (-) 

  Volume fraction dependent diffusion coefficient  (m2/s) 

  Shear rate dependent diffusion coefficient    (m2) 

  Drag correction factor     (-) 

   Hindered settling function    (-) 

Fm,p  Particle mass flux      (kg/(m2·s)) 

  Drag force on particle phase due to the fluid phase  (N/m3) 

  Force due to shear induced diffusion   (N/m3) 

g  Gravity vector      (m/s2) 

H  Channel height      m 

  Mobility       (m2/(Pa·s)) 

  Pressure (assumed equal in both phases)   (Pa) 

  Transmission      (-)  

  Grid velocity      (m/s) 

  Velocity of phase i     (m/s) 

Greek symbols 

Symbol  Description 

  Volume fraction of phase i    (-) 

  Maximum packing density    (-)  

   Relative volume fraction     (-) 

  Shear rate      (1/s) 

   Viscosity of phase i     (Pa s) 

   Intrinsic viscosity      (-) 

  Density of phase i     (kg/m3) 

   Molecular stresses     (Pa) 
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Abstract 

Concentration of particles is carried out at large scale in industry. For membrane 

concentration processes a pore size that would retain all particles can be chosen, but for 

membrane fractionation one range of particles needs to be able to permeate freely while 

others are retained. Fractionation is in general possible if the particles are sufficiently 

different in size, but for particles that are relatively close in size this is impossible using 

classic membrane filtration. That is why we use flow induced particle segregation to allow 

particles to segregate while in flow, and later fractionate them with a sieve with pores that 

largely exceed the particle sizes.  

The aim of this paper is to show that shear induced segregation is more than a theoretical 

framework, which is why we apply it to complex polydisperse suspensions, more specifically 

milk fat globules with a typical size range between 1 and 10 micrometre. We found that the 

concentration of small particles could be increased to 26% (~35% increase relative to the 

initial concentration of small particles of 19%); at a total fat content of approximately 38%.  

This clearly indicates that shear induced diffusion occurs very effectively in polydisperse 

suspensions, and can be applied while fractionating highly concentrated feeds. When 

comparing these results with a computational fluid dynamics model of a monodisperse 

suspension, we see a similar trend, which makes us confident that the model can be used 

to make basic predictions for the novel separation process that we describe.  
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5.1 Introduction 

To obtain safe products, separation of different-sized components often needs to be carried 

out. For example, in both water treatment [1], clarification of beer and for the sterilization 

of pharmaceutical products, separation is needed [2]. In the latter case, unwanted 

components such as bacteria and viruses need to be removed. Often, this is relatively easy, 

because the components are rather different in size, but that is not always the case. For 

example, during milk production [3], bacteria would need to be removed from a liquid that 

contains milk fat globules that are larger than the bacteria, and casein proteins that are 

slightly smaller, and this is not possible when using classic membrane technology.  

On the other hand, it would be truly beneficial if it were possible to fractionate these 

components that are close together in size, as this could e.g. lead to enriched starting 

materials for food product design. For instance, if we could increase the amount of small 

fat globules, this increases the digestibility of milk, enhances creaminess, and lends 

beneficial properties to cheese and butter [4]. 

5.1.1 Filtration technology 

When talking about membranes and milk, two processes that are often mentioned are 

ultrafiltration (UF) and microfiltration (MF), which both apply a pressure gradient, and differ 

in pore size used, typically 0.005 to 0.1 μm for UF and 0.05 to 5 μm for MF [5]. The size range 

of the ‘particles’ that are present in milk approximately cover the pore size range of both 

membranes, and the propensity to clog is thus very high, leading to flux decrease, and 

changes in selectivity. To prevent this as much as possible e.g. backflushing is used to 

(partially) remove the cake layer by reversing the pressure gradient across the membrane 

[6]. Despite this, it is inevitable that regular cleaning is needed, or even that the process 

needs to be carried out under conditions where the feed is first diluted, leading to an 

increase in production costs [7].  

As an alternative, several migration mechanisms like Brownian motion, inertial lift and shear 

induced diffusion [2,8] can be considered as means to mitigate the previously described 

effects (to some extent). To achieve this, the process conditions need to be tuned to these 

mechanisms, as will be discussed next.  
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5.1.2 Particle migration  

The three natural mechanisms that can cause the migration of particles are Brownian 

motion (random movement), inertial lift (due to particle-fluid interactions) and shear 

induced diffusion (as a result of particle-particle interactions). Depending on several 

parameters, which are included in the dimensionless Péclet number (

 and particle Reynolds number ( , one of these mechanisms will 

overrule the others [9]. Here,  is the shear rate (1/s), a the particle radius (m), k the 

Boltzmann constant (J/K), T the temperature (K),  the suspension viscosity (Pa·s), vr the 

relative velocity (m/s) and  (kg/m3) and  (Pa·s) the density and viscosity of the fluid 

respectively. In both dimensionless numbers, the particle size is present, so whichever 

mechanism dominates is highly dependent on this parameter. Inertial lift dominates when 

Rep > 1, which in general is the case for particles > 10 micrometre, and Brownian motion 

dominates when Pe < 1, which is most relevant for particles below 0.5 micrometre. For the 

current study, we use intermediately sized particles (1-10 micrometre) at a high 

concentration, and we focus on shear induced diffusion. This mechanism is dominant when 

Rep < 1 and Pe > 1, and the most important migration mechanism for these particles as was 

shown by Davis [10].  

Shear induced diffusion revolves around particle-particle interactions, and higher particle 

volume fractions lead to a higher number of interactions, and faster diffusion. As 

mentioned, shear induced diffusion is also strongly dependent on the particle size [7,11], 

which results in different migration velocities. Overall, particles tend to move from a region 

with high shear (channel wall) towards a region with low shear (channel centre).  

When different-sized particles are present, it depends on the particle size and volume 

fraction which particles will move towards the centre of the channel [12]. If the volume 

fractions of small and large particles (in case of a bi-disperse suspension) are equal, the 

larger particles will preferentially move towards the channel centre, leaving the smaller 

particles closer to the wall [12] (Figure 5.1). This process occurs in a closed channel, which 

makes the gate keeper function of pores, around which membrane processes normally 

revolve, obsolete. Instead, the pre-fractionation that takes place in the closed channel 

allows us to use a ratio between pore size and particle size that is much higher than one 

(Figure 5.1). Because of the pre-fractionation effect, smaller particles can be separated 

rather easily, while larger particles are not even close to the pores if the process conditions 

are chosen appropriately. Due to the high pore to particle size ratio the membrane module 
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is also less prone to fouling, and combined with the laminar flow conditions that are used 

this results in a more energy efficient process.  

 

 

Figure 5.1. Illustration of the principle of shear induced diffusion for a bi-disperse suspension 

5.1.3 Practical application  

In order to be able to design such an innovative process, various aspects need to be 

investigated. In literature, the principle of shear induced diffusion in a nonporous channel 

has been studied extensively. Amongst others, Drijer et al. [9], Vollebregt et al. [11,13] and 

Dbouk and co-workers [14] focused on modelling while Lyon and Leal [15,16] focused on 

experimental work. Sieving processes using a pore to particle size ratio above 1, were 

investigated in our group by Drijer et al. [9,17,18] who worked on modelling, and by Van 

Dinther and coworkers [7,19,20] who did extensive experimental studies on separation of 

bi-disperse suspensions. To the best of our knowledge, no other groups have investigated 

this.  

In the current paper, we apply the knowledge gained from modelling and experimental 

studies, to the separation of polydisperse suspensions. We first describe an experimental 

study aimed at fractionating milk fat globules using shear induced diffusion. These results 

will then be compared to modelling results obtained for a monodisperse suspension to see 

if these studies can be used to describe trends, and ideally predict fractionation efficiency.  

5.2 Materials and methods 

The experiments were performed using concentrated cream (~40%) generously donated by 

FrieslandCampina, Wageningen, the Netherlands. The skim milk (Campina, purchased in a 

local supermarket) that was used to obtain the desired concentrations, and cream were 

stored at 4 °C. The same batch of cream was used for all the experiments.  
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5.2.1 Sample preparation 

To obtain homogeneous samples, the cream was heated to 40 °C and stirred continuously. 

Also the skim milk was heated to 40 °C. To be able to look at the separation of differently 

sized fat globules the casein micelles needed to be dissociated and for this Na2EDTA•2 H2O 

(Sigma-Aldrich) was added to the cream (4g/100g, ~ 100 mM). During EDTA addition the pH 

was kept at 6.7 by adding NaOH (1N). In total 1 L of feed was prepared.  

5.2.2 Experimental set-up 

The fat globules are separated in a membrane module similar to the setup used by van 

Dinther and coworkers [7,19,20] and is shown in Figure 5.2. The feed enters the set-up by 

the use of a positive displacement pump (VG1000digit, Verdergear, Germany) at a velocity 

of approximately 0.07 m/s. A pressure sensor (EL-PRESS P-502C, Bronkhorst High-Tech B.V., 

the Netherlands) was placed in front of the membrane module, and pressure was registered 

with Bronkhorst High-Tech software.  

The trans-membrane flux at the permeate outlet was regulated using an elastic tube with 

an adjustable screw, such that 0.6, 4.0, 5.6, 9.0 and 11.6 percent of the feed volume was 

extracted. The mass of the permeate, and retentate was determined using balances 

(CP4202S and QUINTIX612-1S, Sartorius, Germany). It is assumed that the density of all 

samples equals 1000 g/L at 40 °C [21].  The system was cleaned before every experiment 

with 1 L of water (20 °C, v = 0.15 m/s), 0.5 L of household cleaning solution (0.2% vol/vol, v 

= 0.15 m/s), and 0.5 L of water (20 °C, v = 0.15 m/s).  

 

Figure 5.2. Schematic view of the experimental set-up 
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5.2.2.1 Membrane module 

The height of the membrane module was 200 μm, and the length 40.5 cm. The module 
contains a closed entrance section in which the shear induced diffusion profile establishes. 
After 34.5 cm a round nickel sieve (Veconic sieve, Veco B.V., the Netherlands) of 1.39 cm2 
is placed to fractionate the fat globules. The sieve contains elongated pores that are all 
identical in size (190 by 10 μm, see Figure 5.3). The sieve is positioned such that the pores 
are lengthwise perpendicular to the direction of the feed flow.  

 

Figure 5.3. SEM images of the sieves used; left, back view of the sieve, black areas are pore fields. The 
black slits (right) visible in the front view are the actual pores. 

5.2.3 Characterization of fat globules 

The fat globule size as well as the fat content were measured for the initial feed and for 
each permeate sample. If the feed is no longer enough to do a measurement, the retentate 
is added to the feed; because we only extract small amounts of permeate, it is safe to 
assume that this will have negligible influence on the composition of the feed (1 litre in 
total). 

5.2.3.1 Fat globule size distribution 

The size of the fat globules of the permeate, and the initial feed were determined in 

triplicate by light scattering. For this the Mastersizer3000 (Malvern Instrument Ind.) was 

used in which the refractive index of the fat globules and the dispersant (Millipore water, 

Millipore Q-Gard 2 and PureLab Ultra) were set at 1.46 and 1.33 respectively, while keeping 

the concentration of the sample below the multiple scattering limit.  
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5.2.3.2 Fat content measurement 

The permeate cream samples were mixed with heated skim milk (approximately 40 °C) in a 

ratio of 1:12. Fat content was measured at least five times in duplicate by infrared 

spectroscopy with MilkoScan 134 A/B (Foss Electric Denmark) and as prescribed we 

excluded the first two duplicate measurements when determining the average values. 

Because of the low fat percentage after dilution (typically 3-5% which is customary for milk), 

all samples were measured using the ‘milk’ settings of the apparatus, rather than the cream 

settings. 

5.3 Results and discussion 

First the experimental results are discussed, after which they are compared to the modelling 

results of a monodisperse suspension [9,17,18].  

5.3.1 Experimental output 

The particle size distribution of the feed and the different permeate samples were 

measured three times of which the averages are shown in Figure 5.4.  

 

 

Figure 5.4. Particle size distribution of the feed (grey dashed dotted line) and samples taken at various 
permeate splits: 0.6% (black solid line); 4% (grey dashed line); 5,6% (grey solid line); 9% (black dashed 
dotted line) and 11.6% (black dashed line). 
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Although the differences may look small, Figure 5.4 shows that there is a systematic 

difference between feed and permeate at low permeate split, especially when taking the 

small differences in particle size into account. There are more small and less large particles 

in the permeate compared to the feed which is indicative of shear induced diffusion taking 

place. When more permeate is extracted the composition of the permeate sample 

approaches that of the feed. This is also clear when looking at the total fat percentage 

(Figure 5.5). At lower permeate split the fat percentage is lower; the larger particles most 

probably moved away faster than the small ones that are captured in the permeate, and 

depending on how much permeate is removed, the overall concentration will be influenced. 

Please note that one data point at approximately 4% is off; during the experiments 

accidentally the pressure over the membrane changed, which illustrates the sensitivity of 

the method.  

 

Figure 5.5. The fat percentage in the permeate versus the permeate split (0.10 means 10% of the feed 
is removed as permeate). 

For further analysis we define the “small” particles as those that are less than 25% of the 

largest particles. When distinguishing between small (0-1.9 μm) and large (1.9-10 μm) 

particles we observe specific differences in transmission (Figure 5.6). Figure 5.6 shows that 

at low permeate split, the transmission of small particles is above one, so higher than the 

total volume fraction in the feed, whereas the transmission of larger particles is below one. 

This implies that shear induced migration has taken place resulting in more smaller particles 

close to the wall compared to larger particles. At a higher permeate split, the transmission 

of both particles approaches one indicating that the composition of the permeate is similar 
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to that of the feed as was shown in Figure 5.4. These findings are in line with Van Dinther 

and co-workers [21] who studied  filtration of bi-disperse particles with two distinct particles 

sizes unlike our polydisperse cream, using 20 micrometre round pores. They found an 

enrichment in small particles with a transmission of around 1.2 at low permeate split, 

leading to a significant shift in composition. Interestingly, the loss of this effect took place 

at a permeate split of around 0.02% (for slightly different flow conditions), whereas in our 

experiment transmission remains at 1.2 till close to a permeate split of 5%, therewith 

illustrating that shear-induced migration is more effective when applied to a polydisperse 

system.  

 

Figure 5.6. Transmission based on total fat volume versus the permeate split (0.1 means 10% of the 
feed is removed as permeate) for 0-1.9 μm particles (black squares) and 1.9-10 μm particles (grey 
squares). 

To put these effects into perspective, the effect basically vanishes (slowly) at 5% permeate 

split, which may not sound that impressive. At the same time, please realize that the sieve 

that we are using is only 1.3 cm long (and wide), so we take out 5% of the feed using this 

small membrane, which corresponds to fluxes that are as high as 30-500 L/m2/h (based on 

total membrane area), which is comparable to classic microfiltration processes [22–29]. 

What we expect to have happened is that the shear induced diffusion profile is disturbed 

when high amounts of permeate are extracted. In that sense, it would be advisable to design 

the system in such a way that after the sieving area another closed area [22] is used prior 

to the next sieving area, in order to allow shear induced diffusion to re-establish the 
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concentration profile. The technology used to make the sieves would also allow the 

inclusion of non-porous regions, so technically this is possible. Alternatively, a recycle loop 

can be used.  

5.3.2 Model comparison 

In previous studies we have developed a computational fluid dynamics (CFD) model for 

monodisperse suspension filtration based on the system that we use here for the 

experiments. Now, we compare the model and the experiments, and see if it captures 

observed effects. For the details of the model we refer to Drijer and coworkers [9,17,18]. 

The essential parameters are listed in Table 5.1, and resemble the experimental work as 

close as possible. The average diameter of the particles is the same as measured, but the 

entrance length used in the model is shorter than that used in the experimental work to 

save computing time. It is known that the profile is almost fully developed at 10 cm, and 

therefore the influence on the results will be minimal. Furthermore, in the model only one 

pore of 400 μm is used compared to the multi-pore sieve that is used in the experiments. 

Please keep in mind that the actual sieve has an accumulative pore width (so over the entire 

length of the sieve) that approximately agrees with 400 μm; we previously showed [18] that 

the effect in transmission is minimal for different pore sizes, as long as the permeate split 

stays the same.  

 

Table 5.1. Parameters used in the CFD model to compare to experimental results.  

Parameter Value 

Channel height 200 μm 

Particle diameter 3 μm 

Cross flow velocity 0.07 m/s 

Pore length 400 μm 

Particle volume fraction feed 0.38 

Entrance length 0.1 m 

 

In Figure 5.7, the fat percentage in the permeate is plotted versus the permeate split, and 
compared with the experimental data (earlier presented in Figure 5.5, and it is clear that 
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the trends are similar. The concentration profile in the channel just before the pore is shown 
in Figure 5.8, and the lines indicate the portion that would be removed given a certain 
permeate split. From this it is clear that higher concentrations can be expected at a higher 
permeate split. However, the model values are different from the measured ones. This 
could be related to the actual area used to take the permeate from, which may be smaller 
than the sieve dimensions that we use. The sieve has non-porous support structures that 
make the sieve mechanically more stable (see Figure 5.3), and also a non-porous area near 
the outside. Both effects lead to a reduction of effective sieving area, or when translating 
to Figure 5.8, to higher local permeate flux to compensate for the non-porous areas. From 
Figure 5.8, it is immediately clear that in those cases, the fat percentage in the permeate 
would increase.  

Although the effective sieving area is something to consider, we think that the differences 

in Figure 5.7 are thus large that this cannot explain the total effect. It is known that special 

effects occur in bi- and most probably also in poly-dispersions. In case of a poly-disperse 

suspension it can be expected that the particle size and volume fraction affect the migration 

of particles, and either the smaller or the larger particles will move preferentially towards 

the channel centre resulting in a similar profile as also shown by van Dinther and coworkers 

for a bi-disperse suspension that is reproduced in Figure 5.9 [20]. In this specific case, the 

larger particles move towards the centre while the smaller particles move towards the side, 

which is in line with experiments carried out by for example Semwogerere and Weeks [12] 

who experimentally also showed the difference between a monodisperse and a bi-disperse 

suspension. We expect to have a similar situation in our experiments, resulting in a higher 

overall small particle volume fraction near the wall.  

The model for a monodisperse suspension does capture the trends and can be used to get 

an indication on the effects of certain process and membrane parameters. Obviously, to 

capture the differences in transmission for differently sized particles, a model for bi-

disperse or poly-disperse systems is needed, but this requires a different calculation method 

compared to the one that we use for monodisperse suspensions. We therefore conclude 

that the trends that the model generates can be used to guide the design of the sieving 

systems. 
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Figure 5.7. The fat percentage in the permeate versus the permeate split (0.1 means 10% of 
the feed is removed as permeate) for the model (black squares) and the experiment (grey 
squares). 

 

 

Figure 5.8. Particle volume fraction versus the relative channel height for the model results of a 
monodisperse suspension (black line). The grey lines indicate the different percentages of volume 
extracted. From left to right: 0.6%; 4%; 5,6%; 9% and 11.6%. 
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Figure 5.9 Particle volume fraction plotted against the relative channel height at a distance of 24 cm 
from the entrance of the channel and for 2.65 μm (circles) and 1.53 μm (triangles) particles. Total 
particle volume fraction of the feed is 0.38, the channel height is 50 μm, velocity is 20.8 μm/s and ratio 
between large and small particles is 0.5. (Reprinted from Journal of Membrane Science, 440, A.M.C. 
van Dinther; C.G.P.H. Schroën; R.M.Boom, Particle migration leads to deposition free fractionation, 58-
66, 2013, with permission from Elsevier.) 

5.4 Conclusion 

In this study we showed that shear induced diffusion can be used to fractionate 

polydisperse milk cream particles using sieves with pores that are much larger than the 

particle size. The small cream particles (< 1.9 micrometre), have a transmission of around 

1.3 at 0.5-5% permeate split, indicating that they can be removed at a higher concentration 

than present in the feed. The transmission of large particles (>1.9 micrometre) is typically 

around 0.8, so their concentration is lower than in the feed. These effects are lost at a 

permeate split > 5%. This shows that shear-induced migration is effective for the 

fractionation of polydisperse systems, and not just for bi-disperse ones that are known from 

literature, albeit that the effect breaks down at much lower permeate split. The fluxes at 

which the process can be carried out are high, especially when considering that the 

fractionation is carried out with 38 volume % cream.  

The experimental results were compared with a model for a monodisperse suspension, and 

a similar trend for fat volume fraction as function of the permeate split was found. The 

differences in actual values are most probably due to specific effects occurring in bi-disperse 

and poly-disperse systems, leading to smaller particles being present at higher 
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concentration near the wall. We suggest that the model for a monodisperse suspension is 

useful to chart the effects of process conditions, and sieve dimensions, and facilitate overall 

process design.  
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6.1 Introduction 

Conventional membrane filtration techniques suffer from ‘fouling’, which is an overall term 

indicating that the flux decreases in time, and is an unwanted result. In order to keep the 

flux constant, the trans-membrane pressure needs to be increased and next to that, 

turbulence  is used to enhance mass transfer to mitigate the effects of fouling [1]. These 

measures increase the energy demand and therefore the costs of the process, whereas 

‘fouling’ can never be prevented completely. This leads to undesired selectivity changes of 

the membrane as function of time, because fouling is an accumulative process.  

It is clear that if changes in flux and selectivity could be prevented, this would lead to a 

process that is more sustainable, and has better control over product quality. In order to do 

so, we used an alternative approach to the classic ‘membrane’ separation process that has 

the advantages of conventional filtration like upscaling but at the same time can mitigate 

the problems related to fouling. We took shear induced diffusion as a basis for this novel 

separation, which revolves around allowing the fouling particles to move away from the 

porous area using one of their natural diffusive mechanisms. This chapter gives an overview 

of the findings of previous chapters and extrapolates these findings to a much wider range 

of process options.  

6.2 Main findings 

In Chapter 2 a computational fluid dynamics (CFD) model was set up for the shear induced 

diffusion of a monodisperse suspension in a nonporous channel. This is the starting point 

for the innovative separation method that we investigate, and needs to be in good 

agreement with experimental data. We noted that experimental results from literature 

were only in moderate agreement with our simulations, whereas they compared better to 

other computer models. When we carried out a highly idealized experiment ourselves, we 

found that the results were in very good agreement with the model. It is good to note, that 

in literature less ideal conditions were used, and results of others may have been influenced 

to a large extent by channel wall / particle interactions. 

From Chapter 2, it was concluded that the model was suited to serve as a basis for process 

design which was the focus of Chapter 3. When introducing pores to the channel described 

before, it is important to know how fast the shear-induced diffusion profile recovers after 

the liquid passes the pore. Here we used the model to look at the effect of design, and 

process parameters such as bulk particle volume fraction, channel height, particle diameter 
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and the ratio between the latter two parameters. For different channel heights and bulk 

particle volume fractions we charted effects on transmission and recovery lengths when 

using a single pore, and found promising results with relatively low transmissions (between 

59-78%) and relatively short recovery lengths at a permeate split of 10%.  

The next step described in Chapter 4, was to focus on membrane design. We looked at the 

effect of pore size, distance between the pores, and number of pores on transmission. At 

an equal permeate split of 10% and using double sided pores, the number of pores reduced 

transmission only slightly, and the recovery lengths were very short. This implies that 

important requirements for the ultimate design of the separation process were met. 

The transmission was expected to be affected more when instead of a mono-disperse, a bi- 

or polydisperse suspension, that are known to have rather different shear induced diffusion 

profiles, are considered. In Chapter 5, we did an experimental study using a polydisperse 

cream suspension and it was shown that shear induced diffusion was quite effective, with 

the transmission being a function of the applied pressure, as expected from our 

monodisperse particle simulations. When compared with the CFD model of the 

monodisperse suspension, it could be concluded that the trends given by the model are 

indicative for the performance of shear induced diffusion based separation.   

6.3 Shear induced diffusion in perspective 

As mentioned above, this thesis focusses on flow based segregation as a result of shear 

induced diffusion. This is a complex mechanism that until now has mainly been approached 

using computer models that can only be implemented by specialists.  In our view, and as 

discussed in Chapter 2, using commercially available CFD to investigate this mechanism is 

an important step to bring this technology toward people without a modelling background. 

The model presented in this thesis will make it possible to systematically investigate the 

influence of different process and membrane parameters as we have done in Chapters 3 

and 4, which we consider important steps toward application in various fields.  

In this general discussion, we like to share first impressions of the performance of the novel 

technology, using pores on both sides of the channel. For this we use simulations done with 

the nonporous channel profile, that we found to be indicative of transmission in Chapter 4 

in which we also showed that the pores hardly influence the shear-induced diffusion profile 

when the pores are placed on both sides of the channel. This enables us to tentatively 

explore permeate split ratios higher than 10 percent and thus obtain a broader view on the 

possible performance of shear induced diffusion based segregation.  
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6.3.1 Permeate split ratio 

In Chapter 3 the transmissions for two channel heights and three bulk particle volume 

fractions were given for permeate split ratios of 2.5, 5, 7.5 and 10%. The profiles of the 

particle volume fractions are shown in Figure 6.1.  

 

 

Figure 6.1. Fully developed profile of the particle volume fraction versus the relative channel height for 
different channel heights: 50 μm (grey) and 100 μm (black) and for three different bulk particle volume 
fractions: 10% (solid line); 30% (dashed line) and 50% (dashed dotted line). The grey vertical line 
represents the split ratio of 10% (Adapted from Chapter 3) 

Excel was used to fit the particle volume fraction profile shown in Figure 6.1. The area 

underneath each graph corresponds to the average concentration at different points in the 

graph, and from this the transmission can be estimated (see Figure 6.2). Please note, the 

permeate split ratio is directly related to the height in the channel. The calculated 

transmissions are valid for one double sided or single sided pore (for a double sided pore, 

on one side, half of the liquid is extracted compared to a single sided pore at the same total 

permeate split). At permeate split ratios above 10% in combination with bulk particle 

volume fractions above 30%, the particle volume fraction profile becomes steeper and 

nonlinear. This also implies that if multiple pores are used (please remember that after each 

pore the concentration profile restores fast) at the same total permeate split, a lower 

transmission is expected.  
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Figure 6.2. The expected transmission versus the permeate split ratio for different channel heights: 50 
μm (top graph) and 100 μm (bottom graph) and for three different bulk particle volume fractions: 10% 
(solid line); 30% (dashed line) and 50% (dashed dotted line). 

Figure 6.2 shows that at low split ratio intervals the transmission increases linearly as 

mentioned in Chapter 3, whereas this increase becomes nonlinear when considering higher 

split ratios as a logical consequence of the shear-induced diffusion profile. When comparing 

these values to the ones reported in Chapter 3 (see Table 6.1) for a simulation system 

including pores we see an average deviation of around 7%, which is most likely due to the 

more complex flow behaviour in the pores as also touched upon in the next section. Still we 
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like to think that the approach that we present here allows us to chart the trends that can 

be expected when systematically varying permeate split ratios.  

When looking in further detail as is done in Table 6.1, it is clear that the calculated 

transmissions are in all cases lower than the transmissions determined in the simulations. 

In the extreme case of a permeate split of 50%, the transmission does not reach the value 

1 (see Figure 6.2), but please keep in mind that when 50% is extracted it is not very likely 

that this can be done without seriously disturbing the shear-induced flow profile, since this 

implies a considerable reduction in feed volume. When considering less extreme cases, it is 

clear that looking at the local concentration only, will be a simplification of the actual 

transmission in a separation process. The different liquid layers will have a different velocity 

relative to the distance away from the wall and may also contribute differently to the 

transmission of particles (see also Chapter 4). At the same time, it can be argued that the 

velocity profile in the pore will be rather different from that in the main channel, and it may 

even resemble plug-flow. In the latter case, taking the concentration profile as we did here 

would be an appropriate approach to use.  

 

Table 6.1. Comparison of transmissions reported in Chapter 3 and  the values calculated by using the 
polynomial function reported here for a channel height of 50 μm (top) and 100 μm (bottom). Bulk pVF 
is the bulk particle volume fraction.  

Permeate bulk pVF = 0.1 bulk pVF = 0.3 bulk pVF = 0.5 

split (%)  Polynomial  Chapter 3 Polynomial  Chapter 3 Polynomial  Chapter 3 

2.5 0.59 0.61 0.65 0.67 0.71 0.73 

5 0.59 0.63 0.65 0.69 0.71 0.75 

7.5 0.59 0.64 0.66 0.70 0.72 0.76 

10 0.60 0.66 0.66 0.71 0.73 0.78 
 

Permeate bulk pVF = 0.1 bulk pVF = 0.3 bulk pVF = 0.5 

split (%)  Polynomial  Chapter 3 Polynomial  Chapter 3 Polynomial  Chapter 3 

2.5 0.56 0.65 0.62 0.65 0.68 0.71 

5 0.56 0.66 0.63 0.66 0.69 0.72 

7.5 0.56 0.68 0.63 0.68 0.69 0.74 

10 0.57 0.69 0.64 0.69 0.70 0.75 
 

 



General discussion 

107 

6.3.2 Process design 

In Chapter 4 the pore size, the distance between the pores and the number of pores did not 

influence the transmission significantly. Looking at Figure 6.2 it can be seen that there is 

only a slight increase in transmission up to a relative channel height of 10% (and thus 

permeate split ratio of 10% when using single sided pores) and at a bulk particle volume 

fraction of 30%. This is in complete agreement with our finding presented in Chapter 4 that 

increasing the number of pores or the distance between the pores has only a slight effect 

on the transmission. It is expected that larger changes will occur at higher bulk particle 

volume fractions in combination with higher permeate split ratios for which the 

concentration profile is steeper. If low transmissions are desired, more pores need to be 

used through which less liquid is extracted per pore. In this way, high amounts of permeate 

can be removed at minimal transmission.  

Please keep in mind that the volume fraction profile will change after each liquid extraction 

and that extracting more volume will decrease the velocity through the channel which could 

be mitigated by using a tapered channel, as also discussed by van Dinther and coworkers 

[2]. Alternatively, a recycle loop or multiple shorter channels that are placed end to end can 

be considered. Furthermore, the ratio between pore and particle size needs to be 

investigated further, since Ferry retention effects cannot be excluded for particles close to 

the pore size [3].  Also for particles larger than the pore, and that will occur in process 

liquids, pore shape may influence the transmission as found for microsieves [4].  

In conclusion, the conditions used in the innovative process presented here are rather 

different as standardly used for membrane separation. For the novel process, laminar flow 

conditions are needed to allow the shear-induced diffusion process to take place. As soon 

as the concentration profile is established, relatively large amounts of permeate can be 

removed through a limited number of well-designed pores. As mentioned in Chapter 4, 

microfiltration membranes of approximately 1 meter long, 50% porosity, and 0.1 

micrometre pores will have over 1 million pores per meter, whereas we consider sieves of 

at most centimetres with only a few pores. We still find it remarkable that this can lead to 

the same amount of permeate as standard microfiltration membranes are capable of 

removing, and even more, which also implies that the total process area needed, and the 

accompanying costs decrease considerably [5]. All this makes the method described in this 

thesis an interesting one to explore further for practical application.   
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Although microfiltration is used frequently because of the ease of upscaling and the 

relatively low operational costs, it also has its challenges. Concentration polarization and 

fouling will (ultimately) decrease the efficiency of the process and at the same time increase 

operational costs, and costs related to cleaning. This also implies that if these effects can be 

mitigated, the separation can be carried out in a more sustainable fashion. 

To achieve this, we have considered flow-based segregation of particles as a starting point 

of design, and used shear induced diffusion effects that will make particles that are typically 

between 0.5 and 10 micrometre migrate towards lower shear regions, which is away from 

the area where the pores are positioned. The migration rate depends amongst others on 

the particle size, and particle concentration. This allows for concentration and fractionation 

inside a channel, that when combined with an area with large pores, can be used to remove 

a permeate with different composition as the feed. Since the particles move away from the 

pores, it was expected that the abovementioned complications related to fouling can be 

mitigated, leading to an innovative separation process. In order to understand this process 

in detail, the thesis revolved around a computer model that was developed as a tool to 

elucidate the effect of process and membrane design parameters on separation efficiency.  

In Chapter 2 we present a computational fluid dynamics (CFD) model that describes the 

concentration profile of a monodisperse suspension in laminar flow, based on shear 

induced diffusion in a nonporous channel. The model is compared to literature and 

differences with experimental data are most likely due to interactions of particles with the 

wall. When comparing with a highly idealized experiment carried out within our group we 

find excellent agreement with the model predictions that were obtained. This made us 

conclude that the model could serve as a good foundation for further process and 

membrane design studies.   

Chapter 3 focuses on process design, and different parameters (bulk particle volume 

fraction, channel height, particle diameter and ratio between the height and the diameter) 

were evaluated on their effect on both the development of the shear induced diffusion 

profile as well as its steady state profile. We have incorporated one single sided pore in the 

model, and investigated the effect of channel height and bulk particle volume fraction on 

transmission and the recovery length of the shear induced diffusion profile. The 

transmissions found are low considering that a monodisperse suspensions was modelled, 

and also the recovery lengths are very acceptable; therefore we can take the next step 

toward more detailed membrane design.   
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In Chapter 4 we consider different membrane designs: the number of pores, and pores on 

one or two sides of the channel are investigated for their effect on transmission. Double 

sided pores are clearly the preferred option since the shear induced diffusion profile gets 

less disturbed and therefore the profile also recovers faster after extracting liquid from a 

pore. When using multiple pores at the same flow split, the transmission decreases with the 

number of pores because the layer near the pores contains less particles due to the fast 

recovery of the profile. When looking at 10% flow split the differences in transmission are 

small, because the concentration profile is very flat, but as later discussed in chapter 6, this 

is very dependent of the flow split and the concentration of particles used.  

In Chapter 5 we investigate experimentally the transmission of fat from a polydisperse 

cream and compare that to the monodisperse model of previous chapters. At a permeate 

split ratio below 5% there is a clear distinction between the transmission of small and large 

fat globules in the cream permeate; therefore it can be concluded that the shear induced 

diffusion effects described earlier for monodisperse dispersions, also hold for this 

polydisperse suspension. The model shows a similar trend which confirms our previous 

findings that it can help in setting up process and membrane design 

We conclude with Chapter 6 where we put the findings of previous chapters in a broader 

perspective. The transmissions are extrapolated to higher permeate split ratios and other 

particle concentrations. These advanced insights are essential to design this innovative 

process, which is expected to be intrinsically more energy efficient than standard 

membrane filtration. This is due to the fact that, the novel process revolves around the use 

of shear-induced diffusion (laminar conditions) and the specific design of a small number of 

pores, contrary to regular membranes that contain many less defined pores. 
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Propositions 
 

 
1. Membrane filtration is energy inefficient because of the turbulent 

conditions that are standardly applied to promote particle mixing. 
(this thesis) 

 
2. Membrane design should not revolve around creating as many pores 

as possible, but around precisely designing a few. 
(this thesis) 

 
3. The described trends give simulations their value, not the absolute 

values.  
 

4. Simulating ideal processes helps understand practical non-idealities.  
 

5. To improve productivity, part-time jobs should be stimulated. 
 

6. If PhD students would from the beginning be aware of the typical non-
linear progress in PhD-projects, the so-called ‘second year dip’ would 
not exist. 
 

  
 
 

Propositions belonging to the thesis, entitled 
‘Simulation of shear induced diffusion based separation processes’ 

 
Ivon Drijer 

Wageningen, 10 October 2018 
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