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Abstract 

Cities around the world are taking action to become more sustainable. One of the main problems within cities 

is waste management, with growing populations within the city waste becomes a pressing issue. A biobased 

economy can solve this problem, waste biomass from the cities can be used as a feedstock for the biorefineries. 

Biorefineries are capable of processing biomass into value-added products. The objective of this study is to explore 

the potential of urban waste biomass into valorisation to products. A model is developed that can process urban 

waste biomass through biorefineries and project future biorefineries configuration. This model’s objective is to 

maximize the profit over the long run, this is to ensure that the valorisation is economically sustainable. It will 

give insight for policymakers on how to promote valorisation of waste biomass and support decision making. The 

model is applied using data from the city of Amsterdam, the Netherlands. From the results it was learnt that both 

grass and wood showed potential in a future biobased city. Organic municipal solid waste proved to be 

economically sustainable in a few decades when efficiency of valorisation is improved. It was discovered that the 

processing of leaves shows little potential for a biobased city. The underlying issue is that the quantity of waste 

leaves is too low. From the results it is clear that different climate policies have little effect on whether urban 

biowaste is valorised, it only influences the quantity of the economic gains.    
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 Introduction 

1.1. Background 

It is expected that in 2050 6.4 billion people will be living in urban areas (Angel et al., 2011). The UN mentions 

that one of the most important development challenges of the 21st century will be managing cities (UN, 2014). The 

success of developing sustainable cities will be a huge asset in the success of a liveable cities post-2015 (UN, 

2014). Globally cities are taking action to ensure cities to become more sustainable, for example, the C40 which 

is a network of the world’s megacities taking action to mitigate and adapt to the climate change.  

The transition towards a biobased economy is essential in reducing climate change (Kim and Dale, 2003; 

Langeveld et al., 2012; Miller et al., 2007; Scarlat et al., 2015). In a biobased economy, biomass is used for both 

non-feed and feed purposes (Vandermeulen et al., 2012). These non-feed purposes include biofuel, electricity, 

heat, biochemicals, and biomaterials (H Clark et al., 2009; Langeveld et al., 2012; Nowicki et al., 2008). A 

biobased economy will help to phase out the use of fossil fuels, the intergovernmental panel on climate change 

longs to have all fossil fuels banned in 2100 (IPCC, 2014). 

One of the solutions for cleaner cities is to use waste biomass as a biomass feedstock for the biobased economy. 

Waste management is becoming an increasingly important issue, both in developing countries and in developed 

countries (Guerrero et al., 2013; Lin et al., 2013; Sharholy et al., 2008). It is expected that municipal waste will 

become an important source of waste biomass (Tuck et al., 2012). In this research biomass feedstock from waste 

will be addressed as “waste biomass” as described in Jiang et al. (2017).  Current practices for treating waste 

biomass are anaerobic digesting and composting (D’Hondt and Voorspoels, 2012). The disadvantage of these 

process is that the end product (i.e. biogas and compost) has low value. One of the solutions for cleaner cities is to 

use waste biomass as a biomass feedstock for the biobased economy. The advantage of using waste biomass as 

feedstock is its non-competitiveness with food. Furthermore, waste biomass is continuously available throughout 

the year for a relatively low (or negative) cost (Ekşioğlu et al., 2009). The collection of waste biomass is already 

established in developed countries (Ekşioğlu et al., 2009). 

The city of Amsterdam, the Netherlands is currently searching for new opportunities to make its metropolitan 

more circular (Bastein et al., 2016). An example is the Power-to-protein concept which aims at producing protein 

from sewage sludge (Brandes, 2016). The city of Amsterdam intends to connect stakeholders to participate in 

bringing forward ideas and removing potential obstacles for making the city circular. The city is also part of the 

C40 network.  

Waste biomass can already be used to produce electricity (Iakovou et al., 2010; Thrän, 2015). The advantage 

of biomass as an electricity source is it being carbon-neutral and flexible (Fargione et al., 2008; Kothari et al., 

2010; Kranert et al., 2010). Recent studies have shown that waste biomass also shows potential for other purposes 

such as biochemicals and biofuels (Arancon et al., 2013; Tsiropoulos et al., 2017; Van Dael et al., 2014). 

Biochemicals have the potential to contribute to a more circular economy in the city of Amsterdam. Royal 

Haskoning (2014) mentioned that urban waste biomass shows potential as a feedstock in the biobased economy. 



 

2 

 

1.2. Biorefinery 

Biomass is composed of organic matter which is carbohydrates (cellulose and hemicellulose), lignin, protein 

and ash (Maity, 2015; Poincet and Parris, 2004). With the use of a biorefinery it is possible to extract these 

components from the biomass and transform them into a vast array of products. Cherubini et al. (2007) defines 

biorefineries as the sustainable processing of biomass into a spectrum of marketable products and energy. 

Expectations are that the share of biochemicals could reach 20% of the total biobased products (Meyer and 

Werbitzky, 2010). Currently, valorisation of waste biomass has been excluded from policy frameworks thus their 

diffusion in the market is limited (Carus et al., 2014; Dornburg et al., 2008). The study of Tsiropoulos et al. (2017) 

estimates that the production of biochemicals in 2020 in the Netherlands may reach 1.1 Mt.  

1.2.1. Wood refinery 

Wood mainly consists of cellulose, hemicellulose, and lignin as seen in Table 1 (Pande and Bhaskarwar, 2012). 

Materials rich in these components are often referred to as lignocellulose biomass, therefore wood refineries are 

often referred to as lignocellulose biorefinery (Carrier et al., 2011; Michels and Wagemann, 2010). The complex 

chemical composition of lignocellulose biomass causes the conversion to marketable products to be a challenge 

for high yield and quality (Zhou et al., 2011). The cellulose and hemicellulose are connected with each other, the 

structural rigidity of the tree is provided through the ester and ether linkages from the lignin (Nizami et al., 2017). 

These strong complex connections are also to protect the plant against chemical and physical stress. These rigid 

chemical connection are difficult to breakdown, causing the cost of conversion to be expensive (Mtui, 2009). The 

most difficult part of the conversion of lignocellulose biomass is the decomposition of cellulose (Pandey and Kim, 

2011; Sun et al., 2011). However, it is possible to separate cellulose, hemicellulose from lignin due to their different 

reactivity (Collinson and Thielemans, 2010; Willauer et al., 2000). Examples of cost-effective conversion of 

lignocellulose biomass uses optimistic scenarios for cost and efficiency (Dornburg et al., 2006; Gray et al., 2006; 

Schneider and McCarl, 2003). 

1.2.2. Grass refinery 

The use of grass for refining has recently been investigated (Klop et al., 2012; O’Keeffe et al., 2011; Thumm 

et al., 2014; Van Dael et al., 2014). Most research is focused on extracting protein from the grass. Reason for this 

is that conventionally grass is an excellent protein source for cows (Sanders et al., 2016). Of the dry matter of 

grass, which is only 15-20%, protein and the fibres are the most common researched extractions (Honkoop, 2015). 

Grass can have a varying composition, this is the result of the growth stage of grass at harvest, the ratio of grass 

compared with other materials in the harvested material, soil type, species, and many others (Poincet and Parris, 

2004). An overview of the composition of grass can be found in Table 1. O’Keeffe et al. (2011) stated that a grass 

refinery could be economically viable if located wisely. The first pilot grass refinery is already in development in 

the Netherlands (Klop et al., 2012).  

1.2.3. Leaves refinery 

Extracting valuable components for leaves has been mainly focused on protein, similar to grass. Leaves as a 

protein source have been investigated since the 1960’s (Akeson and Stahmann, 1965; Gerloff et al., 1965). Reason 

for the interest in protein from plant leaves is based on their nutritional profile and their abundance in waste streams 

for the agricultural sector (Tenorio, 2017).  
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Many different leaves from crops have already been researched such as sugar beet leaves, Moringa olifera 

leaves and soybean leaves (Betschart and Kinsella, 1973; Teixeira et al., 2014; Tenorio, 2017). Four major 

components, independent on the plant species and growing period, can be found in all species: protein, lignin, 

hemicellulose and cellulose (Zhang, 2016). The composition of waste leaves is dependent on several factors, the 

most important factors are the species of tree, collection methods and weather prior to collection, storage of the 

leaves and the contamination by impurities (Heckman and Kluchinski, 1996; Pňakovič and Dzurenda, 2015). An 

overview of the composition of leaves can be found in Table 1. 

The main issue with protein extraction is the low cost-efficient production process (Bals and Dale, 2011). The 

proteins that are extracted can be further valorised into amino acids for bulk chemicals (Sanders et al., 2007). 

Romero-García et al. (2016) comments that a biorefinery for olive tree pruning can be economically interesting. 

However a biorefinery for the application of valorising waste leaves has not been researched yet, thus in this 

research, it is assumed that biorefineries for other types of leaves can be utilized for waste leaves with the same 

yields. 

1.2.4. Organic municipal solid waste refinery 

Organic municipal solid waste (OMSW) consist of a mixture of compounds however, the largest fraction is 

water (Lay et al., 1999; Mata-Alvarez, 2002). Since the feedstock has a chemical complex structure with many 

different components suitable valorisation remains difficult. Treatment in literature discusses if OMSW should be 

incinerated or that different biorefinery technologies are more suitable. Münster and Meibom (2011) concluded 

that anaerobic digestion is more suitable than incineration however, Gómez et al. (2010) stated the opposite. 

Nevertheless, both studies looked at municipal solid waste (MSW) and not only the organic fraction. Since this 

study focuses on producing products from waste biomass, thus the organic fraction of MSW, anaerobic digestion 

is one of the promising techniques (Mata-Alvarez, 2002). Therefore in this research only digesters are investigated. 

Digesters can be classified as a biorefinery since they processes biomass into a marketable product (Cherubini et 

al., 2007). 

Table 1 Average composition of wood, leaves, grass and organic municipal solid waste (OMSW). The given 

percentages of the components are weight percentages from the dry matter (DM) weight of the biomass. 

  Wood Leaves Grass OMSW 

Dry Matter (%) 62-69 53-64 15-20 18-28 

Cellulose (% DM) 38-49 13-26 20-30 ~40 

Hemi-cellulose 

(% DM) 

25-30 9 15-25 ~20 

Lignin (% DM) 18–35 20-40 3-10   

Protein (% DM)   7-30 6-25   

Ash (% DM) 04-10 3-14 5-20   

Reference Eriksson and 

Gustavsson (2010); 

Pérez et al. (2002); 

Pettersen (1984); 

Rowell et al. (2005) 

Bals and Dale (2011); Garcia-

Maraver et al. (2013); 

Lammens et al. (2012); 

Pňakovič and Dzurenda (2015); 

Romero-García et al. (2016); 

Telek and Graham (1983) 

CVB (2011); 

Grass (2004); 

(Ros, 2017) 

Levin et al. 

(2007); 

Schievano et 

al. (2010) 

Amsterdam’s current treatment for urban waste biomass is at a waste treatment facility (Afvalregistratie, 

2016). The waste biomass is shredded and split into two groups: fine and coarse waste biomass. The fine waste 

biomass is put into an anaerobic digester, where biogas is formed (Didde, 2017). The residue of the digester is 
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mixed with the coarse waste biomass and stored for fourteen days. During these fourteen days the waste biomass 

is dried with an hot dry air flow, causing microorganisms to break apart the waste biomass. During these fourteen 

days the waste biomass is transformed into compost and used for agricultural practices and gardens 

(Afvalregistratie, 2016; Didde, 2017).  

1.3. Previous studies 

Research by Bridgwater (2003), Buijzer et al. (2015), Cok et al. (2014), Daioglou et al. (2015), Demirbaş 

(2001), Gielen et al. (2001) and Tsiropoulos et al. (2017) do investigate multiple uses for waste biomass but mostly 

focus on fuel as biochemical. However, more value from biomass can be created by focussing on chemicals and 

materials (Bos-Brouwers et al., 2012). Furthermore, not all of these papers use waste biomass from cities as 

feedstock for their research. Buijzer et al. (2015) discusses the potential of valorizing waste streams from the city 

of Amsterdam but does not include technological and economic feasibility. Van Dael et al. (2014) investigates a 

single municipality and includes waste from farms. In Arancon et al. (2013) and Tuck et al. (2012) the advances 

on waste biomass valorisation are discussed however, these papers are limited to only discussing the 

bioconversion. Dugmore (2014), Sun et al. (2014) and Morone et al. (2017) discuss the valorisation of food waste, 

thus not including all potential waste biomass streams. The majority of researches are on pilot-scale or laboratory 

scale. 

This paper will investigate the potential of valorising waste biomass from the city of Amsterdam. The research 

will give further insights into the optimal use of waste biomass on both the technical and economic aspect. It will 

look at current and future situations. Different scenarios will be used to reflect the uncertainty in future cost and 

development and climate policy goals. The novelty of this study is to contribute to the current research about uses 

of urban waste biomass.  

1.4. Objectives 

The objective of this research is to develop a framework to assess the potential use of waste biomass for 

different end-uses based on a modelling approach. The framework will support policy-makers in making strategies 

for uses of waste biomass. With these strategies waste management in the future can be improved to increase the 

liveability of cities and contribute to the biobased economy. The inputs of the model will consist of different types 

of waste biomass. The outputs of the model will be different chemicals and products, depending on the valorisation 

technique. The model will work on the principle of cascading, this principle allocates biomass to its most highly 

valued application. 

The research questions for this study are:  

1) What are potential valorisation technologies for waste biomass up to and including 2050?  

2) What is the most economically advantageous use of waste biomass up to and including 2050?  

3) What are the bottlenecks for the economic profitability of the valorisation of waste biomass? 

Research question 1 will be answered by conducting a literature research. Literature that describes the 

technologies of valorising waste biomass will be searched. Data will be collected about these different technologies 

so it can be used for the model at a later stage. Research question 2 will be answered by creating a model that will 

be able to find the most economically advantageous use of waste biomass. Further data needs to be collected for 

the model, the amount of biomass and price of products will be found through a literature research. Research 



 

5 

 

question 3 will be answered by applying different scenarios to the model and analyse its behaviour. Furthermore, 

a sensitivity analysis will be performed. From these results, a better indication of the bottlenecks for the 

valorisation of waste biomass will be given.   

1.5. Scope  

The focus will be on biobased economy activities that are capable to valorise urban biomass waste streams 

into high value products. As study case Amsterdam is chosen as it tries to become more sustainable in the near-

future. Furthermore, the Netherlands needs a significant transformation to reach its GHG emission goals for the 

future. Since Amsterdam is the largest city in the country, it could significantly help in the reduction of GHG. The 

Netherlands has a goal to reduce GHG emission by 40% in 2030 compared to 1990 and a reduction of 80-95% in 

2050 (EC, 2015). Therefore the study investigates the potential pathways for valorisation until 2050, since most 

long-term policy goals are set for the year 2050 (EC, 2015). In addition most studies show estimation for the supply 

of biomass until 2050 (Saygin et al., 2014). In this research it is assumed that the biorefineries are all sustainable. 

This assumption is based on the fundament that a biorefinery is better their counterpart which might include the 

usage of fossil fuel. The focus of this study is on how to realize a biobased economy from an economic perspective.  

 Waste biomass is all waste from within the cities excluding waste from industries. Industrial waste is not 

included due to its vastness and complexity and is already investigated in other studies (Angenent et al., 2004; 

Balu et al., 2012; Koutinas et al., 2014). Waste biomass includes municipal organic waste and waste from gardens 

and parks. In this study the waste biomass consists of the following four waste streams: wood, grass, leaves, and 

organic municipal solid waste.  

To the knowledge of the author, no research has been done about the use of waste biomass from the city of 

Amsterdam or other urban areas for the potential use of valorisation into higher-value products from a techno-

economic perspective.  

1.6. Outline 

This chapter has introduced the topic of the thesis. The objective and scope of the thesis have been described, 

the research questions have been addressed. Chapter 2 will discuss the framework of the model, together with its 

constraints and decision variables. Chapter 3 will discuss the collected data of different technologies and economic 

parameters. The different scenarios will be addressed in Chapter 4. In Chapter 5 the results from the model will be 

presented. In Chapter 6 the influence of parameters will be investigated with a sensitivity analysis. Chapter 7 will 

discuss the findings. Chapter 8 concludes the results and will answer the research questions. 
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 Materials and methods 

In this chapter the materials and methods are discussed. The framework and model with its constraints will be 

described in this chapter, the economic data, data on waste biomass, and biorefinery technologies will be 

introduced in chapter 3. The scenarios are described in chapter 4. The model description is divided into two 

subchapters: the bioconversion through biorefineries and economic aspect of the model. Lastly, some 

modifications are explained to reduce computation complexity of the model. 

2.1. Methodological framework 

Figure 1 depicts the main structure of the methodological framework. The framework consists of different 

constraints, mass balances, data inputs, and an objective function. The framework projects the future conversion 

of waste biomass to value-added products. The framework consists of four different inputs: biorefinery 

technologies, economic data, waste biomass data and scenarios. All these inputs will be given to the conversion 

system model, which as output has the net present value (NPV). As output the NPV is chosen since it as an 

established indicator in the identification of best valorisation technologies in the bio-based economy (Cheali et al., 

2015; Gargalo et al., 2016a; Mellichamp, 2013). 

Waste biomass data

Model Scenarios

Economic data

NPV

Biorefinery 

technologies

 

Figure 1 Main structure of the framework. 

The framework has limitations because it does not include transportation and storage of waste biomass. 

Currently waste biomass is already collected by the city of Amsterdam, this will always be necessary therefore is 

a sunk cost. In addition, it is assumed that the waste biomass is immediately converted, in real-life practice this is 

probably also necessary due to the degradation of quality during storage. 

First, the objective function is developed along with the different constraints and equations for the framework. 

The model will take into account the cost of the different biorefineries, with respect to their technology and 

capacity, and their revenue. As case study the city of Amsterdam is taken since it has a well-established 

infrastructure for collection and separation of waste (Raven, 2007). The model will take into account the change 

of cost and efficiency parameters of future biorefineries by adding a vintage term.  

Secondly, the input data will be discussed. Since the model will go until 2050 data needs to be forecasted. The 

potential supply from the waste biomass streams, commodity prices and economic data about the different 

biorefineries will be included. Year 2020 is chosen as the starting year since the European Commission wants to 

establish a sustainable biobased economy starting from that year (Schmidt et al., 2012). A detailed description of 

the input data is given in chapter 3.  
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Thirdly different scenarios will be developed to take into account the uncertainties of future valorisation. These 

scenarios are based on the governmental policies and the research and development of new conversion methods. 

A detailed description of the different scenarios is given in chapter 4.  

2.2. Model description 

The research is focused on the effective location of waste biomass towards different biorefineries by cascading. 

Cascading is targeting the most highly valued products, therefore utilising the biomass to the fullest extent from 

an economic perspective. To ensure the model makes a trade-off between cost and revenue from biorefineries the 

objective function is the NPV. With the NPV both the cost and revenue of the biorefinery is taken into account, 

thus making a cost-benefit analysis. It is assumed there is perfect foresight, thus investment and allocation are 

flawless.  

2.2.1. Objective function 

The objective function of the model is to maximize the NPV. The NPV is often used to indicate the economic 

profitability of a project. A negative NPV indicates that a project is not profitable, thus not worth the investment. 

A positive NPV indicates that a project is profitable, a larger NPV indicates that the project earnings are higher. 

The net present function is given by: 

 

max
𝜆(𝑗,𝑞,𝑛,𝜈)(𝑡), Q(𝑗,𝑞,𝜈)

NPV = ∑(1 + 𝜌)−(𝑡−𝑡0)(𝜋(𝑡) − 𝐶(𝑡))

𝑇

𝑡=t0

 (Eq. 1) 

Where 𝑡 is the year, 𝜌 the discount rate in a fraction, 𝑡0 is the starting year of the model which is 2020, 𝜋(𝑡) 

is the revenue in year 𝑡 in €, and 𝐶(𝑡) the cost in year 𝑡 in €. The NPV is given in €, 𝑇 stands for the run time of 

the simulation and for this study is until 2050. All variables are positive except for the NPV, which might become 

negative. To ensure that NPV earned in different years have the same value it is corrected with a discount rate, 

which is equal to 0.035. This discount rate reflects inflation and opportunity cost, correction for inflation is needed 

since the monetary value changes over the years. Opportunity cost reflect the possibility to invest the money into 

other opportunities which might have a higher return on investment. The cost and revenue variable in the objective 

function are determined by the decision variables.  

The term vintage, 𝑣, indicates in which year the biorefinery is built. 𝑗 is the set of different biorefineries, these 

are further discussed in chapter 3. The set 𝑞 indicates the different capacities available. The constraints of the 

model include the available waste biomass and the capacity constraint. The indexes 𝑗, 𝑞  and 𝑣  are the three 

properties that are needed to distinguish between biorefineries.  

The decision variables of the model are 𝜆(𝑗,𝑞,𝑛,𝜈)(𝑡), the allocation of waste biomass stream 𝑛 to biorefinery 𝑗 

of capacity 𝑞 of vintage 𝜈 in year 𝑡 in kg year-1, and 𝑄(𝑗,𝑞,𝜈) the expanded biorefinery capacity of technology 𝑗 with 

capacity 𝑞 of vintage 𝜈 in kg. For the expanded biorefinery capacity the year in which it is commissioned is equal 

to the vintage. The vintage thus indicates in which year a biorefinery is built. The capacity indicates how much 

biomass can be valorised in one year. 𝑄(𝑗,𝑞,𝜈)  and 𝑞  are interlinked, 𝑞  is a given set with different possible 

capacities for the biorefineries from which 𝑄(𝑗,𝑞,𝜈) can select. 𝑄(𝑗,𝑞,𝜈) is a positive integer variable making the 

model a mixed integer problem, if 𝑄(𝑗,𝑞,𝜈) = 10.000 kg it indicates that a biorefinery of type 𝑗 with a capacity of 

10.000 kg of vintage 𝑣 is commissioned. The capacity of 10.000 kg is only possible if it is within the set of 𝑞. 
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The set of capacity size is different between technologies since the quantity of available biomass are different. The 

set 𝑞 is made by specifying a minimum capacity and incremental increasing the capacity with a step size. This is 

continued until the maximum capacity is reached, the minimum and maximum capacities and the step size of each 

biomass are given in Table 2. The capacity is chosen to be within a range to reduce computational time, which is 

further described in the paragraph 2.2.3. The range of the capacity is not chosen arbitrary, first a small set was 

specified and then it was gradually increased until it did not influence the results of the model.  

Table 2 Capacity size of different technologies 

Feedstock for the 

technology 

Minimum capacity 

(tonnes) 

Maximum capacity 

(tonnes) 

Step size between 

capacities (tonnes) 

Wood 1.000 20.000 1.000 

Grass 1.000 16.000 1.000 

Leaves 100 300 10 

OMSW 10.000 200.000 10.000 

2.2.2. The model 

The model will allocate different waste biomass streams towards different biorefineries. The bioconversion of 

the feedstock into products is based upon mass balances. The model consists of a large portfolio of different 

biorefineries, each with its own characteristics. The characteristics consist of the type of feedstock, efficiency, 

output and operating conditions. The model will decide each year if a new type of biorefinery needs to be built. 

This decision is based on available biomass, the price of product and their future predictions. It will create a most-

profitable pathway for the total system. To illustrate this better, an example of a possible solution for an arbitrary 

year (e.g. 2045) is given in Figure 2.  

Wood (n)

 300.000 kg

Lignin (i)

25.000 kg

Xylose (i)

25.000 kg

Glucose (i)

25.000 kg

Wood refinery (j) = 1

Vintage (ν) = 2039

Original capacity (Q) = 250.000 kg

Current capacity (K) = 200.000 kg

Fixed cost (β)  = €30.000

Variable cost (α)  = €0.30/kg

Conversion efficiency (η ) = 40%

Wood refinery (j) = 3

Vintage (ν) = 2035

Original capacity (Q) = 200.000 kg

Current capacity (K) = 150.000 kg

Fixed cost (β)  = €45.000

Variable cost (α)  = €0.25/kg

Conversion efficiency (η ) = 20%

Biomass allocation (λ) 

200.000 kg

Biomass allocation (λ) 

 100.000 kg

PLA (i)

15.000 kg
 

Figure 2 General scheme for the allocation of waste biomass towards biorefineries in the year 2045. 

Highlighted are the decision variables for the model.  

It shows that the wood biomass is cascaded by two different refineries, both with their own specifications. 

These two refineries are built in different years since their vintages are different as well as their capacity. The 

highlighted text indicates the decisions which the model can make. Note that the original capacity and current 

capacity are different, due to diminishing capacity rate the original capacity degrades over time due to technical 

degradation. Since they are both different technologies, they produce different products at varying efficiency and 
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cost. The price of the products is not included in the scheme however, it plays an important role in the allocation 

of the waste biomass towards a biorefinery. In addition, the lifetime of the biorefineries is not given in the figure. 

Since technology improves it might be beneficial to build a new biorefinery with better efficiencies instead of 

continuing to operate with an old installation. Also, biorefineries close down after their lifetime has exceeded thus 

a replacement might be needed. In the model there is no restriction on how many or what type of biorefinery can 

be built. However, some technologies might not be available at the beginning owed to their technical readiness 

level being too low. Thus the model might not be able to build some types of biorefineries in the first few years.  

The time horizon for the model is from 2020 to 2050. To avoid the end of time horizon effect, the model will 

run until 2070. The end of time horizon is applied so that the model will not stop at 2050, but will continue 

afterwards. This is to ensure the model will not only satisfy the constraints until 2050 but also afterwards since 

waste biomass and the biorefineries will still be available after 2050. This will mimic real-life scenarios where 

biorefineries are built for their lifetime span, not a specific given year. Only the results until 2050 are inspected 

since this is the time frame the research is interested in. After 2050 it is assumed all data stays constant since future 

predictions become more unpredictable. 2070 is not chosen arbitrary, the time horizon was extended gradually 

until the end of time had no effect on the results in 2050. The model and investment time step is one year. 

Investment is done at the beginning of each period, the available capacity is immediately available for biomass 

waste streams.  

The model was written in General Algebraic Modelling System (GAMS, version 24.6.1) and solved with the 

CPLEX solver. The CPLEX solver is chosen since it is capable of solving large, difficult problems quickly. The 

CPLEX solver automatically sets the options at the best configuration for the problem, thus solving the problem 

quickly with minimal user intervention. Furthermore, CPLEX can handle mixed integer programming problems, 

which is needed for this model.  

2.2.2.1. Bioconversion 

All biorefineries are black box models in this study, this is to reduce the complexity of the model. The model 

assumes that from the incoming biomass stream a part is converted with a given efficiency into different products. 

The general formula for the biorefineries is: 

 𝑋(𝑖)(𝑡) = ∑ ∑ ∑ ∑ 𝜆(𝑗,𝑞,𝑛,𝜈)(𝑡) ⋅ 𝜂(𝑖,𝑗,𝑛,𝜈)

𝑗𝑒𝑛𝑑

𝑗=𝑜

𝑞𝑒𝑛𝑑

𝑞=𝑜

𝑛𝑒𝑛𝑑

𝑛=𝑜

𝑡

𝜈=t0

 (Eq. 2) 

In which 𝑖 is the set of different products, 𝑋(𝑖)(𝑡) the amount of product 𝑖 produced in year 𝑡 in kg and 𝜂(𝑖,𝑗,𝑛,𝜈) 

is the efficiency of converting waste biomass stream 𝑛 into product 𝑖 with biorefinery 𝑗 of vintage 𝜈 in kg kg-1. 

The 𝑒𝑛𝑑 subscript used for the sets is to indicate that the summation is performed until the end of the set.  

The sum of the different streams towards the biorefineries is equal to the total available waste biomass: 

 𝑆(𝑛)(𝑡) ≥ ∑ ∑ ∑ 𝜆(𝑗,𝑞,𝑛,𝜈)(𝑡)

𝑡

𝜈=𝑡0

𝑞𝑒𝑛𝑑

𝑞=0

𝑗𝑒𝑛𝑑

𝑗=0

 (Eq. 3) 

𝑆(𝑛)(𝑡) is the total available waste biomass of type 𝑛 in year 𝑡 given in kg. As seen in the equation, the total 

available waste biomass exceeds the sum of streams towards the refineries. There is a relaxation in the model, 

making it not supply driven since the allocation of waste biomass is not equal to the available waste biomass. This 
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relaxation is added to not force the model to valorise all of the waste if this is not profitable. Biomass that is not 

sent to a biorefinery is discarded and is further excluded from the model.  

Since the quantity of biomass and quantity of products are directly related to each other through a conversion 

factor, it is also decided to not let the model be driven by the demand for products. When the model becomes 

demand driven it will be indirectly be supply driven, thus forcing the model to perhaps make unprofitable 

decisions.  

The total installed capacity should always exceed the total allocated waste biomass. Thus the capacity 

constraint equation is expressed by the following formula: 

 ∑ 𝜆(𝑗,𝑞,𝑛,𝜈)(𝑡)

𝑛𝑒𝑛𝑑

𝑛=0

≤ 𝐾(𝑗,𝑞,𝜐)(𝑡) ⋅ 𝜔(𝑗,𝜈) (Eq. 4) 

In which 𝐾(𝑗,𝑞,𝜈)(𝑡) is the total installed capacity of biorefinery type 𝑗 with capacity 𝑞 of vintage 𝜈 in year 𝑡 in 

kg. The total installed capacity is about how much feedstock each year can be processed, it can exceed the total 

available biomass. 𝜔(𝑗,𝜈) is the availability factor (𝜔(𝑗,𝜈) 𝜖 [0,1]) of biorefinery type 𝑗 of vintage 𝑣. The availability 

factor indicates in which year a new technology becomes available for commercial application. Some of the 

technologies that are introduced in the model are currently in development state and cannot be applied on large 

scale yet. However these technologies will become commercial available in the near future, the availability factor 

indicates which year. More information about the availability factor is given in chapter 3.  

Over time the capacity of a biorefinery degrades due to lifetime of the technology. The capacity degradation 

develops as follow: 

 

for 𝜈 = 𝑡 and 𝜔(𝑗,𝜈) ≠ 0, 

for 𝑡 − 𝜓(𝑗,𝜈) ≤ 𝜐 < 𝑡, 

for 𝜐 ≤ 𝑡 − 𝜓(𝑗,𝜈), 

𝐾(𝑗,𝑞,𝜐)(𝑡) = Q(𝑗,𝑞,𝜈) 

𝐾(𝑗,𝑞,𝜐)(𝑡 + 1) = (1 − 𝜅) ⋅ 𝐾(𝑗,𝑞,𝜐)(𝑡) 

𝐾(𝑗,𝜈)(𝑡) = 0 

(Eq. 5) 

Where 𝜓(𝑗,𝜈) is the life time of biorefinery type 𝑗 of vintage 𝜈 and 𝜅 the technology capacity diminishing rate 

in fraction, which is equal to 0.05. When the vintage 𝜈 technology is commissioned in period 𝑡, namely 𝜈 = 𝑡, 

𝐾(𝑗,𝑞,𝜐)(𝑡) is equal to the capacity that is invested, which is Q(𝑗,𝑞,𝜈). However, this is only possible if the technology 

is available therefore it should also satisfy 𝜔(𝑗,𝜈) ≠ 0.  During its physical life time, the technology capacity 

diminish with a rate of 𝜅. When a technology exceeds its lifetime, 𝜐 ≤ 𝑡 − 𝜓(𝑗,𝜈), the capacity is set to zero to 

simulate the decommission of the biorefinery. Notice that 𝐾(𝑗,𝑞,𝜐)(𝑡) has the index 𝑞, this index tells what the 

original capacity was of the biorefinery when it was commissioned while 𝐾(𝑗,𝑞,𝜐)(𝑡) depicts the total installed 

capacity at year 𝑡. 

In this study biorefineries are modelled as black box models. In a black box model, the physical and chemical 

phenomena are not modelled, a simple representation of the biorefinery is used. Equation 2 describes the process 

of the biorefinery where there is an input and an output with a certain efficiency. However due to research and 

development it can be expected that newer biorefineries will have a better efficiency (van Meijl et al., 2016). This 

improvement is only when the technology is commercialised, since then it is applied on industrial scale and new 

bottle-necks can be solved. Furthermore a restriction is placed on the total efficiency of the process. It is assumed 
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that the sum of the conversion of the biomass to the products cannot exceed 95%. If this maximum is reached the 

efficiency of converting biomass to each commodity remains constant. The following conditional expression 

shows the improvement of efficiency: 

 

if ∑ 𝜂(𝑖,𝑗,𝑛,𝜈) ≤ 0.95

𝑖𝑒𝑛𝑑

𝑖=0

and 𝜔(𝑗,𝜈)  ≠ 0 𝜂(𝑖,𝑗,𝑛,𝜈+1) = 𝜂(𝑖,𝑗,𝑛,𝜈) ⋅ (1 + 𝜖(𝑗)) 
(Eq. 6) 

 else, 𝜂(𝑖,𝑗,𝑛,𝜈+1) = 𝜂(𝑖,𝑗,𝑛,𝜈) 

𝜖(𝑗) is the increase of efficiency per year of biorefinery type 𝑗 in fraction. If stated otherwise in this thesis, 𝜖(𝑗) 

is assumed to be 0.00375 (Tsiropoulos et al.). The increase in efficiency happens whether a biorefinery is build or 

not built within the model, the improvement is applied on the moment the technology becomes commercialised. It 

is assumed that even though the technology is not built by the model, it is applied outside the model on commercial 

scale, so improvement is still happening. 

All of these improvements are only applied on newly built refineries, an already built biorefinery will not 

improve. Thus an biorefinery that is built has the properties of that vintage year and shows no improvement over 

its lifetime. If one wants the newly improved efficiency or the extended lifetime a new biorefinery needs to be 

built. The same applies to the economic aspect of the technologies that is explained in the next section. 

2.2.2.2. Economic part of the model 

The economic part of the model consists of the cost of the biorefineries and the revenue from the commodities. 

All economic data are in euros if data is in dollars a rate of €0.84 is used. The investment costs of refineries from 

different years are adjusted to 2020 using the chemical engineering plant cost index (CEPCI), which is discussed 

further in chapter 3. Other cost or price data from previous years are adjusted according to inflation of the 

Netherlands, which is equal to 1.88% (CBS Statline, 2016). 

2.2.2.2.1. Costs 

The cost of the biorefineries can be split into three different type of cost: investment cost, fixed cost, and 

variable cost as seen in Figure 3.  

Total cost

Investment cost Fixed cost Variable cost

 

Figure 3 The different types of cost. 

The investment cost only occurs in the year a biorefinery is commissioned, the fixed and variable cost occur 

every year when the operational. The summation of the three different type of cost results in the total cost as given 

by the following formula: 

 𝐶(𝑡) = 𝐶𝑖𝑛𝑣(𝑡) + 𝐶𝑓𝑖𝑥  (𝑡) + 𝐶𝑣𝑎𝑟(𝑡) (Eq. 7) 

In which 𝐶(𝑡) is the total cost in year 𝑡 in €, 𝐶𝑖𝑛𝑣(𝑡) the investment cost in year 𝑡 in €, 𝐶𝑓𝑖𝑥(𝑡) the fixed cost 

in year 𝑡 in €, and 𝐶𝑣𝑎𝑟(𝑡) the variable cost in year 𝑡 in €. 
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The investment cost depicts the cost of building a new biorefinery, therefore is dependent on whether a 

biorefinery is built in a certain year. The investment cost function is given by: 

 𝐶𝑖𝑛𝑣(𝑡) = ∑ ∑ 𝛼(𝑗,𝑞,𝜈) ⋅ 𝑄(𝑗,𝑞,𝜈)

𝑞𝑒𝑛𝑑

𝑞=0

𝑗𝑒𝑛𝑑

𝑗=0

 ∀𝑡 = 𝜈 (Eq. 8) 

In which 𝛼(𝑗,𝑞,𝜈)(𝑡) is the unit investment cost of biorefinery type 𝑗 with capacity 𝑞 of vintage 𝜈 in € kg-1, the 

∀𝑡 = 𝜈 term is to indicate that the investment cost is only calculated when the biorefinery is build. This unit 

investment cost is dependent on the size of the biorefinery that is built, thus not constant for all 𝑄(𝑗,𝑞,𝜈). Economy 

of scale reduces the unit investment cost when a larger facility is build. To calculate the unit investment cost for 

different capacities, data about a base biorefinery is needed. The cost and capacity of the base biorefinery can be 

used to scale towards different capacities. The unit investment cost for different capacities is calculated by the 

following formula:  

 𝛼(𝑗,𝑞,𝜈) =
𝐶0,(j)(𝑡) ⋅ (𝑄(𝑗,𝑞,𝑣) 𝑄0,(j)⁄ )

𝜃

𝑄(𝑗,𝑞,𝜈)
 (Eq. 9) 

In which 𝐶0,(𝑗)(𝑡) is the base cost of a biorefinery type 𝑗 in the year 𝑡 in €, 𝑄0,(𝑗)  is the size of the base 

biorefinery in kg and 𝜃 is the cost capacity factor in fraction. For biorefinery the cost capacity factor is estimated 

to be 0.63 (McAloon et al., 2000; Schaidle et al., 2011; Wright and Brown, 2007). The term (𝑄(𝑗,𝑞,𝑣) 𝑄0,(𝑗)⁄ )
𝜃

 can 

be seen as the scaling factor of the investment cost, multiplying it with the base cost will give the investment cost 

of a biorefinery of size 𝑄(𝑗,𝑞,𝜈). By dividing the numerator with the size of the biorefinery the unit investment cost 

is calculated. The unit investment cost is used, from it the fixed and variable cost can be derived. 

The fixed costs are yearly cost that are independent of the production of commodities. These costs include 

depreciation, maintenance, direct labour, and general overhead. The fixed cost is given by: 

 𝐶𝑓𝑖𝑥(𝑡) = ∑ ∑ ∑ 𝛽(𝑗,𝑞,𝜈) ⋅ 𝐾(𝑗,𝑞,𝜈)(𝑡)

𝑞𝑒𝑛𝑑

𝑞=0

𝑗𝑒𝑛𝑑

𝑗=0

𝑡

𝜈=t0

 (Eq. 10) 

In which 𝛽(𝑗,𝜈) is the unit fixed cost of biorefinery type 𝑗 with capacity 𝑞 of vintage 𝜈 in year 𝑡 in € kg-1. The 

capacity of the biorefinery degrades over time, thus the fixed costs also decrease over time. The slowly degradation 

of the fixed cost represent the depreciation of the installed biorefinery.  

The variable costs are yearly cost that are dependent on the production of products. In the model the variable 

costs are dependent on the amount of feedstock that is fed towards the biorefinery since this is directly related to 

the production of the commodities. These variable costs include energy and input materials. The variable cost is 

given by: 

 𝐶𝑣𝑎𝑟(𝑡) = ∑ ∑ ∑ ∑ 𝛾(𝑗,𝑞,𝜈)

𝑞𝑒𝑛𝑑

𝑞=0

⋅

𝑗𝑒𝑛𝑑

𝑗=0

𝑡

𝜈=t0

𝜆(𝑗,𝑞,𝑛,𝜈)(𝑡)

𝑛𝑒𝑛𝑑

𝑛=0

 
(Eq. 11) 

 

In which 𝛾(𝑗,𝜈) is the variable cost of biorefinery type 𝑗 with capacity 𝑞 of vintage 𝜈 in € kg-1.  

Some papers give the fixed and variable cost of a biorefinery however, these are unreliable since they are for 

a given capacity. These costs do not reflect the costs of smaller or bigger capacities thus another approach for the 
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calculation of fixed and variable cost is used. A common rule related to the fixed and variable cost is used, the 

fixed cost is generally 15% of the total cost, and the variable cost usually is around 10% of the investment cost 

(Peters et al., 2012) The unit variable cost is calculated through the unit investment cost with the following formula: 

 𝛾(𝑗,𝑞,𝜈) = 𝛼(𝑗,𝑞,𝜈) ⋅ 𝛿 (Eq. 12) 

In which the term 𝛿 is the fraction that determines the percentage of which the investment cost is related to 

the variable cost.  

From the unit variable cost the unit fixed cost can be calculated since it is 15% of the total cost: 

 𝛽(𝑗,𝑞,𝜈) = 𝛾(𝑗,𝑞,𝜈) ⋅
𝜄

1 − 𝜄
 (Eq. 13) 

In which 𝜄 is the fraction which determines the percentage of total cost is fixed cost. 

After experience is gained in the production of a commodity it can be expected that production cost will 

decrease. This cost decline is often referred to as the “learning effect”, “learning rates”, “learning curve” or 

“experience curves” (Ahmed, 2013; Daugaard et al., 2015; Farag and Chaouki, 2015; Vimmerstedt et al., 2015). 

The learning effect encompasses multiple learning mechanisms such as learning-by-searching, learning-by-using, 

learning-by-interacting, changes in production design, and standardization (Chen et al., 2012). Each of these stages 

have different learning mechanisms that result in cost reduction (e.g. Neij et al. (2003) and Junginger (2005)). This 

learning effect causes cost of biorefineries to decrease exponentially with the number of plants built (Farag and 

Chaouki, 2015). Henrich et al. (2009) states that cost reductions can reach up to two-thirds of the first plant cost. 

The learning effect is dependent on the stage of the industry growth and the economy, one can even experience a 

negative learning rate (Daugaard et al., 2015). Often learning rates can be derived from historical data (Antes et 

al., 2005; NETL, 2013). These rates are associated with the total installed capacities all over the world (Junginger 

et al., 2006). Endogenous learning could not be applied in this framework since the production of products could 

not be modelled due to a lack of data of the total installed capacities worldwide in the future, therefore it is chosen 

to apply exogenous learning by using a fixed rate. The consequence of the learning effect on the unit investment 

cost is expressed as follow: 

 𝛼(𝑗,𝑞,𝑣) = 𝛼(𝑗,𝑞,𝜈) ⋅ (1 − 𝐿𝑅(𝑗))
𝑡−𝑡0

  ∀𝑡 = 𝜈 (Eq. 14) 

𝐿𝑅𝑗 is the learning effect of biorefinery type 𝑗 in fraction. Since little literature is available for the learning 

effect for each different biorefinery it is assumed to be 0.02.  

2.2.2.2.2. Revenue 

The revenue of the biorefineries is dependent on the sell price of the product. Since the framework models for 

multiple years, the price of commodities can change over time. The amount of commodities produced is dependent 

on the allocation of the waste biomass towards different biorefineries. The revenue function is given by: 

 𝜋(𝑡) = ∑ 𝑋(𝑖)(𝑡) ⋅ 𝑝(𝑖)(𝑡)

𝑖𝑒𝑛𝑑

𝑖=0

 (Eq. 15) 

In which 𝑝(𝑖)(𝑡) is the price of product 𝑖 in year 𝑡 in € kg-1.  
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Due to changes in demand, prices of commodities are expected to increase over time. Since it is difficult to 

predict prices in the future a constant growth in price is assumed each year. The following formula describes the 

price growth: 

 𝑝(𝑖)(𝑡 + 1) = 𝑝(𝑖)(𝑡) ⋅ (1 + 𝜁(𝑖)) (Eq. 16) 

In which 𝜁(𝑖) is the price growth of product 𝑖 each year in fraction. Since the price of products is difficult to 

predict the average inflation is used, which is equal to 1.88% (CBS Statline).  

In the model the cost of the feedstock, the waste biomass, is assumed to be zero. This assumption is based on 

the principle that currently waste biomass is already collected and municipalities pay institutes to handle their 

waste biomass. Therefore the cost can even be assumed to be negative. Furthermore, since all waste biomass will 

be handled every year, the cost of feedstock has no influence on the behaviour of the model. Both the transport 

and storage of waste biomass are compulsory, regardless of their application, these are sunk cost which will not 

be included in the model.  

2.2.3. Computation problem 

In the model 𝑄(𝑗,𝑞,𝜈) can choose from a fixed set, 𝑞, to select the capacity of the biorefinery. It is not chosen 

to make 𝑄(𝑗,𝑞,𝜈) a free variable since this will make the model non-linear. If 𝑄(𝑗,𝑞,𝜈) is a free decision variable, 

𝛼(𝑗,𝜈) and consequently 𝛾(𝑗,𝜈) are dependent on 𝑄(𝑗,𝑞,𝜈) (equation 8 and 11). In equation 10 𝛾(𝑗,𝑞,𝜈) is multiplied 

with 𝜆(𝑗,𝑞,𝑛,𝜈)(t), thus creating a nonlinear problem since 𝜆(𝑗,𝑞,𝑛,𝜈)(t) is also a decision variable. By adding a 

restriction on the possible capacities of the biorefineries 𝛼(𝑗,𝑞,𝜈),  𝛽(𝑗,𝑞,𝜈) and 𝛾(𝑗,𝑞,𝜈) can be calculated in advance. 

There results will be considered as parameter inputs for the model, thus removing the non-linearity in equation 10. 

The CPLEX solver is still able to solve these type of models. The advantage of this method is also it reduces 

computation complexity, since 𝑄(𝑗,𝑞,𝜈)  has limited options. Reducing the amount of equations in the model 

significantly reduces the computational problem. 
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 Case study and data collection 

Since data is not readily available it needs to be collected from different sources. There are three different 

categories of data that needs to be collected: biorefineries technologies, quantity of biomass, and economic data. 

It is assumed that for the model that the city of Amsterdam operates in an island mode, there is no interaction with 

surrounding cities or municipalities with respect to import and export of waste biomass or products. Since most 

data that is needed will be forecast, data might not be available for each year. When data is missing, interpolation 

is conducted between data points that are available.  

3.1. Biorefineries 

Different type of suitable biorefineries are found in literature. The type of feedstock, conversion efficiency, 

capacity, lifetime, cost and output are needed to apply the biorefinery into the model. First the different 

technologies and their conversion efficiencies are introduced in Table 3. In addition information about whether the 

processes are biological, mechanical or chemical is given. The efficiencies are based on the conversion of one 

kilogram dry matter biomass in kilogram product.  

Table 3 The different types of biorefineries used for the model. Their conversion is given in kilogram of 

product produced from one kilogram of biomass. 

Biomass Technology Conversion of biomass  Process Reference 

Wood Wood refinery 1 Glucose 0.34 kg kg-1; xylose 0.24 kg kg-1; 

lignin 0.16 kg kg-1 

Chemical Michels and Wagemann 

(2010) 

Wood refinery 2 Glucose 0.34 kg kg-1; xylose 0.26 kg kg-1; 

lignin 0.16 kg kg-1 

Chemical Laure et al. (2014) 

Wood refinery 3 Lignin 0.24 kg kg-1; PLA 0.68 kg kg-1;  Biological Dornburg et al. (2006) 

Wood refinery 4 Ethyl levuinate 0.38 kg kg-1; formic acid 

0.11 kg kg-1 

Chemical Win (2005) 

Wood refinery 5 Furfal 0.06 kg kg-1; methyl alcohol 0.01 kg 

kg-1; acetone 0.01 kg kg-1; acetic acid 0.04 

kg kg-1; suplhuric acid 0.03 kg kg-1 

Chemical 

and 

mechanical 

Hayes et al. (2006) 

Grass Grass refinery 1 Protein 0.14 kg kg-1; fibres 0.33 kg kg-1; 

whey 0.41 kg kg-1 phosphate 0.07 kg kg-1 

Mechanical Ros (2017) 

Grass refinery 2 Protein 0.06 kg kg-1; fibres 0.57 kg kg-1 Mechanical O’Keeffe et al. (2011) 

Grass refinery 3 Protein 0.06 kg kg-1; fibres 0.55 kg kg-1 Mechanical O’Keeffe et al. (2011) 

Grass refinery 4 Protein 0.06 kg kg-1; fibres 0.55 kg kg-1; 

lactic acid 0.003 kg kg-1 

Mechanical O’Keeffe et al. (2011) 

Leaves Leaves refinery 1 Protein 0.07 kg kg-1 Mechanical Bals and Dale (2011) 

Leaves refinery 2 Protein 0.09 kg kg-1 Mechanical Bals and Dale (2011) 

Leaves refinery 3 Protein 0.06 kg kg-1 Mechanical Bals and Dale (2011) 

Leaves refinery 4 Protein 0.06 kg kg-1 Mechanical Bals and Dale (2011) 

Leaves refinery 5 Glucose 0.01 kg kg-1; xylose 0.01 kg kg-1; 

mannitol 0.03 kg kg-1; anti-oxidant 0.02 kg 

kg-1 

Biological Romero-García et al. 

(2016) 

OMSW OMSW digester 1 Biogas 0.069 kg kg-1 Biological Rajendran et al. (2014) 

OMSW digester 2 Biogas 0.069 kg kg-1 Biological Rajendran et al. (2014) 

OMSW digester 3 Biogas 0.063 kg kg-1 Biological Rajendran et al. (2014) 

OMSW digester 4 Biogas 0.063 kg kg-1 Biological Rajendran et al. (2014) 

In the model only OMSW is given as input for the digesters, the other types of waste biomass are not included. 

There reason is that an abundance of one type of waste biomass could potentially disrupt the microorganisms 

(Fitamo et al., 2017). In addition legislation limits the percentage of certain waste biomass in a digester due to 

odour nuisance. For example, when the amount of grass exceeds 30% of the total waste biomass in the digester 



 

16 

 

the odour becomes an issue (Kenniscentrum, 2005). To prevent an abundance of one type of waste biomass in a 

digester it is chosen to only have OMSW as an input, which is a mixture of different type of waste biomass. 

3.1.1. Research and development 

The different biorefineries that are proposed in this study are at different technical readiness level. Some of 

the given biorefineries are already in commercial state, others are only on lab and pilot scale. To differentiate the 

different development phases of the biorefineries, distinction is made between the availability of the technologies. 

In the model it is assumed that biorefineries that are commercialised are available in the year 2020. For 

technologies that are in pilot plant phase it is assumed they become available in the year 2030, for technologies 

that are still in lab scale it is assumed they become available in 2040. An overview of the technical readiness level 

of the different technologies can be found in Table 4. The lifetime when the technology is commercialised is also 

given in the table.  

Table 4 Data about the current state of development of different technologies. 

Technology Technical 

Readiness Levels 

Lifetime 

(Year) 

Reference 

Wood refinery 1 Pilot plant 10 Michels and Wagemann (2010) 

Wood refinery 2 Pilot plant 10 Laure et al. (2014) 

Wood refinery 3 Lab 10 Dornburg et al. (2006) 

Wood refinery 4 Commercialised 10 Win (2005) 

Wood refinery 5 Pilot plant 10 Hayes et al. (2006) 

Grass refinery 1 Commercialised 10 Ros (2017) 

Grass refinery 2 Pilot plant 10 O’Keeffe et al. (2011) 

Grass refinery 3 Pilot plant 10 O’Keeffe et al. (2011) 

Grass refinery 4 Pilot plant 10 O’Keeffe et al. (2011) 

Leaves refinery 1 Lab 10 Bals and Dale (2011) 

Leaves refinery 2 Lab 10 Bals and Dale (2011) 

Leaves refinery 3 Lab 10 Bals and Dale (2011) 

Leaves refinery 4 Lab 10 Bals and Dale (2011) 

Leaves refinery 5 Commercialised 15 Romero-García et al. (2016) 

OMSW digester 1 Commercialised 20 Rajendran et al. (2014) 

OMSW digester 2 Commercialised 20 Rajendran et al. (2014) 

OMSW digester 3 Commercialised 20 Rajendran et al. (2014) 

OMSW digester 4 Commercialised 20 Rajendran et al. (2014) 

It can be expected that the lifetime of technologies increases once it is in commercial state due to development 

and research. It is assumed that the starting lifetime of a new technology is ten years unless stated otherwise in 

literature. Once the technology is commercialised it is assumed that the lifetime increases with five years for every 

ten years it is in commercialised state, this is given exogenously to the model.  

3.2. Biomass 

The model has as input the quantity of each type of waste biomass. It is assumed for this research that the 

different types of waste biomass are perfectly separated. Therefore the feedstock for the biorefinery consists of 

one type of waste biomass. In this research four different type of waste biomass are differentiated: wood, grass, 

leaves, and OMSW. The origin of the biomass can be differentiated into two different origins. One is the 

municipality that collects the biomass in the streets, parks and recreational areas. The other participants are the 
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inhabitants of Amsterdam who collect their waste biomass which is collected by the municipality. The biomass 

from the citizens of Amsterdam is not clean biomass, it is a mixture of wood, grass, leaves and OMSW. For the 

model it is assumed that this waste biomass is mostly separated before being valorised. The expected quantity of 

waste biomass in the year 2020 is given in Table 5. 

Table 5 The quantity of available waste biomass from the city of Amsterdam in the year 2020 given in 

tonnes. 

 Wood Grass Leaves OMSW 

Quantity dry matter (tonnes) 6118 2675 61 67978 

3.2.1. Wood  

Wood consists of wood collected by the municipality and garden waste from the inhabitants of Amsterdam. 

For the wood collected by the municipalities, it is distinguished in different origins: solitary trees, deciduous 

groves, tree girth, hedgerows, tree rows, willow wood, and reed screens (Buijzer et al., 2015). Reason for this 

distinction between the origin of the wood biomass is due to future predictions and policies. Some of the origins 

of the biomass can be expected to grow over time, or with stimulating policies can grow in supply by planting 

more trees. However solitary trees are not expected to provide more biomass over time, usually, they are already 

full grown and during pruning the same amount of wood biomass is collected every year. Furthermore planting 

more solitary trees in the same area is unfeasible (Buijzer et al., 2015). The growth of biomass for wood in a good 

scenario is expected to increase with 10% from 2020 till 2050 (Boosten and Oldenburger, 2014). 

Table 6 Growth of different sources of wood biomass in the city of Amsterdam (Buijzer et al., 2015). 

Source of wood biomass Expected growth 

Willow wood No growth 

Deciduous groves Growth 

Reed screens No growth 

Hedgerows No growth 

Tree girth Growth 

Solitary trees No growth 

Tree rows No growth 

Garden waste Growth 

3.2.2. Grass 

Similar to wood, grass also has two origins, from the municipality and from the residents. Grass from the 

municipality can be divided into two groups: recreational areas and roadside cuttings.  It is not expected that this 

amount of grass will increase over the years, since there is no expectation that recreational areas or roadsides will 

expand in the future (Boosten and Oldenburger, 2014). The quantity of grass from the residents is expected to 

increase slightly, since Amsterdam is growing more housing is developed resulting in more gardens. A fraction of 

the garden waste is grass (Boldrin and Christensen, 2010). 

3.2.3. Leaves 

Data of the quantity of leaves collected by the municipality is not available. However, it is assumed that leaves 

are directly related to wood biomass since leaves grow on woody biomass, the leaves come available during 

pruning.  It is presumed that 1% of the woody biomass is equal to the quantity of leaves available for valorisation. 

This assumption is only for woody biomass of the municipality, not for the leaves available from garden waste.  
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3.2.4. OMSW 

Buijzer et al. (2015) describes the amount of OMSW produced by each citizen in Amsterdam, it states that the 

total amount of OMSW in Amsterdam in 2015 consists of 60.000 ton. However, this is only the waste from the 

household. OMSW also includes the waste from gardens (Buijzer et al., 2015).  For the model it is assumed that 

the total citizens of Amsterdam are directly related to the amount of garden waste, thus an increase of inhabitants 

of Amsterdam is proportional to the amount of garden waste. It is not assumed this garden waste is separated from 

the OMSW. 

3.2.5. Growth of biomass 

In Boosten and Oldenburger (2014) the predicted growth of biomass is described. They describe the quantity 

of biomass in the year 2014 and potential biomass quantity for 2020 and 2050. For 2020 they explain two different 

scenarios, one where there is a stimulation in increasing the amount of biomass and one where no stimulation takes 

place.  

For wood not all sources of biomass will increase the supply of woody biomass as described in Table 6. The 

prediction from Boosten and Oldenburger (2014) will only be applied to the woody biomass that is expected to 

grow, this growth is 10% from 2020 to 2050. The amount that is from garden waste is expected to increase 

proportionally to the population of Amsterdam. For grass, Boosten and Oldenburger (2014) does not expect that 

it will grow, which is obvious since recreational areas and roadsides are not increasing in size without human 

intervention. However grass form garden waste is expected to growth in this model. Since leaves are directly 

related to woody biomass it will follow the same trend as woody biomass. It is expected that there is no 

improvement in the efficiency of collecting leaves, since there is no indication this will happen. Furthermore the 

amount of leaves from garden waste is expected to growth. OMSW directly comes from the inhabitants of 

Amsterdam, therefore it is assumed that it will follow the same trend as the population growth of Amsterdam. The 

average OMSW production per inhabitant of Amsterdam is calculated and with the expected population growth of 

Amsterdam the total amount of OMSW for each year is forecasted. 

The population growth of Amsterdam is prognosed by the municipality itself (Gemeente Amsterdam, 2017). 

The expected growth in Amsterdam is forecasted for the year 2030, 2040 and 2050 as seen in Table 7. The year 

2015 is needed to interpolate the population of Amsterdam for the year 2020. 

Table 7 Expected population growth of Amsterdam (Gemeente Amsterdam, 2017). 

Year Inhabitants Amsterdam 

2015 822.272 

2030 936.000 

2040 980.000 

2050 998.000 

3.2.5.1. Interpolation 

Since most prognoses of increase in biomass quantity and population growth do forecast each year, but certain 

years, interpolation between data points is needed. As trend line an order two polynomial equation is chosen since 

it is a good fit for the data points. The results from the interpolation and all data about the available biomass and 

growth can be found in Appendix A and B. 
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3.3. Economics 

Since a techno-economic analysis is performed the economics are an import aspect of the model. The cost of 

biorefineries and the price of products are necessary and in addition, their cost in the future needs to be projected.  

3.3.1. Cost of refineries 

To estimate the order of the investment costs for building a biorefinery, data from different studies is used. 

Since most studies are done in different years, the costs are adjusted to 2020 using the Chemical Engineering Cost 

Price Index (CEPCI) as described in the next paragraph. The cost will change over time, by using the CEPCI and 

applying the learning effect, the future cost of biorefineries is predicted. The expected cost of the biorefineries and 

their capacity, derived from the literature, are given in Table 8. 

Table 8 The capacity and investment cost in the year 2020 of the different biorefineries. 

 Investment cost 

(million €) 

Capacity 

 (million kg) 

Reference 

Wood refinery 1 62 400 Michels and Wagemann (2010) 

Wood refinery 2 69 400 Laure et al. (2014) 

Wood refinery 3 218 323 Dornburg et al. (2006) 

Wood refinery 4 3 10 Win (2005) 

Wood refinery 5 188 365 Hayes et al. (2006) 

Grass refinery 1 41 70 Ros (2017) 

Grass refinery 2 6 7 O’Keeffe et al. (2011) 

Grass refinery 3 6 7 O’Keeffe et al. (2011) 

Grass refinery 4 8 7 O’Keeffe et al. (2011) 

Leaves refinery 1 1669 175 Bals and Dale (2011) 

Leaves refinery 2 2012 175 Bals and Dale (2011) 

Leaves refinery 3 2053 175 Bals and Dale (2011) 

Leaves refinery 4 884 175 Bals and Dale (2011) 

Leaves refinery 5 614 330 Romero-García et al. (2016) 

OMSW digester 1 34 55 Rajendran et al. (2014) 

OMSW digester 2 29 55 Rajendran et al. (2014) 

OMSW digester 3 37 110 Rajendran et al. (2014) 

OMSW digester 4 39 110 Rajendran et al. (2014) 

3.3.1.1. Chemical Engineering Cost Price Index 

Since the model will run until 2050 it needs to predict future cost of biorefineries. Most cost data that is 

available is for immediate use and estimated on conditions in the past. Due to economic changes over time, a 

method is needed to update cost data to future references. With the use of cost indexes this can be achieved.  

A cost index is a ratio between the cost at the present time with the cost at a certain base time. When the cost 

at the base time is known, the equivalent cost at the present time can be determined by multiplying the cost index 

of present time with the cost at the base time. This can be expressed by the following formula: 

 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 ⋅ (
𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡𝑖𝑚𝑒

𝐼𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡
) (Eq. 17) 

Different type of cost indexes can be used for estimating the different type of cost: equipment, labour, 

construction or materials. No cost index can take into account all factors that influence the cost, thus they generate 

a general estimate. These types of cost indexes are regularly updated and published in journals, some of these 

indexes date back until 1913 (Peters et al., 2012). In this research, the CEPCI is used since it is still updated and 
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research has been done about future predictions of this index (Mignard, 2014). The index consists of four major 

components: equipment, labour, buildings, engineering and supervision. These components each are weighted and 

consist of further smaller components. Even though it is based on US cost data, it does not include local and 

specialised cost indexes, therefore it makes it applicable for other countries. Some studies apply a location factor 

to adjust for the US cost data, however, in this study it is assumed that due to globalisation cost estimation for 

western Europe is similar to US (Remer et al., 2008).  

The CEPCI consists of a total of 53 different producer price indices (PPI). To forecast the CEPCI all 53 PPI 

need to be tracked, all of them have a certain prediction uncertainty. To simplify forecasting and thus reduce the 

dependence of the future predictions of all PPI, macroeconomic indicators can be used for the estimation of the 

cost of materials and labour. Macroeconomic indicators also have more widespread availability of data and 

forecasts. Mignard (2014) suggest using the oil price and prime loan rates.  The following relation was found 

between the CEPCI and the oil price and prime loan rates: 

 𝐶𝐸𝑃𝐶𝐼(𝑡) = 340.7 ⋅ exp (𝐴 ⋅ ∑ 𝛲𝑡

𝑡

𝑡=𝑡0

) + 𝐵 ⋅ 𝑝𝑜𝑖𝑙(𝑡) + 𝐶 (Eq. 18) 

In which 𝐶𝐸𝑃𝐶𝐼(𝑡) is the CEPCI in year 𝑡 which is unitless, 𝑡 the year of which the CEPCI is calculated, 𝛲𝑡 

the prime loan rate in year 𝑡 in percentage, 𝑝𝑜𝑖𝑙(𝑡) the price of oil in year 𝑡 in US$/bbl., and 𝐴, 𝐵 and 𝐶 are a 

distinct sets of values used for the fit of the model. In this research, the CEPCI of the years 2013-2016 are used to 

find the values of 𝐴, 𝐵 and 𝐶 using model calibration with ordinary least squares (Lozowski et al., 2016). The 

CEPCI of these years can be found in Table 9.  

Table 9 The chemical engineering cost price index (CEPCI) for the year 2013-2016 (Lozowski et al., 2016). 

Year CEPCI 

2013 567.3 

2014 579.7 

2015 537 

2016 541.7 

With the values of 𝐴, 𝐵 and 𝐶 and future predictions of the oil price and prime loan rates, achieved from EIA 

(2017) and EIA (2015) respectively, future predictions of the CEPCI and thus cost price of biorefineries can be 

estimated. The values of 𝐴, 𝐵 and 𝐶 are given in Table 10. The oil price is of the West Texas Intermediate in $/bbl. 

and non-deflated. 

Table 10 The distinct set of values for the fit of the model of the chemical engineering cost price index. 

𝑨 𝑩 𝑪 

0.71 1.02 122.87 

The CEPCI is used to project future cost of investment of a biorefinery. As a baseline the year 2020 is used, 

this baseline is used to predict the cost of the biorefinery from 2020 till 2050. Equation 19 shows the mathematical 

formula to predict future cost using the CEPCI. The base cost of a biorefinery type 𝑗 in year 𝑡 with size 𝑄0 in € is 

used since the base cost will be used for scaling. 

 𝐶0,(j)(𝑡) = 𝐶0,(j)(2020) ⋅ 𝐶𝐸𝑃𝐶𝐼(𝑡) (Eq. 19) 
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The CEPCI gives a rough estimation of how cost increase over time, due to materials and labour getting more 

expensive and inflation (Advokaat et al., 2005; CBS Statline). However, over time technology advancement 

increases resulting in a learning effect, this result causes a cost reduction per vintage of technology as described 

in paragraph 2.2.2.2.1 (Daugaard et al., 2015).  

3.3.2. Price of products 

The price of products is found from literature and retailers. When different prices are found for the same 

product, the average is taken. The prices are corrected to 2020 using the average inflation of the Netherlands (CBS 

Statline). The prices of the commodities can be found in Table 11. For future price growth equation 16 is used.  

Table 11 The prices of the different products in the year 2020. 

Price of product € kg-1 Reference 

Acetic acid 0.20 ICIS (2018) 

Acetone 0.24 ICIS (2018) 

Anti-oxidants 80.80 Romero-García et al. (2016) 

Biogas 1.01 Groen Gas Nederland (2015) 

Ethyl levuinate 0.26 Hayes et al. (2006) 

Fibres 1.16 O’Keeffe et al. (2011) 

Formic acid 0.10 Hayes et al. (2006) 

Furfal 1.11 Win (2005) 

Glucose 0.59 Fornasiero and Graziani (2011) 

Lactic Acid 0.30 ICIS (2018) 

Lignin 0.45 Manesh et al. (2013) 

Mannitol 8.28 Weymarn (2002) 

Methylalcohol 0.58 ICIS (2018) 

Phosphate 0.12 GB Minerals (2018) 

PLA 0.42 Lin (2011) 

Protein 0.15 Sanders (2014) 

Sulphuric acid 0.29 ICIS (2018) 

Whey 1.32 Ros (2017) 

Xylose 6.19 Lundgren and Helmerius (2009) 
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 Scenarios 

With the model described in Chapter 2, the optimal allocation of waste biomass for different scenarios can be 

found. These scenarios capture the uncertainty in future cost and development and the effect of different climate 

policy goals. The following three different scenarios are used: Benchmark, good conditions for biorefineries, and 

bad conditions for biorefineries. A summary of the configurations of the scenarios can be found in Table 12. 

Table 12 Summary of the characteristics of the four different scenarios. 

 Benchmark Good conditions for 

biorefineries 

Bad conditions for 

biorefineries 

Fossil fuel price Normal High Low 

Research and development Normal High Low 

Price of products Normal High Low 

Subsidies for biobased products No Yes No  

The benchmark scenario is to reflect the absence of climate policy goals in the Netherlands. In this scenario, 

the government does not apply any incentive to promote the biobased economy. In this manner the scenario reflects 

a free market where there is no government involvement. In this scenario garden waste is not separated, it is al 

used in the OMSW. An overview of the source of biomass can be found in Figure 4.  

A. Benchmark and bad scenario 

  

B. Good scenario

 

Figure 4 Biomass source of the benchmark and bad scenario (A) and the good scenario (B) in tonnes in the 

year 2020 (Boosten and Oldenburger, 2014; Buijzer et al., 2015). The benchmark and bad scenario are together 

since they are both similar in the year 2020.  
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Notice that in the beginning, all the source of waste biomass are not different in size among the scenarios, the 

policies that are applied to the scenarios are introduced in the year 2020. Therefore it is expected that in the 

beginning all the scenarios are equal. The main difference in the sources of waste biomass is the garden waste, as 

seen in Figure 4. In both the benchmark and the bad scenario, the origin of the biowaste is equal. Consequently 

there is no different in biomass source in the year 2020 as seen in Figure 4. 

 In the good conditions for biorefineries scenario the government uses subsidies to promote biobased products. 

Due to the scarcity of fossil fuels, government policies might shift to further invest in the biobased economy. One 

of the options government can do is to subsidise the production of biobased commodities. A price subsidy is 

included in this scenario. Furthermore, investment in research and development will drastically increase the 

technological improvement of biorefineries. Therefore it is assumed technologies become available five years 

earlier available than in the benchmark scenario. However the higher fossil fuel price does influence the CEPCI 

negatively, increasing the index. The lower prime loan rate does lessen this negative influence on the CEPCI.  

 In addition, the government will promote more to separate waste biomass streams, thus creating more supply 

for the waste biomass refineries. Due to the increase of separation, less waste biomass streams end up in the 

OMSW. Normally the OMSW also includes garden waste, however in this scenario garden waste is separated from 

the OMSW. The garden waste consists of wood, grass, leaves and other small stuff as seen in Table 13. The 

separated waste biomass will be used to be valorised.  

Table 13 Composition of garden waste (Boldrin and Christensen, 2010). 

 Composition of 

garden waste (%) 

Small stuff 75.6 

Branches 19.5 

Wood 4.5 

Rest 0.4 

The growth of gardens is directly related to the citizens of Amsterdam since an increase in citizens will also 

mean an increase in houses and gardens. In current practice, garden waste is not separated so no data is available 

of the amount of wood, leaves and grass from gardens. Boldrin and Christensen (2010) mentions garden waste 

consists of 19.5% branches and 4.5% wood, furthermore it classifies leaves and grass under small stuff which is 

75.6%, it is assumed this is the same for Amsterdam.  

Since the small waste consists of grass and leaves but also soil, it is assumed that the grass and leaves are only 

a small fraction of the small waste. It is assumed that grass is only 5% of the small waste since soil is much heavier 

than grass and the fractions are mass based. Since leaves are a smaller portion of garden waste than grass, it is 

assumed 1% of the small stuff is leaves. It is not expected that this fraction will change over time, however, the 

total quantity of garden waste will change.  

The bad conditions for biorefineries scenario was to develop a worst case scenario for biorefineries, due to 

low fossil fuel prices there is less incentive to invest in alternative production technologies, since some of the 

products produced could potentially replace their fossil fuel counterpart. This low fossil fuel price would indicate 

that the CEPCI would drop, however the strong influence of the prime loan rate results in an increase of the CEPCI. 
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The low incentive to invest in alternative production technologies causes the availability of new technologies 

to be low, it is assumed this is five years later than in the benchmark scenario. In the availability of biomass this 

is reflected in a slower growth of quantity of available for wood. It is assumed that the municipality has no incentive 

to increase their quantity harvested wood, thus areas that show potential for growth of biomass as described in 

Table 6 are neglected. This directly influences the quantity of leaves available for cascading, since it was assumed 

this was directly related to the quantity of wood. For OMSW and grass it remains the same as the benchmark 

scenario since those are not influenced by governmental policies.  

A full description of the values assigned to the parameters for the different scenarios is given in Table 14. 

Only the parameters that are relevant for the scenarios are altered, other parameter values are as described in 

Chapter 3. The values of the available biomass, availability of new technologies, CEPCI prime loan rate, and price 

of oil are given in B, C and D. A high growth for the prime loan rate indicates that the percentage is low, a low 

interest rate drives policymakers to invest. 

Table 14 Full description of the parameter values for the four different scenarios. 

 Benchmark Good conditions 

for biorefineries 

Bad conditions 

for biorefineries 

𝐷(𝑡)  Normal Increased Low 

𝜔(𝑗,𝜈)  Normal Fast Slow 

𝛲𝑡  Normal growth High growth Low growth 

𝑝𝑜𝑖𝑙(𝑡)  Normal oil price High oil price Low oil price 

Price subsidy None 10% of market value None  

𝜁(𝑖)  0.0188 0.025 0.01 

𝜖(𝑗)  0.00375 0.00500 0.00250 

𝐿𝑅(𝑗)  0.02 0.04 0.01 
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 Results 

In this section, firstly the results from the maximization of the NPV for the three different scenarios is 

presented together with the flow of biomass through the biorefineries. Subsequently, a more in-depth analysis of 

the benchmark scenario is presented in which the behaviour of the model is analysed. This will give policymakers 

more insight in how to influence the biobased transition in Amsterdam. 

5.1. Scenario analysis 

The effect of different policies on the valorisation of waste biomass in Amsterdam is yet unknown. By 

configuring three different scenarios and applying them to the model, the effect of different strategies gives more 

insight on the added value of such tactics. The NPV is investigated for each biomass individually, this to get more 

understanding of the influence of different scenarios.  

A. Wood 

 

B. Grass 

 

C. Leaves 

 

D. Organic municipal solid waste 

 

Figure 5 The net present value (NPV) of the valorisation of different biomass in the three different 

scenarios. The scale of the NPV is different among the four graphs. 

Figure 5 shows the valorisation of the four different biomass in three different scenarios. It is clear that both 

wood and grass are both economically profitable since there NPV is positive in the year 2050. The different 

scenarios only influence the total NPV, not if it is profitable or not. For the cascading of leaves and OMSW it is 

clear that only at a later stage in the good scenario the NPV is positive, thus economically profitable. OMSW is 

slightly positive in the normal scenario. The total NPV can also be found in Table 15. 
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Table 15 The total net present value (NPV) of the three different scenarios. 

 Benchmark Good Bad 

NPV (million €) 185 393 94 

Figure 5 does not depict smooth lines for the NPV, this is due to investment cost. When an investment is done 

in a specific year, the NPV drops with the value of the investment cost with a correction of the discount rate. These 

drops are best seen in the NPV of grass. This investment cost is also the reason that most NPV start negative and 

later on become positive, to make revenue from the valorisation of waste biomass there first needs to be invested 

in the technology. Over the long run the investment pays off, this is when the NPV becomes positive.   

Figure 6 shows the Sankey diagrams of each scenario in the year 2050. The Sankey diagram depicts mass 

balance of the incoming waste biomass and the products that are produced from them. The Sankey diagram gives 

a good insight into the flow of the biomass and its purpose. It is chosen to depict the year 2050 since then the 

difference between the different scenarios is the largest. Therefore more insight into the flow of biomass under 

different policies is given.  

From Figure 6 it is clear that in all scenarios a large part of the waste biomass not processed in value-added 

products. In the good scenario, most of the biomass is valorised resulting in the lowest amount of residue. In both 

the benchmark and bad scenario leaves are not valorised and remain unutilised. In the bad scenario also OMSW 

is not valorised, indicating that in the year 2050 it is not profitable to valorise OMSW. Even though in the good 

scenario there is less OMSW, there is more biogas production than in the benchmark scenario. This is the result 

of more efficient biorefineries for the processing of OMSW in the good scenario.  

The quantity of grass for the benchmark and the bad scenario is equal, it is not possible to harvest more grass 

from the current areas. For the good scenario, the quantity of grass is higher since garden waste is separated which 

contains grass. In the benchmark and bad scenario also the quantity of the products from the valorisation of the 

grass is equal. This results from the technology being so matured that it reached the efficiency cap as described in 

equation 6. Even though the increase in conversion efficiency during the years is different among the bad and good 

scenario, they both reach this limit early. Consequently, the grass refineries conversion efficiency in the year 2050 

is for both scenarios equal. For the good scenario, this cap is also reached however, the quantity of products from 

the grass refinery is larger since the input is higher. Beside roadside cuttings and recreational areas also grass from 

the garden waste is included as an input.   

Wood is in all scenarios valorised into glucose, xylose and lignin. The quantity of these products differs 

between the scenarios since the quantity of wood and the conversion efficiency is unequal.  However, for all 

scenarios it is economically profitable to process wood into value-added products. 

Only in the good scenario leaves are processed, indicating that to increase the economic feasibility of 

cascading leaves cost reduction and increase in efficiency is needed. Even though in the good scenario leaves are 

processed, a fraction remains unutilized indicating that processing all leaves is too costly. Due to the diminishing 

capacity rate, the leaves refinery is not capable of processing all leaves in the year 2050. 
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A. Benchmark B. Bad C. Good 

 

Figure 6 Sankey diagram of the mass balances in tonnes for each scenario in the year 2050. The difference between unutilised biomass and residue is that residue comes 

from the biorefinery, unutilised biomass indicates it has not been processed. 
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5.2. Benchmark scenario 

To further understand how the model functions, the results of the benchmark configuration is further 

investigated. Figure 7 shows the capacity of the refineries that are built and the available biomass for each of the 

four different type of biomass. These results give insight how the model maximizes NPV with the given constraints 

and decision variables. As decision variable the expanded capacity of a biorefinery in a year is given, these are 

seen as columns in Figure 7. The dashed line indicates the quantity of biomass available each year. 

A. Wood 

 

B. Grass 

 

C. Leaves 

 

D. Organic municipal solid waste 

 

Figure 7 The capacity built of different refineries and the available biomass for each year. The capacity 

build or quantity of biomass scale is different among the four graphs. 

Figure 7 shows that the capacity of the refineries always exceeds the available quantity of biomass. The 

capacity of biorefineries diminishes over time, thus to be able to valorise enough waste biomass in the future a 

larger capacity is needed. 

Figure 7 A. depicts that the valorisation of wood starts in the year 2030 when the first wood biorefinery is 

built. In 2040 the lifetime of this biorefinery has exceeded thus a successor is needed, a new identical type of 

biorefinery is built. In the year 2050, it is profitable to build a new wood biorefinery for the future valorisation of 

waste biomass.  

Figure 7 B. shows that grass valorisation starts in the year 2020. In the year 2030, a new grass refinery is built 

since the old one is decommissioned. Since this new biorefinery has newer technology, its lifetime is longer than 

the grass refinery built in 2020. Therefore this newer biorefinery is decommissioned in 2045, the year a new grass 
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refinery is built. Since the biorefinery in 2030 has a longer lifetime, its initial capacity when built needs to be 

higher to valorise the enough biomass in the end of its lifetime since its capacity degrades over time.  

Figure 7 C. shows that no leaves refinery is built in the benchmark scenario, indicating that the valorisation of 

leaves is not economically profitable.  

Figure 7 D. shows that the building of a OMSW refinery takes place in the late stage of the model, indicating 

that technology beforehand was not profitable yet. Since digesters have a long lifetime, the initial capacity built 

needs to be large to cope with the waste biomass in the future when its capacity diminishes over time.  

The results of the other scenarios about the capacity built of different biorefineries can be found in appendix 

E and F. 

A. Wood 

 

B. Grass 

 
C. OMSW 

 

Figure 8 The total capacity installed and used of different refineries and the available biomass for each 

year. The total capacity installed and used or quantity of biomass scale is different among the three graphs. 

Once a biorefinery is built its capacity degrades over time, thus new refineries are needed to valorise all the 

waste streams. Also, new biorefineries are built due to the shutdown of old biorefineries when their lifetime has 

exceeded. The model needs to find an optimum capacity of the biorefinery, to understand how the model finds this 

optimum a look at the allocation of waste biomass and installed capacity is done. Figure 8 shows the total capacity 

of biorefineries that is installed for the valorisation of the waste biomass each year. Furthermore, it depicts the 

total capacity that is used of the biorefineries, which is equal to the allocation of the waste biomass towards the 

biorefinery. Only three graphs are presented, the graph of leaves is left out since no refineries are built for the 
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valorisation of leaves. From the figure it is seen that two different constraints determine the utilization of the 

capacity, the available biomass and the installed capacity. From equation 3 it is seen that the available biomass 

always greater or equal to the capacity that is utilized. Therefore in Figure 8 it is observed that capacity used never 

exceeds available biomass. Equation 4 states that the capacity installed is always greater or equal to the capacity 

used, as seen in Figure 8. 

As previously mentioned the model always builds a biorefinery with a capacity that exceeds the quantity of 

waste biomass. However, during the lifetime of the biorefinery the capacity diminishes, this can be observed in 

the figures since the capacity installed slowly decreases. In the early stages of the biorefinery, the quantity of 

biomass determines the capacity that is used. Once the capacity installed is below the quantity of biomass it will 

control the capacity that is used. This shift which variables determines the capacity used is different among the 

biorefineries. In Figure 8 A. it is observed that this happens after five years, while in Figure 8 B. it happens near 

the end of its lifetime. In Figure 8 C. there is no shift, only the quantity of biomass determines the capacity utilised. 

The shift between variables that controls the capacity used is determined by the cost. For grass it is seen that 

allowing the available biomass control the capacity used is more economically interesting since the quantity of 

biomass is the limitation of the capacity used during most of the biorefinery lifetime. Since the valorisation of 

grass is so economically interesting, the model tries to valorise as much grass as possible. The valorisation of wood 

and OMSW is also economically interesting, however, the cost of the biorefineries are also significant thus it is 

not always feasible to valorise all the waste biomass.   

Figure 8 A. shows an increase in total capacity installed in the year 2050.  In the year 2050 a new biorefinery 

is commissioned to valorise waste after 2050, this is done since the simulation of the model continues after 2050 

due to end of time horizon effect. Furthermore, the biorefinery that was built in the year 2040 still has the left-over 

capacity, thus the total installed capacity is from both the biorefinery that was commissioned in the year 2040 and 

2050. The results of the other scenarios about the capacity installed and usage of different biorefineries can be 

found in appendix E and F. 

Figure 9 shows all the products that are produced each year, it is clear that in the beginning only grass is 

refined since only the commodity from the grass refinery are produced. There is a small drop in production in the 

year 2029, this is due to the capacity of the grass refinery being lower than the quantity of available grass as seen 

in Figure 8 B. In 2030 there is a peak in production of products, since both a new grass and wood refinery are 

commissioned as seen in Figure 8 A and B. Glucose, xylose and lignin are products from the wood refinery and 

their production drops after a few years due to a decrease in the capacity of the biorefinery. In 2040 a new wood 

refinery of the same type is built with a capacity large enough to valorise all the wood. Therefore there is a peak 

in the amount of glucose, xylose and lignin being produced in 2040. In 2042 a digester is built to valorise the 

OMSW into biogas, it is immediately clear a large quantity of biogas is produced. This quantity does not change 

significantly over time, the quantity of available OMSW does not increase significantly after 2042 and the capacity 

of the digester is of sufficient size to valorise all the OMSW. In the year 2043, the capacity of the grass refinery 

drops below the available biomass, thus less grass is processed. This causes the production of protein, fibres, whey 

and phosphate to slowly drop, however in the year 2045 a new grass refinery is built that is able to valorise all the 

available grass until 2050. In 2045 the production of glucose, xylose and lignin drops again since the capacity of 

the wood refinery is diminishing. In 2050 a new wood refinery is built so it is able to valorise all the wood. 
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Figure 9 The total products produced from the waste biomass each year. 

The production of each individual product increases slightly after a new biorefinery that produces those 

products is commissioned. This is due to an increase in efficiency of conversion in a newer vintage biorefinery. 

Furthermore in some cases the production increase due to an increase in waste biomass availability, thus more 

waste biomass is valorised into products. However, looking at Figure 9 these increases in production are small.  

To conclude, the quantity of products in the early stage of a biorefinery is constant since it is able to process 

all the available waste biomass. This available waste biomass is not volatile, thus the production is stable. However, 

due to diminishing capacity, the biorefinery is not able to process all the available waste biomass in its later stage. 

Therefore the production of commodities slowly drops until a new biorefinery is built. The results of the other 

scenarios about the production of value-added products can be found in E and F. 
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 Sensitivity analysis 

Due to uncertainty related to the cost parameters of the different technologies, a sensitivity analysis is 

performed by varying these cost parameters. The sensitivity analysis is done with the benchmark scenario since 

the results of that scenario wood is not dominant in the NPV and the three largest waste biomass streams are 

valorised. The influence of the cost parameters on the NPV is investigated with the sensitivity analysis. The range 

of variation in the cost parameters is based on literature and can be found in Table 16. 

Table 16 The cost parameter values used for the sensitivity analysis. 

Parameter Benchmark 

value 

Minimum 

value 

Maximum 

value 

Source 

Variable cost (δ) 0.10 0.03 0.20 (Junqueira et al., 2017; Peters et al., 2012) 

Fixed cost (ι)  0.15 0.10 0.20 (Peters et al., 2012) 

Cost capacity factor 

(θ) 

0.63 0.6 0.7 (McAloon et al., 2000) 

Capacity diminishing 

rate (κ) 

0.05 0.05 0.10 (Brownbridge et al., 2014; de Melo et al., 

2014) 

Discount rate (ρ) 0.035 0.03 0.12 (Gonzalez et al., 2011; Short et al., 1995) 

Eleven iterations are performed where the value of the cost parameters are changed with equal step size from 

the minimum to the maximum value as described in Table 16. Only the influence of one cost parameter at a time 

is investigated, the other parameters are held at their benchmark value.  

6.1. Result sensitivity analysis 

The result of the sensitivity analysis is presented in Figure 10. The range of the NPV from the sensitivity 

analysis is given for each cost parameter, the dark grey area indicates a negative influence on the NPV and the 

light grey area indicates a positive influence on the NPV. From the figure it is clear which cost parameters have 

the large influence on the NPV. 

 

Figure 10 Results of the sensitivity analysis. Dark grey indicates a negative influence on the NPV, light grey 

a positive influence on the NPV. The cost parameters are ordered from largest influence to lowest. 

The discount rate has the biggest negative influence on the NPV. That the discount rate has the biggest negative 

influence is expected, since in the benchmark scenario the value of the discount rate is relatively low. The discount 

rate influences both the profit and cost, in which a higher discount rate has a negative influence on the NPV. Since 

in the sensitivity analysis the discount rate mostly was increased, the influence is the highest.  
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The variable cost has the biggest positive influence on the NPV. It indicates that a low variable cost has the 

biggest influence on the NPV. This is expected since the variable cost is the largest cost after the investment cost, 

in some cases it can be even the largest dependent on the lifetime and capacity utilization of the biorefinery. 

Difference between the investment cost and the variable cost is the variable cost is every year while investment 

cost only when a biorefinery is commissioned.  

The influence of the investment cost on the NPV is reflected by the cost capacity factor as seen in equation 8. 

However, the relation between the cost capacity factor and NPV seems contradicting when analysing the data. 

Figure 11 C. shows that an higher cost capacity factor decreases the NPV, while the opposite is expected. The cost 

capacity factor is used to calculate the cost of different sizes of biorefineries as described in equation 8. The cost 

capacity factor is used to introduce economy of scale, which suggests that building larger biorefineries reduce the 

relative investment cost. With relative investment cost, the investment cost per unit is meant, in this research the 

investment cost per kilogram capacity. The biorefineries that are commissioned in the model are of a smaller scale 

than from the literature they are derived. In the economy of scale a smaller biorefinery has a relatively larger cost, 

thus has a negative influence on the investment for small-scale biorefineries. A cost capacity factor closer to one 

indicates economy of scale has less effect on the relative investment cost, this has a positive effect on small-scale 

biorefineries. A cost capacity factor below one indicates economy of scale plays a role, thus has a negative effect 

on small-scale biorefineries. As previously mentioned, since the model uses small-scale biorefineries, increasing 

the cost capacity factor reduces the effect of economy of scale, thus reducing the relative investment cost.  

The behaviour of the capacity diminishing rate on the NPV is as expected. A higher capacity diminishing rate 

advocates that biorefineries with higher capacities need to be constructed. This results in higher investment cost, 

thus a lower NPV. In the benchmark scenario the capacity diminishing rate used is the lowest value used for the 

sensitivity analysis. Consequently, in the sensitivity analysis the capacity diminishing rate is increased, resulting 

in lower NPV.  

From Figure 10 it is clear that the NPV is the least sensitive towards the fixed cost. The fixed cost compared 

to the two other costs is the lowest, thus has the least impact on the NPV.  

Figure 11 depicts the sensitivity analysis of each cost parameter, it is observed that all except the discount rate 

show non-linear behaviour. Figure 11 A. shows the sensitivity of the discount rate on the NPV. As expected the 

result shows that the discount rate has no influence on the decision variables of the model, only on the value of the 

NPV. This indicates that the model is robust as expected. 

The reason that the other sensitivity results show non-linear results originates from the model. All the cost 

parameters have an influence on the decision variables. Since the model is a mixed integer problem, non-linear 

behaviour can be expected. The cost parameter have such an influence on the decision variable 𝑄(𝑗,𝑞,𝜈) that it shifts 

the year in which a type of biorefinery is built. This shift in which year a biorefinery is built influence the NPV 

significant, since it can influence if there is revenue in a year. This is seen in the figures, where the non-linearity 

of some sensitivity analysis indicates that the model shifts in which year a biorefinery is commissioned. When a 

biorefinery is commissioned a year later, it will have different properties due to the learning effect and change in 

cost, thus a different capacity of biorefinery might be built. From this sensitivity analysis, it is clear that the year 

in which a biorefinery is built also has an impact on the NPV.  
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A. Discount rate (ρ) 

 

B. Variable cost (δ) 

 

C. Cost capacity factor (θ) 

 

D. Capacity diminishing rate (κ) 

 
   E. Fixed cost (ι) 

 

Figure 11 Results from the sensitivity analysis on the net present value (NPV) for each individual cost 

parameter in order of most dominant to least.  
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 Discussion 

In this research, the theoretical economic feasibility of valorising waste biomass of the city of Amsterdam is 

evaluated. However, during the research for both the technical and economic aspect assumptions were made. In 

this chapter a discussion about these assumptions is provided and some recommendations on how to proceed with 

further research about this topic. 

The model discussed in this research assumes all biorefineries are black box models, this to simplify the 

process. Black box models can be a good representation of real-life scenarios however, they provide less insight 

into the process. Since the different papers which describes the biorefineries have varying level of details, it was 

not possible to model the biorefineries as they were, it was decided to standardize them into black box models. By 

using models with greater detail of the biorefineries, technological bottle-necks could be discovered.  

Energy and CO2 emission are not included in the model, since the papers that were investigated not all provide 

this information. By modelling each biorefinery individually the energy consumption could be calculated and their 

respective CO2 emission. In addition, different scales of production were used in the model, it is unsure whether 

this influences the sustainability of a process. Perhaps small-scale can be economically interesting but not be 

environmentally sustainable. Modelling each biorefinery individually with different capacities could give 

information about these indicators.  

When including CO2 emission a constraint can be added in the model. The CO2 emission can be used as a 

performance indicator, to indicate the environmental sustainability of the results. Currently the model uses 

economic sustainability as objective, however, the concept of valorisation of waste biomass is to achieve a 

biobased economy. The biobased economy is to reduce the environmental impact of the production of 

commodities.  

The different valorisation techniques used in this framework consists of mechanical, chemical and microbial 

conversion technologies. The different technologies for the valorisation of wood consists of both chemical and 

mechanical. The technologies mentioned in Laure et al. (2014); Michels and Wagemann (2010); Zhou et al. (2011), 

and Win (2005) all use chemical conversion for the process of wood. These processes might need expensive 

solvents and chemicals, increasing the cost of the input materials. McAloon et al. (2000) uses microorganisms for 

the conversion of wood and Hayes et al. (2006) uses a combination of mechanical and chemical process steps for 

the valorisation. The valorisation of grass is all done mechanical for the proposed concepts, indicating there will 

be high energy cost but low cost of input materials. The processing of leaves is mostly done chemical, the cost of 

materials could be high if expensive chemicals are needed. Romero-García et al. (2016) uses enzymes for the 

valorisation of leaves, the price of the enzymes is unknown for the author. For the digesters microorganisms are 

needed to feed on the OMSW and produce biogas, only a small colony is needed since they can be self-sustainable 

if the conditions remain optimal.   

The use of chemicals for the valorisation of waste biomass might not be most sustainable process. Some type 

of chemicals can be harmful for the environment or are produced using eco-unfriendly processes. In this research 

it is assumed all processes are not harmful for the environment, however if this assumption is true for the input 

materials also needs to be investigated.  
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The biorefineries in these models can only handle one type of feedstock, however, in this scenario it would be 

more interesting to have biorefineries that can handle multiple types of feedstock. These biorefineries that can 

handle different type of feedstock are called phase-III biorefineries (Michels and Wagemann, 2010). The single 

processes of valorising a single feedstock are used on an industrial scale, however, the of integration of these 

processes is difficult to achieve. Since no technical and economic data could be found on phase-III biorefineries it 

is not included in the model (Michels and Wagemann, 2010). Phase-III biorefineries could have a significant 

impact on the valorisation of waste biomass due to their flexibility of accepting feedstock. This flexibility could 

ensure that the biorefinery is always utilized to its maximum capacity.  

In the current model, the capacity of some biorefineries is higher than their input in the first few years. This 

larger capacity is to ensure it can handle the growing amount of waste biomass in the future. However, this 

overcapacity is unwanted, since utilizing the biorefinery to the fullest is economically more interesting unless your 

variable cost per kilogram of waste biomass is higher than your profit per kilogram of waste biomass. However, 

in that scenario the biorefinery is economically infeasible. Thus it is more likely in a real-life scenario the left-over 

capacity will be eliminated by providing extra feedstock. 

In the model the biomass available from the municipalities green spaces and inhabitants of Amsterdam is 

available. However waste biomass from industries in Amsterdam could also be used in biorefineries, since in some 

scenarios there is an overcapacity for the biorefineries. An overview of the available waste biomass from industries 

could give insight into whether these streams could be included. If waste from industries is used correctly, it could 

increase the economic feasibility of some biorefineries.  

In addition, all waste that is treated in the model is assumed to be of good enough quality to process. If waste 

biomass is stored too long, the chemical properties of the biomass changes due to the growth of microbial 

organisms who feed on biomass (Sánchez, 2009). Thus waste biomass that is harvest needs to be processed as 

soon as possible to maintain the quality of the biomass. The effect of low-quality waste biomass for valorisation 

in a biorefinery is not been researched. Buijzer et al. (2015) mentions that some waste biomass is not suitable for 

valorisation due to its low-quality, this waste biomass is not included in the model. Buijzer et al. (2015) does not 

specify why it is not applicable for valorisation.  

For the valorisation of waste leaves it is assumed that the composition of the leaves is similar to sugar beet 

and olive tree leaves. This assumption was made since no literature about the usage of a biorefinery to valorise 

waste leaves was found by the researcher. To include the valorisation of waste leaves, techniques that valorise 

other types of leaves was investigated. Sariyildiz and Anderson (2005) mentioned that there is a large variation 

between fresh leaves and waste leaves, where the composition of waste leaves show low values for cellulose, 

hemicellulose and lignin due to decomposition. In addition the composition of waste leaves is dependent the 

species of tree, collection methods and weather prior to collection, storage of the leaves and the contamination by 

impurities (Heckman and Kluchinski, 1996; Pňakovič and Dzurenda, 2015). Since the valorisation of waste leaves 

only showed economic feasibility in the good scenario, assuming the waste leaves have a high-quality composition, 

it is unlikely valorisation of waste leaves is worth further investigation.    

The model operates in an island mode, which means there is no interaction between Amsterdam and other 

cities. The pprofitability of refineries might increase if the waste biomass of surrounding areas is also included. 



 

37 

 

Perhaps farmland near Amsterdam could use the grass refinery to process their grass into higher valued products. 

The import of biomass from further areas is not always economically interesting due to the transportation cost. 

Transportation cost in the biobased economy can be of influence on the economic feasibility of certain 

technologies (Langeveld et al., 2012). In this model transportation has been left out since in the city of Amsterdam 

waste biomass is already collected, indicating collection for waste biomass shows no issues (Ekşioğlu et al., 2009). 

It is assumed that this collection is similar to what is needed for the valorisation of the waste biomass. However, 

the location of current waste treatment facilities might not be optimal for biorefineries since these processes need 

different conditions than waste treatment facilities. Furthermore, the chemicals of biorefineries might not be 

allowed to be transported in certain areas of the city (Adriaansen, 2006). By creating a logistic model that can 

cooperate with the current model, suitable locations for the biorefineries can be found.  

The research on the biorefineries is from different countries, but the cost of a biorefinery is dependent on their 

location (Bünger, 2012). Only accurate measurements for a specific biorefinery can be performed if also the 

location is known. Many assumptions made for the investment cost of a biorefinery are different among countries. 

One of these assumptions is that the location factor is similar to the Netherlands as the USA, this factor is used for 

the calculation of the CEPCI (Wright and Brown, 2007).  

For the prices changes of the biorefineries over the years different parameters are applied. The CEPCI is a 

price index used for the price prediction and comparison of chemical plants. In this study this index is applied for 

biorefineries, if this index can be used for this purpose has not been investigated. A biorefinery could be 

categorised as a chemical plant, Gargalo et al. (2016b) used it for the economic evaluation of different 

biorefineries. In addition, the accuracy of the prediction of CEPCI decreases over time making it less reliable 

(Mignard, 2014).  

When looking at the CEPCI of the different scenarios, given in Appendix D, it is shown that the CEPCI for 

the benchmark scenario starts lower than the good scenario. Around the year 2040 the benchmark scenario 

overtakes the good scenario. This seems unlikely since an higher CEPCI indicates an higher cost of biorefineries. 

In the good scenario it is expected that the CEPCI is the lowest. This is the result of the price of oil, which in the 

good scenario is high since that is beneficial for a biobased economy. However it causes the CEPCI to increase, 

thus has negative influence on the cost of biorefineries.  

Since cost parameters for biorefineries are mostly unknown due to the low technical readiness level of most 

technologies, cost parameters of other sectors are applied. Some of the references for cost parameters are from 

research about the bio-energy and oil-refinery sectors, since those are closely related to the biorefinery sector. Bio-

energy consists also of technologies that use waste biomass for the production of electricity, while the technique 

of oil-refinery is closely related to the biorefinery sector (Cherubini, 2010; Jiang et al., 2017). 

In the model salvage value of biorefineries for whom the lifetime has exceeded is not included. Determining 

the salvage value is difficult when the salvage value is minimal it can be included in the depreciation and assumed 

that it is zero when reaching its lifetime. However the salvage value of the biorefineries is unknown, thus assumed 

to be zero. This assumption is based on that the cost decommissioning a biorefinery is equal to its salvage value. 

The learning rate is given exogenously to the model, where a fixed value is given for each year. In industry-

learning it is known that these values can be volatile and uncertain, thus prediction is problematic (Daugaard et 
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al., 2015). Furthermore, from theory the learning factor is linked with the cumulative production. The learning 

effect describes how cost reduces due to production experience, the sum of production describes this experience. 

In this model the learning rate is given exogenously instead of being a function of production. The reason is that 

production in our model only takes place in the city of Amsterdam, while outside our boundary also biorefineries 

might be constructed that influence the learning factor (Junginger et al., 2006). Since these are not included, the 

learning effect cannot be an accurate function of production within this model.  

A maximum conversion efficiency is given to the model, based on the assumption perfect conversion is not 

feasible. The conversion of waste biomass is gradually increased to reflect the improvement in the technologies of 

biorefineries. However, the theoretical maximum efficiency for the different technologies is not used in this 

research since it is unknown. Since some of the products valorised from the waste biomass are dependent on the 

chemical components in the biomass a theoretical maximum efficiency can be derived. Since the literature from 

which the biorefinery technologies are derived do not discuss these maximum efficiencies it is decided to fix it at 

95%.  

In the research of Ros (2017) the conversion of grass into value added products an efficiency of 100% was 

used. Since the maximum conversion efficiency in this research was assumed to be 95%, the conversion described 

in Ros (2017) was adjusted by multiplying the conversion efficiency with 0.95.  

Currently the city of Amsterdam does not separate all of its waste biomass. It is assumed that is changed in 

the year 2020, however extra investments might be needed to achieve separation. These costs have not been 

included in the model and might influence the economic feasibility of some biorefineries. Especially separating 

the garden waste can be problematic.  

In the current model the garden waste consists of four different categories as seen in Table 13. It is assumed 

in the small fraction a portion is leaves and grass, the rest of the fraction is combined with the OMSW. However, 

this small fraction might also include stones and sand, heavy materials that are not applicable in the technologies 

for valorising the OMSW (Boldrin and Christensen, 2010). Since the quantity of garden waste that is not valid for 

valorising is unknown it is assumed all garden waste is appropriate for refining.  

From the digester for the valorisation of OMSW only a small fraction is processed, a large fraction of the 

OSMW becomes residue. This residue could have other application, from digesters digestate is a by-product that 

can be used as a fertilizer. However, legislation prevents digestate from OMSW to be utilized in the agricultural 

sector. Dactech Milieu et al. (1992) mentions that this digestate holds no monetary value.  

Van Dael et al. (2014) a research about the valorisation of waste biomass was also conducted. In that research 

it was concluded that also OMSW was not profitable, as solution an extra step to valorise the biogas was 

introduced. In this research only the first process step of converting the waste biomass into a product was 

conducted. The output of products can be valorized into higher valued products, this might make the valorization 

process economically feasible as in Van Dael et al. (2014). Extra operating units for the conversion of products 

have not been included into this model. It was assumed the price of the commodity would reflect the opportunity 

cost of valorizing it into a higher valued product.   

Currently OMSW is processed in digester to produce biogas even though our results show this is not 

economically profitable. However, in our model only the OMSW from the city of Amsterdam is used in the 
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digester, current practices for the processing of OMSW also include waste biomass from other municipalities. 

Since larger quantities of OMSW are processed economy of scale has a positive influence on the economic 

profitability. In addition, subsidies are available for the production of biogas from OMSW, increasing the 

economic viability of digesters (Beumer and Verbong, 2005; Peene et al., 2011). These subsidies are not included 

into this model.  

OMSW shows much variation in its composition, due to seasonal variation but also origin. Hanc et al. (2011) 

shows that OMSW has a different composition when coming from apartment than houses. Since the city of 

Amsterdam has both types of housing, for this model it is assumed that the composition is as described in 

Rajendran et al. (2014), since they designed the valorisation of the OMSW from households. However, it is 

unknown if the composition of OMSW in the city of Amsterdam is identical as in Rajendran et al. (2014). 

Furthermore, seasonal variation has an influence on the composition of OMSW (Boldrin and Christensen, 2010). 

However since the model uses time steps of one year, seasons are not included. 

The influence of a smaller time step in the model is not investigated. From the sensitivity analysis it can be 

concluded that the time step of one year causes non-linear results. A smaller time-step might solve this non-

linearity in the sensitivity analysis. How this will affect the results cannot be concluded, the hypothesis is that the 

NPV would increase. More flexibility in the dates of commissioning a biorefinery could result in cost reduction. 

The biorefinery does not need to be commissioned at the beginning of the year, but when required in the year. 

Therefore the utilisation of the biorefinery is better since it might be low at the beginning of a year. Furthermore, 

the effect of seasonal variation in the waste biomass could be included in the model.  

Syngas is not included as a viable option for the valorisation of waste biomass. It is decided to not include it 

due to the production method of syngas, where the complex molecular structures of waste biomass are broken 

down. Syngas is not a circular production method, therefore not included in the model. In addition, it is not 

expected that syngas will have an impact on the valorisation for biomass in the next 30 years (Haveren et al., 

2008). 

The calculation of the NPV is performed by adding the discounted cash flows of the year 2020 until 2050. 

However, the model is set to maximize the NPV until 2070, due to the end of time horizon effect. The cash flows 

after 2050 are disregarded, however they influence the objective function since they are included. It was tested if 

changing the objective function to maximize the NPV until 2050 and let the model run until 2070, however, due 

to the relaxation of constraint equation 3 the model decided to not valorise any waste biomass anymore after 2050. 

Therefore it is decided to maximize the NPV until 2070 and only to investigate the NPV until 2050. If the NPV is 

negative, it is assumed to be zero, since a negative NPV indicates economic infeasibility thus would not be 

financed.  

From the sensitivity analysis the profitability of the valorisation of waste biomass is mostly dependent on the 

discount factor. This parameter represents the trade-off between risk and reward of investing into processing waste 

biomass. The parameter is subjective for investors, indicating no “true” value exists. This subjectivity can influence 

the incentive of policy makers to participate in a biobased economy. 

Tsiropoulos et al. (2017) estimated that the total production of biochemicals could be 1.1 Mt in the year 2020 

for the Netherlands. The total amount of products valorised from the waste biomass could reach up to 0.3% 
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however, this result is low since only grass is valorised in the year 2020 for all scenarios. When applying the year 

in which the most waste biomass is valorised the most efficient it could account for 1.6% of the total production 

of biochemicals. This figure might seem low, however the study of Tsiropoulos et al. (2017) investigates all 

biomass, the waste biomass from the city of Amsterdam is only a small fraction but can still have an impact. In 

addition globally the population of cities is increasing, other cities might have even bigger impact on the biobased 

economy (Angel et al., 2011). 
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 Conclusion 

In this study a technical and economic analysis of the potential of valorising urban biomass waste streams into 

high value products is performed. The objective of the research was to find the most economically advantageous 

use of the waste biomass for the forthcoming decennia. As case study the city of Amsterdam is chosen, it’s one of 

the global leaders in making its city sustainable, from the city four different waste biomass are processed: wood, 

grass, leaves and OMSW. The four processing technologies in this case study are: wood refineries, grass refineries, 

leaves refineries and digesters.  

In all scenarios the economic profitability of valorising wood and grass were positive, indicating that 

investment into these technologies is worthwhile. For the valorisation of leaves and OMSW more incentives are 

needed to make them economic profitable. The main issue for the valorisation of leaves is the low quantity in 

combination with high investment cost, causing for an unprofitable concept. The processing of OMSW is 

unprofitable due to its low conversion efficiency, resulting in a low revenue that cannot cover the costs. For all 

four cases the small-scale biorefineries have negative influence on the NPV, when processing large quantities of 

biomass benefits from economy of scale can be achieved.  

It was shown that whether waste biomass was processed was not much influenced by the different scenarios, 

only the year in which the valorisation started shifted. However, there was a difference among the size of the NPV 

between the different scenarios, thus indicating that a good scenario could stimulate the investment in valorising 

urban waste biomass. 

To conclude it is shown that valorising urban waste biomass shows potential for the city of Amsterdam. The 

methodological framework proposed in this theses can help policy-makers in the decision-making of the allocation 

of urban waste biomass streams in the future. The result showed that the usage of waste biomass for the biobased 

economy is promising.  
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Appendices 

Appendix A. Population growth of Amsterdam 

 

Figure 12 The growth prognosis of the inhabitants of the city of Amsterdam (Gemeente Amsterdam, 2017). 

The fit of the trendline is given, a second order polynomial is used. 

Appendix B. Available waste biomass growth 
A. Wood 

 

B. Grass 

 
C. Leaves 

 

D. Organic municipal solid waste 

 

Figure 13 The quantity of waste biomass each year for different scenarios, for grass and organic municipal 

solid waste the good and bad scenario are overlapping. The scale of the quantity is different between the 

biomass. 
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Appendix C. Availability of new technologies 

 Benchmark scenario Good scenario Bad scenario 

 2020 2030 2040 2020 2025 2035 2020 2035 2045 

Wood refinery 1 0 1 1 0 1 1 0 1 1 

Wood refinery 2 0 1 1 0 1 1 0 1 1 

Wood refinery 3 0 0 1 0 0 1 0 0 1 

Wood refinery 4 1 1 1 1 1 1 1 1 1 

Wood refinery 5 0 1 1 0 1 1 0 1 1 

Grass refinery 1 1 1 1 1 1 1 1 1 1 

Grass refinery 2 0 1 1 0 1 1 0 1 1 

Grass refinery 3 0 1 1 0 1 1 0 1 1 

Grass refinery 4 0 1 1 0 1 1 0 1 1 

Leaves refinery 1 0 0 1 0 0 1 0 0 1 

Leaves refinery 2 0 0 1 0 0 1 0 0 1 

Leaves refinery 3 0 0 1 0 0 1 0 0 1 

Leaves refinery 4 0 0 1 0 0 1 0 0 1 

Leaves refinery 5 1 1 1 1 1 1 1 1 1 

OMSW digester 1 1 1 1 1 1 1 1 1 1 

OMSW digester 2 1 1 1 1 1 1 1 1 1 

OMSW digester 3 1 1 1 1 1 1 1 1 1 

OMSW digester 4 1 1 1 1 1 1 1 1 1 

Figure 14 The availability of new technologies (ω) where a zero indicates the technology is not available 

and an one indicates that technology becomes available in that year. When a technology becomes available, it 

remains available in the next coming years. 

 

Appendix D. CEPCI, prime loan rate and oil price 

 

Figure 15 The chemical engineering plant cost index (CEPCI) for the three different scenarios. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

2020 2030 2040 2050

C
E

P
C

I 
(-

)

Benchmark scenario Bad scenario Good scenario



 

53 

 

 

Figure 16 The oil price for the three different scenarios (EIA, 2017). 

 

Figure 17 The prime loan rate for the three different scenarios (EIA, 2015). 
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Appendix E. Results for the bad scenario 
A. Wood 

 

B. Grass 

 
C. Leaves 

 

D. Organic municipal solid waste 

 

Figure 18 The capacity built of different refineries and the available biomass for each year in the bad 

scenario. The capacity build or quantity of biomass scale is different among the four graphs. 
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A. Wood 

 

B. Grass 

 

Figure 19 The total capacity installed and used of different refineries and the available biomass for each 

year for the bad scenario. Only wood and grass are presented, for those biomass a biorefinery was built. The 

total capacity installed and used or quantity of biomass scale is different among the two graphs. 

 

Figure 20 The total products produced from the waste biomass each year for the bad scenario. 
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Appendix F. Results for the good scenario 
A. Wood 

 

B. Grass 

 
C. Leaves 

 

D. Organic municipal solid waste 

 

Figure 21 The capacity built of different refineries and the available biomass for each year in the good 

scenario. The capacity built or quantity of biomass scale is different among the four graphs. 
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A. Wood  

 

B. Grass 

 
C. Leaves 

 

D. Organic municipal solid waste 

 

Figure 22 The total capacity installed and used of different refineries and the available biomass for each 

year for the good scenario. The total capacity installed and used or quantity of biomass scale is different among 

the two graphs. 
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Figure 23 The total products produced from the waste biomass each year for the good scenario. 
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