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CHAPTER 1    

INTRODUCTION 



Chapter 1 

Banana and Plantain 

Food security is a major concern with an expected increase of the global population to 

nine billion people in 2050 (Godfray et al., 2010). Traditionally, the major staple foods wheat, 

rice, and maize are considered to be of prime importance to secure sufficient food for the 

future (FAOSTAT, 2015). However, reducing food waste and diversifying diets are also 

important drivers for food security. For instance, the consumption of vegetables is very 

important for proteins and vitamins, but still far below the required level in many countries 

(Godfray et al., 2010). In addition, other crops are of prime importance as staples for millions 

of people. These include crops such as cassava, millet, but also bananas and plantain. Such 

crops are frequently called “orphan crops” as they are far less attractive for research, hence 

research and development are generally lagging behind compared to the aforementioned 

leading staples, but ironically feed millions of people (Esfeld et al., 2013). Bananas originated 

in Southeast Asia, where a long domestication period of wild species derived from inter- or 

intra crosses between the founding seeded diploid banana species Musa acuminata (AA, 

2n=22) and M. balbisiana (BB, 2n=22) resulted into a great diploid, triploid and tetraploid 

diversity with over 1,000 registered accessions. The edible sterile triploids, comprising AAA, 

AAB (plantain) and ABB (cooking banana), several tetraploids and parthenocarpic diploids 

are clonally propagated (Heslop-Harrison and Schwarzacher, 2007; Ortiz and Vuylsteke, 

1994), which contributed to their dissemination into all tropical and subtropical areas. 

Roughly, local varieties are the preferred fruits and staples at domestic markets, whereas the 

AAA triploids such as “Cavendish” are the preferred commodity (Valmayor et al., 2000) that 

is produced across all tropical and sub-tropical environments with Ecuador as the prime 

exporter  (Table 1, FAOSTAT, 2015).  In short, banana is a major crop in the developing 

economies of Asia, Africa and Latin America for both domestic and export markets. Over 

80% of the global production is locally consumed and just 17 million tonnes (18%) with a 
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monetary value of 29.3 billion US$, is representing the top fruit in Western supermarkets 

(FAOSTAT, 2015). 

 

Table 1. Major producers, exporters and importers of banana and plantain 

Producers*  Exporters**  Importers** 

 Million metric tonnes   (%)   (%) 

India 26.217  Ecuador 23.3  United States 18.8 

Philippines 8.687  Guatemala 10.5  Belgium 8.8 
China 8.042  Costa Rica 8.5  Russia 7.1 

China mainland 7.834  Belgium 8.0  Germany 7.1 

Brazil 6.998  Colombia 7.8  Japan 6.6 
Ecuador 6.701  Philippines 5.3  United Kingdom 5.9 

Indonesia 6.005  Netherlands 3.8  China 4.2 

Guatemala 2.448  Dominican Republic 3.8  Netherlands 3.7 
United Republic 

of Tanzania 

2.447  United States 3.7  Italy 3.5 

Mexico 2.151  Ivory Coast 3.1  France 3.3 

Others 62.675  Others 22.2  Others 31.0 

Sources: FAOSTAT2015. Data from 2014*   

www.worldtopexports.com. Data from 2016 ** 

The sterile - thus seedless - triploid edible bananas, such as the “Cavendish” varieties, 

are vigorous high-yielding plants that are easily propagated and have an acceptable taste. The 

tailored logistic chain seamlessly provides millions of bananas on a daily basis to Western 

consumers. Cavendish varieties dominate the export trade due to their resistance to Panama 

disease or Fusarium wilt that is caused by the soil-borne fungus Fusarium oxysporum f. sp. 

cubense (Foc). The so-called Race 1 strains of this fungus (Ordonez et al., 2015) wiped out its 

predecessor, the “Gros Michel” bananas in Latin America in the previous century (Ploetz, 

2015, 2006). As a result, the transnational export companies were gradually changing to the 

less preferred, but resistant “Cavendish” clones, a process strongly intermingled with politics 

and societal unrest (Koeppel, 2008). Despite their resistance to Panama disease, “Cavendish” 

bananas are highly susceptible to black Sigatoka, a destructive foliar blight caused by the 

Dothideomycete Pseudocercospora fijiensis (previously Mycosphaerella fijiensis Morelet). 
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This disease is a major concern to the industry as the foliage has to be disease free to avoid 

premature ripening which turns the crop unfit for export. Since “Cavendish” bananas are very 

susceptible to P. fijiensis, fungicides are a cornerstone for global export banana production 

(Lepoivre P., 2003; Marín et al., 2003). In addition, other pathogens and pests challenge 

bananas wherever they are grown, including fungal, bacterial and viral disease as well as a 

range of nematode and insect pests. Nematodes are important soil-borne threats of banana, 

primarily the endoparasitic Radopholus similis, which is the most damaging species 

worldwide, along with other species such as Helicotylenchus spp., root-lesion and root knot 

nematodes from the genera Pratylenchus  and Meloidogyne, respectively (Speijer and De 

Waele, 1997).  

The banana weevil Cosmopolites sordidus is the most serious insect pest in most 

production environments, but thrips species cause major cosmetic damage to the fruit for the 

export trade (Dubois and Coyne, 2011; Gold et al., 2001). Besides, stem borers, moths, 

beetles, fruitflies and whiteflies are significant pests (Gold et al., 2001). The latter two excrete 

honeydew, facilitating foliar and fruit molds, thereby reducing the market value. Aphids often 

transmit viruses such as banana bunchy top virus (BBTV), which is a major constraint to 

production in several African countries. The disease can be prevented with regular inspections 

and destruction of infected plants (Kumar et al., 2015), but extension frequently fails and 

hence local epidemics jeopardize production. Banana streak virus (BSV) is a complex of 

different circular dsDNA episomal viral species that are integrated in the genomes of banana 

varieties with the B genome (Iskra-Caruana et al., 2014).  

In the group of bacterial diseases, Xanthomonas wilt, caused by Xanthomonas 

campestris, Moko disease, caused by Ralstonia solanacearum biovar 1 race 2, and brown rot 

caused by Ralstonia solanacearum biovar 1, race 1, are major threats to bananas and 

plantains. They are dispersed by insects and contaminated tools worldwide, but their 
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incidence is remarkably irregular (Tinzaara et al., 2006). Recent advances in breeding and 

genetic engineering provide new options for disease control (Tripathi et al., 2014). 

As mentioned before, with respect to fungal disease, “Cavendish” quenched the 

Panama disease epidemic (Ploetz, 2006). However, since the 1960 another Foc strain - 

colloquially called Tropical Race 4 (TR4) - has emerged that now develops into a pandemic 

thereby threatening the entire “Cavendish” production, which comprises approximately 40% 

of the global production with immense importance for domestic and export markets. Due to 

the “orphan crop” label, investment in research and development has been minimal over the 

past decades and hence, there is no commercially viable replacement for these varieties. In 

addition, TR4 also kills many local varieties. Thus “Cavendish”, once a blessing, now is a 

vehicle for disaster. Lack of attention, unawareness of the problem and poor vision have left 

growers with unmanageable disease problems and therefore, new initiatives are urgently 

required that professionalize the development of new plant material through advanced 

breeding programs. Until new varieties reach the market, bluntly, exclusion is basically the 

only effective control strategy for the majority of banana disease and pests.  

 

Pseudocercospora fijiensis 

The black Sigatoka fungus P. fijiensis was originally described by Rhodes (1964) in 

the Sigatoka district, on Viti Levu, Fiji islands. Together with P. musae (previously M. 

musicola) causal agent of Sigatoka disease, and  P. eumusae (previously M. eumusae) that 

causes Septoria leaf spot, they form the Sigatoka complex, as these pathogens can coexist on 

the same leaf or in the same lesion even along with other fungi of minor economic importance 

(Arzanlou et al., 2008). Sigatoka pathogens diminish photosynthetic capacity due to leaf 

necrosis (Lepoivre P., 2003; Marín et al., 2003; Okole and Schulz, 1997), induce early 
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ripening and reduce bunch weight up to 40% (Castelan et al., 2012) unless crop protection 

agents are used. 

The main dispersing propagules of this bipolar heterothallic pathogen are the sexual 

air-borne ascospores, and the asexual conidiospores, which are continuously produced under 

field conditions.  The disease cycle starts when spores land on the abaxial side of the youngest 

“cigar” leaf. Therefore, disease symptoms initially appear at the perimeter of the leaf towards 

the midrib. Under favorable conditions (>25°C temperature, 95% relative humidity for at least 

72h) spores germinate, grow epiphytically and enter the leaf through stomata and 

subsequently, hyphae colonize the apoplastic space of the mesophyll and accumulate in the 

substomatal cavities to produce the fructifications thereby gradually forming chlorotic lesion 

in the foliage that eventually expand into large coalescing necrotic blotches. According to 

Meredith and Lawrence (1969) and Fouré (1985), disease development can be divided into six 

stages. The first necrotic spots appear at the abaxial leaf side, not even visible by transmittent 

light. When spots enlarge parallel to the veins, they become visible also at the adaxial side, 

which is distinctive of stage 2 and sporodochia are generated to produce and release conidia 

on conidiophores, which emerge through stomatal openings at both sides of the leaf. Conidia 

disperse typically just a few meters by wind or splash as well as by contact with other leaves. 

Once streaks coalesce to form larger and ticker streak lesions, stage 3 is reached. In the 

meantime, sporodochia develop spermagonia with spermatia that are required for the sexual 

reproduction. At stage 4 lesions on both leaf sides darken and at stage 5 these lesions become 

depressed and surrounded by a yellow halo. Eventually, lesions develop into paper-like dry 

and whitish/greyish colored blotches, surrounded by a dark border and the yellow halo that 

over time coalesce into large necrotic blotches with dry and inner gray zones bearing the 

perithecia that are visible as minute dark spots on both sides of the foliage. They discharge 

air-borne ascospores upon drastic changes  in relative humidity, which disseminate over 
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relatively short distances (Burt et al., 1999; Rieux et al., 2014) and start a new disease cycle 

(Figure 1).  

 

Figure 1. The black Sigatoka disease cycle.  

The evolution of the Sigatoka complex results in visually undistinguishable symptoms 

of the individual Pseudocercospora species. Yellow Sigatoka spread globally but was 

gradually outcompeted by the more aggressive black Sigatoka disease. Presently, P. musae is 

confined to highland regions > 1000 m with a few exceptions (Amil et al., 2007), whereas P. 

fijiensis has spread from Fiji (Rhodes P.L., 1964) to almost all tropic and subtropical areas 
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where bananas are grown and is still migrating to new areas, for instance in Brazil where the 

Northeast region is still not affected due to a “buffer zone” that is already affected (Brito et 

al., 2015), and in Australia where it was eradicated during an intensive campaign (NSW 

Primary Industries, 2013). Field populations of P. fijiensis are genetically extremely diverse 

due to their bipolar heterothallic mating system (Carlier, 1994; Chong, 2016; Conde-Ferráez 

et al., 2007). Yet, the global population can be divided into four main groups: Southeast Asia, 

Pacific Islands, Africa and Latin America that all trace back to the gene center of banana in 

Southeast Asia (Carlier, 1994; Carlier et al., 1996). Founder effects of these populations have 

shown that the dissemination of P. fijiensis was mainly due to human transport of 

contaminated plant material, as often leaves are used for different activities, such as food 

wrapping and transport of the fruit. Thus the independent introductions in Latin America and 

Africa in 1972 and 1973, respectively, generated two genetically highly diverging 

populations. At the continental scale, stochastic spreading has been suggested by either a 

limited natural dispersal of ascospores or by transport of infected material (Carlier et al., 

1996; Rivas et al., 2004). Most of these conclusions were derived from extensive populations 

genetic analyses by using a wide array of genetic markers, which comprise restriction 

fragment polymorphisms (RFLPs) (Carlier, 1994; Carlier et al., 1996; Hayden and Carlier, 

2003), AFLP, SSRs, Microsatellites (Mueller R. et al., 1995; Neu C. et al., 1999); PCR-RFLP 

(Fahleson et al., 2009; Hayden and Carlier, 2003; Zapater et al., 2004), and recently also 

genome sequence based markers including single nucleotide polymorphisms (SNPs) 

(Zandjanakou-Tachin et al., 2009), mini satellites and variable numbers of tandem repeats 

(VNTRs) (Chong, 2016; Garcia et al., 2010). These data were used to scrutinize the structure 

of local populations and underscored the huge diversity at all levels, even between isolates 

derived from one lesion (Arzanlou et al., 2007; Müller R. et al., 1995; Müller et al., 1997), 
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which was also reported for the related Zymoseptoria tritici pathogen of wheat (Linde et al., 

2002). 

The third species of the Sigatoka complex, P. eumusae is spreading towards Asia and 

Africa (Carlier et al., 2000; Crous and Mourichon, 2002) and is considered to be more 

aggressive than P. fijiensis (Zandjanakou-Tachin et al., 2013). As mentioned above, these 

Pseudocercospora species trigger similar symptoms in banana and plantain leaves, are 

morphologically similar and often coexist in the same leaf (Carlier et al., 2000; Crous and 

Mourichon, 2002). Pseudocercospora fijiensis can be clearly differentiated from P. musae 

with genetic markers, based on the ITS1 region (Johanson and Jeger, 1993). In 2007, TaqMan 

markers were identified by Arzanlou et al. (2007), which quantitatively detect the individual 

species. Recently, Chang et al. (2016) showed that the infection biology of P. eumusae 

slightly differs from P. fijiensis and P. musae. These data, altogether, contribute to a better 

understanding of the Sigatoka complex and its control in banana and plantain.  

 

Control of Pseudocercospora fijiensis 

The management of P. fijiensis in banana is challenging because export bananas are 

typically cultivated in large monocultures. Despite the use of different control strategies, 

including good field practices such as early warning/forecasting systems, symptoms 

screening, biocontrol agents and leaf pruning, the only truly effective black Sigatoka 

management relies on frequent fungicide applications (Chong, 2016). Evidently, such 

frequent applications - usually >50 times per year - drive selection in pathogen populations, 

requiring even more applications that eventually spiral into unmanageable disease situations 

and a fall back to protectants that threaten the often precautious tropical environments and 

plantation workers even more and take a 30% share of the overall production costs (Chong, 
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2016; FRAC, 2010; Marín et al., 2003). The versatility of the fungus to maintain genetic 

diversity through its continuous sexual reproduction complicates disease control due to an 

unparalleled trend towards reduced sensitivity. Therefore, complex spraying schedules are 

developed to minimize this trend. These comprise a range of chemistries, including 

protectants such as benomyl (Stover R.H., 1990), chlorothalonil and the dithiocarbamates 

mancozeb (Romero and Sutton, 1997) that are considered as “low-resistance” risk products 

(FRAC, 2010). Besides, they include systemic fungicides, such as the demethylase inhibitors 

(DMIs) and strobilurins (Amil et al., 2007; Sierotzki et al., 2000). Despite the reduced 

sensitivity to DMIs in most production environments they are still the cornerstone of black 

Sigatoka disease management (Cañas-Gutiérrez et al., 2009; Marín et al., 2003). Clearly, there 

is a great need to better understand the mechanisms of reduced sensitivity, which is essential 

to develop better management strategies. The Fungicide Resistance Action Committee 

(FRAC) banana working group monitors and evaluates control strategies and recommends on 

active ingredients and application strategies to minimize sensitivity loss. Recent research 

described a global sensitivity map base on analyses of the Pfcyp51 gene, which is the target 

for DMIs (Cañas-Gutiérrez et al., 2009; Chong, 2016). Interestingly, a recent market pull also 

favored alternative technologies and production areas enabling the export of organic bananas 

that are grown in areas which are not conducive for P. fijiensis, such as in Peruvian highlands, 

and hence do not require fungicide applications (USDA, 2008). The demand and export of 

such organic bananas annually increases up to 19% according to “Peru: organic banana 

exports grow by 19%” (2016).  
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Host resistance to Pseudocercospora fijiensis 

As mentioned above, the predecessors of the commercial banana and plantain varieties 

are the seeded diploids M. acuminata and M. balbisiana. Edible banana, however, share one 

common denominator, which is seedlessness, either due to triploidy or parthenocarpy 

(Heslop-Harrison and Schwarzacher, 2007; Perrier et al., 2011; Sardos et al., 2016). Clearly, 

breeding bananas requires seed production and smart strategies to eventually develop 

seedless, edible fruits while capturing genetic diversity. Yet, low fertility, triploidy, slow 

propagation, space requirement and cycling time all contributed to a complex process that has 

not attracted manifold breeders and hence, the release of new attractive germplasm has been 

minimal over the last decades (Ploetz et al., 2015). Therefore, crop improvement has largely 

concentrated on selection within clones, for instance for productivity, fruit flavor, hardiness, 

height, bunch weight and shelf life. Evidently, under such conditions and circumstances, on 

top of the “orphan status” of banana, progress on the genetic control of fungal disease has 

been extremely slow, and with regard to black Sigatoka, hardly any progress has been 

realized. As a matter of fact, not a single gene for resistance to black Sigatoka has been 

identified, which is an important basis for improving resistance to this disease. Genetic 

analyses that have used natural inoculum for phenotyping segregating populations are 

essentially useless due to the known genetic diversity of natural populations and the huge 

effect of fluctuating environmental factors (Ortiz and Vuylsteke, 1995). In conclusion, the 

very basic work for understanding the banana-black Sigatoka pathosystem has still to start. 

The current thesis is a humble effort to begin developing the required basis for advanced 

(population) genetics and genomics studies of P. fijiensis to close existing knowledge gaps 

supporting the development of a more sustainable banana production.   

Fullerton and Olsen (1995) were the first to challenge a differential set of banana and 

plantain accessions with individual P. fijiensis isolates from three global populations and 
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compared these data  with previous field performance. Such data are basic, yet crucial to 

understand diversity. Other, previously considered notoriously difficult pathosystems such as 

Leptosphaeria maculans-Brassica napus (Balesdent et al., 2002) and Zymoseptoria tritici-

wheat (Brading et al., 2002; Ghaffary et al., 2011; Habig et al., 2017; Kema et al., 2018; 

Kema et al., 2000; Mirzadi Gohari et al., 2015), are current model systems that are grounded 

in large host-pathogen matrices that eventually resulted in the identification of a range of 

resistance genes that are applied in contemporary advanced breeding programs (Goodwin, 

2007; Kohli and Skovmand, 1997; Rouxel and Balesdent, 2013). Phenotyping diversity in the 

banana-P. fijiensis pathosystem is evidently more complicated, hence it would benefit from a 

smart, simplified selection process, for instance by using effectors. Previously, highly 

resistant, partially resistant or susceptible responses to P. fijiensis have been reported (Fouré 

et al., 1990; Mourichon et al., 1987), and cytological studies revealed that only the resistant 

host displayed an immediate response upon stomatal penetration (Beveraggi et al., 1995), 

suggesting a gene-for-gene relationship and partial resistance between P. fijiensis and 

“Yangambi Km5” and “Fougamou”, respectively. However, the resistance of “Yangambi 

Km5” was eventually circumvented, even without commercial exploitation and increased 

selection pressure, which eventually resulted in establishing the International Musa testing 

program (ITMP). It initially comprised hybrids from the Honduras Foundation for 

Agricultural Research (FHIA) and a differential set of standard clones that were planted at 

geographically different locations in Latin America and Africa (Jones, 1994). Data analyses 

identified M. acuminata spp. burmannicoides “Calcutta 4” as a reference for resistance to P. 

fijiensis (Table 2; Jones and Tézenas du Montcel, 1994).  

 

Table 2. Results of the International Musa testing program, Phase 1 surveying for resistance to black 

Sigatoka (INIBAP, 1992). 
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Accessions 

International 

Transit 

Centre Code 

Genome 

formula 

Type Response to 

Black Sigatoka 

Tuu Gia 0610 AA Edible cultivar ER 

Musa acuminata spp. 

burmannicoides 
0249 AA Wild species ER 

Musa acuminata spp. malaccensis 0609 AA Wild species ER 

Pisang Lilin 0001 AA Edible cultivar HR 

Pisang Berlin 0611 AA Edible cultivar R 

Pisang Mas 0653 AA Edible cultivar R 

Musa balbisiana 0405 BB Wild species R 

SF215/NBA14 0267 AA Edible cultivar S 

Niyarma Yik 0269 AA Edible cultivar HS 

 
ER: Extremely 

resistant 

HR: Highly 

resistant 

R: Resistant S: Susceptible HS: Highly 

susceptible 

 

 

In the pre-genomic era, attempts to identify and use phytotoxins (Molina, 1989; Okole 

and Schulz, 1997; Stierle et al., 1991; Strobel et al., 1992; Upadhyay et al., 1990) tried to 

avoid the necessary aforementioned groundwork, but did contribute to a deeper understanding 

of pathogenesis on resistant and susceptible banana varieties. More recently, Hoss et al. 

(2000) found that 2,4,8-trihydrotetralone accumulates in susceptible bananas just before 

severe disease symptoms develop, while the timing in resistant bananas occurred during the 

very early stage of infection. Finally, additional attempts for resistance screening included the 

use of juglone, other toxins and secondary metabolites belonging to phenylpropanoid pathway 

(Chuc-Uc et al., 2011; Cruz-Cruz et al., 2009; Hadrami et al., 2005; Otálvaro et al., 2007), 

suggesting phytoalexins to play a role. Molecular analyses have also discovered a first insight 

in the defensive arsenal of banana and include the generation of H2O2 (Beltrán-García et al., 

2014; Cavalcante et al., 2011; Torres et al., 2012), peroxidase, phenylalanine amonia lyase, -

1,3-glucanase (Torres et al., 2012) and chitinases (Escobar-Tovar et al., 2015a; Torres et al., 
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2012). However, as pointed out above, the major missing yet required link is a better 

understanding of the genetics of resistance and pathogenicity. Unveiling the genetic basis of 

resistance in “Calcutta 4” is still pending, which is mostly due to the poor amenability of P. 

fijiensis. The genome sequencing of M. acuminata ssp. malaccensis (D’Hont et al., 2012) and 

M. balbisiana (Davey et al., 2013) are, along with classical analyses and genome wide 

association studies, promising turning points for gene discovery.  

 

Genomics, genetics and gene expression of Pseudocercospora fijiensis 

 The release of the draft P. fijiensis genome sequence was an immediate resource for 

multiple comparative analyses (Arzanlou et al., 2010; Chang et al., 2016; Chong, 2016; 

Churchill, 2011; Couoh-Uicab et al., 2013; de Wit et al., 2012; Escobar-Tovar et al., 2015a; 

Kantún-Moreno et al., 2013; Noar and Daub, 2016a, 2016b; Ohm et al., 2012; Stergiopoulos 

et al., 2010, 2014). The complete genome sequence (Arango Isaza et al., 2016), was until 

recently the largest Dothideomycete genome, which is presently exceeded by the >150Mb 

genome of the only mycorrhizal species Cenococcum geophilum (Peter et al., 2016) in this 

class of fungi. Genome expansion is largely due to repetitive elements in both species. It was 

intriguing that once the P. fijiensis genome was released, the first homologue of the 

Cladosporium fulvum effector Avr4 was discovered (Stergiopoulos et al., 2010). The 

heterologously produced PfAvr4 effector as well as most Avr4 isoforms, triggered 

hypersensitive response on tomato leaves carrying the cognate Cf4 resistance gene  

(Kombrink, 2012; Stergiopoulos et al., 2014, 2010). 

Clearly, the fungal and host genome sequences helped to reveal the first glimpses of 

the banana-P. fijiensis interaction, but many questions remain unresolved. The 

abovementioned initial effector analysis, two fungal linkage maps for genome assembly 
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(Arango Isaza et al., 2016), a detailed global analysis of DMI sensitivity (Chong, 2016) and 

several expression analyses involving glycosyl phosphatidyl-inositol (GTI) proteins (Kantún-

Moreno et al., 2013) and a putative ABC transporter - the orthologue of the MgAtr4 in Z. 

tritici - (Couoh-Uicab et al., 2013) are resulting milestones. Even more so, once such studies 

are lined-up with the infection process which is accompanied by differential accumulation of 

melanin and H2O2 (Beltrán-García et al., 2014; Torres et al., 2012).  Recent analysis of 

Escobar et al. (2015a) and Chang et al. (2016) suggest that pathogenesis is aided by an overall 

stealth weakening of host tissue rather than a rapid collapse, which accords with the known 

pathogenesis in other Dothideomycetes (Goodwin et al., 2011; Ohm et al., 2012). 

With the advance of genome analyses, hence gene discovery, tools for functional 

analyses become indispensable. Several protocols have been published (Balint-Kurti et al., 

2001; Escobar-Tovar et al., 2015b) that enable random mutagenesis, but do not facilitate 

functional analyses. Only recently, Onyilo et al., (2017) reported the first gene targeted by 

silencing in P. fijiensis; a very powerful transient transformation method particularly for 

reversible and/or incomplete gene expression prevention.   

In this thesis I describe the genome sequence of P. fijiensis, a protocol for its 

transformation and the application in tool development for functional assays. Together, these 

should aid the advance of (functional) genetics in this important banana pathogen, thereby 

contributing to the overall aim of a more sustainable and diversified banana production. 
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Outline 

Overall, at the start of my PhD thesis project I identified major bottlenecks to advance 

research in the banana - P. fijiensis pathosystem. Firstly, I considered that sequencing the 

genome of P. fijiensis would be a powerful base to increase the understanding of its 

(infection) biology. Secondly, I contemplated on the possibility to develop a protocol for 

homologous recombination, which would facilitate functional analysis of any given gene. 

Hence, my thesis was divided into five chapters. 

 Chapter 1 introduces the crop banana and plantain, presents their importance and 

describes the major biological threats of the crop with an emphasis on the fungal diseases to 

eventually focus on black Sigatoka. The biology of its causal agent P. fijiensis and the 

interaction with banana are briefly described. Furthermore, a critical analysis of the current 

standing in banana and black Sigatoka research is provided, thereby indicating the major 

bottlenecks. I considered that resolving the latter would bring banana research to another 

level.  

Chapter 2 describes the genome sequencing of P. fijiensis, which resulted in a 74 Mb, 

genome size, mostly containing repetitive DNA and a remarkable differential GC content, 

which was also observed in the other Sigatoka complex constituents P. musae and P. 

eumusae. Characteristics of gene content, gene models, synteny, gene expression, and genome 

dynamics are compared with the Dothideomycete reference genome of Zymoseptoria tritici, 

as well as with other Dothideomycetes, and discussed in relation to its life style. An initial 

functional analysis of PfAvr4 is included, which is indicative for gene-for-gene interaction in 

the banana - P. fijiensis pathosystem. Finally, the genome information was used to analyze 

strobilurin fungicide resistance dynamics in natural P. fijiensis populations in various banana 

plantations in Costa Rica.  
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Chapter 3 focuses on developing a protocol for Agrobacterium-mediated 

transformation (ATMT) of P. fijiensis. Initially, I developed a protocol for random 

mutagenesis and generated GFP- and Ds Red- labeled strains. Subsequently, I modified the 

protocol for targeted mutagenesis and used it for functional analysis of Pfavr4 and for 

developing a Pfku70 knock-out strain. The latter is expected to have an impaired non-

homologous end joining pathway, which would increase homologous recombination and 

thereby enhance the throughput for homologous recombination and hence, developing 

targeted knock-out strains.  

Chapter 4 describes the use of the aforementioned transformation protocol to analyze 

the mechanism of DMI sensitivity in P. fijiensis. Besides abundant mutations in the coding 

sequence of the target Pfcyp51 gene, we discovered multiple repeated insertions in the 

Pfcyp51 promoter region that are crucial for reduced sensitivity of P. fijiensis resistance to 

triazoles. The promoter sequences were detected in various international field strains with 

reduced sensitivity to propiconazole, difenoconazole and epoxiconazole as well as in field 

strains from Costa Rican farms, which suggests that these mutants were selected by the 

frequent fungicide applications in these plantations. ATMT was used to replace the promotor 

of a sensitive strain by the promotor of a resistant strain to show that both structural variants 

are required for reduced sensitivity.  

Finally, Chapter 5 provides a general and critical treatise of the achieved results and 

brings a wider scope for forthcoming research that is necessary to improve our understanding 

of the banana - P. fijiensis pathosystem and to develop strategies that contribute to a 

sustainable banana production.  
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Abstract 

  Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus 

Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant 

foliar disease of banana worldwide. Due to the lack of effective host resistance, management 

of this disease requires frequent fungicide applications, which greatly increase the economic 

and environmental costs to produce banana. Weekly applications in most banana plantations 

lead to rapid evolution of fungicide-resistant strains within populations causing disease-

control failures throughout the world. Given its extremely high economic importance, two 

strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage 

map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, 

making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that 

the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and 

P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers 

in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic 

diversity, but limited gene flow. Genetic differentiation was also detected using neutral 

markers, suggesting strong selection with limited gene flow at the studied geographic scale. 

Frequencies of fungicide resistance in fungicide-treated plantations were much higher than 

those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium 

fulvum Avr4 effector, Pfavr4, was identified in the P. fijiensis genome. Infiltration of the 

purified PfAVR4 protein into leaves of the resistant banana cultivar Calcutta 4 resulted in a 

hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown 

resistance gene recognizing Pfavr4. Besides adding to our understanding of the overall 

Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide 

treatment schedules to combat this pathogen and in improving the efficiency of banana 

breeding programs.  
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 Introduction 

Black Sigatoka or black leaf streak disease (BLSD), caused by the Dothideomycete 

fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis) (Arzanlou et al., 

2008), is a major threat to global banana production (Marin et al., 2003). The disease is part 

of the Sigatoka complex, which involves two other closely related pathogens in addition to P. 

fijiensis: P. musae (previously: M. musicola) causal agent of yellow Sigatoka disease; and P. 

eumusae (previously: M. eumusae) causal agent of the eumusae leaf spot disease. Among the 

three species, P. fijiensis is the most aggressive and predominant member of the Sigatoka 

disease complex worldwide. These pathogens occur exclusively on the foliage of bananas and 

plantains, with continuous sexual and asexual reproduction in nature (Arzanlou et al., 2008; 

Carlier et al., 2000, 1996; Crous and Mourichon, 2002).  

BLSD was first reported in the Sigatoka Valley of the Fiji islands during the 1960s 

and has since spread to nearly all banana-producing areas worldwide. It can only be managed 

by intensive fungicide applications, requiring weekly interventions throughout the year in 

most production areas. Black Sigatoka inflicts huge costs on global banana production, 

surpassing US $500 million per year (Ploetz, 2004). Expenses for fungicide treatments 

usually represent more than 35% of total production costs (de Bellaire et al., 2010; Romero 

and Sutton, 1997). Infection with P. fijiensis also results in crop losses and massive indirect 

costs by inducing early ripening of the fruit, making it unsuitable for sale with concomitant 

effects on the export trade and the retail sector. 

Export banana cultivars are sterile, triploid plants that can only be propagated clonally 

and are grown in huge monocultures of genetically identical individuals. The international 

banana trade is based solely on a few closely related clones of the Cavendish type, all of 

which are highly susceptible (Ploetz, 2004); disease management, therefore, relies primarily 

on fungicide applications with enormous environmental impacts (Churchill, 2011). Moreover, 
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the selection pressure on P. fijiensis populations continuously reduces the efficacy of 

fungicides resulting in control failures and unmanageable levels of disease (Marin et al., 

2003; Romero and Sutton, 1997). Therefore, there is an urgent need for scientific discoveries 

that will lead to the development of better methods for protecting banana crops, both for 

export fruit production and for small holders around the world who rely on bananas as a staple 

food (Marin et al., 2003). 

Taxonomically, Pseudocercospora belongs to the order Capnodiales in the class 

Dothideomycetes, previously known as the Loculoascomycetes (Eriksson and Winka, n.d.), 

which is the largest and most diverse class of ascomycete fungi comprising over 20,000 

species. Dothideomycete fungi include endophytes and epiphytes of plants, but also saprobes 

degrading cellulose and other complex carbohydrates of dead plants, and plant pathogens 

(Schoch et al., 2006). The latter cause a range of diseases in various key food, fiber and fuel 

crops, including Zymoseptoria tritici (Septoria tritici blotch of wheat) (Kema, 1996), Venturia 

inaequalis (apple scab) (Bowen et al., 2011), and Leptosphaeria maculans (blackleg of 

Brassica crops) (Howlett et al., 2001). Therefore, genome sequences of several 

Dothideomycetes have been published (Ellwood et al., 2010; Hane et al., 2007; Goodwin et 

al., 2011; de Wit et al., 2012; Ohm et al., 2012; Condon et al., 2013; Manning et al., 2013; 

Dhillon et al., 2015) or are in the process of being completed 

(http://genome.jgi.doe.gov/dothideomycetes/dothideomycetes.info.html). The genome 

sequence of Z. tritici is the reference for all other Dothideomycetes as it is the only one that 

has been completely finished (Manning et al., 2013). 

The poor experimental amenability of P. fijiensis has significantly hampered progress 

in understanding its basic biology (Churchill, 2011) and the development of research tools. 

For instance, infection assays are cumbersome due to the need for very specific environmental 

conditions with respect to temperature, light and relative humidity, and the slow development 

http://genome.jgi.doe.gov/dothideomycetes/dothideomycetes.info.html
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of the disease that may take up to 50 days until symptoms are expressed (Abadie et al., 2008; 

Nfor et al., 2011). Therefore, basic information on pathogenesis is not available and almost 

nothing is known about the genetic basis of disease resistance in banana germplasm 

(Beveraggi et al., 1993; Torres et al., 2012). Hence, new tools and research methods are 

needed to better understand the disease and ensure continued production of the world’s 

number one fruit, which is a staple food for millions of people in many developing countries. 

A previous comparative analysis of 18 Dothideomycetes genomes (Ohm et al., 2012) 

included the P. fijiensis isolate CIRAD86 genome for a global analysis of genome 

organization and evolution. However, P. fijiensis was not the primary focus of that analysis 

and few specifics were discussed. Here we focus on the genome sequence of P. fijiensis 

isolate CIRAD86, describe the sequence of a second isolate, CIRAD139, and analyze in detail 

the species’ genome structure, content and function with a goal of delivering new data that 

could give clues for global disease management of this devastating banana pathogen. 

 

 Results 

Sequencing, assembly and annotation of the P. fijiensis genome 

The genomes of the P. fijiensis isolates were sequenced using either Sanger 

technology (CIRAD86) or Illumina for resequencing (CIRAD139a). The final assembly size 

of ~74 Mb consisted of 56 scaffolds with the largest at 11.8 Mb and an N50 of 50 Kb. 

Inclusion of a newly made genetic map facilitated assembly of the physical genome (Table 

S1).  

Genetic map construction involved 376 loci that segregated in the progeny of the 

mapping population, among which 322 (233 DArT, 86 SSR, 3 minisatellite) markers were 

mapped into 19 linkage groups (Figure 1). The number of loci per linkage group varied from 
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2 to 35 with an average of 17 and linkage groups 1, 2, 8 and 9 contained the largest numbers 

of markers with 35, 29, 31 and 26, respectively. Map distances between consecutive markers 

varied from 0 to 20.4 cM with the largest gaps between markers on linkage groups 14 and 17, 

of 6.1 and 20.4 cM, respectively (Figure 1). 

After filtering for EST support, completeness and similarity to other species, 13,107 

genes were structurally and functionally annotated. The average gene length in the version 2 

assembly is 1,833 nt with 3.62 exons per gene; 88%, are complete with start and stop codon, 

74% have similarity support, and 49% have Pfam domains (Table S2). Most of the gene 

models (96%) are located in 12 scaffolds, numbers 1-10, 12 and 19. Gene density in these 12 

scaffolds varies from 151 to 229 per Mb but gene density for the remaining scaffolds larger 

than 0.5 Mb drops to only 2 to 94 genes per Mb (Table S1). More detailed information on the 

assembly, annotation and EST support data can be found in supporting Text S1. 

 Genome structure 

The Pseudocercospora fijiensis genome is greatly expanded  

The 74-megabase genome of P. fijiensis is greatly expanded relative to those of other 

related Capnodiales such as Sphaerulina musiva (previously Septoria musiva with teleomorph 

Mycosphaerella populorum), S. populicola (previously Septoria populicola with teleomorph 

Mycosphaerella populicola) and less related species such as Dothiostroma septosporum, 

Baudoinia compniacensis, and Z. tritici, but less so compared to C. fulvum, the closest 

Capnodiales relative sequenced and only other Dothideomycete with an expanded genome of 

65 Mb (Figure 2). The predominant repetitive elements in the P. fijiensis genome belong to 

the long terminal repeat (LTR) retrotransposons (50%) (Figure 3), which is much higher than 

in Z. tritici, but similar to the proportion seen in C. fulvum. Compared to these other two 

file:///D:/Dropbox/Submitted%20version/Mf%20genome%20ms%20revised%20version%20SBG%20April%202015/SI%20Text%201.docx
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species, the genome of P. fijiensis contained much higher percentages of repetitive DNA and 

unclassified transposons, whereas that of C. fulvum had the highest percentage of non-LTR 

retrotransposons among the three species (Figure 3). The estimated number of gene models is 

13,107, which is approximately 28% and 34% higher than in S. musiva and S. populicola, 

respectively (Table 1) and 7% smaller than C. fulvum, Using the 80:80 criterion (Wicker et 

al., 2007), i.e., 80% sequence identity across 80% alignment length, all of the P. fijiensis 

repeat families were unique. However, using a 70:70 cutoff criterion, elements from 50 P. 

fijiensis repeat families, amounting to 449 kb, were similar to those in the C. fulvum genome. 

A non-LTR repeat family from P. fijiensis (family 6), with an average element length of 4.9 

kb, had the highest representation with 36 copies in the C. fulvum genome. 

Analysis of repeat-induced point mutation (RIP) showed a clear CA<-> TA 

dinucleotide bias in the repetitive elements identified in the P. fijiensis genome (Figure 4). 

Some families also showed a CT<->TT dinucleotide bias. A similar pattern has been observed 

in a number of ascomycete genomes, including Parastagonospora nodorum (Hane and 

Oliver, 2008).  

Repetitive elements often clustered to form blocks of AT-rich DNA. When an average 

DNA content of 45% or less was used to define AT-rich regions, a total of 1,865 AT blocks 

was identified in the P. fijiensis genome, ranging in length from 1 to 514 kb. These blocks 

account for 45 Mb (61%) of the P. fijiensis genome and 84% comprised repetitive sequences. 

A total of 482 (4%) genes were associated with the AT blocks. About 20% (96) of these genes 

have associated annotations and 6% (28) can potentially be secreted.  

If a lower value of 40% average percent GC is used, the number of AT blocks 

diminished drastically to 640, amounting to a total length of 18 Mb or approximately 25% of 

the P. fijiensis genome. Repetitive sequences make up 84% and 152 (1.2%) genes were 
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associated with these AT-rich blocks. Approximately 22% (33) of the genes associated with 

AT blocks have an annotation and about 10% (15) have signal peptides. 

The average RIP index was 0.2 in the AT-rich blocks as compared to a higher average 

RIP index of 1.37 across the rest of the genome. Plots of the RIP index were very low 

(indicating a high level of RIP) in the AT blocks (Figure 5A) but much higher (low RIP) in 

the regions of the genome with lower AT content (Figure 5B). As expected, there was a 

strong inverse relationship between GC content and the amount of RIP as measured by the 

index (Figure S1). Very few of the genes (just over 3%) in AT-poor (= GC rich) regions of 

the genome showed any evidence or RIP (index of 1.0 or less) compared to a little over half 

(53%) of those in AT-rich regions (Table 2). In contrast, all but two out of 7,674 repeats in 

AT-rich regions showed evidence of RIP and almost 93% of those in AT-poor regions (Table 

2). Exceptions were few and minor (Figure S2). 

First-derivative graphs obtained for melting profiles of Z. tritici showed a narrow 

curve with a single peak (Figure 6A); in contrast, those for P. fijiensis showed a broad curve 

with two peaks with G+C contents of 39.4 and 51.6% indicating heterogeneity (Table S3). 

This agreed with the GC plots of sequence reads from P. fijiensis, which clearly showed a 

double-peak phenomenon, the lower peak corresponding to transposon-rich regions (Figure 

6E). 

The melting profiles obtained from the DNA of both P. eumusae and P. musae also 

demonstrated a double-peak pattern of genomic G+C content. The G+C content pattern in P. 

eumusae was almost identical to that in P. fijiensis with peaks at 39.6 and 51.6%. In P. musae, 

both peaks corresponded to lower, albeit still comparable, G+C contents of 37.2% and 50.9% 

(Figure 6 A-D, Table S3). Plotting genome size on a phylogenetic tree of the Capnodiales 
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identified at least two expansions, one leading to P. fijiensis and the second to the biotrophic 

tomato pathogen C. fulvum (Figure 2). 

To estimate the age of the transposon expansion in the P. fijiensis genome, 

approximately1600 LTR retrotransposons were identified using ltrharvest. A further search 

for protein domains identified 1,147 bona fide, full-length LTR retrotransposons. Of these, 

529 elements (46% of the total) had LTRs that were highly similar in terms of mutations 

accumulated over time with a hypothetical insertion age of less than one million years (Figure 

7). Many older elements also were identified (Figure 7) but these decreased with time, 

indicating that most of the transposon insertions occurred relatively recently. 

 

Electrophoretic karyotyping suggests variability in genome content and/or organization 

among isolates  

Pulsed-field gel electrophoresis of the CIRAD86 and E22 strains showed small and 

large chromosomes, but no chromosomes in the medium range of 1.5 to 3.9 Mb. Isolate 

CIRAD86 showed 11 bands representing chromosomes, four of which appeared to be 

composed of double, co-migrating bands (Figure 8A). Small chromosomes were in the size 

range of 0.83 to 1.45 Mb. Bands of 0.95 and 1.03 Mb showed approximately twice the 

intensity and were assumed to represent at least two chromosomes each (Figure 8A). 

Conditions for separation of large chromosomes showed a band of 5.2 Mb, a co-migrating 

chromosomal band of 4.33 and a smaller band of 4.27 Mb (Figure 8B). Strain E22 showed at 

least 12 bands in total, five of which likely contain co-migrating chromosomes. Small 

chromosomes were in the range of 0.70-1.45 Mb, and large chromosomes had estimated 

lengths between 4.05 and 6.80 Mb (Figure 8B). Additionally a comparison of small 

chromosomal bands of different strains originating from a single banana field showed that 
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every isolate contained between five and nine small chromosomal bands with unique length 

polymorphisms (Figure S3) indicating substantial variation in genome content and/or genome 

organization among individuals. 

Synteny analysis suggests a core set of 12 chromosomes 

Analysis of similarity between the genomes of different Dothideomycetes shows a 

high degree of conservation of genes in syntenic scaffolds. Mesosynteny was observed 

between P. fijiensis and all other Dothideomycetes analyzed including the Capnodiales B. 

compniacensis, Cercospora zeae-maydis, Cladospoerium fulvum, D. septosporum (Figure 9), 

S. musiva (Figure S4), Zasmidium cellare and Z. tritici, the Pleosporales Cochliobolus 

heterostrophus, L. maculans, Pyrenophora tritici-repentis and P. nodorum, and the 

Hysteriales species Hysterium pulicare. Microsyntenic blocks of up to 10 Kb were found only 

with the closest relatives C. fulvum, D. septosporum and Z. tritici (S. musiva was not tested 

for this analysis). No macrosynteny was observed between P. fijiensis and any of the 

presently sequenced Dothideomycetes. 

Using Z. tritici as a reference it is clear that gene content is conserved among large 

blocks of chromosomes. For example, scaffold 1 of P. fijiensis shows synteny with 

chromosomes 1, 4 and 5 of Z. tritici, scaffold 2 with chromosomes 2, 10 and 13, whereas 

scaffold 6 of P. fijiensis shows synteny only with Z. tritici chromosome 6 (Figure S5). 

Interestingly, no significant synteny was found between any of the scaffolds of P. fijiensis and 

the dispensable chromosomes of Z. tritici (Figure 10), supporting the hypothesis of their 

independent origin, possibly by recent horizontal transfer, in the latter species (Goodwin et 

al., 2011). 

Most of the synteny found in P. fijiensis with Z. tritici as well as with all other 

Dothideomycetes tested is present in scaffolds 1 through 10, 12 and 19. In addition, these 
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scaffolds showed the highest percent of genes with expression data (0.8% or greater), all of 

which suggest that these 12 scaffolds might represent the core genome. Many of the smaller 

scaffolds in the P. fijiensis genome have the physical characteristics observed for dispensable 

chromosomes in Z. tritici; they are smaller, with lower G+C contents and gene densities 

(Table S1). Based on these criteria, the core genome of P. fijiensis comprises 63.9 Mb or 

almost 87% of the genome, while the remaining 13% may be a dispensome. 

Analysis of the synteny plots also showed some past chromosomal rearrangements. 

For example, approximately 22% of the gene content of the central part of scaffold 1 of P. 

fijiensis was missing from the largest scaffolds of D. septosporum (Figure 9) and S. musiva 

(Figure S4), and instead was found on scaffolds 8 and 7 of those species, respectively. This 

difference also was seen in the comparison with the more distantly related Z. tritici (Figure 

S5), although the result was not as clear and more chromosomes were involved. In a direct 

comparison, scaffold 1 of D. septosporum showed complete mesosynteny with scaffold 1 of 

S. musiva (Figure S6), suggesting that the central part of P. fijiensis scaffold 1 might have 

translocated after the divergence of all three species from an unknown common ancestor. The 

chromosome that likely supplied the translocation, corresponding to scaffolds 8 and 7 in D. 

septosporum and S. musiva, respectively, showed 1:1 mesosynteny in the direct comparison 

between those two species (Figure S6), but also showed mesosynteny with P. fijiensis 

scaffolds 12 and 19 (Figures 9 and S4). This suggests that scaffolds 12 and 19 of P. fijiensis 

may belong to a single chromosome that has not been assembled completely. Similar analyses 

identified a possible translocation or incomplete assembly involving scaffolds 3 and 8 of P. 

fijiensis, which correspond to scaffolds 5 (Figure 9) or 4 (Figure S4) of D. septosporum and S. 

musiva, respectively. 
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Re-sequencing of P. fijiensis isolate CIRAD139A shows a 12 % difference in genome content 

Among the more than 73 million reads of paired-end sequence data obtained for 

isolate CIRAD139A, 60% could be aligned uniquely to the P. fijiensis reference genome of 

isolate CIRAD86 (Table S4). Another 28% of the reads aligned to multiple locations in the 

reference sequence, most likely due to duplications or repetitive elements in the genome. 

Almost 12% of the reads did not map to the reference, suggesting that some genome content 

present in CIRAD139A could be absent in the reference strain.  

The numbers of polymorphisms varied widely among scaffolds roughly in proportion 

to size, and the number of SNPs was much higher than for indels on all scaffolds analyzed 

(Table S5). Mean SNP frequency on each scaffold calculated across a 10-kb window was 

more uniform, ranging from 59.2 for scaffold 13 to 84.1 for scaffold 11 (Table S5). Plotting 

the SNP density relative to gene density for the 21 largest scaffolds containing 99% of all 

gene models separated the scaffolds into two groups. One group contained most of the largest 

scaffolds and showed lower variability in SNP counts, while the second contained scaffolds 

with low gene densities and showed much more variability in SNP counts.  

 

Genome content 

Decreased numbers of pathogenicity-related genes 

Enzymes that degrade plant cell walls (CWDEs) and other physical barriers including 

cutin are important pathogenicity factors, particularly in necrotrophic fungi. Comparison of 

the number of genes related to cell wall degradation in P. fijiensis with those in other fungi 

revealed a significant reduction, particularly when compared to necrotrophic 

Dothideomycetes. Cutinases, xylanases and chitinases are reduced three to five-fold when 
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compared to three fungi in the Pleosporales: P. nodorum, P. tritici-repentis and C. 

heterostrophus (Table 3). Additionally, carbohydrate-binding proteins, including those with 

chitin-binding and cellulose-binding modules as well as β glucosidases also are reduced 

(Table 3). EST support was found for four chitinases, 18 glucosidases, one cellulose binding 

and four chitin binding genes.  

Similar to the CWDEs, the P. fijiensis genome shows a relatively low number of genes 

involved in the production of secondary metabolites, such as polyketide synthases (PKSs), 

with approximately half the number of genes found in the necrotrophs P. nodorum, P. tritici-

repentis and C. heterostrophus. Contrary to the situation for PKSs, genes encoding non-

ribosomal peptide synthetases (NRPSs) are not reduced in P. fijiensis. Its genome encodes 13 

NRPSs and one hybrid NRPS-PKS, which is comparable to the numbers found in other 

Dothideomycetes (Table 3). However, EST support was found for only six of the PKS genes 

and four of the NRPS and the hybrid NRPS-PKS genes. This low level of EST support might 

be a sampling phenomenon due to the EST coverage; none of the libraries came from in 

planta conditions where these genes are more likely to be expressed. 

The P. fijiensis secretome 

Filamentous fungal pathogens are able to modulate resistance responses in the plant 

cell by secreting a class of proteins known as effectors. In many fungal pathosystems, 

effectors are important pathogenicity or virulence factors that determine the success of a 

fungal infection (de Wit et al., 2009; Oliva et al., 2010).  The majority of described fungal 

effectors share many characteristics and belong to the class of small, secreted, cysteine-rich 

proteins (SSPs) (de Wit et al., 2009). A search of the genome with the above criteria showed 

that P. fijiensis possesses 172 genes encoding SSPs (smaller than 300 AAs in size) with four 

or more cysteine residues. Sixty-two percent of the P. fijiensis SSPs have no blast hits (107 
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proteins), 21% (37 proteins) have assigned GO terms and 23% have InterPro IDs other than 

SignalP (40 proteins). Thus, the number of potential SSP-encoding genes in P. fijiensis is 

31% and 8% lower than in the genomes of P. nodorum (250 genes) and Z. tritici (187 genes), 

respectively (Figure S7). These results accord with Ohm et al. 2012 who found reduced 

numbers of SSPs in several Capnodiales. 

Among the identified SSPs, one shows high similarity to C. fulvum Avr4, which is 

known to have a chitin-binding domain and is a well-studied effector in the C. fulvum-tomato 

interaction (van Esse et al., 2007). This P. fijiensis putative Avr4 (PfAvr4) homolog is a 121 

amino acid protein present on scaffold 4 from co-ordinates 183261-183623 and was shown to 

protect Trichoderma viride cell walls against hydrolysis by plant chitinases through chitin 

binding and to trigger a Cf4-mediated hypersensitive response (HR) in tomato (Stergiopoulos 

et al., 2014, 2010).  Additionally, three homologs of C. fulvum effector Ecp2 were found, one 

of which was able to induce different levels of necrosis or HR in tomato lines depending on 

whether they lack or contain a putative corresponding Cf-ECP2 protein (Stergiopoulos et al., 

2014, 2010). It seems highly likely that at least some of these P. fijiensis effector proteins that 

are similar to known effectors in C. fulvum will play a role in pathogenicity or virulence of P. 

fijiensis on banana. 

Genome function 

Functional analysis of a putative effector protein 

Infiltrations into banana and tomato leaves were performed to test the hypothesis that 

PfAvr4 acts as an avirulence factor in banana. Different accessions were infiltrated with 

different concentrations of PfAVR4. Physical damage (small tear and occasional slight 

necrosis limited to the site of infiltration) caused by either the syringe or the fermentor 
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medium was similar among accessions (Figure 11) and was less intense in tomato plants 

(Figure 11B). Both large and small plants of M. acuminata cv. Grand Naine showed only 

physical damage with an occasional slight chlorotic effect at the infiltrated area (Figure 11A) 

after infiltrating the PfAVR4 protein; no hypersensitive response (HR) was observed at 10 

days post infiltration (dpi) regardless of the protein concentration used.  

In contrast, PfAVR4 triggered a clear HR-like necrosis when infiltrated into leaves of 

M. acuminata ssp. burmannicoides var. Calcutta IV, which has resistance against P. fijiensis 

(Figure 11A). The necrosis was already visible on large plants at 4 dpi, and was stronger by 

10 dpi at both concentrations of PfAVR4. In small plants the earliest necrosis was observed at 

10 dpi. Fermentor medium triggered a slight necrosis on both small and large plants of var. 

Calcutta IV, but this was very different from the HR-like necrosis induced by PfAVR4 and 

the combined effect triggered by the fermentor product (Figure 11A). Furthermore, tomato 

plants without a resistance gene (Cf0 plants) showed only physical damage following 

infiltration, while those containing the Cf4 resistance gene showed a HR to crude fermentor 

products containing PfAVR4 and to the purified PfAVR4 protein (Figure 11B). 

Analyses of fungicide resistance and molecular markers within populations 

In total, 621 hierarchically sampled P. fijiensis isolates were genotyped and partially 

phenotyped and showed that the commercial (sprayed) plantations were entirely or nearly 

fixed for quinone outside inhibitor (QoI) or strobilurin resistance (92-100%), whereas all 87 

isolates sampled from the wild type, unsprayed San Carlos population were sensitive (Table 

S6). Subsequently, we used the genome sequence to develop primers for five Variable 

Number of Tandem Repeat (VNTR) loci enabling population diversity analyses that were 

combined with assessment of the mating type loci. We observed that the ratios between the 

two mating type alleles mat1-1 and mat1-2 are not significantly different from 1:1 in each 
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individual population as well as the overall total number of isolates (Table S6), and that the 

VNTR loci in all populations are in gametic equilibrium and hence, could be used to estimate 

genetic differentiation between populations, which was small but statistically significant 

(Table S7). 
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Discussion 

The genome of P. fijiensis is one of the largest among all of the Dothideomycetes 

sequenced to date; it is 3.4 times larger than that of the Dothideomycete with the smallest 

genome, Baudoinia compniacensis, 1.85 times larger than that of Z. tritici and 1.2 times larger 

than that of C. fulvum, which is related to P. fijiensis and also has an expanded genome (de 

Wit et al., 2012). Almost all of the increased size is due to the proliferation of LTR 

retrotransposons, as described here and in another publication (Santana et al., 2012). The 

thermal denaturation results indicate that G+C content heterogeneity is not limited to P. 

fijiensis but also occurs in its close relatives within a monophyletic clade of banana 

pathogens. Based upon the observed similarity of DNA composition between these three 

banana pathogens, we predict that the genomes of both P. eumusae and P. musae also are 

expanded and that all three pathogens that often co-occur in nature seem to have a recent 

common ancestor (Carlier et al., 2000).  

The only other member of the Capnodiales known to have a similarly expanded 

genome is the biotrophic tomato pathogen, C. fulvum (de Wit et al., 2012). Based on the 

positions of the species with expanded genomes on the phylogenetic tree (Figure 2), there 

appear to have been at least two independent expansions in genome size within the 

Capnodiales, one involving P. fijiensis (and most likely related banana pathogens) and 

another for C. fulvum. Lack of similarity between the transposable elements in the genomes of 

P. fijiensis and C. fulvum supports the hypothesis of independent expansions in each genome. 

The terminal repeats of LTR retrotransposons are identical at the time of insertion and 

this provides a means to estimate the relative ages of transposable element insertions. This 

phenomenon has been very useful for estimating transposon insertion times in plants 

(SanMiguel et al., 1998; Wicker and Keller, 2007) but is less useful for fungi where RIP 
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greatly increases the rate of mutations in repetitive sequences. Using this approach in the 

basidiomycete Laccaria bicolor, three periods of transposon insertion were identified, ranging 

in age from 0 to 59 million years ago (Mya) (Labbé et al., 2012). Whether RIP occurs in L. 

bicolor is not known, but its genome does not contain the genes known to be required for RIP 

in other fungi (Smith et al., 2006) and no evidence for RIP was found among transposons in 

the genomes of other members of the Agaricomycotina (Horns et al., 2012) so it seems 

unlikely. Therefore, this approach for estimating the ages of transposon insertions is most 

likely valid for L. bicolor. 

A similar analysis of LTRs of transposons in the genome of Z. tritici yielded 

hypothetical insertion ages ranging from 0 to 5.7 Mya, with the strong caveat that the times 

were probably vastly overestimated due to RIP (Dhillon et al., 2014). Even with the bias 

introduced by RIP, the estimated ages of transposon insertions in the genome of Z. tritici were 

an order of magnitude younger than those in L. bicolor, indicating that they must have 

occurred relatively recently. A more accurate approach to estimating transposon age in the 

presence of RIP would be to exclude the RIP-susceptible sites from analysis (Rouxel et al., 

2011). Using this approach, transposon insertions in L. maculans and closely related species 

in the Pleosporales, another large order of the Dothideomycetes, mostly were relatively 

recent, within the past four million years (Rouxel et al., 2011). For P. fijiensis, the results of a 

similar analysis clearly suggest a recent, rapid burst of LTR retrotransposon insertions. The 

young age and high proliferation rate of around 46% of the LTR retrotransposons suggest that 

P. fijiensis has a highly dynamic genome. Such a recent, high level of activity of 

retrotransposons can have evolutionary as well as regulatory implications for gene expression 

that can be better understood using genomic comparisons with other closely related species. 

Large genome expansions due to amplifications of repetitive elements have been 

observed in other plant-pathogenic fungi. The published genome sequences and analyses of 
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the powdery mildew fungi Blumeria graminis f. sp. hordei, Erysiphe pisi and Golovinomyces 

orontii show a marked genome expansion with a massive proliferation of non–LTR 

retrotransposons and a corresponding decrease in gene content (Spanu et al., 2010). The 

missing genes in these obligate biotrophs include enzymes for primary and secondary 

metabolism, carbohydrate-active enzymes, transporters, and secreted proteins such as 

effectors. The genome of P. fijiensis also shows a moderate decrease in certain gene families 

associated with pathogenicity such as PKSs and CWDEs when compared to necrotrophic 

Dothideomycetes such as P. nodorum or P. tritici-repentis (Hane et al., 2007). In a similar 

way, the hemibiotrophs Z. tritici (Goodwin et al., 2011), S. populorum and S. populicola 

(Dhillon et al., 2015; Ohm et al., 2012) also show a marked decrease in CWDEs [19], 

although not to the extent seen in the powdery mildews. This reduction in Z. tritici is thought 

to have evolved as a mechanism to evade detection by host defenses during stealth 

pathogenesis (Goodwin et al., 2011). This hypothesis also could fit the lifestyle of P. fijiensis 

since it has an even longer biotrophic phase of up to 28 days before necrotic symptoms start 

to appear so may have a greater need for stealth (Nfor et al., 2011). However, the association 

is not perfect because the reduction in CWDEs in Z. tritici is greater, particularly for β 

glucosidases.  

Thus, within Ascomycetes there seems to be a correlation between pathogenic lifestyle 

(biotrophic vs. hemibiotrophic vs. necrotrophic) and diversity of certain gene families such as 

PKSs and CWDEs. This correlation does not hold up when extended to other fungal groups. 

For example, rust fungi are obligate biotrophs with greatly expanded genomes due to either 

the proliferation of LTR retrotransposons similar to P. fijiensis for the wheat stem rust 

pathogen Puccinia graminis, or to class II DNA transposons for the poplar rust fungus 

Melampsora larici-populina (Duplessis et al., 2011). However, in both rusts gene numbers 

were greatly expanded including those for SSPs that may be involved in interactions with 
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their hosts (Duplessis et al., 2011). Thus, evolution of a biotrophic lifestyle has involved very 

different changes in the genetic architecture of fungal genomes, from the vast reductions in 

gene content noted in the powdery mildew fungi to huge expansions for the rusts. 

Hemibiotrophs such as P. fijiensis fall in the middle of the continuum. The one constant is the 

increased genome size due to transposons, which seems much more common in biotrophic 

and hemobiotrophic pathogens compared to necrotrophs or saprotrophs. 

The mechanisms of these transposon expansions remain mostly unknown. The two 

main unanswered questions revolve around the source of the invading elements and the 

mechanism by which they proliferate. The most obvious source would be their host plants, but 

so far there appears to be little evidence that transposons are being transferred from hosts to 

their pathogens. Biotrophic fungi should be the most suited for acquiring transposons because 

they are restricted to growing in a very limited ecological niche and have specialized feeding 

structures to retrieve nutrients from their hosts. For P. fijiensis, a search of the banana genome 

sequence revealed that transposable elements account for almost half of the Musa sequence 

with LTR retrotransposons representing the largest part (Arango et al., 2011; D’Hont et al., 

2012), so the transposons might have come from banana. If not from the hosts, then they most 

likely have been acquired from other fungi or pests that are associated with the hosts. 

Horizontal transfer of genes has been shown in other fungi such as P. nodorum (Friesen et al., 

2006) and Fusarium oxysporum f. sp. lycopersici (Ma et al., 2010) and it could occur for 

transposons. Horizontal transfer has the potential to broaden host range and pathogenicity of 

fungal pathogens or even create a new pathogen from a non/pathogenic strain (Friesen et al., 

2006; Ma et al., 2010). Solving the mystery about the origin of invading transposons is 

important for understanding the dynamics of fungal genome expansions, and the causal agents 

of the Sigatoka complex on bananas represent a good model to address such a question. 
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A little more is known about the mechanisms for transposon expansion after they have 

been acquired. Almost all fungi are capable of Repeat-Induced Point (RIP) mutation, a 

mechanism for identifying and mutating repetitive sequences (Cambareri et al., 1989; Goyon 

and Faugeron, 1989; Grayburn and Selker, 1989; Rouxel et al., 2011; Selker et al., 1987). For 

transposons, the mutations caused by RIP prevent successful translation of the genes coding 

for transposon movement proteins so they become inactive and can no longer replicate. This 

provides a very effective defense against transposon expansions in most fungi. In the powdery 

mildew fungi, the genetic machinery required for RIP was missing (Spanu et al., 2010) and 

this likely allows unrestricted multiplication of transposons. For the rust fungi, no 

mechanisms for genome expansion were proposed or tested (Duplessis et al., 2011).  

For P. fijiensis, rid, the only gene known to be required for RIP, is present and the 

reading frame appears to be intact. Repetitive sequences in the genome of P. fijiensis show 

high frequencies of the C to T transitions that are characteristic of RIP, so this phenomenon 

seems to be active. Because RIP is only active during meiosis, a possible explanation for 

fungi with extensive asexual phases could be that transposon expansion occurs during asexual 

reproduction and then is slowed by RIP during rare sexual reproduction. If transposons have 

expanded enough and RIP is not completely efficient, some intact copies of transposons could 

remain after meiosis to continue expanding during the next extended asexual phase. This 

explanation is possible in P. fijiensis; although it has been classically considered to be 

primarily reproducing by sexual mating, more recent studies suggest that asexual reproduction 

also plays an important role during epidemics (Rieux et al., 2013a, 2014). Transposon 

expansion most likely occurs episodically when RIP or other mechanisms are relaxed, but 

when and how these episodes occur is currently unknown. 

In Z. tritici, a different type of genome expansion occurred through the acquisition of a 

large set of dispensable chromosomes, referred to as the dispensome (Goodwin et al., 2011). 
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The Z. tritici dispensome contains at least eight chromosomes with no known function that 

appear to have been acquired by horizontal transfer from an unknown donor more than 10,000 

years ago (Stukenbrock et al., 2010). Such a large number of dispensable chromosomes with 

no known effects on fitness so far is unique among fungi. Many potential dispensable 

chromosomes were identified among the genomic scaffolds of P. fijiensis based on the 

characteristics of known dispensable chromosomes in Z. tritici. However, dispensability still 

has not been proven for P. fijiensis. None of the P. fijiensis linkage groups were missing in 

progeny isolates, one of the hallmarks of dispensable chromosomes in Z. tritici (Wittenberg et 

al., 2009). However, this is not surprising because none of the linkage groups corresponded to 

any of the putative dispensable scaffolds. If P. fijiensis does contain a dispensome, it is 

different from that in Z. tritici because there was almost no similarity between the dispensable 

chromosomes of Z. tritici and any of the scaffolds of P. fijiensis, or vice versa. This raises the 

intriguing possibility of separate events leading to horizontal transfer of large numbers of 

chromosomes between species in the Capnodiales and other fungi. 

Electrophoretic karyotyping of P. fijiensis showed a remarkable level of variability 

among isolates, even those coming from the same population. This high variability in 

chromosome length and number was also described previously in P. fijiensis (Rodríguez-

García et al., 2006) and in other fungi (Cooley and Caten, 1991; Iwaguchi et al., 1990; Talbot 

et al., 1993). The mechanisms of such variation include chromosome rearrangements during 

meiotic recombination and the presence of dispensable chromosomes (Zolan, 1995). From a 

different perspective, it has been shown that chromosomal reshuffling can drive evolution of 

virulence in asexual plant-pathogenic fungi (Jonge et al., 2013); thus both sexual and asexual 

life cycles could be a source of chromosomal variation. This could constitute a mechanism of 

adaptation to environmental changes such as selective pressure from chemical fungicides. 
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Field isolates karyotyped in this work were collected in Costa Rica in an area with a high 

level of fungicide applications. 

Overall, P. fijiensis chromosomes are larger than those from other Ascomycetes, 

including its completely sequenced relative Z. tritici (Goodwin et al., 2011). Remarkably, P. 

fijiensis contains a scaffold larger than 10 Mb, which is at the limit of PFGE resolution. 

Chromosomes of this size have been observed in other fungi (Cox et al., 1990; Migheli et al., 

1995; Orbach et al., 1988) but they are not common. Medium-sized chromosomes were not 

found, similar to previous records for Mexican isolates (Rodríguez-García et al., 2006). 

Interestingly, the seven smallest main scaffolds, including the smallest calculated core 

chromosome (0.61 Mb) and six of the putative dispensable chromosomes did not appear in 

PFGE, as CIRAD86 did not show a chromosome smaller than 0.8 Mb. The total number of 

chromosomes separated by PFGE is at least 11, and probably up to 15 when possible co-

migrating bands are counted separately, in addition to the five unresolved largest scaffolds. 

The availability of a genome sequence enables the identification of genes that might be 

involved in pathogenicity, including those encoding putative effector proteins. Fungal 

effectors are proteins that aid pathogenicity, usually by subduing host defenses. However, 

these same proteins affecting pathogenicity also can be recognized by the host resistance 

proteins, triggering a defense response and making them advantageous or disadvantageous to 

the pathogen depending on the host genotype. Bioinformatic analysis of the P. fijiensis 

genome identified many putative effectors, including one that appears to be a homolog of the 

Avr4 effector in the related Dothideomycete, C. fulvum (van Esse et al., 2007). The P. fijiensis 

putative Avr4 homolog Pfavr4 was on scaffold 4 adjacent to repeats of 617 and 2765 bp and a 

6-kb AT-rich block with a GC content of 39.3%, similar to known effectors in other fungi, 

which often are in AT-rich regions (Rouxel et al., 2011; Stukenbrock et al., 2010). Other 

genes in this region of the P. fijiensis genome were different from those in Z. tritici and C. 
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fulvum, indicating little synteny among genes around the Pfavr4 homologs in related species. 

Previous research showed that PfAVR4 is a functional homolog of the CfAVR4 virulence 

factor in C. fulvum, and that, despite a low amino acid identity of only 42%, it could be 

recognized by the Cf4 resistance protein to stimulate an HR in tomato (Stergiopoulos et al., 

2010). However, whether PfAvr4 could be recognized by banana cultivars had not been tested 

until now. 

The response of the banana varieties to the PfAVR4 protein strongly suggests that it 

acts as an avirulence factor that is recognized by a resistant banana accession where it elicits 

an HR-like necrosis. Most probably this protein has a function similar to that of its homolog 

in C. fulvum where it is an effector that facilitates disease in susceptible cultivars of tomato 

and can be recognized by the Cf-4 receptor in a resistant tomato cultivar to elicit the HR (van 

Esse et al., 2007). To our knowledge, this is the first fungal effector known to induce a 

cultivar-specific, HR-like necrosis in banana, suggesting that M. acuminata ssp. 

burmannicoides var. Calcutta IV most likely has a functional R gene that recognizes 

PFAVR4, and which appears to be a functional homologue of Cf4 in tomato. Additional 

experiments are needed to thoroughly test the hypothesis that var. Calcutta IV contains an 

HR-inducing resistance gene effective against P. fijiensis. These could include analysis of 

progeny from controlled crosses between var. Calcutta IV and a susceptible banana to test for 

co-segregation of necrosis induced by PfAVR4 and resistance to P. fijiensis, or deletion of 

PfAvr4 to test whether resulting mutant becomes virulent to var. Calcutta IV. However, these 

experiments would be challenging due to experimental limitations in this pathosystem: 

crosses in banana frequently suffer from segregation distortions due to the occurrence of 

translocations and functional analyses in P. fijiensis are not routine. 

The banana var. Calcutta IV has been a source of resistance against fungi, bacteria and 

nematodes in Musa breeding programs (Ortiz and Vuylsteke, 1994; Simmonds, 1953). It is 
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one of the most resistant accessions in field evaluations against P. fijiensis populations from 

around the world, with the exception of some isolates from the Pacific islands and Papua New 

Guinea (Fullerton and Olsen, 1995), which are considered as the center of origin of the 

disease (Carlier et al., 1996). In addition, var. Calcutta IV has shown resistance to crude 

extracts from P. fijiensis (Hernández, 1995; Okole and Schulz, 1997). The identification of 

PfAvr4 as a likely avirulence factor in var. Calcutta 4 provides a major advance for banana 

breeding programs aiming at increasing the level of resistance against black Sigatoka. 

Purified effector proteins can be used to identify other resistance genes and to facilitate rapid 

selection of resistant progeny from segregating populations. The current selection process in 

resistance breeding is inadequate as it exclusively relies on field evaluations, and is slow 

because black Sigatoka has a latent period of a month or longer and the banana cycling time, 

depending on the species, is approximately 10-15 months. Similar experiences slowed down 

resistance breeding in wheat to Z. tritici until the elucidation of its mating system showed 

single-gene inheritance of pathogenicity factors that facilitated more precise isolate 

characterizations and subsequent R-gene discovery (Goodwin, 2007; Goodwin et al., 2011; 

Kema et al., 2000, 1996; Ponomarenko et al., 2011). Other potential genes involved in 

pathogenicity are discussed in supporting Text S2. 

QoIs represent a class of fungicides that initially showed impressive efficacy against 

many plant pathogens (Gisi et al., 2002). However, resistance evolved rapidly and soon 

rendered the compound of little use in multiple pathosystems (Brent and Hollomon, 1995). 

Diagnostic primers for the mitochondrial cytb gene showed that P. fijiensis is no exception, as 

the three commercial and frequently sprayed plantations were nearly or completely fixed for 

resistance. This is a remarkable shift compared to analyses performed during 2000-2003 when 

only part of the population was resistant (Amil et al., 2007). Interestingly, the San Carlos 

population, which was not sprayed with fungicides, is still entirely sensitive. This result 
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suggests limited genetic exchange between these populations that are separated by about 100 

km. Nevertheless, even limited gene flow could have an impact on untreated areas. Because 

the selection pressure exerted by strobilurin is quite strong, the resistance frequency rapidly 

increases from a low number of resistant individuals to widespread resistance soon after 

fungicides are used, particularly since these compounds do not prevent sexual reproduction 

(Ware, 2006). This prompted us to process the P. fijiensis genome sequence with a 

bioinformatics pipeline to develop VNTR markers for rapid PCR-based population analyses 

to compare with a priori neutral markers. Nonetheless, some genetic differentiation occurs 

between the populations as already described earlier in Costa Rica using microsatellite 

markers (Halkett et al., 2010). However, because populations have not yet reached mutation–

drift equilibrium, gene flow could not be estimated using classical genetic models based on 

genetic differentiation (Halkett et al., 2010). Fortunately, new indirect (Rieux et al., 2013b) 

and direct (Rieux et al., 2014) methods have been recently used to provide estimates of 

dispersal in P. fijiensis that could be integrated in theoretical and spatially explicit models to 

predict spatial patterns of fungicide resistance evolution under different management 

strategies. 

The availability of the CIRAD86 genome sequence and the resequence data of 

CIRAD139 for P. fijiensis will blunt its continued threat to global production by facilitating 

the development of resistant cultivars in banana breeding programs. The rapid development of 

fungicide resistance and extreme variability of the P. fijiensis genome among isolates coupled 

with a high level of sexual reproduction make this pathogen highly adaptable to changing 

environmental conditions. Diversifying and increasing the level of host resistance in banana 

may be the only way to slow the devastation caused by this fungus in the future. 
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Materials and Methods 

Fungal culture conditions and DNA extraction 

Pseudocercospora fijiensis isolate CIRAD86 (Mat1-1 mating type, originating from 

Cameroon in 1988) was chosen for sequencing because it is the epitype for the species, has 

been the subject of intensive analyses previously and is one parent of an existing mapping 

population (Manzo-Sánchez et al., 2008). CIRAD139a (Mat1-2, originating from Colombia in 

1990) was used for resequencing. CIRAD86 is maintained at the CBS-KNAW Fungal 

Biodiversity Centre (CBS 120258). 

Mycelia for DNA extraction were grown in 1-l Erlenmeyer flasks containing 200 mL 

of PDB (potato dextrose broth; Becton Dickinson, NJ, USA) shaken at 120 rpm at 28°C. 

Mycelial mats produced during culture were filtered to remove the broth and lyophilized. 

Samples containing 50 mg of lyophilized mycelia were placed in 2-mL tubes and ground with 

a Hybaid Ribolyser (model n° FP120HY-230) for 10 s at 2500 rpm with a tungsten-carbide 

bead. DNA was extracted from the ground mycelia using the Wizard Magnetic DNA 

Purification system (Promega, Netherlands) for food according to instructions provided by the 

manufacturer. 

Genomic sequencing, genetic mapping, assembly and annotation 

Whole-genome shotgun sequencing and assembly of the P. fijiensis genome were 

done using Sanger sequencing of three different-sized libraries (3- and 8-kb plasmids, and 40-

kb fosmids) as described previously for Z. tritici (Goodwin et al., 2011) and other species 

(Ohm et al., 2010). The initial version 1 assembly was improved by aligning the physical 

scaffolds to a genetic linkage map constructed using Joinmap V 4.0 software (Van Ooijen and 

Voorrips, 2001) to analyze the segregation data for 322 markers that were scored on 135 
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progeny of the cross between isolates CIRAD86 and CIRAD 139A (Manzo-Sánchez et al., 

2008). For each molecular locus, a goodness-of-fit analysis was performed to test for 

deviation from the expected 1:1 segregation ratio at a 1% significance level. Linkage groups 

were established using a minimum LOD score of 9.0 and final mapping was achieved by 

combining two or more linkage groups belonging to the same chromosome. The order of the 

markers on each chromosome was determined using a minimum LOD score of 1.0, 

recombination threshold of 0.4, jump of 5.0, ripple value of 1 (default) and Haldane’s 

mapping function as parameters. In cases of uncertainty, some markers were removed and the 

order was recalculated until a more stable order was achieved. 

Three methods were used to identify the P. fijiensis repetitive sequences. Repeated 

sequences in the genome were identified de novo using RECON (Bao and Eddy, 2002) and 

the k-mer based method RepeatScout (Price et al., 2005). A custom set of repeats and the 

RepBase Update library of 234 fungal repeats (Jurka et al., 2005) were then used to mask the 

P. fijiensis genome using RepeatMasker (http://www.repeatmasker.org/) (Smit et al., 1996). 

Repeat families with 10 or more elements identified by RepeatScout were annotated 

and classified into categories based on the presence of protein domains (BLAST (Altschul et 

al., 1990)). Structural features including Long Terminal Repeats (LTRs) and Terminal 

Inverted Repeats (TIRs) were verified using the EMBOSS (Rice et al., 2000) software 

package. Sequences with no known proteins or structural features were grouped into the 

unclassified category. 

Identification and annotation of protein-coding genes were performed using the JGI 

Annotation Pipeline, which takes multiple inputs (scaffolds, ESTs, and known genes), runs 

several analytical tools for gene prediction and annotation, and deposits the results in the JGI 

http://www.repeatmasker.org/
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fungal genome portal MycoCosm (http://jgi.doe.gov/fungi) (Grigoriev et al., 2013) for further 

analysis and manual curation. 

Several gene-prediction programs falling into three general categories were used to 

annotate the repeat-masked assembly as described by Ohm et al. (Ohm et al., 2012). The 

resulting set of putative genes was then filtered for the best models based on EST and 

similarity support to produce a non-redundant representative set. This representative set of 

filtered gene models from the automated annotation pipeline was subject to further analysis 

and manual curation as described by Goodwin et al. for Z. tritici e and by Ohm et al. (Ohm et 

al., 2010) for more recently sequenced species. Measures of model quality included 

proportions of the models complete with start and stop codons (88% of models), those that 

were consistent with ESTs (30% of models) and those supported by similarity with proteins 

from the NCBI NR database (74% of models) as summarized in Table S8. 

Functional annotations for all predicted gene models were made using SignalP 

(Nielsen et al., 1997), TMHMM e, InterProScan (Zdobnov and Apweiler, 2001), and 

BLASTp (Altschul et al., 1990) against the nr, SwissProt (http://www.expasy.org/sprot/), 

KEGG (Kanehisa et al., 2008) and KOG (Koonin et al., 2004) databases as described by Ohm 

et al. (Ohm et al., 2012). Multigene families were predicted with the Markov clustering 

algorithm (MCL) (Enright et al., 2002) to cluster the proteins using BLASTp alignment 

scores between proteins as a similarity metric. Functional annotations are summarized in 

Table S9. Manual curation of the automated annotations was performed using the web-based 

interactive editing tools of the JGI Genome Portal to assess predicted gene structures, assign 

gene functions, and report supporting evidence. Gene models predicted by the JGI annotation 

pipeline were also analyzed using the program Blast2GO (Conesa et al., 2005) with an E-

value of < 10
-6

. Blast2GO assigns GO terms based on the BLAST definitions. Comparisons 

http://jgi.doe.gov/fungi
http://www.expasy.org/sprot/


Chapter 2 

between groups of genes for enrichment of GO terms were done by using Fisher’s exact test 

implemented in the Blast2GO program. 

Potential secreted proteins were identified with a python script made to run all gene 

models through SignalP 3.0 (Dyrlov Bendtsen et al., 2004) and subsequently filtered for 

proteins that had no transmembrane domains, no signal anchor motifs, were fewer than 300 

amino acids in length and had at least 4 cysteine residues. The gene models that fulfilled these 

criteria were considered as potential Small Secreted Proteins (SSPs). 

For re-sequencing of isolate CIRAD 139A, a paired-end library was made using the 

standard Illumina library prep protocol with NEB reagents. Average insert size of the library 

was 272 base pairs. Sequencing was done on an Illumina GAIIx in one lane of a 54-cycle 

paired-end run using 36-cycle version 5 SBS Kits. The flow cell was built using a version 4 

paired-end cluster generation kit. Eventually, 37 million reads were obtained for a total yield 

of 4 gigabases. Paired reads were aligned to the P. fijiensis v2 Assembly reference scaffolds 

using GSNAP (2010-03-09 release), allowing up to 3 mismatches or 1 indel and with end 

trimming enabled. Uniquely aligned reads were then used to call variant sites using the 

Alpheus pipeline, requiring that a variant have support from at least 2 reads with an average 

quality of bases of at least phred 10 and at least 80% of the reads covering the site calling that 

variant. Nonsynonymous SNP differences were assessed against the coding regions in the P. 

fijiensis v2 FrozenGeneCatalog 20100402. 

To survey the non-synonymous SNPs in the annotated protein set of CIRAD86, a 

simple analysis of functional bias in variant proteins was conducted using a ranking 

comparison approach. All genes were ranked based on their non-synonymous SNP count 

(normalized for coding sequence length) and two selected gene sets were compared with the 

whole-genome set. The two sets used for comparison were the 1500 most-variant proteins 
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(Set V) and the 1500 least-variant proteins (Set C), taken from the list of genes ranked by 

non-synonymous SNP count. The annotation files for the P. fijiensis v2 Frozen Gene Catalog 

20100402 were used as the source of GO terms for the genes. The ranked frequency of 

occurrence of GO terms in the gene annotations for the whole genome was compared with 

those for Sets C and V. 

Repetitive element analysis 

For each repetitive element family, a subset of elements with lengths within 50% of 

the longest element was aligned using clustalX (Larkin et al., 2007). These alignments were 

submitted to RIPCAL (Hane and Oliver, 2008) to determine the dinucleotide bias observed in 

repetitive elements. RIPCAL estimates 'RIP dominance' for each dinucleotide containing a 

cytosine. It is the ratio of a given dinucleotide (e.g., CA) to the sum of the other three 

dinucleotides (CG/CC/CT). 

To test for isochores in the P. fijiensis genome, a contiguous stretch of sequence with 

an arbitrarily chosen average GC content of less than 45% was categorized as an AT block. 

Custom python scripts were used to calculate the percent GC across the genome, to generate 

AT blocks and to calculate the average percent GC across the AT blocks and those fewer than 

500 bp apart were merged into blocks of at least 1 kb in length, which were retained and 

analyzed for their composition and distribution of repetitive sequences and genes. 

To estimate and compare the amount of RIP between the AT-rich blocks and the rest 

of the genome, a custom python script was written using a 500-bp sliding window with a step 

size of 100 bp. The amount of RIP was calculated as an index (CpA+TpG)/(ApC+GpT) and 

estimated separately for each of the AT-rich versus AT-poor regions in the genome. The RIP 
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index measures the depletion of the RIP targets CpA and TpG; thus, lower values of 

(CpA+TpG)/(ApC+GpT) are indicative of a higher degree of RIP [28]. 

To estimate the ages of transposon insertions, LTR retrotransposons were identified 

and annotated using the LTRharvest [100] and LTRdigest [101] modules in GenomeTools 

[102]. LTR sequences from these elements were aligned using ClustalW [99] and manually 

curated to estimate the numbers of mutations that had accumulated over time. All transition 

mutations were ignored in this analysis to remove the bias caused by RIP. Age of the LTR 

retrotransposons was calculated using the average rate of 1.09  10
-9

 substitutions/site/year as 

proposed for fungal sequences [103]. 

To test whether the transposons in the P. fijiensis genome were unique, a comparison 

was made to TEs in the genome of C. fulvum, the only other sequenced fungus in the 

Capnodiales with an expanded genome. RepeatMasker (Price et al., 2005) was used to mask 

the C. fulvum genome using the repeat database from the P. fijiensis genome. The resulting 

file was parsed using the 80:80 rule of Wicker et al. (Wicker et al., 2007), i.e., 80% identity 

across 80% length to identify repeats in common between the two genomes. Another run was 

done at a 70:70 cutoff to allow for greater divergence generated by RIP. 

Generation and analysis of EST sequences 

The CIRAD86 strain was grown in three culture media for production of cDNA 

libraries: yeast-glucose broth as a rich medium (10 g of yeast extract and 30 g of glucose per 

liter); minimal nutrient medium (1 g of KH2PO4, 1 g of KNO3, 0.5 g of MgSO47H2O, 0.5 g of 

KCl, 0.2 g of glucose, 0.2 g of sucrose per liter); and minimal nutrient medium without a 

nitrogen source (as above but without KNO3). Fungal mycelia were grown in each medium at 

25˚C for 10 days with a photoperiod of 12 hours using cool-white fluorescent light on a rotary 
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shaker at 100 rpm. Mycelia derived from all three in vitro conditions were harvested by 

filtration and ground in liquid nitrogen. The RNA was isolated by the trizol method with the 

RNeasy kit (Qiagen, Netherlands) with 2 g of starting material. RNA quality and quantity 

were assessed by spectrophotometer and by gel electrophoresis according to standard 

procedures. For cDNA library construction, first-strand cDNA synthesis was done using 

polyA+ RNA, reverse transcriptase (SuperScriptII (Invitrogen, CA, USA)) and an oligo dT-

NotI primer (5' GACTAGTTCTAGATCGCGAGCGGCCGCCCT15VN 3'). Second-strand 

synthesis was done by E. coli DNA ligase, polymerase I and RNaseH before end repair with 

T4 DNA polymerase. The SalI adaptor (5' TCGACCCACGCGTCCG and 5' 

CGGACGCGTGGG) was ligated to the cDNA and digested with NotI before selecting the 

size range by gel electrophoresis. Sizes were 0.6-2 kb and 2-10 kb. The cDNA of P. fijiensis 

grown in yeast-glucose medium was divided into libraries CBBT and CBHU (0.6-2kb) and 

CBHT (2-10kb). The cDNA from culture on minimal nutrient medium was divided into 

libraries CBBW and CBHX (0.6-2kb) and CBBU and CBHW (2-10kb), and for the libraries 

of culture on minimal nutrient medium without nitrogen source, cDNA was divided into 

libraries CBBX and CBHY(0.6-2kb).  The size-selected inserts were cloned into the 

pCMVSPORT6 vector (Invitrogen) and digested with SalI and NotI. Ligated vectors were 

transformed into ElectroMAX T1 DH10B cells (Invitrogen). 

Sequence reads from cDNA libraries were trimmed of vector, linker, adapter, poly-

A/T, and other artifact sequences with the Cross-match software. Internally developed 

software at the JGI-DOE identified short patterns and low-quality regions (Q15). The longest 

high-quality region of each read was counted as an EST. Clustering of ESTs was performed 

based on pairwise alignments generated using the Malign software, a modified version of the 

Smith–Waterman algorithm (Smith and Waterman, 1981), which was developed at the JGI for 

use in whole-genome shotgun assembly. ESTs sharing an alignment of at least 98% identity 
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with 150-bp overlap were assigned to the same cluster. For each cluster of EST sequences, a 

consensus sequence was generated by running the Phrap software  (Ewing et al., 1998; Ewing 

and Green, 1998). Comparison of the relative expression of genes in the different libraries 

was done by mapping ESTs to the whole set of predicted gene models and comparing their 

occurrences between a pair of libraries using Fisher’s exact test. A P value of < 0.05 was 

considered as statistically significant. 

Functional analysis of a putative effector protein 

Plantlets of M. acuminata ssp. burmannicoides var. Calcutta IV (recognized as a 

resistant standard for BLSD) were multiplied and rooted in vitro, whereas Cavendish “Grand 

Naine” tissue culture plants were hardened for three to four weeks in a greenhouse 

environment. Subsequently, all plantlets were grown for three months (small plants), and 

some plants of var.  Calcutta IV and “Grand Naine” were grown for eight months (large 

plants) in a controlled-environment greenhouse compartment at 25˚C with a relative humidity 

of >80% and 16 hours of light per day. 

Plants of tomato (Lycopersicum esculentum) cv. Moneymaker (MM), which has no 

known e resistance genes (Cf0), or an isogenic line previously transformed with the Cf4 

resistance gene were grown under greenhouse conditions as described by Stergiopoulos et al. 

2010 (Stergiopoulos et al., 2010) during 3-4 weeks. 

The mature protein from the P. fijiensis putative effector gene PfAvr4 was produced 

heterologously by culturing Pichia pastoris isolate GS115 in a fermentor as described 

previously (Rooney et al., 2005, p. 2). Following production in the fermentor, the protein was 

further purified from excess liquid medium and smaller proteins by filtration through a 3-kDa 

membrane (Amicon Ultra-15 Centrifugal filter unit, Millipore, USA). 
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Infiltration of the complete fermentor product or purified PfAVR4 protein into banana 

and tomato leaves was done by injection with a 1-ml syringe with no needle. Infiltrations on 

banana leaves were done at the original concentration and a six-fold higher concentration. For 

tomato, all infiltration materials were diluted fifty or seventy-five times prior to infiltration. 

Samples of the fermentor medium and water were infiltrated separately as negative controls 

for all plants. At each infiltration point, the observed water soaking of tissue was marked with 

a permanent marker. Observations were recorded with an Olympus C-8080 digital camera at 4 

and 10 days post infiltration (dpi) on banana leaves, and at 6 dpi for tomato plants. Protein 

preparation and controls were infiltrated in at least two banana leaves from each genotype in 

small and large sizes, with at least 3 repetitions per leaf. Infiltrations in tomato plants were 

performed in at least 4 leaves with one repetition.  

Thermal denaturation assays 

The thermal denaturation method of Marmur and Doty (Marmur and Doty, 1962), 

performed basically as described by Smith et al. (Smith et al., 1995), was used to estimate 

G+C contents of DNA from P. fijiensis isolate CIRAD86 (CBS120258) plus that from the 

closely related banana pathogens P. musae (isolate UQ430; CBS121371) and P. eumusae 

(isolate CBS122457) as well as the previously sequenced Z. tritici isolate IPO323 

(CBS115943) (Goodwin et al., 2011). Genomic DNA was isolated from cultures grown in PD 

broth at 25°C on a rotary shaker (150 rpm) following the procedure described by Raeder and 

Broda (Raeder and Broda, 1985) and was dissolved in 0.1X SSC. Melting curves were 

obtained on a Perkin-Elmer λ25 spectrophotometer equipped with a thermal programmer. The 

G+C contents were calculated from the Tm values (melting/transition temperature) derived 

from the peaks of the first derivatives of the melting curves (Owen et al., 1969). DNA from 

Candida parapsilosis isolate CBS604 (Tm in 0.1 x SSC, 70.6°C) (Crous and Mourichon, 
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2002) was used as a calibration control. Determinations were performed at least twice for 

each isolate. 

Phylogenetic analysis  

Phylogenetic analysis showing the placement of species within the Capnodiales with 

expanded genomes was done using Internal Transcribed Spacer regions (ITS).  DNA 

sequences were downloaded from GenBank with the following accession numbers: 

AF181692 for Z. tritici, EU514233 for P. eumusae, EU514265 for P. musae and EU514248 

for P. fijiensis or obtained from genome data available at the Fungal Genome portal at JGI. 

Sequence alignment was done using MUSCLE (Edgar, 2004) and the phylogenetic tree was 

generated with MEGA 6.0 (Tamura et al., 2013) using a Maximum Likelihood statistical 

method and the Tamura 3-parameter substitution model. Support for the nodes of the tree was 

estimated by bootstrapping with 1000 replications. 

Electrophoretic karyotyping 

Isolates of P. fijiensis grown for 3 weeks in PD broth at 28°C, 150 rpm, were blended 

and grown for 48 hrs in the same medium at 20% strength amended with 1 µM tricyclazole. 

Decanted culture was washed with 1 M sorbitol, and added to 40 mL of OM buffer (1.2 M 

MgSO4, 10 mM K phosphate, pH 5.8 with 700 mg of glucanase (Sigma, Germany), 256 mg 

of yatalase (Takara, Japan), 7500 U of β-glucuronidase (Sigma) and 0.8 g of driselase 

(Sigma)) in a ratio of ~1:3 (mycelium:buffer). The enzymatic treatment was incubated at 33 

°C and shaken at 50 rpm for 4.5 hrs. 

Protoplasts were filtered through a plastic mesh of 30 µm and washed 3 times with 1 

M sorbitol in sterile conditions. When the concentration was at least 1  10
8
 per mL, 

protoplasts were embedded in low-melting point (SeaKem® Gold) agarose at a final 
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concentration of 0.5%. Agarose plugs were treated with proteinase K as described previously 

(Mehrabi et al., 2007), washed with cold 50 mM EDTA, and kept in the same solution at 4°C 

until used. 

Chromosomes of P. fijiensis were separated in a CHEF DR-II system (Bio-Rad, 

Netherlands). Small chromosomal bands were discriminated as described before (Rodríguez-

García et al., 2006) using the chromosomes of Saccharomyces cerevisiae (Bio-Rad) as a high 

molecular weight (HMW) standard. Large chromosomes were separated in a 0.8% low-

melting point (SeaKem® Gold) agarose gel, with 0.5% TBE buffer at 11°C, and 50 V for 195 

hrs with switching times from 4800 to 1800 sec, and 24 hrs from 1800 to 1300 sec, followed 

by 20 hrs at 60 V from 1300 to 800 sec, and finally 27 hrs of 800 to 600 sec at 80 V. HMW 

standards were Schizosaccharomyces pombe and Hansenula wingei chromosomes (BioRad). 

Agarose gels were stained with SYBRGold (Invitrogen) and destained in water for 30 and 20 

min, respectively, observed under a UV transilluminator and recorded with an Eagle Eye II 

(Stratagene) still video system. 

Whole-genome comparisons and synteny analyses 

Two tools, Circos (Krzywinski et al., 2009) and MUMmer (Kurtz et al., 2004), were 

used for structural analysis of the P. fijiensis genome. A nucleotide-based similarity search 

was done between the masked P. fijiensis and Z. tritici genomes and visualized using Circos 

(Krzywinski et al., 2009), whereas protein comparisons between the masked genomes were 

done using Promer (Kurtz et al., 2004). Proteins with greater than 60% identity were reported. 

Proteins in P. fijiensis and Z. tritici with at least 50% amino-acid identity and match 

length were grouped as orthologs using OrthoMCL (Li et al., 2003) and synteny blocks were 

determined using Orthocluster (Vergara and Chen, 2009). The Z. tritici protein dataset also 
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was compared to two other phylogenetically distant Dothideomycetes in the order 

Pleosporales, P. nodorum and P. tritici-repentis. 

Fungicide sensitivity and population analyses 

To analyze the frequencies of molecular marker alleles and fungicide resistance within 

populations, four farms in Costa Rica were sampled during 2008 (Figure S8). San Pablo, 

Zent, and Cartagena are located in Limón province, where bananas are grown at high density 

on large plantations and diseases are controlled by using chemical fungicides. These farms are 

located in the main Costa Rica banana production area with approximate sizes of 285, 342 

and 64 ha, respectively. A fourth farm, San Carlos (0.5 ha), is located in Alajuela province 

and is isolated geographically from the principal banana-production area. Leaf tissue was 

collected from ten banana plants from each farm. Ascospores were discharged from the 

pseudothecia onto water agar (“FRAC Methods for Monitoring Fungicide Resistance,” 1991) 

and single ascospores were transferred immediately to 15 x 100-mm petri dishes filled with 

potato dextrose agar (PDA). Between eight to ten ascospores from each sample point were 

placed on each dish of PDA. After 4 days colonies were transferred to Mycophil agar (Becton 

Dickinson Microbiology Systems, Cockeysville, MD) and incubated for 15 days at 25°C 

under continuous fluorescent light for colony growth and conidial production. Eventually, 649 

isolates were collected and analyzed for phenotypic and molecular variability. 

To obtain DNA for population genetics analyses, mycelia of 190 isolates from each of 

the three commercial plantations and of 95 isolates from the San Carlos population were 

harvested and lyophilized for 24 hours. Genomic DNA was extracted using the Wizard 

Magnetic DNA Purification System for Food Kit (Promega, Madison, WI, USA) according to 

the manufacturer’s instructions and 2 μL per sample were quantified using a NanoDrop ND-

1000 Spectrophotometer  (NanoDrop Technologies, Wilmington, DE, USA). Mating type 
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(Mat) PCR assays (Conde-Ferráez et al., 2007) were performed in a 50-μL total volume 

containing 50 ng of template genomic DNA, 2 mM MgCl2, 600 μM dNTPs, 5 μM of each 

primer, and 0.4 U of Taq DNA polymerase (Roche, Mannhein, Germany). Temperature 

cycling was carried out with the following program: 94°C for 2 min, 40 cycles of 94°C for 1 

min, 70°C for 30 s and 72°C for 1 min, and a final elongation period of 10 min at 72°C. 

Analysis of VNTR markers was done as reported previously (Garcia et al., 2010). For 

genotyping strobilurin resistance, primers were developed on the basis of the G143A mutation 

in the cytb gene (Sierotzki et al., 2000) to identify sensitive and resistant P. fijiensis field 

strains (Table S10) in 20-μL aliquots containing 50 ng of template genomic DNA, 2 mM 

MgCl2, 600 μM dNTPs, 5 μM of each primer and 0.4 U of Taq DNA polymerase (Roche, 

Mannhein, Germany). Temperature cycling was conducted with the following program: 94°C 

for 2 min, 40 cycles of 94°C for 1 min, 70°C for 30 s and 72°C for 1 min, and a final 

elongation period of 10 min at 72°C. Amplicons were separated by electrophoresis using 

1.0% (for mat and cytb assays) or 3.0% (for VNTRs) agarose gels containing 0.3 μg/mL 

ethidium bromide, in 0.5 TBE buffer at 120 V for approximately 1 h (for mat and cytb 

assays) or 5 h (for VNTRs) and were visualized and photographed using a UV 

transilluminator and Eagle Eye II (Stratagene) still video system. 

To analyze the data, frequencies of the two mating types within each population and in 

the overall sample were tested for deviation from a 1:1 ratio with 
2
 tests. A molecular 

multilocus haplotype was constructed for each isolate by combining the allelic data at all five 

VNTR loci. Gene diversity within each population (HS) in total and by locus was calculated 

using GenAlEx 6.4 (Peakall and Smouse, 2006). Total diversity over the entire sample (HT), 

mean gene diversity within populations (HS), genetic differentiation among populations (GST) 

and the corrected, standardized measure of genetic differentiation (G”ST) were calculated 

using GENODIVE Beta version 2.0 (Meirmans and Van Tienderen, 2004). In all cases, HT 
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and HS refer to the unbiased estimates as developed by Nei (Nei, 1987). Pairwise estimates of 

G”ST and of Jost’s differentiation (D) (Jost, 2008) also were calculated with GENODIVE. 

Multilocus haplotype diversity was calculated with multilocus 

(http://www.bio.ic.ac.uk/evolve/software/multilocus/#what). 

http://www.bio.ic.ac.uk/evolve/software/multilocus/%23what
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Figure 1. Genetic linkage map of Pseudocercospora fijiensis constructed from segregation 

data at 322 loci (233 DArT, 86 SSR and 3 minisatellite markers) among 135 individuals of a 

cross between the sequenced isolates CIRAD86 and CIRAD139A. The Diversity Arrays 

Technology (DArT) markers were named according to the output of proprietary DArT 

analysis software. For each of the 19 linkage groups (listed on top) the cumulative map 

distances (cM) as calculated using the Haldane mapping function are shown to the left.  
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Figure 2. Phylogenetic analysis showing the placement of Dothideomycete species within 

the Capnodiales with expanded genomes. At least two genome expansions may have taken 

place; one leading to the banana pathogen Pseudocercospora fijiensis and one that contributed 

to its close relative the tomato pathogen Cladosporium fulvum. Genome sizes and percentages 

of the genome containing repeat elements are indicated in parentheses. 
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Figure 3. Comparison of repeat classes among Zymoseptoria tritici, the only 

Dothideomycete with a completely sequenced genome, Pseudocercospora fijiensis and 

Cladosporium fulvum, the only other Dothideomycete known to have a transposon-expanded 

genome. 
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Figure 4. Repeat-induced point mutation (RIP) dinucleotide bias in Pseudocercospora 

fijiensis genome. A clear CA <-> TA dinucleotide bias is observed in P. fijiensis repetitive 

families, indicating that RIP likely occurs and mutates CA nucleotide pairs to CT. 
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Figure 5. Comparison of the amount of repeat-induced point mutation (RIP) between 

AT-rich blocks and more GC-rich regions of the Pseudocercospora fijiensis genome as 

measured by the RIP index (CpA+TpG)/(ApC+GpT). (A) AT-rich blocks have a lower 

RIP index indicating a depletion of RIP-susceptible sites due to a higher frequency of RIP 

compared to (B) an AT-poor region (higher GC) of the genome, which has a higher RIP index 

reflecting very little RIP. Four AT-rich blocks are shown along with one AT-poor region for 

comparison. Length of each block in kilobases is shown along the x-axis and the RIP index 

(CpA+TpG)/(ApC+GpT) is shown on the y-axis. 
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Figure 6. First-derivative graphs of melting curves of four different Dothideomycetes. 

Examples of first-derivative graphs of melting curves obtained for Zymoseptoria tritici (A), 

Pseudocercospora fijiensis (B), P. eumusae (C) and P. musae (D). E: A plot of G+C contents 

from sequence reads of P. fijiensis. This graph is very similar to the melting-curve analyses 

showing the difference in G+C content between the genomes of P. fijiensis and the other 

banana pathogens versus the Z. tritici genome. 
 

  



Chapter 2 

 

 

 
 

 

Figure 7. The numbers of long terminal repeat (LTR) retrotransposons in hypothetical 

age bins from less than one to more than 20 million years. Estimated age of each 

transposon was calculated using the number of differences between its left and right repeats. 

These are considered identical at the time of insertion so all changes are likely due to 

mutations that occurred after transposition. All transition mutations were excluded to 

minimize the effects of repeat-induced point mutation. 
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Figure 8. Electrophoretic karyotypes of two strains of Pseudocercospora fijiensis. A) Bands 

separated with conditions for small chromosomes. Lane 1, chromosomes from Saccharomyces 

cerevisiae as high-molecular-weight (HMW) marker; lane 2, strain CIRAD86; lane 3, strain E22. B) 
Bands separated under conditions to resolve medium and large chromosomes. Lane 1, chromosomes 

from Schizosaccharomyces pombe as HMW marker for large chromosomes; lane 2, strain CIRAD86; 

lane 3, strain E22; lane 4, chromosomes from Hansenula wingei as HMW marker for medium 

chromosomes in size. Marker sizes are in Kb. 
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Figure 9. Dot plot showing mesosynteny between the scaffolds of Pseudocercospora 

fijiensis and Dothistroma septosporum. 
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Figure 10. Genome-wide nucleotide comparison between Zymoseptoria tritici (lower half 

of the circle) and Pseudocercospora fijiensis (upper half of the circle). The longest 28 

scaffolds from P. fijiensis are shown. Gene content is conserved but is scattered among 

different chromosomes between these two fungi. There were no significant hits to dispensable 

chromosomes of Z. tritici (14–21). The 12 major scaffolds of P. fijiensis showing synteny are 

labeled in dark blue-green and the other 16 scaffolds are labeled in orange. 
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Figure 11. Infiltration of purified protein of the putative effector gene PfAvr4 from 

Pseudocercospora fijiensis into leaves of banana and tomato. A: Infiltrations into leaves of 

resistant and susceptible banana varieties. B: Infiltrations into leaves of tomato with or 

without the Cf4 resistance gene known to interact with PfAVR4. Experiments were done with 

crude fermentor product and concentrated or diluted product. Fermentor medium alone and 

water were used as controls. 
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Tables 

 

Table 1. Comparative genome statistics of the version 2 assembly of Pseudocercospora 

fijiensis, and several other sequenced fungi in the order Capnodiales. 
 

 

 

 
 

Genome statistic 

P. fijiensis 

V 2.0 

C. fulvum 

V 1.0 

Z. tritici 

V 2.0 

B. 

compniacensis 

V1.0 

D. 

septosporum 

V1.0 

S. 

populicola 

V 1.0 

S. musiva 

V 1.0 

Genome size 74 MB 61.11 MB 40 MB 21.88 MB 30.21 MB 33.19 MB 29.35 MB 

Scaffolds 56 4865 21 19 20 502 72 

Scaffolds > 50 Kb 28 N.A* 21 17 14 141 13 

Largest scaffold 11.8 MB 0.53 MB 6.0 MB 2.03 MB 5.1 MB 1.06 MB 5.11 MB 

Percent in scaffolds > 
50 KB 

99.8 N.A 100 N.A N.A N.A N.A 

Gene models 13,107 14,127 10,952 10,513 12,580 9,739 10,233 

Coverage 6.9 N.A 8.9 43x 34x 18x 35x 

*N.A. Data not available at respective genome site. 
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Table 2. The repeat-induced point mutation (RIP) index calculated as 

(CpA+TpG)/(ApC+GpT) for genes
a
 and repeats

a
 in AT-poor and–rich regions of the 

Pseudocercospora fijiensis genome. 
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Table 3. Comparison of selected gene families with potential roles in pathogenicity among 

five Dothideomycete fungi and the saprotrophic Sordariomycete Neurospora crassa. 
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Supplementary data 

Text S1. Additional information on genome sequencing, assembly and EST support. 

Genome sequencing and assembly 

Pseudocercospora fijiensis isolate CIRAD86 was sequenced using Sanger sequencing 

on ABI 3730XL capillary machines. Three libraries with different sized inserts (3- and 8-kb 

plasmids, and 40-kb fosmids) were used as templates for the plasmid subclone sequencing 

process and both ends were sequenced. After trimming sequences for vector sequences and 

eliminating those with low quality, a total of 867,068 reads was assembled into 382 main 

genome scaffolds using a modified version of Arachne (Jaffe et al., 2003). The resulting P. 

fijiensis v1.0 draft assembly totaled 73.6 Mb at an average read depth coverage of 7.11. 

Almost 84% of the genome was contained in 10 scaffolds that were each at least 4.0 Mb in 

length (Table S1). 

Inclusion of the genetic map data to facilitate assembly of the physical genome 

sequence involved sequencing 288 markers and aligning them to the version 1 draft assembly. 

Among the 288 markers sequenced, 262 were mapped to the version 1 genome assembly 

while 26 markers did not map. The improved version of the genome sequence has an 

estimated size of 74 Mb, assembled into 56 scaffolds covering more than 99% of the genome. 

The largest scaffold is 11.8 Mb in length and 28 scaffolds (99.8.%) are larger than 50 Kb. 

Only 0.6% of sequence bases are estimated to be in gaps as compared to 8.9% in version 1.0. 

Annotation of the v1.0 assembly using a variety of similarity-based and ab initio gene 

predictors (Ohm et al., 2012) yielded 10,316 genes. Annotation of the v2.0 assembly was with 

the same annotation pipeline but with additional filtering by mapping of the v1.0 gene catalog 

along with its manual curations. After filtering for EST support completeness and similarity to 
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other species, 13,107 genes were structurally and functionally annotated. The average gene 

length in the version 2 assembly is 1,833 nt with 3.62 exons per gene; 88%, are complete with 

start and stop codon, 74% have similarity support, and 49% have Pfam domains (Table S2). 

Most of the gene models (96%) are located in 12 scaffolds, numbers 1-10, 12 and 19. Gene 

density in these 12 scaffolds varies from 151 to 229 per Mb and drops from 2.2 to 94 genes 

per Mb for the remaining scaffolds larger than 0.5 Mb (Table S1). 

EST support 

Sequencing of nine cDNA libraries from three in vitro conditions generated 32,394 

ESTs: 10,733 from growth in rich medium (library MFEST-3); 11,685 from growth in 

minimal medium with nitrogen (library MFEST-4); and 9,976 from growth in minimal 

medium without nitrogen (library MFEST-5). Average read length was 711.8 bp and percent 

GC was just over 53%, corresponding to the high-GC peak seen in thermal-denaturation 

assays. 

Clustering of ESTs from all libraries using Cap3 yielded 3,306 contigs and 3,164 

singletons. Mapping of the ESTs to the version 2 genome assembly provided support for 

5,663 of the predicted gene models; 99% of these are located in 13 scaffolds. Some scaffolds 

such as 11 and 14 had a very low density of genes and mapped ESTs (Table S1). 

Differences in the relative abundance of EST sequences among the three libraries 

provide some clues about gene expression under each culture condition. Under rich conditions 

(library MFEST-3), genes that were more abundant included those with GO terms related to 

metabolic processes such as carbohydrate catabolic processes (GO:0046365, GO:0019320), 

lipid metabolic processes (GO:0006629 GO:0045834), dicarboxylic acid metabolic process 

(GO:0043648) and small-molecule biosynthetic process (GO:0044281), among others. Some 

interesting genes expressed exclusively under rich conditions in library 3 include a polyketide 
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synthase, a D-3-phosphoglycerate dehydrogenase related to cytochrome p450 of Neurospora 

crassa, a Ctr copper transporter family protein (Aspergillus clavatus NRRL 1), and an ABC 

multidrug transporter mdr2 protein. 

Genes with more abundance in minimal medium in the presence of nitrogen (library 

MFEST-4) had GO terms related to membrane fraction type proteins (GO:0005624), alcohol 

metabolic process (GO:0006066), binding (GO:0005488) and biosynthetic processes 

(GO:0009058, GO:0046364, GO:0019319). Interesting genes in MFEST-4 include a homolog 

of hydrophobin 1, which is the highest-expressed gene in this library, an alcohol oxidase and 

an extracellular cell wall glucanase. Several highly expressed genes in library MFEST-4 also 

were expressed in library MFEST-5 including the hydrophobin 1 and the alcohol oxidase. 

Enriched GO terms in library MFEST-5 included, among others, drug transmembrane 

transporter activity (GO:0015238 GO:0015893), ion transmembrane transporter activity 

(GO:0015075, GO:0006812, GO:0006811 and others) and several terms related to nucleotide 

binding activities (GO:0001882, GO:0032553). 
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Text S2. Additional potential pathogenicity-related genes present in the P. fijiensis 

genome.  

Other potential genes involved in pathogenicity could be identified from EST support 

under different conditions. Several interesting genes were expressed in the libraries collected 

in minimal medium with and without nitrogen, which resemble the conditions that the fungus 

might face in a natural environment, including a hydrophobin 1 and an alcohol oxidase. An 

alcohol oxidase is a pathogenicity factor in Cladosporium fulvum (Segers et al., 2001), and 

the class I hydrophobin, MPG1, is involved in the formation and attachment of appressoria in 

the rice pathogen Magnaporthe oryzae (Talbot et al., 1993). Hydrophobins allow fungi to 

escape their aqueous environment and mediate attachment of hyphae to hydrophobic surfaces, 

which is important during the initial steps of fungal pathogenesis, where the fungus must 

attach to the hydrophobic surface of the host before penetration and infection (Hektor and 

Scholtmeijer , 2005). Because P. fijiensis does not penetrate directly it must grow on the 

surface of a leaf until it finds a stoma. The hydrophobin protein possibly could be involved in 

attachment to the host during its epiphytic phase until it can locate a suitable stoma for 

penetration. 

Additional potential pathogenicity-related genes were identified through analysis of the 

pathways for melanin biosynthesis. Melanin is essential for successful host penetration by 

several plant-pathogenic fungi (Kubo et al., 1985; Rasmussen and Hanau, 1989; Wolkow et 

al., 1983). Although there are different types of fungal melanin, many pathogenic fungi, e.g., 

Magnaporthe oryzae, Verticillium dahliae, Blastomyces dermatitidis and Sporothrix 

schenckii, synthesize their pigments from acetate through the 1,8-dihydroxynaphthalene 

(DHN)-melanin pathway (Bell and Wheeler, 1986). Both Z. tritici and P. fijiensis may use 

this pathway for melanin biosynthesis because the necessary genes are present in their 

genomes. However, in Z. tritici melanin does not appear to be important for pathogenicity 
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since melanin-deficient mutants were still pathogenic (Choi and Goodwin, 2011a), while 

mutants with increased melanin production showed reduced pathogenicity (Choi and 

Goodwin, 2011b). The importance of melanin for pathogenicity of P. fijiensis is not known.  

The DHN-melanin pathway may be important for P. fijiensis even if melanin is not 

involved in its pathogenicity. In addition to melanin, this pathway is used for the synthesis of 

juglone and 2,4,8-tetrahydroxytetralone, both of which are produced by P. fijiensis in large 

amounts (Stierle et al., 1991; Host et al., 2000) and are phytotoxic to the banana plant, most 

probably by acting on chloroplasts (Busogoro et al., 2004). Knowing the sequences of all of 

the genes involved in the synthesis of these metabolites will open the way for functional 

analyses, allowing tests of whether they have a role in pathogenesis. The only knowledge in 

this respect is the virulence test of two pigment-deficient isolates (Donzelli and Churchill 200 

[15]. Both isolates were capable of penetrating, but only one of them was virulent.  
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Figure S1. The strong positive association between RIP index (where a high index value 

indicates low RIP) and GC content shows that RIP in P. fijiensis is mostly restricted to 

repetitive elements rather than genes. 
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Figure S2. The RIP index in genes and repeats in AT-rich and –poor regions of the P. 

fijiensis genome. RIP is mostly absent from the genes but highly prevalent among the 

repeated elements of the genome. 
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Figure S3. Separation of small size chromosomal bands by electrophoretic karyotyping of 

five field isolates and the CIRAD139A strain of Pseudocercospora fijiensis. Lane 1, 

chromosomes from Saccharomyces cerevisiae as high-molecular-weight (HMW) marker; 

lanes 2 to 6, different field isolates from the Cartagena farm; lane 7, the CIRAD139A strain. 

Marker sizes are in Kb. 
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Figure S4. Dot plot showing mesosynteny between the scaffolds of Pseudocercospora 

fijiensis and Septoria musiva. 
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Figure S5. Dot plot showing mesosynteny between the scaffolds of Pseudocercospora 

fijiensis and Zymoseptoria tritici. 
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Figure S6. Dot plot showing mesosynteny between the scaffolds of Septoria musiva and 

Dothistroma septosporum. 
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Figure S7. Small secreted proteins in the genome of Pseudocercospora fijiensis compared to 

those in the genomes of three other Dothideomycetes. 
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Figure S8. Locations of farms in Costa Rica that were sampled to obtain isolates of 

Pseudocercospora fijiensis for analyses of mating type, fungicide resistance and population 

genetics. Farms Cartagena, San Pablo and Zent are in a major banana-production area and are 

sprayed heavily with fungicides; the San Carlos farm is in an area of plantain production 

(mostly resistant to P. fijiensis) and is not sprayed with fungicides. 
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Table S1. Scaffold sizes, and identification of potential dispensable chromosomes in the 

genome of Pseudocercospora fijiensis by comparison with the characteristics of those known 

from Zymoseptoria tritici. 

Scaffold Size (bp) 

G+C, 

% Genes Genes/Mb 

 

Genes, % 

Genes with 

PFAM, % 

No. of 

ESTs 

ESTs, 

% 

Repeats, 

% 

1 11880248 46.8 2676 226.8 20.4 54.7 7277 23.00 32.6 
2 8841024 46.2 1881 214.4 14.4 52.2 4555 14.40 33.7 

3 6657679 46.5 1526 229.8 11.6 51.0 3437 10.86 31.2 

4 6264405 45.8 1207 193.3 9.2 47.1 2725 8.61 37.0 

5 5901819 44.8 975 166.0 6.7 49.6 2149 6.79 45.2 

6 4991523 45.0 863 174.0 6.6 49.0 2413 7.63 41.7 

7 4695110 45.7 854 182.3 6.5 44.3 1953 6.17 37.6 

8 4236865 46.2 886 210.0 6.8 54.6 2030 6.42 37.4 

9 4185348 45.2 741 178.1 5.7 52.4 1297 4.10 40.1 

10 4009308 45.4 703 177.1 5.4 45.5 2842 8.98 42.1 

11* 1762310 40.2 62 35.3 0.5 3.2 13 0.04 66.0 

12 1674337 44.2 253 151.4 1.9 47.0 539 1.70 43.6 

13* 1121713 41.0 51 45.5 0.4 0.0   63.1 
14* 1006785 39.7 37 36.9 0.3 0.0 6 0.02 60.1 

15* 928877 41.6 42 45.4 0.3 4.8 13 0.04 60.8 

16* 905553 39.1 2 2.2 0.0 0.0   76.0 

17* 851953 42.1 65 77.5 0.5 4.6 30 0.09 32.0 

18* 830772 41.7 49 59.2 0.4 2.0 38 0.12 51.5 

19 609425 46.2 130 213.8 1.0 45.4 255 0.81 41.4 

20* 594030 41.1 29 49.1 0.2 0.0 22 0.07 41.9 

21* 427043 43.6 40 94.1 0.3 2.5 21 0.07 49.4 

22* 366261 41.7 30 82.3 0.2 3.3   53.1 

23* 339557 37.5 0 0.0 0.0 0.0   66.8 

24* 325668 38.1 0 0.0 0.0 0.0   55.2 
25* 230844 42.1 1 4.4 0.0 0.0   12.5 

*Potential dispensable chromosomes are characterized by lower gene densities and higher proportions 

of repetitive sequences. 
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Table S2. Comparison of annotated genes in the version 1 and 2 assemblies of the 

Pseudocercospora fijiensis genome.  

 

 

Annotation parameter v1.0 Assembly v2.0 Assembly 

Number of gene models  10,316 13,107 

Gene density per Mb DNA 140.5 187.6 

Average gene length 1629 nt  1833 nt 

Average protein length 436 aa  427 aa 

Average exon frequency
 a
 2.45  3.62 

Average exon length  578 nt  395 nt 

Average intron length  148 nt  154 nt 

Percent complete gene models
b
 82 88 

Percent of genes with homology support  70 74 

Percent of genes with Pfam domains 48 49 

Percent of genes with EST support  30 
a
 Number of exons per gene 

b 
With start and stop codons. 
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Table S3. Summary of G+C contents derived from the melting-curve analyses of DNA 

extracted from isolates of Pseudocercospora fijiensis, P. eumusae, P. musae and 

Zymoseptoria tritici. 

  Percent G+C Number of 

Species Isolate Peak 1 Peak 2 replications 

P. fijiensis CIRAD86 39.4 ± 0.80 51.6 ± 0.90 18 

P. eumusae CBS122457 39.6 ± 0.03 51.6 ± 0.08 2 

P. musae UQ430 37.2 ± 1.30 50.9 ± 0.50 6 

Z. tritici  IPO323 — 53.1 ± 0.50 6 
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Table S4. Next-generation resequencing information for Pseudocercospora fijiensis isolate 

CIRAD139A and numbers of Single-Nucleotide Polymorphisms (SNPs) compared with the 

reference genome of isolate CIRAD86 V2.0. 

Parameter Number (%) 

Total reads 73,185,656 

Uniquely aligned 43,622,808 (59.6%)  

Ambiguously mapped 20,982,018 (28.7%)  

Unmapped 8,580,830 (11.7%)  

Genome coverage (bp) 65,956,770 (89%)  

Average depth of coverage 35.6 x 

Total variants 514,953 

Total SNPs 509,749 (99%) 

Total indels 5,204 (1%) 

Variants in coding sequences 95,335 (18.5%) 

Non-synonymous variants  46,295 (9%) 
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Table S5. Analysis of polymorphism type [Single-Nucleotide Polymorphisms (SNPs) and 

insertion/deletion (indels)] and frequency among the 21 largest scaffolds of the sequenced 

Pseudocercospora fijiensis isolate CIRAD86 and the re-sequenced isolate CIRAD139A.  

 

Scaffold 

Length 

(10
4 
bp) 

Total 

variants Substitutions Indels 

Mean 

frequency 

(per 10kb) 

1 1188 71940 70994 946 60.6 

2 885 58469 57793 676 66.1 

3 667 44949 44352 597 67.4 

4 627 45844 45299 545 73.1 

5 591 41410 41033 377 70.1 

6 500 37467 37088 379 74.9 

7 470 36909 36542 367 78.5 

8 425 28845 28473 372 67.9 

9 420 28315 28021 294 67.4 

10 402 28985 28707 278 72.1 

11 177 14887 14833 54 84.1 

12 168 12317 12204 113 73.3 

13 113 6695 6691 4 59.2 

14 102 8049 8027 22 78.9 

15 94 6700 6668 32 71.3 

16 91 6292 6277 15 69.1 

17 86 6301 6281 20 73.3 

18 84 6155 6130 25 73.3 

19 62 3781 3743 38 61.0 

20 60 4235 4234 1 70.6 

21 44 3517 3492 25 79.9 
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Table S6. Genotyping strobilurin resistance and mating type in four Costa Rican populations 

of Pseudocercospora fijiensis. 

 

  Fungicide sensitivity  Mating type 

Population Sample 

size
a
 

Sensitive Resistant Percent 

resistant 

 

Ratio 
2 P

b 

Cartagena 189 0 178 100.0  90:85 0.14 0.705 

San Carlos 91 87 0 0.0  42:45 0.10 0.748 

San Pablo 179 0 180 100.0  84:82 0.02 0.877 

Zent 190 14 162 92.0  77:96 2.09 0.149 

Total or mean 649 101 520 83.7  293:308 0.37 0.541 

a
 Total number of isolates with molecular marker data for at least one locus. Sample sizes for 

each statistic varied depending on the number of isolates scored successfully. 

b
 Probability that the observed mating type ratios are not significantly different from 1:1. 
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Table S7. Estimates of genetic differentiation
a
 (Jost’s D above the diagonal and the corrected, 

standardized genetic differentiation GST below the diagonal) between pairs of populations of 

Pseudocercospora fijiensis sampled from four banana plantations in Costa Rica
b
. 

 

Population Cartagena San Carlos San Pablo Zent 

Cartagena —
c
 0.067 0.052 0.089 

San Carlos 0.067 — 0.192 0.126 

San Pablo 0.116 0.097 — 0.065 

Zent 0.190 0.243 0.146 — 

 

a
 D and GST were calculated with GenoDive (Meirmans and van Tienderen, 2004) as 

described by Jost (2008) and Meirmans and Hedrick (2011), respectively. 

b
 All values for each statistic were significantly different at P = 0.001. 

c
 Not applicable to self comparisons. 
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Table S8. Percent of gene models supported by different kinds of evidence in the initial 

automated  annotation of the genome of Pseudocercospora fijiensis. 

 

Annotation parameter Number or percent of genes 

Number of gene models 13,107 

Percent complete (with start and stop codons) 88% 

Percent of genes with homology support 74% 

Percent of genes with Pfam domains 49% 

Percent of genes with EST support 30% 
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Table S9. Automated assignment of the 13,107 genes in the genome of Pseudocercospora 

fijiensis to broad functional categories. 

 

Category Number of genes (Percent) 

Proteins assigned to a KOG 6676 (51%) 

KOG categories genome-wide 3247 

Proteins assigned a GO term 5655 (43%) 

GO terms genome-wide 1393 

Proteins assigned an EC number 2666 (20%) 

EC numbers genome-wide 798 

Proteins assigned a Pfam domain 6603 (50%) 

Pfam domains genome wide 2446 
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Table S10. Primers used for population genetic diversity and fungicide sensitivity assays in 

four Pseudocercospora fijiensis populations in Costa Rica. 

 

 

Locus Forward primer
a
 Reverse primer

a
 

Expected 

size 

Fungicide sensitivity   

cytb CTCAAATACTGCCTCAGC CCGTAATGTGGTTCATC 285 

 CTCAAATACTGCCTCAGC GTTATAACTGTAGCTCC 198 

 

Variable Number of Tandem repeats (VNTR) loci 

1333 GAGTGAAGTACTGCGGAGGC AGTTGGAGAAAGGCGAAAGG 259 

3959 GCGCGAGGCTTTCTATCTC ACCCCGATTAGGGAAGGTC 184 

3786 GCAGCGGAGTGCTAGTAACC CGCGCTTTTGACTCTTCTTC 260 

0252 TAGAGGCTACCCTGCCGTC GTATACTTCCGACCTCGGGC 132 

0705 ATAGGATGCGGCAGACACTC CGTCGCGATTTGAAGTGCC 214 

a
 Primer sequences written 5’ to 3’. 
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TARGETED AND RANDOM GENETIC 

MODIFITATION OF THE BLACK SIGATOKA 

PATHOGEN Pseudocercospora fijiensis BY 

Agrobacterium tumefaciens - MEDIATED 
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Abstract 

Pseudocercospora fijiensis (syn. Mycosphaerella fijiensis) is the fungal pathogen that 

causes black leaf streak disease or black Sigatoka in banana and plantain crops, which is a 

threat to global banana production, and unfortunately the experimental amenability of the 

fungus is low as it develops very slowly, hardly produces conidia and molecular tools for 

functional genetics are barely available. Here, we report successful Agrobacterium 

tumefaciens-mediated transformation and the generation of various genetically modified P. 

fijiensis strains. By random insertion we developed green fluorescent protein (GFP) and red 

fluorescent protein (DsRed) labelled strains. Through homologous recombination we also 

generated the first P. fijiensis Pfavr4 and Pfku70 knock-out mutants. The former is the first 

avirulence gene in this pathosystem recognized by the cognate tomato resistance gene Cf4. 

The latter gene encodes a protein that triggers non-homologous end joining. Likewise, we 

generated various P. fijiensis strains with the Pfcyp51 promoter replaced. This gene encodes 

CYP51, and its encoded protein is the target for lanosterol 14α-demethylase inhibitors (DMIs; 

azoles), a major class of functional fungicides for black Sigatoka control in banana and also 

applied against many other fungal plant, animal and human pathogens. With the targeted 

strains obtained here, we developed tools to further analyze the P. fijiensis-banana interaction, 

and to better understand reduced sensitivity to azole fungicides.  
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Introduction 

Banana and plantain are major fruit and staple crops (FAO, 2015). Bananas are the 

global top export fruit, with an average of 114 million tons/year, dominated by Cavendish 

clones that take a major share (90%), but which are also increasingly important for local 

markets (FAO, 2003; Food and Agriculture Organization of the United Nations, 2015). 

Cooking bananas and plantains are major staple foods in tropical and subtropical countries in 

central Africa, South East Asia and Latin America (Mohan and Swennen, 2004; Ortiz and 

Swennen, 2014). Many banana varieties are highly susceptible to black Sigatoka or black leaf 

streak disease (Fullerton and Olsen, 1995). Disease management in this perennial crop largely 

relies on frequent fungicide applications. The frequency varies over environments but is 

commonly over 50 times per year (Chong, 2016; De Lepeyre De Bellaire 2010; FRAC, 2010) 

and commonly represents up to 40% of the total production costs (Chong, 2016; Martínez-

Bolaños et al., 2012). Albeit that banana production provides manifold jobs and supports the 

livelihoods of millions of people, the dependency on fungicides evidently threatens 

occupational health as well as tropical fragile environments (Panganiban et al., 2004; 

Penagos, 2002). 

Pseudocercospora fijiensis (Morelet, 1969) Deighton (1976), previously known as 

Mycosphaerella fijiensis (Morelet 1969) is the causal agent of black Sigatoka and is a 

hemibiotrophic ascomycete fungus from the class of the Dothideomycetes (Schoch et al., 

2006), which has spread to almost all tropical and subtropical regions (Carlier et al., 1996; 

Hayden and Carlier, 2003; Rivas et al., 2004). The life cycle of the pathogen includes a 

biotrophic and a necrotrophic stage, that eventually results in the production of clonal conidia 

and genetically diverse sexual ascospores that drive epidemics (Burt, 1994). Once germinated, 

germ tubes of conidia and ascospores penetrate the leaf through the stomata and develop into 

mycelia that colonize the mesophyll tissue until fructification. During this process lesions of 
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affected foliar tissue become gradually visible and eventually coalesce in large necrotic 

blotches along the rim of the leaf towards the midrib. Clearly, leaf necrosis reduces the 

photosynthetic capacity, but also causes a metabolic switch to premature fruit ripening, which 

greatly affects the export market value of the crop (Beltrán-García et al., 2014; Okole and 

Schulz, 1997).  

 The genome analysis of P. fijiensis (Arango Isaza et al., 2016) generated a range of 

genetic studies (Chang et al., 2016; Chong, 2016; Churchill, 2011; Couoh-Uicab et al., 2013; 

de Wit et al., 2012; Kantún-Moreno et al., 2013; Noar and Daub, 2016a, 2016b; Ohm et al., 

2012; Stergiopoulos et al., 2014, 2010), which turned the fungus from a recalcitrant pathogen 

into an interesting pathogen with unique characteristics. It has for instance one of the largest 

genomes in the Dothideomycetes due to a huge transposon driven genome expansion (Ohm et 

al., 2012). Hence, P. fijiensis is not only important as a plant pathogen, but is also attractive 

for genome wide comparative analyses (Chang et al., 2016). Nevertheless, the genetic 

amenability of the fungus is limited. It has a slow in vitro growth, poor sporulation that 

largely depends on isolate and environmental conditions, can only complete a sexual cycle in 

planta, and foremost, lacked a transformation protocol for a long time, which hampered any 

functional analysis of genes (Arango et al., 2016; Churchill, 2011).  

Agrobacterium tumefaciens mediated transformation (ATMT) has been successfully 

used in many filamentous fungi (Abello et al., 2008; Chen et al., 2000; Combier et al., 2003; 

de Boer et al., 2013; Ding et al., 2011; Mirzadi Gohari et al., 2014; Nyilasi et al., 2005; Weld 

et al., 2006; Xue et al., 2013; Zheng et al., 2011; Zwiers and De Waard, 2001). Homologous 

recombination frequencies vary between 1 and 10% (Kück and Hoff, 2010), depending on the 

fungus and the targeted genes. Nevertheless, knocking out ku70 genes, that encode a protein 

involved the DNA non-homologous end joining (NHEJ) for double-strand DNA break repair, 

has greatly contributed to enhanced recombination in various fungi (Bowler, et al., 2010; 
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Feng, et al., 2012; He et al., 2013; Nayak et al., 2006; Ninomiya, et al.,2004). 

Here, we report the Agrobacterium tumefaciens mediated transformation (ATMT) of 

P. fijiensis. Because the in vitro production of P. fijiensis conidia is challenging (Churchill, 

2011; Cruz-Martín et al., 2011.; Donzelli and Churchill, 2007), our approach involves 

mycelium for ATMT and this resulted in the production of several transformed P. fijiensis 

strains with ectopic integrations as well as homologous recombinations that can be used for 

detailed pathological and functional analyses. 

 

Results 

Random mutagenesis: generation and characterization of gfp and DsRed Pseudocercospora 

fijiensis mutants 

Growth inhibition tests revealed that a hygromycin concentration of 50 µg∙mL-
1
 

enabled the differentiation of transformed from untransformed colonies of the CIRAD86 and 

CIRAD139a wt P. fijiensis recipient strains (data not shown). Random integration of the 

generated gfp or DsRed constructs in the P. fijiensis recipient strains (Figure 1) was routinely 

checked through fluorescence microscopy. In three independent transformation experiments 

we obtained an average of 9.125 transformants per membrane by starting with a concentration 

of 1.5x10
6 

hyphal pieces per mL and eventually obtained each combination of fluorescent 

marker and recipient strain viz. strains CIRAD86::gfp, CIRAD86::DsRed, CIRAD139a::gfp 

and CIRAD139a::DsRed, with transformation efficiency of 0.00066%, 0.0011%, 0.0002%, 

and 0.00006%, respectively (Table 1); and whose genetic identities were confirmed using a 

genetic profile of repetitive DNA at different loci by using the Variable Number of Tandem 

Repeat markers (VNTR1333; Garcia et al., 2010) (Figure 2). We did not observe in vitro 

obvious morphological differences between the wt and mutant strains on solid growth 

medium. 
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Targeted mutagenesis: generation and identification of Pfavr4, Pfku70 knock-out strains 

and Pfcyp51 promoter replacement 

The homolog of Cladosporium fulvum Avr4 in P. fijiensis is Pfavr4 (Stergiopoulos et 

al., 2010, 2014) and is located (ID: 87167) on position 183210-183796 of scaffold 4. For the 

knock-out construct, we selected the upstream region 180469-183065 and the downstream 

region 183458-185053 (Figure 1). The Pfku70 gene was identified from the P. fijiensis 

genome database (Arango Isaza et al., 2016) and is located (ID: 65414) on scaffold 3, position 

603346-605427. This includes the start codon 21 bp upstream of the automatically predicted 

transcript. Note that the transcript was extended at the N-terminus without addition of introns. 

The resulting protein model of 702 aa is in agreement with KU70 homologs from other fungi, 

including Sphaerulina musiva (EMF13337.1), P. musae (KXT17510.1), and Zymoseptoria 

brevis (KJY00058.1) which have similar extensions. Aligning the KU70 proteins revealed 

that the P. fijiensis protein is the closest related to the Dothideomycete fungi S. musiva (74.2 

%) and Z. tritici (69.9 %) (Figure 2), whereas the identity with the more distantly related 

basidiomycete Rhodosporium toruloides (AIA21643.1) was significantly lower (39.6 %) 

(Figure 3; Table 2). Domain analysis confirmed the presence of three domains, similar to 

other eukaryotic KU70 proteins (Figure 3): the N-terminus with a Ku_N terminal  domain 

(also called von Willebrand A [vWA] domain), in the center a KU core domain including a 

DNA-binding -barrel domain, and finally the C-terminus comprising a SAP domain (Fell 

and Schild-Poulter, 2015) (Figure 3A). 

 Using LBA1100 Agrobacterium tumefaciens cells, we obtained 90 and 102 GFP 

fluorescent transformants for Pfavr4 and Pfku70, respectively, which were tested by PCR for 

homologous recombination. Ectopic transformants showed the same PCR fragment as the 

CIRAD86 wt strains, whereas replacement mutants lacking this amplicon were positive for 

the strain specific variable number tandem repeat marker VNTR1333. Moreover, the presence 
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of the replacement cassette was confirmed by amplification of a diagnostic amplicon with a 

primer located within the replacement cassette and a unique sequence of the P. fijiensis 

genome outside the construct (Figures 5 and 6). Overall, these rounds of transformations 

resulted in the identification of three knock-out mutants: Pfavr4 #10, Pfku70 #33 and Pfku70 

#45. 

By using the A. tumefaciens AGL1 strain in combination with the modifications in the 

protocol after the initially random mutagenesis, we improved the transformation efficiency 

with at least one order of magnitude for Pfku70 (two knock out strains out of 102 tested 

hygromycin transformants, derived from 4.1x10
5
 hyphal fragments per mL). This resulted in 

an overall transformation efficiency of 0.025% and homologous recombination in 1.96% 

across all transformants. The knock-out efficiency for PfAvr4, using the same conditions, was 

0.022 % and homologous recombinations occurred in 1.1% of the transformed strains (Table 

1).  

The third sequence we targeted using this method was the Pfcyp51 gene promoter 

(Chong et al., 2016). With a transformation efficiency of 0.025%, we replaced the promoter 

of the azole sensitive strain E22 by the promoter of the azole resistant strain Ca5_16, which 

carried no and multiple repetitive elements in their promoters, respectively. Additional to 

promoter length, a diagnostic amplicon discerned two homologous recombinants resulting in 

a recombination efficiency of 0.8 % (Table 1). 

Fitness comparisons between the wt strain CIRAD86 and the Pfku70#33 and 

Pfku70#45 strains showed that the knock-out strains were compromised in growth (-25-38%) 

(Figure 7). However, functional characterization of the Pfcyp51 promoter replacement strains 

did not show significant fitness penalties potentially resulting from the transformation process 

(Díaz-Trujillo et al., 2018). 
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Discussion  

Food security requires continuous crop improvement to meet future demands. The 

regular and worrisome disease threats of major crops necessitate analyses of the widest 

genetic resources to identify new genes to increase genetic diversity for all traits contributing 

to increase productivity. Therefore, it is essential to uncover the potential of such resources by 

using genetic and phenotypic characterization technologies during abiotic and biotic 

challenges. Understanding host-pathogen interactions and dynamics is a fundamental basis for 

sustainable crop health (De Wit, 2016; Kema et al., 2018; 2016; Michelmore et al., 2017; 

Mirzadi et al., 2015; FRAC, 2010; van den Bosh et al., 2014). For many crops, tools have 

been developed for the analysis of plant-pathogen interactions, but these are in their infancy 

for under-investigated crops. Banana is one of these crops, albeit a major staple food for 

millions of people and despite its status as the top global fruit (FAO, 2015). Disease control is 

mostly accomplished by extensive fungicide applications due to the vulnerability of the global 

Cavendish banana monoculture (Diaz-Trujillo et al., 2018). Here, we report the first 

Agrobacterium-mediated transformation of P. fijiensis, which is an important step to aid 

mining the genome of this major plant pathogen (Arango et al., 2016). We initially applied 

ATMT for ectopic integration of the DsRed or gfp gene, respectively, and then accomplished 

targeted mutagenesis by generating knock-out strains of Pfku70, Pfavr4 and replacing the 

Pfcyp51 promoter. In many fungi ku70 strains have shown a significant increase of 

homologous recombination (Bowler et al., 2010; Catalano et al., 2010; He et al., 2013; Koh et 

al., 2014; Näätsaari et al., 2014; Ninomiya et al., 2004), and hence we considered it important 

to develop the ∆Pfku70 P. fijiensis strain to facilitate further functional analyses of P. fijiensis 

genes. We disrupted Pfavr4, the first effector described in this pathogen, as a starting point to 

further unravel the banana – P. fijiensis interaction (Arango et al. 2016). Recently, we also 
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engineered P. fijiensis strains with modification of Pfcyp51 promoters, to identify a new 

mechanism of fungicide sensitivity (Diaz-Trujillo et al., 2018). 

 Frequently, conidiospores are reported as the ideal starting material for ATMT (Liu et 

al., 2009; Nizam et al., 2010; Zwiers and De Waard, 2001), but others have used other tissues 

(Eckert et al., 2005), and reported higher transformation efficiencies with mycelial pieces 

(Abello et al., 2008) or even fructifications (Chen et al., 2000). In the case of Hebeloma 

cylindrosporum (Combier et al., 2003) and Muscodor albus (Ezra et al., 2010), transformation 

was exclusively possible with mycelial starting material. In P. fijiensis, efficient and constant 

production of conidiospores is challenging. It is strongly influenced by light conditions 

(Sepúlveda et al., 2009), temperature (Churchill, 2011; Sepúlveda et al., 2009), isolate origin 

(Peraza-Echeverría et al., 2008), harvesting intervals (Peraza-Echeverría et al., 2008), and the 

number of subcultures (Cruz-Martín et al., 2011). Therefore, Donzelli et al. (2007) 

successfully used mycelial fragments instead of conidia to study the banana- P. fijiensis 

interaction. Therefore, we eventually used hyphal material as starting material for ATMT and 

showed it can be used for functional analysis of at least three genes in this recalcitrant fungus. 

The constructed replacement cassette was functional in P. fijiensis. The hph gene, that 

confers resistance to hygromycin B, in combination with the trpC terminator, has been widely 

used in Ascomycetes and other fungi as selection marker (Fitzgerald et al., 2003; Krappmann 

et al., 2006; Mirzadi Gohari et al., 2014). Binary vectors for fungal transformation as 

pPm43GW have been developed based on the pCAMBIA vector series and others mainly for 

plant transformation (Frandsen, 2011). Rather than the classic laborious method to construct 

the binary vector for gene replacement, we used the simplified and high throughput Gateway 

cloning system according to Shafran et al. (2008), essential to allow screening of the large 

number of identified sequences that are potentially involved in pathogenicity, fungal growth 

and resistance to fungicides (Amil et al., 2007; Arango Isaza et al., 2016; Beltrán-García et 
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al., 2014; Cañas-Gutiérrez et al., 2006; Chang et al., 2016; Couoh-Uicab et al., 2013; Escobar-

Tovar et al., 2015; Kantún-Moreno et al., 2013; Noar and Daub, 2016a, 2016b). 

Gene knock-out efficiencies depend largely on the length of homologous sequence and 

is usually optimal at around 1 kb (Michielse et al., 2005). Low homologous transformation 

efficiency necessitates the screening of a large number of transformants to identify those with 

correct integration. A strategy to increase homologous recombination efficiency in fungi is 

based on the stimulated expression of genes involved in recombination although this is also 

prone to decreased genomic stability (Natsume et al., 2004). Alternatively, disruption of genes 

involved in NHEJ was shown to increase the homologous recombination frequency in several 

filamentous fungi (Bowler et al., 2010; Koh et al., 2014; Krappmann et al., 2006; Ninomiya et 

al., 2004). For Venturia inaequalis mycelium the observed efficiency was only 0.002% 

(Fitzgerald et al., 2003) and it was 0.0026 % for chopped M. albus mycelia (Ezra et al., 2010). 

For P. fijiensis using small young hyphal fragments, we achieved around 0.02% 

transformation efficiency. Previously, the transformation efficiencies of P. fijiensis were 0.5-4 

(Balint-Kurti et al., 2001) or 2.5-3 (Portal et al., 2012) transformants per g plasmid DNA in 

a restriction enzyme-mediated integration approach with 80 generated transformants (Portal et 

al., 2012). It is difficult to compare the efficiency of ATMT with previous P. fijiensis 

transformations, as frequencies are presented in terms of mycelial pieces or g of plasmid 

DNA, respectively. More recently, Escobar et al. (2015) obtained 0.12% transformation 

efficiency generating random integration mutants using shock waves on P. fijiensis 

conidiospores and by RNAi silenced Pfhog1 (Onyilo et al., 2017), which adds another tool for 

functional assays in this fungus. Whereas homologous recombination efficiency is highly 

variable from <1% to >80% depending on the fungal species, isolate, tissue, target gene, and 

its position on the chromosome and chromatin structure (Kück and Hoff, 2010; Weyda et al., 

2017), we obtained a recombination frequency of 1.96% in P. fijiensis by using mycelial 
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fragments. Both ectopic transformation and homologous recombination efficiencies in P. 

fijiensis are thus within the same range –although at a low level- as reported for other fungi. 

This promises good opportunities for future research, even though fine tuning is necessary. 

Experience learned however, that such efficiencies can be significantly improved once more 

people start working on a system. Initial ATMT transformation efficiency in Z. tritici yeast-

like spores was 0.00007% (Zwiers and De Waard, 2001) and variable homologous 

recombination efficiency could be as low as 0.35% (Cousin et al., 2006). However, Z. tritici is 

currently considered as a model with constant efficiencies that are two orders of magnitude 

higher around 0.001%, (Mirzadi Gohari et al., 2014) and homologous recombination as high 

as 85% (Bowler et al., 2010). Moreover, the generated Pfku70 strains might be used for 

optimizing targeted mutagenesis since this is a key component in the NHEJ machinery. 

Currently CRISPR/Cas9 for targeted mutagenesis is increasingly being applied to filamentous 

fungi (Liu et al., 2015; Nødvig et al., 2015; Wenderoth et al., 2017; Weyda et al., 2017) and 

this also relies on homologous recombination. Consequently thePfku70 strains might be 

valuable starting material for application in P. fijiensis, as in other organisms (Chu et al., 

2015). 

The Pfku70 gene was identified in the sequenced strain CIRAD86 (Arango Isaza et al., 

2016) and is highly conserved when compared to orthologues from other organisms. The 

encoded protein shared a high identity with KU70 proteins from other Dothideomycetes, 

indicating a functional conservation and the involvement in NHEJ. A growth reduction was 

observed in the Pfku70 strains and its function should be accessed in further studies. This was 

not due to the transformation process since other generated knock-out strains were not 

affected in fitness and so these were used as a basis for swapping promoter domains of the 

Pfcyp51 gene (Diaz-Trujillo et al., 2018). In Penicillium chrysogenum, Hoff (2010) showed 

that genes related to stress response were upregulated in ku70 disruptant strains. In several 
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fungi such as Botrytis cinerea (Choquer et al., 2008), Parastagonospora nodorum (Feng et 

al., 2012), P. decumbes (Z.-H. Li et al., 2010), M. ruber (He et al., 2013) and Aspergillus 

parasiticus (Chang, 2008) growth and morphology was not related to the lack of ku70. 

Slightly retarded growth and upregulated telomere action was detected in Ku70 knock-out 

strains of Candida albicans (Chico et al., 2011). Bowler et al., (2010) did not detect any 

defects in ku70 mutants of Z. tritici, whereas recently Wu et al., (2017) related NHEJ to 

transposon insertions as cause of intron mobility. A higher sensitivity to DNA damage was 

reported in Neurospora crassa (Ninomiya et al., 2004), Pichia pastoris (Näätsaari et al., 

2012) and R. toruloides (Koh et al., 2014) ∆ku70 strains. In all these cases higher homologous 

recombination frequencies were observed by using of ∆ku70 strains for transformation. 

In summary, these data provide a starting point for upscaling functional analyses in P. 

fijiensis. This is important for increased understanding of the P. fijiensis-banana pathosystem 

and eventually for contributing to improved disease control and the identification of crucial 

genes for its biology and those that drive pathogenesis. 

 

  



Agrobacterium mediated tranformation of Pseudocercospora fijiensis 

133 
 

Materials and Methods 

Strains 

The sequenced P. fijiensis strains CIRAD86 and CIRAD139a (Arango Isaza et al., 

2016) were used as wild-type (wt) recipient strains throughout this study. They were grown 

on potato dextrose agar (PDA) plates amended with streptomycin 100 µg∙mL
-1

 for 12-15 days 

and were maintained in an incubator (Elbanton, Kerkdriel, Netherlands) at 27˚C.  

Identification and sequence analysis of Pseudocercospora fijiensis genes 

The C. fulvum Avr4 homologue Pfavr4 gene was previously identified by 

Stergiopoulos et al. (2010, 2014). The ku70 orthologues from N. crassa (Ninomiya et al., 

2004), R. toruloides (Koh et al., 2014) and the Dothideomycetes Z. tritici (Bowler et al., 

2010), P. nodorum (Feng et al., 2012), A. alternata (Wang et al., 2011) and S. musiva 

(http://genome.jgi.doe.gov/Sepmu1/Sepmu1.home.html) were used as query with the 

BLASTN search engine at the P. fijiensis genome website (http://genome.jgi-

psf.org/Mycfi2/Mycfi2.home.html). Protein structure was inferred with the NCBI Conserved 

domains analysis tool. The Pfcyp51 was detected in the P. fijiensis genome strain and 

amplified in other strains (Diaz-Trujillo et al., 2018). 

Constructs for insertion and gene deletion 

Vectors pSC001 or pSC002 were applied for random insertion (Mirzadi Gohari et al., 

2015; Zhao et al., 2011). They contain the marker genes eGFP or DsRed, respectively, under 

control of the pToxA promoter from Pyrenophora tritici-repentis and the terminator Tnos in 

combination with the hygromycin B phosphotransferase gene (hph) driven by the PtrpC 

promoter from A. nidulans. These plasmids were transformed into A. tumefaciens strain 

LBA1100 by electroporation, as described (Zwiers and De Waard (2001). 

http://genome.jgi.doe.gov/Sepmu1/Sepmu1.home.html
http://genome.jgi-psf.org/Mycfi2/Mycfi2.home.html
http://genome.jgi-psf.org/Mycfi2/Mycfi2.home.html
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Deletion constructs were generated with three DNA cassettes targeted for the 

knockout of a gene that was amplified using specific primers, including the attB1 and attB2 

sites for Gateway® cloning (Invitrogen). These fragments were then cloned into the 

pDONR
TM

221 vector, using the Multisite Gateway ® Three-fragment Vector Construction kit 

(Invitrogen, California, USA; Cat No. 12537-023, version D). The cassette with hph was 

constructed based on the pSC001 plasmid (Figure 1). 

Upstream and downstream fragments for each gene (Figure 1) were identified and 

amplified using 50 ng genomic DNA from P. fijiensis CIRAD86, with 1 M of corresponding 

primers, 0.2 mM dNTPs, 1x Pfu DNA polymerase 10X with MgSO4 buffer (Promega, 

Madison, USA), 0.4 units Pfu DNA Polymerase (Promega), 4.1 units TaqDNA polymerase 

(Roche, Penzberg, Germany), following this program: 5 minutes at 95 ⁰C, followed by 30 

cycles of 35 seconds at 95 ⁰C, annealing temperature for 1 minute, then 1 minute and 50 

seconds at 72 ⁰C, followed by a final elongation at 72 ⁰C for 5 minutes. Annealing 

temperatures were: 72 and 64 ⁰C for upstream and downstream fragments of Pfavr4 

respectively; likewise 72 and 66 ⁰C for upstream and downstream fragments of Pfku70. 

Amplicons were purified by either QIAquick gel extraction or QIAquick PCR 

purification kits (Qiagen, Venlo, Netherlands) according to the manufacturer’s conditions. 

Upstream and downstream purified fragments were BP-cloned into vectors plasmid 

pDONR
TM 

P4-P1R, or pDONR
TM 

P2R-P3, respectively, while the replacing cassette was BP-

cloned into pDONR
TM

221, from the Multisite Gateway® Three-fragment Vector 

Construction kit according to the manufacturer’s suggestions and transformed into E. coli One 

Shot(R) TOP10 competent cells (Invitrogen, Carlsbad, USA). Plasmids holding the desired 

construct were used for the subsequent LR reaction for 15 hrs, according to the 
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manufacturer’s recommendations, using the plasmid pPm43GW (VIB, Ghent, Belgium) as 

destination vector and transformed into E coli.  

Two l of a pPm43GW plasmid with the desired construct were electroporated 

(BioRad) into 50 l of A. tumefaciens strain AGL1 competent cells at 12.5kV/cm, 25F, 400 

Ohm, 9 msecond in a 1 mm cuvette (CE-001-50, Eurogentec, Seraing, Belgium). Surviving 

cells were recovered for 4 hours in 500 L LB mannitol (10 mg∙mL
-1

) at 28 ⁰C, centrifuged at 

150 rpm and then plated on LB medium amended with mannitol (10 µg∙mL-
1
) (Cat M1902 

Sigma, Steinheim, Germany), 25 µg∙mL-
1
 rifampicin (Cat R3501 Sigma) and 100 µg∙mL-

1
 

spectinomycin (Cat S4014 Sigma). 

Preparation of fungal hyphae for transformation 

A mycelial P. fijiensis colony on a PDA plate with a diameter of approximately 1 cm 

or ~1 month old, was transferred into 1.5 mL of sterile water, amended with 0.05 % Tween20 

in a 10 mL plastic tube (Cat 164161, Greiner Bio-One, Alphen aan de Rijn, Netherlands) and 

strongly smashed with the straight tip of a plastic Lazy-L-shaped spreader, before vortexing 

for 40 seconds at the highest speed. This suspension with disaggregated mycelial parts was 

adjusted up to seven ml using the same water/Tween20 mixture. Approximately 0.5 ml of this 

suspension was transferred onto PDA plates amended with streptomycin (100 µg∙mL
-1

). After 

two to three weeks and one day before transformation, hyphae were rescued from these plates 

using a brush with plastic firm hairs, in the presence of Induction Medium (IM) (Per liter: 2 g 

K2HPO4, 1.45 g KH2PO4, 0.6 g MgSO4 7H20, 0.3 g NaCl, 0.01 g CaCl2 2H2O, 0.001 g FeSO4, 

0.5 mg ZnSO4 7H2O, 0.5 mg CuSO4 5H2O, 0.5 mg H3BO3, 0.5 mg MnSO4H2O, 0.5 mg 

Na2MoO4 2H2O, 0.5 g NH4NO3, 2 g glucose, 0.2 mL 50 % glycerol and 80 l IM MES pH 

5.3). Hyphal fragments were then filtered through two layers of sterile gauze swabs (Cat. 

708505, Noba, Wetter, Germany) and adjusted to 1.10
6
 fragments∙mL

-1
. These were washed 
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thrice with IM and taken up in 10 ml IM in a 50 ml tube (Cat 210261, Greiner Bio-One), 

before an overnight incubation in a rotary shaker (Innova 4430, New Brunswick Scientific, 

The Netherlands) adjusted at 27⁰C and 150 rpm. 

Preparation of Agrobacterium cells and Pseudocercospora fijiensis transformation 

Five days before transformation of P. fijiensis, A. tumefaciens LBA1100 cells with the 

constructs for random mutagenesis were plated in LB medium amended with mannitol (10 

mg∙mL
-1

), 10 µg∙mL-
1
 gentamycin and 250 µg∙mL

-1
 spectinomycin. After growing for two 

days, single colonies were inoculated into 20 mL LB liquid medium with same antibiotics and 

incubated overnight in an orbital shaker adjusted at 27 ⁰C and 150 rpm. Cells were 

resuspended into 20 ml of minimal medium (MM) (same as IM, but without glycerol and 

MES), and 100 l of this suspension were transferred into 20 ml of fresh MM with 10 µg∙mL-

1 
gentamycin and 250 µg∙mL

-1
 spectinomycin and acetosyringone (0.1% of 200 mM) in a 50 

ml tube. After approximately 24 hrs, the OD600 was adjusted to 0.15 with freshly prepared IM 

(with 10 µg∙mL
-1

 gentamycin and 250 µg∙mL
-1

 spectinomycin), and incubated for three hrs 

until an OD600 of 0.25. Subsequently, hyphal fragments (1.10
6
∙mL

-1
) and A. tumefaciens were 

mixed in a 1:1 ratio. Aliquots of 1.5 mL were spread on a 100 cm
2
 nylon membrane 

(Amersham Hybond
TM

-N, GE Healthcare, Buckinghamshire, UK) layer on IM with 1.5 % 

agar amended with 10 µg∙mL-
1
 gentamycin and 250 µg∙mL

-1
 spectinomycin and 

acetosyringone (0.1% of 200 mM) (Cat 134406, Sigma-Aldrich) and incubated in the dark for 

48 hrs at 22 ⁰C. Membranes were then transferred onto PDA amended with cefotaxime (200 

mM) (Cat C7039, Sigma) and hygromycin B (50 mg∙mL
-1

) (Cat H0654, Sigma). 

For transformation of P. fijiensis with the replacement cassette cloned into A. 

tumefaciens strain AGL1 essentially the same protocol was followed with some 

modifications. A single A. tumefaciens colony was transferred to a fresh LB agar plate 
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containing rifampicin (100 g∙mL
-1

), spectinomycin (100 g∙mL
-1

) and mannitol (10 mg∙mL
-

1
) and allowed to grow for 36-40 hrs in 20 ml LB with the same antibiotics in an orbital 

shaker at 27 ⁰C and 150 rpm. AGL1 cells were resuspended into 20 ml of MM. Immediately 

120 l from this suspension were then transferred in 20 ml fresh MM with antibiotics and 

incubated again at 27 ⁰C and 150 rpm in an orbital shaker for approximately 40 hrs. Hyphae 

were rescued from 12 to 15-day-old fungal culture plates in the presence of IM amended with 

0.1% of 200 mM acetosyringone. After filtering hyphae through two layers of gauze swabs 

(Noba), concentrations were adjusted to 10
6
 fragments∙mL

-1
 and washed with IM once by 

centrifugation at 2,000 rpm for 12 minutes, and incubated overnight in a rotatory shaker at 27 

⁰C and 150 rpm before transformation. During co-cultivation of hyphae with AGL1 cells in a 

1:1 ratio on a 100 cm
2
 nylon membrane (Amersham Hybond

TM
-N) layer on IM with 1.5 % 

agar amended with rifampicin (100 g∙mL
-1

), spectinomycin (100 g∙mL
-1

) and 

acetosyringone (0.1% of 200 mM) for 48 hrs, the temperature was maintained at 27 ºC, and 

selection medium was amended with cefotaxime (200 mM) and hygromycin B (50 g∙mL
-1

). 

Screening of fluorescent transformants  

After 15 days incubation, developing colonies on the membranes were monitored for 

fluorescence under a fluorescence stereoscope microscope (Leica, Wetzlar, Germany). GFP or 

DsRed fluorescence was detected with 488 or 563 nm excitation, and 509 or 581 nm emission 

settings, respectively. Images were captured with an Axiocam MRc5 camera using Axioplan 

2.0 software (Zeiss, Göttingen, Germany). 

Confirmation of gene replacement 

Fluorescent mycelial colonies were rescued with a sterile tooth pick or pipet tip and 

transferred to a fresh PDA plate amended with 300 g∙mL
-1

 cefatoxime and 50 g∙mL
-1

 

hygromycin. After approximately three weeks, mycelium was collected and lyophilized for 
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DNA isolation using the Sbeadex (R) Maxi Plant kit (Agowa, Germany) in a KingFisher 

Robot (Thermo Scientific, Hudson, USA). DNA of transformants was used to amplify the 

replaced Pfavr4 or Pfku70 with the primers Avr4_F1 + Avr4_R1, or KU70_F1 + KU70_R1, 

respectively (Table 3). The amplification mixture comprised 20 ng genomic DNA, with 0.75 

M of corresponding primers, 60 M dNTPs (Roche), 1x DNA polymerase with MgSO4 

buffer and 0.8 units Taq DNA polymerase (Roche). Pfavr4 was amplified in a thermocycler 

(PTC200 Peltier, BioRad, Watertown, USA) programmed at 5 min at 95 ⁰C, 30 cycles of 30 

sec. at 94 ⁰C, 30 sec. at 58 ⁰C and 60 sec. at 72 ⁰C, followed by a final elongation for 5 min. 

at 72 ⁰C. The amplification program for Pfku70 was 5 min. at 95 ⁰C followed by 30 cycles of 

30 sec. at 95 ⁰C, 45 sec. at 58 ⁰C and 60 sec. at 72 ⁰C and a final elongation for 2 min. at 72 

⁰C. The expected amplicons sizes were 364 bp (Pfavr4) and 1,261 bp (Pfku70), respectively. 

Transformants that lacked a PCR product, but whose DNA amplified with the control variable 

number tandem repeat VNTR1333 marker according to García et al. (2010), were subjected to 

an additional PCR with a primer located in the replacing construct (Avr4_HR_F or 

KU70_HR_F, respectively) and one primer in the UTR region, based on the P. fijiensis 

CIRAD86 genome sequence (Avr4_HR_R or KU70_HR_R, respectively) (Table 3, Figure 1), 

using an amplification program of 5 min. at 95 ⁰C followed by 30 cycles of 30 sec. at 95 ⁰C, 

60 sec. at 62 ⁰C, 180 sec. at 72 ⁰C and a final elongation for eight min. at 72 ⁰C. The expected 

amplicon sizes for knock-out genes were 2,849 bp for Pfavr4 mutants or of 2,953 bp for 

Pfku70 mutants. 

Transformation efficiency and homologous recombination 

Efficiencies of random and directed mutagenesis were calculated as the percentage of 

transformed colonies among the number of hyphal pieces used for transformation. The 
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percentage of transformants with proven homologous recombination by PCR, among the 

number of transformed colonies, was defined as the frequency of homologous recombination. 

Phenotypic characterization of knock-out Pseudocercospora fijiensis strains 

In vitro growth of Ku70 mutants . The fitness of Pfku70 knockout strains was 

analyzed by generating hyphal fragments from one-month-old colonies of Pfku70#33 and 

Pfku70#45 and the P. fijiensis CIRAD86 wt. For each sample 50 l of 3.5·10
5
 mycelial 

fragments∙mL
-1 

were inoculated in 200 l potato dextrose broth medium in eight wells of a 

96-well, flat bottom, transparent, polystyrol plate (Cat 3370, Corning, USA) for a final 

concentration of 7.10
4
 mycelial fragments∙mL

-1 
in a total of 250 l medium. Each sample used 

a column of eight wells and a column with only medium was left adjacent to it. Plates were 

sealed and maintained in an incubator (Elbanton, Kerkdriel, Netherlands) at 27 ⁰C in 

darkness. Mycelial growth was monitored at 0, 4, 6, 8, 10, and 12 days post inoculation (dpi) 

in two biological and two technical replicates, using an Infinite® M200 PRO machine 

(TEKAN, Männedorf, Switzerland). The reads from the control wells with only growth 

medium were subtracted from those with fungal inoculum and fungal growth was measured 

by increased absorbance values that were averaged, plotted against dpis and compared with 

the wt strain. Pictures of wells were recorded with an Olympus Camedia C-8080 (Olympus, 

Hamburg, Germany). 
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Figure 1. Cloning strategy for Agrobacterium-mediated mutagenesis of Pseudocercospora 

fijiensis and examples of membranes with the number of obtained transformant 

colonies. A) Strategy for cloning the construct with eGFP/DsRed and hph coding genes into 

the LBA1100 Agrobacterium tumefaciens strain for random mutagenesis. B) Gateway-based 

strategy for cloning the construct carrying an eGFP and hph coding genes into the AGL1 A. 

tumefaciens strain to knock out genes Pfavr4 and Pfku70. 
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Figure 2 Transformants of Pseudocercospora fijiensis isolates CIRAD86 and 

CIRAD139A. A) Both P. fijiensis CIRAD86 and CIRAD139A expressing either GFP or 

DsRed. B) Genotyping transformants using the VNTR1333 marker. CIRAD139A contains the 

VNTR200 bp allele whereas CIRAD86 contains the 280 bp allele. 
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Figure 3. The Pseudocercospora fijiensis KU70 (PfKU70) protein. A) PfKU70 

structure. The fused vWA domain and N terminus span from 36 to 266 aa. The KU-core 

domain spans 286 to 568 aa and covers the Ku70/Ku80 -barrel domain from 293 to 491 aa. 

The SAP domain is located from 631 till 665 aa. B) Phylogenetic tree of Ku70 proteins of the 

Dothideomycetes Sphaerulina musiva, Zymoseptoria tritici, Alternaria alternata, 

Parastagonospora nodorum, Neurospora crassa and the basidiomycete Rhodosporidium 

toruloides. 
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Figure 4. Clustal alignment of KU70 protein from Pseudocercospora fijiensis, 

Rhodosporium toruloides, Neurospora crassa, Alternaria alternata, Parastagonospora 

nodorum, Zymoseptoria tritici and Sphaerulina musiva. Conserved domains are labelled with 

arrows and their respective names. 
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Figure 5. Disruption of Pfavr4 in Pseudocercospora fijiensis CIRAD86. A) 

Example of transformants with or without amplification of the Pfavr4 region of 364 bp, which 

is not amplified in knock-out strains. B) Only one knock-out candidate amplified the same 

VNTR1333 allele as the wt CIRAD86 strain, and produced the 2,849 bp amplicons 

representing the single homologous recombinant PfAvr4 strain (C). 
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Figure 6. Disruption of Pfku70 in Pseudocercospora fijiensis CIRAD86. A) 

Selection of transformants by selective PCR resulting in amplification of the Pfku70 region of 

1,261 bp in ectopic transformants. No amplicon was produced in potential transformants. B) 

Transformants 33 and 45 also amplified the same VNTR1333 allele as the wt, representing 

the only obtained knock-out strains. C) Candidate transformants 33 and 45 were confirmed as 

knock out since PCR analyses resulted in the expected and diagnostic 2,853 bp amplicon. 
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Figure 7. Comparison of mycelial growth of the Pseudocercospora fijiensis wt 

CIRAD86 strain and the knock-out strains Pfku70 #33 and Pfku70 #45. Absorbance 

(690nm) reads of cultures in PDB medium were measured over time, averages of five reads 

over 21 positions in each of two biological and technical replicates per strain. 
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Table 1. Transformation efficiency of Pseudocercospora fijiensis for random and 

targeted integration using Pfavr4, Pfku70 and the Pfcyp51promoter. 

 

Gene / 
sequence Mutagenesis 

Marker 
gene Strain  Transformants* 

Transformation 
efficiency (%) 

Hom. 
Rec. 

Hom. Rec. 
efficiency 

(%) Reference 

eGFP Random hph CIRAD86 20 0,0006 n.a. n.a. This study 

eGFP Random hph CIRAD139a 6 0,0002 n.a. n.a. This study 
DsRed 
express Random hph CIRAD86 34 0,0011 n.a. n.a. This study 
DsRed 
express Random hph CIRAD139a 2 0,00006 n.a. n.a. This study 

Pfavr4 Targeted hph CIRAD86 90 0,022 1 1,11 This study 

Pfku70 Targeted hph CIRAD86 102 0,025 2 1,96 This study 
Pfcyp51 

promoter Targeted hph E22  250 0,025 2 0,80 

Diaz-Trujillo et 
al., 2018 

*  Random transformants number correspond to the average from two experiments 

   n.a. : not 
applicable 
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Table 2. Comparison of protein identity of PfKU70 with other fungal Ku70 proteins. 

Specie Class Accession ID (%) Score Reference 

Neurospora crassa Sordariomycete BAP16622.1 49.9 2.3 E-144 Ninomiya et al., 2004 

Rhodosporidium toruloides Mycrobotryomycete AIA21643.1 39.6 3.84 E042 Koh et al., 2014 

Zymoseptoria tritici Dothideomycete EGP88672.1 69.4 0 Bowler et al., 2010 

Alternaria alternata Dothideomycete ADQ73897 57.2 0 Wang et al., 2011 

Parastagonospora nodorum Dothideomycete EAT79812.2 56.6 0 Feng et al., 2012 

Sphaerulina musiva Dothideomycete EMF13337 74.2 0 Unpubished 
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Table 3. Primers used in this study. 
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Abstract  

The Dothideomycete Pseudocercospora fijiensis, previously Mycosphaerella fijiensis, is the 

causal agent of black Sigatoka, one of the most destructive diseases of bananas and plantains. 

Disease management depends on fungicide applications with a major share for sterol 

demethylation-inhibitors (DMIs). The continued use of DMIs puts a considerable selection 

pressure on natural P. fijiensis populations enabling the selection of novel genotypes with 

reduced sensitivity. The hitherto explanatory mechanism for this reduced sensitivity was the 

presence of non-synonymous point mutations in the target gene Pfcyp51, encoding the sterol 

14α-demethylase enzyme. Here, we demonstrate a second mechanism involved in DMI 

sensitivity of P. fijiensis. We identified a 19bp element in the wild type (wt) Pfcyp51 

promoter that concatenates in strains with reduced DMI sensitivity. A PCR assay identified 

up to six Pfcyp51 promoter repeats in four field populations of P. fijiensis in Costa Rica. We 

used transformation experiments to swap the wild type promoter of a sensitive field isolate 

with a promoter from a strain with reduced DMI sensitivity that comprised multiple 

insertions. Comparative in vivo phenotyping showed a functional and proportional 

upregulation of Pfcyp51, which consequently decreased DMI sensitivity. Our data 

demonstrate that point mutations in the Pfcyp51 coding domain as well as promoter inserts 

contribute to reduced DMI sensitivity of P. fijiensis. These results bring new insights into the 

importance of the appropriate use of DMIs and the need for the discovery of new molecules 

for black Sigatoka management. 

 

Keywords: Fungicide, DMI, Pfcyp51 promoter.  
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Introduction 

 Black Sigatoka, caused by the ascomycete Pseudocercospora fijiensis (Morelet, 1969) 

Deighton (1976), (previously Mycosphaerella fijiensis Morelet (1969), is one of the most 

devastating and economically significant diseases of export bananas and plantains. Disease 

management is mainly based on the extensive application of primarily single-site fungicides. 

However, the continuous sexual reproduction of P. fijiensis generates genetically highly 

diverse and hence, versatile populations that quickly adapt to changing environments 

including extensive fungicide treatments (Arango et al., 2016; Conde-Ferráez et al., 2007; 

Hayden and Carlier, 2003; Rivas et al., 2004; Romero and Sutton, 1997). As a result, reduced 

fungicide efficacy develops frequently and spreads rapidly (Arango et al., 2016). This 

situation has contributed to a grave increase in the number of fungicide applications, which 

can tally up to over 50 applications per year (maximally 10 applications with sterol 14α-

demethylation inhibitors, DMIs) in most banana export countries (Chong, 2016; De Lapeyre 

De Bellaire et al., 2010; FRAC, 2010; Martínez-Bolaños et al., 2012), thereby frequently 

comprising a 30% share of the production costs (Marín et al., 2003). This practice poses a 

threat on the occupational health of plantation workers, and the environment, if guidelines are 

not followed. It is thus imperative to understand the mechanisms by which reduced fungicide 

efficacy develops to enable adequate long-term disease management strategies with 

optimized chemical input. 

Azole fungicide applications against black Sigatoka started in 1987 and became 

widely used since 1991 when propiconazole, one of the major contemporary DMIs, was 

introduced in the market (Chong, 2016; Romero and Sutton, 1997). Currently, several DMIs, 

such as difenoconazole, bitertanol, and epoxiconazole are used in disease management 

programs, either alone or in mixes with other fungicides with different modes of action. 

DMIs inhibit the activity of the CYP51 enzyme that is involved in the 14α-demethylation of 
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the ergosterol precursor eburicol (24-methylene-24, 25-dihydrolanosterol). Ergosterol 

regulates cellular membranes fluidity and permeability and is essential for cell viability 

(Lepesheva and Waterman, 2011). However, reduced efficacy of single-site fungicides 

surfaced rapidly in P. fijiensis after the introduction of quinone outside inhibitors (QoIs or 

strobilurins), methyl benzimidazole carbamates (MBCs), and DMIs for disease control in 

banana production (Arango et al., 2016; Amil et al., 2007; Cañas-Gutiérrez et al., 2009, 2006; 

Romero and Sutton, 1997). Previous studies on P. fijiensis revealed the correlation between 

reduced efficacy of propiconazole and point mutations in the coding domain of the Pfcyp51 

gene, which caused non-synonymous amino acid (aa) substitutions surrounding the Substrate 

Recognition Sites (SRS) at positions Y136, A313, Y461 and Y463 (Cañas-Gutiérrez et al., 

2009; Chong, 2016). Until now, this was the only explanatory mechanism for reduced 

sensitivity towards azoles in P. fijiensis. Here, we introduce an additional mechanism that 

drives reduced sensitivity to DMIs in P. fijiensis. We identified the presence of one or more 

repetitive elements in the promoter region of Pfcyp51 among P. fijiensis field isolates with 

reduced DMI sensitivity and catalogued such variants in 225 field isolates originating from 

various - treated and untreated - banana plantations in Costa Rica. Comparison with 14 

control isolates from Ecuador, Asia and Africa showed a positive correlation between the 

presence and copy number of the Pfcyp51 promoter elements, Pfcyp51 overexpression and 

reduced DMI sensitivity. We, subsequently, established the functional relationship between 

the number of promoter inserts, increased target expression and reduced DMI sensitivity 

through Pfcyp51 promoter swapping experiments between wild type (wt) isolates and P. 

fijiensis strains with reduced DMI sensitivity. We thereby formally demonstrated a novel 

mechanism involved in reduced fungicide efficacy of DMIs to P. fijiensis, in addition to the 

described target site mutations in the coding sequence of Pfcyp51.  
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Results  

In vitro sensitivity to propiconazole 

The P. fijiensis isolates that were tested for sensitivity to propiconazole were classified 

in three groups; sensitive isolates with (1) EC50 values of ≤0.10 mg.L
-1

; (2) moderately 

resistant isolates with EC50 values between 0.10 to 1.0 mg.L
-1

 and (3) resistant isolates with 

EC50 values >1.0 mg.L
-1

 (Table 1). Among the 25 isolates tested for sensitivity to 

propiconazole, seven were sensitive, 14 moderately resistant and four were resistant. Clear 

cross-resistance between propiconazole and cyproconazole was observed, since the majority 

of isolates showed similar EC50 values (Table 1, Figure S1).  

Pseudocercospora fijiensis isolates with reduced sensitivity always contain repetitive 

elements in the Pfcyp51 promoter  

 Detailed comparison between the Pfcyp51 promoter sequences from resistant isolates 

and the reference P. fijiensis isolate CIRAD86 revealed that resistant isolates possess an 

insertion in the promoter at 103bp upstream from the start codon. Meanwhile, some isolates 

with reduced sensitivity showed a shorter insertion than resistant strains at the same position. 

Likewise, sensitive isolates did not show any insertion. Insertions comprise repeats of 19bp 

elements “TAAATCTCGTACGATAGCA” present once in the Pfcyp51 promoter 122bp 

upstream from start codon, at scaffold 7:2121794 – 2121813 of the CIRAD86 reference 

(Pseudocercospora fijiensis v2.0, JGI) (Figures 1 and 2).   

Some isolates contain part of the element in their insertions, while others have a 

modified element due to a few additional nucleotides. Additional to the 19bp element, a 

slightly modified 16bp (TAAAATCTCGTACGAT) and a 20bp 

(TAAAATCTCGTACGATAGCA) were also present in the Pfcyp51 promoter. For example, 

in resistant isolates Ca1_5, Ca5_16, Ca6_11, and Ca10_13 (Table 1; S Text) the basic 19bp 
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element is repeated up to six times (four fully conserved and one partial, mostly in tandem 

insertion) and thrice in the moderately resistant P. fijiensis isolates Z8_12 and Z8_18. DNA 

sequence analysis of the resistant isolates from Costa Rica (Ca5_16, Ca6_11 and Ca10_13), 

revealed that these contain identical mutations in the coding region of the Pfcyp51 gene, and 

that the overall length of the Pfcyp51 promoter inserts accumulates to 100bp (Table 1).  

 

Repetitive elements in the promoter of Pfcyp51 upregulate its expression 

To test whether Pfcyp51 gene expression is affected by the presence of repetitive 

elements, we quantified the expression in mycelium by real time RT-PCR, normalized to the 

expression of the actin gene (Pfact) as compared to wild type (wt) controls. P. fijiensis 

isolates Ca5_16, Ca6_11 and Ca10_13, all containing six repeat elements in the Pfcyp51 

promoter, showed a 3.3-5.6 fold increase in Pfcyp51 gene expression as compared to control 

isolate E22, and a smaller difference to the other control strain CIRAD86 that only have the 

basic 19bp element (Figure 3). In contrast, no significant difference was found between the 

control isolate CIRAD86 and P. fijiensis isolate Z8_12, which has three repeat elements. The 

up-regulation of Pfcyp51 was constitutive and independent of addition of propiconazole in the 

culture medium (data not shown). 

 

Pfcyp51 promoter insertions accumulate in P. fijiensis strains with reduced fungicide 

sensitivity originating from frequently sprayed commercial banana plantations in Costa 

Rica 

To identify the number of repeat element copies in the Pfcyp51 promoter, we 

performed PCR analyses on 225 isolates originating from four banana plantations in Costa 

Rica that were previously studied (Arango et al., 2016): three plantations (Cartagena, Zent 
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and San Pablo) with intensive fungicide applications and one unsprayed plantation (ZTSC or 

San Carlos). Comparison of the amplicon sizes by gel electrophoresis and sequence data 

revealed banding patterns that corresponded to two, three and six promoter repeats (Figure 4). 

  Isolates containing six repeat elements dominated (50 out of 82) the Cartagena 

population, followed by isolates with two copies (29 out of 82), whereas isolates with merely 

the original 19bp element were scarce (3 out of 82). In contrast, the Zent population was 

dominated by isolates with only the 19bp element in the Pfcyp51 promoter (59 out of 84), but 

isolates containing two and six promoter repeats were also found (11 and 14 out of 84, 

respectively). The San Pablo population was dominated (23 out of 43) by a genotype with 

three promoter repeats that was not observed in the other populations in addition to strains 

with one (8 out of 23) and two (2 out of 23) promoter repeats. None of the genotypes with 

accumulated promoter repeats were observed in the San Carlos populations that exclusively 

comprised P. fijiensis strains with the original 19bp element in the Pfcyp51 promoter (Figure 

4). 

Sequence analyses revealed that the accumulated promoter repeat elements varied 

from 42bp (two elements), 59bp (three elements) up to 100bp (six elements). All repeat 

elements are inserted exactly 103bp upstream of the start codon of Pfcyp51 and are either 

20bp (TAAAATCTCGTACGATAGCA), 19bp (TAAATCTCGTACGATAGCA) or 16bp 

(TAAAATCTCGTACGAT) in length and concatenate in tandem or are separated by a few 

nucleotides. Elements of 20bp and 19bp only differ by one extra adenine, whereas the 16bp 

element represents a shorter version of the 19bp insert (Figure 1). The 19bp element was 

found in isolates with one, two and three copies, whereas in isolates with six Pfcyp51 

promoter inserts the 19bp element was always accompanied by single inserts of the 16bp and 

20bp units. Hence, the 19bp element is the commonest insertion across all isolates analysed 

(Figure 1).  
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Analysis of the Pfcyp51 coding sequence 

As expected, sequence analyses of different isolates revealed the presence of non-

synonymous mutations in the coding region of Pfcyp51. These resulted in aa changes Y136F, 

A313G, Y463D/H/N that were previously reported and associated with reduced sensitivity to 

propiconazole (Cañas-Gutiérrez et al., 2009). Here, we identified nine new aa substitutions 

(T18I, Y58F, V106D, V116L, K171R, A381G, A446S, G462A, and Y463S) (Table 1). All 

isolates contained the T18I and V106D substitutions. Apart from these, the most frequent aa 

substitutions A313G and Y463N/D/S/H were observed in 11 and 16 out of 25 isolates, 

respectively. These mutations were often found in combination with Y136F and A381G. 

Thus, the most frequently observed haplotypes amongst the 25 isolates were T18I, V106D, 

Y136F, A313G, Y463D/N/S, which were found in combination with two, three or six copies 

of the Pfcyp51 repeat element. Strains with the T18I, V106D, Y136F and Y463D Pfcyp51 

modifications showed the least sensitivity to the tested fungicides. In addition, several other 

combinations of aa substitutions were observed in the analysed cohort of P. fijiensis isolates, 

including A313G and Y463S/H/D/N; A381G and G462A; Y136F and Y463D; Y136F, 

A381G and Y463D; and K171R and A446S.  

 

Functional analysis of the Pfcyp51 promoter insertions  

We discovered a range of promoter insertions in P. fijiensis isolates from banana 

plantations that were treated with fungicides. These promoter insertions, in particular the six 

repeat inserts, conferred enhanced expression of Pfcyp51. The isolates carrying these 

insertions also displayed reduced sensitivity to DMI fungicides, but also carried Pfcyp51 

mutations in the coding sequence, which is the hitherto only explanatory mechanism for 

reduced DMI sensitivity. To disentangle the relation between mutations in the coding 
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sequence and the promoter insertions, we introduced the Pfcyp51 promoter from the resistant 

P. fijiensis isolate Ca5_16 with six repeat elements into the sensitive wt E22 isolate from 

Ecuador (Table 1; Figure 5).  

Transformation of wt P. fijiensis isolate E22 resulted in 250 green fluorescent protein 

(GFP) and hygromycine (hgh) positive transformants. The transformants were characterized 

by PCR to differentiate isolates with six repeats in the Pfcyp51 promoter at the correct 

integration site from ectopic transformants (Figure 5). Two independent transformants, 

Swap26 and Swap121, showing the Ca5_16 promoter amplicon and positive for the correct 

integration site were selected for further analyses (Figure 5). Subsequently, we performed 

qRT-PCR analyses on Swap26 and Swap121 along with the P. fijiensis control isolates 

comprising the recipient wt isolate E22 and the wt resistant isolates Ca5_16 and Ca10_13 and 

an ectopic transformant. Consistent with previous results, the resistant isolates Ca5_16 and 

Ca10_13 express Pfcyp51 at a higher level than the wt E22 recipient isolate. Moreover, the 

expression of Pfcyp51 was significantly increased in both Swap26 and Swap121 compared to 

wt strain E22 and the ectopic isolate, and not significantly different from the resistant donor 

isolate Ca5_16 (Figure 6). Hence, these results prove that replacing the Pfcyp51 promoter 

from a sensitive P. fijiensis isolate by the promoter from a resistant strain results in over 

expression of Pfcyp51. 

To determine whether the observed effect was independent of azole fungicides we 

challenged the transformants with difenoconazole, epoxiconazole and propiconazole in 96-

well plates and calculated the EC50 values. A consistent growth pattern was observed for all 

controls (0 mg·L
-1

). Wt strain Ca10_13 grew up to 2.56 mg·L
-1

 of difenoconazole or 

epoxiconazole, and 10.24 mg·L
-1

 of propiconazole (wt isolate Ca5_16 was removed due to 

contamination). The sensitive wt isolate E22 and the ectopic transformant only grew up to 

0.016 mg·L
-1

 of difenoconazole and 0.04 mg·L
-1

 of epoxiconazole or propiconazole. The 
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Swap26 and Swap121 transformants grew on DMI concentrations that were at least fourfold 

higher than those of the sensitive wt control isolate E22. For difenoconazole, transformants 

Swap26 and Swap121 displayed a twofold and over fourfold (4,25) increment of EC50 

compared to the sensitive wt check E22, respectively (Figure 6). For epoxiconazole, Swap26 

displayed a 4.48-fold reduction in sensitivity, while Swap121 displayed a slightly higher 8.36-

fold reduction. Finally, the EC50 for propiconazole of the wt strain E22 was 4.65-fold and 

5.23-fold lower compared to Swap26 and Swap121, respectively. The ectopic transformant, 

displayed a similar sensitivity as wt E22 regardless of the fungicide used (Figure 6). These 

data confirm that Pfcyp51 promoter modifications contribute to reduced DMI efficacy in P. 

fijiensis. 
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Discussion 

 Disease management in agricultural crops is commonly based on an integrated 

approach comprising host resistance, agronomic measures and crop protection agents 

whenever necessary (Matthews et al., 2014). Due to the ubiquity of “Cavendish” clones, 

which represent over 90% of the global banana trade, and their vulnerability to P. fijiensis, 

disease control in banana almost entirely relies on crop protection agents and prophylaxis 

measures. Despite the use of decision support systems accompanied with leaf surgery and the 

removal of infected foliage to reduce the inoculum potential, the cornerstone for P. fijiensis 

control remains chemical crop protection, with the emphasis on azole fungicides (Price et al, 

2015). Consequently, the selection pressure on the pathogen has been enormous that resulted 

in the appearance of P. fijiensis populations with reduced fungicide sensitivity, which calls for 

a better understanding of its origin and dissemination. 

The presence of mutations in the Pfcyp51 gene has been previously related to 

propiconazole resistance in P. fijiensis (Cañas-Gutiérrez et al., 2009). Here, we have focused 

on the promoter region as an important determinant for Pfcyp51 gene expression, and describe 

the identification of a 19bp element, whose concatenation upregulates Pfcyp51 expression and 

confers reduced DMI sensitivity. Our data represent the first report of targeted genetic 

modification of P. fijiensis to demonstrate a new mechanism for DMI sensitivity modulation 

in this organism. 

 PfCYP51 substitutions Y136F, A313G, A381G, Y461D, Y463D, Y463H and Y463N 

were found in the present study in accordance to what has been previously described for P. 

fijiensis for propiconazole (Cañas-Gutiérrez et al., 2009) as well as to other azoles in 

Zymoseptoria tritici, Candida albicans, Pyrenophora teres f. sp. teres, and Aspergillus 

fumigatus (Akins and Sobel, 2009; Cools and Fraaije, 2013; Mair et al., 2016; Mellado et al., 
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2007). Unexpectedly, we identified a 100bp insertion in the Pfcyp51 promoter region in 

addition to the coding region mutations in most P. fijiensis isolates from the Cartagena 

population. These insertions comprise six copies of a repetitive element, whereas a single 

copy of this element is present in all sensitive isolates. Isolates with reduced sensitivity have 

usually two, three or more copies of this element (Chong, 2016). 

Unlike in P. teres f. sp. teres (Mair et al., 2016) and Erysiphe necator (Rallos and 

Baudoin, 2016) which showed overexpression of Cyp51, but no promoter modification, 

changes in the promoter region of the cyp51 gene have been described in other fungi. Such 

changes comprise repeated promoter elements, truncated derivatives of a LINE-like 

retrotransposon in Blumeriella jaappi (Ma et al., 2006), a MITE-like transposon named 

PdMLE1 in Penicillium digitatum (Sun et al., 2013), or a larger transposon of 1.8 kb in A. 

fumigatus (Albarrag et al., 2011; Verweij et al., 2013),  or transcription factor binding sites in 

Venturia inaequalis (Villani et al., 2016). More detailed studies would be required in P. 

fijiensis to decipher whether the repeat elements that we observed correspond to the 

movement of a transposon sequence or whether Pfcyp51 expression is possibly co-regulated 

by transposons. However, unlike previous reports of promoter insertions with 199bp to 5.6 

kbp-sequence transposons in V. inaequalis (Schnabel and Jones, 2001; Villani et al., 2016), 

the Pfcyp51 promoter insertion merely comprise 19bp elements, or minor 16bp and 20bp 

variants, which accumulate up to 100bp in length, shorter than insertions in V. inaequalis, and 

Z. tritici (Cools et al., 2012), where no transposons were reported. Thus the insertions in the 

Pfcyp51 promoter are shorter than any promoter insertions reported in A. fumigatus (Snelders 

et al., 2012; Verweij et al., 2007), and Pyrenopeziza brassicae (Carter et al., 2014). In other 

organisms, e.g. Escherichia coli, overexpression of a desired gene was achieved by tandem 

repeats of core promoter sequences called “MCPtacs” (Li et al., 2012). In this way, a higher 

number of mutations in the coding region could be controlled, which would compromise the 
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activity of the enzyme and hence to reduced sensitivity (Cools et al. 2012; Leroux & Walker 

2011). Possibly, this also applies to P. fijiensis, as we did not find strains with reduced 

sensitivity and insertions in the promoter, but no mutations in the coding region. Isolates from 

wt populations lacked promoter insertions, but - occasionally - possessed mutations in the 

coding region.  

We studied the regulatory nature of the inserted sequences in P. fijiensis in silico and 

showed that the 19bp (TAAATCTCGTACGATAGCA) repeat element is the commonest 

feature. Within populations, we identified a clear genetic diversity in the number of promoter 

repeats. The frequency of isolates with more repeats was higher in banana plantations with up 

to eight DMI cycles, such as Cartagena, Zent and San Pablo. Although expected, it is also 

striking that all isolates from the untreated San Carlos plantation contained the single 19bp 

element. Using a targeted reverse genetics approach in P. fijiensis we, for the first time, could 

validate that the presence of six copies of this element in the promoter increases the 

expression of Pfcyp51 at least three-fold compared with wt isolates and others with reduced 

sensitivity and up to three repeat elements. Previously, Cañas-Gutiérrez et al. (2009) were 

unable to show such expression in experiments with P. fijiensis in response to propiconazole 

and considered it either a non-existent or unimportant mechanism in this fungus. However, 

this was likely due to the use of fewer isolates that showed a limited reduction of sensitivity. 

Hence, we now propose that promoter repeats constitute a genetic adaptation mechanism to 

the high selective pressure imposed on P. fijiensis by the continuous use of different DMI 

fungicides. 

Even though P. fijiensis is a difficult fungus to transform (chapter 3), and despite that 

site specific recombination levels seem to be very low, promoter swapping was successfully 

applied in our study. The introduction of the promoter from a P. fijiensis isolate with strongly 

reduced sensitivity into a sensitive isolate by site specific recombination resulted in a 
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transformant with increased expression of Pfcyp51, and consequently reduced sensitivity to 

three azole fungicides, as a result of the promoter replacement. The Swap26 and Swap121 

transformants were at least four times less sensitive than the recipient wt isolate E22, but not 

as resistant as the wt resistant isolate Ca10_13 or the donor wt isolate Ca5_16, which had 

similar (Y136F and Y463D) coding domain mutations. Hence, we expect that the reverse 

experiment, replacing the wt promoter (with inserts) from an isolate with reduced sensitivity 

with a promoter from a sensitive wt should result in an increase of sensitivity. Finally, 

swapping the wt Pfcyp51 coding domain of a sensitive strain with this domain of an isolate 

with reduced sensitivity, thereby generating a strain with a wt coding domain, but multiple 

promoter inserts, which we have never encountered in nature, should result in increased 

sensitivity. However, discovery of additional mechanisms for DMI sensitivity require genetic 

studies, either genome wide associations or mapping analyses (Chong, 2016). We expect, 

however, that the combination of overexpression conferred by promoter insertions and 

Pfcyp51 target site mutations explain most DMI sensitivity modulations.  

DMIs are and will likely remain a cornerstone for global black Sigatoka disease 

management. However, the risks of bad practices or excessive applications exert a significant 

selection pressure on P. fijiensis populations, turning these increasingly insensitive. Hence, 

DMI applications may lose their competitive advantage compared to other less 

environmentally friendly compounds. The practical spin-off of this study is that we can now 

use a simple PCR assay to monitor, evaluate and predict reduced DMI sensitivity in P. 

fijiensis field populations. Albeit that we focus here on P. fijiensis, DMIs are evidently under 

pressure due to overall reduced sensitivity issues (Chen et al., 2016; Hayashi et al., 2002; 

Leroux and Walker, 2011; Liu et al., 2015; Mullins et al., 2011; Sun et al., 2014, 2013; Villani 

et al., 2016) and are, therefore, increasingly studied in various other fungal pathogens 

(Alvarez-Rueda et al., 2011; Becher and Wirsel, 2012; Carter et al., 2014; Cools et al., 2012; 
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Frenkel et al., 2014; Li et al., 2012; Luo and Schnabel, 2008; Maier et al., 2016; Nikou et al., 

2009; Rallos and Baudoin, 2016; Verweij et al., 2013). This fosters research and development 

for novel chemistry for efficient black Sigatoka control, although alternative products, such as 

the succinate dehydrogenase inhibitors (SDHIs) and QoIs, are also prone to resistance 

development (Arango et al., 2016; Scalliet et al., 2012). Therefore, disease management 

should on the long run embark on the availability of resistant banana germplasm. As this will 

take years, fungicide sensitivity monitoring and the strict adoption of application 

recommendations remain absolute necessities, irrespective of which banana cultivars 

dominate the export trade. A more science driven disease management and extension practice 

in global banana production is the prerequisite for a continuous production of this global top 

fruit and major staple food.  
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Material and methods 

Pseudocercospora fijiensis isolates  

 A set of 25 monoascosporic P. fijiensis isolates from Africa, Asia and Latin America, 

was used for fungicide sensitivity assays. Eight of the Latin-American isolates were collected 

in Ecuador and 11 isolates in Costa Rica (see Table 1). The larger set of Costa Rican isolates 

originated from four different banana plantations: Cartagena (Ca), Zent (Z), San Pablo (SP) 

and San Carlos (ZTSC) (see also Arango et al., 2016). The former three are frequently 

sprayed with fungicides, whereas the San Carlos plantation is in a plantain growing area with 

low P. fijiensis incidence, hence fungicides are not required for disease control. We consider 

the P. fijiensis population from this area as a wt population. Isolates were obtained from 

CORBANA (Costa Rica), CIBE-ESPOL (Ecuador) and the Westerdijk Fungal Biodiversity 

Institute (Africa and Asia). 

 

Determining the in vitro sensitivity to DMI fungicides  

The fungicides propiconazole, cyproconazole and difenoconazole were provided by 

Syngenta (Syngenta Crop Protection AG, Basel, Switzerland) and epoxiconazole was 

obtained from Sigma (Sigma Aldrich, Missouri, USA). All compounds were technical grade 

quality and were maintained in 100x stock solutions, either in methanol or DMSO. When 

applied to the culture medium the final concentration of the solvents was <1% (v/v). For the 

initial in vitro sensitivity assays the final concentrations tested for propiconazole were 10, 

5.62, 3.16, 1.78, 1.0, 0.56, and 0.31 mg·L
-1

. Subsequently, to evaluate sensitive isolates more 

accurately, lower concentrations of fungicides were included in the assays (10.24, 2.56, 0.64, 

0.16, 0.04, 0.016, 0.004, 0 mg·L
-1

) and exploited to evaluate the performance of P. fijiensis 

transformants in the presence of propiconazole, difenoconazole and epoxiconazole.  



The Pfcyp51 promoter and resistance to azoles 

175 
 

Fungicide sensitivity of each isolate was determined by calculating the 50% inhibitory 

concentration (EC50). Quantitative analysis of fungal growth, was determined by a modified 

96 -well microtiter plate dilution assay (Montoya et al., 2006). Fifty microliters of a 1x10
5
 

mycelial parts·mL
-1

 solution from each isolate were inoculated in 200 µl potato dextrose broth 

(PDB) medium per well of a 96-well polystyrene, flat bottom, transparent, plate (Corning, 

USA; cat. # 3370). Plates were incubated at 25ºC in an incubator (Elbanton, Kerkdriel, 

Netherlands) for seven days before mycelial growth was measured. Each concentration was 

tested in duplicate per isolate, and per plate four blank controls were present. Individual plates 

were considered as one biological replicate, and tests were performed thrice. Absorbance was 

initially measured at 620 nm in a TECAN A5082 plate reader (Männedorf, Switzerland), but 

due to the variation of mycelial colours over the isolates as well as the different colony 

morphologies, we eventually monitored growth at an absorbance of 690 nm in an Infinite® 

M200 PRO reader (TECAN, Männedorf, Switzerland), which enabled measuring higher 

sensitivities. The read design per well was settled at room temperature, leaving a border of 

1,000 µm, a bandwidth of 9 µm, circle-filled reads of 21 read points (5x5, with no corner 

points for circle distribution), and each read point was measured five times. Read averages 

were plotted against days after inoculation (dpi) and compared with the other isolates and 

controls. The fungicide sensitivity of transformants and control isolates was determined in the 

aforementioned 96-well polystyrene plates. Sealed plates were maintained at 27 ºC in an 

incubator (Elbanton, Kerkdriel, Netherlands) in darkness and fungal growth was evaluated 10 

dpi. Plates were evaluated at 690 nm, while covered to reduce contamination. Data were 

analysed using GraphPad Prism7 (GraphPad Software, La Jolla, USA). 
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Pfcyp51 coding domain and promoter amplification and sequencing  

 To amplify the Pfcyp51 gene and the promoter region, specific primers located at the 

first repeat element and 22bp upstream of the open reading frame (ORF) were used: 

CYP51_Pfijien_F1 (5’-AAGGTCATATCGCAGG-3’) and CYP51_Pfijien_R1 (5’-

GAATGTTATCGTGTGACA-3’). A basic PCR mix was prepared and the PCR program 

consisted of five min. of denaturation at 94 °C followed by 34 cycles of 30 sec. at 94 °C, 30 

sec. of annealing at 55 °C and 90 sec. of extension at 68 °C. An additional extension step of 

seven min. at 72 °C was performed at the end. DNA sequencing of the gene was performed at 

Macrogen (Seoul, Korea) and by the Genomics facility of Wageningen University and 

Research (WUR), directly using the PCR products. To obtain the entire sequence of the gene 

and the promoter region four primers were used in the sequencing reactions: 

CYP51_Pfijien_F2 (5’-ACAGAAACATCACCTCC-3’), CYP51_Pfijien_F3 (5’-

ATTGCTTCACTTTCATCC-3’), CYP51_Pfijien_F4 (5’-CTCTACCACGATCTCGAC-3’) and 

CYP51_Pfijien_R2 (5’-GATATGGATATAGTTGTC-3’). The obtained sequences were 

assembled in contigs per isolate using CLC DNA Workbench software (CLC bio, Aarhus, 

Denmark) and the ORF was translated to aa and the protein sequences were aligned using the 

ClustalW plug in. The sequence alignments allowed the identification of mutations. 

 

Pfcyp51 gene expression analysis 

 Extraction of total RNA was carried out with mycelia of P. fijiensis isolates grown for 

10 days in PDB using the Qiagen RNA extraction plus mini kit (QIAGEN Inc., Valencia, 

USA). The integrity of the RNA was checked using agarose gel electrophoresis and the 

concentration was determined by measuring absorbance at 260 nm in a Nanodrop 

spectrophotometer (Thermo scientific, Wilmington, USA). Expression analysis was 
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performed by quantitative real time -PCR (qRT-PCR) using primers QRTCYP-forward: (5’-

CGCCAGTATTCGGCACAGATGTCG-3’) and QRTCYP-reverse: (5’-

TAACGTAGGACTGGAGGGCGGA-3’), which amplify a fragment of 89bp of the Pfcyp51 

gene and primers QRTACT-forward: (5’-TCCGTCCTTGGTCTCGAATCTGGT-3’) and 

QRTACT-reverse: (5’-TGCATACGGTCGGAGATACCTGGA-3’), which amplify a 

fragment 146bp of the P. fijiensis actin gene that was used to normalize the expression. 

Quantitative RT-PCR reactions were performed using 20 ng of total RNA per isolate in an 

Applied Biosystems ABI 7500 thermocycler (Waltham, USA) using the Applied Biosystems 

Power SYBR® Green RNA-to-CT™ 1-Step Kit, according to the manufactures instructions. 

The delta-delta Ct method was used - with the actin gene as the endogenous control - to 

determine the level of Pfcyp51 gene expression (Livak and Schmittgen, 2001). 

 

Analysis of promoter repeats of Pfcyp51 gene in four Costa Rican P. fijiensis populations 

Genomic DNA (gDNA) of 225 P. fijiensis isolates from the four Costa Rican 

populations was analysed; 82 from the Cartagena population, 43 from the San Pablo 

population, 84 from the Zent population, and 16 from the San Carlos wt population (Table 

S1). PCR fragments were amplified from gDNA using the specific primer pair, 

P._fijiensis_repeats_F (5’-TCTCGTACGATAGCACCTGCCCA-3’) and 

P._fijiensis_repeats_R (5’-TGTTGGTGTAGGGGGTTAGGCCA-3’) that was designed to 

amplify the promoter region of Pfcyp51. PCR conditions comprised two min. at 95 °C, 30 

cycles of 30 sec. denaturation at 95 °C, 30 sec. of annealing at 68 °C, and two min. of 

extension at 72 °C with an additional extension step of 10 min. at 72 °C at the end of the 

reaction. PCR products were visualized and evaluated on 1% agarose gels and eleven isolates 

were selected for sequencing and subsequent analysis of promoter and coding sequences. 
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Different repeat elements were aligned and a weblogo consensus sequence was generated 

(Crooks et al., 2004) to graph nucleotide conservation within the elements. 

Promoter swapping 

We performed a promoter swapping experiment to test the effect of promoter repeats 

on Pfcyp51 expression and henceforward on sensitivity to several azole fungicides. The 

Pfcyp51 donor promoter for homologous recombination was obtained from the resistant 

isolate Ca5_16. The recombination construct pPROM_CYP51_Ca5_16 comprised an 

upstream 2,024bp fragment (the PfCyp51 gene has an antisense position in the genome), 

obtained by using primers 5-CYP-Prom Fwd (5´-

GGGGACAACTTTGTATAGAAAAGTTGAGGATATCAAGCACGCAC-3´) and Rev (5´-

GGGGACTGCTTTTTTGTACAAACTTGGAAGAGAAACGGACTCCA-3´), which was cloned in 

front of a cassette with the hph resistance gene and the GFP gene, followed by the upstream 

region of 1,737bp obtained with primers 3-CYP-Prom Fwd (5´- 

GGGGACAGCTTTCTTGTACAAAGTGGGAATGAGCATTTGAGAGC-3´) and Rev (5´-

GGGGACAACTTTGTATAATAAAGTTAATACTAGCGGAGGTTCG-3 )́, containing the 

promoter region of isolate Ca5_16, which has six promoter repeats. Transformations were 

performed by Agrobacterium tumefaciens mediated transformation (Díaz-Trujillo et al. 

unpublished data) using the sensitive wt P. fijiensis isolate E22, with a single repeat element 

and no mutations in the coding region. The promoter length of 250 GFP labelled 

transformants was compared with the promoter length of the resistant donor Ca5_16 and the 

sensitive recipient isolate E22. Transformants with a Ca5_16 sized promoter are considered to 

be homologous recombinants, hence promoter swapped transformants, which were 

subsequently analysed for the integration site using PCR of a 2,629bp amplicon using primers 

PROM-HR-3´ Fwd (5´-TGAGCATTTGAGAGC-3´) and Rev (5´-

TTATGATCGCCTCCAAGC-3´) located in the cassette and the Pfcyp51 ORF, respectively. 
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Figure 1. The Pfcyp51 structure. A) Alignment of the promoter regions of the Pfcyp51 gene 

of Pseudocercospora fijiensis isolates collected from the Zent (Z), Cartagena (Ca), San Pablo 

(SP) and the wt San Carlos (ZTSC) banana plantations in Costa Rica, isolate CIRAD86 (C86) 

is the reference wt isolate, the repeat element present in all isolate at position -122 bp is 

shown in green arrows and additional repeated elements identified in various P. fijiensis 

isolates are shown as red arrows (see for origin of isolates Table 1).  B) Configuration of the 

Pfcyp51 promotor and coding domains of the wt Pseudocercospora fijiensis isolates used to 

generate transformants. The promoter region is shown at the left as a blue line with different 

coloured boxes: green, blue and orange boxes represent the 19 bp, 20 bp, or 16 bp promoter 

repeat elements; rectangular boxes at the right represent the coding regions of the Pfcyp51 

gene in these isolates: green represent the sensitive wt and blue the resistant donor (resistant 

wt) coding region. Vertical lines in the coding regions represent amino acid substitutions. 
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Figure 2. Sequence logo of the Pfcyp51 promoter repeat element. Sequences of all repeat 

elements were aligned and used to generate the consensus sequence. The logo displays the 

frequency of the nucleotides within the repeated elements of 16, 19 or 20 bp that were 

observed in the promoter of Pfcyp51 
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Figure 3.  Relative expression of Pfcyp51 (normalized to the Pseudocercospora fijiensis 

actin gene) in six P. fijiensis isolates carrying different numbers of promoter inserts (indicated 

on the top of each bar). Reference isolate CIRAD86 (C86) is shown in green. Data represent 

the averages of three biological repetitions each with at least three technical replicates (error 

bars indicate standard deviations). 
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Figure 4. Quantification of the number of Pfcyp51 promoter repeats in Pseudocercospora 

fijiensis isolates from four banana plantations in Costa Rica. (A) Example of polymerase 

chain reaction (PCR) amplification of the Pfcyp51 promoter in isolates from different 

populations. Isolate CIRAD86 (C86) was used as a control for the presence of one repeat 

element, Z8.12 as a control with three repeat elements and Ca5_16 as a control with six repeat 

elements. The number of repeat elements in each control sample is indicated above the 

corresponding amplicon. The other isolates originated from banana plantations extensively 

treated (or not) with azole fungicides and contain varying numbers of repeat elements in the 

Pfcyp51 promoter. (B) Distribution of repeat elements in the Pfcyp51 promoter within Costa 

Rican populations of P. fijiensis, based on 225 PCR amplifications. 
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Figure 5.  Transformation design to swap Pfcyp51 promoters of Pseudocercospora 

fijiensis isolates. (A) Isolate Ca5_16 is the Pfcyp51 promoter donor with six repeat elements 

(slashed area part with the cross lines). The 3´and 5´recombination fragments (crossed out 

area part with the horizontal lines) were amplified with CYP-Prom primers and ligated to a 

cassette with the hph and green fluorescent protein (GFP) markers into construct 

pPROM_CYP51_Ca5_16. The P. fijiensis E22 sensitive isolate with one 19-bp promoter 

element (dotted area) was transformed with this construct.  (B) The promoter lengths of 

positive GFP-tagged transformants were amplified and compared with the donor and wild-

type (wt) recipient isolate. Transformant Swap 26 is shown as an example of a promoter 

replacement transformant, with a similar amplicon to the donor isolate. Ectopic transformats 

possess the promoter fragment of both the donor and the recipient isolate, whereas 

untransformed isolates only show the wt-sized amplicon. (C) Detection and characterization 

of promoter swapped transformants were performed by amplification of the 2629-bp cassette 

between the homologous recombination sites and the Pfcyp51 coding region using primers 

PROM-HR-3´on GFP fluorescent transformants with a promoter amplicon similar to the 

donor isolate.  
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Figure 6. In vitro sensitivity of Pseudocercospora fijiensis transformants Swap26 and 

Swap121 with swapped Pfcyp51 promoters vs. various control isolates. (A) The relative 

expression (normalized with the expression in wt sensitive donor isolate E_22) of Pfcyp51 in 

Swap26 and Swap121, the wt E22 and the resistant isolate (Ca10_13) with identical promoter 

and coding region as donor isolate (Ca5_16) as well as the ectopic control isolate (Ectopic 

34).  Data represent the averages of three replications. (B) Table with means of EC50 values 

(mg · L
-1

) of the Pseudocercospora fijiensis promotor swapped transformants Swap26 and 

Swap121 and various control isolates to three azole fungicides.  
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Table 1. Origin and characteristics of the Pfcyp51 gene and its promoter in 25 Pseudocercospora 

fijiensis isolates used in this study, including their sensitivity to propiconazole and cyproconazole 

(EC50). 
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Supplementary data 

 

Text S1 Genomic sequence of Pfcyp51 in a set of 25 isolates of Pseudocercospora fijiensis from Asia, 

Africa and Latin America. 

 
 
>C86 
ATGCGGCGTGATGGTTGGACCCTTGGACCCTCGCAATTGATGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCC 
AAAAAGTGACGCGACTGCCGAAATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCACTCGAACATCACTGAAGGG 
TAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCCTACACCAACATCAACATCACTGACTCCGCGCAATGGGGCTCC 
TCCAGGACGCCGCGGCGCTTTTCGACGCGCAATTTGGCCAGACAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCAT 
CTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTCTTCAGAAATCCAAACGAACCTCCGCTAGTATTC 
CACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCATCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAAT 
ACGGAGATTGCTTCACTTTCATCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGTCTTTATCTT 
GAATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTATTCGGCACAGATGTCGTC 
TACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGCGTGCACACAATAAGCTGGATTTATGACAATGCTAAC 
TTATACAGTTCGTCAAATATGGTCAGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTT 
GGAGCGATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTAAATTGATCACCAAA 
GAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCGCATCCACCCACGGCACCGTCGACCTCCCGCCTG 
CTATGGCTGAGCTTACTATCTACACCGCCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTT 
TGCCGACCTCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCACTGCCACAGAAT 
AGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCGATCATCAAAGAGCGACGCGAAAAGGGCGAGC 
CTACTTCGGGAGAGAAAGAGCAGGACATGATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGA 
TAAGGAGATTGCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGCTGGATCCTT 
CTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAGAAGGATGTGCTTGGCGTCAACGCAGATG 
GATCAATCAAGGAGTTAACGTACGCCGACATCTCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCT 
TCATGCTCCCATCCATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTCCCGACC 
ACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTCCCCGAAGCTATGCTGTGGGAACCCC 
ACCGATGGGACGAGAACCCAAGTGAGAAGTACGCACATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGAC 
TGAAGATTACGGCTATGGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGATGC 
ATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGCGATTTCAAGCTCTACAATGTCG 
ACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCGTTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGA 
GAGGAGAGAAAAGAAATAGATTTCACAGTAAGAGTATGTTAATGCTAATCAGACAACTATATCCATATCTGCAGCTTCC 
CTCCTCTGCGAGA 

 
 
>Z4_7_Consensus 
TGCAGATGATGGTTGGACCCTTGCGACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
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CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCTCT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAAATA 
GATTTCACAGTA 
 
 
>Z4_11_Consensus 
GGTGCAGATGATGGTTGGACCCTTGGCACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCNGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAATTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAAATAGAGCACGCGATCGCGCACAGAAGA-GATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCCAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAAGAAATA 
GATTTCACAGTAA 
 

 
>Z4_14_Consensus 
CGAGATGGTGCAGATGATGGTTGGACCCTTGGACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
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AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCGAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAAATA 
GATTTCACAGTA 
 
 
>Z4_16_Consensus 
CGAGATGGTGCAGATGATGGTTGGACCCTTGG-ACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGGTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGCCTAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAAGAATA 
GATTTCACAGTA 
 
 
 
>Z8_12_Consensus 
GCAGATGATGGTTGGACCCTTGG-ACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATCTC 
GTACGATAGCACAAATGTTAAATCTCGTACGATAGCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTTTGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
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CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCGAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAAGAAATA 
GATTTCACAGTAAGA 
 
 
>Z8_17_Consensus 
ATGATGGTTGGACCCTTGGACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCTCT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAAGAAATA 
GATTTCACAGTAAGAG 
 
 
>Z8_18_Consensus 
TTGG-ACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATCTC 
GTACGATAGCACAAATGTTAAATCTCGTACGATAGCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
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TCGGCACAGATGTCGTCTTTGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCGAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAAATA 
GATTTCACAGTAAGAG 
 
 
>Ca1_5_Cyp51    
CCAAAAAAGTGACGCGAATGCCGAAATGTTAAAATCTCGTACGATAGCACCTCCCCATCTCGTACGATAG 
CACAAATGTTAAATCTCGTACGATAGCATGGACCACTCGAACCCACACTGAAGGGTAATCATTCAAGATC 
TTGGTGATTTGGCCTAACCCCCTACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGG 
ACGCCGCGGCGCTTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAG 
CATCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAAACGAACCT 
CCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCATCGACCCCTACAAGTTCT 
TCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCATCCTCCTTGGCAAGAAGACCACCGTGGT 
GCTGGGGACTAAAGGCAACGACTTTATCTTGAATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTAT 
AGCCCACTTACTACGCCAGTATTCGGCACAGATGTCGTCTTTGATTGTCCCAATTCGAAGCTCATGGAGC 
AGAAGAAGGTGCGTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGG 
TCAGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGCGATACACT 
TGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTAAATTGATCACCAAAGAGA 
CCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCGCATCCACCCACGGCACCGTCGACCTCCC 
GCCTGCTATGGCTGAGCTTACTATCTACACCGCCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAA 
TTCGACTCCTCCTTTGCCGACCTCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTC 
CATGGGCTCCACTGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGC 
GATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATGATTTGGAAT 
CTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATTGCGCACATGATGATTGCCC 
TTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGCTGGATCCTTCTCCGACTGGCTTCGCGACC 
AGATATCCAGGATGAGCTCCTTCAAGAACAGAAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAG 
GAGTTAACGTACGCCGACATCTCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTC 
ATGGTCCCATCCATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGT 
CCCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTCCCCGAAGCT 
ATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCACATCTCGCACCAAAGCATG 
TCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCGATGGTCTCGTCAGCAAAGGCGCCGCATCACC 
ATATCTGCCATTCGGTGCTGGCCGACATAGATGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACC 
ATCACCTCGGAAGTGATTCGCGATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAG 
ATTACAGTTCGTTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAAGAAATA 
GATTTCACAGTAAGAGTATGTTAATGCTAATCAGACAACTATATCCATATCTGCAGCTTCCCTCCATCTG 
TCACACGATAACATTCTATAAGAAGAACCAACCTGCAGCGCACTACCAACG 
 
 
 
 
>Ca5_16_Consensus 
GAGATGGTGCAGATGATGGTTGGACCCTTGG-ACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATAAATCTCGTACGATAGCATAAAATCTC 
GTACGATAGCATAAAATCTCGTACGATGTTAAATCTCGTACGATAGCATAAATCTCGTAC 
GATAGCACCTGCCCATTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
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TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTTCGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAA-TAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCGAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGAT-GGGAGAGGAGAGAAAGAAA-TA 
GATTTCACAGTAAGAGTAT 
 
>Ca6_11-Consensus 
GCAGATGATGGTTGGACCCTTGG-ACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATAAATCTCGTACGATAGCATAAAATCTC 
GTACGATAGCATAAAATCTCGTACGATGTTAAATCTCGTACGATAGCATAAATCTCGTAC 
GATAGCACCTGCCCATTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTTCGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAA-TAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCGAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGAT-GGGAGAGGAGAGAAAAGAAATA 
GA 
 
 
 
 
>Ca10_13 
GATGGTGCAGATGATGGTTGGACCCTTGGACCCTCGCAATTGATGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGC  
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GCCAAAAAGTGACGCGAATGCCGAAATGTTAAATCTCGTACGATAGCACCTGCCCATAAATCTCGTACGATAGCATAAA 
ATCTCGTACGATAGCATAAAATCTCGTACGATGTTAAATCTCGTACGATAGCATAAATCTCGTACGATAGCACCTGCCC 
ATTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCCTACACCAACATCAACATCACTGACTCCGCGCAA 
TGGGACTCCTCCAGGACGCCGCGGCGCTTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGG 
CTTCAGCATCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAAACGAACCTCCG 
CTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCATCGACCCCTACAAGTTCTTCTTCGCCTGCC 
GTCAAAAATACGGAGATTGCTTCACTTTCATCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGA 
CTTTATCTTGAATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCSACTTACTACGCCAGTATTCGGCACA 
GATGTCRTCTTCGATTGTCCCAATTCGAAGCTCATGGAGCGGAGGAAGGTGCGTGCACACAATAAGCTGGATTTATGAC 
AATGCTAACTTATACAGTTCGTCAAATATGGTCAGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGC 
TTCCACTTTGGAGCGATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTAAATTG 
ATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCGCATCCACCCACGGCACCGTCGACC 
TCCCGCCTGCTATGGCTGAGCTTACTATCTACACCGCCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGA 
CTCCTCCTTTGCCGACCTCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCACTG 
CCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCGATCATCAAAGAGCGACGCGAAA 
AGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATGATTTGGAATCTGATGCAaTGTCAGTACAAGAATGGTCAAGC 
AATTCCAGATAAGGAGATTGCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAGAAGGATGTGCTTGGCGTCA 
ACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATCTCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGAC 
ACTCCGCCTTCATGCTCCCATCCATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTT 
GTCCCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTCCCCGAAGCTATGCTGT 
GGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCACATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGC 
CGAAGAGACTGAAGATTACGGCGATGGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGA 
CATAGATGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGCGATTTCAAGCTCT 
ACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCGTTGTTCAGCAGACCTCTCTCGCCAGCCGTCGT 
GCGATGGGAGAGGAGAGAAAAGAAATAGATTCACAGTAAGGA 
 
 
 
>E_22 
AGATGGTGCAGATGATGGTTGGACCCTTGGACCCTCGCAATTGATGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAG 
CGCCAAAAAGTGACGCGAATGCCGAAATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCACTCGAACCACACTGA 
AGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCCTACACCAACATCAACATCACTGACTCCGCGCAATGGGA 
CTCCTCCAGGACGCCGCGGCGCTTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCA 
GCATCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAAACGAACCTCCGCTAGT 
ATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCATCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAA 
AAATACGGAGATTGCTTCACTTTCATCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTA 
TCTTGAATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTATTCGGCACAGATGT 
CGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGCGTGCACACAATAAGCTGGATTTATGACAATGC 
TAACTTATACAGTTCGTCAAATATGGTCAGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCA 
CTTTGGAGCGATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTAAATTGATCAC 
CAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCGCATCCACCCACGGCACCGTCGACCTCCCG 
CCTGCTATGGCTGAGCTTACTATCTACACCGCCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCT 
CCTTTGCCGACCTCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCACTGCCACA 
GAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCGATCATCAAAGAGCGACGCGAAAAGGGC  
GAGCCTACTTCGGGAGAGAAAGAGCAGGACATGATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTC 
CAGATAAGGAGATTGCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGCTGGAT 
CCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAGAAGGATGTGCTTGGCGTCAACGCA 
GATGGATCAATCAAGGAGTTAACGTACGCCGACATCTCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCC 
GCCTTCATGCTCCCATCCATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTCCC 
GACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTCCCCGAAGCTATGCTGTGGGAA 
CCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCACATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAG  
AGACTGAAGATTACGGCTATGGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAG 
ATGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGCGATTTCAAGCTCTACAAT 
GTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCGTTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGAT 
GGGAGAGGAGAGAAAAGAAATAGATCACAGTAAA 
 
 
 
 
 
 
 
>GS_10-Consensus 
CGAGATGGTGCAGATGATGGTTGGACCCTTGGACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
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ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCAAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAAATA 
GATTTCACAGTA 
 
 
 
>RN_3-Consensus 
CGAGATGGTGCAGATGATGGTTGGACCCTTG-GACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAA-TAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCCAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAATA 
GATTTCACAGTAAGA 
 
 
 
>RN_5-Consensus 
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CGAGATGGTGCAGATGATGGTTGGACCCTTGGACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCCAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAATA 
GATTTCACAGTAAGAGTATGTTAATGCTAATCA 
 
 
 
>RS_13-Consensus 
TCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAA-TAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCAAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
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GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAAGAAATA 
GATTTCACAGTAGAGTATG 
 
 
 
>SaR_2-Consensus 
GAGATGGTGCAGATGATGGTTGGACCCTTG-GACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAA-TAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATGACGGCTAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAAATA 
GATTTCACAGTAAGAG 
 
 
 
>SaR_5-Consensus 
GGTGCAGATGATGGTTGGACCCTTG-GACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAA-TAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
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TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCAAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAAATA 
GATTTCACAGTA 
 
 
 
>X845-Consensus 
GCAGGTGCAAGGTGCGGCGTGATGGTTGGACCCTTGGACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGACTGTCGA 
AATGTTAAATCTCGTACGATTGCACCTGCCATGGACCAC 
TCGAACAACACTGAAGGGTAATCATTCAAGACCTTGGTGATTTGGCCTAACCCCC 
GACACGAACATCAACATCACTGACACCGCGCAATGGGGCTCCTCCAAGACGCTGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTTGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTCTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTTCGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAA-TAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCTAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGAT-GGGAGAGGAGAGAAAAGAAATA 
GATTTCACAGTAAGA 
 
 
 
>X846-Consensus 
CGAGATGGCGCAGGTGCAAGGTGCGGCGTGATGGTTGGACCCTTGGACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGACTGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACATCACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGGCTCCTCCAGGACGCTGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTTGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTCTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACCTCAATGCCGAGGAGATCTATAGCCCACTTACTACCCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGGTTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTGAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTCCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
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TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAA-TAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCTAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAAATA 
GATTTCACAGTAAGA 
 
 
 
>x847_Consensus 
GGTGCAGATGCAAGGTGCGGCGTGATGGTTGGACCCTTGGACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGACTGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACTTCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGGCTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGACAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTCTTCAGAAATCCGA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTCATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGATCTGAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTCCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAGAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCTTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCTCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCTAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCAGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAGAAATA 
GATTTCACAGTAGAGTAT 
 
 
>x849_Consensus 
TTGGACCCTTGGACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGACTGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACATCACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGGCTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGACAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTCTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
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GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCTAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAAGAAATA 
GATTTCACAGTAA 
 
 
 
>ZTSC_77_Consensus 
ATGGTGCAGATGATGGTTGGACCCTTG-GACCCTCGCAATTGA 
TGAGAAGCAGGGGTGTCCCGTTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCACTCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGGTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCTCT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGATGGGAGAGGAGAGAAAAGAAATA 
GATTTCACAGTA 
 
 
 
>ZTSC_79_Consensus 
TGGTGCAGATGATGGTTGGACCCTTGGACCCTCGCAATTG 
ATGAGAAGCAGGGGTGTGCGGTCCTGCATGACTAGCGCCAAAAAGTGACGCGAATGCCGA 
AATGTTAAATCTCGTACGATAGCACCTGCCCATGGACCAC 
TCGAACCACACTGAAGGGTAATCATTCAAGATCTTGGTGATTTGGCCTAACCCCC 
TACACCAACATCAACATCACTGACTCCGCGCAATGGGACTCCTCCAGGACGCCGCGGCGC 
TTTTCGACGCGCAATTTGGCCAGATAGCGACATGGAAACTAGTCCCCCTCGGCTTCAGCA 
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TCTTCTTCGCCGTATCCGTGTTGCTTAACGTGTTGCGCCAGCTGCTTTTCAGAAATCCAA 
ACGAACCTCCGCTAGTATTCCACTACGTGCCCTTCATTGGCAGCACTATCTCCTATGGCA 
TCGACCCCTACAAGTTCTTCTTCGCCTGCCGTCAAAAATACGGAGATTGCTTCACTTTCA 
TCCTCCTTGGCAAGAAGACCACCGTGGTGCTGGGGACTAAAGGCAACGACTTTATCTTGA 
ATGGAAAGCTCAAGGACGTCAATGCCGAGGAGATCTATAGCCCACTTACTACGCCAGTAT 
TCGGCACAGATGTCGTCTACGATTGTCCCAATTCGAAGCTCATGGAGCAGAAGAAGGTGC 
GTGCACACAATAAGCTGGATTTATGACAATGCTAACTTATACAGTTCGTCAAATATGGTC 
AGTGACTTGACTCCGCCGCGTCTGAGACAGCGCTCTCAACATGAGCTTCCACTTTGGAGC 
GATACACTTGCTAACCTGCGCCTCCAGGCCTCACCTCCTCCGCCCTCCAGTCCTACGTTA 
AATTGATCACCAAAGAGACCAAAGACTTCTTCTCCAAGGACAATCCAAGCAAGAAATTCG 
CATCCACCCACGGCACCGTCGACCTCCCGCCTGCTATGGCTGAGCTTACTATCTACACCG 
CCAGCCGTTCGCTCCAGGGCAAAGAAGTCCGCGAAAAATTCGACTCCTCCTTTGCCGACC 
TCTACCACGATCTCGACATGGGCTTCACTCCCATCAACTTCATGCTTCCATGGGCTCCAC 
TGCCACAGAATAGAGCACGCGATCGCGCACAGAAGAAGATGGCGGAAGTCTACACAGCG 
ATCATCAAAGAGCGACGCGAAAAGGGCGAGCCTACTTCGGGAGAGAAAGAGCAGGACATG 
ATTTGGAATCTGATGCAATGTCAGTACAAGAATGGTCAAGCAATTCCAGATAAGGAGATT 
GCGCACATGATGATTGCCCTTCTCATGGCTGGTCAACACTCGTCCTCGTCCACCTCATGC 
TGGATCCTTCTCCGACTGGCTTCGCGACCAGATATCCAGGATGAGCTCCTTCAAGAACAG 
AAGGATGTGCTTGGCGTCAACGCAGATGGATCAATCAAGGAGTTAACGTACGCCGACATC 
TCGCGCCTTCCACTCCTCAATCAAGTTGTCAAGGAGACACTCCGCCTTCATGCTCCCATC 
CATTCTATTCTGCGACAAGTCAAGTCTCCGATGCCACTCGAAGGTACACCATACGTTGTC 
CCGACCACACACTCCCTCCTTGCTGCACCCGGTGCTACCTCACGAATGGACGAGCACTTC 
CCCGAAGCTATGCTGTGGGAACCCCACCGATGGGACGAGAACCCAAGTGAGAAGTACGCA 
CATCTCGCACCAAAGCATGTCAAGGAGGGCGTCGCCGAAGAGACTGAAGATTACGGCTAT 
GGTCTCGTCAGCAAAGGCGCCGCATCACCATATCTGCCATTCGGTGCTGGCCGACATAGA 
TGCATCGGCGAGCAATTCGCCTATGTCCAGCTCCAGACCATCACCTCGGAAGTGATTCGC 
GATTTCAAGCTCTACAATGTCGACGGCAGCGACAAAGTTGTCGGCACAGATTACAGTTCG 
TTGTTCAGCAGACCTCTCTCGCCAGCCGTCGTGCGANTGGGAGAGGAGAGAAAAGAAATA 
GATTTCACAGTAAGA 
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Figure S1. Cross-resistance between propiconazole and cyproconazole. The EC50 values were 
determined for both compounds on Pseudocercospora fijiensis colonies for the indicates strains at 10 

days post inoculation (results are means of three independent experiments).  
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Table S1. Analysis of Pfcyp51 promoter repeats in 225 Pseudocercospora fijiensis 

isolates from Costa Rica, compared with 14 isolates from other countries. 

No. Isolate Origin Plantation/Location Repeat units 

1 Ca1.1 Costa Rica Cartagena 2 

2 Ca1.5 Costa Rica Cartagena 2 

3 Ca1.7 Costa Rica Cartagena 6 

4 Ca1.10 Costa Rica Cartagena 6 

5 Ca1.16 Costa Rica Cartagena 2 

6 Ca1.20 Costa Rica Cartagena 2 

7 Ca1.24 Costa Rica Cartagena 6 

8 Ca2.1 Costa Rica Cartagena 5 

9 Ca2.5 Costa Rica Cartagena 1 

10 Ca2.11 Costa Rica Cartagena 1 

11 Ca2.13 Costa Rica Cartagena 2 

12 Ca2.15 Costa Rica Cartagena 2 

13 Ca2.16 Costa Rica Cartagena 2 

14 Ca2.17 Costa Rica Cartagena 6 

15 Ca2.19 Costa Rica Cartagena 6 

16 Ca3.1 Costa Rica Cartagena 2 

17 Ca3.3 Costa Rica Cartagena 6 

18 Ca3.5 Costa Rica Cartagena 6 

19 Ca3.7 Costa Rica Cartagena 6 

20 Ca3.10 Costa Rica Cartagena 2 

21 Ca3.14 Costa Rica Cartagena 6 

22 Ca3.20 Costa Rica Cartagena 2 

23 Ca3.22 Costa Rica Cartagena 6 

24 Ca3.24 Costa Rica Cartagena 2 

25 Ca5.1 Costa Rica Cartagena 6 

26 Ca5.5 Costa Rica Cartagena 2 

27 Ca5.7 Costa Rica Cartagena 6 

28 Ca5.10 Costa Rica Cartagena 2 

29 Ca5.12 Costa Rica Cartagena 6 

30 Ca5.13 Costa Rica Cartagena 6 

31 Ca5.15 Costa Rica Cartagena 6 

32 Ca5.16 Costa Rica Cartagena 6 

33 Ca5.17 Costa Rica Cartagena 6 

34 Ca5.19 Costa Rica Cartagena 6 

35 Ca6.1 Costa Rica Cartagena 6 

36 Ca6.3 Costa Rica Cartagena 6 

37 Ca6.5 Costa Rica Cartagena 6 

38 Ca6.7 Costa Rica Cartagena 6 

39 Ca6.9 Costa Rica Cartagena 6 

40 Ca6.11 Costa Rica Cartagena 6 

41 Ca6.12 Costa Rica Cartagena 6 

42 Ca6.15 Costa Rica Cartagena 6 
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Table S1. Analysis of Pfcyp51 promoter repeats in 225 Pseudocercospora fijiensis 

isolates from Costa Rica, compared with 14 isolates from other countries. 

No. Isolate Origin Plantation/Location Repeat units 

43 Ca6.18 Costa Rica Cartagena 6 

44 Ca7.1 Costa Rica Cartagena 2 

45 Ca7.5 Costa Rica Cartagena 6 

46 Ca7.9 Costa Rica Cartagena 2 

47 Ca7.15 Costa Rica Cartagena 6 

48 Ca7.18 Costa Rica Cartagena 6 

49 Ca7.20 Costa Rica Cartagena 2 

50 Ca7.23 Costa Rica Cartagena 2 

51 Ca7.28 Costa Rica Cartagena 2 

52 Ca8.2 Costa Rica Cartagena 6 

53 Ca8.4 Costa Rica Cartagena 2 

54 Ca8.8 Costa Rica Cartagena 6 

55 Ca8.11 Costa Rica Cartagena 6 

56 Ca8.13 Costa Rica Cartagena 6 

57 Ca8.16 Costa Rica Cartagena 6 

58 Ca8.20 Costa Rica Cartagena 6 

59 Ca8.23 Costa Rica Cartagena 6 

60 Ca8.26 Costa Rica Cartagena 6 

61 Ca8.28 Costa Rica Cartagena 2 

62 Ca8.29 Costa Rica Cartagena 6 

63 Ca9.1 Costa Rica Cartagena 6 

64 Ca9.3 Costa Rica Cartagena 2 

65 Ca9.5 Costa Rica Cartagena 2 

66 Ca9.8 Costa Rica Cartagena 2 

67 Ca9.10 Costa Rica Cartagena 2 

68 Ca9.12 Costa Rica Cartagena 2 

69 Ca9.14 Costa Rica Cartagena 2 

70 Ca9.17 Costa Rica Cartagena 2 

71 Ca9.19 Costa Rica Cartagena 6 

72 Ca9.22 Costa Rica Cartagena 2 

73 Ca10.3 Costa Rica Cartagena 6 

74 Ca10.5 Costa Rica Cartagena 6 

75 Ca10.7 Costa Rica Cartagena 6 

76 Ca10.10 Costa Rica Cartagena 1 

77 Ca10.13 Costa Rica Cartagena 6 

78 Ca10.23 Costa Rica Cartagena 6 

79 Ca10.25 Costa Rica Cartagena 6 

80 Ca10.27 Costa Rica Cartagena 6 

81 Ca5.18 Costa Rica Cartagena 2 

82 Ca2.3 Costa Rica Cartagena 6 

83 SP1.1 Costa Rica San Pablo 3 

84 SP1.3 Costa Rica San Pablo 1 
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Table S1. Analysis of Pfcyp51 promoter repeats in 225 Pseudocercospora fijiensis 

isolates from Costa Rica, compared with 14 isolates from other countries. 

No. Isolate Origin Plantation/Location Repeat units 

85 SP1.4 Costa Rica San Pablo 3 

86 SP1.5 Costa Rica San Pablo 3 

87 SP1.6 Costa Rica San Pablo 2 

88 SP1.7 Costa Rica San Pablo 1 

89 SP1.8 Costa Rica San Pablo 3 

90 SP2.32 Costa Rica San Pablo 6 

91 SP3.4 Costa Rica San Pablo 3 

92 SP3.5 Costa Rica San Pablo 3 

93 SP3.8 Costa Rica San Pablo 2 

94 SP5.2 Costa Rica San Pablo 6 

95 SP5.4 Costa Rica San Pablo 6 

96 SP5.6 Costa Rica San Pablo 6 

97 SP5.7 Costa Rica San Pablo 3 

98 SP5.10 Costa Rica San Pablo 3 

99 SP5.12 Costa Rica San Pablo 3 

100 SP5.13 Costa Rica San Pablo 3 

101 SP5.14 Costa Rica San Pablo 6 

102 SP5.16 Costa Rica San Pablo 6 

103 SP6.4 Costa Rica San Pablo 3 

104 SP6.12 Costa Rica San Pablo 3 

105 SP7.7 Costa Rica San Pablo 1 

106 SP7.10 Costa Rica San Pablo 3 

107 SP7.18 Costa Rica San Pablo 1 

108 SP7.30 Costa Rica San Pablo 1 

109 SP8.18 Costa Rica San Pablo 3 

110 SP8.21 Costa Rica San Pablo 6 

111 SP8.27 Costa Rica San Pablo 6 

112 SP9.1 Costa Rica San Pablo 3 

113 SP9.7 Costa Rica San Pablo 1 

114 SP9.19 Costa Rica San Pablo 3 

115 SP9.24 Costa Rica San Pablo 3 

116 SP10.1 Costa Rica San Pablo 1 

117 SP10.15 Costa Rica San Pablo 1 

118 SP10.17 Costa Rica San Pablo 3 

119 SP6.6 Costa Rica San Pablo 3 

120 SP6.7 Costa Rica San Pablo 3 

121 SP6.9 Costa Rica San Pablo 3 

122 SP6.10 Costa Rica San Pablo 3 

123 SP6.11 Costa Rica San Pablo 3 

124 SP6.12 Costa Rica San Pablo 6 

125 SP7.1 Costa Rica San Pablo 6 

126 Z1.3 Costa Rica Zent 1 
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Table S1. Analysis of Pfcyp51 promoter repeats in 225 Pseudocercospora fijiensis 

isolates from Costa Rica, compared with 14 isolates from other countries. 

No. Isolate Origin Plantation/Location Repeat units 

127 Z.1.5 Costa Rica Zent 1 

128 Z1.8 Costa Rica Zent 1 

129 Z1.10 Costa Rica Zent 1 

130 Z1.12 Costa Rica Zent 1 

131 Z1.14 Costa Rica Zent 1 

132 Z1.18 Costa Rica Zent 1 

133 Z1.20 Costa Rica Zent 1 

134 Z1.21 Costa Rica Zent 1 

135 Z1.24 Costa Rica Zent 1 

136 Z2.1 Costa Rica Zent 1 

137 Z2.2 Costa Rica Zent 1 

138 Z2.3 Costa Rica Zent 1 

139 Z2.5 Costa Rica Zent 1 

140 Z2.7 Costa Rica Zent 1 

141 Z2.8 Costa Rica Zent 1 

142 Z2.9 Costa Rica Zent 1 

143 Z2.11 Costa Rica Zent 1 

144 Z2.13 Costa Rica Zent 1 

145 Z2.14 Costa Rica Zent 1 

146 Z3.5 Costa Rica Zent 2 

147 Z3.6 Costa Rica Zent 2 

148 Z3.11 Costa Rica Zent 2 

149 Z3.15 Costa Rica Zent 6 

150 Z3.17 Costa Rica Zent 6 

151 Z3.32 Costa Rica Zent 2 

152 Z3.34 Costa Rica Zent 6 

153 Z4.2 Costa Rica Zent 1 

154 Z4.7 Costa Rica Zent 1 

155 Z4.11 Costa Rica Zent 1 

156 Z4.12 Costa Rica Zent 1 

157 Z4.14 Costa Rica Zent 1 

158 Z4.16 Costa Rica Zent 1 

159 Z4.17 Costa Rica Zent 1 

160 Z4.19 Costa Rica Zent 1 

161 Z4.22 Costa Rica Zent 1 

162 Z4.26 Costa Rica Zent 1 

163 Z4.29 Costa Rica Zent 1 

164 Z5.1 Costa Rica Zent 6 

165 Z5.4 Costa Rica Zent 6 

166 Z5.6 Costa Rica Zent 6 

167 Z5.12 Costa Rica Zent 1 

168 Z5.13 Costa Rica Zent 6 
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Table S1. Analysis of Pfcyp51 promoter repeats in 225 Pseudocercospora fijiensis 

isolates from Costa Rica, compared with 14 isolates from other countries. 

No. Isolate Origin Plantation/Location Repeat units 

169 Z5.15 Costa Rica Zent 6 

170 Z5.18 Costa Rica Zent 1 

171 Z5.21 Costa Rica Zent 1 

172 Z5.25 Costa Rica Zent 1 

173 Z5.32 Costa Rica Zent 1 

174 Z6.2 Costa Rica Zent 1 

175 Z6.3 Costa Rica Zent 1 

176 Z6.5 Costa Rica Zent 1 

177 Z6.7 Costa Rica Zent 1 

178 Z6.9 Costa Rica Zent 1 

179 Z6.11 Costa Rica Zent 2 

180 Z6.13 Costa Rica Zent 1 

181 Z6.15 Costa Rica Zent 2 

182 Z6.17 Costa Rica Zent 1 

183 Z7.1 Costa Rica Zent 1 

184 Z7.7 Costa Rica Zent 6 

185 Z7.9 Costa Rica Zent 6 

186 Z7.14 Costa Rica Zent 1 

187 Z7.18 Costa Rica Zent 6 

188 Z7.28 Costa Rica Zent 6 

189 Z7.31 Costa Rica Zent 6 

190 Z8.1 Costa Rica Zent 2 

191 Z8.8 Costa Rica Zent 1 

192 Z8.11 Costa Rica Zent 1 

193 Z8.12 Costa Rica Zent 2 

194 Z8.13 Costa Rica Zent 2 

195 Z8.17 Costa Rica Zent 1 

196 Z8.18 Costa Rica Zent 2 

197 Z8.20 Costa Rica Zent 1 

198 Z8.25 Costa Rica Zent 1 

199 Z8.27 Costa Rica Zent 2 

200 Z8.35 Costa Rica Zent 1 

201 Z10.1 Costa Rica Zent 1 

202 Z10.3 Costa Rica Zent 1 

203 Z10.4 Costa Rica Zent 1 

204 Z10.6 Costa Rica Zent 6 

205 Z10.7 Costa Rica Zent 1 

206 Z10.8 Costa Rica Zent 1 

207 Z10.9 Costa Rica Zent 1 

208 Z10.10 Costa Rica Zent 1 

209 Z10.11 Costa Rica Zent 1 

210 ZTSC2 Costa Rica San Carlos 1 



The Pfcyp51 promoter and resistance to azoles 

211 
 

Table S1. Analysis of Pfcyp51 promoter repeats in 225 Pseudocercospora fijiensis 

isolates from Costa Rica, compared with 14 isolates from other countries. 

No. Isolate Origin Plantation/Location Repeat units 

211 ZTSC10 Costa Rica San Carlos 1 

212 ZTSC15 Costa Rica San Carlos 1 

213 ZTSC40 Costa Rica San Carlos 1 

214 ZTSC50 Costa Rica San Carlos 1 

215 ZTSC55 Costa Rica San Carlos 1 

216 ZTSC60 Costa Rica San Carlos 1 

217 ZTSC65 Costa Rica San Carlos 1 

218 ZTSC75 Costa Rica San Carlos 1 

219 ZTSC80 Costa Rica San Carlos 1 

220 ZTSC84 Costa Rica San Carlos 1 

221 ZTSC90 Costa Rica San Carlos 1 

222 ZTSC95 Costa Rica San Carlos 1 

223 ZTSC100 Costa Rica San Carlos 1 

224 ZTSC101 Costa Rica San Carlos 1 

225 ZTSC77 Costa Rica San Carlos 1 

226 E22 Ecuador a 1 

227 GS.4 Ecuador a 1 

228 GS.10 Ecuador a 1 

229 RN.3 Ecuador a 1 

230 RN.5 Ecuador a 1 

231 RS.13 Ecuador a 1 

232 SaR.2 Ecuador a 1 

233 SaR.5 Ecuador a 1 

234 X845 Indonesia a 1 

235 X846 Phillipines a 1 

236 X847 Taiwan a 1 

237 X849 Burundi a 1 

238 X851 Gabon a 1 

239 C86 Cameroon a 1 
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CHAPTER 5  

GENERAL DISCUSSION 
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Unraveling a pathosystem is hard work. In this thesis we have begun to scratch the 

surface of the Sigatoka – banana complex, with a focus on the black Sigatoka pathogen 

Pseudocercospora fijiensis. The ecological context, however, is that banana encounters the 

Sigatoka complex, worldwide. Previous analyses unveiled that this complex contains at least 

16 fungal species interacting on banana leaves (Arzanlou et al., 2008). We know that P. 

musae has been largely replaced by P. fijiensis (Carlier et al., 2000; Zandjanakou-Tachin et 

al., 2013). Recently, it has been suggested that P. eumusae is even more aggressive, but hard 

data underpinning this suggestion are largely missing. Nevertheless, it is important to realize 

that P. fijiensis is part of a complex ecological reality (Carlier et al., 2000; Chang et al., 2016; 

Zandjanakou-Tachin et al., 2013). Black Sigatoka is barely a problem in household farming 

and seems to be the plague of banana plantations, which are among the last remnants of old-

fashioned monoculture agriculture. Nearly all export bananas are of the “Cavendish” type, 

which is susceptible to black Sigatoka (chapter 1). Chong (2016) has shown the consequence 

of this agricultural model; a highly susceptible globally dispersed host clone leaves virtually 

only one option for disease management. This is massive usage of fungicides, which leads to 

an ever-reducing sensitivity to these compounds of the sexually reproducing fungus, 

eventually leading to unmanageable disease situations. The only way to escape from black 

Sigatoka is to move, to new less disease prone areas that even allow the production of 

biological bananas. However, such areas are sparse and usually located in remote regions, at 

high altitudes where P. fijiensis does not thrive due to non-conducive weather conditions. 

Those areas, however, can also not supply the global demand. Thus, escaping to these new 

sub-optimal environments is not the way to go. Instead, we need the dive deep and do all the 

necessary research to (re-)build the system bottom-up, aiming at a radical change in the 

production systems. This may require expansion of the applied genetic diversity in the field 

by releasing new banana varieties that meet consumer demands, but also avoiding 
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monocultures and invest in multi-cropping by for instance integrating banana production and 

forestry. As P. fijiensis is light sensitive, similar to many other Dothideomycetes, shading 

might already be a factor that affects epidemics. Evidently, large monocultures do not provide 

shade, while agroforestry systems do. Thus, ecological embedding of a host-pathosystem is 

important and the banana - P. fijiensis pathosystem is not an exception. In this thesis, we have 

started to unravel the banana – P. fijiensis pathosystem as one of the building blocks of a solid 

foundation for future banana production. 

Pseudocercospora fijiensis is a bipolar heterothallic Dothideomycete plant pathogenic 

fungus (Arzanlou et al., 2010; Conde-Ferráez et al., 2007). It is part of a group of major 

fungal plant pathogens affecting manifold crops and its life strategy is characterized by 

abundant sex. These two characteristics are important leads for improved understanding of 

this pathosystem. In many ways, P. fijiensis resembles the wheat foliar blight Zymoseptoria 

tritici. Twenty-five years ago, the interaction between this fungus and wheat was enigmatic 

and believed to be merely driven by quantitative variation for resistance - not a single gene for 

resistance was identified – and pathogenicity. By steady descriptive and explorative research, 

it is now one of the leading model systems (Brading et al., 2002; Goodwin and Kema, 2014; 

Kema et al., 2018; Mirzadi Gohari, 2015; Tabib Ghaffary et al., 2011). Many resistance genes 

(Stb genes) have been identified (Brading et al., 2002; Tabib Ghaffary et al., 2011; Kema et 

al., 2000) by classical genetics and are being used in commercial breeding programs around 

the world (Torriani et al., 2015). Recently, the first resistance gene, Stb6, and the first 

avirulence gene AvrStb6 were cloned (Kema et al., 2018; Saintenac et al., 2018; Zhong et al., 

2017). Moreover, Kema et al. (2018) discovered a sexual peculiarity of Z. tritici that most 

likely applies to many other Dothideomycetes, including P. fijiensis; exclusive paternal 

parenthood (EPP). Incorporation of EPP in epidemiological models explains extended 

longevity of wheat cultivars as well as the rapid dissemination of strobilurin resistance in Z. 
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tritici population across Europe. It is very likely that the rapid dissemination and fixation of 

strobilurin resistance in Costa Rican P. fijiensis populations is also due to EPP (chapter 2; 

Amil et al., 2007). Hence, sequencing the P. fijiensis genome was the way ahead. It generates 

interest, attracts researchers, widens the community, involves the industry and leads to a 

better understanding of genetic diversity. Before publication of the genome sequence 

(chapter 2), Stergiopoulos et al. (2010, 2014) already showed that the effector Pfavr4 is 

recognized by the tomato Cf4 cognate. We indeed showed that Musa acuminata ssp. 

burmannicoides var. Calcutta 4, which is iconic for its resistance to black Sigatoka, 

specifically responded to injections of crude protein extracts of PfAVR4 (chapter 2). This is a 

first indication that resistance genes in banana for black Sigatoka can be identified and 

mapped. I speculate that banana contains cognate receptor genes, analogous of Cf4. 

Surprisingly, such studies are limited (Ortiz and Swennen, 2014; Ortiz and Vuylsteke, 1994) 

and not a single gene for resistance has been identified to P. fijiensis. In retrospect, this is 

explainable as mapping genes by exposing segregating populations to natural P. fijiensis 

populations in the outside environment can only lead to erroneous conclusions. Genetic 

studies will lead nowhere by placing segregating populations to an anonymous, segregating, 

highly diverse population of a pathogen. Thus far, one study used individual isolates of P. 

fijiensis on a range of banana accessions (Fullerton and Olsen, 1995). This is analogous to the 

studies in Z. tritici and an absolute requirement for understanding host-pathogen interactions 

(Kema et al., 2000; Kema and van Silfhout, 1997; Kema et al., 1996b, 1996a, 2018; Tabib 

Ghaffary et al., 2011; Ware, 2006). Once P. fijiensis isolates are characterized they can be 

used individually for genetic analyses. Given the stature of banana plants, such studies require 

a greenhouse setting, which also precludes any contamination with natural P. fijiensis 

populations. One of the benefits of the P. fijiensis genome sequence is that we now can work 

towards finishing the genome, resequencing other strains and develop an effector portfolio 
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from a global population analysis. This contributes to effector-based screening methods and 

can  build on a detailed analysis of the  population diversity (Pais et al., 2017). The 

development of the Agrobacterium-mediated transformation of P. fijiensis is an important 

achievement allowing functional analysis of important genes. The method was employed to 

replace the Pfcyp51 promoter to prove that repeat elements in the promoter of this gene 

contribute to azole fungicides resistance. Further onwards , several results  emerging from this 

thesis will be discussed. Firstly, the implications of the genomic structures such as high 

repetitive DNA content and transposons on the biology of P. fijiensis and its interaction with 

the host plant. Secondly, how banana breeders can benefit from the hypothesized Pf4 and 

other resistance genes in banana for P. fijiensis resistance. Finally, how the biology of P. 

fijiensis can explain its interaction with and survival under azole fungicide pressure. 

The Pseudocercospora fijiensis genome and its biological implications 

We sequenced two P. fijiensis strains and assembled the genome by using a genetic 

linkage map. As discussed above, sexual reproduction is crucial for P. fijiensis and hence, it is 

a great achievement that routine crosses between isolates now can be accomplished under 

controlled conditions in a greenhouse after identifying the compatible mating types (mat1-1 

and mat1-2) of the partners (Chong, 2016). One of the first observations was the massive 

genetic diversity in natural populations. Electrophoretic karyotyping and analyses of 

molecular markers in P. fijiensis field populations showed chromosome-length 

polymorphisms and high genetic diversity. Genetic differentiation was also detected using 

neutral markers, suggesting strong selection with limited gene flow at the studied geographic 

scale. We studied five samples from the Costa Rican population “Cartagena” (chapter 2), and 

our data were truly different from the analysis of Mexican strains (Rodríguez-García et al., 

2006), which is not surprising due to the high polymorphisms of isolates that was found 

previously at plant and lesion level (Müller et al., 1997; Rivas et al., 2004). The second 
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highlight was the huge genome expansion. Compared to the Dothideomycete reference Z. 

tritici, the P. fijiensis genome is, with 74Mb, almost twice as large (Goodwin et al., 2011). 

The genome contains 49% repetitive DNA, responsible for the genome expansion, similar to 

the genomes of the other Sigatoka complex pathogens P. musae (51.5 Mb, 62.2% repetitive 

content and unassembled sequences) and P. eumusae (19.2 Mb, 35.7% repetitive content and 

unassembled sequences) (Chang et al., 2016) and C. fulvum  (61.1 Mb, 41% repetitive 

content) (de Wit et al., 2012). In P. fijiensis, LTR retrotransposons account for no less than 

50% of the expansion, largely exceeding the 2% in Z. tritici, and other sequenced 

Dothideomycetes (Dhillon et al., 2014; Goodwin et al., 2011; Ohm et al., 2012) and similar to 

other unrelated fungal pathogens such as Blumeria graminis f. sp. tritici (180 Mb, 64% LTRs) 

(Spanu et al., 2010; Wicker et al., 2013). Until recently, Sigatoka complex pathogens had the 

largest Dothideomycete genomes, but the current championing genome sizes are those of 

Cenococcum geophilum, the only ectomycorrhizal symbiont that evolved within the 

Dothideomycetes, with a genome size of 178 Mb (Peter et al., 2016), and Zopfia rhizophila, 

an asparagus root rot fungus, with a genome size of 153 Mb 

(https://genome.jgi.doe.gov/Zoprh1/Zoprh1.home.html). Our melting-curve assays already 

indicated expanded genomes in P. eumusae and P. musae (chapter 2), which was recently 

confirmed (Chang et al., 2016). In all these fungi, transposons are the major drivers for 

genome evolution, similarly to processes in other plant pathogens such as Verticillium dahliae 

(Faino et al., 2016), Leptosphaeria maculans (Grandaubert et al., 2014) and Pyrenophora 

tritici repentis (Manning et al., 2013). In many cases, such repeat rich areas, which can be 

lineage specific, harbor effector genes that are crucial for orchestrating the outcome of host-

pathogen interactions, like the effector Pfavr4 on scaffold 4 (Stergiopoulos et al., 2010) . As 

mentioned above, the banana - P. fijiensis pathosystem is at a very early stage with respect to 

unravelling  specificity. According to the zig-zag model of plant immunity (Jones and Dangl, 
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2006), pathogens deliver microbial/pathogen-associated molecular patterns (MAMPs/PAMPs) 

that after recognition by host  receptors elicit PAMP-triggered immunity (PTI). Successful 

pathogens, however, deliver effectors interfering with PTI and resulting in effector-triggered 

susceptibility (ETS). Pfavr4 is recognized by NB-LRR proteins, which then activate effector-

triggered immunity (ETI), resulting in a hypersensitive response (HR). A preliminary scheme 

for the P. fijiensis – banana interaction is shown in Figure 1.  

 

  

Figure 1. Interaction of Pseudocercospora fijiensis with banana leaf tissue. A) Scheme of a 

compatible interaction B) Scheme of an incompatible interaction C) Small secreted proteins including 

PFAVR4, ECP2 and ECP6-like, are expressed by P. fijiensis during the first days of infection and 
recognized by  the resistant accession Musa acuminata ssp. burmannicoides var. Calcutta 4 along with 

substantial melanin production. The banana host responds with peroxidase production to release 

reactive oxygen species and starts the production of phytoalexins (Beltrán-García et al., 2014; 
Cavalcante et al., 2011; Escobar-Tovar et al., 2015; Rodriguez et al., 2016; Torres et al., 2012). At the 

same time the downstream resistance signaling pathway is initiated after recognition of PFAVR4 by 

the cognate hypothetical PF4 resistance protein, a process that in turn can be manipulated  by ECP6-

like effector proteins. 

Pfavr4 was identified because it was the first effector that showed homology with 

Avr4 of C. fulvum (Stergiopoulus et al., 2010). In this thesis we showed for the first time that 

infiltration of the crude Pfavr4 protein in “Calcutta 4” and “Grand Naine” results in a 

remarkable differential host response. A HR-like response which is characteristic of gene-for-
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gene interactions was observed in “Calcutta 4” but not in “Grand Naine”. This suggests that a 

homologue of the tomato Cf4 resistance gene is present in the banana genome. It is therefore 

likely that we are close to identifying a first black Sigatoka resistance gene. Once such gene 

has been identified, more effectors and their cognate receptors will be identified, and their 

frequency can then be monitored in natural populations. Stergiopoulos et al. (2014) initiated 

such a comparative analysis and concluded that Pfavr4 has at least 17 allelic forms of which 

some are geographically isolated, suggesting the potential for regional gene deployment as a 

strategy for disease management. As homologues of Avr4 are present in a number of fungi, it 

is an interesting gene for comparative functional studies. However, for P. fijiensis the 

emphasis should lay on identifying more effectors by using bioinformatics on the subset of 

172 small secreted proteins (<300 bp; chapter 2) as well as by classical mapping studies 

taking the Z. tritici – wheat pathosystem as example (Kema et al., 2018; Mirzadi Gohari, 

2015; Zhong et al., 2017) and possibly by using proteomics of infected banana leaves to 

detect additional putative effectors (Escobar-Tovar et al. 2015; Noar and Daub, 2016b). 

Finally, proteomic analyses of apoplastic fluids has been a very efficient approach to find 

effectors of C. fulvum (Bolton et al., 2008; Joosten et al., 1997; Stergiopoulos and de Wit, 

2009) and Fusarium oxysporum f. sp. lycopersici (Gawehns et al., 2014; Houterman et al., 

2009; Ma et al., 2015). Similar strategies could be used for the banana - P. fijiensis 

pathosystem, but initial analyses have resulted in practical problems due to the high latex 

content of apoplastic fluids. Coagulation and oxidation of this latex complicates HPLC 

analysis. Therefore, the preference lies in generating sequence data to detect more effectors 

such as in Bipolaris cookie, even without a genome reference (Zaccaron and Bluhm, 2017). 

Along with precise phenotyping, such data enable genome wide association studies to identify 

effectors (Zhong et al., 2017). Therefore, developing efficient phenotyping assays should have 

the highest priority as working with individual P. fijiensis isolates is possible, but still rather 
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complicated due to the limited experimental amenity of the fungus: it grows slow, has limited 

conidia production and requires very specific environmental conditions and bio-assays take up 

to seven weeks. Effector-based phenotyping assays would be ideal for rapid identification of 

resistance sources, and would be a great support for breeding. Recent studies on the role of 

proteins such as chitinases and -1,3-glucanase (Escobar-Tovar et al., 2015; Portal et al., 

2011; Rodriguez et al., 2016; Torres et al., 2012), of  peroxidases, and the enzyme  

phenylalamine ammonia-lyase (PAL), required for the production of precursor phytoalexins 

(Beltrán-García et al., 2014; Cavalcante et al., 2011; Escobar-Tovar et al., 2015) broaden our 

view of the interaction, but are beyond the horizon of breeders. This also holds for 

complicated in vitro assays such as reported by Kovács et al. (2013), who showed that 

susceptible banana plants transformed with constitutively expressed rice chitinase are resistant 

to artificially inoculated P. fijiensis isolates. First of all, we have to deal with the acceptance 

of genetically modified crops (Kikulwe et al., 2011; Lucht 2015); and secondly, perform these 

tests with  diverse panel of P. fijiensis isolates. Only one isolate was tested, but we now know 

that P. fijiensis has at least 200 effectors and hence the efficacy of resistance has to be tested 

to the widest possible diversity of virulence factors. Moreover, given the dynamics and 

diversity of natural P. fijiensis populations, it is really questionable whether genetically 

modified crops are the solution for black Sigatoka in banana (Khanna et al., 2007; Kovács et 

al., 2013; Mlalazi et al., 2012). The validity of this approach for clonal pathogens such as 

Fusarium oxysporum f.sp. cubense (Foc) is entirely different. Recently, transgenic 

“Cavendish” plants harboring a resistance gene from the wild diploid Musa acuminata var. 

malaccensis were shown to be resistant to the devastating tropical race 4, which is a great 

proof of principle (Dale et al., 2017). Moreover, this was the first ever identified resistance 

gene in banana, despite the fact that resistance of “Cavendish” bananas to race 1 strains of Foc 

already upholds the industry for decades. Albeit that genetically modified bananas may solve 
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a problem in current banana cultivation, the technology does not address the underlying cause 

and that is genetic uniformity. Hence, particularly with an eye on black Sigatoka, 

diversification is urgently required and therefore, this study is an important basis for future 

research into the banana - P. fijiensis pathosystem. 

 The supposedly rapidly evolving P. fijiensis genome could potentially challenge the 

durability of resistance. TE-rich regions seem instrumental for providing genome plasticity 

and often harbor effector genes (Raffaele and Kamoun, 2012), as in C. fulvum and D. 

septosporum (de Wit et al., 2012), Z. tritici (Goodwin et al., 2011), P. nodorum (Hane et al., 

2007), M. oryzae (Orbach et al., 2000; Yoshida et al., 2016), and Phytophthora infestans 

(Raffaele et al., 2010). In L. maculans repeat-induced point mutations (RIP) caused mutations 

in AvrLm1 and AvrLm4 to circumvent resistance to Lm1 and Lm4, respectively (Fudal et al., 

2007; Gout et al., 2006; Grandaubert et al., 2014; Rouxel et al., 2011). Also Pfavr4 is next to 

a transposon that was potentially RIPPed and coincidently showed diversification due to non-

silent mutations (Stergiopoulous et al., 2014). Together with positive selection and intragenic 

recombination as evolution mechanisms they facilitate evading the banana host immune 

system. However, until now not a single resistance gene to P. fijiensis was neither identified, 

nor mapped let alone cloned. Hence, it is important to identify as many resistance genes as 

possible and to develop the technologies to efficiently accomplish that goal. Recently, a series 

of resistance genes analogues has been explored (Capdeville et al., 2009; Pei et al., 2007; 

Sánchez Timm et al., 2016; Wiame et al., 2000), but none could be related to resistance to P. 

fijiensis. Genomic and cDNA libraries of M. acuminata Colla (Cheung and Town, 2007; 

Vilarinhos et al., 2003) M. acuminata spp. burmannicoides var. Calcutta 4 (Santos et al., 

2005), var. TuuGia (Ortiz-Vázquez et al., 2005), var. Pahang (Arango et al., 2011), will also 

aid gene discovery. However, understanding the biology remains a sound basis for any gene 

discovery and deployment as exemplified by the aforementioned EPP mechanism, which 
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could be operational in the banana - P. fijiensis pathosystem and has a buffering effect of the 

longevity of resistance (Kema et al., 2018). 

 The developed ATMT protocol is an important tool for any functional analysis in P. 

fijiensis (chapter 3). The Ku70 protein is essential for the non-homologous end joining 

(NHEJ) pathway of DNA repair. The generation of a Pfku70 strain in this study might aid 

higher homologous recombination rates during transformations. Similarly, CRISPR-Cas9 

might be a potential tool for functional analyses in this recalcitrant fungus as it is more precise 

and less prone to unwanted mutations (Liu et al., 2015). We used ATMT to generate Pfavr4 

strains, which await further characterization, as well as promotor swaps of the cyp51 gene that 

is the target of the demethylase inhibitor fungicides (DMIs); the work horse of black Sigatoka 

disease management around the world (chapters 3 and 4). 

Potential of horizontal gene transfer among Pseudocercospora pathogens in the Sigatoka 

complex  

Mechanisms for horizontal transfer in fungi have been discussed (Manning et al., 

2013; Mehrabi et al., 2011, 2017), and the genome of P. fijiensis that is enriched with 

retrotransposons suggests that it is prone to horizontal gene transfer. P. fijiensis, P. musae and 

P. eumusae seem to have a common ancestor and often co-occur in nature (Carlier et al., 

2000; Crous and Mourichon, 2002). The genome expansion observed in chapter 2 and by 

Chang et al. (2016), which is due the high repetitive content in these genomes is suggestive 

for the potential of horizontal gene transfer. Similar processes were described for the host-

selective toxin gene ToxA, which was transferred from Parastagonospora nodorum to 

Pyrenophora tritici-repentis (Friesen et al., 2006) and the elegant work of Ma et al. (2010) 

who showed chromosome transfer facilitating pathogenicity to previously non-pathogenic F. 

oxysporum strains on tomato. The Sigatoka complex likely extends beyond the 
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aforementioned three species to potentially 16 fungal species (Arzanlou et al., 2008) and 

therefore provides an excellent system to study the potential and processes involved in 

horizontal gene transfer. Chang et al. (2016) compared the P. fijiensis genomic data from 

chapter 2 with the genome sequences of P. musae and P. eumusae and found reasonably 

distinct patterns for genome structure and metabolic processes. Goodwin et al. (2011) 

discerned horizontal gene transfer and RIP degeneration as a potential origin of dispensable 

chromosomes in Z. tritici, thereby constituting a mechanism for a rapid evolution (Croll et al., 

2013). In other fungi such as N. haematoccoca supernumerary chromosomes carry virulence 

genes (Coleman et al., 2009). In M. oryzae, Avr-Pita is located on a dispensable chromosome 

(Chuma et al., 2011). Therefore these accessory chromosomes may also be part of a genome 

wide adaptation mechanism. For now, however, we do not know whether the P. fijiensis 

genome contains accessory chromosomes, but a more detailed analysis would be worthwhile 

given the physically close proximity of the species in the Sigatoka complex on banana foliage 

and their potential to engage in such an evolutionary process. It would also cast light on the 

rapid turn-over of the yellow Sigatoka fungus P. musae by the black Sigatoka fungus 

P.fijiensis, which is much more aggressive and therefore very competitive and still expanding 

its colonization into new areas (Brito et al., 2015; Rieux et al., 2013). A similar situation 

could arise with respect to P. eumusae, which is now restricted to Southern and Southeast 

Asia and some areas in Africa, and could compete with P. fijiensis due to other and 

complementary strategies for host attack (Chang 2016). 

 

Sensitivity of P. fijiensis to azoles 

Due to the lack of breeding in banana, despite its importance as a staple food crop and top 

global fruit commodity, disease control entirely relies on fungicide applications. Chong et al 



General discussion 

225 
 

(2016) showed that reduced sensitivity in P. fijiensis is a true concern as DMIs are the 

presently the cornerstone for disease control for black Sigatoka worldwide. As long as there 

are no commercially viable alternatives, these compounds will remain very important. 

Therefore, also from this perspective diversification and innovation is required. Fall back 

scenarios to broad range protective compounds such as chlorothalonil and mineral oils are not 

the favored strategies for sustainability. It is much better to invest into developing new 

compounds and alternative products with good efficacy until new resistant varieties reach the 

markets. In our work we have shown that mutations resulting in amino acid changes in the 

catalytic domain of CYP51 and promotor insertions affecting gene expression drive reduced 

sensitivity to DMIs. However, the monitoring of sensitivity in P. fijiensis populations should 

be professionalized and can be based on our latest data. Quick PCR scans for cyp51 promotor 

length variation is a first indication of reduced sensitivity and should lead to alternative 

spraying schedules. Additionally, new products should be evaluated for their efficacy on 

preventing sexual development. Kema et al. (2018) recently showed that products such as 

strobilurins, which were very popular and embraced as new active ingredients for black 

Sigatoka control in banana, do not stop sexual reproduction. This explains why the efficacy of 

these products rapidly went down once resistant isolates were around (Amil et al., 2007; 

chapter 2). Finally, black Sigatoka is a burden on the shoulders of those who are interested in 

growing and consuming organically grown bananas. Without black Sigatoka disease control, 

producing bananas is virtually impossible unless the entire production zone is moved to new 

less disease prone areas. Even leaf pruning cannot stop the disease and hence, also this area 

calls for innovation in the banana production chain. The huge input of fungicides should 

mobilize consumers to step-up to retailers and all those that dominate the industry. The 

message should be loud and clear: we want something better than bananas that only survive 
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due to environmentally threatening production methods and that are driven only by business 

as usual strategies. We need truly forward thinking in banana land.  

 

Perspectives 

One of the first things that now need to be performed is developing a reference DNA 

sequence of P. fijiensis. The basis for that analysis is laid in this thesis and a few more rounds 

of PacBio, or Minion sequencing should be sufficient to finish the genome. This will aid 

comparative studies across P. fijiensis populations and provide a strong support for 

bioinformatic analyses. One of the first goals would be to determine whether P. fijiensis has 

an accessory set of chromosomes. This is important for all species within the 

Dothideomycetes, including those with large genomes that carry a highly repetitive DNA 

(Noar and Daub, 2016b, 2016a). Furthermore, we need to improve the toolbox for P. fijiensis 

research. The basic ingredients are now available with a sequenced genome (chapter 2), 

silencing (Onyilo et al., 2017) and transformation protocols (chapter 3). However, these can 

and will need to be fine-tuned and improved. As mentioned above, harvesting the P. fijiensis 

genome for effector genes with a strong emphasis on their targets and the development of 

rapid screening protocols is a necessity to attract new students and scientists into this area and 

to boost innovation in this orphan crop. 

 

Trending topics 

CRISPR-Cas9 is for many systems the current light at the end of the tunnel. The prospects are 

enormous and the potential of the technology in nearly any organism is exhilarating (Teboul 

et al., 2017). The first papers sketch a bright future for banana improvement (Kaur et al., 
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2018), but for the screaming disease threats of banana, we first need to identify and map the 

target genes. From that perspective, banana research is way behind as we do not even know 

any resistance gene except one (Dale et al., 2017). Hence, the trending topic for future banana 

research is to focus on the genetics of the interaction between banana and its fungal threats. 

Without fungicides, western supermarkets will be rapidly depleted from cheap bananas. 

Hence, all stakeholders of the production and logistic chain need to get together to develop a 

plan. That plan should envisage a durable and sustainable banana production that supports 

local economies without jeopardizing the environment and meet consumer demands. Basic 

science is required and the sector should abandon secretive, repetitive local research aiming at 

maximizing production. Transparency and critical mass are essential to make progress and 

hence publishing research is key to lay the foundation for the future. Genomic and genetics 

will be at the basis for innovative banana improvement and diversity and hence sound 

production and marketing strategies. I have done my share. Who is next? 
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Summary 

The hemibiotroph Pseudocercospora fijiensis is the causal agent of the black Sigatoka disease on 

bananas; present worldwide being the reason of large economical losses and subject to chemical 

control as the best control method nowadays. Nonetheless, this fungus has shown being able to 

become resistant to different chemical fungicides and thus a successful global threat to bananas. The 

biology of this fungus is largely unknown due to the missing –omics tools applied to this pathosystem. 

The only manner to counteract this fungus is to understand its biology of survival and pathogenicity. 

Chapter 1. Is the introduction to the fungus, it constitutes an update to the knowledge of its biology 

and epidemiology. It demonstrates the importance of generating more data and tools to understand this 

powerful pathogen. 

Chapter 2. Presents the P. fijiensis genome sequence, the analysis of its main characteristics 

compared with other close fungi. A new genetic map is included counting putative core and 

dispensable scaffolds, whose high polymorphism was observed by electrophoretic karyotyping within 

isolates from the same field population. It is shown the massive genome expansion mainly due to 

repetitive DNA, particularly by LTR-retrotransposons, and how this can affect close sequences. The 

effect of RIP on the genome is analyzed and compared to that on other closely related fungi. The 

location close to repetitive sequence from the effector Pfavr4 was discussed under the scope of its 

epidemiology and the protein employed helped to elucidate the first putative resistant cognate gene in 

the resistant banana cultivar Calcutta 4. Further analysis of strains originated from populations with 

and without fungicide selection pressure provided estimates of dispersal of strains and genetic flow 

that will help to predict spatial patterns of fungicide evolution under different management strategies. 

Chapter 3. Describes the protocol for Agrobacterium-mediated transformation of P. fijiensis for both 

random and targeted mutagenesis. This method was successfully applied to the gene Pfavr4 and the 

Pfku70. The former is the first effector described in P. fijiensis, and the latter is the gene codifier of the 

KU70 protein, the main point of the non-homologous end joining  (NHEJ) pathway that has been 

related to an increase on homologous recombination in several fungi and other eukaryotes, providing 
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important tools for further use. This method was additionally employed to swap the Pfcyp51 gene 

promoter that helped to decipher biology of azole resistance in P. fijiensis, as described in chapter 4. 

Chapter 4. The appearance of resistant strains to azoles has been mostly correlated with non-

synonymous point mutations in the coding sequence Pfcyp51 gene. In this chapter, we identified a 19 

base pairs (bp) repeat element in the promoter region of this gene, by a simple PCR analysis, showed 

that copy number correlates positively with increased resistance to azoles, as well as the exposure to 

azole fungicides. We swapped the promoter of a resistant strain into a susceptible strain, and thus 

demonstrated that presence of the repeat element proportionally upregulates Pfcyp51 expression as 

well as tolerance to azoles. Besides the knowledge on genetic mechanism for azole resistance in P. 

fijiensis, the present study might offer another tool for optimizing the use of azoles in the control of 

black Sigatoka. 

Chapter 5. A general discussion of the results obtained in this thesis is offered with a broader point of 

view. Implications in ecology, pathology and further expectations on the control of this fungus, 

together with insights on trending topics of molecular tools for future research are included. 
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Resumen 

El hemibiotrófico Pseudocercospora fijiensis es el agente causal de la enfermedad de la Sigatoka 

negra en banana; presente alrededor del mundo siendo la razón de grandes pérdidas económicas y 

sujeto a control químico como el mejor método de control hoy en día. Sin embargo, este hongo ha 

mostrado ser capaz de ser resistente a diferentes fungicidas químicos y así ser una exitosa amenaza 

mundial para el banano. La biología de este hongo es ampliamente desconocida debido a la carencia 

de herramientas ómicas aplicadas a este patosistema. La única manera de contrarrestar este hongo es 

entendiendo su biología de supervivencia y patogenicidad. 

Capítulo 1. Es la introducción al hongo, constituye una actualización en el conocimiento de su 

biología y epidemiología. Demuestra la importancia de generar más datos y herramientas para 

entender este poderoso patógeno. 

Capítulo 2. Presenta la secuencia genómica de P. fijiensis, el análisis de sus características principales 

comparadas con otros hongos filogenéticamente cercanos. Se incluye un nuevo mapa genético 

contando con putativos “scaffolds” principales y dispensables, cuyo alto grado de  polimorfismo fue 

observado por cariotipo electroforético en aislados de una misma población. Se muestra también la 

expansión masiva del genoma debida principalmente al ADN repetitivo, particularmente por 

transposones tipo LTR y cómo éstos afectan secuencias vecinas. El efecto del RIP en el genoma es 

analizado y comparado con el de otros hongos filogenéticamente cercanos. La ubicación del efector 

Pfavr4 cercana a secuencias repetitivas fue discutida bajo el punto de vista de su epidemiología y la 

proteína empleada para elucidar el primer gen putativo cognado de resistencia en el cultivar de banana 

Calcuta 4. Análisis posteriores de líneas originarias de poblaciones diferentes con y sin selección de 

fungicida proporcionó la estimación de dispersión de éstas y flujo genético que ayudará a predecir 

patrones espaciales de evolución de resistencia a fungicidas bajo diferentes estrategias de manejo. 

Capítulo 3. Describe el protocolo de transformación de P. fijiensis mediada por Agrobacterium para 

mutagénesis al azar y de genes blanco. Este método fue satisfactoriamente aplicado a los genes Pfavr4 

y Pfku70. El primero es el primer efector descrito en P. fijiensis y el segundo es el gen codificador 



Summary 

 

para la proteína KU70, que es el punto principal de la ruta de unión de secuencias no homólogas 

(NHEJ, por sus siglas en inglés) que ha sido relacionada con un incremento en la recombinación 

homóloga en diversos hongos y otros eucariontes, proporcionando herramientas importantes para su 

uso posterior. Este método fue adicionalmente empleado para intercambiar el promotor del gen 

Pfcyp51 que ayudó a descifrar la biología de la resistencia a azoles en P. fijiensis, descrita en el 

capítulo 4. 

Capítulo 4. La aparente resistencia de líneas del patógeno a los azoles ha sido correlacionada 

principalmente con mutaciones no sinónimas en la región codificante del gene Pfcyp51. En éste 

capítulo, nosotros identificamos un elemento repetitivo de 19 pares de bases (pb) en la región 

promotora de este gen, por un simple análisis de PCR, demostramos que el número de copias está 

correlacionado positivamente con un incremento en la resistencia a azoles, así como a la exposición a 

éstos. Intercambiamos el promotor de una línea resistente a una línea sensible y así demostramos que 

la presencia del elemento repetitivo regula proporcionalmente la expresión de Pfcyp51,  así como la 

tolerancia a azoles. Además del conocimiento en el mecanismo genético de resistencia a azoles en P. 

fijiensis, el presente estudio podría ofrecer otra herramienta para optimizar el uso de azoles en el 

control de la Sigatoka negra. 

Capítulo 5. Ofrece una discusión general de los resultados obtenidos en esta tesis dentro de un punto 

de vista más amplio. Se incluyen implicaciones en ecología, patogenicidad y expectativas a futuro en 

el control de este hongo, y una visión en tópicos actuales de herramientas moleculares para futuras 

investigaciones. 
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