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Abstract 1 

 2 

Land transactions between farmers are responsible for landscape changes in rural areas. The price a 3 

farmer is willing to pay (WTP) for vacant land depends on the distance of the parcel to the farmstead. 4 

Detailed quantitative knowledge of this WTP – distance relationship is of utmost importance for 5 

accurate modelling of land markets, and for the design and implementation of effective and robust 6 

land consolidation schemes. Practical experience suggests, however that it is not particularly easy to 7 

back out the WTP – distance relationship from empirical transaction data. Here, we present a novel 8 

statistical framework to help quantify the relationship between a farmer’s WTP and the distance of 9 

his/her farmstead to the vacant parcel. We describe a land market with a simple statistical model 10 

and simulate an artificial archive of land transactions via Monte Carlo sampling. The parameters of 11 

our virtual market are estimated from a historical archive of land transactions in the Province of 12 

Gelderland, the Netherlands, using minimization of the divergence (relative entropy) between the 13 

observed and simulated joint distributions of distance and transaction price. A reasonable agreement 14 

was observed between the observed and simulated bivariate distributions of distance and transaction 15 

price. Our results demonstrate that for short distances (500-1000m) any additional meter distance 16 

reduces the WTP by about 60 € ha-1
. The impact of distance on WTP gradually levels off with larger 17 

distance: beyond 5 km the effect has reduced to less than 0.5 € ha-1. 18 

 19 

 20 

Keywords: land market; distance; farmer preferences; Monte Carlo; parameter optimization. 21 
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1. Introduction 1 

Landscape change in rural areas is to an important extent brought about by land transactions 2 

between buyers and sellers of land (Filatova et al., 2011; Sun et al., 2014). Not only urbanization, 3 

but also changes in agricultural land use (e.g. from crop cultivation to livestock breeding) are largely 4 

caused by land exchange between land owners (Bakker et al., 2014). This exchange may take the 5 

form of a lease, but the most common form is through land sale. Drivers of land exchange can be 6 

changes in agricultural prices, allowing farmers of profitable crops to expand at the expense of those 7 

growing less profitable crops; demographic change, whereby young farmers buy land from retiring 8 

farmers; or the implementation of voluntary land consolidation schemes, aimed at creating more 9 

efficient farm layouts or the connection and enlargement of nature reserves (Bakker et al., 2015).  10 

To understand, simulate and predict land transactions, one needs to know the factors that determine 11 

the willingness to pay (WTP) for a specific parcel by potential buyers and the willingness to accept 12 

(WTA) a bid by potential sellers. Hedonic price analysis is a common method used by economists to 13 

help identify such factors, using multiple linear regression techniques on observed transactions to 14 

estimate the relationship between a buyer’s WTP for a certain asset and the respective properties of 15 

this asset (Lancaster, 1966; Rosen, 1974). In this way it has been demonstrated, for example, that, 16 

for each kilometre closer to the city centre, people in Zurich, Switzerland, are willing to pay an extra 17 

2% for an apartment, and that an extra room increases the WTP by 10% (Banfi et al., 2007). Using 18 

the so obtained WTP and WTA values, residential property markets have been successfully modelled 19 

and simulated (Gauvin et al., 2013; Osullivan, 2009).  20 

Rural land transactions, however, differ principally from residential property transactions in that both 21 

buyer and parcel have a fixed location (barring the few occasions in which entire farms are moved), 22 

whereas in residential-property transactions the buyer - if (s)he is also the prospective resident – in 23 

most cases moves to the property (s)he bought. In rural land transactions, the farmer will continue 24 

living where (s)he was, and so the new parcel’s proximity to the farmstead of the buyer plays an 25 

important role in determining the WTP (Feinerman and Peerlings, 2005; Raup, 2003). Although 26 

hedonic price analyses have been performed for agricultural land markets as well (revealing, for 27 

instance, that farmers attach value to parcel properties such as parcel size, soil productivity, and 28 

remoteness from marshlands, and that younger farmers or farmers with children are willing to pay 29 

more than older farmers without a successor (Cotteleer et al., 2008; Huang et al., 2006)), such 30 

analyses have not properly included assessing the effect of distance between parcel and farmstead 31 

on an individual buyer’s WTP.  32 

Assessment of the effect of distance between parcel and farmstead is not possible with hedonic price 33 

analysis, because distance (from buyer) is neither a parcel characteristic, nor a buyer’s characteristic, 34 

but a characteristic of a specific buyer-parcel combination. Moreover, transactions are generally only 35 

successful for short distances between buyers and parcels, as  farmers in close vicinity to a parcel 36 

are willing to pay more than those far away. In other words, the actual transactions (on which the 37 

hedonic models are calibrated) are biased towards short distances. This may explain why Cotteleer 38 

et al. (2008) did not find ‘distance between farmstead and parcel’ to be an important factor in their 39 

hedonic price analysis, even though their dataset indicated that 90% of the agricultural buyers are 40 

located within 6.7 km of the parcels they bought.  41 

The goal of this paper is to propose an alternative method for assessing the relationship between the 42 

WTP for vacant land and the distance of this parcel to the buyer’s farmstead. We present a simple 43 
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numerical model of a land market and simulate a large number of parcel transactions using Monte 1 

Carlo sampling. The parameters of this numerical model are estimated from a historical archive of 2 

land transactions in the Province of Gelderland, the Netherlands, using minimization of the 3 

divergence (relative entropy) between the observed and simulated joint distributions of distance and 4 

transaction price.  5 

The remainder of this paper is organized as follows. Section 2 introduces the study area and available 6 

data set. In section 3, we discuss the rationale and different building blocks of the numerical model 7 

that is used to simulate virtual land transactions and introduce the Bayesian methodology that is 8 

used to estimate the parameter values of the land market in Gelderland. This is followed in Section 9 

4 with a detailed analysis of our results. Here, we are especially concerned with an interpretation of 10 

the inferred parameter values and the WTP – distance relationship. The penultimate section of this 11 

paper discusses model applicability, limitations and potential improvements. We conclude in Section 12 

6 with a summary of our main findings.     13 

 14 

2. Case study area and data 15 

Our historical archive of land transactions originates from the province of Gelderland, which is the 16 

Netherlands’ largest province and situated in the centre-east of the country. According to the Dutch 17 

Agricultural Census, the province comprises about 12,500 farms and 260,000 hectares of agricultural 18 

land. Most of the farming is pasture-based (primarily dairying), but arable farmers, pig- and poultry 19 

farmers, and market gardeners are also active in the area. As in most western countries, the rural 20 

population is aging and remaining farmers are forced to reap economies of scale in order to maintain 21 

their income. Hence, land transactions are generally driven by old farmers who sell land as a source 22 

of income, and young farmers that both sell and buy land to enlarge their farms and optimize its 23 

spatial layout. 24 

We had access to a digital archive in which all land transactions that took place in the Dutch rural 25 

area are recorded from the year 1998 onwards (DLG, 2012). From this archive, we took a subset of 26 

(a) the province of Gelderland; (b) the years 2008 and 2009 (these years had the largest number of 27 

complete records in the archive, while the overall land prices were rather stable during this period); 28 

(c) parcels without buildings, and (d) transactions between farmers registered in the agricultural 29 

census (therewith excluding transactions involving municipalities, property developers, the province, 30 

and nature organizations). Furthermore, we discarded some of the largest transaction prices (i.e., 31 

around 500,000 € ha-1), as we assume that these are due to aberrations (e.g. parcels sold to a 32 

property developer who is also registered as a farmer). The final data set comprised 1279 33 

transactions, with transaction prices ranging from 8,350 € ha-1 to 150,462 € ha-1. Figure 1 presents 34 

a scatter plot of the final data set using a linear (left-hand side) and log-log scale (right-hand side) 35 

of the distance between parcel and buyer and corresponding transaction price. The scatter plots 36 

demonstrate why linear, homoscedastic regression methods (and therefore hedonic price analysis) 37 

are less suitable for assessing a relationship between WTP and distance. We refer to Section 3.2 for 38 

a more detailed discussion of the joint distribution of WTP and distance. 39 
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  1 

Figure 1. Scatter plots of transaction price against distance between parcel and buyer on linear (A) 2 

and log-log scale (B; base 10) for agricultural transactions within the Province of Gelderland in 2008 3 

and 2009. Colour coding is used to characterize the density of the data (lighter means higher).   4 

 5 

3. Methods 6 

3.1. Concepts 7 

Before we present our conceptual model, we first discuss briefly the following key concepts: 8 

agricultural production value, subjective appreciation, distance, and WTP. 9 

Agricultural production value: This covers properties that determine the agricultural productivity of 10 

the parcel, such as water-retention capacity of the soil, how well excess water can be drained, parcel 11 

shape and size (affecting effectiveness of agricultural machinery), and restrictions on use, e.g. due 12 

to vicinity of nature reserves. In this paper we assume each parcel to have a given production value, 13 

without specifying the properties that determine it. Furthermore, we assume the production value to 14 

be a parcel property; any subjective element about the agricultural production value is captured in 15 

the next concept, the subjective appreciation. 16 

Subjective appreciation: Although properties constituting agricultural production value are important, 17 

each farmer will value a parcel differently. Subjective appreciation may be determined by the 18 

intended use of the buyer, as each agricultural use has somewhat different requirements. The 19 

subjective value of a parcel also depends on the size, capital and available labour of the 20 

purchasing/owning farm (Schmitz and Just, 2003). Lastly, the assessment of production value differs 21 

between buyer and seller due to incomplete information about the parcel’s characteristics, especially 22 

from the buyer’s side, as (s)he does not know the parcel as well as the current owner. Distance is 23 

another subjective factor, which we treat separately, as it is the specific object of interest in this 24 

study. 25 

Distance: Larger distances between parcel and farmstead mean higher costs, as farmers have to 26 

travel to and from the parcel for transporting livestock, agricultural inputs, and farm produce, as well 27 

as for working the land. Transport costs increase linearly with distance, suggesting a linear 28 

relationship. However, as parcels can be used for different purposes, the distance-value relationship 29 

is composed of multiple linear functions (Figure 2). For example, parcels used for grazing by dairy 30 
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cattle are preferably close to and contiguous with the stable where the cattle is milked. Parcels used 1 

for crop or fodder production can be further away without incurring high extra costs, and hence 2 

additional distance will decrease the WTP but not as steeply as in the case of pasture. Lastly, parcels 3 

not actively used but kept for other reasons (e.g. for speculation or in order to satisfy manure 4 

regulations) may be quite remote, and additional distance will hardly affect the WTP. The combination 5 

of several of such parcel-farmer relationships leads to a convexly shaped function, as illustrated in 6 

Figure 2. 7 

WTP: The agricultural production value, in combination with the subjective appreciation and the effect 8 

of distance is reflected in the willingness to pay (WTP). The willingness to pay is the maximum price 9 

a farmer will pay for land, with given properties, at a given distance from his/her farm. Transaction 10 

prices will never exceed the buyer’s WTP (and, for that matter, will never be smaller than the seller’s 11 

willingness to accept (WTA)). 12 

 13 

 14 

Figure 2. Multiple linear distance-value functions for different parcel use together shape the 15 

relationship (dashed line) between WTP and distance between farmstead and parcel (example for 16 

dairy farms). 17 

 18 

3.2. Conceptual model 19 

The conceptual model is illustrated in Figure 3 for a range of distances between parcel and buyer. 20 

The buyer’s WTP for a parcel is presented by the black line. The convex function, as described in 21 

Section 3.1, is approximated by a one-over-distance relationship. This is a crude approximation, but 22 

assessing the individual linear functions would lead to a situation with too many parameters to be 23 

estimated by the proposed method. From a seller’s point of view, the price (s)he is willing to accept 24 

for the parcel (WTA) is, of course, not affected by the distance to the buyer, but only by the 25 

agricultural production value, the subjective appreciation, and the distance to his/her own farmstead 26 

(which is independent from the distance between parcel and buyer). This is indicated by the 27 

horizontal, grey line in Figure 3. A transaction between buyer and seller is possible when the buyer’s 28 

WTP is equal to or larger than the seller’s WTA. In this illustration, this is the case when the distance 29 

between buyer and parcel is equal to or smaller than d. Whenever a transaction occurs, the 30 

transaction price will lie in between the buyer’s WTP and the seller’s WTA. 31 

 32 
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 1 

 2 

Figure 3. Theoretical relationship between WTP by buyer and distance between buyer and parcel. 3 

The WTA by seller does not depend on distance between buyer and parcel. A transaction can occur 4 

when the WTP is equal to or exceeds the WTA, i.e., up to distance d.  5 

 6 

Just as with hedonic price analysis, the parameters of the WTP-distance function can be estimated 7 

using real-world transaction data comprising a range of distances and transaction prices. When 8 

considering many parcels and many buyers and sellers, we must take into account variations among 9 

parcels, buyers, and sellers. In Figure 4, the hatched area represents the zone of successful 10 

transactions under varying agricultural production values and subjective appreciations by buyers and 11 

sellers. If the conceptual model is to be populated with real transactions, these will occur within the 12 

hatched area, with the highest density in the area where the WTP function is substantially higher 13 

than the WTA function. However, the number of parcels a buyer can choose from is smaller at smaller 14 

distances, because the amount of available land increases proportionally with the square of the 15 

distance. The combined effect of a decreasing hatched zone with increasing distance and an 16 

increasing number of parcels for sale with increasing distance will result in a positively-skewed 17 

marginal distribution of transactions with distance (see bottom part of Figure 4). These complicating 18 

factors explain the typical distribution shown in Figure 1 and elucidate why linear regression of parcel 19 

price against distance may produce poor results. Instead, a tailored model needs to be developed, 20 

the parameters of which can be derived from a dataset of actual land transaction prices.  21 

 22 
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Figure 4. Expected occurrence of land transactions. Variability in production value and subjective 1 

appreciation induce a spread around the WTP and WTA, illustrated by the dashed lines that indicate 2 

lower and upper boundaries of this spread. Transactions will occur within the hatched area. The 3 

density of transactions within the hatched area increases with increasing distance because the 4 

number of parcels for sale increases quadratically with distance, but the hatched area itself becomes 5 

smaller as distance increases. As a result, the marginal distribution of transaction price with distance 6 

is small at first, then increases to a maximum and finally decreases gradually as the distance between 7 

buyer and parcel becomes large. 8 

 9 

3.3. Statistical simulation model 10 

To simulate the distribution of the distance between parcel and buyer we imagine that potential 11 

buyers randomly queue in line and make a bid equalling their WTP when it is their turn. The parcel 12 

goes to the first buyer in line whose bid exceeds the WTA of the seller. This approach is a 13 

simplification of known auction models (McAfee and McMillan, 1987), but is in agreement with 14 

decision-making theory, which states that, in the absence of full information, people tend to accept 15 

the first good offer (Todd, 1997). 16 

Let 𝑉 (€ ha-1) be the agricultural production value of a parcel that enters the market, which is 17 

assumed normally distributed (because value-determining properties such as the water-retention 18 

capacity are typically normally distributed for agricultural parcels) with mean 𝜇 (€ ha-1) and standard 19 

deviation 𝜎 (€ ha-1), i.e., 𝑉 ~ 𝒩(𝜇, 𝜎2). The non-zero standard deviation is caused by differences in 20 

parcel properties, such as parcel shape and soil quality. The seller’s WTA (€ ha-1) is thus given by: 21 

 22 

𝑊𝑇𝐴 = 𝑉 + 𝜀𝑆         (Eq. 1) 23 

 24 

where 𝜀𝑆 (€ ha-1) is normally distributed with zero mean and standard deviation 𝜏𝑆 (€ ha-1), and 25 

represents subjective judgements of the selling party (e.g. use-specific production value, distance to 26 

own farmstead).  27 

 28 

The locations of potential buyers are simulated from a uniform distribution within a circular area 29 

surrounding the parcel. We set the radius of this circle equal to 20 km, as 98% of the observed 30 

transactions took place within this distance. The prospective buyer’s WTP is a function of distance 𝑑 31 

(m), and is given by: 32 

 33 

𝑊𝑇𝑃 = 𝑉 +  1 (𝛼 𝑑 + 𝛽)⁄ − 𝛾 +  𝜀𝐵       (Eq. 2) 34 

  35 

where the term 1 (𝛼 𝑑 + 𝛽)⁄   (€ ha-1) measures the effect of distance 𝑑 on the buyer’s WTP. The 36 

coefficients 𝛼 (ha €-1m-1) and 𝛽 (ha €-1) are both positive and lead to a WTP that on average decreases 37 

with distance. The relative position of the WTP function to the WTA function is specified by 𝛾 (€ ha-38 

1), which can be interpreted as a measure of how dynamic the land market is. If the WTP function is 39 

high relative to the WTA function (𝛾 < 0), the hatched area in Figure 4 will be large and many 40 

transactions will occur. Lastly, 𝜀𝐵 (€ ha-1) signifies the buyer’s subjective parcel appraisal and is taken 41 

to be normally distributed with zero mean and standard deviation 𝜏𝐵 (€ ha-1). We conveniently 42 
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assume here that 𝜀𝑆 and 𝜀𝐵 are independent and 𝜏𝑆 = 𝜏𝐵 = 𝜏, although this assumption could easily be 1 

relaxed. 2 

 3 

In case of a successful transaction, the transaction price 𝑃 (€ ha-1) is taken to be the average of the 4 

WTP and WTA, therewith simulating a situation in which buyer and seller have equal bargaining 5 

power:  6 

 7 

𝑃 = (𝑊𝑇𝑃 + 𝑊𝑇𝐴)/2         (Eq. 3) 8 

 9 

When a transaction is realized (i.e., when WTA < WTP), the distance, d, between parcel and buyer 10 

and corresponding transaction price, 𝑃, are stored and the process is repeated. That is, a next parcel 11 

is drawn at random and a queue of potential buyers simulated. If we repeat this Monte Carlo 12 

simulation 𝑁 times, with 𝑁 set large, say 𝑁 = 1,000,000, then the frequency distributions of simulated 13 

distances and simulated transaction prices should closely approximate their theoretical distribution.  14 

 15 

Note that WTP and WTA are theoretical constructs, of which the distribution and functional form can 16 

only be indirectly inferred from the observed joint density of transaction price, 𝑃, and distance, d. As 17 

pointed out in the introduction, transaction price and distance are only recorded for successful 18 

transactions, while WTA and WTP exist for any possible combination of parcel and seller/buyer. 19 

 20 

3.4. Parameter estimation 21 

The simulation model has six parameters, 𝛉 = {𝛼, 𝛽, 𝛾, 𝜏, 𝜇, 𝜎}, whose values needed to be specified a-22 

priori before transactions can be simulated as described above. In this way the probability distribution 23 

of the distance 𝑑 between parcel and buyer is derived numerically, and similarly the joint distribution 24 

of simulated distance, 𝑑, and corresponding transaction price 𝑃.  25 

 26 

If we denote with 𝑀 and 𝑆(𝛉) the 𝑀easured and 𝑆imulated bivariate distributions of distance and 27 

transaction price, respectively, then we can measure their similarity with the Kullback-Leibler (KL) 28 

divergence (Kullback and Leibler, 1951), which, for discrete distributions, can be written as  29 

 30 

𝐷𝐾𝐿(𝑀‖𝑆(𝜽)) = − ∑ 𝑀(𝑖)𝑙𝑜𝑔 {
𝑀(𝑖)

𝑆(𝑖,𝜽)
}𝑛

𝑖=1 ,      (Eq. 4) 31 

 32 

where 𝑛 signifies the number of rectangular grid points of distance and transaction price used to 33 

characterize both bivariate pdfs. This metric, also-referred to as relative entropy, is nonnegative. A 34 

value of 𝐷KL(𝑀‖𝑆(𝛉)) = 0 indicates that 𝑆 and 𝑀 are in perfect agreement. This agreement deteriorates 35 

with increasing value of 𝐷KL(𝑀‖𝑆(𝛉)). We adopted a Bayesian approach and infer the statistical (= 36 

posterior) distribution, 𝑝(𝛉|𝑀), of the model parameters, 𝛉, using a uniform (non-informative) prior 37 

distribution, 𝑝(𝛉), with parameter ranges listed in Table 1, and likelihood function, 𝐿(𝛉|𝑀), 38 

commensurate with Eq. (4) (see e.g. Greenwood and Wefelmeyer (1997)), or   39 

 40 

𝑝(𝛉|𝑀) ∝ 𝑝(𝛉)𝐿(𝛉|𝑀),        (Eq. 5) 41 

 42 
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which, with a (multivariate) uniform prior distribution, equates to 𝑝(𝛉|𝑀) ∝ 𝐿(𝛉|𝑀). Thus, the model 1 

parameters that maximize the a-posteriori density, are equivalent to the maximum likelihood (ML) 2 

solution. Note that we used a uniform prior on the logarithmic (base 10) values of 𝜇 and 𝜎. This is 3 

equivalent to a Jeffrey’s prior (Jeffreys, 1939). 4 

For our land market model, the posterior distribution is hard or even impossible to derive by analytical 5 

means nor by analytical approximation, and Monte Carlo sampling methods are required to 6 

approximate 𝑝(𝐱|𝑀). Of these, Markov chain Monte Carlo (MCMC) simulation methods are particularly 7 

powerful. Such methods generate a random walk through the parameter space and, under certain 8 

regularity conditions, will successively visit solutions with frequency proportional to the underlying 9 

target density, 𝑝(𝛉|𝑀) (Metropolis et al., 1953; Robert and Casella, 2004). 10 

 11 

Table 1. Parameter ranges, posterior estimates, and units 12 

Parameter Minimum Maximum ML Std.  Units 

𝛼 -12 3 -7.48 1.658 log10(€ ha-1) 

𝛽 -12 3 -7.79 0.062 log10(€ ha-1) 

𝛾 0 5 4.53 0.039 log10(€ ha-1) 

𝜏 0 5 3.72 1.005 log10(€ ha-1) 

𝜇 2.0 6.0 4.56 0.02 log10(€ ha-1) 

𝜎 2.0 6.0 3.69 0.511 log10(€ ha-1) 

Minimum and maximum show the range of the priors; the posterior parameter values are shown in 13 

column ML (Maximum likelihood), together with their standard deviation (Std.) 14 

 15 

In this paper, MCMC simulation is performed using the DREAM algorithm(Vrugt, 2016; Vrugt et al., 16 

2009). This multi-chain MCMC simulation algorithm automatically tunes the scale and orientation of 17 

the proposal distribution in pursuit of the target distribution. Many published studies have shown 18 

that DREAM exhibits an excellent performance on complex, high-dimensional, and multi-modal target 19 

distributions. The use of multiple chains protects against premature convergence and opens-up a 20 

wide arsenal of statistical tests to determine when the chains have reached the stationary 21 

distribution. After a burn-in period, the Markov chains have become independent of their initial value 22 

and convergence is monitored with the univariate 𝑅̂-convergence diagnostic of Gelman and Rubin 23 

(1992). A full description of the DREAM algorithm can be found in Vrugt et al. (2009) and Vrugt 24 

(2015).  25 

 26 

4. Results 27 

Figure 5 shows histograms of the marginal posterior distributions of the six model parameters 𝛼, 𝛽, 28 

𝛾, 𝜏, 𝜇 and 𝜎. The maximum likelihood values are separately indicated in each panel with a cross 29 

symbol and listed in Table 1, under ML (Maximum likelihood) and Std. The results can be interpreted 30 

as follows. The average agricultural production value (also reflecting the average seller’s WTA) is 31 

around 36,300 € ha-1(i.e., 104.56). The price a farmer is willing to pay for a parcel near his/her 32 

farmstead (say 𝑑 = 200 m) is on average € 153,000 € ha-1 (i.e., 104.56 + 1 / (10-7,79 * 200 + 10-7.48) 33 

–104.53). Depending on parcel properties, this price may in- or decrease by about € 9,800 € ha-1 (i.e., 34 

two times 103.69). The subjective appreciation by buyers due to variations in intended use or farm 35 
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structure and/or an over- or under-appreciation of the parcel value leads to average deviations of 1 

3,720 € ha-1 (i.e., 103.72) in the WTP.  2 

 3 

 4 

Figure 5. Marginal posterior distributions of the model parameters derived using the DREAM 5 

algorithm. The crosses in each plot indicate the maximum likelihood value of each parameter. 6 

 7 

The model parameters appear to be well defined with posterior ranges that are confined to a small 8 

region interior to the multivariate uniform prior distribution. Most histograms deviate substantially 9 

from normality and exhibit multiple peaks. This finding, together with the relatively low acceptance 10 

rate (2-4%) of candidate points in the Markov chains, provides evidence of a rather difficult response 11 

surface with local minima and pits. This introduces small artefacts in the marginal distributions and 12 

makes it difficult for the Markov chains to explore efficiently the parameter space in pursuit of the 13 

target distribution.     14 

 15 

The simulated joint distribution of distance and transaction price of the ML parameter estimates using 16 

1 million Monte Carlo samples is shown in Figure 6. At the left-hand-side the bivariate distribution 17 

derived from our data set is shown for comparison. The simulated and observed bivariate densities 18 

were characterized using 𝑛 =  256 points (see Eq. 4) on a 16 x 16 equidistant rectangular grid. The 19 

most important results are as follows. First, the simulated distribution is constricted to a maximum 20 

distance of 20,000 meters between the parcel and the buyer, and appears to be less peaky than the 21 

observed distribution. Second, the simulated distribution is much smoother because of the use of a 22 

much larger “data set” of 1-million Monte Carlo samples. Third, the simulated distribution does not 23 

capture adequately the short-distance transactions. These discrepancies may be explained in part by 24 

the small number of observed short-distance transactions (i.e. within 200m), and in part by 25 

inadequate assumptions in our market model, which are further discussed in the Discussion. 26 

 27 
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 1 

Figure 6. Observed and fitted joint distributions of Distance and Transaction price. 2 

 3 

Scatterplots of simulated and observed Transaction price and Distance are shown in Figure 7. Here, 4 

the failure to simulate short-distance transactions becomes even clearer, and also the spread of the 5 

observed distribution is less well reflected in the simulations. Nevertheless, the characteristic 6 

combination of a weak negative relationship between Transaction price and Distance and a clear 7 

decline in the number of observations with distance, is clearly reproduced.    8 

 9 
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 1 

Figure 7. Observed and fitted marginal cumulative distributions of distance and transaction price. 2 

 3 

 4 

Finally, we conclude this section with a plot of the relationship between distance between buyer and 5 

parcel and the corresponding WTP (Figure 8). The WTP decreases rapidly with increasing distance 6 

between buyer and parcel. Within 900m from the farmstead, buyers are willing to pay more than the 7 

agricultural production value (i.e., 36,300 € ha-1). Transactions still occur at distances larger than 8 

900m, but only when the buyer has a subjective over-appreciation and/or the seller a subjective 9 

under-appreciation of the agricultural production value. The WTP decreases to about 4000 € ha-1 at 10 

a distance of 20km, which is so low that only incidental transactions will occur. The relationship is 11 

non-linear, so that at short distances (500-1000m) any additional meter distance reduces the WTP 12 

by about 60 € ha-1, which for intermediate distances (100-3000m) reduces to 10 € ha-1, and for 13 

larger distances to less than 1 € ha-1. 14 

 15 
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 1 

Figure 8. Effect of distance on WTP. The WTP-distance relationship is given by 𝑊𝑇𝑃(𝑑) =2 

𝜇 +  1 (𝛼 𝑑 + 𝛽)⁄ −  𝛾, with ML values for 𝜇, 𝛼, 𝛽 and 𝛾 listed in Table 1.  3 

 4 

 5 

5. Discussion 6 

We presented a novel statistical model for characterizing, via Monte Carlo simulation, the relationship 7 

between distance and WTP for land parcels. The six parameters in this model were estimated via 8 

Bayesian inference using a historical archive of land transactions in the Dutch province of Gelderland, 9 

and results appear to be in line with findings of Cotteleer et al. (2008) who found that 90% of the 10 

agricultural buyers are located within 6.7 km of the parcels they bought. The simulated land market 11 

matched empirical observations and appears useful for application in policy making. For example, 12 

the province of Gelderland is responsible for the implementation of an ecological network, and so it 13 

buys plots of agricultural land within a certain designated, but broad zone. Then, to consolidate 14 

nature areas, the province tries to trade these parcels with farmers for other parcels that are 15 

contiguous with the existing nature reserves. This process, however, appears to be ineffective, as 16 

farmers are often not interested in the parcels that are offered in exchange (Bakker et al., 2015). 17 

The method presented here allows the province to purchase and offer land more effectively. 18 

Furthermore, quantified relationships between distance and WTP are also needed by spatially-explicit 19 

agent-based models that simulate land transactions based on individual farmer decisions. Such 20 

models are increasingly used to simulate land markets (Alam et al., 2014; Bakker et al., 2014; Bert 21 

et al., 2010; Schouten et al., 2012), but all use crude assumptions on the relationship between WTP 22 

and distance between parcel and owner.  23 

We believe that the presented method has a general applicability to agricultural land markets, 24 

provided that there is a situation with many farmers and many parcels, evenly spread throughout 25 

space. The functional form of the model, whereby WTP decreases with distance, is universal, while 26 

of course the actual parameter values, determining the shape and position of the function, will be 27 

different for each situation. The set of parameters we found is valid for the province of Gelderland, 28 

The Netherlands, where prices of agricultural land are high (thus high values for 𝜇), as in other parts 29 

of the country. Land is scarce in this densely populated area, and agriculture is highly intensive, 30 

which enables farmers to pay a relatively high price for the land. In other countries these prices are 31 

likely to be lower. The premium paid for land near the farm buildings is related to the dominant 32 

position of the dairy sector in many parts of the Netherlands: parcels near the stable mean easy 33 

movement of cattle from milking-machine to pasture. This accounts for the rapid decline in WTP with 34 

increasing distance from the buyer’s farm (thus high values for 𝛼 and 𝛽). In areas where arable 35 
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farming is more important (the province of Flevoland, for instance) that gradient would be less steep. 1 

The other characteristic of the graph, namely that the WTP hardly declines any further with distances 2 

beyond 5 km or so, relates to the fact that even distant land can be valuable to the farmer because 3 

it can be used to dump manure; this feature is relevant for dairy farmers, but also for pig farmers 4 

who have some arable land (thus, high values for 𝛼 and 𝛾). The number of parameters in our model 5 

allow for a flexible relation between WTP and distance, ranging from functions that are virtually flat 6 

(i.e., when buyers do not care about the distance of the to-be-purchased parcel) to a very steep 7 

functional relationship that decreases rapidly to zero (e.g. when buyers are only interested in an 8 

adjacent parcel and nothing else). The degree of curviness is controlled by parameter 𝛼, also allowing 9 

for linear relationships between distance and WTP (which is probably more appropriate for arable 10 

farmers).  11 

If deemed appropriate, model complexity can be further increased. For instance, the distance term 12 

in Eq. 2 can be raised to a power, and this power coefficient can be treated as unknown and inferred 13 

simultaneously with the other six parameters. Similarly, one could challenge the assumption that 14 

subjective appreciations of buyer and seller have the same spread, 𝜏. On the one hand, one may 15 

argue that sellers have a wider spread in subjective appreciation as the distance to their farmstead 16 

is incorporated in their subjective appreciation. On the other hand, one can argue that buyers have 17 

a wider spread, as they know the properties of the to-be-purchased parcel(s) less well than the seller. 18 

Anyhow, it may be evident that that the use of a common standard deviation, 𝜏 = 𝜏𝑆 = 𝜏𝐵,  for 𝜀𝑆 and 19 

𝜀𝐵 is inadequate as both these entities are determined by at least a few different variables. In 20 

principle, incorporating such additional parameters is easy to do, but we refrained from it because 21 

we already had some difficulty with model convergence due to local minima and pits. In other words, 22 

our data did not support additional model complexity. 23 

 24 

The simulated bivariate distribution of distance and transaction price matched reasonably well its 25 

observed counterpart. We do see a mismatch in the observed occurrence of short-distance, low-price 26 

observations, which we were not able to simulate (Figure 7). Apparently, in the real-world farmers 27 

sell land cheaply to farmers who should have a high WTP since they live near the for-sale parcel. 28 

There are several explanations. First, willingness to pay does not equal ability to pay. Especially 29 

among family farms, purchasing power is low due to declining margins in agriculture. Related to that, 30 

buyers and sellers in close-distance transactions are often neighbours or even relatives, so that the 31 

selling party may not wish to take advantage of the high WTP of the buyer. Third, in many cases the 32 

buyer may assume that the seller will not find an alternative buyer with an equally high WTP, and 33 

can therefore bargain a good price, despite his/her high WTP. Other processes that have been 34 

insufficiently captured in our conceptual model are concern the asymmetry of the distribution of 35 

market prices (Chang and Tang, 2015) and transaction costs. Regarding the asymmetry of market 36 

prices: The price of agricultural parcels is affected by (anticipated) changes in zoning policies, but 37 

the mechanism by which differs between designation types. When the designation changes towards 38 

a more profitable land use (e.g. residential), farmers are paid the option value of the land (what the 39 

land will be worth after the change in designation), while when the designation changes towards a 40 

less profitable land use (e.g. nature), farmers are paid the so-called user value (what the land is 41 

worth before the change in designation). This could be incorporated in the model by assuming a 42 
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skew distribution for 𝜀𝑆 and 𝜀𝐵 rather than a normal distribution. Regarding the transaction costs, the 1 

transaction prices reflect what a seller receives, but costs of the transaction, which can easily amount 2 

to 10-20% of the transaction price, are for the buyer. As we ignored these costs we structurally 3 

underestimated the buyer’s WTP by about 10-20%. This explains in part the relatively large 4 

(negative) value for 𝛾, which makes the bid function relatively low compared to the ask function 5 

(Eqns. 1 and 2). Thus, what we assessed in Figure 8 is the WTP excluding transaction costs. 6 

 7 

Regarding the optimization procedure some critical remarks can be made. Analysis of the sampled 8 

Markov chains (not shown) demonstrated relatively strong dependencies between some of the model 9 

parameters. This is particularly true for 𝛼, 𝛾 and 𝜏 which appeared to be highly correlated. Perhaps, 10 

this result is not surprising as these three parameters have an additive effect in Eq. 2. Nevertheless, 11 

all six model parameters appear relatively well defined with marginal posterior distributions in Figure 12 

5 that occupy only a small portion of the multivariate prior distribution. Future research should 13 

investigate in more detail model parameter uncertainty. This will help determine whether additional 14 

model components and/or parameters are warranted by the data.  15 

  16 

6. Conclusions 17 

The relationship between the distance between farmstead and parcel and the willingness to pay 18 

(WTP) for such a parcel is difficult to derive from land transaction data because the WTP is a latent 19 

variable, of which the observed transaction data are a biased manifestation (i.e., many high-20 

price/small-distance observations and few low-price/large-distance observations). To address this 21 

issue, a statistical model was formulated that postulates an inverse-distance relationship between 22 

the distance between farmer and parcel and the WTP for such a parcel. By embedding this model in 23 

a Monte Carlo framework, we can simulate the land transaction market of buyers and sellers and 24 

make a quantitative assessment of the distance – WTP relationship. We used this model to analyse 25 

land transaction prices in the Dutch province of Gelderland. After Bayesian estimation of the 26 

parameters, we found that the proposed conceptual model predicts reasonably well the empirical 27 

bivariate distribution of transaction prices and distance from buyer to seller. The relationship found 28 

suggests that for short distances (500-1000m) any additional meter distance reduces the WTP by 29 

about 60 € ha-1, which for intermediate distances (1000-3000m) reduces to 10 € ha-1, and for larger 30 

distances to less than 1 € ha-1.  31 
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