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Propositions: 
  

1. Blackcurrant extracts protect against loss of epithelial integrity caused by 

Clostridium difficile toxins (this thesis). 

2. Expression values expressed as fold-change ratios are better than raw values for 

data fusion and reanalysis of experiments with controls within a batch, particularly 

to build connectivity maps. (this thesis) 

3. Future strategies to manipulate the microbiome can include vesicles containing 

host miRNAs (Liu et al., Cell Host Microbe. 2016 19(1): 32–43). 

4. Computational Biology will gain ground over traditional biology in the near future 

(Nussinov et al., PLoS Comput Biol 2015 11(7): e1004318) 

5. Biologists and computational biologists should pause and take time to standardise 

models and data before performing more experiments.  

6. Similar to Newton’s physical laws leading to the discovery of calculus in 

mathematics, the laws governing emergence and adaptability in biological 

systems will lead to a new mathematical technique. 

7. Dutch can do without flavourful food but not without playing sports while Indians 

can do without playing sports but not without flavourful food.  

8. Working as the sole computational biologist in a biology lab requires you to do odd 

jobs such as fixing computer hardware and software and installing computers 

linked to lab equipment.  
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General	Introduction	

The gastrointestinal tract  

The gastrointestinal tract is a hollow organ running from the mouth to the anus. The organs that 

make up the GI tract are the mouth, oesophagus, stomach, small intestine, large intestine, and 

anus. In addition to the gastrointestinal tract, the liver, pancreas, and gallbladder play a role in 

the digestion of food and provision of nutrient to the body. The main function of the intestinal 

tract is the digestion of food and absorption of nutrients, which occurs primarily in the small 

intestine. Water which is secreted into the small intestine to aid digestion is reabsorbed in the 

colon to maintain water homeostasis. The large intestine is divided into cecum, colon and rectum 

which ends at the anus (Figure 1). The small intestine is roughly divided into three segments, 

the duodenum, jejunum, and ileum (Figure 1). The main function of the duodenum is the 

digestion and absorption of iron, calcium and water-soluble vitamins whereas the jejunum and 

ileum are important for absorption of other nutrients and the transport of bile acids and vitamin 

B12. This specialization in function is reflected in the expression of proteins with specialized 

functions at specific intestinal locations 1–3. Additionally, there are location-specific differences 

in the cell type distribution resulting from stem cell differentiation along the crypt villus axis. 
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Figure 1: A schematic representation of human digestive system showing different segments 

of small and large intestine. Liver, Stomach, Gall bladder and Pancreas are also shown in figure. 

Figure adapted from Wikimedia produced by Mariana Ruiz Villarreal.  

Intestinal cell differentiation results from multi-lineage differentiation of adult stem cells residing 

at the bottom of the crypts. The intestinal epithelium is renewed every 3–5 days in humans, due 

to apoptosis and exfoliation of mature enterocytes and their replacement by proliferation from 

stem cells in the crypts. In the small intestine (SI), the epithelium contains goblet cells, 

enteroendocrine cells, Paneth cells, tuft cells, rapidly dividing enterocytes as well as mature 

enterocytes 4,5 (Figure 2). Mature enterocytes play a major role in absorption of nutrients 4,5 and 

consist of about 80 % of the small intestinal epithelia 6. Goblet cells produce a secreted barrier 
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(mucous layer) to protect the epithelium from close contact with food and microbes 4. Goblet 

cells comprise about 5% of the cells in the small intestinal epithelium and are distributed 

between the middle of the crypt to the end of the villus 6. Enteroendocrine cells comprise about 

1% of intestinal epithelial cells and produce hormones that are essential for regulating the 

functions of intestinal epithelium. Recently, enteroendocrine cells were shown to 

produce opioids in the gut, which might regulate exocrine and endocrine secretion to control 

digestive and metabolic processes 7,8.  

Paneth cells are found in the bottom of epithelial crypts of the SI and possess cytoplasmic 

granules containing antimicrobial peptides and proteins. These cells play a key role in defence 

against pathogenic microorganisms, maintenance of stem cells and homeostasis 4. Tuft cells 

normally make up about 0.4% of the small intestinal epithelium and possess distinctive ‘tufts’ of 

microvilli facing into the intestinal lumen. Two different subtypes of tuft cells and diversity in 

endocrine cells has been reported in a study using single cell RNAsequencing technique of 

epithelial cells obtained from mice and mice organoids 9.  

 

Figure 2: A diagram of the intestinal epithelia containing different epithelial cell lineages, the 

mucous layer and underlying immune cells in the lamina propria.  
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Gatekeeper and communication roles of the intestinal epithelium  

Apart from its key role in the absorption of nutrients, the intestinal epithelium prevents loss of 

water, electrolytes and forms a protective barrier against the entry of microorganisms. The co-

evolution of mammals with symbiotic intestinal microbiota has resulted in specialised 

adaptations that avoid chronic inflammatory responses to commensal and symbiotic microbes 

while maintaining the capacity to fight off pathogens and promote adaptive immune responses. 

Cells of the epithelial lineage form an innate physical and chemical barrier against microbes, a 

key element of which is the secreted mucus produced by goblet cells 10 (Figure 2). In the small 

and large intestine of humans the secreted mucus consists predominantly of MUC2 which is 

highly glycosylated and negatively charged. Mucus is overall negatively charged and assembled 

into a network through disulphide bonds linking cysteine rich terminal domains with other 

monomers to form a hydrogel which limits permeation of microbes, particles and molecules. 

Constant production and removal of mucus by peristalsis also contributes to its barrier function.  

Apart from secreted mucin, intestinal cells produce transmembrane mucins, which are crucial 

components of the glycocalyx on the apical surface of mucosal epithelium. Expression of the 

different members of this family of mucins varies along the intestinal tract. Like secreted mucins, 

transmembrane mucins are extensively O-glycosylated on the extracellular domains to sterically 

hinder bacterial binding to the cell–surface. Although certain oligosaccharides found on cell-

surface mucin may mimic ligands for microbial adhesins they are shed upon binding and thus 

act as a mechanism to release pathogens from the surface 10.  

Intestinal permeability is defined as the functional capacity to regulate passage of molecules 

across the intestinal wall through the paracellular space between adjacent cells 11. The 

paracellular permeability of the epithelium is controlled by protein complexes known as tight 

junctions (TJs), which reside near the apical surface of adjacent epithelial cells (Figure 3).  
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Figure 3: A) Schematic diagram displaying the cellular junctions between enterocytes. Tight 

junctions (TJs) allow selective translocation of substances across the epithelial barrier through 

the paracellular space and regulate permeation of various molecules. Adherens junctions are 

involved in cell-cell adhesion and intracellular signalling. Other basolateral epithelial junctions 

include desmosomes and gap junctions, which are involved in cell-cell adhesion and 

intracellular communication, respectively. B) shows the composition of the TJs, namely: 

occludin, junctional adhesion molecule (JAM) proteins, and members of the claudin protein 

family. (Reproduced from Wells et al, 2016 12, Licensed under Creative Commons Attribution 

CC-BY 3.0: © the American Physiological Society) 

TJs prevent the paracellular passage of large molecules through the epithelium while allowing 

diffusion of ions, water, and small compounds 12. Other cell junctions are the adherens junctions, 

desmosomes, and gap junctions, which are involved in cell-cell adhesion and intra-cellular 

signalling 12. Epithelial cells can transport receptors to apical or basolateral membranes and TJs 

prevent their lateral diffusion allowing specific transport or signalling functions to be polarised in 

the epithelium. Expression of the protein components of TJs varies along the intestinal tract, 

resulting in location-specific differences in ion transport and water absorption. The occludin and 

claudins that make up tight junctions, interact with the zonula occludens (ZO) proteins located 

on the intracellular side of the plasma membrane thereby anchoring them to the actin 

cytoskeleton.  
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The breakdown of the barrier function via tight-junction regulation is common to many diseases 

and infections, particularly in case of bacterial infections caused E. coli, H. pylori, V. cholera and 

C. difficile among others 13–15. Several mice model studies to investigate the relationship between 

gut barrier impairment and intestinal inflammation has confirmed that leaky gut leads to 

inflammatory signals using genes responsible for uncontrolled cell death signalling. Abnormality 

in tight junction structure and increased intestinal permeability are also found to play a role in 

celiac disease, intestinal bowel disease (IBD), inflammatory bowel syndrome (IBS) 13. 

The epithelium plays an important role in transporting secretory immunoglobulin A (sIgA) into 

the intestinal lumen. Every day an estimated 3 gram of sIgA is secreted into the intestinal lumen 

highlighting its important role in protecting the mucosal surface. Secretory IgA contributes to the 

barrier function of the epithelial primarily via agglutination and exclusion of bacteria from the 

epithelial surface 11.  

Another key function of the epithelium which contributes to its gatekeeper function is secretion 

of several antimicrobial peptides and proteins (AMPs) into the lumen 12,16. The largest producers 

AMPs are the enterocytes and Paneth cells found in the small intestine 16. Expression can be 

constitutive or induced by innate receptor recognition of microbe-associated molecular patterns. 

AMPs appear to be retained by the mucus layer covering the epithelium, and only minor levels 

of these molecules are found in the lumen 16. Evidence from knock-out and transgenic mice has 

revealed an important role of AMPs in limiting penetrability of the mucus by pathogenic and 

commensal bacteria and susceptibility to infection with enteric pathogens 17–19.  

Epithelial cells are crucial regulators of immune homeostasis in the mucosa. For example, 

interactions between microbes, components released by microbes including their metabolites 

and innate or other receptors expressed by epithelial cells can trigger expression of a surprising 

diversity of chemokines, cytokines, and peptide hormones by specific cell types in the epithelium 

20. Several studies in knockout mice that demonstrate TLR signalling in the epithelium has a 

profoundly beneficial role in maintaining homeostasis. This cross-talk regulates several aspects 
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of immunity including, antigen sampling, B cell function, sIgA production, DC function, and 

innate immunity.  

Caco-2 as an intestinal enterocyte model 

Knowledge of the structure, function and role of gut enterocytes is important for gaining a better 

understanding of the role of the intestinal epithelium in nutrient acquisition, energy metabolism 

and innate immunity. In a living organism, studying the specific roles of epithelial enterocytes in 

biological processes is difficult due to the complexity of the intestinal system and therefore 

model systems are frequently utilized. One such model cell system is the Caco-2 cell line, which 

has been used in numerous studies to investigate enterocyte functions 21,22. Caco-2 cells were 

originally derived from a colon tumour but when they are maintained as confluent monolayer for 

more than 16 days they resemble the morphology and function of mature absorptive enterocytes 

as found in the small intestine 23. Furthermore, monolayers of Caco-2 cells form tight junctions 

between adjacent cells, allowing the special separation of apical and basolateral receptors, as 

observed in vivo. 

In the field of drug discovery, Caco-2 cell line has been useful for studying drug absorption into 

host cells and in understanding epithelial barrier function 21,22,24–28. Caco-2 cells have also been 

used to study the effect of nutritional factors on human intestinal epithelial proliferation, brush 

border enzyme activity, and motility and other important functions of the intestine 29. Tallkvist 

and others investigated the role of specific trans-epithelial membrane proteins responsible for 

iron transport using Caco-2 model cell system 30. Another example is the study by Ling and 

colleagues, who investigated the effect of Bifidobacterium on an LPS-stimulated Caco-2 

monolayer and repeated the experiment in mice model. The outcome of the Caco-2 experiment 

indicated that the Bifidobacterium may protect against intestinal barrier dysfunction and the 

same conclusions were drawn from the in vivo experiments 31.  
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In addition to the above mentioned studies, Caco-2 cells have been exposed to various luminal 

factors and vast amount of microarray based experimental data is available 32. Some of these 

experiments include exposure of Caco-2 cells to: vegetables including paprika, broccoli, onion; 

food compounds sulforaphane and quercetin; pathogens such as L. monocytogenes and C. 

difficile; prebiotics such as GOS and fibres; probiotics including L. casei and B. subtilis. Such a 

varied dataset could be exploited using systems biology techniques to mine for knowledge and 

generate novel hypotheses. This is explained in detail in later sections of this chapter.  

Clostridium difficile and CDI 

The community of microbial organisms that reside within and on multicellular organisms 

including plants and animals are called microbiota. The microbial colonies present in the 

microbiota could be commensal, symbiotic or pathogenic in relationship to the host organism. 

In humans, microbiota communities are found in skin, in the respiratory tracts, mammary glands, 

uterus, ovarian follicles, placenta, bodily fluids, conjunctiva and the gastrointestinal tract. The 

intestinal microbiota have been shown to profoundly influence the physiology and metabolism 

of their hosts 33. Gut microbial population and their diversity have been studied in detail owing 

to their contribution to health and disease pathogenicity 34. The widely accepted dogma related 

to human microbiome is that the foetus is sterile and the first contact with the microbiota is 

during birth 34,35. However, recent studies indicate the presence of microbes in foetus even 

before birth, in the form of foetal microbiota 35. Dietary content of fibre, fat and protein are major 

factors driving the composition and metabolism of the intestinal microbiota 36. Harmful 

pathogens can also be ingested via contaminated food or liquids 5,37–39 leading to intestinal 

disorder and sometimes systemic disease for example, Campylobacter jejuni, Salmonella 

typhimurium, Listeria monocytogenes, pathogenic Escherichia coli and Clostridium difficile. 

Clostridium difficile is a spore-forming gram positive bacteria that is present in air, soil and water 

and some strains are toxigenic and harmful to humans 40–42. C. difficile infection (CDI) can cause 



 17 

diseases ranging from diarrhoea to life-threatening inflammation of the colon. Illness from C. 

difficile most commonly affects patients in hospitals or in long-term care facilities and typically 

occurs after use of antibiotic medications. The use of antibiotics disrupts the ecology of the 

human microbiome and the recurrence of C. difficile infection is associated with the low 

microbiome diversity 43. Studies indicate that antibiotic treatment diminishes the products of 

bacterial metabolism (e.g. short-chain fatty acids and secondary bile acids) and there is an 

increase in the precursors of these by-products such as succinate. C. difficile exploits several 

metabolic pathways to metabolize succinate into butyrate 44. Investigations are in progress to 

understand alternative metabolic routes that enable C. difficile population expansion after 

antibiotic treatment 43. This leaves a narrow set of antibiotics that can be used to treat CDI 45. 

Recent studies also indicate emergence of drug resistance in C. difficile strains and multi-drug 

resistance strains have been reported 46 which further emphasizes the need for alternative 

treatments. 
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Figure 4: A simplified scheme showing the effects of antibiotics killing commensal bacteria 

followed by C. difficile invasion of intestinal epithelia. The diagram shows a depletion in the 

mucus layer, rounding up of an enterocyte and another undergoing apoptosis. The release of 

toxins by C. difficile, intoxication of toxins, disruption of cell structure and release of cytokines 

and chemokines are also shown along with the accumulation of immune cells. 

Once C. difficile populates the gut in sufficient numbers, the activities of enterotoxin - Toxin A 

(ToxA or TcdA) and cytotoxin - Toxin B (ToxB or TcdB) 47,48 cause diarrhoea and gastroenteritis. 

ToxA (308 kDa) and ToxB (270 kDa) share high similarity in sequence and functional 

homology 47 and are both glucosyltransferases that inactivate RHO, RAC and CDC42 proteins 

within target cells. The toxins show similar substrate specificity owing to the 74% homology in 

their N-terminal domains. The genes responsible for these two toxins are located on the same 

pathogenicity locus and are situated close to each other 47. The general mode of action for both 

ToxA and ToxB is via receptor mediated endocytosis after which they go on to deactivate RHO, 

RAC and CDC42 and thus disrupt key cell signalling systems 47. This leads to break down of 

the actin dependent cytoskeleton and also dissolution of the tight junctions. The cells start to 

lose their polarity, followed by rounding up leading to a failure of intestinal barrier. 

Simultaneously, signals that lead to inflammation and programmed cell death are triggered. 

The effects of C. difficile and the two toxins have been of increased interests to scientist in 

recent times, due to the emergence of antibiotic resistant strains. The effects of C. difficile toxins 

on gene expression in the enterocytes has been studied using multiple organisms including 

human cell model 49–51,15,52,53. In addition to these studies, C. difficile has also been co-cultured 

with Caco-2 cells (colon like) to study effects on gene expression for up to two hours 15. Although, 

the above-mentioned studies have focused on the expression of mRNA in C. difficile induced 

enterocytes, the role of miRNA and their regulation of mRNA is not known. Moreover, the 

emergence of drug resistant C. difficile strains and the recent discovery of CDI incidence in 

small intestine warrants an urgent effort to find new effective treatments.   
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The role of miRNAs in cellular functions and in disease  

The miRNAs are 20-25 base pairs in length and are non-coding RNAs 54–56. They are considered 

to be mainly involved in mRNA post-transcriptional regulation by targeting 6–8 nucleotides 

(called as the seed region) 57,58. miRNAs are initially transcribed as pri-miRNA transcripts, about 

60-70 nucleotides (nt) long, forming short hairpin loops by folding back on themselves 57 which 

are further processed by a micro-processor complex that cleaves the pri-miRNA to form pre-

miRNA. Pre-miRNA, which retains the hairpin loop from pri-mRNA, is translocated into the 

cytosol from the nucleus and the hair pin loop is cleaved by dicer to form a double stranded 

miRNA. One of the strands of the double stranded miRNA forms a RISC-complex with other 

proteins which binds to mRNA based on nucleotide complementarity. The transcription is then 

either mitigated or the mRNA is cleaved and discarded 59,55,57,60. 

About 1000 miRNAs have been found in humans. MiRNAs are shown to play a major role in 

biological processes including metabolism, apoptosis and cell proliferation 61. Additionally, there 

is ample evidence of malfunctioning of miRNA in regulation of processes in cancer cells. The 

miRNAs related to cancer are dysregulated by several mechanisms, including 

deletion/amplification, epigenetic modifications and impairment of miRNA biogenesis. MiRNAs 

like miR-15a and miR-16-1 are known to be tumour suppressors that induce apoptosis. Studies 

revealed them to be deleted in case of B-cell chronic lymphocytic leukaemia 62. In the case of 

acute myeloid leukaemia, the expression of miR-223 was silenced by AML1/ETO via epigenetic 

modification (CpG methylation). Similarly, in case of cardiac hypertrophy, miR-23a, miR-23b, 

miR-24, miR-195, miR-199a, and miR-214 were reported to be regulated 63. Studies also report 

the role of miRNA in immune and autoimmune disorders, liver diseases and 

neurodevelopmental disorders 61. In infectious diseases, the role of miRNAs have been elicited 

by viral infections with Hepatitis C virus (HCV), Human Immunodeficiency Virus-1 (HIV-1), 

influenza virus 64 among others and in bacterial infections caused by several species of 

Mycobacterium genus, pathogenic Salmonella, L. monocytogenes and some species of the 
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genus Francisella 65. Moreover, a recent study indicates that the host secretes miRNA in order 

to regulate the microbiome population in the gut 66.   

miRNAs are being explored as therapeutic targets in treatment against cancer and hepatitis. 

The expression of miRNA are either suppressed or are targeted using drug molecules that 

interfere with their normal functioning or miRNAs are used as tumour suppressors 67. Some 

therapeutics have reached clinical trials highlighting the potential to treat other diseases through 

targeting miRNA regulation 67.  

Physiological effects of bio-actives present in food  

The interaction of food with the digestive system has been studied for a long time because 

healthy eating habits have a huge potential to mitigate common diseases. This concept was 

proclaimed in the time of Hippocrates (4th century B.C.E.) and is evident in the historical records 

of ancient civilisations including Indians (Ayurveda and Siddha systems of medicine), Chinese 

and Greeks. Today the World Health Organisation (WHO) recommends healthy eating habits 

as an effective approach to reduce chronic diseases 68. In addition to food consumed on daily 

basis, there are functional foods which provide beneficial effects beyond basic nutrition 36,69. 

These are usually fortified foods that offer supplementary nutrients such as vitamins or 

minerals 69. 

Bioactive compounds of regular plant-based food and their beneficial effects has been 

investigated over the years. The benefits exerted by several key components like polyphenols, 

cell wall (fibres), carotenoids, glucosinolates among others, on human health have been studied 

in detail. One of the hypothesis is that polyphenols exert their health benefits by eliminating free 

radicals, by protecting and regenerating dietary antioxidants (e.g. vitamin E) and by chelating 

pro-oxidant metals. Studies indicate that the polyphenols have anti-cancer, anti-microbial 

properties and also help in wound healing 70. Consumption of food containing high levels of 

polyphenols, such as wine, has been linked to low incidence of coronary heart diseases. The 
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polyphenols in wine prevent platelet aggregation and protect the LDLs from free radicals 70. 

Similarly, reactive oxidative species (ROS) and reactive nitrogen species (RNS) could oxidise 

glucose into carbonyl toxic product. This could further attack amino acids forming glycation end 

products (AGEs) which may trigger inflammation by release of cytokines. The polyphenols act 

as antioxidants, keeping ROS/RNS in control 70.  

Another major beneficial compound obtained from vegetables and fruits are the dietary fibres 

obtained from the plant cell walls. The plant cell wall is composed of cellulose, hemicellulose, 

lignin and pectin. Soluble dietary fibres have a high water holding capacity and can form gel in 

the stomach and thereby increase the viscosity of food digesta. This causes a delay in gastric 

emptying and slows down the movement of food from stomach to duodenum and transport rates 

of nutrients to the small intestine 71. Due to the laxative effects of insoluble dietary fibres, they 

are recommended as the first line of treatment in case of constipation. Moreover, the incidence 

of certain cancers have been observed to be lesser in countries with larger consumption of plant 

based diet in comparison against countries with more meat based diet 71. It has also been found 

that the absorption and bioavailability of food substances varies from individual to individual. 

This may be due to several factors such as epi-genetics, gut microbiota, sex, age and lifestyle 

among others 72. These variations may, in turn, reflect in studies involving food related exposure 

experiments but do not become vividly distinguishable.  

Thus, the data derived from exposure experiments requires computational analysis that 

considers the challenges from various parameters involved in study design. Such studies could 

be performed at a holistic level with a systems approach. Computational systems biology 

techniques could prove to be a promising route to unravel the mechanisms behind functional 

food components on enterocytes. 
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Systems Biology as an emerging facet of biological sciences 

Systems Biology is the study of biological systems as a whole rather than studying the individual 

parts. Although systems biology and the techniques used in systems biology are not clearly and 

precisely defined, the above definition forms the basis of systems biology. Systems biology is 

an amalgamation of several different techniques ranging from biological high-throughput 

techniques such as RNAseq, microarray, mass spectrometry, metabolomics, proteomics to 

statistics, mathematics and computational model development and simulation studies. 

The Institute of Systems Biology in Seattle states that “Systems biology is based on the 

understanding that the whole is greater than the sum of the parts. It is a holistic approach to 

deciphering the complexity of biological systems that starts from the understanding that the 

networks that form the whole of living organisms are more than the sum of their parts. It is 

collaborative, integrating many scientific disciplines – biology, computer science, engineering, 

bioinformatics, physics and others – to predict how these systems change over time and under 

varying conditions, and to develop solutions to the world’s most pressing health and 

environmental issues.” 

The origin of systems biology as an idea could be attributed to the French physiologist Claude 

Bernard in mid nineteenth century 73. Later, Austrian biologist Ludwig von Bertalanffy put forth 

his General Systems Theory. Simultaneously, study of enzyme kinetics as a separate branch 

was already in vogue, in the early 20th century. The work of Hodgkin and Huxley and that of 

Denis Noble further established the idea of using mathematical models for systemic study 74,75. 

Systems theorist Mihajlo Mesarovic in 1966 helped establish systems biology as a distinct 

discipline of study in the conference titled “Systems Theory and Biology” 76. 

Systems biology has clearly evolved over the years with the advent of new technologies and 

high throughput techniques in experimental biology assisted by powerful computers and 

advanced statistical and mathematical methods. In recent times, high-throughput techniques 
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like whole genome/transcriptome sequencing and microarray technologies have been coupled 

with computational procedures for large scale data analysis and together have yielded deeper 

insights into understanding biological systems 77,78. 

Systems biology has been applied in studying diseases like cancer 79, tuberculosis 80,81, arthritis 

82 among others; in studying cell systems of both prokaryotes 83–85 and eukaryotes; in 

understanding organ systems like liver 86, heart 87, gut 88; and in understanding single cells as 

systems 89. Applications of systems biology and bioinformatics in food related studies has been 

recently termed as ‘foodomics’ and it’s applications have been limited 90. Additionally, different 

scales of biological interactions are studied in systems biology using high throughput data. 

High-throughput technologies and analysis techniques  

Systems biology works on the data – model – hypothesis – data cycle (Figure 5). The new data 

is used to update the model and generate novel hypothesis. Several high-throughput techniques 

are being used by systems biologist to gain new insights into biological systems and for 

generating novel hypotheses that can further be tested by biological experiments. Different 

scales of analysis are performed in systems biology, namely: genomic, transcriptomic, 

proteomic, epigenomic, phenomic, metabolomic, cellular, tissue level, organismal level, spatial, 

temporal, spatiotemporal and others. Also, multiple scales of data and analysis may be 

combined together in an integromics study 91. 
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Figure 5: Representative figure showing the principle of systems biology. System biology works 

on the principle of an iterative experiment cycle involving experiments – data – model – and 

hypothesis  

In the past biologists used whole genome sequencing techniques based on capillary sequencing 

for genome-scale model development and analysis and these have been replaced by high-

throughput sequencing technologies such as Illumina dye sequencing and single molecule real 

time (SMRT) sequencing. Such recent technologies generate vast quantities of data and can 

be used to discover and study the deoxyribose nucleic acid (DNA) of previously unknown 

organisms via de novo assembly of sequences 92. Additionally, chromatin immuno-precipitation 

(ChiP) on DNA microarray chip (ChIP on chip) and ChIP-seq (which is a next generation 

sequencing technology) allows investigation of protein-DNA binding. Such data can be 
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combined with transcriptome data to build transcription factor networks and other multiscale 

networks 93. 

The transcriptome is defined as the complete set of Ribose Nucleic Acid (RNA) material present 

in an organism, cell or tissue. There are many types of RNA and multiple methods are employed 

to gather the transcriptome information. The most commonly studied RNAs are the coding RNAs 

that are potentially transcribed into proteins. Polymerase Chain Reaction (PCR) is commonly 

used for assessing the presence of a piece DNA in a cell 94. A more robust method for quantifying 

RNA expression study is quantitative real-time PCR (qRT-PCR) 94. PCR is a laborious technique 

to apply at a genome scale i.e. to quantify the amount of all genes in a biological sample. 

Overtime, DNA microarrays revolutionized the field of transcriptome identification and 

quantification analysis. They could be used to study the content of the entire transcriptome of a 

biological sample, provided the sequence of the genes were already known 95. They were used 

extensively in the past but have recently been surpassed by RNAseq, a next generation 

sequencing (NGS) technique 96. However, microarray technology is still commonly used in food 

or infection related Caco-2 exposure experiments and has been the focus of this thesis. 

Methods of data analysis in systems biology 

Systems biology involves a wide range of techniques for data analysis and knowledge retrieval 

depending on the question and data at hand 97–100. Systems biology approaches are broadly 

divided into bottom-up and top-down approaches (Figure 6). Bottom-up approaches usually 

encompass studying and developing models that define lower level abstractions of biological 

systems from molecular level all the way to organism 101,102. Typically, such model development 

approaches begin with generating biological networks for example, gene regulatory networks or 

signalling networks using molecular data collected from databases and scientific publications. 

Generally, networks are generated to study a small segment of a cellular process, e.g. a 

cytokine inducing mechanism. The networks are then used to build computational and 
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mathematical models that can be utilized to generate an experimentally verifiable hypothesis 

102. The bottom-up approach models typically begin at studying an organelle (e.g. mitochondria, 

nucleus, etc.) or a cell type (e.g. enterocytes, neurons, etc.) and is further expanded into 

studying tissues and organs 101.  

The other common systems biology approach is the top-down modelling approach, which 

comprises of reverse engineering and developing statistical models of a system using high-

throughput data generated from targeted experiments 102. These experiments are generally 

performed at whole genome scale and the networks generated from the data address the 

biological processes within the whole system (genome of a cell/organism). 

 

Figure 6: Illustration of top-down and bottom-up approaches. The top-down approaches usually 

start with high-throughput experimental data to infer genome-scale network models. Bottom-up 

approaches start with pathways (or small networks) constructed using properties of different 
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molecules in a biological sample and models are developed to generate hypothesis that are 

used to fill in the knowledge gaps (pathways). 

In order to analyse enormous amounts of data generated using high-throughput techniques and 

large scale low-throughput experiments, statistical procedures are widely used 101. Statistical 

techniques such as regression analysis, hypothesis testing, clustering, biclustering and principal 

component analysis (PCA) are commonly used 103. Biclustering technique is a data mining 

technique that enables simultaneous clustering of the samples (columns) and genes (rows) of 

a biological data matrix 104. Principal component analysis is a statistical data transformation 

protocol that converts a set of observations of correlated variables into a set of values of new 

variables that are linearly uncorrelated. The new variables are called principle components and 

are obtained using orthogonal transformation of original observations 105.  

In addition to these, targeted statistical network generation algorithms are used, for example, 

ARACNE 106, WGCNA 107 and CLR 108. ARACNE and CLR use mutual information between 

genes while WGCNA uses weighted correlation as the measure to determine interaction. While 

these methods are efficient in single cell organisms, they are not efficient in eukaryotes 109. 

Systems biology also involves use of machine learning techniques based on statistics in 

analysing high-throughput data 110. Classification models based on Support Vector Machines 

(SVM) or random forests are known to be useful in systemic analysis 110,111. 

Similarly, kinetic models using ordinary differential equations (ODEs) and partial differential 

equations (PDEs) are extensively used in analysing systems that have rate reactions, usually 

in drug discovery 112. Multiple studies have applied control systems theory in reverse engineering 

biological systems 113,114. This application also leads to modification of molecular circuits in 

biological systems and in synthesis of artificial organisms by generating new synthetic genomes 

115,116. In addition to using dynamic models, static models are also used to analyse metabolic 

networks. Methods like Flux balance analysis (FBA), Flux variability analysis (FVA, an extension 
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of FBA) and elementary mode analysis use constraint based modelling to generate fluxes at 

steady states 117. 

Batch effects during analysis of large scale data 

Living organisms are a complex system and they exhibit properties such as emergence and 

adaptability. Understanding such systems within the current framework of technologies requires 

integration of data from different sources. Data collected from diverse sources, from different 

individuals of same species, inhabiting varied environments, sampled by different people could 

lead to something known as “batch effects”. The batch effects pose a strong statistical challenge 

that need to be reconciled before analysis of the data 118–120. Batch effects are more prominently 

found in transcriptomics data, particularly from microarray data. Microarray data also have 

platform-based batch effects and cross-platform analysis of data prove to be difficult. Several 

methods have been developed to overcome batch effects, although each have their own 

limitations 121,122. Most of these techniques focus on data generated from disease samples and 

are therefore often best suited to mitigate batch effects in disease samples. 

Thesis	Overview 

The aim of this thesis was to develop additional tools and methods to exploit existing 

transcriptomic data derived from exposure experiments conducted using the intestinal epithelial 

cell line Caco-2 and utilize the data to find novel applications of food. We used transcriptomic 

data from exposure of Caco-2 cells to food, food components or microorganisms primarily 

derived from Affymetrix© based microarrays. To analyse these transcriptomics networks, a 

protocol was developed to remove batch effects when metadata about an experimental protocol 

was unknown. 

In Chapter 2, microarray data collected from transcriptomics studies on Caco-2 cells were used 

in a correlation-based method to find genes of interest in a pathway for qPCR studies. We 
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identified genes that are expressed in oxidative stress response pathways (AhR and Nrf2 

pathways) in Caco-2 cells on exposure to different varieties of coffee. Chapter 3 deals with 

studying the impact of C. difficile toxins on colon-like Caco-2 cells, cultured for 7 days, at the 

molecular level and integrated data from RNAseq experiments and miRNA arrays. Additionally, 

the impact of Clostridium toxins on small intestine-like Caco-2 cells, cultured for 21 days, were 

explored in Chapter 4. Further, a model was developed using microarray data related to food 

exposure experiments on Caco-2, largely derived from Chapter 2, and PCA. This model was 

applied to find beneficial food substances that may mitigate the effects of C. difficile toxins. The 

Caco-2 microarray data used in this thesis comprised of arrays in which each batch had multiple 

exposure experiments performed within them with a common control and the metadata 

information related to the experiments were scarce or unreliable. Combining data obtained from 

different sources could lead to batch effects. In Chapter 5, a solution was developed to address 

the problems related to batch effects when combining large sets of microarray data. The method 

was further tested on the Caco-2 microarray data used in earlier chapters (chapter 1 and 3) and 

on sample data generated in a study on arthritis patients. 
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Abstract	

Intestinal epithelial cells, like Caco-2, are commonly used to study the interaction between food, 

other luminal factors and the host, often supported by microarray analysis to study the changes 

in gene expression as a result of the exposure. However, no compiled dataset for Caco-2 have 

ever been initiated and Caco-2-dedicated gene expression networks are barely available. Here, 

341 Caco-2-specific microarray samples were collected from public databases and from in-

house experiments pertaining to Caco-2 cells exposed to pathogens, probiotics and several 

food compounds. Using these datasets, a gene functional association network specific for Caco-

2 was generated containing 8937 nodes 129711 edges. Two in silico methods, a modified 

version of bi-clustering and the new Differential Expression Correlation Analysis, were 

developed to identify Caco-2-specific gene targets within a pathway of interest. These methods 

were subsequently applied to the AhR and Nrf2 signalling pathways and altered expression of 

the predicted target genes was validated by qPCR in Caco-2 cells exposed to coffee extracts, 

known to activate both AhR and Nrf2 pathways. The datasets and in silico method(s) to identify 

and predict responsive target genes can be used to more efficiently design experiments to study 

Caco-2/intestinal epithelial-relevant biological processes. 

 

 

 

 

 

 

 



 45 

Introduction	

Biological networks are representational interactions between genes, proteins, and other 

biomolecules. Different kinds of biological networks (e.g. protein-protein interaction or signalling 

networks) represent different features of a cell 1. Such networks can be usefully exploited to 

gain key insights into biological systems 2,3. Exploration of tissue and cell type specific networks 

has demonstrated the effects of tissue specific regulation on the remodelling of biological 

networks 4. Differential network analysis has also been used to compare topological 

characteristics of networks corresponding to normal or tumorous cells and to isolate 

characteristics of distinct cancer subtypes, which in turn has led to the prediction of cancer 

subtype-specific drug targets 5. One important biological system is the epithelial cells lining the 

small and large intestine. The role of diet and the response of host towards diet and its 

compounds is challenging to be studied in vivo due to the complexity of biological systems and 

inter-individual variability. Thus, a reductionist approach using the human Caco-2 intestinal 

epithelial cell line is a widely accepted laboratory model to understand the response of 

enterocytes exposed to nutrition and microbes 6–8. Although Caco-2 cells were derived from a 

colon carcinoma, when cultured as confluent monolayers for 2-3 weeks, they functionally 

resemble the enterocytes lining the small intestine 9. Caco-2 cells have been used in numerous 

experiments to study effects of food products and compounds 6,7,10–13, probiotics 8,14
, pathogens 

15–17 and other studies 18–20, using microarrays. Comparative proteomic analysis of Caco-2 cells 

and scrapings of the human intestinal epithelium support the usability of this in vitro model 21, 

although Caco-2 cells appear to over-express as well as under-express certain proteins which 

needs to be considered in the interpretation of in vitro data and translation of results to the in 

vivo situation 21.  

A compendium of Caco-2 gene expression profiles under a broad number of conditions can be 

instrumental in building dedicated network models describing gene interactions in human 

enterocytes and in providing new insights on their functioning. Although, gene profiles tuned for 
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selected tissues 22–24 are present, to the best of our knowledge, no broad compendium of Caco-

2 microarray experiments have been initiated, limited data on metabolic networks is available 

25,26 and no gene/protein association networks are available for Caco-2/ enterocytes. Another 

commonly faced problem is the identification of Genes Of Interest (GOI) in the pathways 

investigated for a specific cell type. Thus identification of candidate sets of GOI could help study 

the impact of treatments on specific pathways of interest in a given cell type.  

Intestinal epithelial cells, apart from major functions like digestion and absorption of nutrients, 

minerals and water 27,28, play an important role in the exclusion or detoxification of xenobiotics 

and regulating oxidative stresses. The AhR and Nrf2 pathways are involved in the metabolism 

of xenobiotics and protection against oxidative stress 29,30. AhR is an important regulator of 

Phase I and Phase II enzymes and other enzymes which metabolize compounds such as 

dioxins, polycyclic aromatic hydrocarbons, plant polyphenols and tryptophan photoproducts 31. 

Nrf2 has been designated the “master regulator” of the adaptive response to oxidative stress 29 

and regulates the expression of antioxidant proteins that protect against oxidative damage 

triggered by injury and inflammation.  

In this study, we aim to i) exploit the knowledge accumulated in the publicly available datasets 

on Caco-2 cells exposed to different treatments in order to generate a dedicated network model 

accounting for gene associations specific to enterocytes and ii) to develop workflows to reliably 

select genes for studying intestinal enterocyte-specific pathways. The proposed strategies were 

experimentally validated by focussing on GOI in the Nrf2 and AhR pathways using Caco-2 cells 

exposed to coffee to induce the gene responses within these pathways. The obtained networks 

are provided as supplementary files and R scripts for the identification of GOI are also made 

available as supplementary files with a working example. 
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Materials	and	Methods	

Data Processing  

Caco-2 microarray gene expression data were obtained from public repository, Array Express 

(www.ebi.ac.uk/arrayexpress) and from in-house experiments performed using Affymetrix© 1.1 

ST array platform. In-house data was obtained by exposure of Caco-2 cells grown on transwells 

with different preparations of food-related compounds in experiments conducted over several 

years. Publicly available data was restricted to experiments on Affymetrix platform. Data and 

associated metadata were manually curated using the following inclusion criteria: i) experiments 

that did not induce genetic mutations, ii) experiments performed on Caco-2 cell monolayers that 

were grown for at least seven days and iii) arrays probing for at least 17000 genes (annotated 

in Chip Definition Files), thereby leaving out old arrays. Based on these criteria 341 arrays were 

selected corresponding to 22 experimental batches encompassing 85 different treatments 

(Table 1). GSE accession numbers of publicly available datasets and other relevant descriptions 

are given in Supplementary file (Supplementary Table S1). 

Table 1. Summary of collected dataset 

Total Arrays 341 
Total Experiments 88 
From the lab of Jurriaan Mes 173 
From Array Express 168 
Type of Exposure 

Vegetables 9 
Fruits 20 
Fibres 22 
Probiotics 7 
Pathogens 11 
Others 6 
Food compounds 10 
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The consolidated data of 341 arrays were normalized using the SCAN algorithm before network 

construction and biclustering analysis, as this is a method that performs well for cross 

comparison 52. RMA normalization was used for differential expression (DE) analysis, as is 

considered as standard for this calculation 53. All the normalization procedures were performed 

using R Bioconductor packages SCAN.UPC 54 and affy 55. Microarray probes were matched to 

gene identifiers using the CDF array annotation (version 18) provided by the University of 

Michigan microarray© lab 56. After both normalization procedures, a combined set of 21996 

genes was obtained. All statistical programming were performed using statistical language R 

(version 3.2.3). 

Identification of genes expressed in Caco-2 cells 

Universal exPression Code was used to obtain a standardized score describing the 

active/inactive state of each gene in each array of our data compendium 54. Genes with a UPC 

value greater than 0.5 in at least one array were considered to be expressed in Caco-2 cells 

and therefore used in the analysis. This step was applied to the matrix of 21996 genes and 341 

arrays reducing it to a matrix of 12849 genes and 341 arrays. In this matrix there were some 

genes with some values missing, likely due to platform differences. Therefore, genes with 

missing values in more than half the total number of arrays (ie. 170 arrays) were discarded. 

Remaining missing values were imputed using KNN algorithm from the ‘impute’ R package in 

57,58 with default parameters. The final data matrix contained values for 10831 genes over 341 

arrays. 

Caco-2 cell specific network generation 

The database STRING (version 10) 59 was used for the retrieval of high confidence human 

specific protein association and a combined score cut-off value of 700 was used as 

recommended by STRING. Nodes representing genes identified as not being expressed by 
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Caco-2 cells were removed from the network. The network (in edgelist format) is available as 

supplementary file (Caco2_Network) and at http://semantics.systemsbiology.nl/. Edgelist 

contains pairs of interacting genes (first two columns) and in this file genes are denoted by their 

Entrez Ids. The third column refers to the weight of each edge, which is however empty in the 

given file, as the edges have no weights. The networkx (python package) was used for network 

topological analysis 60. 

Biclustering Algorithm 

The Biclustering algorithm of cMonkey 45 adapted by van Dam et al. 47 was used to find biclusters 

(i.e. groups of co-expressed genes in a subset of conditions 61,62). In our implementation a pre-

defined set of genes, called seed genes, together with additional genes from a second list called 

gene pool were used to find biclusters. Seed genes were selected using the following two 

approaches: i)  from literature on Caco-2 expression in response to different types of coffee 

(SQSTM1, HMOX1, NRF2 and ABCC1 for the Nrf2 pathway and CYP1A1, TIPARP and AHR 

for AhR pathway). ii) from Weighted Gene Correlation Network Analysis 63 (WGCNA). The 

WGCNA method partitions genes expressed in Caco-2 cell lines into groups enriched for 

topological overlap based on their expression profiles. These groups are then assessed for 

enrichment in genes belonging to the selected pathways using Ingenuity Pathways Analysis 

(IPA) (http://www.ingenuity.com, release March 2014). Genes assigned to the selected 

pathways in the enriched modules (FDR < 0.05) were further included in the seed gene list 

(DNAJB1 and ENC1 for Nrf2 pathway and ARNT and PRKCA for AhR pathway). To build the 

gene pool, genes expected to be in the pathway of interest were retrieved from pathway 

database IPA (Ahr and Nrf2 consensus pathway).The gene pool list contained 87 genes for Nrf2 

pathway and 48 genes for AhR pathway.  
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Figure 1. Flow diagram describing Biclustering algorithm. Seed genes are a predefined group 

of genes. The gene pool is the set of genes to be tested for inclusion in the bicluster. <C> 

indicates mean pairwise correlation, <C’> indicates new mean pairwise calculation 

Biclustering was performed using R implementing the iterative procedure depicted in Figure 1. 

In the first step, the data compendium is explored to select arrays for which the seed genes 

show a high degree of mean pairwise correlation between each other. This selection is 

performed by iteratively removing one array from the list and comparing the average pairwise 

correlation between seed genes computed considering the full array list and the array list without 

the selected one. If removal of the considered array leads to an increase of this correlation, the 

array is permanently removed from the array list. This process is iterated until either the average 

correlation between seed genes is greater than or equal to a threshold value, CT = 0.75 or half 

of the initial arrays have been removed.  
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Once the reduced array set has been established, an additional iterative procedure to search 

for candidate genes is performed. In the initialisation step, a new list of genes is built containing 

the seed genes. Then a new gene is selected from the gene pool and the mean correlation 

between this new gene along with the genes in the current list is calculated. If such correlation 

value is greater than previous correlation value, the new gene is added. This procedure is 

iterated till no new genes remain. The full procedure of array reduction and gene addition is 

continued until a bicluster with the desired properties is obtained. 

Differential Expression Correlation Analysis (DECA) 

We implemented a new algorithm, Differential Expression Correlation Analysis (DECA) to find 

GOI using differential expression (DE) values from microarray datasets. The DECA algorithm 

works by calculating correlation values between seed genes and other DE genes identified 

using the UPC algorithm. DE values were calculated for 85 experimental setups (3 of which 

could not be used as they lacked sufficient replicates or controls) giving a total of 21996 genes. 

For each of these genes the treatments were compared to their respective controls using 

Bioconductor package limma 64. Following this, UPC filtering was applied and the DE matrix (a 

matrix containing the DE values with genes along the rows and experimental comparisons along 

the columns) was reduced to 12849 genes. Genes that were missing expression values for 

more than 56 conditions (roughly two third conditions) were excluded and then remaining 

missing data were imputed using KNN impute as mentioned above. This resulted in a matrix of 

DE values for 12462 genes and 85 conditions. All corresponding missing P-values were 

substituted with 1. 

The next step in DECA is the selection of seed genes from literature. Seed genes were chosen 

in such a way that they showed strong and significant (absolute fold change ≥ 2 and p-value < 

0.01) DE in stimulations associated to the chosen pathway (SQSTM1, NQO1 and HMOX1 for 

the Nrf2 pathway and CYP1A1 and TIPARP for AhR pathway). 
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Figure 2. Flow diagram describing DECA (Differential Expression Correlation Analysis). Seed 

gene list refers to the starting gene selection. DE matrix is the input data matrix. The algorithm 

outputs a ranked list of genes which are highly correlated with the input genes. 

The workflow of the procedure is described in Figure 2 and implemented in R. Seed genes were 

then randomly considered one at a time. The DE matrix is reduced by the algorithm to contain 

only the comparisons in which the seed gene under consideration is found to have significant 

DE. Correlation values are calculated between the seed gene and each gene in the gene pool 

using the reduced DE matrix. The fraction of reduced comparisons in which each gene has 

significant DE (p-value < 0.01) is recorded and is termed significance fraction. Finally, 

correlations and fractions for each seed gene, are combined in a matrix format and a selection 

criterion for absolute correlation values and significance fraction was set at 0.6. A list of genes 

that have either absolute correlation value or significance fraction above the threshold for any 

of the seed gene were selected. Subsequently, this new list of genes were ranked depending 
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on their individual absolute correlation values and significance fraction for each seed gene, 

thereby providing 2n ranks (where n is the number of seed genes). A final rank was calculated 

by estimating the geometric mean of the 2n ranks for each gene.  

All R scripts used in this paper are also available at 

http://semantics.systemsbiology.nl/index.php/download-page/. 

DECA comprehensive in silico assessment 

10 pathways were chosen at random for assessment of DECA algorithm. These pathways are 

ABC transporters pathway, Adherens junction pathway, Fat Absorption pathway, Gap junction 

pathway, Glycerolipid metabolism pathway Glycerophospholipid metabolism pathway, Nfk-β 

signalling pathway, p53 signalling pathway, PPAR signalling pathway and TLR signalling 

pathway. Some of these pathways are known to be associated with intestinal epithelia 65–67. The 

genes associated to each of the 10 pathways were selected form KEGG pathway database 38. 

For each of these pathways, 3 seed genes were chosen at random. The chosen seed genes 

were ensured for significant differential expression in at least 15 experiments. The seed genes 

were then used in DECA and the resulting gene list was ranked as mentioned above. The 

number of genes present in the top 10% of the ranked list belonging to the pathway were 

calculated. In addition to this, a Welch two sample t-test was performed to assess if the average 

ranks of the pathway related genes had a better rank compared against the average ranks of 

the rest of the genes in the ranked list. The protocol was iterated 10 times for each pathway. 

The results are provided as supplementary file (Supplementary Table S2).  

Culturing & experimental exposure of Caco-2 cells 

The Caco-2 cells were cultured for 7 days until they reach confluence in DMEM (Dulbecco's 

Modified Eagle Medium) (Control media) prior to exposure to coffee extracts (Turkish coffee 

[TC], Brasil Espirito [BE], Java Preanger [JP], Nescafe© [NC]) or TCDD. The RNA was 
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harvested and primers were developed for qPCR. The detailed description of the protocol is 

provided in supplementary file (Supplementary Text F1). 

Results	

Cell/Tissue-specific Gene Expression Profiles aid the identification of 

reporter genes for specific pathway activity 

In this study, we develop strategies to generate dedicated gene network models for Caco-2 and 

identify specific gene responses to nutrition related exposures. This was illustrated using Ahr 

and Nrf2 pathways. We have independently validated our results through a new experimental 

setup on which Caco-2 cells were exposed to coffee extracts, which have previously been 

shown to induce the Ahr and Nrf2 pathways 32. Coffee extracts have a great chemical diversity 

and the components vary according to the cultivar, treatment, processing, storage, etc. 33–36.  We 

have tested induction of these pathways using four coffee types. 

To identify reporter genes for the AhR and Nrf2 pathways, scientific literature was searched and 

we investigated whether these genes were also responsive to oxidative stress in our Caco-2 

model after exposure to TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) or coffee. 16 genes that 

are frequently used as indicators for AhR and Nrf2 signalling, were selected from the literature 

(Table 2) for validation. Caco-2 cells were exposed to coffee extracts (Turkish coffee, Brasil 

Espirito, Java Preanger, Nescafe©) and TCDD and relative expression of the selected genes 

was measured by qPCR. Out of the 16 genes tested, 3 genes were not detectable (CT values 

≥ 35) and 5 genes showed no DE (a fold change threshold of 1.5 folds up or down in at least 

two of the coffee samples), indicating that 50% of the genes selected from literature are not 

useful for studying the activities of the AhR and Nrf2 pathways in enterocytes.  
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Table 2. Expression changes upon coffee/xenobiotics exposure of initial set of genes selected 

based on existing literature. ‘*’ indicates genes found to be significantly differentially expressed 

(Fold change > ±1.5) in Turkish Coffee only. Genes were considered to be responsive, if they 

were expressed in at least two coffee samples. 

Gene 
Name Pathway Reference 

Significant change in expression 
(Fold Change larger/smaller than ± 
1.5) 

SQSTM1 Nrf2 [Jain et al, 2010] 68 Yes 

HMOX1 Nrf2 [Bøhn et al, 2014] 33 Yes 

Nrf2 Nrf2 [Bøhn et al, 2014] 33 No 

ABCC1 Nrf2 [Adachi et al, 2007] 69 No 

ABCC2 Nrf2 [Adachi et al, 2007] 69 No 

NQO1 Nrf2 [Bøhn et al, 2014] 33 Yes 

ABCG2 Nrf2 [Isshiki et al, 2011] 70 No * 

GSTP1 Nrf2 [Steinkellner et al, 2005] 71 Yes 

ARNT AhR [Ishikawa et al, 2014; Yeager 
et al, 2009] 32,72 No 

AhR AhR [Kalthoff et al, 2010] 73 Yes 

CYP1A1 AhR [Ishikawa et al, 2014] 32 Yes 

TiPARP AhR [Diani-Moore et al, 2010] 74 Yes 

UGT1A6 AhR [Yeager et al, 2009] 72 Yes 

CYP1A2 AhR [Ishikawa et al, 2014] 32 Not detected 

CYP1B1 AhR [Ishikawa et al, 2014] 32 Not detected 

AHRR AhR [Mimura et al, 2003; Abel et 
al, 2010] 30,31 Not detected 
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Compendium of Caco-2 experimental data supports cell-specific genes 

selection 

A data compendium was generated using Affymetrix expression profiles of 341 arrays from 85 

Caco-2 exposure experiments (Table 1). UPC filtering procedure was used to identify genes 

that are actively expressed in Caco-2 and 12849 genes were identified to be expressed. These 

genes were then used to generate a cell-specific network dedicated to Caco-2 intestinal 

epithelial cells. Supplementary file (Supplementary Table S3) presents the comparison between 

network topological properties of the full interaction network retrieved from STRING (converted 

to Entrez Ids) and the Caco-2 specific network. The same cut-off (≥ 700) related to the reliability 

of the interactions (STRING combined score) was selected for both networks. The Caco-2 

network is composed of 8937 nodes and 129711 edges and can be explored using common 

network visualization tools such as Cytoscape 37. Notice the differences in the number of nodes 

and edges between the two networks. Out of the 16 genes that we previously selected based 

on literature, ABCC1, ABCG2 and TIPARP are removed from the network of functional 

associations. This indicates that in the overall network they are connected only to nodes that 

show no (active) expression in our compendium. However, even after this reduction, still large 

number of genes remain (77 nodes for Nrf2 pathway and 42 nodes for AhR pathway) to probe 

for each pathway and therefore we wanted to optimize our approach to identify GOI.  

Biclustering analysis improves gene selection 

The biclustering method works based on identification of genes that are co-expressed with seed 

genes (i.e. genes well known to be responsive in Caco-2 cells to a specific perturbation). In 

order to identify Caco-2-responsive genes within the Nrf2 pathway, we used a full list of genes 

that are involved in this pathway (derived from generic IPA consensus pathway). SQSTM1, 

HMOX1, NRF2, ABCC1, DNAJB1 and ENC1 were selected as seed genes. The seed genes 

were used to identify co-expressed genes within the compendium of microarrays. The initial 

average correlation threshold for array selection was set at 0.75 (default value). In this way, only 
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arrays that showed a high degree of correlation with the seed genes were included for GOI 

identification. 

Table 3. Expression changes upon coffee exposure of genes selected using the biclustering 

algorithm. ‘-‘ indicates genes that were not the target of experimental validation. Genes were 

considered to be responsive, if they were differentially expressed in at least two coffee samples. 

Gene Name Pathway Seed Genes Found from 
Significant change in 
expression (Fold Change 
more than ± 1.5) 

DNAJB1 Nrf2 Yes WGCNA - 

SQSTM1 Nrf2 Yes Literature Yes 

HMOX1 Nrf2 Yes Literature Yes 

ENC1 Nrf2 Yes WGCNA No 

Nrf2 Nrf2 Yes Literature No 

ABCC1 Nrf2 Yes Literature No 

CDC34 Nrf2 No Biclustering - 

DNAJC4 Nrf2 No Biclustering - 

GTR Nrf2 No Biclustering - 

ATF4 Nrf2 No Biclustering Yes 

GSTA2 Both No Biclustering Yes 

GSTM4 Both No Biclustering Yes 

MAPK8 AhR No Biclustering - 

MED1 AhR No Biclustering - 

NCOR2 AhR No Biclustering - 

NFIA AhR No Biclustering No 

ARNT AhR Yes WGCNA No 

AhR AhR Yes Literature Yes 

CYP1A1 AhR Yes Literature Yes 

PRKCA AhR Yes WGCNA No 

TiPARP AhR Yes Literature Yes 
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The biclustering analysis reduced the 341 arrays (the initial number of arrays) to 229 arrays and 

the following genes were obtained as GOI: CDC34, DNAJC4, GTR, ATF4, GSTA2 and GSTM4. 

Together with the seed genes this resulted in a total of 12 potential responsive genes for the 

Nrf2 pathway (Table 3). These genes had an average correlation of 0.79 in the arrays included 

in this analysis.  

Similarly, CYP1A1, TIPARP, AHR, ARNT and PRKCA were chosen as seed genes for AhR 

pathway. Owing to the small number of seed genes, mean correlation threshold for array 

selection was set at a more stringent value of 0.8. The biclustering analysis reduced the initial 

341 arrays to 274 arrays and predicted GSTA2, GSTM4, MAPK8, MED1, NCOR2 and NFIA as 

GOI for the AhR pathway. This procedure reduced the number of potential responsive genes to 

11 for AhR pathway (Table 3), including seed genes.  
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Figure 3. qPCR results for AhR Pathway genes predicted using biclustering algorithm. The plot 

shows the relative gene expression level (control vs treatment) of several genes associated with 

AhR pathway. Results have been normalized to control (DMEM) values. Values and error bars 

represent average and standard deviation of three replicates. Dashed lines represent the fold 

change cut-off limits (1.5 for up regulation and 0.6 for down regulation). CYP1A1 is not shown 

here as it exceeds the plot limits. TC indicates Turkish coffee, BE indicates Brasil Espirito, JP 

indicates Java Preanger and NC indicates Nescafe© 

We selected 14 genes for experimental verification using Caco-2 cells exposed to coffee 

extracts (Figures 3 and 4). Of these, 6 genes were specific to AhR pathway, 6 specific to Nrf2 

pathway and 2 common to both pathways. Four of these genes have been predicted by the 

algorithm (“Biclustering” see Table 3). All 4 genes were found to be expressed in Caco-2 cells 

of which 3 showed substantial changes in expression (Fold Change > 1.5) between control and 

treatment (Figures 3 and 4).  
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Figure 4. qPCR results for Nrf2 Pathway genes predicted using biclustering algorithm. The plot 

shows the relative gene expression level (control vs treatment) of several genes associated with 

Nrf2 pathway. The line represents the fold change cut-off limits (1.5 for up regulation and 0.6 

for down regulation). TC indicates Turkish coffee, BE indicates Brasil Espirito, JP indicates Java 

Preanger and NC indicates Nescafe© 

Based on these results, we concluded that this strategy constitutes a useful addition to the 

literature data for gene selection. Selected genes extracted from the literature can be combined 

with the ones selected using the proposed approach. In those cases where literature provides 

an ample list of genes for experimental validation, our approach serves to further refine the 

selection of genes which are differentially expressed by Caco-2 cells in a specific pathway.  

Differential Expression Correlation Analysis further enhances gene 

selection 

An assessment of DECA algorithm was performed using 10 pathways from the KEGG database 

38 that are of interest to intestinal epithelia. For each pathway 10 runs were performed using 

three randomly selected genes from the pathways as seed genes. Genes known to be in the 

target pathways were found to be significantly better ranked than genes not in the pathway, as 

indicated by the enrichment p-values. On average ~9 % of genes related to each pathway could 

be predicted as target genes on analysing the top 10% ranked genes using DECA algorithm. 

The performance of the algorithm varied according to the pathway from 6% to 15%. This result 

indicates that without any further literature considerations DECA is able to retrieve genes 

associated to the pathway. In this assessment seed genes were chosen at random, however 

careful selection of seed genes is required to obtain more reliable prediction of target genes. As 

in the previous case, this approach would work best when combined with pre-existing 

knowledge. The results of the in silico assessment are provided in supplementary file 

(Supplementary Table S2). The DECA method was applied to find a global set of genes 

(amongst all genes expressed in Caco-2) associated with Nrf2 and AhR pathways which are 
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responsive to altered pathway activity. SQSTM1, NQO1 and HMOX1, involved in the Nrf2 

pathway were used as seed genes for the DECA algorithm. 2834 genes were found to have 

correlation values or significance fractions above the 0.6 threshold against each seed gene. The 

genes were ranked as mentioned in Materials and Methods section and top ranked genes were 

considered for further analysis. From this list, GCLM 39, TXNRD1 40, SOX9 and KCTD5 41 were 

selected for further experimental validation via qPCR as there is some evidence of involvement 

in this pathway. In addition, BAG3 42 gene which did not belong to the top ranking genes was 

randomly chosen as a negative control (Table 4). 

Table 4. Expression changes upon coffee exposure of genes identified using the DECA 

algorithm in AhR and Nrf2 pathways. ‘*’ indicates genes found to be significantly differentially 

expressed (Fold change > ±1.5) in Turkish Coffee only. ‘^’ indicates genes found to be 

significantly differentially expressed (Fold change > ±1.5) in Nescafe only. N/A indicates genes 

that were not the target of experimental validation. Genes were considered to be responsive, if 

they were expressed in at least two coffee samples. 

Gene Name Pathway Type Significant change in expression 
(Fold Change more than ± 1.5) 

CYP1A1 AhR Seed Genes Yes 
TIPARP AhR Seed Genes N/A 
ATP9A AhR Predicted No 
UGCG AhR Predicted Yes 
CHMP1B AhR Predicted Yes 
EREG AhR Predicted Yes 
RND3 AhR Predicted Yes 
SQSTM1 Nrf2 Seed Genes Yes 
HMOX1 Nrf2 Seed Genes N/A 
NQO1 Nrf2 Seed Genes N/A 
BAG3 Nrf2 Predicted No * 
SOX9 Nrf2 Predicted Yes *^ 
TXNRD Nrf2 Predicted Yes 
GCLM Nrf2 Predicted Yes 
KCTD5 Nrf2 Predicted Yes *^ 
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A similar approach was used to predict the GOI in the AhR pathway. Only two genes, CYP1A1 

and TIPARP were chosen as the seed genes for the DECA algorithm which resulted in a list of 

398 ranked genes. From this list, UGCG 43, EREG 44, RND3, CHMP1B were chosen for 

experimental verification as evidence from scientific literature associated few of them with the 

AhR pathway. ATP9A was randomly selected as a negative control (Table 4).  

 

Figure 5. qPCR results of both AhR and Nrf2 pathways provided together for genes predicted 

using DECA algorithm. The line represents the fold change cut-off limits (1.5 for up regulation 

and 0.6 for down regulation). CYP1A1 is not shown here as it exceeds the plot limits. TC 

indicates Turkish coffee, BE indicates Brasil Espirito, JP indicates Java Preanger and NC 

indicates Nescafe© 

The above mentioned 10 genes along with a seed gene for each pathway were experimentally 

verified using qPCR analysis in Caco-2 cells exposed to coffee samples (Figure 5). The results 
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indicate that 75% of the selected GOI showed a substantial relative difference in expression 

(absolute fold change > 1.5) in all tested samples, 2 genes (SOX9 and KCTD5) were 

differentially expressed upon exposure to two of the coffee extracts (Turkish and Nescafe, 

absolute fold change > 1.5) while the control genes showed no significant change in expression 

in most coffee extracts, as expected.  

These results indicate that the DECA is a substantially improved strategy to identify GOI 

compared to other methods discussed in this paper and moreover do not require prior 

knowledge of the genes within the pathway except for the seed genes. 

Discussion	

Initially we focussed on developing an intestinal enterocyte-specific association network using 

expression data from Caco-2 cells exposed to different nutrients and stimuli. The network was 

constructed by selecting 12849 genes (actively) expressed in Caco-2 based on UPC filtering. 

This is consistent with previous observations of 11559 26 and 14113 genes 24 based on RNAseq 

data (Caco-2 cells grown under controls). Differences could be attributed to different selection 

procedures or experimental approaches. Additionally, the gene list and network provided in this 

paper are based on a compendium of transcriptomics data from exposure of Caco-2 cells to 

different nutrients and stimuli.  

When applying our Caco-2-specific selection to STRING network the number of edges and 

nodes was reduced considerably (~50%). The number of connected components is reduced by 

over 60% and the local network structure is preserved with similar values of clustering 

coefficient, which suggests a more compact network, as expected for gene that are functionally 

closely related. The degree assortativity decreases indicating less redundancy on gene 

associations when the network is restricted to Caco-2. Incidentally STRING could support 

dedicated data analysis by enabling seamless tissue specific gene selection. 

C
ha

pt
er

 2



 64 

Biclustering simultaneously clusters both genes and samples to arrive at the identification of 

genes with similar expression profiles in a subset of the samples. Existing biclustering 

algorithms do not allow targeting a particular pathway 45,46, instead they generally try to find 

biclusters that cover either a broad range of genes or conditions. Similarly WGCNA based 

clustering does not focus on a particular pathway but looks for modules of co-expressed genes 

that may belong to more than one pathway. Here we present a bi-clustering approach, that 

represents a modification of that in van dam et al, that allows the user to select or pre-select the 

seed genes and thus a pathway 47. Nevertheless, biclustering performed poorly as the identified 

GOI did not show significant DE, indicating little responsiveness of Caco-2 cells to coffee 

exposures. 

Therefore, DECA algorithm was used, resulting in a list of responsive gene candidates and a 

set of criteria to further rank them. From the ranked list, genes were selected for experimental 

verification in Caco-2 cells exposed to coffee and we found association with AhR and Nrf2 

pathways. The verified genes were not in these pathways as defined in IPA. It might be that 

some of these genes have an indirect association to these pathways. The DECA ranking can 

be combined with existing knowledge, for instance, adding weight to genes on the basis of 

literature evidence. Of the 5 genes predicted for Nrf2 pathway, GCLM and TXNRD1 are 

previously known downstream gene targets of NRF2 39,40. KCTD5 is likely to have an indirect 

interaction mediated by CUL3 41 and BAG3 (negative control gene) has been associated with 

Nrf2 pathway 42 while we find that only Turkish coffee induces this gene. Similarly for the genes 

predicted for AhR pathway, UGCG is indirectly linked to AhR pathway via ARNT 43 and EREG 

is reported as a target gene for AHR 44.   

Seed genes play a critical role in predicting responsive genes in a certain pathway and should 

be carefully considered and accurately selected. As an example, Nrf2 gene was initially included 

among the seed genes for the biclustering algorithm. However, experimental verification 

showed transcript levels of this gene not to be responsive to coffee exposure. It was later not 

used as seed gene for DECA algorithm and was replaced with NQO1. One optimal way to select 
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seed genes is to select two or three highly differentially expressed genes (Fold Change > 3) 

associated to the pathway of interest from literature (eg. CYP1A1 and TIPARP for AhR 

pathway), verify their altered expression in response to activation or repression of the pathway 

and use these as seed genes.  

The biclustering algorithm requires a further selection of genes to be considered, the gene pool 

set. This selection was performed by aggregating non cell type specific pathway level 

information. On the other hand, DECA has no such constraint and the whole set of expressed 

genes are considered. Therefore DECA is our method of choice to identify GOI in pathways for 

which little information is available. One could also argue that, when combining such a large set 

of array data collected over different batches, batch correction techniques should be applied. 

However, here each experiment has its own control in the same batch. As a result batch effects 

and experimental effects might be confounded and usually applied correction methods such as 

ComBat and SVA are not effective 48,49. Instead, we have used a higher level integration 

approach, in which data from each study is compared with the corresponding control. This way 

we bypass the need for additional batch corrections as we study only correlations between 

changes in gene expression. 

In addition to predicting GOI, the compendium presented in this paper can be used for other 

purposes. For instance, a systematic categorization of the treatments based on expression 

profile, similar to the approach taken in Connectivity map 50 and thus could select food 

components that have effects on certain genes and pathways. Such datasets can also be used 

to predict key regulators and/or gene hubs 2. Additionally, the database can be expanded further 

by adding data from future experiments, even from technologies like RNAseq. The provided 

Caco-2 specific network also serves as a platform to understand future experiments. Gene 

expression data from a new experiment could be integrated with this network by using 

algorithms for network mining and active module identification 3. The Caco-2 cell type specific 

network can also be used to develop networks associated to different conditions such as Caco-

2 exposure to pathogens or pathogenic toxins, then these networks can be used to identify 
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potential drug targets by applying statistical methods and identifying hub genes using similar 

strategies as the one successfully used in cancer research 51. This paper can therefore be seen 

as a first important step to improve current analysis tools for Caco-2 and thereby elicit a better 

understanding of the interaction between our intestinal epithelium and luminal (nutritional) 

compounds.   

Conclusion	

Caco-2 cell lines are increasingly used as model systems to study the interaction of food and 

other luminal factors with the intestinal system of the host, which is difficult to study in vivo. As 

the availability of experimental datasets will grow further we believe that this work is the first 

step in generation of a Caco-2 specific database and tissue specific research tools and 

strategies to extract more knowledge from these data. One of the research tools for which we 

make an important step is the dedicated protein-protein association network using gene 

expression data for Caco-2. The network provided in this paper could be the basis to be 

implemented in other software tools like IPA and STRING and can be further updated when 

more data become available in the future. The modified biclustering and DECA methods should 

additionally provide the necessary tools to extract genes of a desired pathways and can be 

applied, by the codes provided, to a similar dataset of any cell type of interest. 

In the future, a comprehensive Caco-2 transcriptome database should include microarray data 

from other platforms such as agilent, illumina, etc but more importantly should include RNAseq 

data which will provide additional information on splice isoforms. We believe that such a 

cohesive database would provide finer results regarding the genes of interest in Caco-2 and 

can support the analysis and understanding of future Caco-2 cell based analysis. The dataset 

can additionally be used for building classifiers using genetic profiling and in finding therapeutic 

food solutions. 
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Supplementary	tables	and	figures	

Supplementary Table S1: Table contains the details of the experimental data included in the 

Publication along with their Accession number and ArrayExpress URL where available. Assays 

used implies the number of samples from each accession that are used in making the 

publication. 

 

Experiment 
name Title Platform Accession Assays 

used 

Total 
Number 

of 
Assays 

Release 
Date 

broccoli extracts 
that had been 
cooked for different 
lengths of time 

Transcription profiling of 
human colon Caco2 cells 
treated with extracts from 
broccoli that had been 
cooked for different lengths 
of time 

hg 133 plus 
2.0 

E-MEXP-1372 12 12 30-09-2008 

Caco-2 cells co-
cultivated with B. 
animalis subsp. 
lactis BB-12 

Expression data from Caco-
2 cells co-cultivated with B. 
animalis subsp. lactis BB-12 

hg 133 plus 
2.0 

E-GEOD-
21930 

3 3 30-07-2010 

Caco-2 with THP1 
coculture 

Caco-2 cocultured with THP-
1, time course 

hg 133 plus 
2.0 

E-GEOD-
17625 

6 6 06-04-2010 

conjugated linoleic 
acid (CLA) 

Transcription profiling of 
human Caco-2 cells treated 
with conjugated linoleic acid 
(CLA) 

hg 133 plus 
2.0 

E-GEOD-
6518 

9 9 14-06-2008 

E. coli strains Cross-talk between E. coli 
strains and a human 
colorectal adenocarcinoma-
derived cell line 

hg 133 plus 
2.0 

E-GEOD-
50040 

18 18 23-08-2013 

Establishment of 
objective criteria 
for selecting 
relevant intestinal 
cell-based models 

Establishment of objective 
criteria for selecting relevant 
intestinal cell-based models 

hg 133 plus 
2.0 

E-GEOD-
30292 

15 43 23-06-2012 

hydroxytyrosol 
(HTy) and 
hydroxytyrosyl 
ethyl ether (HTy-
Et) 

Transcription profiling of 
human colon Caco-2 cells 
treated with hydroxytyrosol 
(HTy) and hydroxytyrosyl 
ethyl ether (HTy-Et) 

hg 133 plus 
2.0 

E-GEOD-
38833 

9 9 19-06-2012 

Polydextrose 
fermentation 
metabolite effect 

Polydextrose fermentation 
metabolite effect on Caco-2 
colon cancer cells 

hg 133 plus 
2.0 

E-GEOD-
28792 

15 15 22-04-2011 
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Riboflavin 
depletion 

Riboflavin depletion impairs 
cell proliferation in intestinal 
cells: Identification of 
mechanisms and 
consequences 

hg 133 plus 
2.0 

E-GEOD-
15132 

18 18 06-03-2009 

Bifidobacterium 
bifidum PRL2010 
on gene 
expression in 
intestinal epithelial 
cells 

Effects of Bifidobacterium 
bifidum PRL2010 on gene 
expression in intestinal 
epithelial cells 

Nugo E-GEOD-
21976 

8 8 01-10-2010 

Ascorbate-
stabilized 
quercetin 

Transcription profiling of 
human Caco-2 cell 
differentiation by ascorbate-
stabilized quercetin 

Hg-133a-
2.0 

E-GEOD-
7259 

8 8 15-06-2008 

Caco-2 co-culture 
with Lactobacillus 
casei and 
Bifidobacterium 
breve 

Caco-2 cell gene expression 
following co-culture with 
Lactobacillus casei and 
Bifidobacterium breve 

Hg-133a-
2.0 

E-GEOD-
37369 

9 9 09-04-2013 

sulforaphane (SF) Transcription profiling of 
human colon Caco-2 cells 
treated with sulforaphane 
(SF) 

hg-u133a E-MEXP-170 8 8 01-07-2005 

wild type Shigella 
flexneri and a 
OspF mutant 

Transcription profiling of 
human Caco-2 intestinal 
epithelial cell line infected 
with wild type Shigella 
flexneri and a OspF mutantt 
reveals an injected bacterial 
effector targets chromatin 
access for NF-kB as a 
strategy to shape 
transcription of immune 
genes 

hg-u133a E-GEOD-
6082 

8 8 14-06-2008 

Expression data 
from Caco-2 cells 
expressing TLR4 
and associated 
mutants 

Expression data from Caco-
2 cells expressing TLR4 and 
associated mutants 

hugene-
1.0ST 

E-GEOD-
26226 

12 12 10-10-2011 

Listeria 
monocytogenes 

Transcription profiling by 
array of Caco-2 cells 
infected with Listeria 
monocytogenes, treated and 
untreated with AGK2. 

hugene-
1.0ST 

E-MEXP-3912 10 10 01-06-2013 

Berry experiment In preparation For 
Submission 

Hugene-
1.1 ST 

From the lab 
of J. Mes 

66 In 
preparation 

In 
preparation 

Dietary fibres In preparation For 
Submission 

Hugene-
1.1 ST 

From the lab 
of J. Mes 

72 In 
preparation 

In 
preparation 

Probiotics In preparation For 
Submission 

Hugene-
1.1 ST 

From the lab 
of J. Mes 

23 In 
preparation 

In 
preparation 

onion experiment In preparation For 
Submission 

Hugene-
1.1 ST 

From the lab 
of J. Mes 

24 In 
preparation 

In 
preparation 

 

C
ha

pt
er

 2



 78 

Supplementary Table S2: Table below shows the values computed for comprehensive 

assessment of DECA algorithm using 10 pathways mentioned in the materials and methods 

Pathway Seed Gene 1 Seed 
Gene 2 

Seed 
Gene 3 

Total 
genes 

Pwy 
Genes top 
10 percent 

P.val 
unadj Ratio 

Average 
ratio per 
pathway 

TLR_signalling 5608_at 3665_at 148022_at 106 8 0.03873 0.08 0.07 

TLR_signalling 2353_at 3665_at 3654_at 106 6 0.03703 0.06 
 

TLR_signalling 5970_at 3725_at 2353_at 106 6 0.036 0.06 
 

TLR_signalling 3576_at 5970_at 3665_at 106 10 0.01676 0.09 
 

TLR_signalling 3725_at 4792_at 3576_at 106 4 0.02181 0.04 
 

TLR_signalling 2353_at 3665_at 5970_at 106 8 0.04128 0.08 
 

TLR_signalling 148022_at 4792_at 3654_at 106 6 0.12846 0.06 
 

TLR_signalling 3576_at 3725_at 148022_at 106 8 0.04208 0.08 
 

TLR_signalling 3576_at 5608_at 3665_at 106 7 0.00961 0.07 
 

TLR_signalling 5970_at 3576_at 5608_at 106 11 0.0138 0.1 
 

ABC_transporters 23461_at 368_at 4363_at 45 5 0.0292 0.11 0.09 

ABC_transporters 1080_at 9429_at 19_at 45 4 0.02106 0.09 
 

ABC_transporters 4363_at 9429_at 10057_at 45 4 0.00584 0.09 
 

ABC_transporters 4363_at 10057_at 23461_at 45 4 0.12114 0.09 
 

ABC_transporters 23461_at 1080_at 4363_at 45 4 0.35114 0.09 
 

ABC_transporters 1080_at 19_at 4363_at 45 3 0.28679 0.07 
 

ABC_transporters 19_at 10057_at 1080_at 45 3 0.24994 0.07 
 

ABC_transporters 19_at 4363_at 368_at 45 3 0.02165 0.07 
 

ABC_transporters 1080_at 23461_at 9429_at 45 5 0.03535 0.11 
 

ABC_transporters 23461_at 368_at 19_at 45 4 0.0947 0.09 
 

Adherens_juction 8936_at 2260_at 5819_at 74 3 0.40711 0.04 0.08 

Adherens_juction 5797_at 6934_at 71_at 74 11 0.00085 0.15 
 

Adherens_juction 8936_at 5797_at 4088_at 74 6 0.05678 0.08 
 

Adherens_juction 5819_at 5797_at 6934_at 74 5 0.03866 0.07 
 

Adherens_juction 71_at 8936_at 6934_at 74 9 0.00021 0.12 
 

Adherens_juction 4088_at 5819_at 2260_at 74 5 0.20803 0.07 
 

Adherens_juction 8936_at 5797_at 2260_at 74 4 0.30792 0.05 
 

Adherens_juction 71_at 8936_at 4088_at 74 7 0.07895 0.09 
 

Adherens_juction 5819_at 5797_at 2260_at 74 3 0.40129 0.04 
 

Adherens_juction 71_at 8936_at 2260_at 74 5 0.16672 0.07 
 

Fat_absorption 80168_at 10555_at 19_at 41 4 0.0109 0.1 0.1 

Fat_absorption 10555_at 8611_at 80168_at 41 4 0.04471 0.1 
 

Fat_absorption 8611_at 10555_at 19_at 41 5 0.01328 0.12 
 

Fat_absorption 80168_at 19_at 10555_at 41 4 0.0109 0.1 
 

Fat_absorption 80168_at 19_at 10555_at 41 4 0.0109 0.1 
 

Fat_absorption 80168_at 19_at 10555_at 41 4 0.0109 0.1 
 

Fat_absorption 19_at 8611_at 80168_at 41 3 0.33412 0.07 
 

Fat_absorption 80168_at 8611_at 10555_at 41 4 0.04471 0.1 
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Fat_absorption 10555_at 80168_at 19_at 41 4 0.0109 0.1 
 

Fat_absorption 80168_at 8611_at 10555_at 41 4 0.04471 0.1 
 

Gap_junction 7277_at 10381_at 347733_at 88 7 0.00259 0.08 0.1 

Gap_junction 84617_at 7280_at 6654_at 88 10 0.29133 0.11 
 

Gap_junction 10381_at 6654_at 2697_at 88 8 0.11547 0.09 
 

Gap_junction 347733_at 7280_at 84790_at 88 11 0.01228 0.13 
 

Gap_junction 7280_at 10381_at 84617_at 88 7 0.0115 0.08 
 

Gap_junction 6654_at 84790_at 56034_at 88 8 0.1911 0.09 
 

Gap_junction 10381_at 84790_at 56034_at 88 10 0.01484 0.11 
 

Gap_junction 7277_at 7846_at 2697_at 88 6 0.01016 0.07 
 

Gap_junction 84617_at 7846_at 1813_at 88 9 0.03125 0.1 
 

Gap_junction 84790_at 347733_at 7846_at 88 8 0.01634 0.09 
 

Glycerolipid 
metabolism 

9388_at 84803_at 80339_at 59 5 0.00376 0.08 0.1 

Glycerolipid 
metabolism 

8611_at 10555_at 9388_at 59 8 0.09312 0.14 
 

Glycerolipid 
metabolism 

80339_at 132158_at 8611_at 59 4 0.0104 0.07 
 

Glycerolipid 
metabolism 

84803_at 80339_at 9388_at 59 5 0.00376 0.08 
 

Glycerolipid 
metabolism 

80339_at 10555_at 9388_at 59 8 0.02462 0.14 
 

Glycerolipid 
metabolism 

80339_at 11343_at 84803_at 59 6 0.00979 0.1 
 

Glycerolipid 
metabolism 

8527_at 132158_at 57678_at 59 6 0.18471 0.1 
 

Glycerolipid 
metabolism 

8611_at 10555_at 84803_at 59 6 0.03608 0.1 
 

Glycerolipid 
metabolism 

9388_at 84803_at 132158_at 59 4 0.02052 0.07 
 

Glycerolipid 
metabolism 

9388_at 8611_at 57678_at 59 8 0.11261 0.14 
 

Glycerophospholipid 
metabolism 

10555_at 8611_at 79143_at 95 6 0.16953 0.06 0.07 

Glycerophospholipid 
metabolism 

57678_at 56261_at 23761_at 95 9 0.86616 0.09 
 

Glycerophospholipid 
metabolism 

57678_at 2819_at 5337_at 95 9 0.27249 0.09 
 

Glycerophospholipid 
metabolism 

10555_at 2819_at 8611_at 95 4 0.12988 0.04 
 

Glycerophospholipid 
metabolism 

79888_at 10555_at 8611_at 95 7 0.0221 0.07 
 

Glycerophospholipid 
metabolism 

5337_at 23761_at 2819_at 95 8 0.23537 0.08 
 

Glycerophospholipid 
metabolism 

57678_at 79143_at 84803_at 95 7 0.5983 0.07 
 

Glycerophospholipid 
metabolism 

8611_at 8527_at 2819_at 95 3 0.96371 0.03 
 

Glycerophospholipid 
metabolism 

2819_at 79143_at 23761_at 95 6 0.242 0.06 
 

Glycerophospholipid 
metabolism 

2819_at 79143_at 79888_at 95 7 0.04837 0.07 
 

NFKB-signalling 5971_at 148022_at 330_at 93 16 0.00029 0.17 0.15 

NFKB-signalling 51588_at 5328_at 9020_at 93 12 0.00198 0.13 
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NFKB-signalling 598_at 9020_at 5743_at 93 13 0.00028 0.14 
 

NFKB-signalling 598_at 3383_at 5328_at 93 17 0.00211 0.18 
 

NFKB-signalling 5328_at 7132_at 5743_at 93 14 0.00189 0.15 
 

NFKB-signalling 3383_at 9020_at 598_at 93 16 0.0022 0.17 
 

NFKB-signalling 7128_at 51588_at 598_at 93 15 0.00376 0.16 
 

NFKB-signalling 148022_at 5743_at 4616_at 93 12 0.01239 0.13 
 

NFKB-signalling 5970_at 598_at 4616_at 93 12 0.00728 0.13 
 

NFKB-signalling 4616_at 5971_at 51588_at 93 11 0.00081 0.12 
 

p53_signalling 595_at 1026_at 5054_at 69 9 0.01606 0.13 0.11 

p53_signalling 595_at 7057_at 545_at 69 7 0.65044 0.1 
 

p53_signalling 1026_at 595_at 1647_at 69 7 0.01273 0.1 
 

p53_signalling 27244_at 545_at 5054_at 69 10 0.02123 0.14 
 

p53_signalling 4616_at 8795_at 901_at 69 4 0.0006 0.06 
 

p53_signalling 901_at 545_at 5366_at 69 9 0.06978 0.13 
 

p53_signalling 2810_at 5366_at 27244_at 69 8 0.0008 0.12 
 

p53_signalling 8795_at 7057_at 1647_at 69 4 0.00828 0.06 
 

p53_signalling 5054_at 5366_at 9133_at 69 11 0.00032 0.16 
 

p53_signalling 7057_at 9133_at 901_at 69 10 0.00639 0.14 
 

PPAR-signalling 123_at 1376_at 1374_at 72 4 0.34538 0.06 0.06 

PPAR-signalling 8309_at 1376_at 1622_at 72 4 0.03086 0.06 
 

PPAR-signalling 123_at 4312_at 1376_at 72 4 0.09617 0.06 
 

PPAR-signalling 4312_at 1962_at 1622_at 72 5 0.16514 0.07 
 

PPAR-signalling 1962_at 1376_at 4312_at 72 5 0.02223 0.07 
 

PPAR-signalling 123_at 4312_at 1962_at 72 5 0.03471 0.07 
 

PPAR-signalling 1622_at 8309_at 1374_at 72 4 0.09354 0.06 
 

PPAR-signalling 4312_at 51703_at 123_at 72 4 0.22211 0.06 
 

PPAR-signalling 51703_at 4312_at 1374_at 72 5 0.21034 0.07 
 

PPAR-signalling 51703_at 1622_at 1962_at 72 5 0.02004 0.07 
 

Supplementary Table S3: Network statistics of the Caco-2 specific protein-protein interaction 

network. 

Metrics STRING network (Entrez Id) Caco-2 Network 
# of nodes 13762 8937 
# of edges 272903 129711 
# of connected components 131 54 
Density of Graph 0.0029 0.0032 
Average degree 39.66 29.03 
Giant component nodes 13462 8824 
Giant component edges 272698 129648 
Degree Assortativity 0.57 0.13 
Average Clustering Coefficient 0.34 0.34 
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Supplementary text F1 

Culturing & experimental exposure of Caco-2 cells  

The Caco-2 cell line was obtained from the American-Type Culture Collection (ATCC HTB-

37TM; USA). The cells were routinely grown in 75 cm2 tissue culture flasks (with canted neck 

and 0.2 μm vented cap, Corning, 430641) using Dulbecco’s Modified Eagle’s Medium (DMEM) 

(Invitrogen, 42430-082; with 4.5 g/L glucose, no pyruvate, 4 mM L-glutamine, and 25 mM 

HEPES) supplemented with 9.1% Fetal Bovine Serum (FBS, Hyclone Perbio) (Fischer Scientific 

CH 30160.03; heat inactivated at 56ºC for 45 min). Cells were maintained in a humidified 

atmosphere of 5% CO2 in air at 37ºC and sub-cultured at 80-90% confluence. For exposure 

experiments, Caco-2 cells were grown on transwells (Greiner bio-one, 662640, translucent, 0.4 

µm pores, 1x108 pores/cm, 0.312 cm2 surface area for cell growth) in 24-well plates (Greiner 

bio-one Cellstar plates, 662102, Alphen a/d Rijn, The Netherlands). Cells, having a passage 

number between 30 and 45, were seeded at a concentration of 0.225x106 cells/mL and grown 

in DMEM supplemented with 10% FBS, at 37ºC and 5% CO2 in air. Cells were allowed to grow 

for 7 days and the culture medium was replaced every two days. To ensure that the monolayers 

exhibit the properties of a tight biological barrier, transepithelial electrical resistance (TEER) was 

monitored using a MilliCell-ERS voltohmmeter (Millipore Co., United States). Monolayers with 

TEER values exceeding 300 Ω.cm2 were used exclusively for the experiments.  

Turkish coffee (obtained from a local market in Turkey), 2 types of filtered coffees (Java 

Preanger and Brasil Espirito) (obtained from a local market in The Netherlands), and instant 

coffee (Nescafe Gold Blend obtained from a local market in The Netherlands) samples were 

brewed without any sugar and/or milk addition. For Turkish coffee brew, 10 g of ground coffee 

sample was cooked with 130 mL of MQ water until the boiling point (53). For the filtered coffee 

brews, 8 g of powder was extracted with 140 mL of boiled MQ water (54) and for the instant 

coffee brew, 2 g of instant coffee was solubilized in 150 mL of boiled MQ water (55). All coffee 
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brews were first filtered (Whatman Filter Paper, 589/1, ashless, Whatman, U.K.), 2 times, and 

then freeze-dried, and stored at -80ºC until analysis. 

For the Caco-2 cell exposure experiments, the freeze-dried coffee extracts were re-dissolved in 

cell culture medium (DMEM with 9.1% FBS) to give the same dry-weight concentrations as in 

the original coffee brews. For the sample treatments, the culture medium was first removed from 

the well, and then coffee samples were added, in duplicates, to the apical side of the cells, with 

a volume of 150 µL; while the basolateral side was refreshed with culture medium only, with a 

volume of 700 µL. Cells were incubated with samples for 24 h at culture conditions. During 

sample incubations, the cell monolayer integrity was checked with TEER measurements. After 

completion of the exposure experiments, the cells were harvested for RNA extraction. 

After exposure, total RNA was isolated from the Caco-2 cells by using 200 µL of TriZol 

(Invitrogen, 15596-026, Paisley, UK). The TriZol extracts were subsequently treated with DNase 

(Qiagen, RNase free DNase set, #79254, Hilden, Germany), and purified with RNeasy mini 

columns (Qiagen, Hilden, Germany), using the protocol supplied by the manufacturer. The 

concentration and purity of the RNA samples were determined spectrophotometrically using a 

NanoDrop (ND-1000 Spectrophotometer, Thermo Fisher Scientific, Wilmington, USA).  

One microgram of total RNA was reverse transcribed into cDNA using iScriptTM cDNA Synthesis 

Kit (Bio-Rad, Hercules, CA, USA) in a final volume of 20 µL. Primers used for the amplification 

of reference genes (β-actin, GAPDH, RPLP0) and the target genes (AhR, ARNT, CYP1A1, 

TiPARP, ABCC1, ABCC2, ABCG2, Nrf2, NQO1, GSTP1, GSTM4, GSTA2, UGT1A6, HMOX-1, 

SQSTM-1, ATF4, NFIA, PRKCA, ENC1 (NRPB), UGCG, EREG, RND3, CHMP1B, ATP9A, 

GCLM, TXNRD1, SOX9 KCTD5, BAG3) are given in Table T1 provided below.  

qPCR amplification was performed with 5 µL diluted (40 times diluted) cDNA sample, 2.5 µL of 

each primer (3.2 µM for CYP1A1; 0.8 µM for the other primers) and 10 µL of SYBR Green 

Supermix (Bio-Rad, Cat# 172-5006CUST, Hercules, USA) in a final volume of 20 µL. Every 

sample was run in technical duplicates. Gene expression analysis was conducted on a BioRad 
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CFX96 Real-Time System with C1000 Thermal Cycler. Gene expression levels were calculated 

using Biogazelle qbaseplus (Zwijnaarde, Belgium) program and the expression values of the 

selected target genes were normalized using the reference genes β-actin, RPLP0, and GAPDH 

(Table T1, provided below) 
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Table T1: Details of the gene names that were used in qPCR experiments and their 

corresponding Primers 

Gene Name Gene Symbol Forward Primer (5¢-3¢) Reverse Primer (5¢-3¢) 

Beta Actin ACTB CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAATGCA 
Glyceraldehyde-3-
phosphate dehydrogenase GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 

Ribosomal protein, large, P0 RPLP0 GCAATGTTGCCAGTGTCTG GCCTTGACCTTTTCAGCAA 

Aryl hydrocarbon receptor AhR ACATCACCTACGCCAGTCG CGCTTGGAAGGATTTGACTTGA 
Aryl hydrocarbon receptor 
nuclear translocator ARNT GGAACAAGATGACAGCCTAC CAGAAAGCCATCTGCTGCC 
Cytchrome P450, family 1, 
subfamily A, polypeptide 1 CYP1A1 TCTTTGGAGCTGGGTTTG ACTGTGTCTAGCTCCTCTTG 
TCDD-inducible poly (ADP-
ribose) polymerase TiPARP AGAACGAGTGGTTCCAATCCA TGGGTGCAAAAGATCAGTCTG 
ATP-binding casette, sub-
family C, member1 ABCC1 CTCTATCTCTCCCGACATGACC AGCAGACGATCCACAGCAAAA 
ATP-binding casette, sub-
family C, member2 ABCC2 TCTCTCGATACTCTGTGGCAC CTGGAATCCGTAGGAGATGAAGA 
ATP-binding cassette, sub-
family G, member 2 ABCG2 ACGAACGGATTAACAGGGTCA CTCCAGACACACCACGGAT 
Nuclear factor (erythroid-
derived 2)-like 2 Nrf2 TCCAGTCAGAAACCAGTGGAT GAATGTCTGCGCCAAAAGCTG 
NAD(P)H dehydrogenase, 
quinone 1 NQO1 GGGATCCACGGGGACATGAATG ATTTGAATTCGGGCGTCTGCTG 
Glutathione S-transferase pi GSTP1 TGCAAATACATCTCCCTCATCTACA CGGGCAGTGCCTTCACAT 
Glutathione S-transferase 
mu 4 GSTM4 AGAGGAGAAGATTCGTGTGGA TGCTGCATCATTGTAGGAAGTT 
Glutathione S-transferase 
alpha 2 GSTA2 TACTCCAATATACGGGGCAGAA TCCTCAGGTTGACTAAAGGGC 
UDP-
glucuronosyltransferase 1-6 UGT1A6 TGATCCTGGCTGAGTATTTGGG TGGGAATGTAGGACACAGGGT 
Heme oxygenase 
(decycling) 1 HMOX-1 TCTCTTGGCTGGCTTCCTTA ATTGCCTGGATGTGCTTTTC 

Sequestosome 1 SQSTM1 GCACCCCAATGTGATCTGC CGCTACACAAGTCGTAGTCTGG 
Activating transcription 
factor 4 ATF4 ATGACCGAAATGAGCTTCCTG GCTGGAGAACCCATGAGGT 

Nuclear factor I/A NFIA GCAGGCCCGAAAACGAAAATA TTTGCCAGAAGTCGAGATGCC 

Protein kinase C, alpha PRKCA GTCCACAAGAGGTGCCATGAA AAGGTGGGGCTTCCGTAAGT 

Ectodermal neural cortex 1 ENC1 (NRPB) GCTGCTGTCTGATGCACAC AGAGTTGCACTACCATGTCCT 
Rho family GTPase 3 RND3 GCTCCATGTCTTCGCCAAG AAAACTGGCCGTGTAATTCTCA  
UDP-glucose ceramide 
glucosyltransferase  UGCG GAATGGCCGTCTTCGGGTT AGGTGTAATCGGGTGTAGATGAT 
ATPase, class II, type 9A  ATP9A AAGTCAACTCCCAGGTCTACAG CGCTGGTTCTTTTCAACGATGA 
charged multivesicular body 
protein 1B  CHMP1B GAATGAGTGCGCGAGTCGAT GGTCTTCAATGTCGCATCCAT 
epiregulin EREG GGACAGTGCATCTATCTGGTGG TTGGTGGACGGTTAAAAAGAAGT 
glutamate-cysteine ligase, 
modifier subunit  GCLM CATTTACAGCCTTACTGGGAGG ATGCAGTCAAATCTGGTGGCA 
glutamate-cysteine ligase, 
modifier subunit  TXNRD CATTTACAGCCTTACTGGGAGG ATGCAGTCAAATCTGGTGGCA 
SRY (sex determining 
region Y)-box 9 SOX9 AGCGAACGCACATCAAGAC CTGTAGGCGATCTGTTGGGG 
potassium channel 
tetramerization domain 
containing 5 KCTD5 AACGAGACAGCAAAACATCGC TGACCAACTGCTCGAACTTCC 
BCL2-associated 
athanogene 3 BAG3 TGGGAGATCAAGATCGACCC GGGCCATTGGCAGAGGATG 
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R Codes and networks 

The R codes along with examples for biclustering and DECA and the Caco-2 specific PPIN (as 

edgelist) are available at http://semantics.systemsbiology.nl/ 
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Abstract	

Clostridium difficile produces two key toxins called toxin A and toxin B which are known to be 

important for cytopathic and cytotoxic effects of Clostridium difficile infection (CDI). The 

molecular effects of these toxins on enterocytes have been studied with primary focus on the 

changes induced in mRNA (gene) expression of the host cells. The impact of the toxins on 

miRNA expression of the host cells have largely been unexplored.  

We have investigated the impact of the C. difficile toxins on the expression of mRNAs and 

miRNAs in enterocytes and particularly focused on the potential role of miRNAs in gene 

expression regulation for which we used Caco-2 cells as the enterocyte model system. We 

further mapped the interactions between miRNAs and mRNAs that were inversely regulated by 

the toxins using the miRNA-mRNA interaction database, miRWalk, to identify potential miRNA 

target genes. Subsequently, we performed network analysis to identify hub miRNAs and 

mRNAs. Moreover, our pathway enrichment analysis using IPA® showed that miRNAs might 

have a role in C. difficile-induced changes in cell proliferation, intestinal barrier function and 

immune responses.  
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Introduction	

Clostridium difficile is an anaerobic, motile, gram positive bacteria present in the intestine of 

many mammals. Some strains of C. difficile cause a symptomatic infection in humans called 

Clostridium difficile Infection (CDI). Incidence of CDI and subsequent mortality has increased in 

recent years in USA, Canada and Europe 1. The pathogenesis due to CDI , and the mechanism 

of action of toxin A (toxA) and toxin B (toxB)  has been an area of intense investigation 2–8. To 

gain more insight into the cellular effects and mechanisms of action of the toxins, gene 

expression studies have been conducted in in vitro using human cell lines HCT-8 5 and Caco-2 

9, as well as in vivo in the mouse cecum 7.  

The C. difficile toxins A and B bind to surface receptors on host cells, resulting in receptor-

mediated endocytosis and further intoxicate the cells by disrupting Rho-GTPase dependent 

signalling 10 leading to altered cell morphology and apoptosis. Studies indicate that cellular 

pathways related to cell cycle/proliferation 5, cholesterol metabolism, fatty acid biosynthesis 7, 

interleukin signalling related to innate immunity are enriched based on transcriptomics studies 

after exposure to toxins. 

Transcription factors are generally known to play a key role in regulation of gene expression, 

but in recent years it has become clear that non-coding RNA (ncRNAs) especially microRNAs 

(miRNA), also play an important regulatory role. The miRNA are non-coding RNAs of 20-25 

base pairs in length 11–13 and are mainly involved in mRNA post-transcriptional regulation likely 

by targeting 6–8 nucleotides (called the seed region) in the 5' end of the miRNA 14,15. The 

regulation of mRNA by miRNA is carried out by a multitude of steps that finally ends in the 

formation of RNA-induced silencing complex (RISC) complex 14. The miRNA along with other 

proteins forms the RISC complex and binds to mRNA based on complementarity of the 

nucleotides. The mRNA bound to RISC complex is destabilized via the degradation of poly A-

tail and thus the transcription is reduced 16. To date it is clear that miRNAs contribute to the 
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regulation of protein synthesis via mRNA destabilization or via translational repression. There 

are multiple, contradictory mechanisms reported in different tissues and conditions 11 and 

several models are still hypothesized for the translational inhibition by miRNAs which need 

further in depth research 17.  

About one thousand miRNAs are predicted in humans12. Investigations in the past have been 

reported on the role of miRNA in bacterial infection in intestine and in influencing commensal 

bacterial population 18–20. Host microRNA expression changes have been observed following 

infection with bacteria like Salmonella enterica, Listeria monocytogenes and also pathogens 

from Mycobacterium and Francisella species. These changes play a role in triggering immune 

responses against the bacterial infection 18 and mitigation of excessive inflammation and have 

shown to involve miRNAs such as miR-146, miR-155, miR-125, let-7 and miR-21 18,19. Liu and 

others have investigated the role of intestinal epithelial miRNA in shaping the host microbiota 20. 

To the best of our knowledge the role of miRNA in regulation of transcription response to C. 

difficile toxins has not been investigated in detail.  

In this study, we investigated the role of miRNA in C. difficile toxin-induced changes in gene 

expression and the linked biological processes. For this, the Caco-2 cell line model was used 

and the effect of simultaneous exposure to both toxA and toxB. The miRNA expression was 

investigated using miRNA microarrays and mRNA expression was investigated using RNAseq. 

The results from these two experiments were used along with existing knowledge from public 

databases to probe miRNA-mRNA interaction. We demonstrated that a substantial number of 

biological processes related to Caco-2 cells in response to C. difficile toxins were likely 

controlled by miRNAs. 

Methods	and	Materials	

The overall experimental and computational analysis workflow used in this study is illustrated in 

Figure 1. Caco-2 cells exposed to C. difficile toxins were harvested for isolation of mRNA and 
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small RNAs. The expression of mRNA was measured using RNAseq and miRNA expression 

was assessed using miRNA microarrays. The resulting data was processed and differentially 

expressed (DE) miRNAs and mRNAs were identified. The interactions between DE mRNAs and 

miRNAs were obtained from miRWalk 2.0 database and network analysis performed using 

Cytoscape. The DE mRNA was used for pathway enrichment analysis using IPA©. Similarly, 

pathway analysis was performed using the target genes of the miRNAs. An overlap between 

the two enriched lists of pathways were compared for a final analysis.   

 

Figure 1: Flow diagram showing the methods used in this study. 
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Cell culture, toxin exposure and TEER estimation  

ATCC derived Caco-2 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; 

Gibco-Invitrogen, Bleiswijk, The Netherlands) with 4.5 g/L glucose, 0.58 g/L glutamine, no 

pyruvate, supplemented with 10% heat inactivated FBS (Hyclone Perbio, Etten-Leur, The 

Netherlands) and used with passage numbers between 30 and 40. For transwell assays, 

330,000 cells were seeded on ThinCert transwells (Greiner Bio-one) with 33.6 mm2 membranes 

and 0.4 μm pores in 24-well suspension culture plates. Cells were grown for 7 days at 5% CO2 

and 37°C and apical (150 μL) and basolateral (700 μL) medium was replaced every other day. 

All C. difficile toxins were derived from List Biological Laboratories, Inc. (Campbell, California, 

USA; Toxin A (#152), Toxin B (#155) and dilutions were made in DMEM/FBS. For toxin 

incubation, 7 days differentiated Caco-2 cells were exposed to 0.25μg/ml toxin A + 0.25μg/ml 

toxin B (ToxAB) in triplicates. These conditions were chosen based on a dose-response pilot 

study. One day before the exposure experiments, medium was refreshed and at the day of 

exposure, medium was removed from the apical and basal compartments and toxin samples 

were added to the apical compartment while fresh DMEM/FBS medium was added to the basal 

compartment. To monitor the integrity of the Caco-2 monolayer, transepithelial electrical 

resistance (TEER) was measured at 37ºC using a MilliCell-ERS Ώ meter (Millipore, Molsheim, 

France). The exposure experiments were performed three times to obtain three independent 

biological replicates. 

RNA extraction and RNAseq  

TEER was measured every hour and cells were harvested at a ~35% drop in TEER after 

exposure to the toxins which was approximately 4.5 hours after initial exposure. This threshold 

was used since a drop in TEER value below 35% resulted in irreversible damage to the cells 

and activation of cell-death related processes. Caco-2 cells were lysed with 300 μL TRIzol 
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(Invitrogen, Life Technologies, Bleiswijk, Netherlands) and the triplicates in each experiment 

were pooled for RNA isolation.  

RNA-isolation 

Caco-2 cells were lysed with 300 µl Trizol (Invitrogen, Life Technologies, Bleiswijk, the 

Netherlands) and the triplicates in each experiment were pooled for RNA isolation. Total RNA 

was isolated using TRIzol Reagent according to the manufacturer’s instructions until the RNA 

was in the aqueous phase. Subsequently the RNA was further isolated and purified with the 

RNeasy Mini kits (Qiagen, Venlo, the Netherlands) following the manufacturers ‘protocol with 

the addition of a DNase treatment (Qiagen). RNA concentration and purity were measured using 

the Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, USA) 24.  

For the isolation of miRNA the same steps were followed with slight adaptations to the RNeasy 

kit protocol to ensure that the miRNAs were present in the column. 70% Ethanol was changed 

to 100% Ethanol and buffer RW1 was replaced by buffer RWT (Qiagen, Venlo, the Netherlands). 

RNAseq data analysis 

The raw mRNA data obtained after Illumina sequencing were processed using CLC Genomics® 

Workbench (www.qiagenbioinformatics.com/) software version 8.5.1 for alignment to 

transcriptome, RPKM calculation and differential expression analysis. The RNAseq reads were 

aligned to hg38 whole human transcriptome dataset (gene and mRNA tracks) obtained from 

Ensemble database 21. The transcriptome dataset contained 60,448 transcripts. The reads were 

aligned only to gene regions with a mismatch cost set at 2. The RPKM values were obtained for 

23000 genes (rest of the 60448 transcript annotations were ncRNAs and small RNAs). The 

transcripts were further filtered using Universal expression protocol (UPC) algorithm to assess 

their presence/ absence. Transcripts were assumed to be present if they crossed a threshold 

cut-off of UPC value > 0.5. This was followed by differential expression analysis to detect the 

gene expression changes between control and toxA + toxB (toxAB) exposed Caco-2 cells. The 
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statistical significance was assessed using a two-tailed paired t-test (provided as Gaussian t-

test in CLC Genomics®). Differential expression significance was set at FDR corrected p-value 

< 0.01. 

miRNA analysis  

Small RNAs were hybridised using miRNA arrays (miRNA 4.1) from Affymetrix® as mentioned 

above and the resulting CEL files were processed using transcriptome analysis console 

software. The data was normalized using expression console (now part of transcriptome 

analysis console) and the normalized probeset data was converted to miRNA level data using 

annotation file obtained from Affymetrix website (miRNA-4_1-st-v1). This resulted in 6631 

miRNAs and differential expression analysis between the control and toxAB induced Caco-2 

cells was performed using transcriptome analysis console. The data was tested for significance 

using one-way paired ANOVA and miRNAs with p-value < 0.01 were considered significant. 

miRNA- mRNA interaction analysis 

To identify target genes of differentially expressed miRNAs, miRWalk 2.0 22,23 was used. 

miRWalk is a database and tool containing information on both validated and predicted miRNA 

- target interactions. The miRWalk validated targets resulted from text mining search obtained 

from 4 databases 23. miRWalk predicted interactions are from sequence homology searches. In 

addition to miRWalk predicted list of genes data was obtained from 3 other prediction databases 

namely, miRanda, RNA22 and Targetscan. This list was combined with predicted targets from 

miRWalk and genes were chosen for further analysis if they were predicted as a target by at 

least 3 of the above-mentioned databases. In order to identify the target genes that are 

responsible for direct (primary) miRNA-mRNA interactions, target genes that were significantly 

regulated in the opposite direction to the miRNA regulation were chosen for further analysis. 

The miRNA-mRNA interactions were subjected to network analysis using Cytoscape 24,25. The 

interaction network was loaded on Cytoscape and all self-loops were removed from the network. 
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The network analyser plugin was used to calculate network metrics like degree of nodes and 

other centrality measures. 

Pathway enrichment analysis  

Pathway enrichment analysis was performed using Ingenuity® Pathway Analysis 26 (IPA) tool 

(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). 

The pathway analysis was performed with default setting. Significance values for enrichment 

were calculated using Fisher's exact test right-tailed and significant pathways were estimated 

based on FDR corrected p-value < 0.05.  

Results	

In our study, Caco-2 cells were exposed to both C. difficile toxins toxA and toxB (toxAB) and 

after a 35% drop in TEER harvested to analyse ToxAB induced changes in gene expression. 

The harvested mRNAs were subject to RNAseq and small RNAs were subjected to miRNA 

arrays. Differential expression analysis and pathway enrichment analysis were performed on 

the resulting data. The miRNA-mRNA interaction was further studied as well. 

RNAseq – UPC 

Using the data from RNAseq technology and Universal exPression Code (UPC) protocol (UPC 

value > 0.5), 11890 genes were found to be transcriptionally active in Caco-2 cells. After 

subjecting the data to differential expression analysis, 826 transcripts were found to be 

differentially expressed between DMEM control and ToxAB (p-value < 0.01). Further analysis  

identified 492 transcripts which were down-regulated and 334 that were up-regulated. The top 

15 up and top 15 down-regulated genes are presented in table 1. 

Table 1: Top 15 up regulated and top 15 down regulated mRNAs along with their Fold Change. 

‘*’ indicates mRNAs regulated by one or more miRNAs. 
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Gene Symbol Fold Change 
*PTGER4 12.71 

RHOB 12.58 
*KLF6 10.32 

JUN 8.61 

*ATF3 6.04 
*MAFF 5.99 

GEM 5.17 
*HAS3 4.83 

BTG2 4.60 
PLK3 4.22 

ARL14 4.21 

*NOS2 4.16 
*WEE1 4.06 

*PLAUR 3.93 
*IER3 3.92 

AC091729.9 -2.45 

DCP1B -2.46 
RPUSD2 -2.47 

JADE1 -2.61 
*MEF2C -2.64 

CCDC51 -2.66 
*FFAR4 -2.67 

PRKCQ-AS1 -2.67 

*TIGD2 -2.67 
*AMOTL2 -2.90 

CSRP2BP -2.93 
*SP8 -3.39 

*DFFB -3.62 

*TTC30B -4.56 
CASS4 -6.67 

Among the highly downregulated genes, most are involved in cell cycle/apoptosis (e.g. 

AMOTL2, DFFB, JADE1, MEF2C, CSRP2BP) and influencing cell adhesion/migration (e.g 

Cass4). Among the highly upregulated genes are RHOB (involved in actin and cytoskeletal 

dynamics, cell movement), JUN and ATF3, all previously found to be upregulated on exposure 

to C. difficile toxins in HCT-8 and mouse cecum. These genes are known to be involved in cell 

morphology and stress-induced responses and confirming that Caco-2 combined with RNAseq 

have been performed as could be expected based on literature. 



 97 

The differential expression gene list was then analysed for pathway enrichment using IPA® to 

gain better insight into the pathways affected by C. difficile infection in the intestine. 71 pathways 

were found to be significantly (p-value < 0.05) enriched in total, among which are pathways 

related cell cycle/proliferation, innate-immunity, and protein biosynthesis. The complete list of 

enriched pathways are provided in the supplementary information table 1. Figure 2 shows the 

top 20 enriched canonical pathways based on their measure of significance (p-value). It seemed 

that pathways related to cell cycle/proliferation are most inhibited, whereas pathways related to 

immune function are stimulated. Among protein biosynthesis pathways, we found that genes 

involved in mitochondrial translation were particularly downregulated.  
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Figure 2: Shows the top 20 Ingenuity canonical pathways that were enriched based on the 

differentially expressed mRNA (gene) list. The z score indicates the inhibition (negative score) 

or stimulation (positive score) of a pathway. The grey bars indicate missing z-scores. 

Table 2: Significantly regulated miRNAs with Fold Change and validated target genes. 

Validated targets are based on an intersection between data obtained from miRWalk 2.0 and 

significantly differentially expressed in opposite direction based on RNAseq data. 

miRNA (miR id) Fold Change Validated targets - Entrez ID 
(based on miRWalk 2.0 and RNAseq) 

miR-1343-3p 1.99 51421, 1678, 140461, 64149, 51808 

mir-6804 1.36  

miR-6730-3p 1.27 23649 

miR-4482-5p 1.25 10196 

mir-4315-1 1.24  

mir-4315-2 1.24  

miR-200b-3p 1.21 54453 

mir-548ag-1 1.2 5828, 158471, 83876 
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miR-4783-5p 1.19  

mir-6499 1.19 57677, 1678, 199857, 5828, 29099, 3659, 2868, 23404, 63931, 83876, 
10196, 647087, 26227, 26146, 88745, 25896, 23593, 55696, 23649 

miR-361-5p 1.14 51645, 4839, 51528, 25980, 84881 

miR-128-3p 1.12 166815, 257407, 199857, 253635, 669, 65080, 64149, 55204, 63931, 
11200, 51163, 58488, 4839, 22944, 29916 

miR-4529-5p 1.11  

mir-375 1.1 1678, 56912, 79717, 1326, 22796, 9166, 339175, 55907, 53371, 84881 

mir-4481 1.1 23404, 10714, 11331, 79621 

miR-4781-5p 1.1  

miR-95-3p 1.09  

mir-16-2 1.07 

5723, 51524, 8604, 54554, 4913, 55347, 51058, 84864, 55028, 8835, 
64149, 81602, 55204, 7265, 60625, 51645, 80742, 65983, 1284, 25926, 
57088, 63931, 51204, 51249, 10732, 57180, 79568, 11212, 90522, 
55003, 57621, 10240, 80254, 10946, 51067, 57418, 84259, 440, 22944, 
5565, 88745, 26273, 217, 85365, 23438, 29916 

miR-218-1-3p 1.07 57677 

mir-4435-1 -1.06 7832, 81631, 51621, 25987, 1969, 1454 

mir-4435-2 -1.06 7832, 81631, 51621, 25987, 1969, 1454 

miR-518e-3p -1.08  

mir-194-2 -1.09  

mir-6785 -1.09  

mir-2052 -1.11  

miR-1297 -1.12 133, 1604, 387893, 1025, 79647 

mir-548ba -1.14 79647, 1027 

miR-301a-5p -1.16 4084, 11176, 80271, 11098, 9776 

miR-6880-3p -1.57  

miR-4767 -1.89  

miR-3200-5p -1.93 11343 

miR-3065-5p -2.06 27242, 79791, 8440 

miR-23a-5p -2.62 257629, 1454 

miR-27a-5p -2.95 207 

 

miRNA Differential Expression Analysis 

miRNA expression was assessed and the miRNAs that showed differential expression between 

the control and treatment (toxin AB) were identified. After significance testing, 35 differentially 
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expressed miRNAs were identified. 16 miRNAs were found to be downregulated and 19 

miRNAs were upregulated. Table 2 shows all the up and down regulated miRNAs. 

miRNA – mRNA targets interaction reveals key miRNA regulation 

To study the role of miRNAs in C. difficile toxin-induced cytotoxicity in enterocytes, target genes 

of the differentially expressed miRNAs were first identified using the miRWalk 2.0 tool as 

mentioned in the methods section. This filtering resulted in 5267 validated gene targets and 

67264 predicted target genes for the 19 upregulated miRNAs and 1448 validated targets and 

55202 predicted targets for the 16 downregulated miRNAs. The validated interactions in this list 

contained redundant interactions owing to multiple experimental evidences of interactions and 

all redundancies were removed in subsequent analysis. Further, target genes (both predicted 

and validated) that were not significantly regulated based on the RNAseq data, were removed. 

This resulted in 1435 predicted and 54 validated up-regulated targets genes for the 

downregulated miRNAs (opposite direction of gene expression) and 1648 predicted and 175 

validated down-regulated target genes for the upregulated miRNAs.  

The miRNA and their interacting target genes were subjected to network analysis using 

Cytoscape and the visualised networks are shown in Figure 3. The key results of the network 

analysis and their node degrees are provided in Table 3. Figure 3a shows upregulated miRNAs 

along with their target genes and Figure 3b shows the downregulated miRNAs and their target 

genes. Among the upregulated miRNAs, hsa-miR-16-5p, hsa-miR-128-3p and hsa-miR-1343-

3p had the largest number of target genes (91, 77, 56 respectively) while among downregulated 

miRNAs, hsa-miR-194-3p, hsa-miR-3065-5p and hsa-miR-4435 had the largest number of 

target genes (65, 56 and 41 respectively). Among the target genes, RAB3B (upregulated 

expression) and UMPS (downregulated expression) were the genes that were most extensively 

regulated by multiple miRNAs. Both genes are connected to 10 miRNAs. 
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Table 3: Table containing key regulated miRNAs and target mRNAs. miRNAs with degree 

greater than 50 and mRNA with degree greater than 5 are shown. Table 3a contains 

downregulated miRNAs and upregulated target mRNAs. Table 3b contains upregulated 

miRNAs and downregulated target mRNAs. 

 

 

 

 

 

   

a.       b. 

 

Down Regulated miRNA Degree 
miR-194-3p 65 
miR-3065-5p 56 

miR-4435 56 
 

Up Regulated mRNA Degree 
RAB3B 10 

THSD4 6 
ATRN 6 

MTF1 6 
SMURF1 6 

FAM64 6 

Up Regulated miRNA Degree 
miR-16-5p 91 
miR-128-3p 77 
miR-1343-3p 56 
 
Down Regulated mRNA Degree 
UMPS 9 
ÀGPAT4 8 
PRKAB2 8 
TTLL11 8 
NUDT16 8 
PEX2 7 
MRO 7 
FAM120C 7 
LGALS8 6 
DCUN1D5 6 
PAIP2B 6 
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a.   

  

b.  
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Figure 3: Figure represents the interaction between miRNA – mRNA. The miRNAs are 

represented by circles and mRNAs are represented by triangles. The solid black lines indicate 

validated interactions while light blue lines indicate predicted interactions. The size of the 

triangles indicates the fold change of the mRNA, i.e. a larger size implies a higher fold change. 

The nodes are arranged in concentric circles based on their degree. The outer most ring of 

triangles indicate mRNAs that have an interaction with only one miRNA (degree one). The next 

ring of triangles (within the ring of circles) are regulated by two miRNAs (degree two). The 

following concentric rings of triangles have higher degrees and the colours indicate the degree 

of each node. The miRNAs (represented by circles in the second ring) are arranged in an 

increasing order of degree in clockwise direction such that the miRNAs with maximum degree 

are located at the bottom of the ring. (a) Indicates the interaction between up-regulated miRNAs 

and their target genes (down regulated mRNAs). The largest triangle in the outer ring is that of 

PTGER4 gene. The gene at the centre is RAB3B. Additional key insights regarding the genes 

and miRNAs are given in table 3. (b) The interaction between down-regulated miRNAs and their 

target genes (up regulated mRNAs) are shown. The largest triangle in the outer ring is that of 

PTGER4 gene. Additional key insights regarding the genes and miRNAs are given in table 3. 

Among the down regulated mRNAs that are targets of upregulated miRNAs, UMPS was 

observed to be regulated by 9 miRNAs. Similarly, IL6R was found to be targeted by 5 miRNAs. 

Among the top upregulated genes, PTGER4 and KLF6 was regulated by mir-3065-5p and mir-

23a-5p respectively, while ATF3 was regulated by 2 miRNAs. Interestingly, we did not find any 

miRNA that regulated RHOB and JUN. AGPAT4 (involved in biosynthetic process based on 

gene ontology) and NUDT16 (associated with positive regulation of cell proliferation) were found 

to be regulated by 8 miRNAs that were upregulated. Among the top down regulated genes 

(mRNAs), AMOTL2 was regulated by 4 miRNAs, MEF2C was regulated by 3 miRNAs, DFFB is 

regulated by 2 miRNAs and FFAR4 was regulated by miR-128-3p. 

The target genes (both validated and predicted) obtained from miRWalk were further probed for 

pathway enrichment using IPA®. This resulted in 32 pathways significantly enriched based on 
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the target genes. Among these pathways, biosynthesis related pathways were found to be 

predominantly regulated by miRNAs and those related to mitochondrial functioning like 

phosphatidylethanolamine biosynthesis II and protein biosynthesis related pathways of serine 

and glycine biosynthesis I were also among the top regulated pathways. 

Comparison of this result with the pathway enrichment list (71 pathways) obtained using 

RNAseq data revealed that 25 of the 71 pathways overlapped with miRNA target genes enriched 

pathways (Table 4). Of the top 20 pathways enriched using RNAseq data about 65% was found 

to be overlapping with miRNA target genes pathway enrichment results, among which are many 

immune response pathways, proliferation/cell cycle pathways.  

Among the top pathways (Table 5) regulated by the miRNAs (based on p-value) are JAK/STAT 

signalling and Acute Phase Response Signalling which are involved in cell cycle/proliferation;  

Protein biosynthesis pathways like Phosphatidylethanolamine Biosynthesis II pathway and 

Superpathway of Serine and Glycine Biosynthesis I; immune related pathways like IL6 signalling 

and iNOS signalling. These pathways are found to play a role in C. difficile toxins induced 

enterocytes from mRNA based pathway analysis.  

Table 4: The RNAseq data enriched pathways overlapping with miRNA target genes are 

provided along with p-values of enrichment 

RNAseq pathways P-values 

JAK/Stat Signalling 2.87 

iNOS Signalling 2.86 

Superpathway of Serine and Glycine Biosynthesis I 2.75 

Phosphatidylethanolamine Biosynthesis II 2.56 

Hereditary Breast Cancer Signalling 2.49 

Sirtuin Signalling Pathway 2.49 

autophagy 2.34 

Acute Phase Response Signalling 2.22 

Methionine Degradation I (to Homocysteine) 2.18 

Cysteine Biosynthesis III (mammalia) 2.03 

Pregnenolone Biosynthesis 2.01 
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IL-6 Signalling 1.96 

Role of BRCA1 in DNA Damage Response 1.92 

Serine Biosynthesis 1.86 

Pancreatic Adenocarcinoma Signalling 1.75 

Neuregulin Signalling 1.74 

TGF-β Signalling 1.72 

Cell Cycle Control of Chromosomal Replication 1.69 

PI3K Signalling in B Lymphocytes 1.61 

Asparagine Biosynthesis I 1.41 

D-mannose Degradation 1.41 

Oncostatin M Signalling 1.39 

ERK5 Signalling 1.38 

Heme Biosynthesis II 1.35 

ErbB2-ErbB3 Signalling 1.33 

 

Table 5: Top 20 enriched pathways based on miRNA target genes 

miRNA target genes enriched pathways -log(p-value) 

Superpathway of Serine and Glycine Biosynthesis I 3.33 

Phosphatidylethanolamine Biosynthesis II 3.14 

Neuregulin Signalling 2.31 

Serine Biosynthesis 2.25 

Sirtuin Signalling Pathway 2.01 

autophagy 2 

Methionine Degradation I (to Homocysteine) 1.92 

Cysteine Biosynthesis III (mammalia) 1.81 

JAK/Stat Signalling 1.81 

Heme Biosynthesis II 1.72 

TGF-β Signalling 1.71 

iNOS Signalling 1.66 

Hereditary Breast Cancer Signalling 1.66 

ERK5 Signalling 1.66 

Acute Phase Response Signalling 1.64 

Asparagine Biosynthesis I 1.61 

D-mannose Degradation 1.61 

ErbB2-ErbB3 Signalling 1.61 

Sertoli Cell-Sertoli Cell Junction Signalling 1.59 
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Discussion	

Several studies in the past have focused on the effects of C. difficile and its toxins on large 

intestine enterocytes and cecum gene expression (mRNA expression) 5,7,9. These studies have 

highlighted the genes that showed significant expression changes and the concordant pathways 

that were enriched.  

PTGER4 (EP4), a GPCR family gene, was found to be the most upregulated gene (Fold Change 

> 12). This gene has been found to be important for maintaining intestinal barrier, in suppressing 

mucosal damage 27 and in promoting intestinal repair through adaptive immune response 28. 

Additionally, genes like RHOB, KLF6, ATF3 and JUN which are also reported in earlier studies 

using C. difficile toxin exposure to HCT-8 5 cell line and mice cecum 7 have been observed in 

the top 10 upregulated genes (based on fold change) in our study. The RHOB is an important 

component of the RHO-GTPase signalling. In addition to it, other GTPases like ARL14, GEM 

(both among top 10 (Table 1)) and CDC42 were also observed to be upregulated. C. difficile 

toxins are known to transfer glucose molecule to the RHO-GTPases and thus affect the actin 

dependent processes 29. The RHO-GTPases act as molecular switches regulating their 

downstream processes. C. difficile toxins glucosylate the RHO and CDC42 and thus make these 

proteins inactive and their functions are affected. KLF6, ATF3 and JUN are transcription factors 

and are found to be involved in cellular stress response and apoptosis 30–32. Interestingly, 

CASS4 (HEPL) gene is the most downregulated gene (Fold change < -6) and is involved in cell 

adhesion 33. CASS4 has not been previously associated with C. difficile toxins induced 

enterocytes and this may be due to the lesser sensitivity of arrays compared against RNAseq. 

Additionally, AMOTL2 which is indirectly involved in cellular adhesion by controlling transport of 

actin filaments is also downregulated 34 (among top 10, shown in Table 1). CSRP2BP (KAT14) 

is down regulated and is part of the ATAC complex playing a role in cell cycle 35,36. All these 

results together indicate that the toxins induce a total loss of cell integrity by targeting the cell 

morphology and cell-cell adhesion. 
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Pathway analysis of RNAseq data shows inhibition of cell cycle/proliferation, which is likely in 

line with the drop in TEER that we found after exposure to the C. difficile toxins. This disruption 

of the intestinal integrity is indicative for the previously reported C. difficile toxin-induced cell 

death 10. Stimulation of (innate) immune function through release of pro-inflammatory IL-6 

signalling and anti-inflammatory IL-10 signalling were both found to be enriched pathways and 

have been previously observed 37,38. C. difficile cytotoxin (toxB) was previously found to affect 

protein biosynthesis in intestinal epithelium 39 and we found that mitochondrial protein 

biosynthesis in particular, was affected. This was also previously reported for other bacterial 

toxins 40.  

There are very few studies describing in detail the impact of the toxins on miRNA expression 

and the miRNA – mRNA interaction in the host. Li and colleagues have utilized whole genome 

microarray data from an earlier study involving Caco-2 co-culture with C. difficile bacteria 9. They 

applied big data mining techniques to investigate the cross-talk between the host (Caco-2) and 

microbes (C. difficile) 38 and have predicted the potential impact of the miRNAs on the 

pathogens, expressed and secreted by the host, on the luminal pathogens. The study by Li et 

al, was focused on early to mid-stage infection (30 min to 120 min) while we focussed on later 

time point (4.5 hours). We found similar pathways to their late stage infection study, like 

inflammation related pathways and cellular biosynthesis. While earlier studies have focused on 

the effect of transcriptome during C. difficile infection and have incorporated elements on miRNA 

regulation, none of them studied in detail the impact of the toxins on miRNA expression of 

enterocytes and have not studied the miRNA – mRNA interaction in the host in detail. We 

explored the role of miRNA in host responses to C. difficile toxins in detail. 

Previous studies have also reported involvement of miRNAs in bacterial infections. Among the 

miRNAs we have found to change upon exposure to the toxins are miRNA that were earlier 

reported to be regulated in host pathogen interaction. miR-128 has been reported to be 

upregulated in Salmonella typhimurium infection 41,42 and was found to be upregulated in our 

analysis. Studies indicate that this miRNA affects the cytoskeleton indirectly by altering CDC42, 

C
ha

pt
er

 3



 108 

a RHO-GTPase 42. miR-16 was upregulated in L. monocytogenes infected epithelial cells 43 and 

we observed miR-16-2, a part of miR-16 microRNA precursor family, to be upregulated. The 

miR-16 is reported to target AU-rich sequences of TNF-A, IL6 and IL8 and degrade them rapidly 

42. While miR-23a was identified in relation to a M. bovis infection of Bos taurus 44, we observed 

miR-23a-5p to be downregulated. Interestingly, mir-3065 and mir-361 were found down 

regulated and up regulated in many infections in macrophages, respectively 45 but their potential 

role in enterocytes and infection is not studied yet. We also found miR-3065-5p to be 

downregulated and mir-361-5p to be upregulated.  

In our study, the miRNA-mRNA interaction was explored using the miRWalk 2.0 database and 

the resulting interactions were screened for opposite regulation (up regulated miRNA with down 

regulated mRNA and vice versa). miRNA regulation of mRNA could either be primary or 

secondary. Primary regulation is direct interaction between an miRNA and mRNA while 

secondary regulation is when an miRNA regulates the upstream regulators of an mRNA. In 

order to ensure that only primary regulation of mRNA by miRNA were captured, we considered 

only those interactions where the differential expression of miRNA was in opposite direction to 

the mRNA.  

The results of miRNA-mRNA interaction network analysis using Cytoscape reveals useful 

insight. Interestingly, RAB3B (which was upregulated) was found to be targeted by 10 miRNAs. 

RAB3B is a GTPase protein involved in epithelial polarization and tight junction regulation 46, 

which indicates a role in intestinal barrier function. Furthermore, Rab GTPases are reported to 

play a role in bacterial infections, however the exact role for RAB3B in this is not yet known 47. 

RAB3B was previously reported to be regulated by several miRNAs 48–50. Among the down 

regulated mRNAs that are targets of upregulated miRNAs, UMPS was observed to be regulated 

by 9 miRNAs. UMPS is reported to play a role in pyrimidine biosynthesis 51. Previous studies 

have shown that pathogens require pyrimidine for colonisation in the intestine. Reduction of 

pyrimidine biosynthesis might be a defence response by the host cell 52,53.  
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We have identified mRNAs potentially regulated by multiple miRNAs and identified miRNAs with 

a large number of potential target genes. Such investigations shed light on miRNAs and 

encourage research towards miRNAs that can be used as potential therapeutic targets or 

agents in which miRNAs are either suppressed or mimicked. Several miRNA based therapeutics 

for cancer and hepatitis have already reached clinical trial phases 54. However, this should be 

done with great caution as the miRNAs often regulate multiple mRNAs simultaneously and the 

interactions between specific miRNAs and mRNA have not been completely unravelled.  

Pathway enrichment analysis of miRNA target genes resulted in several key pathways that were 

also regulated by mRNAs, e.g. JAK/STAT signalling, sirtuin signalling, etc. These results 

indicate that miRNA regulate significant number of toxin induced biological functions and thus 

play a substantial role in C. difficile toxin-induced cytopathologic effects in enterocytes. 
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Supplementary	data	

Supplementary table 1: All significantly enriched pathways obtained from mRNA and miRNA 

target genes enrichment studies are shown in this table. The ‘NA’ indicates that z-scores are 

not available for those pathways. The molecules column indicates genes that were found 

enriched in each pathway. 

RNAseq data enriched pathways 
Ingenuity Canonical Pathways -log(p-value) Ratio z-score Molecules 

JAK/Stat Signalling 2.87 0.12 1.897 
RELA, STAT6, AKT1, JUN, PTPN1, 
CDKN1A, SOCS2, STAT3, NFKB2, 
MAP2K1 

iNOS Signalling 2.86 0.159 2.449 RELA, NFKBIA, JUN, IFNGR2, NFKB2, 
NOS2, IRF1 

Glycine Biosynthesis III 2.83 1 NA AGXT, AGXT2 

Superpathway of Serine and 
Glycine Biosynthesis I 2.75 0.429 NA PSPH, PHGDH, SHMT2 

Phosphatidylethanolamine 
Biosynthesis II 2.56 0.375 NA ETNK2, PIGF, PCYT2 

Mitotic Roles of Polo-Like Kinase 2.55 0.127 -1.342 ANAPC4, PLK3, WEE1, PPP2R5B, 
ANAPC5, CDC7, CDC16, CHEK2 

tRNA Charging 2.5 0.158 NA TARS2, YARS2, YARS, CARS2, 
HARS2, QARS 

Hereditary Breast Cancer 
Signalling 2.49 0.0922 NA 

GADD45B, WEE1, SMARCE1, 
SMARCD2, RFC5, FANCL, HDAC5, 
FANCE, AKT1, RFC4, CDKN1A, UBC, 
CHEK2 

Sirtuin Signalling Pathway 2.49 0.0745 -1.886 

TIMM8A, ATG5, PFKFB3, RELA, 
GADD45B, TIMM9, NDRG1, NR1H3, 
STAT3, NFKB2, BPGM, XPA, VDAC2, 
ATG13, JUN, AKT1, GABARAPL1, 
IDH2, MAP1LC3B, MAPK7, NOS2 

Fatty Acid β-oxidation III 
(Unsaturated, Odd Number) 2.36 0.667 NA ECI2, ECI1 

autophagy 2.34 0.13 NA ATG13, ATG5, ULK1, MAP1LC3B, 
SQSTM1, ACE, VPS11 

Role of PKR in Interferon 
Induction and Antiviral Response 2.33 0.146 NA RELA, NFKBIA, AKT1, TNFRSF1A, 

NFKB2, IRF1 

Acute Phase Response Signalling 2.22 0.0828 3.051 
RELA, HPX, C4BPB, TNFRSF1A, IL6R, 
NFKB2, STAT3, JUN, AKT1, NFKBIA, 
SOCS2, SERPINE1, ELK1, MAP2K1 

Methionine Degradation I (to 
Homocysteine) 2.18 0.2 NA MAT1A, PRMT3, FTSJ1, MRM2 
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4-1BB Signalling in T 
Lymphocytes 2.14 0.156 2 RELA, NFKBIA, JUN, NFKB2, MAP2K1 

Cysteine Biosynthesis III 
(mammalia) 2.03 0.182 NA MAT1A, PRMT3, FTSJ1, MRM2 

Pregnenolone Biosynthesis 2.01 0.25 NA MICAL1, MICAL2, MICAL3 
IL-17A Signalling in Fibroblasts 1.98 0.143 NA RELA, NFKBIA, JUN, NFKB2, MMP1 

IL-6 Signalling 1.96 0.0859 3.317 
RELA, NFKBIA, AKT1, JUN, 
TNFRSF1A, IL6R, STAT3, NFKB2, 
ELK1, MAPKAPK2, MAP2K1 

Role of BRCA1 in DNA Damage 
Response 1.92 0.1 0 FANCE, RFC4, CDKN1A, SMARCE1, 

SMARCD2, RFC5, CHEK2, FANCL 

Role of JAK1, JAK2 and TYK2 in 
Interferon Signalling 1.9 0.167 NA RELA, IFNGR2, STAT3, NFKB2 

Superpathway of D-myo-inositol 
(1,4,5)-trisphosphate Metabolism 1.9 0.167 NA ITPKC, IMPA2, ITPKA, PMPCA 

HMGB1 Signalling 1.89 0.084 3.162 
RELA, LIF, AKT1, JUN, RHOB, 
TNFRSF1A, IFNGR2, NFKB2, ELK1, 
SERPINE1, MAP2K1 

Serine Biosynthesis 1.86 0.4 NA PSPH, PHGDH 

CD27 Signalling in Lymphocytes 1.83 0.115 1 RELA, NFKBIA, JUN, MAP3K8, 
NFKB2, MAP2K1 

Phenylalanine Degradation IV 
(Mammalian, via Side Chain) 1.82 0.214 NA AASDH, ALDH2, MAOB 

April Mediated Signalling 1.78 0.128 1.342 RELA, NFKBIA, JUN, NFKB2, ELK1 

IL-10 Signalling 1.77 0.101 NA RELA, IL4R, NFKBIA, JUN, STAT3, 
NFKB2, ELK1 

Role of IL-17A in Arthritis 1.77 0.101 NA RELA, NFKBIA, NFKB2, MAPKAPK2, 
NOS2, MAP2K1, MMP1 

Pancreatic Adenocarcinoma 
Signalling 1.75 0.0833 2.828 

RELA, AKT1, CDKN1A, HBEGF, 
CDKN1B, STAT3, NFKB2, ELK1, 
MAP2K1, SIN3A 

Neuregulin Signalling 1.74 0.093 1.414 AKT1, GRB7, HBEGF, ERRFI1, 
CDKN1B, ELK1, MAP2K1, AREG 

Histidine Degradation VI 1.73 0.2 NA MICAL1, MICAL2, MICAL3 

TGF-β Signalling 1.72 0.092 0.378 JUN, SMURF2, TFE3, SERPINE1, 
MAP2K1, TGIF1, SMURF1, PMEPA1 

B Cell Activating Factor Signalling 1.69 0.122 2 RELA, NFKBIA, JUN, NFKB2, ELK1 

Chronic Myeloid Leukemia 
Signalling 1.69 0.0857 NA 

RELA, AKT1, MECOM, CDKN1A, 
CDKN1B, NFKB2, MAP2K1, SIN3A, 
HDAC5 

Cell Cycle Control of 
Chromosomal Replication 1.69 0.107 NA CDC45, CDC7, POLA2, CDK9, CHEK2, 

ORC1 

PI3K/AKT Signalling 1.68 0.0813 1.265 
RELA, NFKBIA, AKT1, YWHAH, 
CDKN1A, PPP2R5B, MAP3K8, 
CDKN1B, NFKB2, MAP2K1 

IL-15 Production 1.66 0.143 NA RELA, PTK6, NFKB2, IRF1 

Telomerase Signalling 1.62 0.0833 1.342 
ELF3, AKT1, ETS2, CDKN1A, 
PPP2R5B, TPP1, MAP2K1, TERF1, 
HDAC5 
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Type II Diabetes Mellitus 
Signalling 1.61 0.0794 1.89 

RELA, NFKBIA, AKT1, PRKAB2, 
TNFRSF1A, PKM, SOCS2, NFKB2, 
ADIPOR2, SMPD2 

PI3K Signalling in B Lymphocytes 1.61 0.0794 3.162 RELA, IL4R, ATF3, NFKBIA, AKT1, 
JUN, CARD10, NFKB2, ELK1, MAP2K1 

MIF Regulation of Innate 
Immunity 1.61 0.116 2.236 RELA, NFKBIA, JUN, NFKB2, NOS2 

TNFR2 Signalling 1.61 0.138 2 RELA, NFKBIA, JUN, NFKB2 

Death Receptor Signalling 1.59 0.087 1.414 
TNFRSF21, RELA, NFKBIA, 
TNFRSF1A, TNFRSF10B, DFFB, 
NFKB2, TNFRSF10A 

PPAR Signalling 1.59 0.087 -2.121 RELA, NFKBIA, JUN, PDGFA, 
TNFRSF1A, NR1H3, NFKB2, MAP2K1 

Ceramide Signalling 1.56 0.086 1.89 RELA, AKT1, JUN, TNFRSF1A, 
PPP2R5B, NFKB2, MAP2K1, SMPD2 

RAR Activation 1.52 0.0695 NA 

RELA, AKT1, JUN, ADCY5, RDH14, 
PNRC1, RDH16, SMARCE1, 
SMARCD2, NFKB2, MAPKAPK2, 
MAP2K1, MMP1 

Prostate Cancer Signalling 1.51 0.0842 NA RELA, NFKBIA, AKT1, CDKN1A, 
CDKN1B, NFKB2, MAP2K1, SIN3A 

CD40 Signalling 1.51 0.0897 1.89 RELA, NFKBIA, JUN, STAT3, NFKB2, 
MAPKAPK2, MAP2K1 

Sumoylation Pathway 1.49 0.0833 0.816 NFKBIA, JUN, RFC4, RHOB, RCOR1, 
NFKB2, RFC5, ISG20 

HGF Signalling 1.49 0.0789 1.134 ELF3, AKT1, JUN, ETS2, CDKN1A, 
MAP3K8, STAT3, ELK1, MAP2K1 

Ubiquinol-10 Biosynthesis 
(Eukaryotic) 1.45 0.158 NA MICAL1, MICAL2, MICAL3 

1D-myo-inositol 
Hexakisphosphate Biosynthesis II 
(Mammalian) 

1.45 0.158 NA ITPKC, ITPKA, PMPCA 

D-myo-inositol (1,3,4)-
trisphosphate Biosynthesis 1.45 0.158 NA ITPKC, ITPKA, PMPCA 

Gα12/13 Signalling 1.44 0.0741 2.333 
RELA, NFKBIA, AKT1, JUN, F2RL1, 
MEF2C, MAPK7, NFKB2, ELK1, 
MAP2K1 

Erythropoietin Signalling 1.43 0.0864 NA RELA, NFKBIA, AKT1, JUN, NFKB2, 
ELK1, MAP2K1 

TNFR1 Signalling 1.43 0.104 2.236 RELA, NFKBIA, JUN, TNFRSF1A, 
NFKB2 

Production of Nitric Oxide and 
Reactive Oxygen Species in 
Macrophages 

1.43 0.0674 1.941 

RELA, NFKBIA, AKT1, JUN, RHOB, 
TNFRSF1A, PPP2R5B, IFNGR2, 
MAP3K8, NFKB2, NOS2, MAP2K1, 
IRF1 

Thio-molybdenum Cofactor 
Biosynthesis 1.41 1 NA MOCOS 

Asparagine Biosynthesis I 1.41 1 NA ASNS 
D-mannose Degradation 1.41 1 NA MPI 
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RANK Signalling in Osteoclasts 1.4 0.08 1.89 RELA, NFKBIA, AKT1, JUN, MAP3K8, 
NFKB2, ELK1, MAP2K1 

Tryptophan Degradation X 
(Mammalian, via Tryptamine) 1.4 0.15 NA ALDH2, MAOB, RDH14 

Oncostatin M Signalling 1.39 0.118 2 STAT3, ELK1, MAP2K1, MMP1 

ERK5 Signalling 1.38 0.0909 0.816 LIF, AKT1, YWHAH, MEF2C, MAP3K8, 
MAPK7 

Heme Biosynthesis II 1.35 0.222 NA PPOX, UROS 

Noradrenaline and Adrenaline 
Degradation 1.35 0.114 NA HSD17B10, ALDH2, MAOB, RDH14 

Superpathway of Methionine 
Degradation 1.35 0.114 NA MAT1A, PRMT3, FTSJ1, MRM2 

IL-17 Signalling 1.34 0.0824 NA RELA, AKT1, JUN, ELK1, MAPKAPK2, 
NOS2, MAP2K1 

miRNA targeted mRNAs enriched pathways 

Ingenuity Canonical Pathways -log(p-value) Ratio z-score Molecules 

Superpathway of Serine and 
Glycine Biosynthesis I 3.33 0.429 NA PSPH, PHGDH, SHMT2 

Phosphatidylethanolamine 
Biosynthesis II 3.14 0.375 NA ETNK2, PIGF, PCYT2 

Neuregulin Signalling 2.31 0.0814 1.134 AKT1, GRB7, HBEGF, ERRFI1, 
CDKN1B, ELK1, MAP2K1 

Serine Biosynthesis 2.25 0.4 NA PSPH, PHGDH 

Sirtuin Signalling Pathway 2.01 0.0495 -0.302 

TIMM8A, ATG5, PFKFB3, GADD45B, 
TIMM9, NDRG1, STAT3, BPGM, 
VDAC2, ATG13, AKT1, GABARAPL1, 
MAP1LC3B, NOS2 

autophagy 2 0.0926 NA ATG13, ATG5, ULK1, MAP1LC3B, 
SQSTM1 

Methionine Degradation I (to 
Homocysteine) 1.92 0.15 NA MAT1A, PRMT3, MRM2 

Cysteine Biosynthesis III 
(mammalia) 1.81 0.136 NA MAT1A, PRMT3, MRM2 

JAK/Stat Signalling 1.81 0.0723 1.633 STAT6, AKT1, PTPN1, SOCS2, 
STAT3, MAP2K1 

Heme Biosynthesis II 1.72 0.222 NA PPOX, UROS 

TGF-β Signalling 1.71 0.069 0 SMURF2, SERPINE1, MAP2K1, 
TGIF1, SMURF1, PMEPA1 

iNOS Signalling 1.66 0.0909 NA NFKBIA, IFNGR2, NOS2, IRF1 

Hereditary Breast Cancer 
Signalling 1.66 0.0567 NA FANCE, GADD45B, AKT1, WEE1, 

SMARCE1, SMARCD2, RFC5, CHEK2 

ERK5 Signalling 1.66 0.0758 0.447 LIF, AKT1, YWHAH, MEF2C, MAP3K8 

Acute Phase Response Signalling 1.64 0.0533 2.828 NFKBIA, AKT1, C4BPB, IL6R, SOCS2, 
STAT3, ELK1, SERPINE1, MAP2K1 

Asparagine Biosynthesis I 1.61 1 NA ASNS 
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D-mannose Degradation 1.61 1 NA MPI 

ErbB2-ErbB3 Signalling 1.61 0.0735 2 AKT1, CDKN1B, STAT3, ELK1, 
MAP2K1 

Sertoli Cell-Sertoli Cell Junction 
Signalling 1.59 0.052 NA 

F11R, AKT1, CLDN4, MYO7A, 
MAP3K8, ELK1, NOS2, MAP2K1, 
TUBB2B 

T Helper Cell Differentiation 1.58 0.0725 NA STAT6, IL4R, IL6R, IFNGR2, STAT3 

Pancreatic Adenocarcinoma 
Signalling 1.56 0.0583 2.236 AKT1, HBEGF, CDKN1B, STAT3, 

ELK1, MAP2K1, SIN3A 

Cleavage and Polyadenylation of 
Pre-mRNA 1.48 0.167 NA CSTF3, WDR33 

Pregnenolone Biosynthesis 1.48 0.167 NA MICAL2, MICAL3 

PI3K Signalling in B Lymphocytes 1.46 0.0556 2.646 IL4R, ATF3, NFKBIA, AKT1, CARD10, 
ELK1, MAP2K1 

IL-6 Signalling 1.43 0.0547 2.646 NFKBIA, AKT1, IL6R, STAT3, ELK1, 
MAPKAPK2, MAP2K1 

Role of JAK2 in Hormone-like 
Cytokine Signalling 1.38 0.0938 NA PTPN1, SOCS2, STAT3 

IGF-1 Signalling 1.35 0.0566 2.236 AKT1, YWHAH, SOCS2, STAT3, ELK1, 
MAP2K1 

Role of BRCA1 in DNA Damage 
Response 1.34 0.0625 NA FANCE, SMARCE1, SMARCD2, RFC5, 

CHEK2 
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Abstract	

Clostridium difficile is an anaerobic, spore-forming bacterium that can cause diarrhoea and 

fulminant colitis. C. difficile toxins A and B play a key role in the pathogenesis. Besides effects 

in the colon, recent studies indicate prevalence of C. difficile infection (CDI) in the small intestine. 

In this paper, we explored the impact of C. difficile toxins on the small intestine using an in vitro 

approach and used systems biology techniques along with large data integration to identify food 

compounds that can reduce their cytopathic impact. Differentiated Caco-2 cells were exposed 

to C. difficile toxins and the transcriptomic changes were studied. For the identification of foods 

with potential counteracting effects, these transcriptomic data were combined with a data 

compendium containing microarrays from Caco-2 cells exposed to various food compounds to 

conduct principle component analysis (PCA). Food candidates were selected and further 

examined for their counteracting effect on toxin-induced disruption of cell integrity and 

translocation of toxins. Based on PCA we hypothesized that blackcurrant, strawberry and yellow 

onions would attenuate the cytotoxic effects of C. difficile toxins and verified these predictions 

in vitro. The verification was done using trans-epithelial electrical resistance (TEER) 

measurements and translocation of the toxins. These results might lead to novel strategies for 

treating C. difficile infection in patients receiving antibiotic therapy.  
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Introduction	

Clostridium difficile infection (CDI) affects hundreds of thousands of people each year and 

causes a broad spectrum of symptoms that range from watery diarrhoea to fulminant colitis 1–3. 

C. difficile spores are able to endure extreme conditions and can to colonize the intestine, 

especially when normal microbiota has been disturbed by the antibiotics 1,2,4. Most C. difficile 

strains produce two major exotoxins, toxin A and toxin B (ToxA and ToxB, also called TcdA and 

TcdB, respectively) which play a major role in pathogenesis of CDI 4. ToxA and ToxB share 44% 

sequence identity between each other and are found to have overlapping enzymatic activities 

4. Studies indicate that these exotoxins initially bind to the cell surface receptors and this is 

followed by the toxins being internalized into the host cells. On internalization, the toxins target 

the Ras superfamily of small GTPases for modification via glycosylation, leading to irreversible 

inactivation of vital signalling pathways in the cell 4. Low doses of ToxA have been found to alter 

cell polarity by inducing plasma membrane components redistribution in 3-D and 2-D intestinal 

epithelial cell model systems 5. Earlier study on the effects of the toxins on Caco-2 monolayer 

indicates that ToxA assist translocation of the toxins more than ToxB alone 6. On the other hand, 

the cytotoxicity of ToxB has been found to be 100 - 10,000 times more potent than ToxA for 

several cell types 4. Small differences found for pathway mechanism of the toxins might be 

explained by the use of different animal models, different toxin dosages or unidentified genetic 

variations in C. difficile strains 4.  

For many years, CDI studies have focused on CDI in large intestine as C. difficile was initially 

thought to solely colonize the large intestine 2. However, recent studies indicate that C. difficile 

infections also affect small intestine and are on a rise 7. There is also increasing incidence of 

CDI in patients suffering from Intestinal Bowel Disease (IBD) who have undergone surgical 

procedures 8. IBD is an umbrella term for intestinal diseases that consists of two primary types: 

Ulcerative colitis and Crohn’s disease. Ulcerative colitis is known to affect only the colon while 

Crohn’s disease affects both colon as well as the terminal ends of the small intestine 9. In the 
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light of these evidences, understanding the impact of C. difficile on small intestinal epithelia is 

of need and importance. In addition, new treatments and preventive strategies for CDI are 

needed 10 11 as there has been a rise in antibiotic resistant strains 12. A food based strategy 

which can easily be applied on a daily basis could be a way forward and sometimes support 

medicine based therapeutic treatment, similar to the method applied for Helicobacter pylori 13.  

The aim of this research was to identify food compounds that might prevent/reduce the toxic 

effects of the C. difficile toxins on intestinal epithelial cells using Caco-2 cell monolayers cultured 

for 21 days as model system. An integrative biology approach was used to analyse the 

transcriptional response of Caco-2 cell monolayers to toxin exposure and existing 

transcriptomics data for Caco-2 cells exposed to food in order to select candidate food 

substances to attenuate cytopathic effect of the C. difficile toxins. Finally, the predicted foods 

were tested for their capacity to attenuate effect of C. difficile toxins on integrity of Caco-2 

intestinal cell monolayers in vitro.  

Methods	

Caco-2 cell culture  

ATCC derived Caco-2 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; 

Gibco-Invitrogen, Bleiswijk, The Netherlands) with 4.5 g/L glucose, 0.58 g/L glutamine, no 

pyruvate, supplemented with 10% heat inactivated FBS (Hyclone Perbio, Etten-Leur, The 

Netherlands) and used with passage numbers between 30 and 40. For transwell assays, 

330,000 cells were seeded on ThinCert transwells with 33.6 mm2 membranes and 0.4 μm pores 

in 24-well suspension culture plates. Cells were grown for 21 days at 5% CO2 and 37°C and 

apical (150 μL) and basolateral (700 μL) medium were replaced three times per week. 
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In vitro digestion 

A total of 15 grams of white onion, yellow onion, blackcurrants (Ben Finlay cultivar) and 

strawberries (Sabrina cultivar) were mixed with an equal amount of 140 mM NaCl / 5 mM KCl 

and mashed with an ultra torax. The in vitro digestion protocol was mainly based on the paper 

of Vreeburg et al. with some slight modifications and in line with the standardized protocol as 

proposed by Minekus et al. 14,15. In more detail, 20 g of sample were transferred into a 50 mL 

tube, the pH was adjusted to 2 with HCl and 0.667 mL of 40 g/L porcine pepsin in 0.1 M HCl 

was added. The samples were then incubated for 30 min at 37°C. Subsequently, 1 M NaHCO3 

was added to raise the pH to at least 5.8, followed by 0.95 mL of 4 g/L porcine pancreatin in 0.1 

M NaHCO3 and 0.5 mL of a mixture of sodium taurocholate and sodium glycodeoxycholate (176 

mM of each) in 0.1 M NaHCO3. The pH of the sample was adjusted to 6.5 with 1 M NaHCO3, 

flushed with nitrogen and the sample was subsequently incubated for 60 min at 37°C. After this 

incubation, the pH of the sample was adjusted to 7.5 with 1 M NaHCO3 and the weight of the 

sample was adjusted to 30 g with 140 mM NaCl / 5 mM KCl. Samples were centrifuged for 45 

min at 3023 × g at 4°C. The supernatant was taken, flushed with nitrogen and stored at −80°C 

until further use. For preparing the in vitro digestion control, 140 mM NaCl / 5 mM KCl was used 

to replace food compounds. 

Exposure of differentiated Caco-2 cells to toxins and various food 

compounds 

All C. difficile toxins were derived from List Biological Laboratories, Inc. (Campbell, California, 

USA; Toxin A (#152), Toxin B (#155), Toxin A Toxoid (#153), Toxin B Toxoid (#154)) and 

dilutions were made in DMEM/FBS. For toxin incubation, 21 day differentiated Caco-2 cells were 

exposed to 0.25μg/ml toxin A (ToxA) or 0.25μg/ml toxin B (ToxB) or 0.25μg/ml toxin A + 

0.25μg/ml toxin B (ToxAB). Toxin A and B toxoids (0.25μg/ml), meaning formaldehyde 

inactivated toxins, were also included in the exposure experiments as a control for the cytotoxic 
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effects of the C. difficile toxins. One day before the exposure experiments, medium was 

refreshed and at the day of exposure, medium was removed from the apical and basal 

compartments and toxin samples were added to the apical compartment while fresh DMEM/FBS 

medium was added to the basal compartment. To monitor the integrity of the Caco-2 monolayer, 

transepithelial electrical resistance (TEER) was measured at 37ºC using a MilliCell-ERS Ώ 

meter (Millipore, Molsheim, France). In following experiments, Caco-2 cells were co-incubated 

with C. difficile toxins (0.25μg/ml toxin A or 0.25μg/ml toxin B or 0.25μg/ml toxin A + 0.25μg/ml 

toxin B) and various (digested) food compounds. Therefore, digested white onion (WOd), yellow 

onion (YOd), blackcurrant (Ben Finlay), Strawberry (Sabrina) and digestion control samples 

(control digest) were diluted 1:4 in DMEM/FBS medium. Undigested galacto-oligosaccharides 

(GOS; Friesland Campina, Amersfoort, the Netherlands) were added to the Caco-2 cells in a 

concentration of 0.5mg/ml and DMEM/FBS medium was used as control for this exposure. One 

day before the exposure experiments, medium was refreshed and at the day of exposure, 

medium was removed from the apical and basal compartments and diluted samples (toxins + 

food compounds) were added to the apical compartment while fresh DMEM/FBS medium was 

added to the basal compartment. TEER was determined before and at 0, 1, 3, 4, 5, 6 and 24 h 

after addition of samples to check integrity of the intestinal monolayer. In order to be able to 

reverse the toxic effect of C. difficile toxins by food compounds, we focused on a ~35% drop in 

TEER after exposure to toxins, since a TEER drop below 35% seems to damage the cells 

irreversibly. At that moment (~35% drop in TEER by one of the toxin treatments), the Caco-2 

cells were lysed with 300 μL TRIzol (Invitrogen, Life Technologies, Bleiswijk, Netherlands) and 

the triplicates in each experiment were pooled for RNA isolation. These RNA samples were 

used for microarray analysis. Toxin translocation was measured using the Clostridium difficile 

toxin A or B ELISA kit (Catalog No. ABIN1098189, Antibodies-online GmbH, Aachen, Germany). 

In each experiment, the digested food and control samples were exposed to Caco-2 cells in 

triplicate and three independent exposure experiments were performed on different days.  
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RNA isolation 

For Caco-2 cells, cell lysates of triplicates per experiment were pooled and total RNA was 

extracted using the QIAshredder and RNeasy Mini kits (Qiagen, Venlo, The Netherlands) 

following the manufacturers’ protocols 14. Briefly, TriZol (Invitrogen) extraction from ThinCerts 

transwells was performed with 300 μL TriZol and followed by DNase-I treatment (Sigma-Aldrich, 

Zwijndrecht, the Netherlands) and RNeasy clean-up (Qiagen, Venlo, The Netherlands). Quality 

and amount of RNA was evaluated by UV spectrometry (260 and 280 nm wavelength) on the 

Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA).  

Microarray Experiments 

RNAs of each independent Caco-2 experiment with toxin exposures (n=3 per treatment) were 

hybridized to Affymetrix© Human Gene 1.1 ST according to standard Affymetrix© protocols. 

Quality control of the datasets was performed using Bioconductor packages 16,17 integrated in 

an on-line pipeline 17. Microarray data have been submitted to GEO and can be found under 

accession code GSE100541. 

Data preprocessing, Differential Expression and Pathway Analysis 

Array data were normalized using the Robust Multiarray Average (RMA) M-estimator method 

18,19, probe sets were defined according to Dai et al. 20. To exclude interference of non-expressed 

or very lowly expressed genes, Universal exPression Code (UPC) 21 was computed. Genes with 

UPC value lower than 0.5 in none of the replicates were considered to be non-expressed and 

removed from further analysis. To identify differential gene expression induced by the toxins, 

pair-wise comparison analyses were performed (toxins versus DMEM control) and genes with 

p-value <0.01 were considered to be differentially expressed. Pathway enrichment analysis was 

performed using Ingenuity Pathway Analysis (IPA) (Ingenuity© Systems, www.ingenuity.com). 

Significance values for enrichment were calculated using Fisher's exact test right-tailed.  
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Data Compendium  

Data compendium comprised of microarray data collected from previous food exposure studies 

reported in Venkatasubramanian et al 22. The dataset was restricted to experiments where the 

exposure was food and food related substances like white and yellow onion, sulforaphane 

(present in broccoli) and probiotics like L. casei and B. breve 22. In total, 73 experiments 

conducted over 15 batches were included in the data compendium and most experiments had 

been performed in triplicates. Supplementary Table T1 describes the dataset used in the data 

compendium and their GEO accession number. The data was RMA normalized in batches of 

experiments using affy and Oligo packages 23,24 of Bioconductor 16 in R (version 2.3.2) and the 

differential expression values were calculated using Limma package 25,26. 

Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical technique which is used to reduce 

dimensionality while conserving significantly large variability in the data 27,28. This is achieved 

by identifying new variables (principal components) that are linear combinations of the original 

variables. Principal components are orthogonal and each component capture decreasing 

amounts of information. Basically, PCA results in the projection of the original data on a lower 

dimensional space (PCA space): observation that are closer to each one in the PCA space are 

expected to show similar characteristics, in this case gene expression levels. Based on this, 

PCA was used to select beneficial compounds, under the rationale that foods most distant from 

toxins and toxoids would be the most efficient in countering the effects of toxins and thus prove 

to be beneficial against C. difficile toxin-induced disruption of intestinal integrity. Meanwhile, it 

was expected that food compounds closer to toxoids in the PCA space have least beneficial 

effects. 

PCA was performed on the differential expression values of selected genes (e.g. genes from 

Sumoylation pathway, as derived from IPA or top n-number of regulated genes) from the 
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compendium along with the differential expression values for toxins and toxoids and plots were 

generated (Figure 4). PCA was performed in R using ‘prcomp’ (R version 3.2.3). Data 

dimensionality was assessed using a Tracy-Widom test at a 0.01 confidence level 29,30. The 

optimal number of components was 11 for PCA with sumoylation genes and 17 for PCA with 

top 50 genes. In all cases the selected number of components accounted for >99% of variance 

explained. For visualization purposes only the first two components are shown.  

Other statistical Analysis 

TEER measurements and toxin translocation measurements were conducted in biological 

triplicates. The data was visualized as mean +/- standard deviation and was statistically tested 

for significant differences between control and treatment using a paired student’s t-test. Results 

were considered statistically significant if their p-values were below 0.05. 

Results	

Gene expression profiling of Caco-2 cells exposed to C. difficile toxins. 

Caco-2 cells, differentiated for 21 days into a small intestinal phenotype, were exposed to C. 

difficile ToxA, ToxB, ToxA and ToxB together (ToxAB) or the formaldehyde inactivated toxoids 

A and B and controls. Transepithelial electrical resistance (TEER) was used to measure integrity 

of the Caco-2 monolayers. On average in the triplicate experiments, after 4.1h (± 0.6h) 

incubation, a ~35% drop in TEER was reached on exposure to ToxA and/or ToxAB and RNA of 

Caco-2 cells was harvested for microarray analyses. Within this time frame, neither ToxB nor 

the toxoids induced a drop in TEER and so did not affect the monolayer integrity (Figure 1). 

Differential gene expression was assessed by comparing the C. difficile toxin treatments versus 

the DMEM control. To further select the genes that are most likely involved in the (cyto)toxic 

effects of the toxins, we excluded genes that were also differentially expressed by the toxoids 

compared to DMEM control (n=562 genes). This resulted in the differential expression of 1407 
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genes for ToxA, 215 genes for ToxB and 1013 genes for ToxA and B. Figure 2a shows the top 

10 up and down regulated genes for each toxin treatment, based on fold change (FC) (p-value 

< 0.01), and combined in a heatmap. For the upregulated genes there is large overlap between 

the ToxA and ToxAB, but ToxB commonly induced lower FC than ToxA and ToxAB (Figure 2b 

and Figure 2c). The most upregulated gene for all toxins was RHOB (Ras homolog gene family, 

member B), which is a member of the Rho GTP-binding protein family. Among the 

downregulated genes, larger variation of genes was observed between the toxins. For ToxA 

and ToxB individually, ANKRD1 (Ankyrin Repeat Domain 1) was the most downregulated gene, 

whereas for the combination of toxin A and B (ToxAB), CCL15 (Chemokine (C-C motif) ligand 

15) showed the strongest downregulation (Figure 2a).  

 

Figure 1: TEER drop measured after exposure of Caco-2 cells to ToxA, ToxA and ToxB 

(ToxAB), ToxB and ToxoidAB compared to DMEM control which was set to 100%. ‘*’ indicates 

significant results (p-value < 0.05). 



 133 

 

Figure 2: a) Heatmap of top 10 up and 10 down regulated genes from experiments where Caco-

2 cells were exposed to ToxA, ToxB and ToxAB (ToxA + ToxB) (p-value < 0.01), combined for 

all three toxin exposures. b & c) Differential expressed genes induced by ToxA, ToxB and ToxAB 

b) down regulated, c) up regulated. 
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Figure 3: a) Pathways enriched in Caco-2 based on differentially expressed genes induced by 

ToxA, ToxB and ToxAB. Pathways have been ordered according to p-values of enrichment 

analysis. Only top 20 pathways are shown (combined for all three toxin exposures). b) 

Differentially expressed genes by ToxAB in Sumoylation pathway as represented by IPA are 

shown. Red indicates up regulated genes and green indicate down regulated genes. Darker 

shades indicate larger fold changes. 

Next, differentially expressed genes (p-value < 0.01) were selected for pathway enrichment 

analysis. The (canonical) pathways were ranked based on significance of the enrichment score 

and the top 20 pathways for all toxins are presented in Figure 3a. The sumoylation pathway 

showed highest significance in all three perturbations (ToxA, ToxB, ToxAB) and therefore we 

considered it as an important pathway in Caco-2 cells in response to C. difficile toxin exposure. 

Sumoylation is a posttranslational modification and has a role in various cellular processes, 

such as stress and injury. Figure 3b shows the gene expression changes in the sumoylation 

pathway induced by ToxAB in more detail. Among the genes from this pathway that were 

differentially expressed, it was found that the Rho GTP-binding protein family genes were 

substantially affected by the toxins. As C. difficile toxins are known to affect Rho GTPases this 

is not surprising 31,32. Additionally, p53 signalling (apoptosis-related), cell junction and tight 

junction signalling pathways are observed to be significantly affected. These pathways might be 

linked to the drop in TEER and thus the monolayer integrity that we found in our exposure 

experiments. Pathways related to cytokine signalling like, IL-8 (interleukin-8) signalling and ILK 

(integrin linked kinase) signalling are other interesting signalling pathways that are activated, 

indicative for a potential effect of toxins on immune-related responses.  

Identification of food compounds which might attenuate C. difficile toxin-

induced disruption of intestinal integrity. 

Principle Component Analysis (PCA) was used to find patterns and identify candidate food 

compounds with remedial effects against the impact of C. difficile toxins. For this, only the gene 
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expression effects of ToxA and B combined (so ToxAB) were used in this PCA strategy since 

the in vivo mechanism of action of CDI involves both ToxA and B affecting simultaneously. We 

combined the data obtained in this study with a compendium of Caco-2 specific gene expression 

data 22. The dataset compendium contains differential gene expression data from food exposure 

studies performed in our lab and from public repositories. The compendium contains 73 

experiments performed over 15 batches. The compendium was used together with the 

expression data from C. difficile toxins and toxoid studies here presented, to analyse similarities 

and/or contradictions between gene expression patterns that might be indicative for a remedial 

effect of food compounds on CDI.  

In first instance, all differentially expressed genes induced by ToxAB and belonging to 

sumoylation pathway (17 genes) (Figure 3b), were used to find beneficial food substances using 

PCA. Sumoylation pathway was chosen since this pathway was found to be most significantly 

enriched among the differentially expressed genes in Caco-2 cells upon exposure to the C. 

difficile toxins. 

The first two principal components (PCs) of the PCA are shown in Figure 4a. The two PCs 

account for 70% of the total variance in the data and the first 11 PCs explain 99% of the 

variability. In Figure 4a, we observe that ToxA and ToxAB are distinctly separated from toxoids 

based on sumoylation pathway genes. On the contrary, ToxB, which also showed less effect on 

Caco-2 cell integrity than ToxA and ToxAB, was in proximity to the toxoids in the PCA space. 

We hypothesized that food compounds closer to toxoids in the PCA space would probably have 

no or less beneficial effects while foods most distant from toxoids and toxins would be most 

efficient in countering the effects of toxins and thus prove to be beneficial for C. difficile toxin-

induced disruption of intestinal integrity. Based on this hypothesis, blackcurrant (Ben Finlay) 

might potentially be the most counteracting and fibres (like GOS) least effective against toxin 

effects or at least against the sumoylation pathway activation. Compounds that are found to be 

in between toxoids and the toxins (ToxA and ToxAB), such as strawberry (Sabrina) and yellow 

onion, might be intermediately effective against the toxin induced TEER drop. White onion, 
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which is found closer to the toxoids in the PCA, was expected to be less effective in attenuating 

C. difficile cytotoxicity.  
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Figure 4: PCA plots based on a compendium of 15 batches of microarray data collected from 

73 food related interventions on Caco-2 a) 17 genes in the sumoylation pathway were included 

in PCA b) Top 25 up and top 25 down regulated genes were considered for PCA while only 28 

genes were used in PCA as not all 50 genes had differential expression values in all experiments 

in the compendium. 

PCA was also performed using top 25 up and top 25 down regulated genes induced by ToxAB 

in Caco-2 cells (Figure 4b). Differential expression values for 28 of the 50 genes (22 genes were 

not found in all 82 experiments) from other exposure experiments were obtained from the data 

compendium and used for PCA. In this case, the first two PCs explain 69 % of the total variability 

(Figure 4b). 99% of total variability in the data was explained by 17 PCs. Inspection of this PCA 

plot (Figure 4b) shows similar results as the analysis of the PCA plot based on genes within the 

sumoylation pathway (Figure 4a), thus reinforcing our hypothesis.  

In addition to using sumoylation and top 50 up/down regulated genes, PCA was also performed 

using the full 1013 genes that were differentially expressed by ToxAB (Supplementary Figure 

S1). However, here two principal components did not show a clear separation of toxins, toxoids 

and other food compounds which could lead to predictions of beneficial food substances. In this 

case, the first two PCs explain 58% of the variance. The lack of clear separation can be due to 

the large number of considered genes. Many of them may represent a general response to 

stress conditions and as such they provide no specific response to the tested toxins.  

Validation of beneficial effects by candidate food compounds on C. difficile 

toxin-induced intestinal integrity.  

Food compounds that were expected to be the most effective, moderately effective and least 

effective against the toxin-induced cytotoxicity based on PCA, were chosen for experimental 

verification. These were blackcurrant (Ben Finlay cultivar, most effective), strawberry (Sabrina 

cultivar, moderately effective), yellow onion (moderately effective), white onion and GOS (least 
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effective). These food substances were verified for their beneficial effects by co-exposure of 

Caco-2 cells to the food substances and the C. difficile toxins. 

The TEER values which represent the intestinal integrity of the Caco-2 monolayer are shown in 

Figure 5. The TEER values show that blackcurrant mostly diminished the drastic drop in TEER 

after 24 hours exposure to the toxins. Assuming that the TEER value of DMEM exposed Caco-

2 cells (control) is 100%, then ToxA and ToxAB induced a TEER drop of 69% and 74% 

respectively, after 24 hours of exposure. However, in the presence of blackcurrant a drop of 

only 19% and 16% of control TEER values was observed to be induced by ToxA and ToxAB 

respectively (Figure 5). This was a significant counteractive effect of blackcurrant on toxin-

disrupted TEER (p-value < 0.05). Next to this significant reduction in TEER after 24 hours 

exposure, blackcurrant also induced a substantial delay in TEER drop after 4, 5 and 6 hours of 

toxin exposure, even for ToxB.  

Strawberry and yellow onion especially delayed the drop in TEER induced by the ToxA and 

ToxAB, as at time point 6 hours after exposure, significant differences in TEER (p-value < 0.05) 

could be detected. After 24 hours of exposure, the effects of strawberry and yellow onion were 

less strong than what was seen for blackcurrant, but still a significant beneficial effect was found 

for strawberry (but not yellow onion). It can be seen that this counteracting effect was weaker 

than that induced by blackcurrant. White onion still showed some significant beneficial effect on 

TEER (but less strong than strawberry and yellow onion), whereas GOS showed no significant 

effect on the C. difficile toxin-induced reduction in TEER (Figure 5).  

Cytotoxicity by C. difficile toxins also includes translocation of the toxins over the intestinal 

barrier. As an additional test for confirmation of our PCA-based hypothesis, toxin translocation 

towards the basolateral compartment was studied by ELISA. The results obtained support the 

TEER measurements (Figure 6) as blackcurrant abolished the toxin translocation almost 

completely (p-value < 0.05). Strawberry and yellow onion showed a moderate preventive effect 

(p-value < 0.05) on toxin translocation, while white onion showed significant but weaker effect 
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compared to yellow onion and GOS did not have any significant effect on the translocation of 

ToxA and ToxB. Together these data indicate that especially blackcurrant, strawberry and 

yellow onions, but to a lesser extent maybe also white onion, may have a protective effect 

against the disruption of intestinal integrity induced by C. difficile toxins. 
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Figure 5: Relative TEER values measured before and after exposure of food compounds along 

with Toxin exposures (TEER values of control medium w/o food compounds were set to 100%). 

Toxins used include ToxA, ToxB and ToxA + ToxB together. Food compounds used are 

blackcurrant (Ben Finlay), strawberry (Sabrina), yellow Onion, white Onion and GOS.  ‘*’ 

indicates significant differences in TEER values between - and + food compounds (p-value < 

0.05). 
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Figure 6: ToxA and ToxB translocation measured using ELISA. Measurements were made in 

the basolateral medium of Caco-2 cells with and without exposure of food compounds namely 
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blackcurrant (Ben Finlay), strawberry (Sabrina), yellow onion, white onion and GOS. ‘*’ indicates 

significant results (p-value < 0.05). 

Sorting the food compounds on their counteractive effectiveness based on TEER values and 

toxin translocation, in the order of most effective to least effective, coincides with our PCA-based 

hypothesis. Thus, the efficiency of blackcurrant was found to be the strongest in counteracting 

toxin-induced cytotoxicity, while strawberry and yellow onion were moderately effective and 

white onion and GOS were least effective.  

Discussion	

A sizeable number of studies in the past have focused on the effects of C. difficile and its toxins 

on large intestine and cecum with studies involving physiological and gene expression studies 

33–38. However, recently, evidence is emerging on the effects of C. difficile on human small 

intestine and recurring CDI in hospitals 7. To the best of our knowledge, our work is the first 

study focusing on the effects of toxins on transcriptional changes in a model of small intestinal-

like enterocytes. Previous transcriptomics studies have been conducted on the effects of the 

toxins on cecal models, namely HCT-8 cells (human ileocecal cell lines) and mouse cecal cells 

37,38. Among the top upregulated genes we identified are RHOB, JUN, DUSP1, KLF6, GDF15 

which were also found to be upregulated in toxin exposure studies involving mice cecum and 

HCT-8 cells 38. This indicates that these are commonly activated genes by the C. difficile toxins. 

Among the most down regulated genes, ANKRD1 seems to be involved in apoptosis, whereas 

CCL15 belongs to the CC chemokine family and is a chemoattractant for neutrophils, 

monocytes, and lymphocytes 39,40. 

Overall, we found that gene expression is most altered upon exposure to ToxA or ToxAB, 

whereas relatively little change was observed for ToxB. ToxB elicited differential expression of 

less than one third of the total number of genes differentially expressed by either ToxA or ToxAB. 
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Similarly, TEER measurements indicate that ToxB by itself has less impact on cellular 

monolayers, at least during the considered exposure time frame.  

At pathway level sumoylation pathway processes seem to be significantly perturbed on all three 

exposures (ToxA, ToxB, ToxA + ToxB). SUMO (small ubiquitin-like modifier) are a family of 

small proteins having significant structural conservation with ubiquitin 41. They have several 

isoforms in humans and some of the isoforms are found to be ubiquitously expressed in human 

organs while others are restricted to few organs. Sumoylation pathway is the post translational 

modification of some target proteins where the SUMO proteins attach and detach covalently to 

their targets and thus modify the functions of the respective target genes 42. Sumoylation 

pathway is found to be an important target of bacterial infection 43,44 and although it is reported 

to play a role in bacterial infections in general 41, no previous study reports its activation by C. 

difficile toxins.  

In addition to the Sumoylation pathway, cell and DNA repair pathways, tight junction signalling, 

and some cytokine activation pathways are significantly perturbed and have been previously 

mentioned in other studies 37,38,45. p53 signaling pathway was also significantly perturbed on 

exposure of ToxAB and not on exposure of toxins individually. It might be that ToxA and ToxB 

have a synergistic effect as was suggested in previous toxins research 6. Studies conducted on 

Caco-2 suggest that ToxB can cause more harm after reaching the basolateral side of a cell 

which it does not reach on its own but for which ToxA pave the way 6. Cholecystokinin/Gastrin-

mediated Signalling showed highly significant perturbation on exposure to ToxA and genes like 

RHOB, JUN and others belonging to this pathway, are significantly expressed. This was not 

surprising as Rho GTPases were identified before to be highly affected by C. difficile toxin 

exposure 31,32. It should be noted that Rho and/or Jun activation have a substantial role in not 

only sumoylation pathway, but also for other significant pathways 37,38.  

In the past, many transcriptomics based analyses were performed on Caco-2 cells exposed to 

different foods and other luminal factors. We have made use of this available dataset and 
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performed an integrative analysis to conceptualize the present experiment. The enhanced 

context provided by this compendium allowed the prediction of food compounds that might 

alleviate the effects of CDI. PCA is a common technique for dimensionality reduction 27 and has 

been used over the years for descriptive and inferential statistics in all kinds of scientific data 

analysis 27,46. The PCA plots presented in this work were interpreted on the assumption that a 

compound, which is most distinct from toxins and toxoids based on transcriptomic effects in 

Caco-2 cells, might counteract the effects of harmful effects of the toxins. On the other hand, a 

compound that groups closer to the toxoids is expected to show an effect more similar to that 

of toxoids, implying it would have a minimal attenuating effect on the toxins or no effect. Food 

substances chosen based on this assumption proved (by experiments) to have the predicted 

relative efficiencies (so, blackcurrant - most effective, strawberry and yellow onion - moderately 

effective and white onion and GOS - least effective). In our study, we did not test compounds 

that were close to toxins, as their interpretation might be more ambiguous, as similar gene 

expression patterns and close proximity in the PCA plot indicate foods that trigger similar 

response as the toxins. It could be speculated that these compounds might enhance the effects 

of toxins by inducing the same pathways as the toxins, such as the induction of apoptotic 

processes or reduce the effects of the toxins by interfering with the toxin-induced pathways for 

instance pathways associated to defence mechanisms. This might be probed in future 

experiments. Another potential study would be to focus on the ToxA and ToxB breakdown by 

selecting specific proteases that block enzyme activity or by providing substrate for the toxins 

glycosylation activity to divert them away from intestinal epithelial cells. 

The results of the integrative analysis were followed by experimental characterization of the 

selected target food compound. In this study we found that berries, such as blackcurrant and 

strawberries, can have attenuating effects on cytotoxicity induced by C. difficile toxins. Berries 

have been proven to be rich in flavonoids, particularly polyphenols and phenolic acids 47,48 which 

have been brought in relation with many type of health effects 49. However, it is not proven 

whether the polyphenols are indeed responsible for the observed effect or whether there is 
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another mechanism involved. Follow up experiments with candidate bioactive components 

present in these foods could help select sources with the highest counteracting effects and such 

sources could then be further probed in vivo in animal studies. 

Although our study did not show a counteracting effect of GOS on the cytotoxic effects induced 

by C. difficile toxins, this does not exclude the possibility that specific fractions of GOS can still 

have a beneficial effect. Previously Sinclair et al. found that specific fractions of GOS (especially 

DP6; fractionated by cation exchange chromatography) could inhibit the binding of cholera 

toxins to their effective receptor 50. This inhibitory effect was not found with unfractionated GOS, 

which was used in our study. 

Conclusion	

In conclusion, we show that transcriptomics data can be used to identify beneficial food 

compounds. Our study, specifically indicates that blackcurrant (Ben Finlay) in particular and 

strawberry (Sabrina) and yellow onion may help to reduce the cytotoxic effects of C. difficile 

toxins on the small intestinal barrier. This result warrant further studies in animal and human 

models to prove its effectiveness in vivo.  
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Supplementary	figures	and	tables	

 

Supplementary Figure S1: The PCA plotted with 1013 genes that were differentially expressed 

in Caco-2 after exposure to ToxAB 
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Supplementary Table T1: Table provides details of accession number of the microarray data 

used in this publication. 'In preparation' indicates data that are yet to be submitted to the public 

data repositories 

Experiment name GEO / Array Express Accession 
Broccoli extracts that had been cooked for different lengths 
of time 

Array Express E-MEXP-1372 

Caco-2 cells co-cultivated with B. animalis subsp. lactis BB-
12 

Array Express E-GEOD-21930 

Conjugated linoleic acid (CLA) Array Express E-GEOD-6518 

Hydroxytyrosol (HTy) and hydroxytyrosyl ethyl ether (HTy-
Et) 

Array Express E-GEOD-38833 

Riboflavin depletion Array Express E-GEOD-15132 

Bifidobacterium bifidum PRL2010 on gene expression in 
intestinal epithelial cells 

Array Express E-GEOD-21976 

Ascorbate-stabilized quercetin Array Express E-GEOD-7259 

Caco-2 co-culture with Lactobacillus casei and 
Bifidobacterium breve 

Array Express E-GEOD-37369 

Sulforaphane (SF) Array Express E-MEXP-170 

Onion experiment GEO GSE83893 
Berry experiment In preparation From the lab of J. Mes 

Dietary fibres In preparation From the lab of J. Mes 
Probiotics In preparation From the lab of J. Mes 

Clostridium Toxins In preparation From the lab of J. Mes 
Short Chain Fatty Acid Experiments (SCFA) In preparation From the lab of J. Mes 
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Abstract	

The availability of microarray experimental data has been growing since the establishment of 

public database repositories such as GEO and ArrayExpress. These databases include large 

amount of data from microarray experiments using Caco-2 cells, which is a well-established 

model of the intestinal epithelium. In addition to extracting useful insights into cell function, the 

Caco-2 microarray datasets can be used to build a classifier that can organise new experiments 

into different categories of treatments. However, combining different datasets is hampered by 

batch and platform effects. We provide a simple solution in cases where the sample sizes are 

low, meta-data is incomplete and where controls are present for each batch of experiments, a 

situation usually not commonly addressed by available batch correction methods. Our method 

is based on non-parametric transformation of treatment vs control values using ranks and log-

odds. 

Initially, the normalisation protocol was used with Caco-2 control only datasets exhibiting both 

batch and platform effects and then validated using an independent microarray dataset 

generated with samples from arthritis patients. Finally, the normalisation protocol was applied 

to microarray data from Caco-2 cells exposed to luminal factors and shown to reduce both batch 

and platform effects, allowing comparison of treatment effects. 
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Introduction	

DNA microarray technology is an important watershed moment in the history of biological 

sciences 1–4. It opened the path to simultaneous genome-wide gene expression analysis using 

RNA transcripts derived from cells and tissues of interest2. Gene Expression Omnibus (GEO) 

is a data repository that contains high throughput gene expression data, experimental attributes 

and methodologies. At the time of this writing, more than half the data were from expression 

profiling using microarrays (~51400 records) 4,5. Since the dawn of high-throughput 

technologies, development of methods for analysing big data has become an important topic of 

research. Reanalysis and cross comparison of high-throughput data generated from different 

platforms and sources enabled developing models (e.g. connectivity map) that may provide 

newer biological insights 6.   

High-throughput experiments can be designed in different ways based on the research 

questions, requirements and availability of resources for the study. Owing to differing sample 

sizes and varying design, experiments may be conducted in a single batch or in multiple 

batches. We categorized the experimental designs under three types: i) Studies with single 

experimental challenge (e.g. a disease condition) conducted over multiple batches containing 

both experiment and control assays in the same batch (Figure 1); ii) Studies with single 

experimental challenge (e.g. a disease condition) conducted over multiple batches containing 

experiment and control assays in different batches (Figure 1) iii) studies with multiple 

experimental challenges conducted over single or multiple batches with each batch having its 

own control experiments (e.g. studies with food related challenges).  
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Figure 1: Figure explains the experimental setup of microarray analysis. The top part of the 

figure explains the experimental setup in batches (batch 1, batch 2, batch 3 and batch 4) in case 

of cell cultures. The bottom half of the figure indicates diseased vs healthy samples experiments 

explained in batches (batch A, batch B, batch C, batch D). 

Studies involving patient samples are often designed based on the first two methods mentioned 

above with a relatively large sample number (at least >5) while cell culture experiments are 

designed with relatively much smaller sample sizes and designed based on the third method 

mentioned above. Reanalysis of these cell culture experimental datasets requires combining 

multi-experimental dataset that may not necessarily have similar experimental challenges 

between batches. For instance, food related experimental challenges on Caco-2 cells could be 

Caco-2 cells exposed to white onion, yellow onion and red onion in one batch and blueberry, 

blackcurrant and strawberry in another. Combining such datasets could offer detailed insights 

in to the functioning of Caco-2 cells under differing categories of treatment (e.g. onions, berries, 

etc.). Moreover, such datasets could further be used to develop classifiers that can categorise 
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new experiments into food classes based on the experimental genetic profiles, similar to the 

approach used in connectivity map 6.  

One important challenge in fusing biological high-throughput data is the uncontrollable errors 

induced into the measurements due to external factors, known as batch effects 7. Lazar and 

colleagues have provided a detailed analysis on definition and causes of batch effects 8. Batch 

effects are a qualitatively different measurement errors based on the conditions in which 

experiments were conducted and are unrelated to the biological or scientific focus of the study 9. 

These effects are induced by various factors, such as different technicians performing the 

experiments, difference in days in which each batch of studies were conducted, variation in time 

of the day of the experiments and the batch of reagents used, among others 7,9. The batch 

effects are not only persistent in high-throughput data, but also in low-throughput experiments 9. 

Batch effects interfere in analysis of expression data and may lead to false outcomes and 

predictions. Previous studies on batch effects show that standard normalization protocols do 

not remove batch effects9.  

Table 1: Table showing different batch correction methods along with their required sample 

sizes and the number of studies that they could be used for. Table reproduced from Lazar et al, 

2013 8.  

Method Complexity No. of 
samples 

No. of 
studies Flexibility Additional 

info required 
Computational 

time 
BMC Low > 25 > 2 Low No Low 
Gene standardization Low > 25 > 2 Low No Low 
Ratio based methods Low > 25 > 2 Low Yes Low 
Scaling relative to 
reference Low > 25 > 2 Average No Low 

Empirical Bayes 
(ComBat) High > 5 > 2 High No Low 

XPN High > 30 2 Low No High 
DWD Average > 25 2 Low No Average 
SVD-BR Average > 25 > 2 Average No Average 
SVA Average > 25 > 2 Average No Average 
RUV-2 Average > 25 > 2 High Yes Average 
Quantile discretization Low > 25 > 2 Low No Low 
fRMA Barcode Low 1 > 2 Low No Low 
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As the commonly used normalization protocols do not remove batch effects, several batch effect 

removal protocols have been introduced over the years (Table 1). Some of the commonly10 used 

methods from the table are ComBat 7, surrogate variable analysis (SVA) 11, Distance weighted 

discrimination (DWD)12 and Ratio based methods13. However, most of these methods have 

been tested on datasets that were derived from diseased vs healthy sample studies7,14,9,15. 

Additionally, most of these methods are reported to require a large number of samples (at least 

> 5) 8, which are generally a common place in studies involving diseases, particularly cancer. 

However, most luminal factor exposure studies that are available in public databases, use cell 

or tissue culture models and are usually conducted in biological triplicates 16. Owing to the small 

sample sizes in food intervention studies, usage of popular batch removal techniques like 

Combat/ SVA could not be implemented 8. In addition to these, ComBat allows the user to 

provide experimental metadata as covariates for better batch effect correction (for instance the 

control medium needs to be defined because it often varies between labs and experiments). 

However, all required metadata is often not available. Moreover, some of the commonly used 

batch effect methods (ComBat and Limma with batch effect removal option set true) have been 

reported to deflate group differences, when the study groups are not evenly distributed across 

batches 17.  

In this article, we present a non-parametric method for cross comparison of different gene 

expression datasets, consisting of experiments conducted on same biological systems and 

collected over time. The method can be applied to experiments with smaller sample sizes, 

unevenly distributed study groups and without much need for all the metadata. 
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Methods		

Batch effect removal protocol 

 

Figure 2: Workflow of the method described in the paper. 

The batch effect removal protocol is illustrated in Figure 2. Assuming that: 

M indicates total experiments (e.g. onion experiment, berry experiment, etc.), each conducted 

in separate batches; My indicates each experiment; C indicates control exposure; T indicates 

total treatment exposure in each experiment; Tw indicates each treatment (e.g. yellow onion, red 

onion, etc.); k indicates the number of control replicates; t indicates the number of treatment 

replicates and N indicates the number of probesets, the normalization protocol is as follows 

1. The microarray dataset for each experiment is normalized batch-wise using RMA (robust 

multi average) normalization protocol which results in an RMA normalized data matrix 

of dimension N X My*(k+w*t). The rows represent the probesets and the columns 

represent control and experimental replicates. 
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2. The treatment (Twt) vs control (Ck) ratio values (Vwtk) are estimated for each experiment. 

The ratios are estimated between all treatment replicates of each experiment against all 

control replicates.  

𝑉"#$ =
𝑇#$
𝐶"
	 

Where, k is the number of control replicates, w is the number of treatments and t is the 

number of treatment replicates. This step yields Z = k * t number of ratio values (V), ie. 

3 control replicates and 3 treatment replicates yield Z = 9 (=3*3) ratio values (V) for each 

treatment w. This step will result in a ratio matrix of dimension N X k*w*t. 

3. The N probesets are then ranked (Rij) from 1 to N based on their Vwtk, where i indicates 

the probeset and j indicate the column (a total of k*w*t columns). Each treatment with Z 

number of treatment-to-control ratios will get Z different ranks for each probeset. This 

step will result in a rank matrix of dimension N X k*w*t. 

4. The ranked values are then log-odds transformed for each ranked probesets.  

𝑋𝑖 =
+ 𝑅𝑖𝑗
𝑁 + 11

+1− 𝑅𝑖𝑗
𝑁 + 11

3  

Where, Xi is the log-odds transformed value of probeset i, Rij is the rank of each probeset 

i for each column j. The log-odds transformation converts the ranks which are then 

distributed between (0, 1). This step will again result in log-odds matrix of dimension N 

x M*k*t. 

5. The median value of treatment vs control set (k*t values) for each probeset is estimated. 

This step will result in batch corrected matrix of dimension N x M.  

Experimental data 

Compendium of Caco-2 datasets 

The compendium contains microarray data of Caco-2 exposure experiments collected from 

GEO and from in-house experiments16 using affymetrix© microarray platform (Hgu133plus2, 
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Hugene 1.0 ST and Hugene 1.1 ST arrays). The experiments include exposure of food 

substances, pathogens and food compounds like sulforaphane, among others, on Caco-2 cells 

and in total there are 82 exposure experiments performed in 14 batches. Each batch consists 

of several exposure challenges (e.g, white onion, yellow onion and quercetin in onion 

experimental batch) and one control exposure (say, DMEM medium control). 

Arthritis Datasets  

Arthritis data was obtained from experiments conducted using cells cultured after extraction 

from Arthritis patients 18. The dataset was taken from GEO with accession number GSE13837. 

The dataset consists of four batches of experiments conducted with Synovial fibroblasts tissue 

samples collected from Osteoarthritis (OA) and Rheumatoid Arthritis (RA) patients. The cells 

were cultured for several days and treated with TGF-β and TNF-α. RNA was harvested after 

different exposure times (0, 1, 2, 4 and 12 hours) and hybridized to Affymetrix© HG133plus2 

arrays. The study was separated into different batches based on the date of array hybridisation. 

Of the four batches, 2 consisted of data from 2 patients (i.e. 2 samples) while the other two 

batches contained data from only one patient (i.e. 1 sample). In order to mimic the Caco-2 

compendium experimental design, 1 RA only batch (2 patients) and 1 OA only batch (2 patients) 

[Batch 3 and Batch 4] were chosen as additional validation set for verifying the efficacy of the 

proposed batch effects mitigation protocol. 

Caco-2 dataset pre-processing 

As the Caco-2 datasets belonged to three different array platforms, a pre-processing step 

involving ID mapping was carried out. The dataset was corrected for probeset differences 

between HGU133plus2 arrays and Hugene arrays. HGU133plus2 arrays contained 54676 

probesets while Hugene 1x ST arrays contained 32321 probesets. The Affymetrix© provided 

probeset conversion data for HGU133plus2 and Hugene 1x ST arrays were used and only the 

best matches were considered for ID mapping. 7362 probes in Hugene 1x ST arrays had unique 

C
ha

pt
er

 5



 164 

one-to-many mapping with 18668 probes from HGU133plus2. 28763 probesets of 

HGU133plus2 were found to be mapped to Hugene 1x ST arrays. For all arrays with multiple 

mapping in HGU133plus2 arrays the same expression values from Hugene arrays were used. 

Estimation of Control vs Control differential expression values 

To test the efficacy of the batch effect removal protocol proposed in the paper, it was initially 

applied to the Caco-2 dataset controls only. Controls array data from the Caco-2 data 

compendium were collected and the differential expression ratio between the replicates of 

control experiments were calculated against each other. For example, if a control experiment 

was conducted in triplicates (C1, C2, C3), that would give rise to 3 sets of differential expression 

values (C1/ C2, C1/ C3 and C2/ C3). In other words, it would be based on mathematical 

combinatorics 𝐶45.  

Results	

Caco-2 Control data 

As a validation of the protocol described here, the method was applied on a dataset that 

contained only the control experiments derived from the Caco-2 compendium. Figure 3a shows 

the clustering of array data from controls only, after RMA normalization. The arrays were found 

to be clustered into groups based on batches of experimental protocol. The controls data were 

then processed using the proposed methodology. The clustering of the processed data using 

PCA showed that there was no more separation based on the experimental batch. Figure 3b 

shows the results of PCA (first two principal components explaining 17% of variance). Figure 3c 

shows the PCA clustering with hulls plotted pairwise against the first three PCs. Given a group 

of points, hulls are lines that join some/ all of the given points to form a closed figure that 

encompasses all the points within its perimeter and most often the points connecting the hull 

lines lie far apart from each other. 
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a.  

b.  
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c.  

Figure 3: a) The first two Principal Components are plotted for raw controls data from the Caco-

2 data compendium. Control data group together based on the batch in which experiments were 

performed. Additionally, another grouping of data can be observed based on experimental 

platform (old affymetrix arrays vs new affymetrix arrays) about a diagonal drawn across the two 

PCs. b) The first two Principal Components are plotted for transformed (using the method 

described in the paper) controls data from the Caco-2 data compendium. No grouping is 

observed among the control experiments which was as expected from controls data. c) The 

plots show pairwise comparison between the first three Principal Components plotted for batch 

corrected (using the method described in the paper) controls only data from the Caco-2 data 

compendium. The lines forming each polygon is constructed by joining extreme values of a data 

group (hulls) and all data points belonging to a group fall within the hull. The points indicate the 

centre of each group of data points. No clear grouping is observed among the control 

experiments as the data points of each experimental group overlap with each other. 
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Arthritis data  

The protocol was further validated using microarray dataset derived from Rheumatoid arthritis 

and Osteoarthritis patients. Figure 4a shows the plotted results of the Principal Component 

Analysis (PCA) of the arthritis array data based on the first two components after RMA 

normalization. The first two PCs together represent 51% of the total variance in the data. The 

arrays were found to separate clearly on PC1, into batches in which the experiments were 

performed. The data was later processed as mentioned in the batch correction method 

proposed here. A PCA was again performed and the first two PCs represented 42% of the 

variance (Figure 4b). The mitigation of batch effects was confirmed by the separation into two 

groups based on exposure to cells instead of the separation into batches in which experiments 

were conducted.  

a.  
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b.  

Figure 4: a) The first two Principal Components are plotted for the raw RMA normalized arthritis 

patient sample data. Data from similar exposure experiments do not group together while a clear 

separation is observed between the two batches of experiments; b) The first two Principal 

Components are plotted for transformed (using the method described in the paper) arthritis 

patients data. Data from similar exposure experiments group together and a separation is 

observed between the two different experiments (TNF-α and TGF-β). 

Application on Caco-2 compendium  

The proposed non-parametric method was further applied on the complete Caco-2 

compendium. The compendium consisted of 82 experiments conducted over 14 batches of 

experiments. The batch correction protocol mentioned here was applied on the complete Caco-

2 data compendium and the PCA was estimated. Figure 5a and figure 5b show the PCA plots 

(first two principal components (PCs) explain 28% of variance) of the batch corrected Caco-2 

data. In figure 5a, the first two PCs are plotted and the plots show that the experiments are 

separated into local groups which is what is expected from the data. There are no platform 

effects observed (old vs new arrays). None of the exposures are repeated in different batches 
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and the grouping could only be due to differences in gene expression induced by the differences 

in exposures. Figure 5b shows the PCA between the first three PCs in pairwise manner plotted 

using hulls and the points indicated in the centre of the polygons.  

a.  

b.  
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Figure 5: a) The first two Principal Components are plotted for transformed (using the method 

described in the paper) data from the Caco-2 data compendium. Grouping of data is observed 

based on the differences in exposure and not based on platform or batches. b) The plots show 

pairwise comparison between the first three Principal Components plotted for transformed 

(using the method described in the paper) controls data from the Caco-2 data compendium. The 

lines forming each polygon is constructed by joining extreme values of a data group (hulls) and 

all data points belonging to a group fall within the hull. The points indicate the centre of each 

group of data points. Some grouping is observed among the experiments due to differences in 

exposure. Some of the experimental groups overlapping with each other may have some 

similarity in gene expression. 

Discussion	

Affymetrix© oligonucleotide microarrays are one of the most popular single channel microarray 

technologies and in the past vast amounts of data has been deposited public databases such 

as GEO 5. Of these, HGU133 and HGU133_Plus2 arrays were widely used in the past while 

newer platforms like HuGene arrays are gaining popularity in recent years 19. Therefore, we 

chose to test our protocol for mitigation of batch effects by combining data generated from 

HGU133_Plus2 arrays and the recent Hugene arrays. While data from other platforms have not 

been included in this study, being a non-parametric method, this method will be robust to 

integration studies involving gene expression data from different platforms, such as those from 

two channels arrays of agilent© technologies and from RNAseq experiments. 

The method described in this study could be used in cases where there are few samples (> 2), 

large number of batches, the controls are different between the batches, platform effects are 

present and complete set of relevant metadata is unavailable. These are conditions in which the 

other commonly used batch effect correction methods are not effective8,17. The batch correction 

protocol here is a culmination of ratio based methods20 and median rank protocols8. The intuition 
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behind this is that the batch effects are same in control and samples, since they were performed 

in the same experimental batch. This may however not apply to experiments with control and 

treatments being performed in different batches and therefore this may not be the optimal 

method in such cases. In this situation, methods like surrogate variable analysis and ComBat 

maybe better suited. While protocols like ComBat and SVA have been proven to be efficient in 

several benchmarking studies 8,10,13,21, most of these studies and methods have been proven 

only on datasets consisting of samples from disease studies. Moreover, the focus of these 

studies were to assess the impact of the disease on transcripts while the same data could have 

been used to understand other kind of biological questions which have been largely ignored 7–

9,13,13,20. For instance, the arthritis patient data could be used to either understand the molecular 

differences between osteoarthritis and rheumatoid arthritis samples or to study the molecular 

effects of the temporally varied exposure of certain stimulants (TNF-a and TGF-b) on arthritis 

patient samples (irrespective of the type of arthritis / gender of the subjects). While the 

benchmarking studies have focused on the former, we chose the latter as it resembles the 

studies in our data compendium.   

We applied our batch correction protocol on Caco-2 controls only dataset as a validation step. 

Different types of growth medium at differing concentrations have been used as control 

experiments in the Caco-2 dataset and it was expected that even if the different growth media 

trigger significant gene expression changes, these changes should stand neutralised when the 

ratio is calculated against each other. Therefore, after the mitigation of batch effects using our 

protocol we predicted that control experiments will not form any grouping based on the minor 

differences in medium, which was reflected in our results (Figure 3b and Figure 3c). Moreover, 

it should be noted the Caco-2 dataset used in this study comprises of no common experiments 

except for some common controls. Therefore, the differences observed in the dataset (Figure 

5b) were mostly due to the biological effects. 

It should further be noted that the method described in this chapter, does not contain statistical 

measures (e.g. p-values) that enable identification of differentially expressed genes. While the 
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protocol mentioned will be suitable for analysis based on data fusion, other methods maybe 

better suited for studies that focus on identification of differentially expressed genes. After 

application of the batch effect mitigation protocol on the Caco-2 data compendium used in this 

chapter, it could further be exploited to develop a classifier model based on the gene expression 

profiles, similar to the connectivity map6. This Caco-2/ luminal factor exposure experiments 

specific connectivity map could be used to classify new Caco-2 exposure experiments and find 

luminal factors that are similar to each other.  

In conclusion, we provide a non-parametric protocol that mitigates batch effects and allows 

integration of cross-platform gene expression data generated from different labs. 
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General	Discussion	

Research	Aim:	

The role of food in human health is enormous and there is a clear need to study the systemic 

impact of food on enterocytes, which provide a critical interface for absorption of nutrients while 

also playing a defensive role against colonisation and invasion by pathogens. Food is composed 

of many different compounds capable of provoking distinct effects in intestinal cells either alone 

or in combination. Besides food, enterocytes encounter a large variety of microorganisms 1–3 

including metabolites, such as the short-chain fatty acids which can reach concentrations of 100 

mM in the intestine. Over the years, many transcriptomics studies have investigated the impact 

of individual food substances or organism on enterocytes using monolayers of Caco-2 cells as 

a model system. With such a large collection of data available, there is an opportunity to analyse 

the transcriptomics responses of intestinal cells systematically, in order to understand how the 

different functions of enterocytes such as nutrient uptake, hormonal signalling, immune 

signalling and tissue renewal are affected by foods and food compounds.  

This thesis can be seen as a culmination of two related research directions. The first was aimed 

at facilitating the integrated systemic analysis at the transcriptomic level using the following:  

I. Generation of a Caco-2-specific ingestion-related compendium of transcriptomics data 

and a Caco-2 specific protein-protein interaction network (PPIN) (Chapter-2) 

II. Development of a protocol to identify reporter genes in a pathway of interest for qPCR 

analysis using the data compendium above (Chapter-2) 

III. Development of a protocol to overcome batch effects and allow for a low-level integration 

of data in the Caco-2 compendium. (Chapter-5) 
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The second research line, investigated enterocyte responses to Clostridium difficile toxins 

focusing on: 

i) The impact of C. difficile toxins at both miRNA and mRNA level in colon-like Caco-2 

cells (Chapter-3) 

ii) The modulatory effect of food on the activity of C. difficile toxins on small intestinal 

like Caco-2 cells. This was achieved using the data from the compendium we have 

generated in the first research line, combined with transcriptomic data of Caco-2 

cells exposed to C. difficile toxins. (Chapter-4) 

In this chapter, the key findings of the previous chapters are discussed in the context of the 

broader research field, including the challenges associated with using systems biology 

approaches. Finally, the conclusions and future prospects for the research are discussed. 

Key Research Findings: 

1. Large amount of transcriptomics data from microarray experiments specific to Caco-

2 studies are already available in public databases and it was demonstrated that 

these datasets could be used for selection of genes of interest (reporter genes) in 

order to study the effects of treatments towards a certain pathway of interest. 

2. While complete metadata on Caco-2 exposure experiments are not available, the 

experiments are designed to contain a control treatment in each batch. Thus, batch 

effects can be handled efficiently by combining ratio-based methods and median 

rank scores.  

3. Several miRNAs like miR-16-5p, miR-128-3p and miR-194-3p among others, may 

have a significant influence in gene expression regulation and biological processes 

that are regulated in enterocytes exposed to C. difficile toxins and might be important 

targets for therapeutic strategies. 

4. Blackcurrant and other berries might help to mitigate the harmful effects of C. difficile 

toxins in small enterocytes. 
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Current	 approaches	 to	 the	 reanalysis	 of	

transcriptomics	data		

In the past two decades, the number of high-throughput experiments has increased  

exponentially 4 resulting in the rapid expansion of data in public database repositories such as  

GEO 5 and array express 6, among others. Most of these data are generated from targeted 

experiments, performed to answer specific questions related to the biological system under 

study. This has provided ample opportunities for combining datasets from multiple sources and 

reanalysing them. Reanalysis of publicly available transcriptomics data has been performed 

previously in multiple studies involving different tissues/ organisms and has proven to give novel 

insights from a systems perspective 7–9. For example, Clarke and colleagues reanalysed 13 

independent microarray datasets related to cystic fibrosis and other respiratory disorders, 

thereby identifying biomarkers common to cystic fibrosis and other similar respiratory disorders. 

They have also identified potential regulators of CFTR (cystic fibrosis transmembrane 

conductance regulator) gene using correlation studies which may lead to novel therapeutic 

targets 10. Similarly, Kangaspeska and colleagues have reanalysed RNAseq data to identify 

fusion genes having multiple isoforms 7 while Sharma reanalysed transcriptomics data to 

establish the link between embryonic gene expression and offspring phenotypes related to 

altered metabolism 9. In chapter 2 and 4, we have performed reanalysis of Caco-2 specific 

transcriptomics data to achieve two different goals (Chapter 2 – to identify pathways specific 

reporter genes and Chapter 4 – to identify therapeutic food substances that mitigate the effects 

of C. difficile toxins).  

Moreover, reanalysis of data could lead to data fusion at different levels. In Connectivity map, 

Lamb and colleagues have fused data at probeset level (gene expression profile) and used non-

parametric ranking based method to find functional association between diseases, genes and 
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small molecules 11. The connectivity map could be used as a classifier to find novel functional 

associations between new drugs and diseases. A key challenge associated with data fusion 

approaches are batch effects. These are systemic effects that are dependent on the 

environment of the experiment and they are reflected in the gene expression data 12–14. While 

Batch effects are unavoidable when experiments are not performed together, providing all the 

metadata related to an experiment would help scientists in making a better decision related to 

statistics when they set upon reanalysing datasets. While statistical models that mitigate batch 

effect are already in existence, each have their own limitations and thus do not suit all situations 

15. In chapter 5, we’ve developed an alternative method to address batch effects given a specific 

experimental design.  

A data compendium built from different data sources could be exploited in many more ways that 

provided above. The data could be integrated with canonical biological networks such as a 

protein-protein interaction network (PPIN) 16, genome scale metabolic network 17, signalling 

network, or gene regulatory network 18, etc. This could in turn be used to generate novel insights 

by identifying hub genes (genes that interact with multiple genes and act as a common link 

between them) in a PPIN 16 for example, by performing flux balance analysis after integrating 

gene expression data with a metabolic network 17. The data could also be superimposed in an 

exposure specific manner on a PPI network and such networks could further be used in 

multiplex network analysis in order to identify conserved modules, important hub genes and also 

study network growth via a diffusion framework 19. In addition to this, knock-out and time series 

experiments in the future could enable dynamic modelling and in developing petri nets to study 

particular processes of interest 20,21.  
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Advantages of cell-specific dedicated networks and further advancement 

into experiment-specific networks 

Expression of genes in perturbed biological systems may vary in multiple ways owing to the 

type of tissue under study 22, environmental factors including microbe-host interactions 23 or the 

specific cell culture conditions 24,25. This in turn affects the proteins that are available in a cell 

and therefore canonical networks will need to be modified to represent interactions specific to 

cells under study. In chapter 2, we have provided a PPI network that is specific to the Caco-2 

cell system which was derived using combined expression data from multiple Caco-2 exposure 

experiments. This network could be considered as the first step towards a Caco-2 specific 

network and could further be improved using data from additional experimental exposures. In 

addition to this, such networks could be made specific to certain types of exposure. Multiple 

networks of this type could be combined and studied to derive novel insights about cell specific 

conserved modules, as mentioned earlier. 

The need for standardized network inference protocols  

Over the past two decades, gene expression data has been extensively utilised for developing 

ab-initio gene regulatory networks and different protocols exist for the same purpose. Some of 

the popular protocols like ARACNE 26 and CLR 27 were mentioned in Chapter 1. While these 

protocols have been efficient in determining the regulatory network in prokaryotes using mutual 

information matrix with high accuracy, they have not been efficient in predicting regulatory 

networks in lower order eukaryotes such as Saccharomyces cerevisiae. This may be due to the 

greater complexity of gene regulation in higher organisms. To overcome this problem, Marbach 

and others have recommended using several network inference protocols together to achieve 

an accurate consensus network 28. However, this strategy has not been proven in case of higher 

order eukaryotes like mammals and an efficient ab-initio protocol still remains elusive. Recently, 

Banf and Rhee have tried to work around this limitation by developing an algorithm called 
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‘GRACE’ 29. The GRACE algorithm functions by combining a priori knowledge on regulatory 

networks with heterogeneous expression data using markov random fields to improve the 

accuracy of the predicted gene regulatory network. They have tested their algorithm by 

identifying regulatory networks in Arabidopsis thaliana and Drosophila melanogaster. While this 

protocol has been shown to work in cases of sparse information, a complete ab-initio network 

inference protocol remains a challenge for higher order eukaryotes and should be developed in 

the future.   

Challenges in analysing expression data related to food perturbations 

Studying the impact of food exposure on gene expression in enterocytes is important to 

understand the functional mechanism underlying the interaction between food and the host. 

Statistical measure of significance using standardised tests is generally carried out in such 

studies to prevent identification of false positives 30,31. However, in case of food exposure, the 

change in expression of genes analysed by microarrays is usually small in terms of fold change. 

This often leads to very few true positives that are identified as statistically significant 32. Using 

such small set of significant genes to perform gene set enrichment analysis and pathway over 

representation analysis could subsequently lead to false results (false positives). All these 

drawbacks highlight the need for an experimental technique that is more robust and sensitive 

for identification of regulated genes. RNA-sequencing technology might be the required solution, 

as it offers a good dynamic range of transcripts identification from low expression to very high 

expression.  

Microarray vs RNAseq for food related exposure studies 

Soon after the introduction of next generation sequencing techniques like the RNAseq, multiple 

studies have been conducted comparing the efficiency of using RNAseq against microarrays. 

Comparison studies have been conducted using different sources of RNAseq and microarray 

data, including Saccharomyces cerevisiae 33, rat liver samples 34, activated human T-cells 35, 
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human neuroblastoma 36 and with human fibroblast cells 37. Despite the varying conditions in 

these studies, the general conclusion indicates that RNAseq offers several advantages over the 

use of microarray as an expression analysis platform. For instance, Wang and others (rat liver 

sample study) have concluded that RNAseq outperforms microarrays when validating 

differential gene expression by qPCR (93% concordance with qPCR in case of RNAseq against 

75% concordance with qPCR in case of microarray) 34. Zhao and colleagues (using activated 

T-cells data) have shown that RNAseq was superior in detecting transcripts with low abundance, 

differentiating biologically important isoforms and also offered a broad dynamic range for 

identification of differentially expressed genes with high fold change 35.  

We also performed a cross comparison of results between array and RNAseq. We generated 

our own RNAseq data from Caco-2 cells exposed to Clostridium difficile toxins, which was 

utilized in chapter 3. Apart from RNAseq data, we also generated microarray (Hugene 1.1 ST 

array) data using the same RNA samples used for RNAseq. Data processing was performed as 

similar as possible for both techniques and only Ids common to both technologies were 

considered for further analysis (8018 common genes). We initially compared the fold changes 

of genes between RNAseq and microarray, without any statistical significance filtering (i.e. no 

p-value cut-off) and observed that the fold changes had a high correlation (r2 = 0.87) (Figure 1).  
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Figure 1: Genes are plotted based on fold changes (FC). X-axis represents the microarray 

derived FC and y-axis represents the RNAseq derived FC. Only genes that were common to 

both microarray and RNAseq were chosen. The comparison shows a high degree of correlation. 

Next, only the fold changes of statistically significant (FDR p-value < 0.05) differentially 

expressed genes (DEG) from both RNAseq and microarray (n = 787) were compared against 

each other (Figure 2). The comparison showed a very high degree of correlation (r2 = 0.94). 

This indicates that significant DEG in particular, show high similarity in expression changes 

between microarray and RNAseq.  
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Figure 2: Genes are plotted based on fold changes (FC). The genes are selected based on 

significance threshold (p-value < 0.05). Only genes that were common to both microarray and 

RNAseq were chosen. X-axis represents the microarray derived FC and y-axis represents the 

RNAseq derived FC. The comparison shows a very high degree of correlation. 

One important challenge in executing the above comparison was in mapping gene Ids used by 

RNAseq (Ensembl gene id) and arrays (Entrez gene Id) to identify common genes. Many entrez 

Ids were mapped to multiple ensembl Ids and vice versa. This would also be an issue when 

combining RNAseq data with array data in a compendium. Therefore, a common id that can 

cater to different kinds of technologies would be of great help for data fusion studies.  

Identification of the relevant pathway databases  

Once the significant DEGs are identified, they could be used for gene set enrichment analysis 

and pathway enrichment analysis. Pathway enrichment analysis using pathway databases is 

used often in current analysis. Khatri and colleagues have written a detailed review on the three 
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generations of pathway analysis approaches 38. The first-generation pathway approaches were 

based on over-representation analysis while the second-generation were based on functional 

class scoring. Finally, the third-generation pathway databases are based on pathway-topology 

approaches. There are several outstanding challenges associated with pathway databases. 

Khatri and others have previously highlighted 5 challenges: 1. Low resolution knowledge bases; 

2. Incomplete and inaccurate annotations; 3. Missing condition – and cell – specific information; 

4. Inability to model and analyse dynamic responses; and 5. Lack of benchmarking 38.  

The last point leads to the issues of identifying the gold standard against which other pathways 

could be benchmarked. A manually curated pathway database that considers experimental 

evidences for interaction between genes/proteins, like the ingenuity pathway analysis® (IPA , 

www.qiagen.com) which we have used in our analysis, could be considered for benchmarking. 

However, IPA comes with a cost and is not open-source. Among the freely available, open-

source pathway databases, there are multiple pathway databases and a handful of them provide 

essentially the same information. For instance, Reactome - “an open-source, open access, 

manually curated and peer-reviewed pathway database” 39–41, KEGG – “a database resource 

for understanding high-level functions and utilities of the biological system, from molecular-level 

information” 42 and Wikipathways – “an open, collaborative platform dedicated to the curation of 

biological pathways” 43, all provide information about the signalling and metabolic pathways in 

multiple organisms and humans in particular. Although these three databases fulfil the same 

purpose, the pathway and sub-pathway names are not interchangeable.  

In case of pathway analysis, it often leads to confusion for the uninitiated user to choose the 

optimal pathway database. One strategy could be to use all these four pathway databases 

simultaneously and check for consensus between them. However, due to lack of commonality 

between their names, this is difficult. The pathway commons is a great initiative, combining data 

from 21 pathways with Id mapping, validation of information and integration of data from these 

pathway databases 44. This effort has resulted into more than 4000 pathways comprising of 1.3 
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million interactions spanning across 5 different types of interaction pathways (metabolic 

pathway, molecular interactions, signalling pathways, regulatory pathways and genetic 

interactions). This could be useful for users requiring open-source and freely available pathway 

database. 

Future	perspectives	

Owing to the large number of high-throughput experiments conducted in the area of food and 

health, “foodomics” has recently been advanced as a discipline 45. Foodomics deals with 

management of various food-related, high-throughput experimental data along with 

development and application of computational methods to advance the knowledge in food 

sciences with impact on human health and wellbeing as the primary objective. Being a very 

nascent discipline, the developments in foodomics are quite limited and will advance when more 

data becomes available. In this thesis, we have contributed to progress the knowledge in food 

transcriptomics. However, there is more scope for innovation as discussed below: 

1. One of the major advantages of using microarray is the cost to benefit ratio. However, 

as mentioned earlier, RNAseq experiments offer more scientific benefits than 

microarrays for transcriptomics analysis. RNAseq is more sensitive than microarrays,  

allowing detection of low abundance transcripts and enables the detection of novel 

splicing isoforms 36. While identification of splice isoforms has been reported in relation 

to tight junction regulation 46, such studies have not been reported in response to 

exposure of food to Caco-2. The possibility of existence of splice isoforms on exposure 

to luminal factors cannot be ignored. Therefore, it is of importance to probe for splice 

isoforms in relation to exposures to food and other intestinal luminal factors. Moreover, 

as the RNAseq technology improves, the costs of conducting these experiments will 

decrease 47. Therefore, given the cost-benefit ratio, the foodomics as a discipline should 

migrate towards next generation sequencing technology. The newly available RNAseq 
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data from Caco-2 exposure experiments should be integrated with existing microarray 

data and should be used for data reanalysis. The RNAseq data, as mentioned already, 

offers more information compared to the microarray. It could be challenging to combine 

data from these two different platforms and will require new bioinformatics strategies. 

One way could be to focus on transcripts that are common to both technologies when it 

comes to data fusion. This strategy would, however, result in omission of the additional 

information provided by RNAseq.  

2. The use of compendium data is growing as mentioned elsewhere in the thesis. The data 

could be used to generate gene regulatory networks, enabling identification of upstream 

regulators. The data could be combined with the batch correction methods prescribed in 

this thesis to develop classifiers that can profile future experiments into different classes 

based on current ones.   

3. Integromics is the study of integration of different types of biological data 48 which is a 

sub-discipline of systems biology. In light of expansion of high-throughput data in 

foodomics, the next logical step would be to focus on integration of data of different types 

(e.g. genetic, transcriptomic, metabolic, proteomic, epigenomic, etc.). Such an 

integration would allow scientists to take a multi-pronged approach at understanding the 

impact of food on enterocytes. For instance, identification of a transcription factor 

involved in an important pathway is possible with transcriptomic data alone while 

identification of an important protein that plays a key role in the same pathway is possible 

with proteomic data alone. However, on integration of the two datasets, identification of 

the regulatory transcription factor and the exact status of the regulated gene product (i.e. 

protein) becomes simultaneously possible. This offers further insight into building a 

better model of the pathway. Intergromics should be carried out in a complimentary 

fashion to current research. While integromics offers new avenues, many challenges will 

exist and new tools must be developed to overcome the hurdles.   

4. Multiplex networks are multilayer graphs with same nodes across the layers while the 

connections within layers (edges of each network layer) may vary across networks. The 
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interconnections between layers is usually the connection between a given node in a 

layer and its counterpart (same node) in another layer 19. For instance, protein-protein 

interaction networks could be superseded with data from different Caco-2 exposure 

experiments and the resulting multiplex networks analysed for similarities (conserved 

network modules between exposures) and differences (modules that are unique to an 

exposure). Gomez and colleagues have provided a mathematical framework for 

analysing time dependent multiplex networks using a diffusion model 19. Such 

frameworks could be applied to foodomics to check if diffusion models provide new 

vistas into food related network analysis. 

5. While Caco-2 cells prove to be a useful model for studying enterocytes, the results have 

to be validated to avoid artefacts associated with a aneuploidy or chromosomal 

rearrangements in cancer cell lines. As such organoid models of intestinal tissues 

represent a potentially interesting model 49. It has also been shown that organoid cultures 

from different parts of the intestine retain their location-specific expression of genes 

including transporters and receptors 50. Multiple protocols have recently been proposed 

for culture and development of human intestinal organoids (HIO) 51,52. While it is yet to 

be seen if such systems are reliable, they could be exploited to study the systemic effects 

of food substances. Another approach would be to use human intestinal biopsies 

suspended in an ‘Ussing’ chamber and exposed to luminal factors 53,54. Several feasibility 

studies regarding the efficiency of ‘Ussing’ chamber as a tool for characterizing the 

intestinal absorption of drug and as a macromolecular permeability model have been 

carried out in the past and ‘Ussing’ chamber was found to be efficient 53,54. However, a 

major limitation is that gut tissue rapidly undergoes necrosis and experiments have to 

be performed in short exposure time. Additionally, the collection of biopsies is an 

invasive procedure that needs to be performed in a hospital setting. 
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English	Summary	

The connection between food and human health needs no introduction, but apart from food, 

there are multiple other luminal factors that alone or in combination with others can impact on 

enterocyte function and thus play a role in health. These interactions maybe at different levels, 

but primarily at the molecular level. The intestinal epithelial cell line Caco-2 has been used 

extensively as a model to investigate molecular interactions between different luminal factors 

and enterocytes. More recently attention has been given to interactions of more complex food 

extracts with the aim of gaining more insights into the combined effects of food components, as 

would occur in vivo.  

In chapter 1, The importance of studying enterocytes, food interactions and the Caco-2 as an 

enterocyte model system is discussed. Previous research on Clostridium difficile toxins and their 

interaction with enterocytes as well as systems biology and related approaches are described 

in detail. The chapter ends with a brief introduction on the key research questions and the 

content of the chapters which follow.  

In this thesis, we have generated a data compendium by collecting transcriptome data (largely 

from microarray experiments) pertaining to Caco-2 cells exposed to luminal factors from in-

house experiments and public databases (Chapter 2). Initially, the data compendium was used 

to develop a Caco-2 specific protein-protein interaction network. Then, we addressed the issue 

of identifying pathway specific reporter genes for qPCR experimental validation. To this end, we 

developed a statistical method called differential expression correlation analysis (DECA), which 

is designed to mine knowledge from the Caco-2 data compendium. The method utilises 

differential expression values of genes in the compendium combined with limited knowledge of 

pathways of interest to identify reporter genes. This method was further used to predict genes 

that belonged to AhR and Nrf2 mediated stress response pathways and was experimentally 

validated using Caco-2 cells exposed to coffee extracts. 
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In Chapter 4, the Caco-2 data compendium was utilized for identification of food substances 

that may mitigate the effects of C. difficile toxins on small intestinal enterocytes. This was 

combined with Caco-2 microarray data obtained from Caco-2 cells exposed to Clostridium 

difficile toxins (toxin A and toxin B) and toxoids. The identification of possibly beneficial foods 

was carried out using multivariate techniques such as principal component analysis (PCA). 

Blackcurrant of Ben Finlay cultivar was found to be the most beneficial food among the food 

substances used in the compendium and was experimentally verified. It was found to help 

maintain the epithelial barrier and also in preventing the translocation of C. difficile toxins from 

the apical side to the basolateral side. Additionally, we also tested the efficacy of strawberry 

(Sabrina), yellow onion, white onion and Galacto-oligosaccharides (GOS) and found, in 

accordance with PCA results, that while strawberry and yellow onion were moderately effective 

against the toxin translocation, white onion and GOS had almost no effect.  

We delved further into an investigation of the impact of Clostridium difficile toxins on the miRNA 

expression of the colonic enterocytes and probed the role of miRNAs in regulating toxin-induced 

changes in mRNA expression (Chapter 3). miRNA-mRNA interaction was studied with the help 

of public database, miRWalk 2.0 and the network analysis tool, Cytoscape. We performed 

pathway analysis with the data obtained and found a role for miRNAs in several pathways that 

are affected by Clostridium difficile toxins in Caco-2 cells. 

Finally, to enable data fusion of experiments that have low and varying sample sizes, we 

developed a batch effect mitigation protocol (Chapter 5). The method is a combination of ratio-

based methods and median rank scores. The method was tested on the controls-only data 

derived from the Caco-2 compendium and was shown to mitigate batch effects. It was further 

tested on arthritis patient sample data, applied to the Caco-2 compendium data and shown to 

be efficient at batch effect mitigation. 

In chapter 6, the results of the thesis are discussed including the limitations and future 

perspectives for the advancements in the field of foodomics.  
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Samenvatting	

Het verband tussen voeding en gezondheid in mensen behoeft geen introductie. Een goed 

werkend darmepitheel is daarbij onontbeerlijk. De enterocyten die het grootste deel van het 

darmepitheel uitmaken zijn daarbij heel belangrijk. Behalve voedsel zijn er ook andere luminale 

factoren in de darm die alleen of in combinatie met andere componenten invloed kunnen hebben 

op de functie van de enterocyten en dus een rol spelen bij de gezondheid. In vivo onderzoek 

naar de interactie tussen luminale factoren en darm epitheliale cellen is moeilijk en zeer 

onprettig voor deelnemers aan het onderzoek. De epitheliale darmcellijn Caco-2 wordt daarom 

veel gebruikt als model om dit soort interacties te onderzoeken, waarbij vaak gebruik gemaakt 

wordt van transcriptomics (genexpressieanalyse) om de reactie van cellen te analyseren. In 

toxicologisch en farmacologisch onderzoek ligt de focus  vaak op een of enkele stoffen, terwijl 

in het voedingsonderzoek recent steeds meer aandacht is voor de interacties van complexere 

voedingsextracten en -producten met als doel meer inzicht te krijgen in de gecombineerde 

effecten van voedsel, zoals ook de exposure in de darmen is. 

In hoofdstuk 1 wordt het belang van het bestuderen van enterocyten, interactie tussen voedsel 

en het darmstelsel en het Caco-2 als een enterocyten modelsysteem besproken. Tevens wordt 

eerder onderzoek naar Clostridium difficile (C. difficile) toxines en de interactie met enterocyten 

beschreven, evenals systeembiologie en verwante mathematische benaderingen van 

onderzoek. Het hoofdstuk eindigt met een korte inleiding over de belangrijkste 

onderzoeksvragen en de inhoud van de hoofdstukken die volgen. 

In dit proefschrift hebben we een data compendium gegenereerd door transcriptoom data te 

verzamelen van Caco-2 cellen blootgesteld aan allerlei luminale factoren. Deze data waren 

afkomstig van eerder uitgevoerde experimenten bij Wageningen - Food & Biobased Research 

of afkomstig van openbare databases (hoofdstuk 2). Aanvankelijk werd het compendium 

gebruikt om een Caco-2/enterocyte-specifiek genexpressie- en interactienetwerk te 
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ontwikkelen. Vervolgens hebben we de data gebruikt voor het identificeren van responderende 

pathway-specifieke reportergenen in Caco-2, welke zijn gevalideerd in nieuwe Caco-2 

experimenten met qPCR. Voor het selecteren van dergelijke reportergenen hebben we een 

statistische methode ontwikkeld, differentiële-expressiecorrelatieanalyse (DECA) genaamd, die 

is ontworpen om kennis uit het Caco-2-data compendium te ontginnen. De methode om 

reportergenen te identificeren maakt gebruik van differentiële expressiewaarden van genen in 

het compendium in combinatie met kennis van de genen en pathways van interesse. Deze 

methode hebben wij toegepast om genen te voorspellen die behoren tot door AhR en Nrf2 

gemedieerde responsen en dit is vervolgens experimenteel gevalideerd met behulp van Caco-

2-cellen die waren blootgesteld aan koffie-extracten. 

In hoofdstuk 3 en 4 werd het onderzoek verder toegespitst op de schadelijke effecten van C. 

difficile toxines op enterocyten van de dunne darm. Genexpressieanalyses (met behulp van 

microarrays) werden uitgevoerd om de reactie van Caco-2 blootgesteld aan C. difficile-toxinen 

(toxine A en toxine B) en toxoïden te onderzoeken. Deze genexpressie-gegevens werden 

gecombineerd met het bovengenoemde data compendium met als doel luminale kandidaat-

factoren te identificeren met een mogelijk heilzame werking tegen de negatieve impact van deze 

toxines (hoofdstuk 4). De analyses werden uitgevoerd met behulp van multivariaat technieken 

zoals principale component analyse (PCA). Zwarte bessen, hier onderzocht op basis van 

cultivar Ben Finlay, bleken de beste kandidaat te zijn binnen de beschikbare dataset. Het 

neutraliserende effect van het zwarte bes extract op de schadelijke impact van de toxines, kon 

ook experimenteel geverifieerd worden in Caco-2 cellen. Specifieke voedingsproducten lijken 

dus de epitheliale cellen te kunnen beschermen en translocatie van C. difficile toxines van de 

apicale zijde naar de basolaterale zijde (deels) te kunnen voorkomen. Daarnaast hebben we 

ook de heilzame werking van aardbei (Sabrina), gele ui, witte ui en galacto-oligosacchariden 

(GOS) getest. In overeenstemming met de PCA-resultaten, werd gevonden dat aardbeien en 

gele ui matig effectief waren tegen de toxine-geïnduceerde effecten en dat witte ui en GOS bijna 

geen effect hadden. 
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In hoofdstuk 3 doken we verder in de interactie tussen C. difficile toxines en enterocyten door 

de genexpressieveranderingen met behulp van RNAseq te onderzoeken. Tevens werd de rol 

van microRNA’s (miRNA's) bij het reguleren van toxine-geïnduceerde veranderingen in mRNA-

expressie onderzocht. miRNA-mRNA-interactie werd bestudeerd met behulp van de openbare 

database miRWalk 2.0 en de netwerkanalysetool Cytoscape. We voerden pathway-analyses uit 

met de verkregen data en vonden een rol voor miRNA's in verschillende routes en pathways 

die worden beïnvloed door C. difficile-toxinen in Caco-2-cellen. 

Genexpressie onderzoek, gecombineerd vanuit verschillende (cel-)experimenten en onderzoek 

uit verschillende laboratoria, kent vele biologische en technische variabele factoren waardoor 

het vaak moeilijk is kleine effecten uit een dergelijke data compendium te selecteren. Om toch 

dergelijke analyses mogelijk te maken hebben we een batch-effect-mitigatie-protocol ontwikkeld 

(hoofdstuk 5). De methode is een combinatie van ratio-gebaseerde methoden en mediane 

scores. De methode is getest op een steekproef-set afgeleid van het Caco-2-compendium en 

bleek inderdaad batcheffecten te verminderen. De methode werd verder getest op een dataset 

van artritispatiëntmonsters waarbij aangetoond werd dat de methode efficiënt is bij partiële 

effectmitigatie. 

In hoofdstuk 6 worden de resultaten van het proefschrift besproken, inclusief de beperkingen 

en toekomstperspectieven voor de vooruitgang op het gebied van ‘omics’ technologieën in het 

voedings- en gezondheidsonderzoek (foodomics). 
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