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Abstract 

Organic products are vulnerable to fraud due to their premium price. Analytical methodology helps to 

manage the risk of fraud and due to the miniaturization of equipment, tests may nowadays even be 

rapidly applied on-site. The current study aimed to evaluate portable near infrared spectroscopy (NIRS) 

in combination with chemometrics to distinguish organic milk from other types of milk, and compare its 

performance with benchtop NIRS and fatty acid profiling by gas chromatography. The sample set 

included 37 organic retail milks and 50 non-organic retail milks (of which 36 conventional and 14 green 

‘pasture’ milks). Partial least squares discriminant analysis was performed to build classification models 

and kernel density estimation (KDE) functions were calculated to generate non-parametric distributions 

for samples’ class probabilities. These distributions showed that portable NIRS was successful to 

distinguish organic milks from conventional milks, and so were benchtop NIRS and fatty acid profiling 

procedures. However, it was less successful when ‘pasture’ milks were considered too, since their 

patterns occasionally resembled those of the organic milk group. Fatty acid profiling was capable of 

distinguishing organic milks from both non-organic milks though, including the ‘pasture’ milks. This 

comparative study revealed that the classification performance of the portable NIRS for this application 

was similar to that of the benchtop NIRS. 
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1. Introduction 

The appeal for organic milk has created a growing market share in the last years. In this situation, 

many agricultural regions in the world have experienced an organic revolution to respond to this 

demand. In 2015, up to 12% of all dairy sales belonged to the organic dairy market in the EU[1]. The 

production of organic milk was 4.4 million metric tons in 2015, which is almost double the volume of 

2007. However, there is still insufficient supply due to limited production in organic systems. Meanwhile, 

organic milk retails at a premium price due to the higher production costs [2]. These two aspects make 

organic milk susceptible to fraud. Vulnerability studies of the liquid milk supply chain showed that there 

is limited implementation of fraud control measures in this chain in general [3]. Part of these potential 

measures are fraud monitoring systems. These systems require adequate methods, both in the 

laboratory and beyond.  

Different approaches have been developed to detect some potential biomarkers for organic milk 

authentication such as for iodine [4] and carbon and nitrogen isotopes [5]. In addition, some other 

studies have focused on untargeted fingerprints to assure the authenticity of organic products in the 

dairy sector based, which were based on fatty acids (FAs) profiles [6, 7]. These approaches have 

demonstrated accurate results after a series of complex sample preparation steps and professional 

instrument operation. Nevertheless, the market still demands faster and cheaper methods which can be 

performed (preferably on-site) by different tiers in the supply chain, including farmers, processors, 

retailers and possibly even consumers [8]. From this point of view, the portability and operability are 

important aspects to consider too.  

Near-infrared spectroscopy (NIRS) as a fast, non-destructive method may be an interesting solution.  

This technique observes the characteristic reflection and absorption spectra in the NIR region (780 - 

2500 nm). The valuable information in these spectra relates to overtones and combinations of vibrations 

of some characteristic bonds, such as C-H, N-H, O-H and S-H, which typically exist in all organic 

molecules. NIRS has been widely accepted and applied in food analysis [9-11]. Furthermore, advanced 

techniques allow miniaturization of optical components without excessive loss of performance. These 

developments significantly improved the portability of NIRS systems. Some studies have been carried out 

to apply portable NIRS in food composition analysis including fruit ripening evaluation [9, 12], palm oil 

adulteration [13], as well as feed safety [14]. Promising results were obtained in these studies by 

combining portable NIRS with suitable chemometrics. 

When applying this methodology for distinguishing organic milk, it is importance to realize that in the 

Netherlands, there is so-called green milk (‘pasture milk’) which promotes the idea of being more natural 

through regular grazing of the cattle. In this system, cows have to be outside at least 120 days per year, 



for 6 h per day. It is relevant to consider pasture milk when comparing milk from the organic and 

conventional systems, because its composition may be somewhat similar to organic milk [7, 15]. 

The aim of the current study was to evaluate portable NIRS in combination with chemometrics to 

distinguish organic milk from other types of milk (conventional and pasture milks), and compare its 

performance with benchtop NIRS and fatty acid profiling by gas chromatography. 

  

2. Materials and methods 

2.1. Milk samples 

A total of 87 cartons of full-fat, pasteurized retail milks were collected from supermarkets in the 

Wageningen area, Gelderland region, in the Netherlands during a period of eight weeks between May and 

June of 2016. The sample set included 37 organic retail milks (OM) from five brands and 50 non organic 

retail milks (NOM). The latter comprised 36 conventional retail milks (CM) from six brands and 14 

pasture retail milks (PM) from two brands. Samples were analysed by a portable and benchtop NIRS on 

the day of purchase or the first consecutive day after purchase, and an aliquot of each sample was 

stored at -18 °C for fatty acid analysis later.  

2.2. Portable NIRS: Micro-NIRS 

An ultra-compact spectrometer, Micro-NIR 1700 (JDSU, Milpitas, CA/USA) with a spectral working 

range of 908-1676 nm and a 6 nm sampling step was selected as the portable NIRS instrument to collect 

the spectrometric data. The reflectance mode was selected according to default settings. The 

spectrometer employs a linear variable filter (LVF) as the light dispersing element and is powered by USB 

(500mA, 5V). Three ml of each milk sample was taken to a 4 ml vial (Sun Sri, Wilmington, NC, USA) 

and analyses were carried out in triplicate. Triplicate readings were averaged for further data analysis. 

2.3. Benchtop NIRS: FT-NIRS 

A NIRFlex N-500 benchtop instrument (Buchi AG, Flawil, Switzerland) was used to generate the FT-

NIR spectral data. The spectrometer was equipped with six glass cuvettes (light path 2 mm) (QX 2.0mm, 

Hellma Analytics, Müllheim, Germany). Each sample was scanned in the range of 1000-2500 nm with the 

transmission mode as default settings. A reference standard was measured before each serie to calibrate 

the spectrometer. Each sample was analysed in triplicate and placed randomly in different cuvettes 

during each serie. Triplicate readings were averaged for further data analysis. 

2.4. FA by Gas Chromatography (GC) 

The FA compositions of the milk samples were determined by a GC16958 (Agilent 7890A, Agilent 

Technologies, Palo Alto, CA, US) according to  NEN-ISO 1740:2004 | IDF 6as fatty acid methyl esters 

(FAMEs) [16]. The GC was equipped with a 100 m x 0.25 mm x 0.2 µm film thickness fused silica 

capillary column (Varian, Palo Alto, CA) coupled to a flame ionization detector (column temperature 



275°C). All the chemicals were ACS grade, and purchased from Sigma-Aldrich (St. Louis, MO, USA).A 

volume of 2 ml milk was weighted in a 30 ml sterile, screw top plastic bottle, mixed with 5 ml internal 

standard solution (500 mg of C13:0 triglyceride and 500 mg of C11:0 FAME in 250 ml tert-butyl methyl 

ether. To start the transesterification, 5 ml methanolic sodium methoxide solution (5%, m/v) was added, 

and 2 ml hexane and 10 ml neutralization solution were added after 180 seconds and 210 seconds, 

respectively. The mixture was vortexed for 30 seconds and then centrifuged for 5 minutes, and 1 ml of 

supernatant was removed with a pipette into GC amber glass vials. Each sample was weighed and 

measured in duplicate. Since spectrometry has a better correlation with FA concentrations in milk instead 

of concentrations in milk fat [17], the concentrations of FA in this research were expressed as µg/100g 

liquid milk. Average values of the duplicates were used for further data analysis.  

2.5. Statistical analysis  

Univariate analysis was applied to the FA dataset, but FAs concentrations were firstly tested for 

normality by using Shapiro-Wilk. As the data did not always show normal distribution, non-parametric 

Kruskal-Wallis tests were applied for group comparison followed by Mann-Whitney U-test for pairwise 

comparison [18]. FAs with P<0.01 after Benjamini-Hochberg (BH) adjustment were indicated as 

statistically significant. Principal component analysis (PCA) was carried out to explore the three 

multivariate datasets acquired by Micro-NIRS, FT-NIRS, and FAs by GC separately. In order to eliminate 

the effects of noise and to balance the weights of different variables, all three datasets were pre-

processed in various ways, including auto-scaling, mean-centering, smoothing, 1st derivative, log 10 

transformation and multiple scattering correction (MSC). The best pre-processing combination was 

chosen for each dataset to get the best separated PCA distribution. The relationship between NIR spectra 

and FAs profiles was determined by computing the correlation coefficient between FAs concentrations 

and wavelength absorbances.  

Considering that a higher risk of overfitting will come with non-linear predicting algorithms, 

classification models were estimated by partial least squares discriminant analysis (PLS-DA) to 

discriminate (A) OM against CM and (B) OM against the non-organic milks CM&PM. As a linear 

discrimination model, PLS-DA is suitable for multi-collinearity data[19] and more robust than non-linear 

models[20]. The data sets were randomly divided into two sub-sets, a training set (70% of the samples 

of each class) and an external validation set (the remaining 30% of the samples). The training set was 

used to build models and internally validate the models by 500 times repeated leave-20% out cross-

validation. The external validation set was used to externally validate the models after the internal 

validation. The performance of classification models was measured according to several parameters, 

including: accuracy, the overall rate of correct classification; sensitivity, the rate of correct identification; 

specificity, and the rate of correct rejection [21]. In our research, correct identification refers to organic 



milk that would be correctly classified, while correct rejection refers to non-organic milk that would be 

correctly classified. Besides a binary classification, all the samples were also scored by the class 

probability valued from 0 (OM identified) to 1 (OM rejected) and kernel density estimation (KDE) 

functions were applied to generate a non-parametric distribution for samples’ class probability [22]. 

Compared with binary results, the quantitative scores of class probability is more informative and could 

solve the problem of resolution caused by smaller sample sets. To evaluate the discrimination capacity of 

models built from the three datasets (Micro-NIRS vs FT-NIRS, Micro-NIRS vs FAs and FT-NIRS vs FAs), 

Passing-Bablok linear regression models [23] were built. A joint test was performed to investigate if 

slopes=1 and intercepts=0 at a 95% confidence level. The acceptance of the null hypothesis (H0) meant 

there was no difference between the two investigated approaches [9].  

All the analyses were conducted by Pirouette 4.5 (Infometrix, WA, USA) and R 3.2.3 (R Foundation 

for Statistical Computing, Vienna, Austria). 

 

3. Results and discussion 

3.1. Spectral features: Micro-NIRS and FT-NIRS 

All samples were subjected to spectroscopy analyses by Micro-NIRS and FT-NIRS. The spectra 

obtained by Micro-NIRS and FT-NIRS are presented in Figure 1a and b, respectively. The spectra differ 

due to instrument specific traits (e.g. different optical path length [24]) and mode of application 

(reflectance/transmission). In the spectra acquired by Micro-NIRS, as shown is Fig. 1(a), the wavelength 

range 1220-1390 nm shows largest separation between the groups of samples. The peak around 1340 

nm relates to the presence of the combination of methyl(-CH3) and methylene (-CH2) groups [25]. The 

peak at around 1510 nm is caused by the stretching of methyl (С-Н). These bonds are likely to be 

strongly related to the concentration of different FAs. In the spectra acquired by FT-NIRS, as shown is 

Fig. 1(b), there are two main ranges where samples show separation, i.e. in the 1492-1887 nm and 

2083-2381 nm ranges. The peak in the 2240-2360 nm range originates from the stretching of the methyl 

and methylene groups, while the peak near 1725 nm and 1760 nm is the first overtone (vibration) of 

methyl(-CH3), methylene (-CH2) and ethenyl (CH=CH-) groups [25]. The ethenyl group expresses the 

degree of unsaturation of the fatty acids. Monounsaturated fatty acids (MUFAs), such as oleic acid 

(C18:1), tend to show a peak around 1725 nm [26].  

To obtain an overview of the differences of different type of milk, raw Micro-NIR spectra and raw FT-

NIR spectra were subjected to PCA after pre-processing. The optimized pre-processing methods for 

Micro-NIR spectrum and raw FT-NIR spectrum are as follows: (1) Micro-NIR spectral data are subjected 

to log 10 transformation, mean-centering, MSC and 1st derivative; (2) FT-NIR spectral data are subjected 

to mean-centering, smoothing, MSC, and 1st derivative. The scores distribution of the samples is 



presented in Fig. 2, which shows that OM and CM are relatively well separated, whereas PM is more 

widely spread, overlapping with the two other groups. This phenomenon can be explained by the more 

diverse management of PM. According to the rules, cows producing PM should be outside at least 4 hours 

per day for at least 120 days per year, which may lead to large variation in fresh grass consumption and 

thereby milk composition. In Fig. 2a (Micro-NIRS), the first two principal components (PCs) explain 92% 

of total variance, whereas in Fig. 2b (FT-NIRS), the first two PCs only explain 35% of total variance. This 

is most likely due to the larger wavelength range of the FT-NIRS, which comprises more multidirectional 

variance between samples. Apparently, this larger variance cannot be reflected well by only two principal 

components.  

3.2. FAs profiles by GC 

All milks were analysed for their FA compositions. Since the concentrations of FAs were not normally 

distributed, non-parametric statistics were applied. There were 26 FAs selected with significantly different 

(P<0.01) concentrations between milk types (Kruskal-Wallis test, Table 1). Among these 26 FAs, the 

three most abundant FAs were C16:0 (palmitic acid), C18:1n9c (oleic acid) and C14:0 (myristic acid), 

together accounting for more than 50% of total FAs. Similar dominant FAs were also found by Capuano, 

et al. [7]. CM had significantly higher concentrations of these three FAs, compared with the other two 

types of milk. According to the result of pairwise comparison by Mann-Whitney U-test, OM had 

significantly different concentrations of 18 FAs, but only six of them had concentrations higher than 10 

µg/100g. This result suggests that if the focus is just on those predominant compounds, OM could be 

hardly distinguished from the other types of milk. Because of the nutritional expectations from 

consumers, polyunsaturated fatty acids (PUFAs) have drawn public attention, especially long chain 

PUFAs, such as eicosapentaenoic acid (EPA; 20:5n3), docosahexaenoic acid (DHA; 22:6n3) [27] and 

their precursor, alpha linolenic acid (ALA) [28]. In our results, these four FAs, as well as the total amount 

of PUFAs were significantly higher in OM, which is in line with previous observations [6, 29-33]. However, 

this level of differences is thought to have limited impact on human health [34]. On the other hand, CM 

and PM only had 9 and 6 discriminating FAs respectively. This means they showed fewer unique features 

than organic milk, according to the post hoc test in Table 1. This is due to the flexible rules of PM, 

making it more difficult to distinguish between CM and PM [15].  

3.3. PCA and correlation of NIR spectral data and individual FAs 

To obtain an overview of the characteristics of different types of milk, after optimization of the data 

pre-processing the FA concentrations were subjected to PCA after auto-scaling. The distribution of PCA 

scores is shown in Fig. 2c. The first two principal components (PCs) explain 59% of total variance. The 

scores plot shows the distinction between OM and the other two types of milks. The CM and PM are 

mixed with each other, matching the results of the Mann-Whitney U-tests. Compared with Micro-NIRS 



and FT-NIRS, FAs profiles contained information that allowed better separation of OM. Although the peak 

regions in the NIR spectral data refer to C-C, C-O and C-H bonds, which are the major structural 

elements of FAs, the resolution is lower, because no individual FAs can be identified. Comparing the PCA 

scores plots from these three techniques showed distinct differences, with FA profiles showing the best 

separation between groups.  

Fig. 3 presents the correlation between the spectral data obtained by Micro-NIRS and FT-NIRS on the 

one hand (horizontal), and FA profiles obtained by GC on the other hand (vertical). The Micro-NIR 

spectra show a more predominant correlation with the concentrations of the FAs C14:0, C14:1n5, C16:0, 

C18:1n9c and C20:3n6. Combined with the results in Table 1, it was found that C14:0 and C16:0 were 

two highly abundant long chain saturated fatty acids, whereas C18:1n9c is the most dominant 

unsaturated fatty acid in the milk. Wavelength ranges with higher correlation coefficients with the FAs 

appear in the range from 900 - 1470 nm. Similar results are observed for FT-NIRS (Fig. 3b). For the FT-

NIR spectral data, FAs showing higher correlation coefficient values with longer wavelength ranges (1700 

- 2500 nm) show similar patterns for shorter wavelength ranges (1000 - 1700 nm). This implies that 

signals in longer wavelength ranges may not provide extra information in addition to the signals in 

shorter wavelength ranges.   

3.4. Classification models 

PLS-DA models were developed for the three datasets for two comparisons, (a) OM versus NOM 

(CM+PM); (b) OM versus CM. The probability distributions of the two comparisons are presented in Fig. 4 

and 5, respectively. Compared with binary models, KDE distribution plots provide more information than 

a single value [22]. Traditional binary models classify samples according to a threshold value. Samples 

with probability scores lower than the threshold value are classified in one group, while samples with 

probability scores higher than the threshold value are classified as the other group. Usually, the number 

of samples classified correctly will be presented. However, KDE distribution plots also show the difference 

between sample probability scores to the threshold value. The smaller the difference between probability 

scores and the threshold value, the higher the risk of misclassification. In this study, the threshold value 

was set as 0.5 by default, but it could be modified according to specific needs for future applications.  

The Micro-NIRS dataset (Fig. 4a) shows two sub-groups in NOM, a larger sub-group on the right 

hand side of 0.5 and a smaller sub-group on the left hand side. Regardless of the smaller sub-group on 

the left, the larger sub-group seems well distributed. The tails at both sides are light and the location of 

the peak is far from the threshold value 0.5. Combining with the information of PM, the smaller sub-

group on the left side is caused by PM samples. As regard to the distribution of OM, there are tails both 

at right and left hand sides, and the average score is close to the threshold value. With the removal of 

PM (Fig. 5a), the distribution of CM improves because the left hand side sub-group, represented by PM 



samples, vanishes. Therefore, OM and CM can be distinguished efficiently by Micro-NIRS, but PM is 

blurring the separation. Similar results were obtained from the FT-NIRS data (Fig. 4b/5b). With the 

removal of PM, the tails of the distribution of CM become lighter and the scores of most CM are higher 

than the threshold. For the FA by GC data, however, fairly perfect separation is observed for OM and 

NOM as well as OM and CM. Thus, the smaller FAs may play an important role in the separation of OM 

and NOM, or alternatively other characteristics affect the NIRS results. 

Classification results for Micro-NIRS, FT-NIRS and FA by GC are summarized in Table 2. They confirm 

the KDE plots showing that both Micro-NIRS and FT-NIRS result in sufficient success for OM versus CM 

classifications, but is less successful when PM is considered too (OM versus NOM). On the other hand, 

FAs by GC is very suitable to distinguish both OM and NOM, as well as OM and CM. The first five FAs with 

highest absolute loading scores in the model of  OM versus NOM and the model of OM versus CM are 

ALA, EPA, C22:0, C18:2n9c11t, C24:0 and C14:1n5, C20:3n6, C16:0, C12:0, C18:1n9c, respectively. 

Combined with the correlation results in Figure 3, it is revealed that FAs with higher contribution to the 

model of OM versus CM also show higher correlation values than those FAs with higher contribution to 

the model of OM versus NOM. This may also explain the better performance of Micro-NIRS and FT-NIRS 

in differentiating OM versus CM, compared to OM versus NOM. Although the sensitivity of the models 

built by Micro-NIRS and FT-NIRS is not perfect, high specificity of the models ensures that there is low 

risk for CM to be classified as OM.  

To determine if there exists any statistically different capability of prediction among the models 

based on Micro-NIRS, FT-NIRS and FAs by GC data, Passing-Bablok regression was applied [9]. The 

results are shown in Table 3. The test shows that the models based on Micro-NIRS data and FT-NIRS 

data have an equivalent ability to predict the identity of OM samples versus NOM samples. This means 

they have similar capabilities. However, for the same type of prediction there is no equivalence between 

the results of the NIRS methods and FAs by GC. The three approaches have the same ability though to 

distinguish between OM and CM (without PM present).  

The main difference between Micro-NIRS and FT-NIRS is the optical device. The Micro-NIRS 

instrument is equipped with a linear variable filter (LVF) whereas FT-NIRS is equipped with a Michelson 

interferometer. Compared with the Michelson interferometer, the LVF is tiny and can be easily 

interpreted, but the limitations of this optical device are the low resolution and wavelength shifts that 

may occur [35-37]. Furthermore, the LVF applied in our research had a narrow wavelength range (908 -

1676 nm). Despite these differences, classification results were similar. In other words, higher resolution 

and a wider wavelength range did not significantly promote the prediction ability. This could be due to 

several reasons. Firstly, higher resolution and a wider wavelength range do not make any differences in 

detecting low concentration compounds, like OM markers.  Secondly, a certain correlation among the 



signals of different wavelengths may exist [38], which is also shown in Fig. 3. In this case, wider 

wavelength range or more data points do not guarantee more information that can help to distinguish 

one group from another. 

  

4. Conclusions 

 

Portable NIRS (Micro-NIRS) was shown to be able to distinguish between organic and conventional 

milks, but will result in less successful class assignment for pasture milk samples. Benchtop NIRS (FT-

NIRS) showed similar ability as Micro-NIRS to differentiate between milks. FAs by GC analysis allowed 

distinction of all groups well. Although not perfect, the portable NIRS shows potential as a first, on site 

check of the identity of organic milks, being non-inferior to benchtop NIRS for this application.  
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Figure captions 

Fig. 1 - Mean NIR spectra of organic milk (OM), pasture milk (PM) and conventional milk (CM) acquired 

by Micro-NIRS (a) and FT-NIRS (b). 

Fig. 2 - Scores plots of the first two dimensions of PCA of OM (green diamond), PM (black triangle) and 

CM (red star) based on the data obtained from different instruments: Micro-NIRS (a), FT-NIRs (b), FAs 

by GC (c). 

Fig. 3 - Correlation coefficients for Micro-NIRS versus FAs by GC (a) and FT-NIRS versus FAs by GC (b). 

Fig. 4 - OM vs NOM classification results (KDE) for the training set, internal validation set, external 

validation set, and for the expanded distribution for the Micro-NIRS (a), FT-NIRS (b) and FAs by GC (c) 

results. KDE displays the probability distributions for the OM (left, in green) and the NOM (right, in red) 

samples. PM samples are highlighted by black dots. 

Fig. 5 - OM vs CM classification results (KDE) for the training set, internal validation set, external 

validation set, and for the expanded distribution for the Micro-NIRS (a), FT-NIRS (b) and FAs by GC (c) 

results. KDE displays the probability distributions for the OM (left, in green) and the CM (right, in red) 

samples.  



Table 1 - Average composition of FAs in organic (OM), pasture (PM) and conventional (CM) whole milks 

(µg/100g liquid milk): mean concentrations, standard deviations in brackets, and statistical relevance of 

differences between milk types (P)x. 

  OM  PM CM P 

C4:0 135.8(9.7)ab 130.6(10.4)b 140.3(6.7)a 0.008* 

C6:0 72.7(3.2)a 69.6(5)a 73.6(3.8)a 0.049 

C8:0 41.7(1.6)a 38.8(2.7)b 41.1(2.3)ab 0.002* 

C10:0 93.7(3.8)a 85.9(5.4)b 90.7(6.1)ab <0.001* 

C11:0 495.2(22.4)a 495.6(4.6)a 498.8(14.2)a 0.33 

C12:0 105.2(4.3)b 109.4(6.7)b 115.7(12.5)a <0.001* 

C13:0 6.2(0.4)a 5.9(0.3)a 6.2(0.5)a 0.038 

C14:0 324.2(12)b 318.8(18.1)b 337.7(19.5)a 0.001* 

C14:1n5 27.4(1.3)c 29.2(1.5)b 31.2(1.9)a <0.001* 

C15:0 34.7(1.8)a 30.5(1.8)c 32.6(2)b <0.001* 

C15:1n5 0.2(0.2)a 0.2(0.1)a 0.3(0.2)a 0.692 

C16:0 798.5(38.7)b 838.4(40.9)b 876.1(60)a <0.001* 

C16:1n7 39.5(5.4)b 44.3(6.4)a 43.5(8.6)a <0.001* 

C17:0 19.9(2.3)a 16(1.2)b 16.1(2.9)b <0.001* 

C17:1n7 8(0.5)a 7.2(0.5)b 7.4(0.4)b <0.001* 

C18:0 323.7(21.6)a 304.4(19)b 318.8(15.7)a 0.003* 

C18:1n9t 338.4(21.7)a 321.9(20.3)a 336.4(16)a 0.028 

C18:1n9c 644.1(50.8)b 648.3(35.2)b 688.2(39.7)a <0.001* 

C18:2n6t 26.8(19)a 17.8(11.4)a 18.9(10.1)a 0.041 

C18:2n6c 51.1(19.9)a 51.3(11.8)a 55.4(12.1)a 0.041 

C18:2n9c11t (CLA) 30.9(6.2)a 17.9(2.2)b 18.8(5.4)b <0.001* 

C18:3n6c 0.9(0.3)a 0.8(0.2)a 0.8(0.2)a 0.967 

C18:3n3 (ALA/LNA) 24.6(1.9)a 15.1(1.6)b 16.4(1.4)b <0.001* 

C20:0 4.9(0.4)a 4.4(0.3)b 4.6(0.4)b <0.001* 

C20:1n9  1.3(0.1)a 1.3(0.1)a 1.3(0.1)a 0.39 

C20:2n6 0.7(0.1)a 0.6(0)b 0.6(0.1)b <0.001* 

C20:3n6 1.8(0.2)b 2.1(0.2)a 2.2(0.2)a <0.001* 

C20:3n3 0.3(0.1)a 0.2(0)b 0.2(0)b <0.001* 

C20:4n6 (ARA) 3.9(0.2)a 3.8(0.3)a 3.9(0.4)a 0.57 

C22:0 4(0.4)a 2.9(0.3)c 3.2(0.2)b <0.001* 

C22:1n9 0.2(0)a 0.2(0.1)b 0.2(0.1)b 0.001* 

C20:5n3 (EPA) 2.6(0.3)a 1.8(0.2)c 2(0.2)b <0.001* 

C22:2n6 1.7(0.2)a 1.3(0.2)c 1.5(0.2)b <0.001* 

C24:0 1.5(0.1)a 1.2(0.1)b 1.2(0.1)b <0.001* 

C24:1n9 0.3(0)a 0.2(0.1)b 0.2(0.1)b <0.001* 

C22:6n3 (DHA) 0.4(0.1)a 0.2(0.1)b 0.2(0.1)b <0.001* 

SFA 2462.1(96.7)b 2452.4(105.9)a 2556.8(121)a <0.001* 

PUFA 1059.6(71.4)b 1052.9(55.7)b 1108.7(50.9)a <0.001* 

MUFA 145.7(11.9)a 113.1(8.2)b 121.1(8.1)b <0.001* 



x An asterisk (*) and different superscripts in a row indicate significant differences (Kruskal-Wallis test, p 

< 0.01). 
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Table 3 - Joint tests on slope and intercept by Passing-Bablok regression for class 

probabilitiespredicted for different group comparisons and analytical techniques (95% 

confidence). 

Group 

comparison 
Technique Slope Intercept Joint testa 

OM vs NOM 

Micro-NIRS vs FAs 

by GC 
1.4 -0.24 H0 rejected 

FT-NIRS vs FAs 

by GC 
1.34 -0.22 H0 rejected 

FT vs Micro-NIRS 
1.08 

 

-0.05 

 
H0 accepted 

OM vs CM 

Micro-NIRS vs FAs 

by GC 
1.09 -0.04 H0 accepted 

FT-NIRS vs FAs 

by GC 
1.11 -0.05 H0 accepted 

FT-NIRS vs Micro-

NIRS 

0.97 

 
0.02 H0 accepted 

a The null hypothesis is accepted when the predictability of the two approaches is statistically 

equivalent  
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Fig. 4  
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Fig. 5  
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Highlights 

 A new method is presented for organic milk authentication by portable NIR spectroscopy. 

 Probability distributions offered detailed insights into classification results. 

 Performance of the techniques were compared by Passing-Bablok regression. 

 Portable and benchtop NIRS were similarly successful.   
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