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Abstract 9 

One of the most important steps in vision-based weed detection systems is the classification of 10 

weeds growing amongst crops. In EU SmartBot project it was required to effectively control 11 

more than 95% of volunteer potatoes and ensure less than 5% of damage of sugar beet. 12 

Classification features such as colour, shape and texture have been used individually or in 13 

combination for classification studies but they have proved unable to reach the required 14 

classification accuracy under natural and varying daylight conditions. A classification 15 

algorithm was developed using a Bag-of-Visual-Words (BoVW) model based on Scale-16 

Invariant Feature Transformation (SIFT) or Speeded Up Robust Feature (SURF) features with 17 

crop row information in the form of the Out-of-Row Regional Index (ORRI). The highest 18 

classification accuracy (96.5% with zero false-negatives) was obtained using SIFT and ORRI 19 

with Support Vector Machine (SVM) which is considerably better than previously reported 20 

research although its 7% false-positives deviated from the requirements. The average 21 

classification time of 0.10 - 0.11 s met the real-time requirements. The SIFT descriptor showed 22 

better classification accuracy than the SURF, but classification time did not vary significantly. 23 



2 
 
 

 

Adding location information (ORRI) significantly improved overall classification accuracy. 24 

SVM showed better classification performance than random forest and neural network. The 25 

proposed approach proved its potential under varying natural light conditions, but 26 

implementing a practical system, including vegetation segmentation and weed removal may 27 

potentially reduce the overall performance and more research is needed. 28 
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 32 

Nomenclature 33 

Abbreviations 34 

BoVW   Bag-of-Visual-Words 35 

SIFT   Scale-Invariant Feature Transformation 36 

SURF   Speeded Up Robust Feature 37 

ORRI   Out-of-Row Regional Index 38 

SVM   Support Vector Machine 39 

kNN   k-Nearest Neighbours 40 

RGB   Red-Green-Blue 41 

EG-RB plane  Excessive Green - Red minus Blue plane 42 

TP   True-Positive 43 

FP   False-Positive 44 

TN   True-Negative 45 

FN   False-Negative 46 
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 47 

Symbols 48 

m  metre 49 

mm  millimetre 50 

m s-1  metre per second 51 

min  minute 52 

s  second 53 

 54 

1. Introduction 55 

Within the EU-funded project SmartBot (SmartBot), a small-sized robot was developed for 56 

vision based precision control of volunteer potatoes (weed) in a sugar beet field (Fig. 1). Due 57 

to the small size of the robot and its battery operation, the platform design had to refrain from 58 

using additional infrastructure and should be able to robustly detect weeds in scenes that are 59 

fully exposed to ambient lighting conditions (Suh, Hofstee, & Van Henten, in press). Additional 60 

infrastructure such as a hoods and lighting, as for example were used by Nieuwenhuizen et al. 61 

(2010) and Haug et al. (2014), was not considered viable.  62 

One of the most important steps in vision-based weed detection is the classification of weeds 63 

among crops. The output of this classification is a fundamental element in the subsequent 64 

process of weed control either by chemical spraying or mechanical actuation (Behmann, 65 

Mahlein, Rumpf, Römer, & Plümer, 2015). In a system for weed detection, vegetation 66 

segmentation is followed by classification of the segmented vegetation into weeds and crop. 67 

This classification step traditionally involves two aspects: 1) selection of the discriminative 68 
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features and 2) selection of the classification technique (classifier) to differentiate between 69 

weeds and crop.  70 

Regarding the features used for discrimination, many studies have used colour, shape 71 

(biological morphology) and texture on an individual basis or in combination (Ahmed, Al-72 

Mamun, Bari, Hossain, & Kwan, 2012; Åstrand & Baerveldt, 2002; Gebhardt & Kühbauch, 73 

2007; Nieuwenhuizen, Tang, Hofstee, Müller, & Van Henten, 2007; Pérez, López, Benlloch, 74 

& Christensen, 2000; Persson & Åstrand, 2008; Slaughter, Giles, & Downey, 2008; Swain, 75 

Nørremark, Jørgensen, Midtiby, & Green, 2011; Zhang, Kodagoda, Ruiz, Katupitiya, & 76 

Dissanayake, 2010). These features are intuitive and easy-to-implement but may have limited 77 

discrimination ability under ambient lighting conditions.  78 

In a system that is required work under ambient light conditions, the use of colour features may 79 

not yield robust classification (Lee et al., 2010). In the field, illumination constantly changes 80 

because of the varying sunlight and weather conditions. These variations in illumination greatly 81 

affect the Red-Green-Blue (RGB) pixel values of the acquired field images and lead to an 82 

inconsistent colour representation of plants (Sojodishijani, Ramli, Rostami, Samsudin, & 83 

Saripan, 2010; Teixidó et al., 2012). Additionally, irrespective of the illumination, it is 84 

sometimes hard, if not impossible, to differentiate between volunteer potato and sugar beet 85 

using colour features. Usually, volunteer potato has a darker green colour than sugar beet (Fig. 86 

2a) which results in a separable pixel distribution in the EG-RB colour plane (Fig. 2c). However, 87 

as is shown in Fig. 2b, volunteer potato occasionally has the same colour as sugar beet which 88 

makes them inseparable in the EG-RB colour plane (Fig. 2d). Also, the colour of plants may 89 

change depending on their growth stage and nutritional status (Muñoz-Huerta et al., 2013) with 90 

plant leaves sometimes even turning yellow in the summer (Fig. 3). 91 
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Shape and texture may also not be sufficiently discriminating features for successful 92 

classification of sugar beet and volunteer potato in the field. Camargo Neto et al. (2006), Swain 93 

et al. (2011), and Rumpf et al. (2012) showed that leaf edge information, plant orientation, and 94 

shape could serve as discriminative features. However, results obtained under laboratory 95 

conditions in a highly structured environment do not easily translate to real field conditions. 96 

Wind, shadow, and specular reflection of sunlight make it difficult for clear recognition of the 97 

shape of the plants in the field (Kazmi, Garcia-Ruiz, Nielsen, Rasmussen, & Andersen, 2015). 98 

Some studies have shown that texture has the potential to discriminate between broad- and 99 

narrow-leaf plants as both have clearly different textural properties (Gebhardt & Kühbauch, 100 

2007; Ishak, Hussain, & Mustafa, 2009; Van Evert, Polder, Van Der Heijden, Kempenaar, & 101 

Lotz, 2009). However, sugar beet and volunteer potato have similar textural properties that 102 

cannot easily be discriminated (Vollebregt, 2013). Therefore, a solution was needed to classify 103 

sugar beet and volunteer potato that would not depend on colour, shape, and textural features.  104 

A potential method to resolve the afore-mentioned issues and meet the performance 105 

requirements is to use counter-intuitive features (i.e. local descriptors) extracted by Scale-106 

Invariant Feature Transform (SIFT) (Lowe, 2004) or Speeded Up Robust Features (SURF) (Bay, 107 

Ess, Tuytelaars, & Van Gool, 2008). Both SIFT and SURF are invariant to illumination and 108 

colour while providing strong performance against noise. The SIFT descriptor has been used 109 

for weed classification and recognition in several recent studies (Kazmi et al., 2015; Kounalakis, 110 

Triantafyllidis, & Nalpantidis, 2016; Wilf et al., 2016). Using the SIFT descriptor, Wilf et al. 111 

(2016) proposed a leaf identification procedure based on a machine learning approach. 112 

Although they acquired images under controlled environmental conditions with the manual 113 

arrangement of the leaves, their study showed the potential of the SIFT descriptor for leaf 114 

classification. Kazmi et al. (2015) used both SIFT or SURF descriptors to classify sugar beet 115 
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and creeping thistle under field conditions. Their study showed the potential of using local 116 

descriptor features for thistle detection. They combined these local descriptors with the features 117 

of surface colour and edge shapes. Using k-Nearest Neighbours (kNN) and SVM classifiers a 118 

very promising classification performance was achieved. However, their study was limited to 119 

detecting creeping thistle in a sugar beet crop, two species having clearly different textural 120 

features. Also, the field images were mostly acquired using a cover preventing direct access of 121 

sunlight to the scene, quite a distinct difference with the daylight conditions the SmartBot robot 122 

is confronted with. 123 

A common way for classifying images using SIFT or SUFT descriptors is to use a Bag-of-124 

Visual-Words (BoVW) approach. The BoVW approach has demonstrated good performance in 125 

many computer vision applications such as object and scene classification (Law, Thome, & 126 

Cord, 2014; Tsai, 2012; Zhou, Zhou, & Hu, 2013). The BoVW evolved from the original Bag-127 

of-Words methodology which was first proposed in the field of text analysis and information 128 

retrieval (Bosch, Muñoz, & Martí, 2007). In text analysis and information retrieval, each 129 

appearance of a word is recognised as a feature and is represented in the form of a bag of words, 130 

an orderless document representation of vocabulary (Salton & McGill, 1983). Once the Bag-131 

of-Words model learns a vocabulary from all the documents, then each document can be 132 

classified by the number of times each word appears (occurrence). The same methodology and 133 

concept are applied in image classification in BoVW. The extracted features from an image are 134 

treated as a visual word, and the BoVW model is formed based on the occurrence of each visual 135 

word. Once the BoVW approach has learned each visual word from all the images, then each 136 

image can be classified by the number of times each visual word appears (occurrence). 137 

This paper presents a classification algorithm using a Bag-of-Visual-Words model, SIFT or 138 

SURF descriptors. SIFT is known to provide better classification performance than SURF, but 139 
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it is said to be several times slower than SURF (Csurka, Dance, Fan, Willamowski, & Bray, 140 

2004; Khan, McCane, & Wyvill, 2011; Wu et al., 2013). This research aimed to verify the 141 

difference in performance between SIFT and SURF by assessing classification accuracy and 142 

computation time on similar datasets (images) obtained in the field in 2015. Since neither SIFT 143 

nor SURF uses location related features, crop row information was used as an additional feature 144 

and added to the feature set to assess whether that would improve the classification accuracy.  145 

SURF, SIFT and crop row information provide the features but require further processing for 146 

classification. Due to the challenging nature of the agricultural environment, and complexity of 147 

plant materials, (Suh et al., in press), it is hard to select a-priori one particular classifier which 148 

performs best in the classification task at hand. To provide more insight into the performance 149 

differences found amongst different classifiers, the Support Vector Machine (SVM), random 150 

forest, and neural network classifiers were compared. These classifiers have been used in many 151 

agricultural applications (Ahmed et al., 2012; Cho, Lee, & Jeong, 2002; Jeon, Tian, & Zhu, 152 

2011; Lottes, Hörferlin, Sander, & Stachniss, 2016). 153 

To estimate the amount of certainty of the classification output, a posterior probability of the 154 

output of the SVM was calculated using a method proposed by Platt (1999). The posterior 155 

probability might provide useful information for weed control in practice since the action of 156 

removing volunteer potato should only be applied to those potato plants that are classified with 157 

a high confidence, while the control action should be skipped for those potato plants that are 158 

classified with a low confidence to prevent undesired destruction of the sugar beet.  159 

Within the context of the SmartBot weeding application, following requirements were set by 160 

the previous study of Nieuwenhuizen (2009): the resulting automatic weeding system should 161 

be able to effectively control more than 95% of the volunteer potatoes as well as ensuring less 162 
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than 5% of damage of the sugar beet plants. Therefore, classification accuracy should be 163 

considerably higher than 95% with a misclassification level of both sugar beet (false-negative) 164 

and volunteer potato (false-positive) of less than 5%. In addition, a classification time of less 165 

than 1 s per field image is required for feasible real-time field application. In this paper the 166 

classification process is evaluated in view of these requirements. 167 

The first section of this paper describes the processing method of the BoVW model construction 168 

using the SIFT or SURF features. The following section describes the acquisition and selection 169 

of the image dataset, quantitative performance measure, and estimation of the posterior 170 

probability of SVM outputs. The experimental results are shown with the corresponding 171 

discussions. Lastly, conclusions are drawn.  172 

 173 

2. The classification process 174 

The classification process consists of the following procedures: 1) feature extraction using SIFT 175 

or SURF descriptors as well as crop row information, 2) feature clustering for visual vocabulary 176 

generation, 3) feature quantisation, 4) classification with SVM, random forest or neural network 177 

classifiers. The image classification process is shown in Fig. 4, and each component will be 178 

described in more detail in the following section. 179 

2.1. Feature extraction with SIFT or SURF descriptors and 180 

Out of Row Regional Index (ORRI) 181 

The first step involved the extraction of local features from the training images (Fig. 4a, Fig. 182 

5a). For the selection of the feature extraction point (keypoint) within an image, a regular grid-183 
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point based sampling was used as several studies reported that it provided robust performance 184 

(Fei-Fei & Perona, 2005; Law et al., 2014; Tsai, 2012). Grid size refers to the density of the 185 

feature extraction within a given image. In a preliminary study (Table 4) it was found that a 186 

grid size of 3 × 3 pixels proved to perform best for SIFT and 6 × 6 pixels for SURF. 187 

During the generation of the visual vocabulary, the spatial location of the feature within an 188 

image was ignored. However, the spatial location may contain some valuable information for 189 

weed and crop discrimination. Uijlings et al. (2009) reported that the classification performance 190 

of BoVW using SVM was considerably improved when they included spatial information 191 

(contextual information) into the algorithm.  192 

In a classification problem with one single object in an image scene, the location of the object 193 

within an image may not carry any additional and useful information. However, with weed 194 

detection in the field, the location of each plant can play a significant role in the plant 195 

recognition. For example, sugar beet plants are cultivated in rows (Åstrand & Baerveldt, 2002). 196 

Due to precision seeding, the crop row width and plant spacing within a row are fixed. For this 197 

reason, most of the sugar beet are found inside crop rows whilst weeds can be found randomly 198 

distributed across the field. Any green plant that is located far away from the crop rows is 199 

unlikely to be a crop but very likely to be a weed.  200 

Inspired by the details mentioned above, an out-of-row regional index (ORRI) was generated 201 

for each plant on the basis of the out-of-row distance (Fig. 6), a distance between the centre of 202 

the plant to the nearest crop row. The ORRI was added to the BoVW feature set. Identifying 203 

weeds as weeds when located outside the crop row may sound trivial, which it is. However, it 204 

was hypothesised that adding ORRI information during the learning process might add an extra 205 
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discriminatory dimension, and thus might enhance the discriminative power in the classification. 206 

The details of the ORRI generation are described below. 207 

Firstly, the location of three crop rows was manually estimated. Secondly, the distance between 208 

the centres of each plant to the nearest crop row, the out-of-row distance, was estimated. Thirdly, 209 

each plant received a value for the ORRI from the set [0.3, 0.6, 0.9] based on the following 210 

rules: 211 

ORRI = �
0.3    𝑖𝑖𝑖𝑖   out-of-row distance < 80 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
0.6    𝑖𝑖𝑖𝑖   80 ≤ out-of-row distance < 160
0.9    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (1) 

where the out-of-row distance is represented as a pixel value (one pixel corresponds to 212 

approximately 1 mm in the field).  213 

For the regional index discrete values of 0.3, 0.6 and 0.9 were used instead of continuous values 214 

because it was expected that the estimation of the crop rows and centre point of the plant would 215 

be likely to introduce noise.  216 

2.2. Feature clustering for visual vocabulary generation 217 

In this step, extracted features were clustered using k-means clustering, a common method for 218 

visual vocabulary generation (Fig. 4b, Fig. 5b). Each cluster centroid determined by k-means 219 

clustering was considered as a visual word. Based on a preliminary study, the number of clusters 220 

and thus the vocabulary size was set to 500 (Table 4). 221 

If the vocabulary size (number of clusters) is too small, the set of visual words may be too 222 

limited to represent all the important features of images, and thus may lead to poor classification 223 

performance (Yang, Jiang, Hauptmann, & Ngo, 2007). On the other hand, if the vocabulary 224 
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size is too large, there is a higher chance of overfitting the training dataset. In addition, a large 225 

size of the vocabulary also requires more processing power.  226 

2.3. Feature quantisation 227 

Once the visual vocabulary was generated, the features (descriptors) extracted from each image 228 

were assigned to each visual word to construct a histogram of visual word occurrences (Fig. 4c, 229 

Fig. 5c). Using the Euclidean distance, each extracted feature was allocated to its nearest visual 230 

word (nearest neighbour). A histogram of visual words was then generated by counting the 231 

number of features that were assigned to each visual word. The length of the histogram was 232 

equal to the number of cluster centres generated by k-means clustering, where the nth value in 233 

the histogram was the occurrence of the nth visual word. This process is commonly called 234 

feature quantisation (Kato & Harada, 2014). A histogram of visual word occurrence generated 235 

from images of sugar beet and volunteer potato is shown in Fig. 7. 236 

2.4. Classification based on supervised learning 237 

Supervised learning was used to train the classifiers for differentiation between sugar beet and 238 

potatoes (Fig. 4d, Fig. 5d). Three classifiers were used in this study: SVM, random forest and 239 

a neural network. In the SVM, three different polynomial kernels (linear, quadratic and cubic) 240 

were assessed. For the evaluation of the classifiers, 10-fold cross-validation was used. Some 241 

details of random forest and neural network are described below. 242 

2.4.1 Support Vector Machine (SVM) 243 

The SVM is a supervised learning model based on the theory of statistical learning (Vapnik, 244 

1995). SVM is one of the most widely used classification models in machine learning 245 
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applications and often reaches high performance in high-dimensional problems with small 246 

sample problems (Csurka et al., 2004; Li, 2011). The basic principle of SVM is to find the 247 

optimal hyperplane which separates classes with minimum error. 248 

2.4.2 Random forest (Ensemble Classifier) 249 

A random forest classifier, an ensemble method that consists of multiple decision trees, was 250 

used for this study. Random forest, as the name says, is constructed from decision trees, more 251 

precisely it is a collection of tree-structured classifiers. Each decision tree provides a 252 

classification "vote," and the majority vote is selected for the final classification (Chan & 253 

Paelinckx, 2008; Liaw & Wiener, 2002; Polikar, 2006). Breiman (2001) reported that the 254 

performance of a random forest was superior to other learning algorithms. Rodriguez-Galiano 255 

et al. (2012) indicated that the random forest is relatively robust to outliers and noise as well as 256 

computationally less expensive than other tree ensemble methods. 257 

2.2.3 Neural Network 258 

An artificial neural network consists of multiple nodes and neurons that are connected in the 259 

layers. Compared to other classifiers, according to Behmann et al. (2015), a neural network 260 

requires less prior information and is robust to noise thus particularly suitable for the modelling 261 

of optical sensor data. In this study, a feed-forward back propagation neural network was used. 262 

The neural network used in this research consists of one hidden layer with 150 neurons besides 263 

an input and an output layer. In the input layer, histograms of visual words were utilized, and 264 

in the output layer, sugar beet was represented by [1, 0] while volunteer potato was represented 265 

by [0, 1].  266 

 267 
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3. Experiment setup 268 

3.1. Field image collection and image dataset 269 

To acquire crop images, a camera was mounted at the height of 1 m perpendicular to the ground 270 

on a custom-made frame carried by a mobile platform (Husky A200, Clearpath, Canada) (Fig. 271 

8). A stereo camera (NSC1005c, NIT, France) was equipped with two Kowa 5 mm lenses 272 

(LM5JC10M, Kowa, Japan) with a fixed aperture. The camera was set to operate in an 273 

automatic acquisition mode with default settings. The camera images from left and right sensors 274 

were acquired each having an image resolution of 1280 × 580 pixels. The ground-covered area 275 

was 1.3 × 0.7 m per image (pair), corresponding to three crop rows of sugar beet. The 276 

acquisition program was implemented in LabVIEW (National Instruments, Austin, TX, USA) 277 

and acquired five images per second. Raw format images (TIFF) were initially acquired in the 278 

field, and debayer was processed offline to convert the raw format image into RGB colour. 279 

Field images were taken while the mobile platform was manually controlled with a joystick and 280 

driven along crop rows using a controlled travelling speed of 0.5 m s-1. Sugar beet were sown 281 

in April 2015 into sandy and clay soil at Unifarm experimental sites in Wageningen, The 282 

Netherlands. One week after sowing the sugar beet, potatoes were planted in random locations 283 

throughout the fields. Crop images were acquired for two days in the morning and afternoon on 284 

1 June and 5 June, 2015.  285 

For the labelled image dataset used in this study, a total of 400 individual plant images was 286 

manually extracted from selected field images: 200 sugar beet plants and 200 volunteer potato 287 

plants. During the selection of this image dataset, images with different illuminations levels 288 

were considered as well as images containing shadows. The size of each plant image in the 289 
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dataset varied from the smallest size of 65 × 65 pixels to the largest of 305 × 315 pixels. 290 

Example images in the dataset are shown in Fig. 9.  291 

In the image dataset, all sugar beet were found within crop rows (out-of-row distance < 80 292 

pixels), having an ORRI of 0.3. On the other hand, volunteer potatoes were found inside and 293 

outside crop rows. The number of volunteer potatoes found inside the crop row (out-of-row 294 

distance < 80 pixels), i.e. ORRI = 0.3, was 55; while the number of volunteer potatoes found 295 

outside the crop row (out-of-row distance ≥ 80 pixels), i.e. ORRI > 0.3, was 145. 296 

3.2. Performance measure and system platform 297 

In this study a binary classification was carried out; i.e. sugar beet or volunteer potato. The 298 

classification performance measures used in this study are described below. 299 

A confusion matrix (Table 1) was used to assess and compare the classification performances. 300 

The classification accuracy was calculated along with training and classification time since this 301 

approach should, in the end, yield a real-time field application. Each classifier was validated 302 

using 10-fold cross-validation. The classification accuracy and training time were averaged 303 

over ten trials with a random split of the dataset. The training time included times for classifier 304 

training as well as extracting features and building a visual vocabulary. The classification time 305 

was measured for the prediction of one plant image. All images were processed in Matlab 2015b 306 

(The MathWorks Inc, Natick, MA, USA) using the Computer Vision System Toolbox™, 307 

Neural Network Toolbox™, and VLFeat library for Matlab (Vedaldi & Fulkerson, 2008). 308 

Processing time was measured on an Intel® Core™ i7-377T 2.5 GHz processor with 8 GB 309 

memory running 64-bit Windows 7.  310 
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Classification Accuracy =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (2) 

where: TP is true-positive; FP is false-positive; TN is true-negative; FN is false-negative 311 

 312 

3.3. Estimated posterior probability of SVM outputs 313 

Platt (1999) proposed a method using a sigmoid function to calculate and estimate the posterior 314 

probability for SVM classifier. Since then, this method has been used in many applications (Lin, 315 

Lin, & Weng, 2007) as it is an useful measure to provide the degree of certainty (belief) of the 316 

classification output. In this study, a posterior probability was estimated for the SVM using a 317 

linear kernel and employing the ORRI in the feature set.  318 

 319 

4. Results 320 

The classification performances of BoVW using SIFT or SURF descriptors are summarised 321 

with true-positive (TP), false-negative (FN), false-positive (FP), true-negative (TN), 322 

classification accuracy, training time and classification time in Table 2 and Table 3. In these 323 

tables, it is also indicated whether the ORRI was used.  324 

4.1 Classification accuracy 325 

In Table 2, using SIFT features and ORRI, the highest classification accuracy obtained was 326 

96.5%; while the lowest classification accuracy obtained was 83.5%. Three classifier models 327 

(SVM linear, SVM quadratic, and neural network) showed classification accuracies ≥ 95%, 328 

thus meeting the requirements. Likewise, in Table 3, using SURF features and ORRI, the 329 

highest classification accuracy obtained was 94.5%; while the lowest classification accuracy 330 
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obtained was 84.5%. None of the classifier models showed a classification accuracy of ≥ 95%, 331 

and thus using SURF features and ORRI did not meet the requirements set at the beginning of 332 

this research. 333 

4.2 Misclassification rate (false-positive and false-negative) 334 

The false-negative values obtained for the cases with the highest classification accuracies using 335 

SIFT features with ORRI and using SURF features with ORRI were both zero (Table 2 and 336 

Table 3). Meeting the requirements, in these cases all the sugar beet plants were correctly 337 

classified as a sugar beet, and thus no crop would be eliminated by a weed control operation 338 

(0% of undesired control of sugar beet plants). However, in these cases the false-positive values 339 

obtained with the highest classification accuracies using SIFT with ORRI, and using SURF 340 

with ORRI were 14 (7%) and 22 (11%), respectively. So, 7% and 11% of volunteer potato were 341 

classified as sugar beet, respectively, and thus would not be destroyed. These false-positive 342 

values do not meet the requirements (misclassification: less than 5%).  343 

4.3 Training and classification time 344 

Training time in this work includes the time needed for training of the classifiers as well as for 345 

extracting SIFT or SURF features and building the visual vocabulary. SVMs required 218-222 346 

s and 175-183 s of training time using SIFT with ORRI and SURF with ORRI, respectively; 347 

while the neural network required 260 s and 190 s of training time using SIFT with ORRI and 348 

SURF with ORRI, respectively. The training times needed by all classifiers were reasonable, 349 

considering that training can be done offline and may not have to be repeated very often. 350 

The classification time indicates the time required to classify the class of a single plant image 351 

using a trained classifier. For all classifiers, an average time of 0.10 - 0.11 s was needed for 352 
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classification, which is a reasonable value when the real-time application in the field is 353 

considered.  354 

4.4 SIFT compared to SURF 355 

SIFT is known to provide better classification performance than SURF, however, at the expense 356 

of more computation time. In view of classification accuracy, this observation was confirmed 357 

in this research. Overall, in line with findings reported in the literature, using SIFT features 358 

resulted in better classification accuracy than using SURF features. Without ORRI, the 359 

accuracy improved on average 6.2% when using SIFT features instead of using SURF features. 360 

With ORRI this difference reduced, and on average, the accuracy improved by 2.6% when using 361 

SIFT features instead of SURF features. SIFT features required more training time than SURF 362 

features. On average 46 s more training time was required when using SIFT instead of SURF. 363 

Classification time did not differ much for SIFT and SURF, however, and this result does not 364 

match with observations reported in the literature. On average 0.11 s and 0.10 s was needed 365 

when using SIFT and SURF, respectively. 366 

4.5 Out-of-Row Regional Index (ORRI) 367 

For all classifiers classification accuracy improved with ORRI. It was earlier hypothesised that 368 

adding spatial information (ORRI) during the learning process adds an extra discriminatory 369 

dimension which enhances the discriminative power of the classification of sugar beet and 370 

volunteer potato. This hypothesis was confirmed by the results, showing that the classification 371 

accuracy considerably improved when implementing ORRI in the classification algorithm. 372 

Averaged over all classifiers, the improvement in classification accuracy using the ORRI was 373 

4.5% and 8% when using the SIFT and SURF features, respectively. 374 
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For comparison, it is worth noting that when using the ORRI as the only feature, a classification 375 

accuracy of 86.3% was obtained in all classifiers with TP, FN, FP and TN of 200, 0, 55, 145, 376 

respectively. This is a relevant result because, as mentioned earlier, in the dataset a total of 255 377 

plants (200 sugar beet and 55 volunteer potatoes) were found inside crop rows (out-of-row 378 

distance < 80 pixels, having an ORRI of 0.3). In Table 3, it can be seen that adding ORRI to 379 

SURF and classifying with a SVM and a linear kernel results in a change of classification for 380 

45 plants (FN:25→0, FP:42→22). Further analysis of the individual images revealed that 29 of 381 

these 45 images had an ORRI 0.3, so were inside crop rows: 25 of them were sugar beet plants, 382 

and four of them were volunteer potato plants. Interestingly enough, these 25 sugar beet, though 383 

being inside the crop rows, were not properly classified by SURF only (without ORRI). This is 384 

unsurprising because SURF does not employ any locational feature. More interesting is to note 385 

that four of the images were volunteer potato plants. So, by adding a location feature in training 386 

improved the classification for volunteer potato inside crop rows, which is a real challenge in 387 

weed classification. 388 

When training time is considered with ORRI, SIFT required on average 6.7 s more time when 389 

training without ORRI. Likewise, training with ORRI using SURF required on average 7.2 s 390 

more time than training without ORRI. When it comes to classification, however, the use of 391 

ORRI did not lead to a considerable increase in calculation time. 392 

4.6 Comparison of SVM, Random Forest and Neural Network classifiers 393 

SVM classifiers with a linear and quadratic kernel showed better classification accuracies than 394 

random forest and neural network, though the SVM and neural network did not differ much. In 395 

Table 2, using SIFT features and ORRI, the highest classification accuracy of 96.5% was 396 

obtained with a SVM and a quadratic kernel; while the lowest classification accuracy of 90.5% 397 



19 
 
 

 

was obtained with the random forest. In Table 3, using SURF features and ORRI, the highest 398 

classification accuracy of 94.5% was obtained with a SVM and both a linear and a quadratic 399 

kernel; while the lowest classification accuracy of 84.5% was obtained with the random forest.  400 

4.7 Grid size and vocabulary size 401 

Classification accuracy with different sizes of grid and vocabulary are compared in Table 4. 402 

Using small grid sizes tended to produce better result than large grid sizes. However, vocabulary 403 

size did not seem to produce any regular pattern of performance. In fact, grid and vocabulary 404 

size are not formally related, but a certain combination (in this case, a grid size of 6 × 6 and 405 

vocabulary size of 500) showed a better performance than others in this study. Therefore, a grid 406 

size of 6 × 6 pixels and vocabulary size of 500 were used as an optimal combination when 407 

employing the SURF descriptor because the highest classification accuracy (94.5%) was 408 

achieved with these settings. For the SIFT descriptor, a grid size of 3 × 3 pixels with a 409 

vocabulary size of 500 was used as the highest classification accuracy was achieved with these 410 

settings. 411 

4.8 Estimated posterior probability 412 

The posterior probabilities of the SVM with linear kernel using SIFT features and ORRI were 413 

calculated and visualized in the form of a box-and-whiskers plot in Fig. 10. All sugar beet 414 

images were correctly classified as sugar beet (true-positive), and on average the posterior 415 

probability was 0.96 with a standard deviation of 0.09. A total of 180 volunteer potato images 416 

(out of 200) was correctly classified as volunteer potatoes (true-negative), and for these images 417 

the average posterior probability was 0.98 with a standard deviation of 0.02. However, 20 418 

volunteer potato images were incorrectly classified as sugar beet (false-positive). With an 419 

average value of 0.49 and standard deviation of 0.27, in these cases, the average posterior 420 

probability was lower than in the true-positive and true-negative cases. These results indicate 421 
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that the classifier was more confident in case of correct classification than when making a false 422 

classification.  423 

The above results show that the posterior probability might provide useful information for weed 424 

control in practice. Using the posterior probability, the action to remove volunteer potato should 425 

only be applied to those plants that are classified with a high confidence. Figure 11, for example, 426 

shows the classification results with the posterior probability with a field image. Plants 1 to 6 427 

are sugar beet whereas plants 7 to 9 are volunteer potatoes (Fig. 11a and 11b). In Figure 11c, 428 

plants 2 to 6 are correctly classified as sugar beet with a posterior probability of 0.86 and higher; 429 

and plants 7 to 9 are correctly classified as volunteer potatoes with a posterior probability of 430 

1.0. However, plant 1 (sugar beet) is incorrectly classified as a volunteer potato (false-negative). 431 

In this case, the posterior probability is 0.54 and considerably lower than the others. In such a 432 

case, based on the lower posterior probability, it might be beneficial to skip the weed control 433 

action because since it would lead to the destruction of the crop. 434 

 435 

5. Discussion 436 

 437 

5.1 Classification accuracy 438 

The classification accuracy obtained using BoVW approach with ORRI exceeded previously 439 

reported accuracies; e.g. Nieuwenhuizen et al. (2010) and Persson & Åstrand (2008). 440 

Considering the different illuminations levels and shadows in the image dataset, the highest 441 

classification accuracy (96.5%) obtained in this study is considerably better than any other 442 

approaches with colour, shape, and texture features in the literature for weed classification. 443 

However, the overall performance of weed control also depends on the performance of 444 
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vegetation segmentation as well as the actuation performance of the weeding device. If the 445 

individual performance of either one of these two operations would be < 100%; thus the 446 

classification accuracy should be considerably higher than 95% in order for the automatic 447 

weeding system to effectively control more than 95% of the volunteer potatoes in the field. In 448 

this regard, the highest classification accuracy achieved in this study (96.5%) may not be 449 

enough to satisfy the overall performance of volunteer potato control since it is not significantly 450 

higher than 95%.  451 

The obtained results were based on manually extracted plant images. Thus, the proposed 452 

approach itself does not lead to the precise detection of volunteer potato in field images. To 453 

make a complete system for the use of weed control in the field, vegetation segmentation and 454 

weed removal operation needs to be integrated. During integration, overlapping plant cases 455 

need to be considered as well. 456 

5.2 Misclassification rate (false-positive and false-negative) 457 

For weed control in practice, it is critical to have a large as possible number of true-positives as 458 

well as a large as possible number of true-negatives. Not only that, but it is also important to 459 

consider both the number of false-negatives (the number of sugar beet plants that are classified 460 

as volunteer potatoes) and the number of false-positives (the number of volunteer potato plants 461 

that are classified as sugar beet). The false-negatives lead to the removal of the cash crop caused 462 

by the misclassification, thus keeping the number of false-negatives as small as possible is 463 

critical (Lottes et al., 2016). However, it is desirable to keep the number of false-positives as 464 

small as possible. If there are many left over volunteer potato plants caused by misclassification, 465 

then a weed control robot may need to drive repetitively across the field to meet the statutory 466 

regulation in the Netherlands (Nieuwenhuizen, 2009). The economic consequences of false-467 

negatives and false-positive detections require further research. 468 
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5.3 Calculation time 469 

From general observations of the field images, there is an average of 6-8 plants in one image. 470 

Based on these number of plants in an image, the whole plant classification of one field image 471 

may take up to 0.8 seconds (including all other steps in the image processing) using SVM 472 

classifiers, which is acceptable for our real-time application (<1 s for one field image). The 473 

classification time, of course, depends on the size of each plant found in an image, and can be 474 

further improved with a parallel-processing approach. In addition, the size of the grid and 475 

vocabulary also influences the classification and processing time. If the processing time is 476 

highly critical for certain applications, grid and vocabulary size can be changed to reduce the 477 

processing time at the expense of classification accuracy. 478 

5.4 SIFT and SURF 479 

Several studies have indicated that SURF is rapid for computation and matching (Khan et al., 480 

2011; Panchal, Panchal, & Shah, 2013; Wu et al., 2013; Zagoris et al., 2014). In this research 481 

SIFT required more training time than SURF. However, the classification times required for 482 

SIFT and SURF were not considerably different in this study. This result is not accord with the 483 

literature. In this study, the different grid sizes used for SIFT and SURF may have caused 484 

classification times to be similar.  485 

There is room for improvement in terms of the classification accuracy. During the extraction of 486 

SIFT and SURF descriptors, dataset images were converted to greyscale ignoring all the colour 487 

information (RGB) because SIFT and SURF operate on intensity information only. However, 488 

colour may carry some discriminative information for the classification of sugar beet and 489 

volunteer potato. To overcome the abovementioned weakness of SIFT and SURF descriptors, 490 

several variations of SIFT and SURF have been proposed in the literature using colour features 491 
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such as rgSIFT, Transformed colour SIFT, and Color-SURF (Fan, Men, Chen, & Yang, 2009; 492 

Van De Sande, Gevers, & Snoek, 2008) to improve classification accuracy. Similarly, Rassem 493 

and Khoo (2011) proposed not to convert RGB image to greyscale but to apply the feature 494 

extraction on each RGB channel. The extracted features from the individual colour channels 495 

may add extra discriminative power for classification, and validating this hypothesis is, 496 

therefore, a topic of a future study. As indicated in Fig. 2, the added value of using also colour 497 

might be limited in cases where, as here, crop and weed plants have similar colour values. 498 

5.5 Out-of-Row Regional Index (ORRI) 499 

Combining ORRI considerably improved the classification accuracy enhancing the 500 

discriminative power of the classification. However, spatial information of each plant (ORRI) 501 

including crop rows and out-of-row distance was manually estimated in this study. For an 502 

automated field application using a mobile robot, the estimation of crop rows and out-of-row 503 

distance should be automated as well. Algorithms for crop row detection have been presented 504 

in several studies (Guerrero et al., 2013; Hiremath, Van Evert, Braak, Stein, & Van der Heijden, 505 

2014; Kise, Zhang, Rovira Más, & Mas, 2005; Leemans & Destain, 2006; Romeo et al., 2012; 506 

Søgaard & Olsen, 2003), but these algorithms are likely to introduce noise. Thus, in the current 507 

approach, regional index (0.3, 0.6 and 0.9) was used instead of a precise number for the out-of-508 

row distance to compensate any potential noise.  509 

5.6 Classifiers 510 

Based on the results obtained in this study SVM classifiers would be an easy and plain choice 511 

for field applications, not only because SVM classifiers showed better classification 512 

performance in most cases than random forest and neural network, but also because SVMs are 513 

easier to implement than other classifiers. However, the neural network also performed quite 514 
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well, showing similar classification performance as SVMs, although a simple network structure 515 

(1 hidden layer) was used in this study. Kanellopoulos & Wilkinson (1997) indicated that multi-516 

layer network architecture might be potentially more powerful than a simple network. This has 517 

been confirmed over the past few decades in various applications (LeCun, Bengio, & Hinton, 518 

2015). Thus, adding more layers is likely lead to better classification performance.  519 

5.7 Posterior probability 520 

The posterior probability estimated by Platt’s method offers additional information during the 521 

weed control action, which can be useful in practice. Using this posterior probability, the action 522 

to remove volunteer potato should only be applied to those volunteer potato plants that are 523 

classified with a high confidence. Volunteer potato plants that are classified with lower 524 

confidence might be better skipped because it might lead to the undesired destruction of the 525 

sugar beet. However, the characteristics and applicability of this approach need further study. 526 

Two studies have indicated that probability estimation using Platt’s method could be ineffective 527 

in some cases especially for large datasets (Niculescu-Mizil & Caruana, 2005; Perez-Cruz, 528 

Martinez-Olmos, & Murillo-Fuentes, 2007). To compensate for the weakness of Platt’s method, 529 

Lin et al. (2007) proposed an improved algorithm which theoretically avoids numerical 530 

difficulties. When large datasets are concerned, their proposed method for probability 531 

estimation might be a better choice.  532 

In this study, the posterior probability was estimated only for SVM classifier. However, the 533 

posterior probability for other classifiers, such as random forest and neural network, can also 534 

be estimated using a method proposed by Niculescu-Mizil and Caruana (2005). They reported 535 

that random forest and the neural network classifiers provided well-calibrated probabilities 536 
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having no bias compared to SVM. Investigating the posterior probability for other classifiers 537 

would be a future study topic.  538 

5.8 Reflection on contribution to weed control 539 

In this study, binary classification (between sugar beet and volunteer potato) was proposed 540 

based on the assumption that in most cases plants found in sugar beet fields are either sugar 541 

beet or volunteer potato. However, in an agricultural field, a variety of different weed species 542 

is likely to be found. A future study topic might include a multiclass classification of weed 543 

species within a crop. Classification of other crop species may also benefit from the proposed 544 

approach. 545 

6. Conclusions 546 

In this study, an algorithm using a Bag-of-Visual-Words model and SIFT or SURF descriptors 547 

as well as crop row information in the form of the ORRI was proposed for the classification of 548 

sugar beet and volunteer potato under natural and varying daylight conditions. In EU SmartBot 549 

project it was required to effectively control > 95% of volunteer potatoes (weed) and to ensure 550 

< 5% of undesired control of the sugar beet crop. Considering the different illuminations levels 551 

and shadows in the image dataset, the highest classification accuracy of 96.5% with false-552 

negative of 0% which was obtained using SIFT features and ORRI with SVM classifier is 553 

considerably better than any other approaches found in the literature that used colour, shape 554 

and textural features. Therefore, the proposed approach proved its potential under ambient light 555 

conditions although the false-positive rate of 7% deviates from the requirements 556 

(misclassification: < 5%). An average time of 0.10 - 0.11 s was needed for classification, which 557 

is a reasonable value when the real-time application in the field is considered and is well within 558 

the required 1 s. However, implementing a full pipeline including vegetation segmentation and 559 
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weed removal operation may potentially reduce the overall performance. The SIFT descriptor 560 

showed better classification accuracy than using the SURF descriptor. Using SIFT required 561 

more training time than SURF, but the classification time required for SIFT and SURF was not 562 

considerably different. 563 

Adding crop row information as an additional feature (ORRI) significantly improved the overall 564 

classification accuracy. However, for an automated field application using a weed control robot, 565 

the estimation of crop rows and out-of-row distance should be automated and might potentially 566 

introduce noise.  567 

In this application, SVM classifiers showed better classification performance than random 568 

forest and neural network. However, a neural network with multi-layer architecture would 569 

potentially improve the performance.  570 

The posterior probability estimation can be useful in practice which provides an another 571 

decision moment for weed control action, but characteristics and applicability of it need further 572 

study.  573 

This study has shown the potential benefit of using counter-intuitive features such as SIFT and 574 

SURF instead of colour, shape and texture for weed classification under natural daylight 575 

conditions. 576 
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 768 

Fig. 1. The robotic platform for volunteer potato control in a sugar beet field. 769 
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 771 

Fig. 2. In general, volunteer potato has a darker green colour than sugar beet (a). In such a case, sugar beet and volunteer potato 772 
are separable (based on the colour) in the EG-RB plane (c). An example case of volunteer potato having the same colour 773 
distribution as sugar beet (b). Sugar beet and volunteer potato are then visually inseparable in the EG-RB plane (d). To compare 774 
the colour difference between sugar beet and volunteer potato, the EGRBI transformation was used (Nieuwenhuizen et al., 775 
2007). 776 
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 779 

Fig. 3. Example plant images in the field. The plant leaves often turn yellow in the summer as indicated in squares. 780 
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 782 

Fig. 4. Flowchart of image classification using Bag-of-Visual-Words. 783 
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 784 

Fig. 5. Overview of BoVW model generation. SIFT or SURF features (local descriptors) were extracted from the training 785 
images (a). The extracted features were then clustered for visual vocabulary generation using k-means clustering (b). A 786 
histogram of visual words was constructed from each training image (c), which was used for classifier training (d). 787 
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 789 

Fig. 6. The location of the three crop rows in the field of view was manually estimated (yellow dotted lines). An individual 790 
plant was extracted, then the distance between the centre position of a plant (marked as a star) to the nearest crop row, the out-791 
of-row distance, was estimated. Two distances from the central crop row (80 and 160 pixels) are shown (blue lines). 792 

 793 
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 795 

Fig. 7. Images of sugar beet (a) and volunteer potato (b) on the left, with the associated histograms of visual word occurrences 796 
on the right.  797 
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 798 

Fig. 8. Field images were acquired with a stereo camera mounted at the height of 1 m viewing perpendicular to the ground 799 
surface resulting in a field of view of 1.3 × 0.7 m. A mobile platform, Clearpath Husky, was manually controlled with a joystick 800 
and driven along crop rows using a controlled traveling speed of 0.5 m s-1. 801 
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 803 

Fig. 9. Example images from the field image dataset containing a total of 400 plant images with 200 sugar beet (top) and 200 804 
volunteer potatoes (bottom). During the generation of this dataset, images with different illumination levels were selected as 805 
well as images containing shadows. 806 
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 808 

Fig. 10. A box-and-whisker plot of the estimated posterior probabilities of true-positive, false-positive and true-negative 809 
classifications using the SVM with linear kernel on SIFT features and ORRI. All sugar beet images were correctly classified 810 
as sugar beet (true-positive) with an average posterior probability of 0.96. A total of 180 volunteer potato images (out of 200) 811 
was correctly classified as volunteer potatoes (true-negative) with an average posterior probability of 0.98. However, 20 812 
volunteer potato images were incorrectly classified as sugar beet (false-positive) with a Q1 (1st quartile), median and Q3 (3rd 813 
quartile) of 0.24, 0.49 and 0.66, respectively. 814 
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Fig. 11. An example of the classification results with posterior probability with a field image. (a) A field image with plant 821 
number. Each plant was manually extracted, and then put into the classification algorithm proposed in this study. (b) The 822 
ground truth of the given image. Plants 1 to 6 are sugar beet, and plants 7 to 9 are volunteer potatoes. (c) Classification results 823 
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with posterior probability. Plants 2 to 6 are correctly classified as sugar beet (true-positive) with a posterior probability of 0.86 824 
and higher, and plants 7 to 9 are correctly classified as volunteer potatoes (true-negative) with a posterior probability of 1.0. 825 
However, plant 1 is incorrectly classified as a volunteer potato (false-negative) and results in a posterior probability of 0.54.  826 
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Table 1. Confusion matrix used for sugar beet and volunteer potato classification. 828 

(TP: true-positive, TN: true-negative, FP: false-positive, and FN: false-negative) 829 

  Predicted Class 

Sugar Beet (SB) Volunteer Potato (VP) 

Class Sugar Beet (SB) TP FN 

Volunteer Potato (VP) FP TN 

 830 

  831 
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Table 2. The classification performance using SIFT features is shown. The classifiers were trained and validated with a 832 
total of 400 images (200 of sugar beet and 200 of volunteer potato) using 10-fold cross-validation. The final classification 833 
performance was averaged over ten repetitions. The training time includes the time for training of the classifier as well 834 
as for extracting SIFT features and building a visual vocabulary. The classification time includes the time required to 835 
classify the class of a single plant image using the trained classifier.  836 

(TP: true-positive, TN: true-negative, FP: false-positive, and FN: false-negative) 837 

Classifier models TP FN FP TN Classification 

Accuracy (%) 

Training 

time (s) 

Classification 

time (s/image) (% of total) 

SVM Linear without ORRI* 183 

(91.5) 

17 

(8.5) 

20 

(10) 

180 

(90) 

90.8 218.6 0.107 

with ORRI 200 

(100) 

0 

(0) 

20 

(10) 

180 

(90) 

95.0 221.4 0.108 

Quad-

ratic 

without ORRI 186 

(93) 

14 

(7) 

17 

(8.5) 

183 

(91.5) 

92.3 216.6 0.106 

with ORRI 200 

(100) 

0 

(0) 

14 

(7) 

186 

(93) 

96.5 218.8 0.107 

Cubic without ORRI 188 

(94) 

12 

(6) 

18 

(9) 

182 

(91) 

92.5 219.3 0.106 

with ORRI 196 

(98) 

4 

(2) 

17 

(8.5) 

183 

(91.5) 

94.8 222.6 0.106 

Random Forest without ORRI 172 

(86) 

28 

(14) 

38 

(19) 

162 

(81) 

83.5 228.9 0.109 

with ORRI 183 

(91.5) 

17 

(8.5) 

21 

(10.5) 

179 

(89.5) 

90.5 238.9 0.108 

Neural Network without ORRI 187 

(93.5) 

12 

(6) 

23 

(11.5) 

177 

(88.5) 

91.2 245.4 0.125 

with ORRI 195 

(97.5) 

5 

(2.5) 

12 

(6) 

188 

(94) 

95.8 260.5 0.130 

* ORRI: Out-of-Row Regional Index 838 

 839 

840 
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Table 3. The classification performance using SURF features is shown. The classifiers were trained and validated with 841 
a total of 400 images (200 of sugar beet and 200 of volunteer potato) using 10-fold cross-validation. The final 842 
classification performance was averaged over ten repetitions. The training time includes the time for training of the 843 
classifier as well as for extracting SIFT features and building a visual vocabulary. The classification time includes the 844 
time required to classify the class of a single plant image using the trained classifier.  845 

(TP: true-positive, TN: true-negative, FP: false-positive, and FN: false-negative) 846 

Classifier models TP FN FP TN Classification 

Accuracy (%) 

Training 

time (s) 

Classification 

time (s/image) (% of total) 

SVM Linear without ORRI* 175 

(87.5) 

25 

(12.5) 

42 

(21) 

158 

(79) 

83.3 175.8 0.099 

with ORRI 200 

(100) 

0 

(0) 

22 

(11) 

178 

(89) 

94.5 182.9 0.099 

Quad-

ratic 

without ORRI 179 

(89.5) 

21 

(10.5) 

35 

(17.5) 

165 

(82.5) 

86.0 175.7 0.099 

with ORRI 196 

(98) 

4 

(2) 

18 

(9) 

182 

(91) 

94.5 182.9 0.105 

Cubic without ORRI 176 

(88) 

24 

(12) 

29 

(14.5) 

171 

(85.5) 

86.8 175.7 0.099 

with ORRI 195 

(97.5) 

5 

(2.5) 

20 

(10) 

180 

(90) 

93.8 183.1 0.101 

Random Forest without ORRI 170 

(85) 

30 

(15) 

55 

(27.5) 

145 

(72.5) 

78.8 178.9 0.106 

with ORRI 179 

(89.5) 

21 

(10.5) 

42 

(21) 

159 

(79.5) 

84.5 186.2 0.104 

Neural Network without ORRI 165 

(92.5) 

35 

(17.5) 

27 

(13.5) 

173 

(86.5) 

84.5 195.1 0.115 

with ORRI 190 

(95) 

10 

(5) 

21 

(10.5) 

179 

(89.5) 

92.3 190.1 0.119 

* ORRI: Out-of-Row Regional Index 847 
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Table 4. Comparison of classification accuracy (%) with different grid and vocabulary sizes. Using SURF descriptor, 849 
the classification accuracy of SVM linear with ORRI is shown.  850 

 Vocabulary size 

100 200 300 400 500 600 

Grid size 

(pixels) 

4×4 92.5 93.2 91.2 93.7 93.8 92.7 

6×6 91.7 93.0 93.5 92.5 94.5 92.7 

8×8 90.5 91.0 93.7 92.0 90.7 92.2 

10×10 91.2 92.7 93.6 93.2 92.7 92.7 

12×12 91.2 91.5 91.5 91.5 91.0 91.5 

 851 


	YBENG_2017_140 R1 Manuscript(CSP)_accepted.pdf
	Abstract
	1. Introduction
	2. The classification process
	2.1. Feature extraction with SIFT or SURF descriptors and Out of Row Regional Index (ORRI)
	2.2. Feature clustering for visual vocabulary generation
	2.3. Feature quantisation
	2.4. Classification based on supervised learning
	3. Experiment setup
	3.1. Field image collection and image dataset
	3.2. Performance measure and system platform
	3.3. Estimated posterior probability of SVM outputs
	4. Results
	5. Discussion
	6. Conclusions
	7. Acknowledgements
	References


