

Development of Injection Mouldable, Durable PBS Compounds

From biodegradable towards biobased

Innoplast New York, May 25th 2017, Karin Molenveld

Wageningen Food & Biobased Research

- Market oriented R&D approach
- Connection with the university of Wageningen
- Up-scaling: from lab to pilot
- From idea to processes and products
- Research areas:
 - Sustainable Food Chains
 - Healthy & Delicious Food
 - Biobased Products

Biobased Performance Materials Program

- PPP, coordinating R&D activities in the Netherlands on biobased Performance Materials
- Focus on Products, Materials, Polymers, Monomers
- Initiated by Wageningen UR - Food and Biobased Research
- Unique in its construction: industrial partners participate actively from all parts of the value chain
- Sponsored by the “Topsector” Chemistry
- 9 completed and 8 running projects

BPM2-APPS; Bio-PBS for injection moulded durable applications

■ Project objective

- Develop bio-PBS based compounds suitable for application in durable, injection moulded applications

■ Project members

● WFBR	Compound development, compounding
● Reverdia	Bio-PBS supply, compound development
● RPC Promens	Reusable transport packaging for agriculture
● Teamplast	Packaging and hinge caps

Specific properties needed

- PP replacement
- Excellent processing properties
 - Cycle time
 - Flow length
- Sufficient stiffness
- Durable (> 25 years)
- High toughness (at low temperatures)

PBS, PolyButylene Succinate

- Aliphatic polyester originally fossil based
 - Based on succinic acid and butane diol
- Semi-crystalline, non-transparent
- Niche polymer, small production scale
- Biodegradable products
 - (Mulch) film
 - Disposables
 - Other agricultural applications
 - Blend component (starch, PLA)

PBS as a PP or HDPE replacement

Property	PP	HDPE	PBS
Tg (°C)	-5	-120	-30
Tm (°C)	163	130	115
HDT (°C)	110	82	97
E-Modulus (MPa)	1300	1000	700
Tensile strength (MPa)	33	28	34
Elongation at break (%)	415	700	560

Ishioka et al. 2002

Bio-PBS, current interests in IM

- Good injection moulding characteristics
 - Mould shrinkage close to PP
 - Fast crystallisation, similar to PP
 - Short cycle times possible
- Well balanced mechanical properties
 - Good impact resistance ($> 9 \text{ kJ/m}^2$)
 - Good elongation ($\sim 600 \text{ \%}$)
 - Rather low stiffness ($\sim 700 \text{ MPa}$)
- Good thermal properties
 - Heat deflection temperature $> 80^\circ\text{C}$

Development of bio-PBS

- Bio-succinic acid is an important platform chemical
- Biobased succinic acid has an excellent environmental footprint
- Most efficient production with respect to biomass use
- Other applications for succinic acid as a building block
 - Resins (adhesives, printing inks, paints and coatings)
 - PU foams (insulation, seats)
 - TPU (automotive interior and sealing, construction, footwear)
 - Plasticisers (biopolymers, footwear, food packaging)

From biodegradable towards biobased PBS

■ Biodegradable

- Biodegradation rate
- Reducing crystallinity
- Copolymers (PBSA)
- Film production
- Low E-modulus
- Low to medium MFI

■ Biobased

- Stabilisation
- Improving performance
- Additives
- Injection moulding
- Moderate E-modulus
- High MFI

Durability

- Replacing a polyolefin with a polyester
 - Polyesters are susceptible for hydrolysis
 - Largely depending on environmental conditions
 - Effect of end-groups
 - Various options for repair (chain extension)

Durability approach

- Commercially available IM grade bio-PBS
- Selection of commercial available additives commonly used in polyesters
 - Compounds with various stabiliser loadings
 - Ageing (50°C/50%RH and 70°C/80% RH)
 - Measurement of properties in time
 - Molar mass
 - Mechanical properties
- Comparison with ageing curves of other polyesters

Effect of stabilisers on properties

■ Stabiliser loading @ 1wt%

Property	Bio-PBS	Stab A	Stab B	Stab C
Mw (kg/mol)*	84	81	111	95
E-modulus (MPa)	697 (10)	691 (7)	668 (11)	705 (19)
Tensile strength (MPa)	38 (0.2)	38 (2.8)	43 (1.1)	40 (1.5)
Elong. at break (%)	450 (93)	526 (99)	547 (52)	454 (34)
Izod Notched (kJ/m ²)	8.2 (3.3)	10.9 (0.7)	12.4 (1.5)	10.8 (1.5)

* *Absolute molar mass via tri-sec GPC, HFIP solvent*

Effect of stabilisers on MFI

- Stabiliser inducing crosslinking with available end-groups

Ageing comparing 3 different stabilisers

Effect of ageing conditions

Effect of stabiliser loading

Effect on mechanical properties

Results & Conclusions

- Bio-PBS can be stabilised using commercially available additives
- Stabiliser selection can depend on application (influence on MFI)
- Comparing with databases durability > 25 years at ambient conditions is achieved
- In combination with other favourable properties replacement of PP and HDPE by bio-PBS is feasible

Thank you for
your attention

Karin.Molenveld@wur.nl

