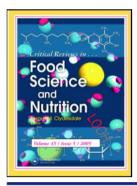
Big data in food safety

Hans Marvin & Yamine Bouzembrak (RIKILT Wageningen UR)

WDCC, 10 April 2018, Wageningen

Outline


1. Literature study; What is Big data and is it used in food safety research

2. Stepwise testing & implementation of Big data elements at RIKILT

3. European development: DEMETER project

1) Literature study; What is Big data and is it used in food safety research

Critical Reviews in Food Science and Nutrition

ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20

Big data in food safety: An overview

Hans J. P. Marvin, Esmée M. Janssen, Yamine Bouzembrak, Peter J. M. Hendriksen & Martijn Staats

To cite this article: Hans J. P. Marvin, Esmée M. Janssen, Yamine Bouzembrak, Peter J. M. Hendriksen & Martijn Staats (2017) Big data in food safety: An overview, Critical Reviews in Food Science and Nutrition, 57:11, 2286-2295, DOI: <u>10.1080/10408398.2016.1257481</u>

To link to this article: <u>http://dx.doi.org/10.1080/10408398.2016.1257481</u>

Taylor & Francis

Big Data, definition provided by EC

The term "big data" refers to large amounts of different types of data produced with high velocity from a high number of various types of sources.⁷

⁷ Going beyond traditional "data mining" tools designed to handle mainly low-variety, small scale and static datasets, often manually.

European Commission (2014) COM(2014) 442 final

Characteristics of Big Data

- Volume: refers to the vast amounts of data generated every second.
 (Mega, Giga), Tera, Peta, Exa, Zetta, Yotta bytes,...
- Velocity: refers to the increasing speed of which data is created and the speed at which it can be stored, processed and analyzed.
 - Batch, Real Time
- Variety: refers to the different types of data including structured data, semi-structured data, and unstructured data.
- Veracity refers to the trustworthiness and accuracy of the data.

Typical Big Data workflow

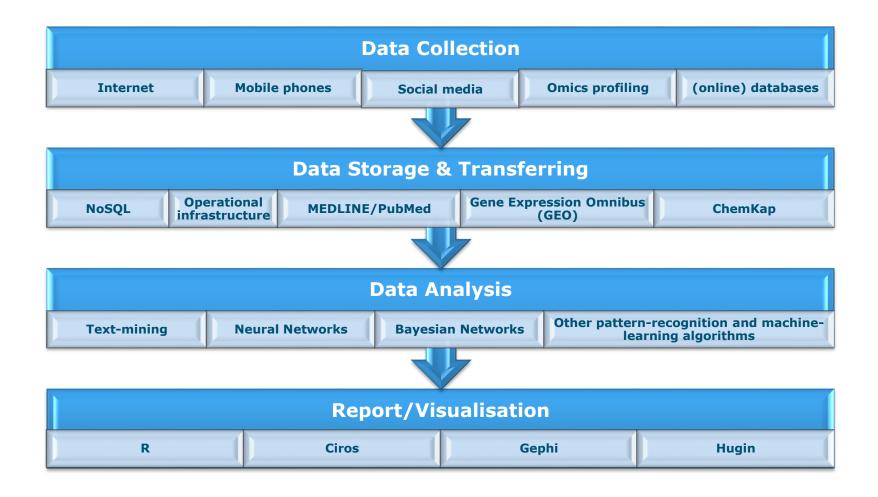
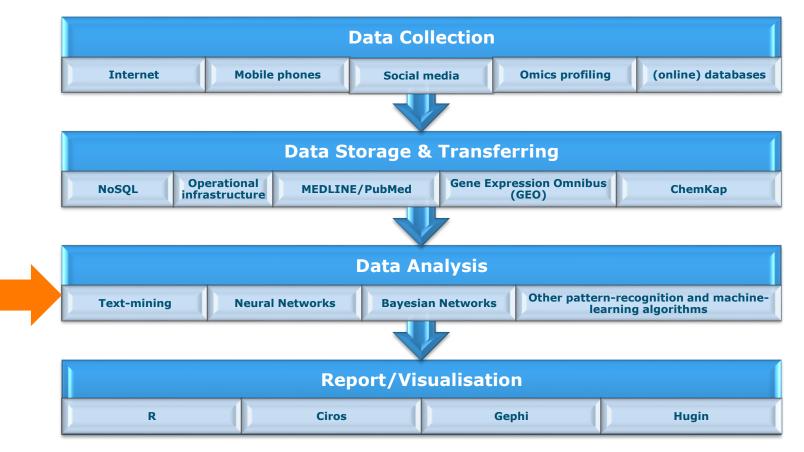
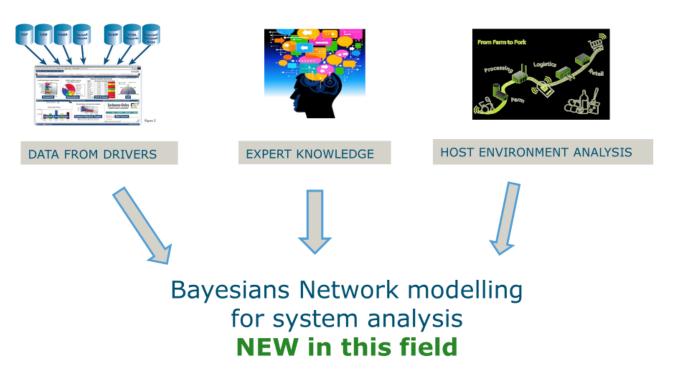


Figure adapted from Huang et al. (2015)



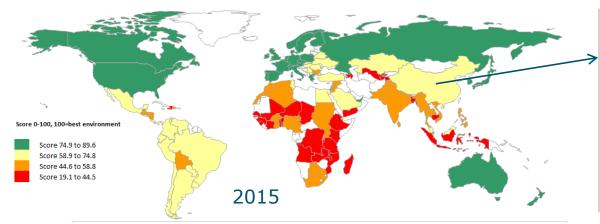
Literature study: conclusions

- Big data is not yet fully applied in food safety. Volume and Velocity, is generally no issue but applications dealing with Variety & Veracity were found.
- Several examples were found that uses some of the Big data tools.
- Future trends on smartphone (online, onsite analysis), block chain (sharing data in the food supply chain), using social media for food safety identification will stimulate Big data approach.
- The trend to make data from public funded research projects available on internet opens new opportunities but requires presence of infrastructures (open cloud) and knowledge about the Big data tools.


1. First focus on data analysis

 Data analysis: research question: can we combine data from different sources and structures to predict (food safety or fraud); projects on nanosafety, fruit and vegetables, food fraud, dairy)

Requirements of a system approach

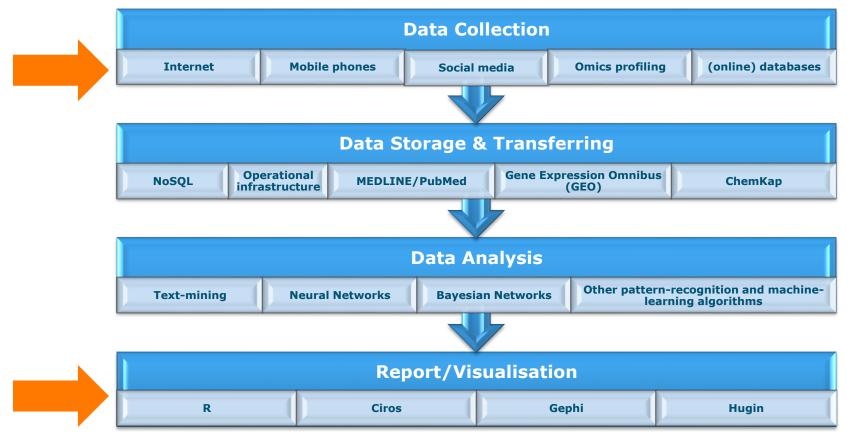

Preliminary BN model for predicting fraud

linking 36 data sources (18 databases and 8 expert judgements)

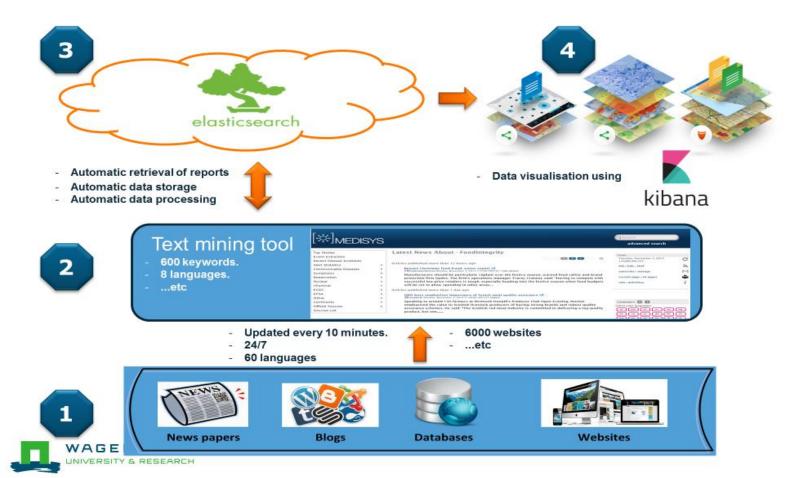
Prediction generally > 90% using BN. Forecasting also possible

Quality and safety

2015: China in class 2 with a score of 69.3 Type of fraud:


- 1. Tampering:89%
- 2. HC: 1.2%
- 3. II: 1.2%
- 4. OL: 8.5%
- 5. CED: 0%

Quality and safety


2. Second data collection and visualisation

2. Second data collection and visualisation

EMM Food Fraud Filter Design steps

Data visualisation in a dashboard using Kibana (1) 4

Worldwide coverage of media reports on food fraud; 24/7, refreshed every hour

European development: DEMETER project

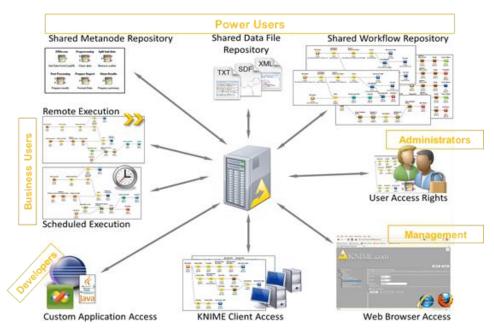
Objective: to support current (and future) EFSA procedures for <u>emerging risks identification</u> by providing a set of <u>integrated, open-</u> <u>source solutions</u> that will allow EFSA and EU Member State authorities to <u>share</u> data, knowledge and methods in a rapid and effective manner

Duration: 3 years (2017-2020)

WP Objectives (1)

- 1. To create <u>automated data retrieval</u>, <u>data validation</u> and <u>data mining</u> <u>pipelines</u> that provide input to EFSA staff and responsible national stakeholders in their judgements on <u>identification</u> of possible <u>emerging issues</u>.
- 2. To develop a methodology to systematically integrate information and data from <u>social sciences</u> or derived from social science methodologies, into the <u>emerging risk identification framework</u>.
- 3. To build on and further develop <u>EREN member state usage</u> of the EFSA emerging risk identification framework currently in place. Current EREN membership is limited, potentially because barriers to utilising the current system are perceived by potential end-users.

WP Objectives (2)


4. To facilitate <u>software-technical implementation</u> of the desired collaborative platform (<u>ERKEP</u>) supporting current EFSA procedures for emerging risks identification. Specifically this platform will allow EU Member State authorities and EFSA to <u>share knowledge</u>, <u>data</u> and <u>methods</u> for the identification of emerging food-related risks in a rapid and effective manner.

This task is also responsible for providing necessary <u>internal</u> <u>training</u> on the open source KNIME data mining solution that will be used (among others) within WP1 and WP2

5. To ensure proper <u>coordination, integration and execution</u> of the DEMETER activities on all levels regarding project management & financial matters, communication and dissemination.

DEMETER collaborative platform (ERKEP)

https://www.farcrycms.org/content-management-system-static-site-best/

GUI Graphical User Interface Start			

https://qph.fs.quoracdn.net/main-qimg-16dbf583d24564523d946ecd378d19c1-c

Thank you

Acknowledgement

The following RIKILT WUR colleagues were involved: Yamine Bouzembrak Esther van Asselt **Paulien Adamse** Esmée Janssen Ine van der Fels-Klerx Peter Hendriksen Gijs A. Kleter Nathan Meijer Bram Steen Anand Gavai

Martin Charte

