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Abstract 13 

A large amount of data is collected routinely in meat inspection in pig slaughterhouses. A 14 

time series clustering approach is presented and applied that groups farms based on 15 

similar statistical characteristics of meat inspection data over time. A three step 16 

characteristic-based clustering approach was used from the idea that the data contain 17 

more info than the incidence figures. A stratified subset containing 511,645 pigs was 18 

derived as a study set from 3.5 years of meat inspection data. The monthly averages of 19 

incidence of pleuritis and of pneumonia of 44 Dutch farms (delivering 5,149 batches to 2 20 

pig slaughterhouses) were subjected to 1) derivation of farm level data characteristics 2) 21 

factor analysis and 3) clustering into groups of farms. The characteristic-based clustering 22 

was able to cluster farms for both lung aberrations. Three groups of data characteristics 23 

were informative, describing incidence, time pattern and degree of autocorrelation. The 24 

consistency of clustering similar farms was confirmed by repetition of the analysis in a 25 

larger dataset. The robustness of the clustering was tested on a substantially extended 26 

dataset. This confirmed the earlier results, three data distribution aspects make up the 27 

majority of distinction between groups of farms and in these groups (clusters) the 28 

majority of the farms was allocated comparable to the earlier allocation (75% and 62% 29 

for pleuritis and pneumonia, respectively). The difference between pleuritis and 30 

pneumonia in their seasonal dependency was confirmed, supporting the biological 31 

relevance of the clustering. Comparison of the identified clusters of statistically 32 

comparable farms can be used to detect farm level risk factors causing the health 33 

aberrations beyond comparison on disease incidence and trend alone.  34 

 35 

Highlight 36 

• Characteristic-based clustering is able to cluster time series of meat inspection 37 

data of farms using a set of derived statistical characteristics.  38 

• Seasonality and data dispersion characteristics such as autocorrelation have 39 

additional value to the conventional incidence figures of pneumonia and pleuritis. 40 



• Farms were mainly clustered on: amount of variation in the data; distribution 41 

shape of the data and similarity between consecutive data points. 42 

 43 

Keywords 44 

Meat inspection data; Time series; Characteristic-based clustering; Big data ; Pneumonia 45 

; Pleuritis 46 

 47 

1. Introduction 48 

According to legal regulations (European Community, 2004), all slaughtered pigs in the 49 

European Union are subject to a routine meat inspection at the slaughterhouses. 50 

Traditionally, meat inspection has been used to reduce food-borne risk to public health 51 

(Edwards et al., 1997). The meat inspection findings are also valuable indicators that can 52 

be used as a feedback system indicating animal health and to derive recommendations 53 

for improvement of farm management (Schuh et al., 2000). Meat inspection data can be 54 

used to inform farmers on the health status of their herd (benchmarking) since health 55 

aberrations indicate systems (housing, ventilation control) or management (treatment 56 

and prevention strategies) failures. Slaughterhouse data both reveal such problems and 57 

offer the opportunity to monitor effectivity of interventions. Current use of 58 

slaughterhouse health aberration data seems limited to periodic reporting of farm 59 

incidence averages. Understanding the data structure (such as temporal patterns) of 60 

aberrations in meat inspection data may provide important information beyond these 61 

average incidence figures.  62 

One possible approach to analyse meat inspection data involves time series methods, 63 

such as exploratory methods (Sanchez-Vazquez et al., 2012; Alhaji et al., 2015) and 64 

autoregressive models (Neumann et al., 2014; Vial and Reist, 2014; Adachi and Makita, 65 

2015). These methods however, require structured data, a sufficient number of 66 

observations that are fairly regularly measured over time, which is often not the case for 67 

data on batches of pigs delivered to slaughterhouses. Another possible approach is time 68 



series clustering directly on raw data. This method however does not account for the 69 

temporal sequences of the observed values and the autocorrelations structure of the data 70 

is ignored. Characteristic-based clustering has been developed to address the problem of 71 

clustering raw time series data (Hennig et al., 2015). This method has been proposed by 72 

several authors in various domains such as electricity (Räsänen and Kolehmainen, 2009), 73 

business (Davenport and Funk, 2015), and human health (Leffondré et al., 2004) 74 

(Niedermeyer et al., 2011). We applied this method to group farms based on similar 75 

statistical characteristics of meat inspection data, focussing on pneumonia and pleuritis. 76 

The objective of this study was to explore whether an analysis which utilises more 77 

information from the data than incidence figures provides added value to make 78 

distinctions between individual farms. A comprehensive meat inspection dataset, 79 

collected over 3.5 years, was available for this. This more detailed farm characterisation 80 

may aid in finding risk factors for failures by comparing more uniform groups of farms. 81 

 82 

2. Material and methods 83 

2.1. Data Source 84 

Post mortem meat inspection data of carcass and organs are collected on every 85 

slaughtered pig in The Netherlands. The inspection procedures are described in detail in 86 

Regulation EC no. 854/2004 (European Community, 2004). Meat inspection data 87 

collected between January 2011 and August 2014 were provided by the major Dutch 88 

meat producer, one record for each slaughtered pig, with information on pneumonia and 89 

pleuritis and aberrations on legs, skin and liver. Respiratory disorders were chosen as 90 

study dataset as they are one of the major diseases affecting pigs worldwide (Brockmeier 91 

et al., 2002) and have reasonable incidences across farms and seasons and the 92 

repeatability of the slaughterhouse classification is adequate.  93 

 94 

2.2. Study sample 95 

Criteria were developed to derive a suitable sub-dataset for method development and 96 

analysis. August 2014 was excluded since it did not comprise the entire month, also 97 



batches with less than 10 animals were excluded. The two slaughterhouses with the 98 

largest number of records were selected. These slaughterhouses had complete datasets 99 

for the entire period and no obvious changes in inspection system. In this set, farms 100 

were selected that had delivered at least one batch with at least 10 pigs every month and 101 

at least 87 batches (more than 1 batch per 2 weeks on average). The resulting study 102 

sample contained information of 511,645 pigs submitted from 44 Dutch farms in 5,149 103 

batches.  104 

Information on the percentage pneumonia and pleuritis in the batches is presented in 105 

Table 1. The analysis is principally batch based – records were created containing batch 106 

averages. The percentage of each aberration (pleuritis or pneumonia) in each batch was 107 

computed as number of pigs in that batch with the aberrations divided by total number of 108 

pigs in that batch multiplied by 100.  109 

 110 

The study dataset is quite complete from a statistical point of view (no missing records, 111 

good distribution over the entire study period), but comprises a small part of the total 112 

dataset. For verification and validation reasons a second, larger, dataset was created. 113 

The selection criteria were released: all farms of the two slaughterhouses were included 114 

which met the criterion that the whole study period (all months) was reasonably covered: 115 

6 month averages were allowed to be missing for each farm. This resulted in an three to 116 

almost fourfold size of the data: 163 farms delivering 15,276 batches comprising 117 

1,829,762 slaughtered pigs. Table 1 illustrates that the characteristics of the validation 118 

set resemble those of the study set. 119 

 120 

  121 



Table 1. Percentage pneumonia and pleuritis in the study sample (5,149 batches) and 122 
validation sample (15,276 batches). 123 

Aberration # Batches with 

percentage 0% 

(%) 

Mean percentage  

(95% CI) in a batch 

Sd 

percentage 

Max 

 percentage 

Pneumonia 

 Study sample 

 Validation sample 

 

615 (11.9%) 

1599 (10.5%) 

 

8.76 (8.51–9.01)% 

9.12 (8.96 – 9.26)% 

 

9.10% 

9.38% 

 

63.83% 

78.15% 

Pleuritis 

 Study sample 

 Validation sample 

 

375 (7.3%) 

1384 (9.06%) 

 

12.42 (12.12-12.72)% 

10.04 (9.88-10.20)% 

 

10.91% 

10.37% 

 

61.64% 

82.58% 

 124 

2.3. Time series visual explorations 125 

For exploratory purpose, percentage aberrations were aggregated for each month of 126 

study. An exploratory analysis was conducted by plotting percentage aberrations of the 127 

study sample containing 44 farms in the period January 2011 to July 2014 in a 128 

multivariate time series plot using the R package mvtsplot (Peng, 2008). The mvtsplot 129 

method produces an adaptation of the multivariate time series plot which combines a 130 

heatmap with boxplot-like summaries and a basic line plot to provide a detailed overview 131 

of the data. The colours purple, grey and green in the heatmap correspond to low, 132 

medium and high values, respectively. The darker the shading the larger the value. 133 

 134 

2.4. Time series clustering using global characteristics 135 

We used a three step method to group farms with comparable statistical characteristics 136 

of health aberrations over time (Fig. 1). The first step of the method involved replacing 137 

the raw time series data with some global measures of time series characteristics, as 138 

described by Wang et al. (2006) and Räsänen and Kolehmainen (2009). The measures 139 

summarized information of the time series, to capture the ‘global picture’ of the data.  140 



 141 
Fig. 1. Characteristics based clustering approach (after Wang et al. (2006)). 142 
 143 

The characteristics used in this study were: mean, standard deviation, trend, seasonality, 144 

remainder, autocorrelation, skewness, kurtosis, chaos, nonlinearity, and self-similarity. 145 

Table 2 describes the popularised interpretation of these characteristics and their 146 

acronym used below. 147 

Trend and seasonality are common characteristics of time series, and it is natural to 148 

characterize a time series by its degree of trend and seasonality. In addition, once the 149 

trend and seasonality of a time series has been measured, the time series can be 150 

detrended and deseasonalised to enable additional features such as noise or chaos to be 151 

more easily detectable. The R function stl was used for detrending and deseasonaling the 152 

timeseries (Cleveland et al., 1990). For the validation sample (which contained missing 153 

values), the R package stlplus version 0.5.1 was used to detrend and deseasonlise the 154 

time series, applying a loess algorithm to handle missing values (Hafen, 2010). 155 

To obtain a precise and comprehensive calibration, some measures are calculated on 156 

both the raw time series as well as the remaining time series after detrending and 157 

deseasonalising. All these characteristics (presented in a popular phrasing in table 2) are 158 

thoroughly explained by Wang et al. (2009) and (Davenport and Funk, 2015). 159 

 160 

  161 



Table 2. Summary of the used data characteristics, calculated from the raw batch data 162 

and on the detrended and deseasonalised data. 163 

Characteristic Definition Acronym 
Raw data 
 

Acronym 
Detrended and 
deseasonalised 
data 

Mean The average of the 
observations 

‘mean’  

Standard 
deviation  

A measure of how spread 
out the data is. 

‘sd’  

Trend A pattern found in time 
series; used to describe 
whether the data is showing 
an upward or downward 
movement for a part, or all 
of the time series. 

‘trend’  

Seasonality A pattern of a time series in 
which the data experience 
regular and predictable 
changes that repeat every 
calendar year. 

‘seasonality’  

Remainder The residuals of the time 
series after allocation into 
the seasonal and trends 
time series (also called 
“noise”, “irregular” or 
“random”). 

‘remainder’  

Hurst Exponent A measure for longterm 
memory and fractality of a 
time series (an evaluation 
index of the self-similarity). 

‘self.sim’  

Autocorrelation The correlation within a time 
series with its own 
past and future values (also 
called serial correlation) 

‘autocorr’ ‘dc-autocorr’ 

Skewness A measure of how 
symmetrical a distribution 
is. 

‘skewness’ ‘dc-skewness’ 

Kurtosis A measure which describes 
the distribution of the 
observed data around the 
mean. A measure of how 
peaked or flat a 
distribution is relative to the 
normal distribution 

‘kurtosis’ ‘dc-kurtosis’ 

Lyapunov 
Exponent 

A measure of stability; 
Chaos 

‘chaos’  

Nonlinearity A measure for not arranged 
in a straight line. 

‘nonlin’ ‘dc-nonlin’ 

 164 

In the second step a factor analysis, using the function principal from the R package 165 

Pysch version 1.5.8 (Revelle, 2015), was performed to select a subset of characteristics 166 



that condensed the information present in the characteristics and provided the best 167 

description. We only kept the factors with an eigen-value greater than 1 (Tabachnick and 168 

Fidell, 2006), those that are more informative than a single variable. The varimax 169 

rotation was used to facilitate the interpretation of results by maximising the loading of 170 

each individual variable on a single factor (i.e., its correlation with this factor). For each 171 

factor the measure that had the highest loadings (i.e. the highest correlation with a give 172 

factor) was selected. 173 

Finally (third step), we used cluster analysis to identify clusters of farms with similar 174 

patterns of characteristics selected by the factor analysis. In order to weigh all 175 

characteristics equally, all characteristics were transformed to the same range (0,1). A 176 

measure near 0 for a certain time series indicates an absence of the characteristic while a 177 

measure near 1 indicates a strong presence of the characteristic (Wang et al., 2006). The 178 

measures were normalised with the function SofMax of the R package DMwR version 179 

0.4.1 (Torgo, 2010). The R package NbClust version 3.0 (Charrad et al., 2014) was used 180 

to perform the cluster analysis, in order to identify the optimal number of clusters. 181 

Clusters were generated using the complete linkage method applied to Euclidean 182 

distances. 183 

 184 
 185 

3. Results 186 

3.1. Percentage aberrations at farm level. 187 

The monthly percentage of aberrations for the farms in the periods January 2011 to July 188 

2014 varied between farms and months (Fig. 2). Monthly farm pneumonia incidences in 189 

the study set varied between 0.8 and 25.1%, and pleuritis incidences varied between 1.4 190 

- 24.0%. As the colouring in Figure 2 indicates, farms not only differ in monthly 191 

incidence, there is also considerable between farm variation in within-farm consistency in 192 

time. Consistent farms have either an entirely green coloured time-series (low incidence) 193 

or entirely purple coloured time-series (high incidence). Farms with alternating colours in 194 

their time series have low consistency in their incidences. 195 



 196 

Fig. 2. Multivariate time series plot of percentage pneumonia and pleuritis for 44 farms. 197 

The purple to green palette represents variation in percentage aberrations (green 198 

represents low percentages; purple high percentages). The right panel presents 199 

summary statistics of percentage aberrations for each farm, the black dots denote the 200 

median while the horizontal lines represent the lower and upper quartiles. The lower 201 

panel shows the median values of percentage aberration across the time series of the 43 202 

months (1= January 2011 and 43= July 2014) for each time point. 203 

 204 

 205 

3.2. Time series clustering using global characteristics. 206 

3.2.1. Pneumonia 207 

Exploratory factor analysis of percentage pneumonia reduced the 15 global 208 

characteristics to four factors explaining 65% of the variance. The most informative 209 

global characteristics were: ‘mean’, ‘seasonality’, ‘autocorr’ and ‘dc-kurtosis’ (Fig. 3). 210 

These four most informative global characteristics were used by cluster analysis and 211 

resulted in grouping the 44 farms into three clusters. Categorization of the three clusters 212 

data characteristics are shown in Figure 3.  213 

 214 

 215 



 216 

Fig. 3. Factor analysis path diagram of pneumonia (left pane) and allocation to three 217 

clusters (right pane). Left pane: The coloured square boxes are the characteristics of 218 

each principal component (PC) that are used in subsequent analysis. On the straight 219 

arrows, the loadings (correlation between the principal component and the characteristic) 220 

are presented. Only the largest loadings are shown. Right pane: Characteristics summary 221 

for the three identified clusters. Purple indicates high values, green indicates low values. 222 

The arrows at the top indicate the selected global characteristics; left axis: cluster 223 

number; right axis: farm number. 224 

 225 

Farms in cluster 1 are characterised by high incidence values (‘mean’) with large 226 

variability in pneumonia incidence and low trend and seasonally adjusted kurtosis (‘dc-227 

kurtosis’), having a flat top near the mean and produces fewer and less extreme outliers 228 

than does the normal distribution. Cluster 2 groups farms with the opposite: low ‘mean’ 229 

and high ‘dc-kurtosis’, having a distinct tall peak near the mean, decline rather rapidly 230 

and have fatter tails or more extreme values. Farms in cluster 3 share the low incidences 231 

with cluster 2, but combine this with low kurtosis, meaning that the trend and seasonally 232 

adjusted time series produces fewer and less extreme outliers than does a normal 233 

distribution. The factor analysis suggested ‘seasonality’ as an informative characteristics, 234 



the value for all clusters showed little recurring seasonal pattern, periods of above-235 

average and below-average percentage pneumonia each year (Fig. 3). Farms belonging 236 

to cluster 1 fluctuated most with season, from -2.4% in September to 2.2% in 237 

December. For cluster 2 the lowest value of the seasonal component was observed in 238 

August (-1.1%) and the highest in May (1.2%). For cluster 3 these values varied from -239 

1.4% in September to 1.5% in May.  240 

 241 

3.2.2. Pleuritis 242 

Factor analysis of percentage pleuritis reduced the 15 global characteristics to three 243 

factors with the most informative global characteristics being ‘self.sim’, ‘chaos’ and 244 

‘mean’, explaining 62% of the variance (Fig. 4). Cluster 1 contains farms with high 245 

incidence values and a strong trend. These time series had also highly regular 246 

fluctuations over time (high ‘self.sim’ exponent values; indicating a persistent time 247 

series) and showed no chaotic behaviour (low ‘chaos’ values). Farms with low incidence 248 

figures were predominantly allocated to cluster 2, combined with high values for ‘chaos’. 249 

The time series showed no trend or seasonal effect and self-similarity was almost not 250 

present. Farms in cluster 3 are characterised by low levels of ‘autocorr’, ‘chaos’ and 251 

‘self.sim’, but differ mutually in their incidence figures.  252 

 253 

 254 



 255 

Fig. 4. Factor analysis path diagram of pleuritis (left pane) and allocation to three 256 

clusters (right pane). For explanation: see Figure 3. 257 

 258 

3.2.3. Validation in the extended dataset 259 

To test the robustness of the clustering, the analysis was repeated with a substantially 260 

extended dataset. By releasing 1) the criterion that farms have to have batches in all 261 

months of the study period and 2) the criterion that at least 87 batches were delivered, 262 

the study size was extended about fourfold. The only remaining criteria were that 263 

batches contained at least 10 pigs and that in most months a batch was available, 264 

maximally six missing. The stlplus allows handling of missing monthly values. 265 

 266 

For both pneumonia and pleuritis aberration data, again the three archetypes of clusters 267 

evolve: one based on the variation characteristics, one on the distribution shape and one 268 

on the similarity of consecutive data points (Fig. A1 and A2). Specifically for pneumonia, 269 

the validation set, having missing data points in most farms, failed to identify the specific 270 

cluster indicating a group of farms with specific seasonal sensitivity. Similarly, the 271 

validation exercise on pleuritis figures was to some degree less distinctive in 272 

discriminating farms with regard to sequentiallity/chaos, but was stronger in its 273 



separation between variance (‘mean’, ‘sd’) and shape characteristics (‘skewness’, 274 

‘kurtosis’) with regard to pleuritis. 275 

 276 

In Table 3 and 4, the degree of similarity in allocation to the clusters between the study 277 

analysis and the validation analysis is presented for the 44 farms that were involved in 278 

the study sample and again allocated to new clusters during from the validation analysis. 279 

 280 

Table 3. Clustering of farms for pneumonia characteristics: comparison of the coherence 281 
in allocation to clusters in the test analysis (vertical: clusters 1, 2, 3) and to clusters in 282 
the validation analysis (horizontal: clusters A, B, C, D). 283 

Validation cluster → 

Original cluster ↓ 

A B C D Total 

1 3 15    18 

2 3 4 1 7 15 

3 3 5  3 11 

Total 9 24 1 10 44 

 284 

 285 

Table 4. Coherence in clustering of farms for pleuritis characteristics: number of farms 286 
allocated to clusters in the test analysis (vertical: clusters 1, 2, 3) and to clusters in the 287 
validation analysis (horizontal: clusters A, B, C). 288 

Validation cluster → 

Original cluster ↓ 

A B C Total 

1 4 13  17 

2 4 1 6 11 

3 14 
 

2 16 

Total 22 14 8 44 

 289 

For pleuritis, the overall correspondence of the two clustering analyses amounts  290 



75%. 14, 6 and 13 farms (from cluster 1, 2 and 3 respectively) which were grouped 291 

together in the original analysis were again allocated together into the new clusters. For 292 

pneumonia, the overall correspondence is less. It amounts 61% and an extra cluster is 293 

formed. The largest new cluster (B, containing 24 farms) comprises the majority of two 294 

of the original clusters (1 and 3). Overall, most of the farms that were grouped together 295 

in the study analyses were allocated into joint clusters again in the validation study, both 296 

for pleuritis and pneumonia.  297 

 298 

4. Discussion 299 

Meat inspection generates a large amount of time series data that are used to only a 300 

limited extend for animal health surveillance purposes. And if so, use is generally limited 301 

to the average incidence (‘mean’), and its change in time, solely on farm level. Current 302 

exercise enriches this by combining data across farms. Understanding the underlying 303 

information and interpretation of the results for meaningful purposes (such as 304 

management support or detection of risk factors) is an opportunity, but also a challenge 305 

due to the high diversity between farms, batches and underlying factors.  306 

A dataset containing more than 3½ years of historical meat inspection data was available 307 

to explore the potential of a data analysis to cluster farms into groups with comparable 308 

health aberration patterns over time. In this dataset two respiratory disorders, 309 

pneumonia and pleuritis, were chosen as study objects as they are among the major 310 

diseases affecting pigs worldwide (Brockmeier et al., 2002), (Merialdi et al., 2012) (Eze 311 

et al., 2015) and the most common slaughter aberrations found in pigs (Sanchez-312 

Vazquez, 2013). Also, the diversity of incidences and the reasonable repeatability of 313 

slaughterhouse pleuritis and pneumonia classification is helpful from a statistical point of 314 

view to develop the proposed method.  315 

 316 

4.1. The method 317 

Clustering is among the most widely used method in the analysis of time series data 318 

(Fidaner et al., 2015) (Chen et al., 2017) and for our casus, it offers the opportunity to 319 



identify farms with similar patterns of percentage pneumonia or pleuritis over time 320 

discerning similarities between those farms beyond obvious characteristics such as 321 

incidence figures (Fidaner et al., 2015).  322 

Characteristic-based clustering first converts raw time series data into a characteristic 323 

vector of lower dimension, after which clustering is applied. Characteristic-based 324 

clustering, in the literature also called Feature based clustering or Statistical measures 325 

based clustering, has been proposed by several authors across science for clustering time 326 

series. For example, Leffondré et al.(2004) used this method for identifying patters of 327 

change in quantitative human health indicators and Räsänen and Kolehmainen (2009) for 328 

electricity use time series data. We applied this method to group farms based on similar 329 

statistical characteristics of meat inspection data over time. Our approach consists of 330 

three distinct steps: 1) computation of the data characteristics on farm level from 331 

monthly farm averages; 2) factor analysis to identify the major explaining variation 332 

among farms; and 3) cluster analysis to group farms on basis of similarity in their data 333 

characteristics. Ad 1), we used the set of characteristics as proposed by Wang et al. 334 

(2005; 2006) that contains measures of ‘trend’, ‘seasonality’, ‘autocorr’, ‘skewness’, 335 

‘kurtosis’, ‘chaos’, ‘nonlin’, and ‘self.sim’  to represent time series. The proposed 336 

statistical characteristics were selected because they are simple and easy to compute. Ad 337 

2), for selection of the most relevant characteristics of the data set, various approaches 338 

can be used. We used factor analysis as search mechanism to find the best selection 339 

from the characteristics set as suggested by Leffondré et al. (2004). This is an easy and 340 

widely accepted method to identify common patterns in data with diverse correlations 341 

structures. Ad 3), we chose the clustering method according to Leffondré et al. (2004) as 342 

it seems to fit our ambition well.  343 

 344 

The correlation matrix between the characteristics illustrates that several characteristics 345 

were highly correlated; e.g. mean and standard deviation for percentage pneumonia as 346 

well as percentage pleuritis (data Fig. A3 and A4). From a methodological point of view, 347 

this correlation structure implies that some features are interchangeable. Having two 348 



highly correlated characteristics makes one virtually redundant – in this case it may be 349 

useful to select the one which is easiest to interpret, as suggested by Leffondré et al. 350 

(2004).  351 

 352 

4.2. The clustering of farms on basis of statistical characteristics 353 

The results showed that the applied approach is able to discriminate between farms with 354 

regard to their meat inspection data. Both the data on pneumonia and on pleuritis 355 

resulted in three clusters. A closer look into the composition of these clusters reveals that 356 

both in the pleuritis data and in the pneumonia data farms were clustered mainly on: 1) 357 

amount of variation in the data; 2) distribution shape of the data and 3) similarity 358 

between consecutive data points. Both the consistent distinction between groups of 359 

characteristics and the consistency between the study results and the validation results 360 

confirm that the method is able to make distinction between farms beyond grouping 361 

them on the conventional way: incidence (percentage of pigs), possibly grouped in 362 

categories like high, moderate and low incidence.  363 

 364 

4.3. Study set versus validation set. 365 

The dataset on 44 farms (511,645 animals) was the ideal set to develop the method. 366 

But, regarding the small sample size, quite distant from the data as a whole. Extension 367 

to a larger (163 farms, 1,829,762 animals), but less optimal (less data points per farm, 368 

some missing month averages) set is a feasible model to verify whether the method 369 

holds for in a less ideal situation. This confirmed the earlier results, three data 370 

distribution aspects make up the majority of distinction between groups of farms and in 371 

these groups (clusters) the majority of the farms was allocated comparable to the earlier 372 

allocation (75% and 62% for pleuritis and pneumonia, respectively).  373 

 374 

Switching to less structured data also revealed a trade off between accuracy (a small but 375 

precise data set) and volume (a larger but more rough dataset). The study sample 376 



revealed a specific vector for seasonal sensitivity for pneumonia, which was not detected 377 

in the larger dataset which had missing datapoints.  378 

 379 

4.4. Relevance 380 

Classically, farms are compared on basis of the incidence of lung problems. Obvious first 381 

next level comparisons comprise the variability and change in time of individual farm 382 

health performance. The high correlation between mean, standard deviation and 383 

coefficient of variation of the aberrations in both pneumonia and pleuritis indicates that 384 

variability between batches is not a valuable extra trait in itself, as it does not add 385 

substantial information additional to the average level of aberrations. On the other hand, 386 

other characteristics, such as repeatability patterns in time do aid in making distinctions 387 

between farms.  388 

 389 

In literature, farm factors that affect problems like pleuritis and pneumonia are often 390 

assessed by comparing farming systems factors such as organic versus conventional 391 

farms (e.g. Alban et al. (2015) or comparing large versus small scale farms (e.g. (Enoe 392 

et al., 2002; Fablet et al., 2012). Data analysis offers an additional entry: the statistical 393 

grouping of farms may point at similarities in farm characteristics within the groups or 394 

differences between the groups (clusters) of farms that do not vary between for example 395 

organic and conventional systems, but rather are underlying factors in both systems that 396 

are causally related to the incidence of health aberrations. The clustering approach thus 397 

goes beyond comparing farms on basis of systems characteristics (size, type) or 398 

performance (incidences of aberrations) alone and bears the promise to reveal relevant 399 

risk factors from data of seemingly similar farms 400 

 401 

A real practical validation requires insight of the farm characteristics. Relating farm 402 

characteristics (farm size, housing characteristics etc.) to the clusters is the next step to 403 



utilize its relevance for enhancing health performance. A promising approach to identify 404 

risk factors for lung aberrations is to study whether the farms in different clusters also 405 

structurally deviate at farm-level either in (nutritional) management practices or in 406 

environmental (housing and ventilation) factors. Our dataset was unique in its size and 407 

consistency, but it contains only slaughter data, farms were coded, implying that no farm 408 

characteristics were available in the analysis. On availability of adequate data, comparing 409 

the clusters with regard to farm characteristics is an obvious next step in studying added 410 

value of these clustered slaughterhouse data. Do farms that are clustered on statistical 411 

grounds also resemble in farm characteristic? And which farm characteristics? If so, this 412 

is a signal that these characteristics may be closely related to real risk factors. Further 413 

developments in data sharing and in data analytics (big data, machine learning) are likely 414 

to further develop such opportunities. 415 

 416 

4.5. Biological interpretation/ relevance 417 

Pleuritis and pneumonia are both disorders of the respirational system, but have different 418 

aetiology. Present paper is not intended to elaborate on this, but lines towards biological 419 

interpretation can be drawn. Patterns and trends in incidences of pleuritis and pneumonia 420 

are readily discernable in massive slaughterhouse data, but are difficult to quantify in 421 

detail on the individual farm level. Current method identifies these patterns on individual 422 

farms, making use of the trends and patterns of related farms. And it subsequently 423 

groups farms with similar aberration characteristics. This grouping is considerably 424 

different for pneumonia and for pleuritis. Comparison of the clusters of farms for 425 

pneumonia and for pleuritis reveals that only a minority of the farms shares the same 426 

clusters (data not shown). This illustrates the different underlying factors affecting the 427 

(slaughterhouse detected pathological indicators of) these two respiratory disorders. 428 

Furthermore, the analysis identified within- and between farm variation related to 429 

seasonality for pneumonia, rather than for pleuritis. This is in line with earlier studies (for 430 

example by Fablet et a. (2012) who identified distinct risk factors for pneumonia and 431 



pleuritis (ventilation and seasonality versus temperature and barn climate) in slaughtered 432 

pigs. 433 

Interpretation of the parameters from a biological point of view is possible, but 434 

speculative. For example, the parameters for seriality may indicate that farms with high 435 

figures for this have the characteristic that they are quite consistent between months in 436 

their aberration performance. Also, high or low levels of kurtosis could be interpreted as 437 

relatively long or short problem periods. However, such interpretations are speculative, 438 

and to our knowledge, such interpretations have not been made in literature. 439 

Results like those presented here confirm the biological ground under the identified 440 

clusters. Also, they support the expectation that data analysis points at less obvious 441 

underlying phenomena, which is helpful in further understanding the farm level aetiology 442 

of these disorders. Also, management opportunities can be strengthened by combing 443 

farm characteristics to the wealth of routinely collected data in slaughter houses, 444 

primarily in detecting husbandry related risk factors.  445 

Current work has higher relevance for practical application (such as identification of farm 446 

factors affecting incidence levels) than for enhanced understanding of the underlying 447 

biology of the diseases involved.  448 

 449 

5. Conclusion 450 

Characteristic-based clustering was able to cluster time series of meat inspection data of 451 

farms using a set of derived statistical characteristics. The stepwise analysis of the 452 

slaughterhouse dataset reveals structured variation among farms in incidence of 453 

pneumonia and pleuritis. The applied method groups them into clusters of ‘similar’ farms 454 

beyond clustering them just on basis of observed incidence of aberrations. Seasonality 455 

and data dispersion characteristics such as autocorrelation had additional value to the 456 

conventional disease incidence figures. The differences between the clusters likely point 457 



at systematic differences between individual farms. Validation on a substantially 458 

extended dataset confirmed the results of the study dataset.  459 
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Appendix A. Supplementary data 558 

 559 

Fig. A1. Factor analysis path diagram of pneumonia (left pane) and allocation to four 560 

clusters (right pane) in the validation exercise (163 farms). For explanation: see Figure 561 

3. 562 

 563 

Fig. A2. Factor analysis path diagram of pleuritis (left pane) and allocation to three 564 

clusters (right pane) in the validation exercise (163 farms). For explanation: see Figure 565 

3. 566 



 567 

 568 

Fig. A3. Correlation matrix for the characteristics of percentage pneumonia 569 

 570 

 571 

Fig. A4. Correlation matrix for the characteristics of percentage pleuritis 572 
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