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Abstract 

A theoretical model is built and estimated to analyze the effects of crop prices on the yields and 

acreages of biofuel feedstock in the European Union. We find no effects of crop prices on crop 

yield for the aggregated European Union in the period 2000 – 2015. However, we do find a negative 

price effect of rapeseed and sugar beet prices on rapeseed and sugar beet yields, respectively, for 

Central and Eastern European Countries. We also find a positive relationship between sugar beet 

prices and sugar beet yield in the period 2010 – 2015. For wheat acreage we find that wheat prices 

and available arable land have a positive influence. For rapeseed acreage we find a counterintuitive 

positive effect of wheat prices, a negative effect of sugar beet prices, and an, also counterintuitive, 

negative effect of available arable land. 
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1. Introduction 

In the 21st century the world has seen two large food crises. Around 2008 and 2011 food prices 

increased by as much as 50 percent (USDA 2011). These events have raised several questions, for 

example, on the effect of rising food prices on political unrest (e.g., Bellemare 2015) or their 

potential impact on the world’s developing countries (e.g., Headey 2016). In this thesis, we take a 

step back and look at the direct effects of food price changes on the yields and acreages of selected 

crops in the European Union in the period 2000 – 2015. First, however, it is relevant to understand 

why food prices increased so much in price. This issue has sparked a lot of debate. Both the 

different factors as well as their magnitudes are debated in the literature.   

Abbott et al. (2009) attribute the rising food prices to a variety of reasons, including demand 

and supply curves shifts, weather issues and exchange rate variability. Headey and Fan (2010) add 

that many possible causes can be identified and that the price changes are the result of interacting 

factors, rather than a single factor. Gilbert (2010), on the other hand, focusses on macroeconomic 

developments and the economic growth in Asia (mainly China). Whereas these examples focus on 

several factors, de Gorter et al. (2015, p. 45) seem to have found one culprit: ethanol production, 

or more specifically, its production process, which “has great importance in explaining the recent 

[2008 and 2011] rise in food commodity prices”. Abbot et al. (2009) agree that biofuel policies 

played a role, but this effect should not be overstated. Headey et al. (2010) find that the oil-biofuel 

nexus was one of the main drivers behind the prices surges, but that other factors, such as export 

restrictions and panic purchases exacerbated the situation. A complete analysis of the rising food 

prices can be found in Headey and Fan 2010 and de Gorter et al. 2015.  
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Biofuels and biofuel policies were not only blamed for the food price spikes, Searchinger 

et al. (2008) also found that greenhouse gas emission reductions of biofuels were overstated, as 

(indirect) land use change (e.g., converting forests into crop land) was not taken into account, 

thereby attacking the presumed environmental benefits of biofuels. Later research (e.g., Dumortier 

et al. 2011, Miao et al. 2015), however, pointed out that the results of Searchinger et al. (2008) 

themselves were overstated as price-induced yield responses were not taken into account.  

To answer questions about how public policy (e.g., biofuel policies) or climate change may 

affect yields and acreages, we first have to look at how these factors respond to price changes. 

When answering questions of how public policy or climate change will affect agricultural output, 

some research (e.g. Dhuyvetter et al. 2008) focus on how output can be increased (e.g., through 

yield increases). We argue that a farmer maximizes his profits, which depend on input and output 

prices. So, even when a production increase may be desirable following, for example, a certain 

policy or climate change, price changes play an important role in determining whether and how it 

will happen. To understand this decision-making process, it is important to know what the effect 

of crop prices on crop yields and acreages are.  We focus on the effects of crop prices changes on 

yield and acreage allocations, but leave out the question what has caused these price changes in the 

first place.  

A solid body of literature on the (environmental) effects of land use and yield change due 

to public policy and price changes exists already (e.g., Searchinger et al. 2008, Dumortier et al. 

2011, Gardebroek et al. 2017). However, some papers only focus on land-use changes, others do 

include yield increases, but do so by estimating the elasticity of yield with respect to crop prices. 

Keeney and Hertel (2009) write that the use of complex assumptions of interacting markets in 

computational models may have clouded the effect of output to price in recent economic literature. 
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In our thesis both yield and acreage changes are analyzed. We separate the effect of prices on output 

into yield and acreage effects. This separation both simplifies our model and allows us to identify 

separate effects. We take a further step back by only looking at the price effects and the subsequent 

acreage and yield responses, recognizing that price changes can happen for a variety of reasons. 

We leave out any potential environmental effects of changing crop acreages and yields. One should, 

however, keep in mind that environmental concerns are one of the main drivers behind the question 

of the effect of public policies and prices on acreage and yield. 

We develop a novel microeconomic framework in which profits are maximized by choosing 

optimal acreage and yield, which in turn depend on specific, convex cost-functions. This way the 

effect of feedstock prices on acreages and yield can be disentangled and estimated. We will both 

develop a microeconomic model and estimate it econometrically. Adding an econometric analysis 

to our theoretical insights is useful, as empirical evidence is used to test our theoretical findings 

(Gilbert 2010). 

Our research adds to the growing body of literature on the food price spikes of 2008 and 

2011. We look at the effects of these rising food prices on acreages and yield of three crops that 

also served as biofuel feedstock in the period 2000 – 2015. Biofuels and biofuels policies saw a 

rise in importance in this period and are often included as one of the (main) causes for the 

aforementioned food price increases, therefore we choose to focus on crops that also serve as 

biofuel feedstock. The European Commission (2017) has stated that 80 percent1 of the crop output 

increase of biofuel feedstock will be accounted for through productivity gains. This point is made 

in relationship with the increased demand for food and feed for a growing and more affluent 

                                                           
1 It should be noted that the European Commission here refers to the 2016-2025 OECD-FAO agricultural outlook 

(2016), which has a focus on sub-Saharan Africa. It could be argued that this figure might not be applicable to the 

European Union. 
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population (mostly in developing countries), implying that yield increases might mitigate the 

possible negative consequences of biofuel policies on food prices (EC 2017). We look at the period 

2000 – 2015 to find what the effects of crop prices on crop yields are, as this relationship is relevant 

when combined with projected yield increases. 

We will not explicitly investigate the link between biofuel policies and prices empirically, 

for two reasons. First of all, it is not entirely within the scope of this thesis. Secondly, data on 

biofuels prices, especially from countries in the east of the European Union, is limited, which 

makes it hard to analyze the true effects. Our prime interest lies in the effect of crop prices on yields 

and acreages. We acknowledge that there may be a link between biofuel (policies) and crop prices, 

but do not explicitly assume this, nor do we draw any conclusions based on this.  

We focus on three food crops: wheat, rapeseed and sugar beet, which are also important (in 

terms of their share) biofuel feedstock in the European Union. In our model we look at the effect 

of the price developments on the yields and acreages of these crops. We have chosen these crops 

as they may not only be affected by price changes of the 21st century, but that also serve as biofuel 

feedstock.  

We find some significant relationships between crop prices and crop yields, but not when 

we look at the European Union as a whole for the period 2000 – 2015. We find that rapeseed and 

sugar beet prices negatively impact rapeseed and sugar beet yields, respectively, for a subset of 

countries in Central and Eastern Europe. We find a positive relation between wheat acreage and 

wheat prices and the availability of arable land. Furthermore, we find that rapeseed acreage 

decreases as the price of sugar beet increases. Counterintuitively, rapeseed acreage increases when 

wheat prices increase, and decreases when the availability of arable land increases.  
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2. Theoretical considerations of the effects of food prices on acreage 

and yield 

2.1 The effect of crop prices on yields 

The effect of a crop price increase on yield is ambiguous. On the one hand, a price increase could 

incentivize better input use or more productive management practices, which have a positive effect 

on yield (Feng and Babcock 2010). On the other hand, a price increase, leading to an acreage 

increase (see discussion below), may result in acreage expansion into land or soil of lower quality 

with a lower yield per hectare, which could drive down the average yield (Angelsen 2010). Note 

that the first effect could set off a cycle by making it worthwhile to start using even more marginal 

land.  

Furthermore, if a price increase were to affect the crop rotation decisions of a farmer (i.e., 

continuous monoculture of the more expensive crop) this may also have a negative effect on crop 

yields (Hennessy 2006). Miao et al. (2015) find that corn prices have a significant positive impact 

on corn yield, but soybean prices do not significantly impact soybean yield. The latter may be 

explained by the intensive (i.e., yield increase) and extensive (i.e., acreage increase) margin 

offsetting each other.  

Keeney and Hertel (2008) summarize several studies on yield responses to price changes. 

There is limited empirical work and most literature in this area focusses on US agriculture. Keeney 

and Hertel (2008) cite several papers (e.g., Choi & Helmberger 1993, Lyons & Thompson 1981) 

that find a positive, significant relationship between corn prices and corn yields. However, they 

also note that there are examples where crop prices do not have a significant effect on yield. They 

point out that variety selection and crop rotation are key determinants of (wheat) yields.  
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Just like an increase in the output of a farm can be split into intensive and extensive 

productivity gains, the changes in yield can be split into reversible yield increases, for example due 

to fertilizer use, and irreversible yield improvements, due to increased technological developments 

and plant breeding (Edwards et al. 2010). Both of these effects could occur as a consequence of 

crop price increase. It could also be argued that the European Union creates a safety net for 

irreversible yield improvements by adopting policies that act as an insurance of a minimum price. 

A major difference between these two changes in yield is the rate of return; whereas increased 

fertilizer use may increase output in the same year, increased spending in plant breeding 

development may only yield results years later. In our research we focus on crops that also serve 

as biofuel feedstock. Edwards et al. (2010) write that there is a significant correlation between long 

term yield increases and policy and public and private expenditure. This effect, however, may not 

yet be visible for biofuel policy induced research spending in the European Union, because of the 

longer rate of return.  

Specific subsidies for research and development (R&D) may also boost yield per hectare 

directly. Since firms do not reap the full benefit of their own R&D investments, as knowledge 

spillovers occur (Parson and Phillips 2007), it may make sense for governments to subsidize R&D 

investments to try and obtain a more socially optimal investment level. The International Institute 

for Sustainable Development (IISD 2013) writes that no studies quantifying the social rate of return 

for biofuel-induced R&D spending exist yet. EU biofuel policies are dominated by market price 

support mechanisms (e.g., the mandate), so these direct effects play little or no role on yield 

developments of the crops we discuss and will not be analyzed further in our research. 
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2.2 The effect of crop prices on acreage 

Whereas the effect of crop price increases on crop yield is ambiguous, the effect on acreage seems 

more clear-cut in most research. For example, Huang and Khanna (2010), Miao et al. (2015) and 

Gardebroek et al. (2017) find a positive relation between own crop prices and crop acreages and a 

negative relationship between cross-prices and crop acreage. From this we expect that, for example, 

the price of rapeseed has a positive influence on rapeseed acreage and a negative influence on 

wheat acreages. Note that crop prices influence acreage allocation for one crop when they are 

relatively more extreme than price changes of other crops (Gardebroek et al. 2017).  The effect of 

prices can be a cross-border relation. For example, the demand driven price increase of soybean in 

recent years in China, has been met by an acreage expansion in Latin America (Abbott et al. 2011). 

Since we focus only on the European Union in this thesis, we do not incorporate this in our model. 

Huang and Khanna (2010) summarize several studies in which the elasticity of biofuel 

feedstock acreage (mostly corn, wheat, and soybean) with respect to their own price is calculated. 

In all cases a positive elasticity is found, meaning that the acreage of a crop increases as its price 

increases. Huang and Khanna (2010) also find negative cross-price effects. Intuitively this makes 

sense, as a price increase of one crop would lead to an acreage increase of that crop, which can 

come at the expense of the acreage of another crop, unless the total land acreage available has 

increased. All this indicates acreage allocation decisions are the result of several crop output price 

changes. 

Wright and Wimberly (2013) find that increased prices of biofuel feedstock (corn and soy) 

in the United States have led to the conversion of grassland into arable land. This explicitly shows 

that acreage expansion can also occur without coming at the expense of the acreage of other crops. 
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The EPA (2010) reports that acreage expansion in the European Union in the period 2001 – 2007 

has mainly come at the cost of pasture and grasslands. 

2.3 Interaction effects between yields and acreage 

The previous section showed that own prices can influence the yield per hectare (for which the 

effect is ambiguous) and the acreage devoted to a crop (where a price increase results in more land 

devoted to that crop). Furthermore, there may also be cross-price effects, where the price of 

soybeans affects the acreage allocated to corn (Huang and Khanna 2010). Note, however, that there 

is little, if any, literature on the cross-price elasticity of yield (i.e., the effect of a price change of 

soybean (for example) on the yield per hectare of corn). 

Another interaction effect can be found between expected yield and acreage (Weersink et 

al. 2010). In such a case the “own-yield” effect (e.g., the elasticity of acreage supply of corn with 

respect to the expected yield of corn) is usually qualitatively different from the “cross-yield” effect 

(e.g., the elasticity of acreage supply of corn with respect to the expected yield of soybeans). 

Weersink et al. (2010) find that an increase in expected yield of corn has a positive effect on corn 

acreage, whereas an increase of expected soybean or winter wheat yield has a negative effect on 

corn acreage. Overall, the elasticity with respect to expected yield is slightly higher (except for 

wheat) than the elasticity with respect to expected prices.  

Some authors (e.g., Dhuyvetter et al. 2008) calculate the needed increase in the supply of 

certain feedstock to meet the rising, policy-driven, biofuel feedstock demand. They show that such 

an increase can be obtained both through an increase of acreage as well as yield, noting that a more 

optimistic yield trend would result in a lower “need” for feedstock acreages. Even though this is 

technically correct, we argue that the prime motive for an individual farmer (in our model) is to 

maximize his profits, not maximize the output of a certain crop. As discussed earlier, in the case of 
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a crop price increase (which could occur following an increased biofuel demand), we expect 

acreage allocated to that crop will increase, whereas the effect on yield is ambiguous.  
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3. The EU biofuel feedstock market 

3.1 EU biofuel and feedstock markets 

In 2015 bioethanol accounted for almost 2 percent of the volume of all fuel use (excluding jet fuel) 

and biodiesel accounted for roughly 4 percent in the European Union (USDA 2017). Germany was 

the largest consumer of ethanol in the period 2011-2015, consuming around 30 percent of the total 

EU volume. Other large consumers were the United Kingdom and France, both taking roughly a 

15 percent share. Production follows a similar pattern as consumption, with Germany, France and 

the United Kingdom producing most of the fuel, all taking a 17-20 percent share. For biodiesel, 

production takes mostly place in Germany and France, which account for about 50 percent of 

biodiesel produced in the European Union in the period 2011-2015. Germany and France are also 

the largest consumers (around 35 percent), with no other country consuming over ten percent of 

the total biodiesel consumption (Eurostat 2017a). 

The feedstock most used for ethanol are sugar beet, corn and wheat. In the period 2006 – 

2015 these feedstock accounted for roughly 80 percent of the total bioethanol production. The 

feedstock portfolio is less diverse for biodiesel; in the period 2006 – 2015, rapeseed accounted for 

64 percent of total feedstock use. Its share is declining over the years, with used cooking oil (UCO) 

and palm oil taking larger shares. This means that a lower share of feedstock is produced within 

the European Union, as palm oil is imported and UCO is a non-agricultural product. Together these 

feedstock accounted for 37% of feedstock used in 2015, while rapeseed accounted for 49 percent 

(USDA 2017). Note that biofuel production uses a higher percentage of total rapeseed production, 

than sugar beet and wheat, as those crops are mainly used for alternative purposes. For example, 

in 2004 EU biodiesel production used 27 percent of rapeseed production, whereas EU bioethanol 
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production used only 0.42 percent and 0.81 percent of total wheat and sugar beet production, 

respectively (Schnepf 2006). 

3.2 EU policy regarding biofuel and feedstock yield and acreage 

In 2009 the European Commission issued an important piece of biofuel legislation; the 2009/28 

directive specified that 10 percent of the transport fuel of EU member states should come from 

renewable sources by 2020. In the second EC progress report – which is published once every two 

years to track the progress of Member States – the first mention is made of possible food price 

increases due to the policy. The report states that it is important to assess whether EU biofuel 

consumption contributed in any way to these price increase, but conclusive evidence is not given 

(EC 2013). 

Through time, the European Commission requires stricter laws for (indirect) land use 

change, because of its possible environmental consequences (see, for example, the progress reports 

of 2013 and 2015). This indicates that concerns of acreage reallocations due to biofuel policies 

were taken seriously by the European Commission. Note, however, that the focus in the reports is 

on land use change outside the European Union. In 2017 the European Commission also mentions 

crop yield improvements for biofuel feedstock, as mentioned in the introduction.  

The supply of feedstock is an important cost component of the biofuel production process, 

making it crucial to the success of the EU biofuel goals (Schnepf 2006). This also highlights the 

importance of EU policy affecting important feedstock crops. In the period 2000 – 2015 EU support 

mechanisms have been simplified with the advent of the Direct Payment System, as payments are 

mostly decoupled and production subsidies have disappeared (Baldwin and Wyplosz 2015).  

Rapeseed production has been influenced by set-aside arrangements, agreed upon in the 

Blair House Agreements. The set-aside arrangement made it possible to cultivate energy crops on 
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land that was meant to be set-aside, but was abolished in the context of the CAP 2008 health check 

(EC 2011). Technically any non-food crop could be grown on the set-aside land, in practice, 

however, it was mostly devoted to rapeseed cultivation (EC 2006). In 2006, the EU sugar beet 

sector was reformed. Internal price support schemes were slashed, and the intervention purchase 

system was eliminated. Both measures reduce incentives for farmers to grow sugar beet. However, 

from this moment sugar beet could be used as an energy crop (like rapeseed), with sugar being 

produced for the purpose of biofuel production being excluded from the sugar quotas (Schnepf 

2006). Note that the sugar quota system in the European Union was abolished in 2017 (EC 2016), 

but since we consider the period 2000 – 2015 this does not affect our analysis.  

3.3 One European Union, multiple settings 

The period 2000 – 2015 also saw the accession of several new member states, most notably in 2004 

when 10 countries, mostly from Central and Eastern Europe joined the union. Latruffe et al. (2012) 

write that these countries, from here on referred to as Central and Eastern European Countries 

(CEECs) trail the other member states in terms of agricultural production. They write that technical 

efficiency is usually lower (because of market and institutional failures) and that there are 

substantial potential improvement possibilities. The data we use also shows that yield per hectare 

are lower in these countries, although the differences do not seem to be significant (Eurostat 2017c). 

In our analysis we will have a closer look if there are any differences in yield and acreage allocation 

decisions between CEECs and other countries. 

In terms of biofuel policy the biggest change occurred in 2009, when Directive 2009/28 

replaced previous legislation. The 2009/28 included the 10 percent mandate. This mandate was 

compulsory, contrary to the previous (2005) mandate of 2 percent (Banse et al. 2011). The 

European Commission does not provide a uniform measure to implement their biofuel policies; 
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instead it provides a framework which allows member states to use various instruments to obtain 

their targets (see Sorda et al. (2010) for a more elaborate discussion on EU biofuel policies and 

their implementation). Since implementation on national level can occur at different times, we can 

only analyze the possible effect of this directive by looking at differences between the periods 2000 

– 2009 and 2010 – 2015.  

To capture these multiple settings, we estimate three different models. In Model I we look 

at all selected countries in the period 2000 – 2015. In Model II, we divide the countries into two 

groups: the CEECs and the “Old Member-States” (OMS). In Model III we analyze the differences 

between the period 2000 – 2009 and 2010 – 2015. We use the year 2009 as the cut-off point, as we 

assume that policy-induced changes take some time to occur.  In chapter 4 the exact specifications 

of the different models is discussed. 
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4. Theoretical model, estimation and data 

4.1 A microeconomic model 

Consider a representative farmer who chooses optimal acreage and yields of three crops: 

wheat, rapeseed and sugar beet, to maximize his profits. The prices of the crops, as well as of land 

are exogenous to the farmer. Increases in yields and acreage result in higher costs, which we model 

using convex cost functions. Combining revenues and costs, we can derive the profit function. 

Profits are, in part, determined by output prices, as these determine optimal supply according to 

duality theory (Jehle and Reny 2011).  This means that output prices will have an indirect effect on 

yield in the model. The profit function can be written as 

𝜋 =  𝑝1𝑦1𝐿1 + 𝑝2𝑦2𝐿2 + 𝑝3𝑦3(�̅� − 𝐿1 − 𝐿2) − 𝐶1(𝑦1)𝐿1 − 𝐶2(𝑦2)𝐿2 − 𝐶3(𝑦3) (�̅� − 𝐿1 − 𝐿2) −

𝜑1(𝐿1) − 𝜑2(𝐿2) − 𝜑3(�̅� − 𝐿1 − 𝐿2) −  𝑤�̅�,     𝑖 = 1, 2, 3  (1) 

where 𝑝𝑖 refers to the crop prices, 𝑦𝑖 refers to crop yields and 𝐿𝑖 refers to crop acreages. 𝐶𝑖(𝑦𝑖) 

and  𝜑𝑖(𝐿𝑖) denote the cost functions for crop yields and acreages, respectively. The subscript 

refers to the three different crops. Production equals the product of yield, 𝑦𝑖 , and acreage, 𝐿𝑖, 

devoted to a crop 

𝑌𝑖 =  𝑦𝑖𝐿𝑖,                     (2) 

while revenues depend on the production at the output price, 𝑝𝑖 

𝑅𝑖 = 𝑝𝑖 𝑦𝑖  𝐿𝑖.                    (3) 

We split the costs into three cost functions. First, a yield-specific cost function  

𝐶𝑖(𝑦𝑖) =  𝐴𝑖𝑦𝑖
𝜀𝑖,           (4)  
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where 𝐴𝑖 is a positive constant and 휀𝑖 is the elasticity of costs with respect to yield. In most 

literature (e.g., Sobolevsky et al. 2005, Miao et al. 2015) elasticity of yield with respect to the 

crops’ own price is used. We use a different elasticity, as we want a farmer in this model to have 

the possibility to increase his yield (at a certain cost) to reach the point where yield and acreage 

maximize profits. Equation (4) represents the yield-specific costs and has to be multiplied by 𝐿𝑖 to 

find the total costs of yield for a crop. Note that all different costs involved in increasing yield (e.g., 

increased fertilizer use or increased R&D spending) are included in 𝐶𝑖(𝑦𝑖). The acreage-cost 

function has a similar structure: 

𝜑𝑖(𝐿𝑖) =  𝐵𝑖𝐿𝑖
𝛼𝑖  ,          (5) 

where 𝐵𝑖 is a positive constant and 𝛼𝑖 is the elasticity of costs with respect to land used.2 

This function specifies that there are costs involved when land use is increased (e.g., labor or capital 

costs). Lastly, rental costs of the total land area, �̅�, are captured by the rental rate, 𝑤. Land used for 

𝐿3 is calculated as the total land area, �̅�, minus acreage allocated to the first two crops (𝐿1 and 𝐿2). 

𝜑𝑖(𝐿𝑖) captures all costs that can occur when acreage is expanded. We do not specify how a farmer 

can increase his yield or acreage (acknowledging that this can happen in many different ways), as 

this reduces the complexity of the model and makes it more intuitively comprehensible. To solve 

our profit maximization problem, we use the following yield-specific costs function 

𝐶𝑖(𝑦𝑖) =  
1

2
𝐴𝑖𝑦𝑖

2 .           (6) 

This form makes the model solution analytically simpler and helps with intuition. Note that 

this specific relationship between crop yields and costs (i.e., a yield increase of one-percent is 

                                                           
2 Note that the value of 𝛼𝑖 has to be larger than one for this curve to be convex. If this is not the case, from some point 

onwards farmers will be able to keep increasing their acreage without a (substantial) cost increase. Note that the same 

line of reasoning can be applied to 휀𝑖. 
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accommodated by a cost increase of two percent) may not hold. We expect that 𝐴𝑖 is positive, as a 

negative value for 𝐴𝑖 would indicate negative costs, since yields cannot be negative. Land-specific 

costs have a similar structure 

𝜑𝑖(𝐿𝑖) =  
1

2
𝐵𝑖𝐿𝑖

2.          (7) 

We use these specific cost functions in maximizing total profits. Therefore, we take partial 

derivatives of the profit function with respect to 𝑦𝑖 and 𝐿𝑖. These first-order conditions are derived 

from equation (1) 

𝜕𝜋

𝜕𝑦1
=  𝑝1𝐿1 − 𝐶1

′(𝑦1)𝐿1 = 0 (8) 

𝜕𝜋

𝜕𝑦2
=  𝑝2𝐿2 − 𝐶2

′(𝑦2)𝐿2 = 0 (9) 

𝜕𝜋

𝜕𝑦3
=  𝑝3(�̅� − 𝐿1 − 𝐿2) − 𝐶3

′ (𝑦3)(�̅� − 𝐿1 − 𝐿2) = 0 (10) 

𝜕𝜋

𝜕𝐿1
=  𝑝1𝑦1 −  𝑝3𝑦3 −  𝐶1(𝑦1) + 𝐶3(𝑦3) − 𝜑1

′ (𝐿1) + 𝜑3
′ (�̅� − 𝐿1 − 𝐿2) = 0 (11) 

𝜕𝜋

𝜕𝐿2
=  𝑝2𝑦2 −  𝑝3𝑦3 −  𝐶2(𝑦2) + 𝐶3(𝑦3) − 𝜑2

′ (𝐿2) + 𝜑3
′ (�̅� − 𝐿1 − 𝐿2) = 0 (12) 

Note that 𝐶𝑖
′(𝑦𝑖) in equations (8) – (10) collapses to 𝐴𝑖𝑦𝑖 and 𝜑𝑖

′(𝐿𝑖) in equations (11) and (12) 

collapses to 𝐵𝑖𝐿𝑖, because of the specific form of our cost functions. Rewriting these first-order-

conditions, the following solutions can be obtained from equations (8) – (10): 

𝑦1 =  
1

𝐴1
 𝑝1 (13) 

𝑦2 =  
1

𝐴2
 𝑝2 (14) 

𝑦3 =  
1

𝐴3
 𝑝3 (15) 
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From equations (13) – (15) we find that crop yield in our model only depends on the own-

price of the crop. Note that we expect this effect to be positive, as we expect 𝐴𝑖 to be positive.  

Solving equations (11) and (12) for 𝐿1 and 𝐿2 we obtain (see appendix) 

𝐿1 =  
𝐵2 + 𝐵3

2𝐴1(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
𝑃1

2 −
𝐵3

2𝐴2(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
𝑃2

2

−
𝐵2

2𝐴3(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
𝑃3

2 +
𝐵2𝐵3

(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
�̅� 

                  (16) 

 

𝐿2 =  −
𝐵3

2𝐴1(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
𝑃1

2 +
𝐵1 + 𝐵3

2𝐴2(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
𝑃2

2

−
𝐵1

2𝐴3(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
𝑃3

2 +
𝐵1𝐵3

(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
�̅� 

               (17) 

 

From equations (16) and (17) it can be seen that the land devoted to a crop depends positively on 

its own price, but negatively on both other prices in our model. Since we focus on the effects of 

crop prices on acreage and yield, we disregard any interaction effects between acreage and yield 

of different crops, as found by, for example, Weersink et al. (2010).  

 We estimate five equations: (13) – (17). We estimate the equations (13) – (15) as 

𝑌𝑖𝑒𝑙𝑑𝑖 = 𝛼𝑖 + 𝛽𝑖𝑃𝑖 + ∑ 𝛿𝑡𝑇𝑡

16

𝑡=1

+  휀𝑖           𝑖 = 1,2,3,     𝑡 =  1,2,3, … . ,15,16 

 

                

(18) 

where  𝑖 = 1 corresponds to wheat, 𝑖 = 2 to rapeseed and 𝑖 = 3 to sugar beet and 휀𝑖 is the error 

term. 𝛽𝑖 corresponds to 
1

𝐴𝑖
 in equations (13) – (15). Year specific dummy variables, 𝑇𝑡,  are added, 

as yield may depend on year effects (e.g., weather). The year 2000 is used as the base year. 𝛼𝑖 is 

the intercept. Equations (13) – (17) do not include a constant term. We included the intercept for 

estimation purposes. Excluding the intercept would force the regression through the origin. Note 
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that the intercept has no intrinsic meaning, since our independent variables (prices and arable land) 

are never equal to zero. We estimate equations (16) and (17) as 

𝐴𝑐𝑟𝑒𝑎𝑔𝑒𝑗 = 𝛼𝑗 + 𝛽𝑗𝑖𝑃1
2 + 𝛽𝑗𝑖𝑃2

2 + 𝛽𝑗𝑖𝑃3
2 + 𝛾𝑗𝑖𝐿 + 𝑢𝑗       𝑗 = 1,2        𝑖 = 1,2,3,                     (19) 

where 𝑖 again refers to the crops, 𝑗 refers to the acreage equation, where 𝑗 =  1 for wheat 

and 𝑗 =  2 for rapeseed. For example, the coefficient 𝛽13 refers to influence of the price of sugar 

beet on the acreage of wheat and 𝛽23 refers to the influence of the price of sugar beet on the acreage 

or rapeseed. 𝛼𝑗 is the intercept, 𝛾𝑖𝑗 is the parameter for arable land, and 𝑢𝑖𝑗  is the error term. 

𝛽11 (the effect of wheat prices on the optimal acreage of wheat) in equations (19) refers to 

the component  
𝐵2+𝐵3

2𝐴1(𝐵1𝐵2+𝐵1𝐵3+𝐵2𝐵3)
 in equation (16) and 𝛽12 (the effect of rapeseed price on the 

optimal acreage of wheat) refers to the component 
𝐵3

2𝐴2(𝐵1𝐵2+𝐵1𝐵3+𝐵2𝐵3)
 of equation (16). Note that 

in this case we do not explicitly calculate specific values for 𝐴𝑖 and  𝐵𝑖, but for the coefficients 𝛽
𝑗𝑖

. 

There is no reason to assume that for our values of the different 𝛽𝑗𝑖’s there exist some values 𝐴𝑖 

and 𝐵𝑖, which would solve our equations (16) and (17).  In chapter 4.2 we explain why we deviate 

from our microeconomic model here. 

4.2 Estimation approach 

We estimate three models in total, following our discussion in chapter 3.3. In the first model, all 

countries for the complete period are considered. In the second model we compare the OMS with 

the CEECs. The OMS refer to Austria, Belgium, Denmark, Finland, France, Germany, Italy, the 

Netherlands, Spain, Sweden and the United Kingdom. The CEECs are Bulgaria, Czech Republic, 

Hungary, Poland, Romania, Slovakia, and Slovenia. Model III distinguishes between the periods 

2000 – 2009 and 2010 – 2015. We estimate equations (18) and (19) for all three models. We have 

10 estimates in total: two estimates (yield and acreage) for all selected countries in 2000 – 2015 
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and the same two estimates for every different case (OMS, CEECs, before 2009 and after 2009) of 

the other models. 

To estimate the equations (18) and (19) we use Zellner’s (1962) method of seemingly 

unrelated regressions (SUR). Using a system estimator has the advantage of increased efficiency 

in estimation, as the information on different equations is combined (Moon and Perron 2006). The 

explanatory variables differ for each crop-specific estimate of equation (20). For example, in the 

wheat yield equation, wheat price is an explanatory variable, whereas in the rapeseed yield 

equation, rapeseed price is an explanatory variable. We use a system estimator, as we assume that 

the error terms are correlated across the equations.  

Since our explanatory variables are the same for each crop-specific estimate of equation 

(21) (e.g., estimating the optimal amount of acreage of wheat depends on the same explanatory 

variables for estimating the optimal amount of acreage of rapeseed), using a system estimator, like 

SUR, will give us the same estimates as using an individual Ordinary Least Squares (OLS) method 

for each equation (Verbeek 2008). However, we choose to use also SUR instead of OLS for the 

estimation of the acreage equation as we assume that the error terms are related for the equations, 

which will not affect the coefficients, but will give us more appropriate standard errors. 

We use the Breusch-Pagan test to test whether the equations of different yields and acreages 

are independent. If the equations are independent (i.e., there is no significant correlation of the 

residuals across the acreage equations), no efficiency can be gained by using the SUR. We run this 

test for all different scenarios in all three models. In all of our yield equations of every model we 

find a significant correlation of the residuals. This means that we can gain efficiency for the 

estimation of the yield equations by using SUR. 



24 
 

For the case of acreage equations, we find a significant correlation between the error terms 

of the wheat acreage equation and the rapeseed acreage equation for Model I, where all selected 

countries are included for the period 2000 – 2015.  For Model II, where we compare the OMS and 

the CEECs, we do not find any reason to reject the null-hypothesis of independent acreage 

equations for either group considered. This means that the error terms of the wheat and acreage 

equations are not correlated. This is the case for the both OMS and for the CEECs. For Model III 

we find that the equations are not independent in the period 2000 – 2009, but they are independent 

in the period 2010 – 2015. So, we can gain efficiency by using SUR when estimating the period 

2000 – 2009, but not when estimating the period 2010 – 2015. These results indicate that we do 

not gain efficiency in either scenario of Model II, or the period 2010 – 2015 of Model III when 

using SUR. However, the differences in estimates between an OLS and a SUR estimate in these 

cases are also minor. We have chosen to use SUR in all three models, as this helps with the 

presentation of the findings and there are no immediate drawbacks. The full test results can be seen 

in chapter 2 of the appendix. 

Equation (21) is non-linear in crop prices and should therefore be estimated using Non-

Linear Seemingly Unrelated Regressions (NLSUR). Using Stata, however, it was not possible to 

solve our system of equations. The solutions given by Stata were not stable, which could be the 

result of collinearity. Correlation between two explanatory variables is not necessarily a problem, 

but if it is too high it may lead to unreliable estimates (Verbeek 2008). Another reason may be the 

complexity of the equations in combination with the low number of observations.  Because of this 

infeasibility, we decided to estimate a simple linear version where the structural parameters are 

summarized by aggregate parameters. 
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Since farmers can only respond to price changes after these have occurred, using current-

year prices may bias the results. We follow Gardebroek et al. (2017) in using one-year lagged 

prices, as Miao et al. (2015) point out that there is no proxy for expected prices (e.g., current-year 

futures prices or one-year lagged prices) which outperforms lagged prices in describing farmers’ 

expectations. We use lagged prices for both the yield (18) and acreage (19) equations. In our model 

�̅� is the sum of 𝐿1, 𝐿2 and 𝐿3. For estimation purposes, however, we use the total of arable land 

from Eurostat (2017c). This is done because using the sum of the three acreages would imply that 

the acreage of one of our three crops can only increase if the acreage devoted to one of the other 

crops decreases. Acreage expansion, however, can also come at the costs of land used for other 

purposes. 

Since our units of observations are observed multiple times, we are dealing with a panel 

data set. The main approaches to the fitting of panel data models are fixed effect regressions and 

random effects regressions. Our observations cannot be described as a random sample from a given 

population, so the use of fixed effects is advised by Dougherty (2011). Especially yields, but also 

acreages, may vary across countries due to factors such as weather changes and soil types 

(Gardebroek et al. 2017). This could lead to biased estimates, due to unobserved heterogeneity 

(Verbeek 2008). We use within-transformation, to deal with this problem. We do this by calculating 

individual means for every country and subtracting the observed values from the calculated 

individual mean. We then use these calculated values in the regression. The within-transformation 

takes away the average differences between countries (both observable and unobservable effects). 

As the average differences between countries (e.g., rainfall) no longer play a role in our analysis, 

we can focus on the effect of the crop prices.  
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We estimate yields and acreages for countries that join borders, so spatial autocorrelation 

may be a problem, as unobserved effects in the error terms can be similar between nearby countries 

due to geographical reasons. This could lead to incorrect standard errors. Several test for cross-

sectional dependence (Frees 1995, Friedman 1937 and Pesaran 2004) can be done using a Stata 

routine developed by De Hoyos and Sarafidis (2006), but our sample does not have enough 

common observations to perform these tests. So we are unable perform a formal test to detect the 

presence of spatial autocorrelation. A test developed by Wooldridge (2002), implemented in Stata 

by Drukker (2005) was used to detect the presence of serial correlation.  

For the yield equation we only find serial correlation for the rapeseed yield in Model I (at 

the 5-percent significance level). In all other yield equations, serial correlation is not found. For 

the acreage equations we find a high F-value for the test for autocorrelation for the acreage equation 

of rapeseed in Model I (significant at the 1-percent level). The full test results can be seen in chapter 

2 of the appendix. Using robust standard errors may solve the problems of autocorrelation. 

However, robust standard errors cannot be used in case of SUR estimations, as Stata does not allow 

for this option. One way to deal with this is to use Generalized Method of Moments instead of 

SUR, which does allow for the use of robust standard-errors. Our limited data set, however, seemed 

not compatible with GMM, as Stata was unable to solve the system of acreage equations. Since we 

have no formal test to back up our suspicion of spatial-autocorrelation and limited evidence of 

serial correlation, we will resort to the use of SUR without robust standard errors. We deal with 

serial correlation later in the discussion of the results.  

4.3 Data  

Data on crop yields and acreages on national level were collected from Eurostat (2017b). A number 

of countries is missing in the analysis. We have excluded some countries because of their size and 
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lack of observations (Luxembourg, Malta, Cyprus, Croatia, Estonia, Latvia and Lithuania). We 

exclude Greece, Portugal and Ireland as they were not big producers of the three crops and had 

large amounts of missing observations. In total 18 countries were in the set for a period of 16 years, 

resulting in 288 observations.  

In cases where yield statistics are unavailable (e.g., for sugar beet in almost all years and 

countries), the yields are calculated by dividing the production (in 1000 tonnes) by the acreage (in 

1000 hectares) of the crop. For prices, indices are used with the year 2000 as the base year (Eurostat 

2017c). The reason for this is that Eurostat offers more data on price indices than on absolute prices. 

Price indices post-2008 are only available with base years 2005 or 2010. This data has been 

manually transformed to fit the other data (i.e., have the same base-year). During this process, it 

became clear that the Eurostat data is sometimes internally inconsistent.  

After grouping the data by country, we obtain an unbalanced data set, as some observations 

are missing for certain countries. The data set could be made balanced by manually deleting the 

years and countries for which no data is available. This could lead to a bias, as the resulting data 

set may not be representative of our sample (Dougherty 2011). However, one should keep in mind 

that the unbalanced data set may also give biased estimates if the reasons the missing observations 

are endogenous to our model (Verbeek 2008). In some cases our data has observations that seem 

to be missing at random (e.g., one data point in a series is missing for one country). In other cases 

a complete series (i.e., all sixteen observations for a certain country) may be missing. Stata allows 

unbalanced data sets when using SUR. 
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Table 1 

Descriptive statistics of dependent and independent variables for the sixteen selected countries (2000 – 

2015) 

 
Observations Mean 

Standard 

Deviation 
Minimum Maximum 

Crop Acreage 

(1000 hectares) 

     

   Wheat 287 3034.15 2843.64 94.76 9645.80 

   Rapeseed 288 296.51 428.00 0.10 1615.90 

   Sugar beet 262 108.72 124.81 0.01 459.40 

Crop yield (1000 

tonnes per hectare) 

     

   Wheat 286 2.72 0.85 0.90 4.39 

   Rapeseed 288 2.68 0.89 0.47 4.69 

   Sugar beet 262 56.71 17.29 10.50 96.94 

Crop price indices 

(base year 2000) 

     

   Wheat 284 102.96 24.56 53.90 197.56 

   Rapeseed 213 133.10 36.07 69.09 246.03 

   Sugar beet 272 82.62 22.88 35.19 169.80  
Source: Eurostat (2017b,c) 

Table 1 shows the number of observations for all variables. The price indices for rapeseed 

lack more observations than others, as some, mainly Southern, countries, do not have data on 

rapeseed prices. Note that they do report acreage and production figures (from which yield is 

calculated). The standard deviations for the crop acreages are high, relative to their means. The 

reason for this are the large differences between the acreages of different countries (e.g., the 

average wheat acreage of France in the period 2000 – 2015 is more than 9 million hectares, whereas 

for the Netherlands that figure hovers are 0.2 million hectares). 

From the data we can see that the acreage of sugar beet has been decreasing steadily since 

2000, whereas the acreages of rapeseed and wheat have been increasing. We can see two large 

drops in wheat acreage, in 2003 and 2006. The absolute yield (in 1000 tonnes per hectare) of all 

three crops yields has increased in the period 2000-2015. Both wheat and rapeseed yield (per 1000 

hectare) show the same pattern, with high yields in 2004 and 2008, and lower yields in 2003, 2007 

and 2012. The yield fluctuations for sugar beet are lower. 
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Figure 1: Development of average crop price indices for all countries for 2000 – 2015 (Eurostat 2017b). 

Figure 1 shows the price developments of wheat, rapeseed and sugar beet for the period 

2000 – 2015. Note that we have used an average of the price-indices here over the various countries 

here. This graph only shows the development of the price with the 2000 price as a base year. This 

means that two countries could both have a rapeseed index price of 120 in 2003, but that this does 

not mean that there is no price difference in the actual rapeseed prices between those countries. 

The price developments of the crops show both price shocks of the 2008 and 2011 food crises for 

wheat and rapeseed, but sugar beet prices are not affected by these developments. The price of 

sugar beet decreases for most of the period. The prices of wheat and rapeseed show an upward 

trend at some times, but are only 10-percent higher in 2015 compared to 2000 (on average).  
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5. Estimation results and discussion 

Table 2 shows the estimation results of the yield equations of wheat, rapeseed, and sugar beet in 

the period 2000 – 2015. Model I shows the result for all 18 countries in this period. In Model II the 

countries have been divided into two groups, the OMS and the CEECs. In Model III, we have 

divided the time period into two separate periods: 2000 – 2009 and 2010 – 2015.  

5.1 Estimation results of the yield equations 

In our microeconomic model there is a positive relationship between crop prices and crop yields 

as can be seen from equations (13) – (15). Although we noted earlier that the effects of prices on 

yield is ambiguous from a more theoretical viewpoint. All yield equations in all models are 

estimated using SUR. The full Stata output can be found in the chapter 2.1 – 2.3 in the appendix. 

In none of the yield regressions of Model I does the own lagged price of the crop have a 

significant impact on the yield. Miao et al. (2015) also find a non-significant price effect for 

soybean yields in the United States, but do find a significant price effect for corn yields. In our case 

we can conclude that lagged prices do not affect optimal yields. The price effects, however, are 

significant if the OLS regression is run without year dummies. The year dummies, on the other 

hand, are almost all significantly different from zero. This indicates that year specific 

circumstances (e.g., weather) do influence yield, whereas we conclude that prices do not. Joint F-

tests on these dummies were significant at the 5-percent level, indicating that, taken together, the 

dummies had a significant influence on yield. In the same line, the F-tests for joint significance for 

all explanatory variables (i.e., lagged prices and year dummies) are also significant. 

We can compare the results of CEECs in the period 2000 – 2015 with the OMS and with 

the combined estimation, where all countries were included. We find that rapeseed and sugar beet 
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prices negatively impact rapeseed and sugar beet yields, respectively. The effect of rapeseed prices 

is significant at the 1-percent significance level, whereas the effect of sugar beet prices is significant 

at the 5-percent level. This does not follow our microeconomic model, where the relationship is 

positive, but we have seen that there are several theoretical considerations which explain why crop 

prices can negatively influence crop yields. For illustration, the value of -0.006 we find for the 

influence of rapeseed prices on rapeseed yields, should be interpreted as follows: a unit increase in 

the lagged price index for rapeseed results in a decrease of 6 tons per 1000 hectares. 

We do not find the same effect for the OMS, where the coefficients remain insignificant. 

So crop prices do affect crop yields (in two cases) for the CEECs, but do not do so for the OMS. 

This would indicate that prices are more important for yield decisions in the CEECs than in the 

OMS. It could be the case that price have affected crop rotation decisions or have worked as an 

incentive to use more marginal land of lower soil quality in the CEECs, which could explain the 

negative relationship. One should also keep in mind that there is a yield gap between the OMS and 

the CEECs and that yield increases may be harder to realize in the OMS. 

In Model III we find similar results. For the period 2000 – 2009 we find no significant 

relationships between crop prices and crop yields. For the period 2010 – 2015 we only find an 

effect of sugar beet prices on sugar beet yield. We find a positive, significant (at the 5-percent 

significance level), effect of 0.066 in this case. This means that a unit increase in the lagged price 

index for sugar beet results in an increase of 66 tons per 1000 hectares. Since we do not find any 

significant coefficients for the period 2000 – 2009, and only one significant coefficient for the 

period 2010 – 2015, it is difficult to compare the two periods. In either case we can say that there 

seems to be no difference between the two periods. We find no impact of the 2009 biofuel directive 

(or the 2008 CAP health check).  
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The R2 values range between 0.50 and 0.66 for Model I, between 0.46 and 0.81 for Model 

II, and between 0.45 and 0.59 for Model III. In Model II the R2 values are higher in all cases for 

the CEECs than for the OMS. This means more of the variation in yields in CEECs can be attributed 

to crop prices and the year dummies than is the case for the OMS, which implies that the 

explanatory variables are relatively more important in explaining yields in CEECs than in the OMS. 

This is to be expected as we found two significant relationships in the case of the CEECs, but none 

for the OMS. In Model III there is no clear difference between the R2 values of the periods before 

and after 2009. The intercepts are significant in all but one case across all models, but do not have 

any intrinsic meaning. The baseline for the dummy variable is 2000 in the "before 2009" estimation 

of model III and 2010 in the "after 2009" estimation. 
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Table 2       

Parameter estimates of the yield equations. 

       

Model I†      

 Wheat Rapeseed Sugar beet    

Own price effect -0.000 (0.001) -0.000 (0.001) 0.008 (0.017)    

Intercept -0.180 (0.092)* -0.328 (0.106)*** -7.187 (1.580)***    

R2 0.50 0.57 0.66    

Χ2-test joint significance 182.79*** 242.95*** 353.56***    

Χ2-test year dummies 148.64*** 213.86*** 306.76***    

Countries 18 18 18    

Observations 185 185 185    

       

Model II†† 

 OMS CEECs 

 Wheat Rapeseed Sugar beet Wheat Rapeseed Sugar beet 

Own price effect 0.001 (0.001) 0.000 (0.001) 0.025 (0.033) 0.002 (0.002) -0.006 (0.002)*** -0.043 (0.025)** 

Intercept 0.086 (0.094) -0.362 (0.130)*** -5.168 (1.979)*** -0.653 (0.105)*** -0.293 (0.148)*** -13.034 (1.910)*** 

R2 0.46 0.49 0.66 0.71 0.81 0.73 

Χ2-test joint significance 95.68*** 106.65*** 214.20*** 187.49*** 328.44*** 187.49*** 

Χ2-test year dummies 67.19*** 86.19*** 148.89*** 156.07*** 320.06*** 195.80*** 

Countries 11 11 11 7 7 7 

Observations 111 111 111 74 74 74 

       

Model III†††       

 Before 2009 After 2009 

 Wheat Rapeseed Sugar beet Wheat Rapeseed Sugar beet 

Own price effect 0.001 (0.001) -0.000 (0.001) -0.019 (0.020) -0.001 (0.001) 0.001 (0.001) 0.066 (0.029)** 

Intercept -0.177(0.097)* -0.327 (0.109)*** -7.660 (1.587)*** -0.198 (0.072)* 0.012 (0.088) 1.240 (1.307) 

R2 0.45 0.50 0.45 0.50 0.49 0.59 

Χ2-test joint significance 101.38*** 126.47*** 102.60*** 60.99*** 60.82*** 88.06*** 

Χ2-test year dummies 74.35*** 117.83*** 96.61*** 58.88*** 60.29*** 81.66*** 

Countries 18 18 18 18 18 18 

Observations 124 124 124 61 61 61 
Source: own calculations. Notes: The own price effect refers to the price parameter in each equation. For every crop only the lagged price of itself is used in the estimation. *, ** 

and *** indicates statistical significance in a two-tailed test at the 10%, 5% and 1% levels, respectively. For more detailed output, consult appendix 2. † refers to the OLS 

estimations using all selected countries, †† and ††† refer to the estimations where the observations have been split into different groups. For discussion, see chapter 3.3. 
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Table 3         

Parameter estimates of the acreage equations. 

         

Model I†    Model II††     

    OMS  CEECs 

 Wheat Rapeseed  Wheat Rapeseed  Wheat Rapeseed 

Wheat price 0.011 (0.004)*** 0.003 (0.002)*  0.007 (0.004)* 0.006 (0.002)***  0.020 (0.007)*** -0.002 (0.003) 

Rapeseed price  -0.004 (0.002) 0.000 (0.001)  -0.002 (0.003) -0.001 (0.001)  -0.002 (0.003) 0.001 (0.001) 

Sugar beet price 0.007 (0.004) -0.006 (0.002)***  0.004 (0.007) -0.007 (0.004)**  0.007 (0.005) -0.005 (0.001)*** 

Arable land 0.126 (0.026)*** -0.032 (0.013)**  0.009 (0.027) 0.024 (0.014)*  0.431 (0.042)*** -0.175 (0.017)*** 

Intercept 8.422 (13.574) -2.662 (6.533)  2.586 (13.398) 1.329 (8.313)  23.799 (17.958) -9.866 (6.981) 

R2 0.15 0.16  0.03 0.18  0.58 0.63 

Χ2-test joint significance 33.14*** 37.25***  3.76 24.77***  115.32*** 141.28*** 

Countries 18 18  11 11  7 7 

Observations 194 194  111 111  83 83 

         

Model III†††         

 Before 2009  After 2009    

 Wheat Rapeseed  Wheat Rapeseed    

Wheat price 0.016 (0.004)*** 0.004 (0.003)  0.004 (0.007) 0.002 (0.002)    

Rapeseed price  -0.001 (0.002) -0.001 (0.002)  0.002 (0.003) -0.000 (0.001)    

Sugar beet price 0.002 (0.004) -0.003 (0.003)  -0.024 (0.018) 0.006 (0.005)    

Arable land 0.053 (0.025)** 0.004 (0.014)  0.321 (0.068)*** -0.149 (0.021)***    

Intercept 71.233 (16.837)*** -30.905 (9.447)***  -118.9 (52.3)** 48.7 (16.2)***    

R2 0.15 0.04  0.29 0.47    

Χ2-test joint significance 23.23*** 5.34  26.10*** 57.36***    

Countries 18 18  18 18    

Observations 130 130  64 64    
Source: own calculations 

Notes: All prices are lagged and squared in the model. *, ** and *** indicates statistical significance in a two-tailed test at the 10%, 5% and 1% levels, respectively. For more 

detailed output, consult appendix 2. 

† refers to the OLS estimations using all selected countries, †† and ††† refer to the estimations where the observations have been split into different groups. For discussion, see 

chapter 3.3.
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5.2 Estimation results of the acreage equations 

Table 3 shows the parameter estimates for the acreage equations of wheat and rapeseed for all 

selected countries in the period 2000 – 2015. The three different models are the same as in the case 

of the yield estimations. Following our microeconomic model, we expect own price effects (i.e., 

the effect of wheat prices on the acreage of wheat and the effect of rapeseed prices on the acreage 

of rapeseed) to be positive. Cross-price effects (e.g., the effect of rapeseed prices on wheat acreage) 

are expected to be negative. The expected effect of the arable land variable is positive, with more 

land available leading to an increase in crop acreages. 

We use lagged, squared crop prices as independent variables. The dependent variables, 

acreages, are in 1000 hectares. The following example from Model I shows how the coefficients 

are interpreted from a statistical point of view: for every unit increase in the lagged, squared price 

of wheat, a 0.011 unit increase in wheat acreage is expected. A 0.011 unit increase would translate 

into an acreage expansion of 11 hectares of wheat, ceteris paribus. However, equations (16) and 

(17) allow us to look at the marginal effects of prices by taking partial derivatives of the acreage 

equations with respect to said prices. These derivatives can be evaluated at certain points (e.g., 

average price in the OMS or a certain year) to see their marginal effects on the acreage. Note that 

the qualitative effect is the same (i.e., a positive influence of wheat prices on wheat acreage is also 

positive at the margin). 

In Model I, we see that our expectations hold for some variables, but not for all. The sugar 

beet price effect in the estimate of wheat acreage is positive, whereas our theory indicates that it 

should be negative. Note, however, that this parameter is not significantly different from zero. In 

the estimate for rapeseed acreage, the parameters for wheat, and arable land do not have the sign 
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we expect and are both significant at the 10 and 5 percent level, respectively. Also note that 

rapeseed prices do not have a significant influence on either wheat or rapeseed acreage.  

The picture is similar for the OMS in the second model. All coefficients have the same sign 

in the equation of wheat acreage, although only wheat is significant at the 10-percent significance 

level. In Model I, both wheat and arable land are significant at the 1-percent significance level. If 

we compare our finding for the rapeseed acreage equation of OMS with the Model I we find that 

the sign of arable land has flipped. It is significant at the 5-percent level in Model I and at the 10-

percent level at Model II for the OMS. So, an increase of available arable land leads to a decrease 

of rapeseed acreage when all countries are included in the model, but it leads to an increase of 

rapeseed acreage when only the OMS are considered, ceteris paribus. The effect of rapeseed prices 

on rapeseed acreages has also flipped, but is not significant in either case. 

When we look at the estimations for the CEECs, we find that the coefficients in case of the 

wheat equations are almost identical to our findings in Model I. In both cases, only the lagged, 

squared price of wheat and arable land are significant (in all cases at the 1-percent level). The 

effects, however, are stronger in the CEECs (e.g., whereas a unit increase in the lagged, squared 

price of wheat results in a wheat acreage expansion of 11 hectares when all countries are 

considered, it leads to a wheat acreage expansion of 20 hectares when only the CEECs are included 

in the model. For the equations of rapeseed acreage the same story holds, with one exception. The 

effect of lagged, squared wheat prices on rapeseed acreage is positive (and significant at the 10-

percent level) in Model I, but negative (and not significant) for the CEECs in Model II. For the 

other coefficients we find that the same are significant in the case of both acreage equations (albeit 

at different significance levels). 
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We find some minor differences when we compare the OMS with the CEECs in Model II. 

In the equations of wheat acreage of the OMS, only the own-price has a significant effect, whereas 

both wheat price and arable land have a significant effect in the case of CEECs. The lagged, squared 

wheat price has a counterintuitive, positive (and significant at the 1-percent level) effect on the 

rapeseed acreage of the OMS. This would imply that rapeseed acreages increases, as wheat prices 

increase, ceteris paribus. For the CEECs the effect is negative, as expected, but not significant. 

Arable land also has a negative (and significant at the 1-percent) influence on rapeseed acreage for 

CEECs, whereas its influence is positive (and significant at the 10-percent) for the OMS. The latter 

sign is what we expect from theory, as the former dictates that the acreage of rapeseed decreases 

as total arable land increases, ceteris paribus. 

For the period 2010 – 2015 in Model III not a single crop price coefficient is statistically 

different from zero, indicating that crop prices had no effect on crop acreage allocation after 2009. 

One should keep in mind, however, that in only one case, crop prices had a significant influence 

on crop acreage in the period 2000 – 2009. In that period, only the coefficient of the wheat price 

of the wheat acreage equation is significant (at the 1-percent level). Its sign and magnitude are the 

same as in Model I. The availability of arable land on wheat acreages before 2009 and on wheat 

and rapeseed acreages after 2009 also has the same impact as in Model I. The other coefficients 

are not significantly different from zero in Model III, making a meaningful comparison with Model 

I difficult. 

The R2 values are 0.15 and 0.16 for Model I, and range between 0.03 and 0.63 for Model 

II, and range between 0.04 and 0.47 for Model III. The equations of the CEECs have the highest 

values at 0.58 and 0.63, whereas the equations of the OMS yield R2 values of just 0.03 and 0.18. 
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This means more of the variation in acreages in CEECs can be attributed to crop prices than is the 

case for the OMS.  

For the rapeseed acreage equations in Model III the R2 is 0.04 in the first period and 0.47 

in the second period. For wheat a similar, albeit smaller, difference is found as the R2 takes the 

value of 0.15 (2000 – 2009) and 0.29 (2010 – 2015). So, more of the variation in the acreages in 

the period 2010 – 2015 can be attributed to crop prices than in the period 2000 – 2009. For rapeseed 

this may be due to the abolishment of the set-aside agreement. As the preferential treatment of 

rapeseed vis-à-vis other crops disappeared (set aside land could no longer be used to grow arable 

crops), rapeseed may have had to “compete” more with other crops. This would explain an increase 

in the importance of rapeseed prices in rapeseed acreage decisions.   

We use chi-squared-tests on the specific equations within the SUR estimation. So we test 

the joint significance of the explanatory variables for each equations (e.g., wheat acreage) 

separately. In all cases, except for the OMS estimates (Model II) and the 2000 – 2009 estimates 

(Model III), we find a highly significant chi-squared value and firmly reject the null hypothesis of 

no joint significance. We assume that at least one of the coefficients is not equal to zero. The only 

equation where the chi-squared-test for joint significance is not significant is the wheat acreage 

equations of the OMS. Here we cannot reject the hypothesis that all explanatory variables are equal 

to zero. In this case, an estimate with only the intercept would not do statistically worse (Verbeek 

2008).  

For the CEECs (Model II) we find that rapeseed and sugar beet prices negatively influence 

rapeseed yields and sugar beet yields, respectively. Furthermore, we find that rapeseed prices have 

no significant influence on either wheat or rapeseed acreages, whereas the price of sugar beet has 

a negative (and significant at the 1-percent level) influence on rapeseed acreage, but no significant 
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influence on wheat acreages. So, when sugar beet prices increase, both the sugar beet yield and 

rapeseed acreage are expected to decrease. Note that sugar beet production may increase if sugar 

beet acreage increases (following the decrease of rapeseed acreage), even though yield decreases. 

As we find almost no other significant relationships between crop yields and crop prices 

(see table 2), we are not able to draw any meaningful statements regarding the interaction effects 

of crop yields and acreage. For example, if we look at rapeseed acreages and yields in the period 

2010 – 2015 (Model III), we find that a price increase is met with both a decrease of yield and 

acreage, which would mean a double blow to rapeseed output. However, neither coefficient is 

significantly different from zero, so we should be very cautious when drawing conclusions.  

 In all three SUR models for acreage, we find instances of autocorrelation in at least one 

equation (see appendix chapter 2.4 – 2.6 for the tests). Since we cannot use robust standard errors, 

we will use a different method to check whether the effects of serial correlation have an impact on 

our estimation. We use our SUR estimate from Model I and create lagged residuals variables for 

both the wheat and rapeseed acreage in Stata. We then proceed to estimate the same model, with 

the created lagged residuals as an additional explanatory variable. Serial correlation implies that 

two or more of our consecutive error terms are correlated. By including the lagged residuals in our 

estimation, we can confirm the presence of autocorrelation, if they are significantly different from 

zero. Furthermore, including these lagged residuals captures their effect on acreages. This can then 

not be captured by our other explanatory variables (i.e., crop prices and arable land), which may 

have been the case in our SUR without lagged residuals.  

We find that the lagged residuals have t-test statistics of 5.39 and 15.13, respectively, and 

reject the hypothesis that they are equal to zero. The effect of wheat prices, sugar beet prices and 

arable land on the acreage of wheat is the same as in the SUR in Model I, although arable land is 
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now only significant at the 5-percent level, instead of the 1-percent level. The effect of rapeseed 

prices, however, is now negative and significantly different from zero, while it used to be only 

negative. For the rapeseed acreage equation, the effect of wheat prices, rapeseed prices and arable 

land has changed. Wheat prices used to have a counter-intuitive, positive (and significant at the 10-

percent level) influence on rapeseed acreage, the effect is now negative and not significantly 

different from zero. Rapeseed prices, which have a positive effect, are now significant at the 5-

percent level, while they were not significant before. Arable land had a counter-intuitive negative 

(and significant at the 5-percent level) impact on rapeseed acreages, but is now not significantly 

different from zero. The R2 and chi-squared values have increased for the rapeseed acreage 

equation.  

So including the lagged residuals has only a minor effect on the wheat acreage equation. 

The effects on the rapeseed acreage equation, however, are larger, especially for the arable land 

coefficient. This follows from the fact that the Wooldridge test for serial correlation indicates that 

there is no autocorrelation in the wheat acreage equation, but that it is present in our rapeseed 

acreage equation. The above results confirm this. The results also indicate that our SUR estimate 

in Model I may be inefficient and that the standard errors are calculated in a wrong way. The 

estimate itself, however, remains unbiased (Verbeek 2008). The output from this SUR can be found 

in chapter 2.7 of the appendix. 
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6. Conclusions and discussion 

6.1 Conclusions 

This thesis has analyzed the effects of crop price changes on crop yields and acreages in the 

European Union in the period 2000 – 2015. Our results shows that there is little evidence for a link 

between wheat, rapeseed, and sugar beet prices and wheat, rapeseed and sugar beet yields, 

respectively in the European Union in the period 2000 – 2015. Year effects (e.g., weather) seem 

more important in determining crop yields. We do find a difference between CEECs and countries 

in the rest of Europe (in the paper we defined these countries as OMS, since all them joined the 

European Union in the 20th century), as crop prices seem more important in yield decision in the 

CEECs than in the OMS. For the CEECs we find a negative relationship between rapeseed prices 

and rapeseed yield, and between sugar beet prices and sugar beet yield. We find no difference 

between the time periods 2000 – 2009 and 2010 – 2015. We do, however, find that sugar beet 

prices positively influenced sugar beet yields in the period 2010 – 2015.  

 Wheat acreages are positively influenced by wheat prices and the available arable land. For 

rapeseed we find a counterintuitive, positive relationship between rapeseed acreage and wheat 

prices. We also find the counterintuitive, negative relationship between rapeseed acreage and the 

available arable land. The relationship between sugar beet prices and rapeseed acreage is negative, 

as we expect from theory. There are only minor differences between the wheat and rapeseed 

acreages estimations of the OMS and the CEECs and between our findings for the periods 2000 – 

2009 and 2010 – 2015. This indicates that acreage allocation with respect to crop prices does not 

differ between the OMS and the CEECs. We also do not find an effect of the EU biofuel policy (or 

the 2008 CAP health check), as there seem to be no structural difference between the two time 

periods in Model III.  
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Wheat prices have a positive influence on both wheat and rapeseed acreages (except for 

rapeseed acreages of CEECs) with varying significance levels. The positive relationship between 

wheat prices and wheat acreages is consistent with our theory, whereas the positive relationship 

between wheat prices and rapeseed is not. For sugar beet prices we always find a counterintuitive, 

positive influence on wheat acreages, and a negative influence on rapeseed acreages in all cases, 

except for the period 2010 – 2015, but the significance level differs between the equations. Note 

that we do not find a single case where rapeseed prices significantly influence either wheat or 

rapeseed acreages. For available arable land we find positive relationships in the case of both wheat 

and rapeseed acreages. The significance level of this effect varies for the wheat equations. For 

rapeseed we only find significant influence of arable land when the relationship is negative. We 

find some instances of a positive relationship between available arable land and rapeseed acreages, 

but none of these are significant.  

This thesis has only touched upon the effects of crop prices on crop yields and acreages for 

a small number of crops. This research could be extended by looking at the possible effects of 

public policies (e.g., biofuel policies) on crop prices and their subsequent effect on crop yield and 

acreage. Furthermore, the interaction between prices, yields and acreages also has consequences 

for environmental analysis. When researching the possible environmental effects of price changes 

or public policy, one should keep in mind how yield and acreage respond to prices in the first place. 

The microeconomic model used in this paper could also be enhanced, for example, inputs could be 

explicitly modelled to show the effects of input prices as well as output prices. These questions 

show that there are still many opportunities for further research in this topic. 
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6.2 Assumptions and caveats 

In our microeconomic model, certain assumptions are made with respect to the cost functions. We 

suppose that the elasticity of costs with respect to yield (acreage) is 2. This implies that a 1-percent 

increase of yield (acreage) comes at the expense of a two-percent increase of the total costs of yield 

(acreage). We mainly assume this elasticity for mathematical convenience. As stated before, most 

literature focusses on the crop price elasticities of yield (acreage) and the elasticities in this form 

have not been computed to our knowledge.  

 Furthermore, our estimated model differs from our microeconomic model in three aspects. 

In our microeconomics model some terms (𝐴𝑖 and 𝐵𝑖) are identified which help build our yield and 

acreage equations. In this process several relationships between these parameters are found. In 

theory, we could estimate the model, finding six values for 𝐴𝑖 and 𝐵𝑖 (note that 𝑖 =  1,2,3), which 

would then be used to calculate the 𝛽𝑖’s and 𝛽𝑖𝑗’s in our equations estimations. Stata, however, 

could not find a solution to this non-linear model. The estimates obtained using SUR in no way 

guarantee that the relationships between 𝐴𝑖, 𝐵𝑖, 𝛽𝑖 and 𝛽𝑖𝑗, as identified in our microeconomic 

model, hold in our estimation. Secondly, whereas our microeconomic model uses �̅� (which is the 

sum of 𝐿1, 𝐿2, and 𝐿3), our estimation uses 𝐿 for arable land, acknowledging that the three crops 

we use do not account for total use of arable land. Lastly, we include intercepts in our estimations, 

as we do not want to force the regressions through the origin. In our microeconomic model, 

however, intercepts are not included. 

In this research we have used price indices as explanatory variables for the yields and 

acreage of three selected crops. We do not explicitly take the volatility of these prices into account. 

Haile et al. (2014) argue that crop price volatility introduces risks that affect a farmers’ decision 

making. They include volatility into their estimation and find that it has a significant, negative 
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influence on crop acreages of corn, wheat, soybean and rice. Chavas and Hold (1990) provide more 

evidence of farmers’ risk aversion and how this influences acreage decisions. We do not include 

price volatility and risk aversion in our model, but it could be argued that price volatility (especially 

following the recent price shocks) may have influenced farmers’ decision making and should be 

taken into account. 

 Furthermore, several other factors that play a role in the literature on crop prices and yield 

and acreage allocation decisions are not included in our model. Keeney and Hertel (2009) look at 

the interaction between yield, acreage and bilateral trade responses. They highlight the importance 

of trade patterns in international commodity markets. In our model, we assume a farmer chooses 

the optimal acreage and yield for a certain crop. Several papers (e.g., Hertel and Tsigas 1988, Hertel 

et al. 2008, Palatnik et al. 2011), however, show limitations of and costs associated with land use 

change. We do not explicitly take these into account in our model.  There are more factors which 

influence the relationship between crop prices and crop yields and acreages that we do not include 

in our model or discuss in this paper. We argue that what our models lacks in complexity, it gains 

in its clarity. By simplifying our cost curves and focusing primarily on the effects of prices changes 

we are able to present a streamlined model that is intuitively clear. 
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Appendices 

Appendix 1 – Derivation steps and results 

Using equations (11) and (12) the optimal input demand functions can be found for land. We 

rewrite 

𝜕𝜋

𝜕𝐿1
=  𝑝1𝑦1 − 𝑝3𝑦3 −  𝐶1(𝑦1) + 𝐶3(𝑦3) − 𝜑1

′ (𝐿1) + 𝜑3
′ (�̅� − 𝐿1 − 𝐿2) = 0 

to 

𝑝1𝑦1 − 𝐶1(𝑦1) − 𝜑1
′ (𝐿1) = 𝑝3𝑦3 − 𝐶3(𝑦3) − +𝜑3

′ (�̅� − 𝐿1 − 𝐿2), 

where 𝜑1
′ (𝐿1)  =  𝐵1𝐿1 and 𝜑3

′ (�̅� − 𝐿1 − 𝐿2)  =  𝐵3(�̅� − 𝐿1 − 𝐿2). Then we substitute 𝑦1 =  
𝑝1

𝐴1
  

and 𝑦3 =  
𝑝3

𝐴3
, to get 

𝑝1
𝑝1

𝐴1
−

1

2
𝐴1 ∗ (

𝑝1

𝐴1
)

2
−  𝐵1𝐿1 = 𝑝3

𝑝3

𝐴3
−

1

2
𝐴3 ∗ (

𝑝3

𝐴3
)

2
−  𝐵3(�̅� − 𝐿1 − 𝐿2) . 

Since 𝑝1
𝑝1

𝐴1
 is equal to 

𝑝1
2

𝐴1
 and 𝐴1 ∗ (

𝑝1

𝐴1
)

2
 is equal to 

𝑝1
2

𝐴1
, the left part collapses to (1 −

1

2
)

𝑝1
2

𝐴1
−  𝐵1𝐿1, 

which is the same as 
𝑝1

2

2𝐴1
−  𝐵1𝐿1. The same steps can be applied to the right hand side to obtain: 

𝑝1
2

2𝐴1
− 𝐵1𝐿1 =  

𝑝3
2

2𝐴3
− 𝐵3(�̅� − 𝐿1 − 𝐿2). 

Moving 𝐵3𝐿1 to the left hand side, 
𝑝1

2

2𝐴1
  to the right hand side and multiplying by −1, we obtain  

(𝐵1 + 𝐵3)𝐿1 =  
1

2𝐴1
𝑃1

2 −
1

2𝐴3
𝑃3

2 + 𝐵3(�̅� − 𝐿2), 

from which 𝐿1 can be derived: 

𝐿1 =  

1

2𝐴1
𝑃1

2−
1

2𝐴3
𝑃3

2+𝐵3(�̅�−𝐿2)

𝐵1+𝐵3
. 

The same steps can be used to find 𝐿2 from equation (12): 

𝐿2 =  

1

2𝐴1
𝑃2

2−
1

2𝐴3
𝑃3

2+𝐵3(�̅�−𝐿1)

𝐵2+𝐵3
. 

Plugging in the value found for 𝐿1 into equation (17), we find: 

𝑝2
2

2𝐴2
− 𝐵2𝐿2 =  

𝑝3
2

2𝐴3
− 𝐵3�̅� + 𝐵3

1

2𝐴1
𝑃1

2−
1

2𝐴3
𝑃3

2+𝐵3(�̅�−𝐿2)

𝐵1+𝐵3
+ 𝐵3𝐿2. 

We can rewrite this to find 𝐿2. First, 𝐵3𝐿2 is moved to the left hand side, 
𝑝2

2

2𝐴2
 is moved to the right 

hand side and the whole equation is multiplied by −1 to obtain 
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𝐵2𝐿2 + 𝐵3𝐿2 =  −
𝑝3

2

2𝐴3
+

𝑝2
2

2𝐴2
+ 𝐵3�̅� − 𝐵3

1
2𝐴1

𝑃1
2 −

1
2𝐴3

𝑃3
2 + 𝐵3(�̅� − 𝐿2)

𝐵1 + 𝐵3
 

 

We then multiply by the whole equation by (𝐵1 + 𝐵3), 

(𝐵1 + 𝐵3)(𝐵2𝐿2 + 𝐵3𝐿2)

=  −
(𝐵1 + 𝐵3)𝑝3

2

2𝐴3
+

(𝐵1 + 𝐵3)𝑝2
2

2𝐴2
+ (𝐵1𝐵3 + 𝐵3

2)�̅� −
𝐵3

2𝐴1
𝑃1

2 +
𝐵3

2𝐴3
𝑃3

2 − 𝐵3
2(�̅� − 𝐿2) 

This can be rewritten to 

(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3 + 𝐵3
2)𝐿2

=  −
(𝐵1 + 𝐵3)𝑝3

2

2𝐴3
+

(𝐵1 + 𝐵3)𝑝2
2

2𝐴2
+ (𝐵1𝐵3 + 𝐵3

2)�̅� −
𝐵3

2𝐴1
𝑃1

2 +
𝐵3

2𝐴3
𝑃3

2 − 𝐵3
2�̅� + 𝐵3

2𝐿2. 

𝐵3
2𝐿2 moves to the left hand side, and the 𝐵3

2 terms cancel out. The same can be seen for 𝐵3
2 terms 

on the right hand side: 

(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)𝐿2 =  −
(𝐵1 + 𝐵3)𝑝3

2

2𝐴3
+

(𝐵1 + 𝐵3)𝑝2
2

2𝐴2
+ (𝐵1𝐵3)�̅� −

𝐵3

2𝐴1
𝑃1

2 +
𝐵3

2𝐴3
𝑃3

2 

Rewriting and ordering the equation gives us 

(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)𝐿2 =  −
𝐵3

2𝐴1
𝑃1

2 +
𝐵1 + 𝐵3

2𝐴2
𝑝2

2 −
𝐵1 + 𝐵3

2𝐴3
𝑝3

2 +
𝐵3

2𝐴3
𝑃3

2 + (𝐵1𝐵3)�̅�, 

which can be simplified to 

(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)𝐿2 =  −
𝐵3

2𝐴1
𝑃1

2 +
𝐵1 + 𝐵3

2𝐴2
𝑝2

2 −
𝐵1

2𝐴3
𝑝3

2 + (𝐵1𝐵3)�̅� 

since −
(𝐵1+𝐵3)

2𝐴3
𝑝3

2 +
𝐵3

2𝐴3
𝑃3

2 equals −
𝐵1

2𝐴3
𝑝3

2. To find 𝐿2, both sides are divided by (𝐵1𝐵2 +

𝐵1𝐵3 + 𝐵2𝐵3), 

which gives: 

𝐿2 =  −
𝐵3

2𝐴1(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
𝑃1

2 +
𝐵1 + 𝐵3

2𝐴2(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
𝑃2

2

−
𝐵1

2𝐴3(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
𝑃3

2 +
𝐵1𝐵3

(𝐵1𝐵2 + 𝐵1𝐵3 + 𝐵2𝐵3)
�̅� 

                   

 

This same process can be applied to 𝐿2 in combination with equation (16), to find the optimal value 

for 𝐿1. 
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Appendix 2 – Stata output 

2.1 Stata output of yield equations – Model I 

 

 

Figure 2: Wooldridge test for autocorrelation for yield equations of wheat, rapeseed and sugar beet, from top to 

bottom, respectively, for all selected countries (2000 – 2015). 

 

  

           Prob > F =      0.6817

    F(  1,      17) =      0.174

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldSugarbeet wd_lagrpSugarbeet

           Prob > F =      0.0443

    F(  1,      13) =      4.956

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldRape wd_lagrpRape

           Prob > F =      0.1413

    F(  1,      17) =      2.379

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldWheat wd_lagrpWheat
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Figure 3: SUR regression for yield of wheat for all selected countries (2000 – 2015). 

                                                                                   

            _cons    -7.186997   1.579758    -4.55   0.000    -10.28327   -4.090728

             YD16     11.06374    2.08341     5.31   0.000     6.980327    15.14714

             YD15     21.51011   2.087092    10.31   0.000     17.41948    25.60073

             YD14     11.01357   2.083725     5.29   0.000     6.929548     15.0976

             YD13     9.613494   2.084128     4.61   0.000     5.528678    13.69831

             YD12     17.85578   2.083377     8.57   0.000     13.77243    21.93912

             YD11     7.761721   2.042985     3.80   0.000     3.757543     11.7659

             YD10      11.0407   2.085022     5.30   0.000     6.954132    15.12727

              YD9     9.475678   2.050024     4.62   0.000     5.457704    13.49365

              YD8     4.074193     2.0411     2.00   0.046     .0737104    8.074676

              YD7     3.788882   2.092833     1.81   0.070     -.312995    7.890759

              YD6     6.597958   2.147918     3.07   0.002     2.388116     10.8078

              YD5      4.92054   2.016822     2.44   0.015     .9676411    8.873439

              YD4     -1.09668    2.01793    -0.54   0.587    -5.051751    2.858391

              YD3     3.461277   2.031106     1.70   0.088    -.5196163    7.442171

              YD2    -1.994271   1.989283    -1.00   0.316    -5.893195    1.904652

wd_lagrpSugarbeet     .0079076   .0168638     0.47   0.639    -.0251449      .04096

wd_yieldSugarbeet  

                                                                                   

            _cons    -.3281006   .1062219    -3.09   0.002    -.5362917   -.1199094

             YD16     .7538866   .1425036     5.29   0.000     .4745846    1.033189

             YD15     1.025354   .1436415     7.14   0.000     .7438214    1.306886

             YD14     .5092455   .1493327     3.41   0.001     .2165587    .8019323

             YD13     .3102595   .1479161     2.10   0.036     .0203494    .6001697

             YD12     .2901509   .1427777     2.03   0.042     .0103117    .5699902

             YD11     .2595035   .1402079     1.85   0.064    -.0152989    .5343058

             YD10     .5916596    .144962     4.08   0.000     .3075393    .8757799

              YD9     .4575215   .1396468     3.28   0.001     .1838188    .7312242

              YD8     .2264347   .1384855     1.64   0.102     -.044992    .4978614

              YD7     .2671049   .1386114     1.93   0.054    -.0045685    .5387782

              YD6     .3053731   .1385135     2.20   0.027     .0338917    .5768546

              YD5     .5718694   .1336287     4.28   0.000      .309962    .8337767

              YD4    -.3962306   .1340914    -2.95   0.003     -.659045   -.1334162

              YD3    -.1544814   .1344527    -1.15   0.251     -.418004    .1090411

              YD2    -.0131889   .1334288    -0.10   0.921    -.2747045    .2483267

     wd_lagrpRape    -9.84e-06   .0008491    -0.01   0.991     -.001674    .0016543

wd_yieldRape       

                                                                                   

            _cons    -.1802361   .0924917    -1.95   0.051    -.3615165    .0010442

             YD16     .5217138   .1243899     4.19   0.000     .2779142    .7655134

             YD15     .6898089   .1274926     5.41   0.000     .4399281    .9396898

             YD14     .2579476    .129519     1.99   0.046      .004095    .5118001

             YD13     .1620905   .1281307     1.27   0.206     -.089041     .413222

             YD12     .2456649   .1242085     1.98   0.048     .0022208     .489109

             YD11    -.0095894   .1225702    -0.08   0.938    -.2498225    .2306437

             YD10     .2877603   .1263674     2.28   0.023     .0400847     .535436

              YD9     .5216231   .1240196     4.21   0.000     .2785492     .764697

              YD8    -.1489657   .1207553    -1.23   0.217    -.3856418    .0877104

              YD7    -.1066465   .1205597    -0.88   0.376    -.3429391    .1296461

              YD6     .2230639     .11989     1.86   0.063    -.0119162    .4580441

              YD5     .4393939   .1161395     3.78   0.000     .2117647     .667023

              YD4     -.304808   .1166798    -2.61   0.009    -.5334962   -.0761197

              YD3     .0869889   .1159322     0.75   0.453    -.1402341    .3142119

              YD2     .0693925   .1132427     0.61   0.540    -.1525591    .2913442

    wd_lagrpWheat    -.0002839   .0009805    -0.29   0.772    -.0022057    .0016378

wd_yieldWheat      

                                                                                   

                         Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                   

                                                                      

wd_yieldSu~t      185     16    4.394957    0.6564     353.56   0.0000

wd_yieldRape      185     16    .3005348    0.5675     242.95   0.0000

wd_yieldWh~t      185     16    .2615491    0.4971     182.79   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression
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Figure X: Breusch-Pagan test of independence of yield equations for all selected countries (2000 – 2015). 

 

 
Figure 4: Chi-squared test for year dummy variables for yield of wheat, rapeseed and sugar beet, from left to right, 

respectively, for all selected countries (2000 – 2015). 

 

2.2 Stata output of yield equations – Model II 

 

 

Figure 5: Wooldridge test for autocorrelation for yield equations of all the OMS and the CEECs, from left to right, 

respectively (2000 – 2015). 

  

Breusch-Pagan test of independence: chi2(3) =    64.288, Pr = 0.0000

wd_yieldSugarbeet             0.4018             0.1614             1.0000

     wd_yieldRape             0.4000             1.0000

    wd_yieldWheat             1.0000

                       wd_yieldWheat       wd_yieldRape  wd_yieldSugarbeet

Correlation matrix of residuals:

         Prob > chi2 =    0.0000

           chi2( 15) =  148.64

 (15)  [wd_yieldWheat]YD16 = 0

 (14)  [wd_yieldWheat]YD15 = 0

 (13)  [wd_yieldWheat]YD14 = 0

 (12)  [wd_yieldWheat]YD13 = 0

 (11)  [wd_yieldWheat]YD12 = 0

 (10)  [wd_yieldWheat]YD11 = 0

 ( 9)  [wd_yieldWheat]YD10 = 0

 ( 8)  [wd_yieldWheat]YD9 = 0

 ( 7)  [wd_yieldWheat]YD8 = 0

 ( 6)  [wd_yieldWheat]YD7 = 0

 ( 5)  [wd_yieldWheat]YD6 = 0

 ( 4)  [wd_yieldWheat]YD5 = 0

 ( 3)  [wd_yieldWheat]YD4 = 0

 ( 2)  [wd_yieldWheat]YD3 = 0

 ( 1)  [wd_yieldWheat]YD2 = 0

         Prob > chi2 =    0.0000

           chi2( 15) =  213.86

 (15)  [wd_yieldRape]YD16 = 0

 (14)  [wd_yieldRape]YD15 = 0

 (13)  [wd_yieldRape]YD14 = 0

 (12)  [wd_yieldRape]YD13 = 0

 (11)  [wd_yieldRape]YD12 = 0

 (10)  [wd_yieldRape]YD11 = 0

 ( 9)  [wd_yieldRape]YD10 = 0

 ( 8)  [wd_yieldRape]YD9 = 0

 ( 7)  [wd_yieldRape]YD8 = 0

 ( 6)  [wd_yieldRape]YD7 = 0

 ( 5)  [wd_yieldRape]YD6 = 0

 ( 4)  [wd_yieldRape]YD5 = 0

 ( 3)  [wd_yieldRape]YD4 = 0

 ( 2)  [wd_yieldRape]YD3 = 0

 ( 1)  [wd_yieldRape]YD2 = 0

         Prob > chi2 =    0.0000

           chi2( 15) =  306.76

 (15)  [wd_yieldSugarbeet]YD16 = 0

 (14)  [wd_yieldSugarbeet]YD15 = 0

 (13)  [wd_yieldSugarbeet]YD14 = 0

 (12)  [wd_yieldSugarbeet]YD13 = 0

 (11)  [wd_yieldSugarbeet]YD12 = 0

 (10)  [wd_yieldSugarbeet]YD11 = 0

 ( 9)  [wd_yieldSugarbeet]YD10 = 0

 ( 8)  [wd_yieldSugarbeet]YD9 = 0

 ( 7)  [wd_yieldSugarbeet]YD8 = 0

 ( 6)  [wd_yieldSugarbeet]YD7 = 0

 ( 5)  [wd_yieldSugarbeet]YD6 = 0

 ( 4)  [wd_yieldSugarbeet]YD5 = 0

 ( 3)  [wd_yieldSugarbeet]YD4 = 0

 ( 2)  [wd_yieldSugarbeet]YD3 = 0

 ( 1)  [wd_yieldSugarbeet]YD2 = 0

           Prob > F =      0.2496

    F(  1,      10) =      1.494

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldSugarbeet wd_lagrpSugarbeet

           Prob > F =      0.0146

    F(  1,       6) =     11.531

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldRape wd_lagrpRape

           Prob > F =      0.3917

    F(  1,      10) =      0.802

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldWheat wd_lagrpWheat

           Prob > F =      0.6159

    F(  1,       6) =      0.280

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldSugarbeet wd_lagrpSugarbeet

           Prob > F =      0.5357

    F(  1,       6) =      0.431

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldRape wd_lagrpRape

           Prob > F =      0.1767

    F(  1,       6) =      2.343

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldWheat wd_lagrpWheat
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Figure 6: SUR regression for yield of wheat, rapeseed, and sugar beet for the OMS (2000 – 2015). 

                                                                                   

            _cons    -4.366132   1.972356    -2.21   0.027    -8.231878   -.5003849

             YD16     8.505082   2.421067     3.51   0.000     3.759878    13.25029

             YD15     17.52165   2.420157     7.24   0.000     12.77823    22.26507

             YD14     7.412209   2.419393     3.06   0.002     2.670287    12.15413

             YD13     6.451727   2.419209     2.67   0.008     1.710164    11.19329

             YD12     15.20011   2.420368     6.28   0.000     10.45628    19.94395

             YD11     4.125976   2.419195     1.71   0.088    -.6155587    8.867512

             YD10     8.382145   2.501831     3.35   0.001     3.478647    13.28564

              YD9     5.641833   2.420195     2.33   0.020     .8983387    10.38533

              YD8     2.728705    2.49211     1.09   0.274     -2.15574    7.613149

              YD7     .5215676   2.612166     0.20   0.842    -4.598183    5.641318

              YD6     2.593967    2.64524     0.98   0.327    -2.590608    7.778541

              YD5      .997839   2.682833     0.37   0.710    -4.260417    6.256094

              YD4    -2.686286   2.626005    -1.02   0.306    -7.833161    2.460589

              YD3     .2257139   2.735853     0.08   0.934     -5.13646    5.587888

              YD2    -5.627048   2.630135    -2.14   0.032    -10.78202    -.472078

wd_lagrpSugarbeet     .0249557   .0332677     0.75   0.453    -.0402479    .0901592

wd_yieldSugarbeet  

                                                                                   

            _cons    -.3624885    .130276    -2.78   0.005    -.6178248   -.1071523

             YD16     .8056138   .1685686     4.78   0.000     .4752254    1.136002

             YD15     .9060717   .1709515     5.30   0.000     .5710129     1.24113

             YD14     .4344508    .182249     2.38   0.017     .0772493    .7916523

             YD13     .4004728   .1789947     2.24   0.025     .0496497    .7512959

             YD12     .3724101   .1694138     2.20   0.028     .0403652    .7044549

             YD11     .3844673   .1694725     2.27   0.023     .0523072    .7166274

             YD10     .6829838   .1812989     3.77   0.000     .3276445    1.038323

              YD9      .447044   .1684628     2.65   0.008     .1168629     .777225

              YD8     .2371412   .1715323     1.38   0.167    -.0990559    .5733383

              YD7     .3857568   .1770882     2.18   0.029     .0386702    .7328433

              YD6     .3744461   .1729119     2.17   0.030      .035545    .7133473

              YD5     .4484944    .170178     2.64   0.008     .1149516    .7820372

              YD4    -.0559693   .1709647    -0.33   0.743     -.391054    .2791153

              YD3      .016048   .1718179     0.09   0.926    -.3207089    .3528048

              YD2    -.0753516   .1719234    -0.44   0.661    -.4123153     .261612

     wd_lagrpRape      .000056   .0012512     0.04   0.964    -.0023963    .0025083

wd_yieldRape       

                                                                                   

            _cons     .0863205   .0935305     0.92   0.356     -.096996     .269637

             YD16     .2221751    .123267     1.80   0.071    -.0194238     .463774

             YD15      .261907   .1286178     2.04   0.042     .0098208    .5139932

             YD14     -.112356   .1321768    -0.85   0.395    -.3714178    .1467058

             YD13    -.1476001   .1298008    -1.14   0.255    -.4020049    .1068048

             YD12    -.1291421   .1231716    -1.05   0.294    -.3705541    .1122698

             YD11    -.2844549    .124065    -2.29   0.022     -.527618   -.0412919

             YD10    -.0267136   .1325342    -0.20   0.840    -.2864759    .2330486

              YD9     .1547959   .1271235     1.22   0.223    -.0943615    .4039533

              YD8    -.3121445   .1239145    -2.52   0.012    -.5550124   -.0692767

              YD7    -.3651048   .1259407    -2.90   0.004    -.6119441   -.1182654

              YD6    -.1234018   .1231612    -1.00   0.316    -.3647933    .1179897

              YD5     .0356193   .1231255     0.29   0.772    -.2057023    .2769409

              YD4    -.3238449   .1235073    -2.62   0.009    -.5659148   -.0817751

              YD3    -.0974227   .1225688    -0.79   0.427    -.3376531    .1428078

              YD2    -.1714447   .1167194    -1.47   0.142    -.4002106    .0573212

    wd_lagrpWheat     .0006708   .0011378     0.59   0.555    -.0015591    .0029008

wd_yieldWheat      

                                                                                   

                         Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                   

                                                                      

wd_yieldSu~t      111     16    4.131487    0.6587     214.20   0.0000

wd_yieldRape      111     16    .2877465    0.4899     106.65   0.0000

wd_yieldWh~t      111     16    .2090901    0.4633      95.68   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression
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Figure 7: SUR regression for yield of wheat, rapeseed, and sugar beet for the CEECs (2000 – 2015) 
                                                                                   

            _cons    -11.88081   2.433189    -4.88   0.000    -16.64977   -7.111846

             YD16     16.27386   3.438084     4.73   0.000     9.535339    23.01238

             YD15     30.24024   3.463679     8.73   0.000     23.45155    37.02892

             YD14     18.52977   3.435347     5.39   0.000     11.79661    25.26292

             YD13     16.01467   3.433949     4.66   0.000     9.284249    22.74508

             YD12     23.17631   3.433398     6.75   0.000     16.44698    29.90565

             YD11      14.7921   3.224322     4.59   0.000     8.472548    21.11166

             YD10     16.00449   3.209279     4.99   0.000     9.714417    22.29456

              YD9     17.36198   3.274335     5.30   0.000      10.9444    23.77956

              YD8     7.640368   3.138588     2.43   0.015     1.488848    13.79189

              YD7     10.94945   3.242961     3.38   0.001     4.593359    17.30553

              YD6      15.3388   3.445894     4.45   0.000     8.584969    22.09262

              YD5     11.18722   2.956986     3.78   0.000     5.391638    16.98281

              YD4      3.14447   2.984034     1.05   0.292     -2.70413     8.99307

              YD3     9.114742    2.97181     3.07   0.002     3.290103    14.93938

              YD2     4.245233   2.976053     1.43   0.154    -1.587725    10.07819

wd_lagrpSugarbeet    -.0429152   .0249202    -1.72   0.085     -.091758    .0059275

wd_yieldSugarbeet  

                                                                                   

            _cons    -.4019062    .138657    -2.90   0.004    -.6736689   -.1301435

             YD16     .6256389   .1833053     3.41   0.001     .2663671    .9849107

             YD15     1.366253   .1837118     7.44   0.000     1.006185    1.726322

             YD14     .9116926   .2007701     4.54   0.000     .5181904    1.305195

             YD13     .3125969   .1982735     1.58   0.115     -.076012    .7012057

             YD12     .0732013   .1837511     0.40   0.690    -.2869443    .4333468

             YD11    -.0619872   .1760567    -0.35   0.725    -.4070521    .2830776

             YD10     .5674774    .177513     3.20   0.001     .2195584    .9153964

              YD9     .3908355   .1744386     2.24   0.025     .0489421    .7327288

              YD8     .1161764   .1671673     0.69   0.487    -.2114654    .4438183

              YD7    -.0165887   .1664146    -0.10   0.921    -.3427553    .3095779

              YD6     .1547584    .164657     0.94   0.347    -.1679634    .4774801

              YD5     .6854436   .1546611     4.43   0.000     .3823134    .9885738

              YD4    -.7852856   .1549821    -5.07   0.000    -1.089045   -.4815263

              YD3    -.3905664   .1555803    -2.51   0.012    -.6954981   -.0856346

              YD2    -.0078063   .1566897    -0.05   0.960    -.3149125    .2992999

     wd_lagrpRape    -.0059324   .0022873    -2.59   0.009    -.0104154   -.0014494

wd_yieldRape       

                                                                                   

            _cons    -.5996975   .1455843    -4.12   0.000    -.8850375   -.3143575

             YD16     1.018293   .2029077     5.02   0.000     .6206015    1.415985

             YD15     1.389088   .2061164     6.74   0.000     .9851078    1.793069

             YD14     .7882411   .2086444     3.78   0.000     .3793057    1.197177

             YD13     .5744175   .2067366     2.78   0.005     .1692213    .9796137

             YD12     .9417852   .2042678     4.61   0.000     .5414277    1.342143

             YD11     .5171274   .1926038     2.68   0.007     .1396308    .8946239

             YD10     .7265838    .191305     3.80   0.000     .3516328    1.101535

              YD9     1.046688   .1935024     5.41   0.000     .6674307    1.425946

              YD8     .2269041   .1870832     1.21   0.225    -.1397723    .5935805

              YD7      .430358   .1862708     2.31   0.021      .065274     .795442

              YD6     .8208137    .182696     4.49   0.000     .4627363    1.178891

              YD5      1.03349   .1714399     6.03   0.000     .6974737    1.369506

              YD4    -.0668193   .1728671    -0.39   0.699    -.4056326    .2719941

              YD3     .4450982   .1717046     2.59   0.010     .1085634     .781633

              YD2     .4642126   .1725933     2.69   0.007      .125936    .8024893

    wd_lagrpWheat     .0024228   .0023309     1.04   0.299    -.0021457    .0069912

wd_yieldWheat      

                                                                                   

                         Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                   

                                                                      

wd_yieldSu~t       74     16    4.185437    0.7320     203.33   0.0000

wd_yieldRape       74     16    .2241032    0.8162     328.44   0.0000

wd_yieldWh~t       74     16    .2489631    0.7147     187.49   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression
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Figure 8: Breusch-Pagan test of independence of yield equations for the OMS and CEECs, from top to bottom, 

respectively (2000 – 2015). 

  

Figure 9: Chi-squared test for year dummy variables for yield of wheat, rapeseed and sugar beet, from left to right, 

respectively, for the OMS (2000 – 2015). 

 

Breusch-Pagan test of independence: chi2(3) =    25.634, Pr = 0.0000

wd_yieldSugarbeet             0.1395             0.0688             1.0000

     wd_yieldRape             0.4547             1.0000

    wd_yieldWheat             1.0000

                       wd_yieldWheat       wd_yieldRape  wd_yieldSugarbeet

Correlation matrix of residuals:

Breusch-Pagan test of independence: chi2(3) =    35.443, Pr = 0.0000

wd_yieldSugarbeet             0.5766             0.2862             1.0000

     wd_yieldRape             0.2541             1.0000

    wd_yieldWheat             1.0000

                       wd_yieldWheat       wd_yieldRape  wd_yieldSugarbeet

Correlation matrix of residuals:

         Prob > chi2 =    0.0000

           chi2( 15) =   67.19

 (15)  [wd_yieldWheat]YD16 = 0

 (14)  [wd_yieldWheat]YD15 = 0

 (13)  [wd_yieldWheat]YD14 = 0

 (12)  [wd_yieldWheat]YD13 = 0

 (11)  [wd_yieldWheat]YD12 = 0

 (10)  [wd_yieldWheat]YD11 = 0

 ( 9)  [wd_yieldWheat]YD10 = 0

 ( 8)  [wd_yieldWheat]YD9 = 0

 ( 7)  [wd_yieldWheat]YD8 = 0

 ( 6)  [wd_yieldWheat]YD7 = 0

 ( 5)  [wd_yieldWheat]YD6 = 0

 ( 4)  [wd_yieldWheat]YD5 = 0

 ( 3)  [wd_yieldWheat]YD4 = 0

 ( 2)  [wd_yieldWheat]YD3 = 0

 ( 1)  [wd_yieldWheat]YD2 = 0

         Prob > chi2 =    0.0000

           chi2( 15) =   86.19

 (15)  [wd_yieldRape]YD16 = 0

 (14)  [wd_yieldRape]YD15 = 0

 (13)  [wd_yieldRape]YD14 = 0

 (12)  [wd_yieldRape]YD13 = 0

 (11)  [wd_yieldRape]YD12 = 0

 (10)  [wd_yieldRape]YD11 = 0

 ( 9)  [wd_yieldRape]YD10 = 0

 ( 8)  [wd_yieldRape]YD9 = 0

 ( 7)  [wd_yieldRape]YD8 = 0

 ( 6)  [wd_yieldRape]YD7 = 0

 ( 5)  [wd_yieldRape]YD6 = 0

 ( 4)  [wd_yieldRape]YD5 = 0

 ( 3)  [wd_yieldRape]YD4 = 0

 ( 2)  [wd_yieldRape]YD3 = 0

 ( 1)  [wd_yieldRape]YD2 = 0

         Prob > chi2 =    0.0000

           chi2( 15) =  148.89

 (15)  [wd_yieldSugarbeet]YD16 = 0

 (14)  [wd_yieldSugarbeet]YD15 = 0

 (13)  [wd_yieldSugarbeet]YD14 = 0

 (12)  [wd_yieldSugarbeet]YD13 = 0

 (11)  [wd_yieldSugarbeet]YD12 = 0

 (10)  [wd_yieldSugarbeet]YD11 = 0

 ( 9)  [wd_yieldSugarbeet]YD10 = 0

 ( 8)  [wd_yieldSugarbeet]YD9 = 0

 ( 7)  [wd_yieldSugarbeet]YD8 = 0

 ( 6)  [wd_yieldSugarbeet]YD7 = 0

 ( 5)  [wd_yieldSugarbeet]YD6 = 0

 ( 4)  [wd_yieldSugarbeet]YD5 = 0

 ( 3)  [wd_yieldSugarbeet]YD4 = 0

 ( 2)  [wd_yieldSugarbeet]YD3 = 0

 ( 1)  [wd_yieldSugarbeet]YD2 = 0
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Figure 10: Chi-squared test for year dummy variables for yield of wheat, rapeseed and sugar beet, from left to right, 

respectively, for the CEECs (2000 – 2015). 

 

2.3 Stata output of yield equations – Model III 

 

Figure 11: Wooldridge test for autocorrelation for yield equations of the period 2000 – 2009 and the period 2010 – 

2015, from left to right, respectively. 

  

         Prob > chi2 =    0.0000

           chi2( 15) =  156.07

 (15)  [wd_yieldWheat]YD16 = 0

 (14)  [wd_yieldWheat]YD15 = 0

 (13)  [wd_yieldWheat]YD14 = 0

 (12)  [wd_yieldWheat]YD13 = 0

 (11)  [wd_yieldWheat]YD12 = 0

 (10)  [wd_yieldWheat]YD11 = 0

 ( 9)  [wd_yieldWheat]YD10 = 0

 ( 8)  [wd_yieldWheat]YD9 = 0

 ( 7)  [wd_yieldWheat]YD8 = 0

 ( 6)  [wd_yieldWheat]YD7 = 0

 ( 5)  [wd_yieldWheat]YD6 = 0

 ( 4)  [wd_yieldWheat]YD5 = 0

 ( 3)  [wd_yieldWheat]YD4 = 0

 ( 2)  [wd_yieldWheat]YD3 = 0

 ( 1)  [wd_yieldWheat]YD2 = 0

         Prob > chi2 =    0.0000

           chi2( 15) =  320.06

 (15)  [wd_yieldRape]YD16 = 0

 (14)  [wd_yieldRape]YD15 = 0

 (13)  [wd_yieldRape]YD14 = 0

 (12)  [wd_yieldRape]YD13 = 0

 (11)  [wd_yieldRape]YD12 = 0

 (10)  [wd_yieldRape]YD11 = 0

 ( 9)  [wd_yieldRape]YD10 = 0

 ( 8)  [wd_yieldRape]YD9 = 0

 ( 7)  [wd_yieldRape]YD8 = 0

 ( 6)  [wd_yieldRape]YD7 = 0

 ( 5)  [wd_yieldRape]YD6 = 0

 ( 4)  [wd_yieldRape]YD5 = 0

 ( 3)  [wd_yieldRape]YD4 = 0

 ( 2)  [wd_yieldRape]YD3 = 0

 ( 1)  [wd_yieldRape]YD2 = 0

         Prob > chi2 =    0.0000

           chi2( 15) =  195.80

 (15)  [wd_yieldSugarbeet]YD16 = 0

 (14)  [wd_yieldSugarbeet]YD15 = 0

 (13)  [wd_yieldSugarbeet]YD14 = 0

 (12)  [wd_yieldSugarbeet]YD13 = 0

 (11)  [wd_yieldSugarbeet]YD12 = 0

 (10)  [wd_yieldSugarbeet]YD11 = 0

 ( 9)  [wd_yieldSugarbeet]YD10 = 0

 ( 8)  [wd_yieldSugarbeet]YD9 = 0

 ( 7)  [wd_yieldSugarbeet]YD8 = 0

 ( 6)  [wd_yieldSugarbeet]YD7 = 0

 ( 5)  [wd_yieldSugarbeet]YD6 = 0

 ( 4)  [wd_yieldSugarbeet]YD5 = 0

 ( 3)  [wd_yieldSugarbeet]YD4 = 0

 ( 2)  [wd_yieldSugarbeet]YD3 = 0

 ( 1)  [wd_yieldSugarbeet]YD2 = 0

           Prob > F =      0.0722

    F(  1,      16) =      3.705

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldSugarbeet wd_lagrpSugarbeet

           Prob > F =      0.0770

    F(  1,      13) =      3.688

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldRape wd_lagrpRape

           Prob > F =      0.8465

    F(  1,      17) =      0.039

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldWheat wd_lagrpWheat

           Prob > F =      0.5301

    F(  1,      14) =      0.415

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldSugarbeet wd_lagrpSugarbeet

           Prob > F =      0.7265

    F(  1,      12) =      0.128

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldRape wd_lagrpRape

           Prob > F =      0.2202

    F(  1,      17) =      1.620

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_yieldWheat wd_lagrpWheat
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Figure 12: SUR regression for yields of wheat, rapeseed, and sugar beet for all selected countries (2000 – 2009). 

                                                                                   

            _cons    -7.659974   1.586799    -4.83   0.000    -10.77004   -4.549904

             YD10     11.18295    2.07936     5.38   0.000      7.10748    15.25842

              YD9     9.793635   2.047823     4.78   0.000     5.779975    13.80729

              YD8     4.699113   2.050901     2.29   0.022     .6794212    8.718804

              YD7     4.921015    2.13759     2.30   0.021     .7314168    9.110614

              YD6     7.851791   2.202384     3.57   0.000     3.535197    12.16838

              YD5     5.778847   2.041267     2.83   0.005     1.778038    9.779657

              YD4    -.2315216   2.042843    -0.11   0.910    -4.235421    3.772378

              YD3      4.40434   2.061558     2.14   0.033       .36376    8.444921

              YD2    -1.045532   2.021074    -0.52   0.605    -5.006764    2.915701

wd_lagrpSugarbeet    -.0194961   .0202359    -0.96   0.335    -.0591578    .0201656

wd_yieldSugarbeet  

                                                                                   

            _cons    -.3270569   .1092459    -2.99   0.003     -.541175   -.1129388

             YD10     .6079352     .15332     3.97   0.000     .3074335    .9084369

              YD9     .4549816   .1436998     3.17   0.002     .1733353     .736628

              YD8     .2145571   .1447876     1.48   0.138    -.0692213    .4983356

              YD7     .2478689   .1487103     1.67   0.096     -.043598    .5393357

              YD6     .2933745   .1448644     2.03   0.043     .0094455    .5773036

              YD5     .5648867   .1382633     4.09   0.000     .2938956    .8358778

              YD4    -.4059775   .1395451    -2.91   0.004    -.6794809   -.1324742

              YD3    -.1659366   .1405408    -1.18   0.238    -.4413915    .1095183

              YD2    -.0313435   .1429241    -0.22   0.826    -.3114695    .2487826

     wd_lagrpRape    -.0005286   .0014395    -0.37   0.713      -.00335    .0022928

wd_yieldRape       

                                                                                   

            _cons     -.176711   .0972266    -1.82   0.069    -.3672716    .0138497

             YD10     .2514663   .1365475     1.84   0.066    -.0161618    .5190944

              YD9     .4842841   .1343715     3.60   0.000     .2209208    .7476474

              YD8    -.1214626    .129155    -0.94   0.347    -.3746017    .1316764

              YD7     -.066091   .1315869    -0.50   0.615    -.3239966    .1918146

              YD6     .2399042   .1268302     1.89   0.059    -.0086784    .4884868

              YD5     .4504524   .1224094     3.68   0.000     .2105343    .6903705

              YD4    -.2846098   .1238694    -2.30   0.022    -.5273894   -.0418303

              YD3     .0906071   .1218467     0.74   0.457    -.1482081    .3294223

              YD2      .069032   .1189799     0.58   0.562    -.1641644    .3022283

    wd_lagrpWheat     .0011936   .0016576     0.72   0.471    -.0020553    .0044425

wd_yieldWheat      

                                                                                   

                         Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                   

                                                                      

wd_yieldSu~t      124     10    4.378695    0.4515     102.60   0.0000

wd_yieldRape      124     10    .3088909    0.5048     126.47   0.0000

wd_yieldWh~t      124     10       .2749    0.4482     101.38   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression
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Figure 13: SUR regression for yields of wheat, rapeseed, and sugar beet for all selected countries (2010 – 2015). 

  

                                                                                   

            _cons     1.240199    1.30668     0.95   0.343    -1.320847    3.801245

             YD16     3.530985   1.834592     1.92   0.054    -.0647496     7.12672

             YD15     13.64418   1.831752     7.45   0.000     10.05402    17.23435

             YD14      3.42311   1.833015     1.87   0.062    -.1695329    7.015752

             YD13     1.970674   1.831976     1.08   0.282    -1.619933    5.561281

             YD12     10.33086   1.834841     5.63   0.000     6.734636    13.92708

wd_lagrpSugarbeet      .065837   .0289941     2.27   0.023     .0090096    .1226644

wd_yieldSugarbeet  

                                                                                   

            _cons    -.0599664   .0861587    -0.70   0.486    -.2288344    .1089016

             YD16     .4857602    .124081     3.91   0.000     .2425659    .7289546

             YD15     .7423259   .1285375     5.78   0.000      .490397    .9942548

             YD14     .2062813   .1402155     1.47   0.141     -.068536    .4810985

             YD13     .0110436    .137578     0.08   0.936    -.2586042    .2806915

             YD12     .0139693   .1259963     0.11   0.912     -.232979    .2609176

     wd_lagrpRape     .0006277   .0009774     0.64   0.521     -.001288    .0025435

wd_yieldRape       

                                                                                   

            _cons    -.1979439   .0727159    -2.72   0.006    -.3404645   -.0554233

             YD16     .5424451   .1049268     5.17   0.000     .3367925    .7480978

             YD15     .7194941   .1134005     6.34   0.000     .4972332    .9417551

             YD14      .291088   .1177165     2.47   0.013     .0603678    .5218081

             YD13     .1929487   .1148068     1.68   0.093    -.0320685    .4179658

             YD12     .2651038   .1040682     2.55   0.011     .0611339    .4690736

    wd_lagrpWheat    -.0007176   .0011152    -0.64   0.520    -.0029033    .0014682

wd_yieldWheat      

                                                                                   

                         Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                   

                                                                      

wd_yieldSu~t       61      6    4.200235    0.5948      88.06   0.0000

wd_yieldRape       61      6    .2842638    0.4912      60.82   0.0000

wd_yieldWh~t       61      6    .2312187    0.5007      60.99   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression
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Figure 14: Breusch-Pagan test of independence of yield equations the period 2000 – 2009 and the period 2010 – 

2015, from top to bottom, respectively. 

 

 

Figure 15: Chi-squared test for year dummy variables for yield of wheat, rapeseed and sugar beet, from left to right, 

respectively, for the period 2000 – 2009. 

 

 

Figure 16: Chi-squared test for year dummy variables for yield of wheat, rapeseed and sugar beet, from left to right, 

respectively, for the period 2010 – 2015. 

 

 

 

 

  

Breusch-Pagan test of independence: chi2(3) =    43.866, Pr = 0.0000

wd_yieldSugarbeet             0.4436             0.1616             1.0000

     wd_yieldRape             0.3618             1.0000

    wd_yieldWheat             1.0000

                       wd_yieldWheat       wd_yieldRape  wd_yieldSugarbeet

Correlation matrix of residuals:

Breusch-Pagan test of independence: chi2(3) =    21.833, Pr = 0.0001

wd_yieldSugarbeet             0.2816             0.1715             1.0000

     wd_yieldRape             0.4992             1.0000

    wd_yieldWheat             1.0000

                       wd_yieldWheat       wd_yieldRape  wd_yieldSugarbeet

Correlation matrix of residuals:

         Prob > chi2 =    0.0000

           chi2(  9) =   74.35

 ( 9)  [wd_yieldWheat]YD10 = 0

 ( 8)  [wd_yieldWheat]YD9 = 0

 ( 7)  [wd_yieldWheat]YD8 = 0

 ( 6)  [wd_yieldWheat]YD7 = 0

 ( 5)  [wd_yieldWheat]YD6 = 0

 ( 4)  [wd_yieldWheat]YD5 = 0

 ( 3)  [wd_yieldWheat]YD4 = 0

 ( 2)  [wd_yieldWheat]YD3 = 0

 ( 1)  [wd_yieldWheat]YD2 = 0

         Prob > chi2 =    0.0000

           chi2(  9) =  117.83

 ( 9)  [wd_yieldRape]YD10 = 0

 ( 8)  [wd_yieldRape]YD9 = 0

 ( 7)  [wd_yieldRape]YD8 = 0

 ( 6)  [wd_yieldRape]YD7 = 0

 ( 5)  [wd_yieldRape]YD6 = 0

 ( 4)  [wd_yieldRape]YD5 = 0

 ( 3)  [wd_yieldRape]YD4 = 0

 ( 2)  [wd_yieldRape]YD3 = 0

 ( 1)  [wd_yieldRape]YD2 = 0

         Prob > chi2 =    0.0000

           chi2(  9) =   96.61

 ( 9)  [wd_yieldSugarbeet]YD10 = 0

 ( 8)  [wd_yieldSugarbeet]YD9 = 0

 ( 7)  [wd_yieldSugarbeet]YD8 = 0

 ( 6)  [wd_yieldSugarbeet]YD7 = 0

 ( 5)  [wd_yieldSugarbeet]YD6 = 0

 ( 4)  [wd_yieldSugarbeet]YD5 = 0

 ( 3)  [wd_yieldSugarbeet]YD4 = 0

 ( 2)  [wd_yieldSugarbeet]YD3 = 0

 ( 1)  [wd_yieldSugarbeet]YD2 = 0

         Prob > chi2 =    0.0000

           chi2(  5) =   58.88

 ( 5)  [wd_yieldWheat]YD16 = 0

 ( 4)  [wd_yieldWheat]YD15 = 0

 ( 3)  [wd_yieldWheat]YD14 = 0

 ( 2)  [wd_yieldWheat]YD13 = 0

 ( 1)  [wd_yieldWheat]YD12 = 0

         Prob > chi2 =    0.0000

           chi2(  5) =   60.29

 ( 5)  [wd_yieldRape]YD16 = 0

 ( 4)  [wd_yieldRape]YD15 = 0

 ( 3)  [wd_yieldRape]YD14 = 0

 ( 2)  [wd_yieldRape]YD13 = 0

 ( 1)  [wd_yieldRape]YD12 = 0

         Prob > chi2 =    0.0000

           chi2(  5) =   81.66

 ( 5)  [wd_yieldSugarbeet]YD16 = 0

 ( 4)  [wd_yieldSugarbeet]YD15 = 0

 ( 3)  [wd_yieldSugarbeet]YD14 = 0

 ( 2)  [wd_yieldSugarbeet]YD13 = 0

 ( 1)  [wd_yieldSugarbeet]YD12 = 0
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2.4 Stata output of acreage equations – Model I 

 

Figure 17: Breusch-Pagan test of independence of acreage equations for all selected countries (2000 – 2015). 

 

Figure 18: Wooldridge test for autocorrelation for acreage equations for all selected countries (2000 – 2015). 

 
Figure 19: SUR regression for acreage of wheat and rapeseed for all selected countries (2000 – 2015). 
 

  

Breusch-Pagan test of independence: chi2(1) =    17.292, Pr = 0.0000

 wd_areaRape       -0.2986        1.0000

wd_areaWheat        1.0000

              wd_areaWheat   wd_areaRape

Correlation matrix of residuals:

           Prob > F =      0.0000

    F(  1,      13) =    264.105

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial  wd_areaRape wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland

           Prob > F =      0.7770

    F(  1,      13) =      0.084

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial  wd_areaWheat wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland

                                                                                    

             _cons    -2.662002   6.532745    -0.41   0.684    -15.46595    10.14194

       wd_arabland    -.0317887    .012611    -2.52   0.012    -.0565058   -.0070715

wd_lagrpSugarbeet2    -.0060391   .0021032    -2.87   0.004    -.0101613    -.001917

     wd_lagrpRape2     .0003837     .00109     0.35   0.725    -.0017526      .00252

    wd_lagrpWheat2     .0036276   .0019671     1.84   0.065    -.0002278     .007483

wd_areaRape         

                                                                                    

             _cons     8.422536   13.57432     0.62   0.535    -18.18264    35.02771

       wd_arabland     .1258407   .0262043     4.80   0.000     .0744812    .1772001

wd_lagrpSugarbeet2     .0068545   .0043702     1.57   0.117    -.0017109    .0154199

     wd_lagrpRape2    -.0035645   .0022649    -1.57   0.116    -.0080035    .0008746

    wd_lagrpWheat2     .0105593   .0040874     2.58   0.010     .0025482    .0185704

wd_areaWheat        

                                                                                    

                          Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                    

                                                                      

wd_areaRape       194      4    90.75221    0.1611      37.25   0.0000

wd_areaWheat      194      4     188.573    0.1459      33.14   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression
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2.5 Stata output of acreage equations – Model II 

 

 

Figure 20: Breusch-Pagan test of independence of acreage equations for the OMS and the CEECs, from top to 

bottom, respectively (2000 – 2015). 

 

 
Figure 21: Wooldridge test for autocorrelation of acreage equations for the OMS and the CEECs, from top to bottom, 

respectively (2000 – 2015). 

 

Breusch-Pagan test of independence: chi2(1) =     0.018, Pr = 0.8921

 wd_areaRape       -0.0129        1.0000

wd_areaWheat        1.0000

              wd_areaWheat   wd_areaRape

Correlation matrix of residuals:

Breusch-Pagan test of independence: chi2(1) =     0.843, Pr = 0.3584

 wd_areaRape       -0.1008        1.0000

wd_areaWheat        1.0000

              wd_areaWheat   wd_areaRape

Correlation matrix of residuals:

           Prob > F =      0.0000

    F(  1,       6) =    157.803

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_areaRape wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland

           Prob > F =      0.3927

    F(  1,       6) =      0.848

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_areaWheat wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland

           Prob > F =      0.0001

    F(  1,       6) =     73.101

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_areaRape wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland

           Prob > F =      0.3735

    F(  1,       6) =      0.924

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_areaWheat wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland
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Figure 22: SUR regression for acreage of wheat and rapeseed for all the OMS (2000 – 2015). 

 

 
Figure 23: SUR regression for acreage of wheat and rapeseed for the CEECs (2000 – 2015). 

 
 

  

                                                                                    

             _cons     1.328587   8.313795     0.16   0.873    -14.96615    17.62333

       wd_arabland     .0238185   .0143644     1.66   0.097    -.0043352    .0519721

wd_lagrpSugarbeet2    -.0072004   .0035995    -2.00   0.045    -.0142553   -.0001456

     wd_lagrpRape2    -.0012319   .0013878    -0.89   0.375    -.0039519    .0014881

    wd_lagrpWheat2     .0059983   .0022765     2.63   0.008     .0015365    .0104602

wd_areaRape         

                                                                                    

             _cons     2.586289   15.39766     0.17   0.867    -27.59258    32.76515

       wd_arabland     .0091276   .0266037     0.34   0.732    -.0430147    .0612698

wd_lagrpSugarbeet2     .0044546   .0066665     0.67   0.504    -.0086114    .0175206

     wd_lagrpRape2    -.0022065   .0025702    -0.86   0.391    -.0072441    .0028311

    wd_lagrpWheat2     .0074588   .0042162     1.77   0.077    -.0008048    .0157225

wd_areaWheat        

                                                                                    

                          Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                    

                                                                      

wd_areaRape       111      4    87.40434    0.1824      24.77   0.0001

wd_areaWheat      111      4    161.8783    0.0327       3.76   0.4397

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression

                                                                                    

             _cons    -9.866319   6.980665    -1.41   0.158    -23.54817    3.815533

       wd_arabland    -.1747557   .0165199   -10.58   0.000    -.2071341   -.1423773

wd_lagrpSugarbeet2    -.0049438    .001777    -2.78   0.005    -.0084266    -.001461

     wd_lagrpRape2     .0010242   .0012657     0.81   0.418    -.0014566     .003505

    wd_lagrpWheat2    -.0019201     .00278    -0.69   0.490    -.0073688    .0035286

wd_areaRape         

                                                                                    

             _cons     23.79879   17.95768     1.33   0.185    -11.39763     58.9952

       wd_arabland     .4307091   .0424972    10.13   0.000     .3474161    .5140021

wd_lagrpSugarbeet2     .0067257   .0045712     1.47   0.141    -.0022338    .0156851

     wd_lagrpRape2    -.0023331   .0032561    -0.72   0.474     -.008715    .0040487

    wd_lagrpWheat2     .0200858   .0071515     2.81   0.005     .0060691    .0341024

wd_areaWheat        

                                                                                    

                          Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                    

                                                                      

wd_areaRape        83      4    62.06445    0.6299     141.28   0.0000

wd_areaWheat       83      4    159.6601    0.5815     115.32   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression



60 
 

2.6 Stata output of acreage equations – Model III 

 

  

Figure 24: Breusch-Pagan test of independence of acreage equations for the period 2000 – 2009 and the period 2010 – 2015, from 

top to bottom, respectively. 

 

 

 
Figure 25: Wooldridge test for autocorrelation of acreage equations for the period 2000 – 2009 and the period 2010 – 

2015, from top to bottom, respectively. 

 
 

Breusch-Pagan test of independence: chi2(1) =     7.985, Pr = 0.0047

 wd_areaRape       -0.2478        1.0000

wd_areaWheat        1.0000

              wd_areaWheat   wd_areaRape

Correlation matrix of residuals:

Breusch-Pagan test of independence: chi2(1) =     2.055, Pr = 0.1517

 wd_areaRape        0.1792        1.0000

wd_areaWheat        1.0000

              wd_areaWheat   wd_areaRape

Correlation matrix of residuals:

           Prob > F =      0.0000

    F(  1,      13) =     53.108

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_areaRape wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland

           Prob > F =      0.6138

    F(  1,      13) =      0.267

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_areaWheat wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland

           Prob > F =      0.0004

    F(  1,      10) =     27.752

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_areaRape wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland

           Prob > F =      0.2935

    F(  1,      10) =      1.229

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

. xtserial wd_areaWheat wd_lagrpWheat2 wd_lagrpRape2 wd_lagrpSugarbeet2 wd_arabland
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Figure 26: SUR regression for acreage of wheat and rapeseed for all selected countries (2000 – 2009). 

 

 
Figure 27: SUR regression for acreage of wheat and rapeseed for all selected countries (2010 – 2015). 

  

                                                                                    

             _cons     -30.9047   9.446786    -3.27   0.001    -49.42006   -12.38934

       wd_arabland     .0043752   .0141713     0.31   0.758    -.0234001    .0321505

wd_lagrpSugarbeet2    -.0025788   .0025102    -1.03   0.304    -.0074987    .0023412

     wd_lagrpRape2    -.0007669   .0015986    -0.48   0.631    -.0039001    .0023662

    wd_lagrpWheat2     .0037309   .0025026     1.49   0.136    -.0011742    .0086359

wd_areaRape         

                                                                                    

             _cons     71.23325   16.83667     4.23   0.000     38.23397    104.2325

       wd_arabland     .0529727   .0252571     2.10   0.036     .0034697    .1024756

wd_lagrpSugarbeet2     .0026387   .0044739     0.59   0.555      -.00613    .0114075

     wd_lagrpRape2     -.001275   .0028491    -0.45   0.655    -.0068591    .0043091

    wd_lagrpWheat2     .0158894   .0044603     3.56   0.000     .0071473    .0246315

wd_areaWheat        

                                                                                    

                          Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                    

                                                                      

wd_areaRape       130      4    91.09436    0.0395       5.34   0.2541

wd_areaWheat      130      4    162.3543    0.1516      23.23   0.0001

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression

                                                                                    

             _cons     48.75695   16.25737     3.00   0.003     16.89309    80.62081

       wd_arabland    -.1494995   .0211645    -7.06   0.000    -.1909812   -.1080179

wd_lagrpSugarbeet2     .0060126   .0054898     1.10   0.273    -.0047472    .0167723

     wd_lagrpRape2    -.0007619   .0010857    -0.70   0.483    -.0028898     .001366

    wd_lagrpWheat2     .0022476   .0020853     1.08   0.281    -.0018396    .0063348

wd_areaRape         

                                                                                    

             _cons    -118.9441   52.37552    -2.27   0.023    -221.5982   -16.28993

       wd_arabland      .321138   .0681845     4.71   0.000     .1874988    .4547772

wd_lagrpSugarbeet2    -.0239333   .0176861    -1.35   0.176    -.0585974    .0107308

     wd_lagrpRape2     .0015509   .0034977     0.44   0.657    -.0053045    .0084064

    wd_lagrpWheat2     .0039656   .0067182     0.59   0.555    -.0092018    .0171331

wd_areaWheat        

                                                                                    

                          Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                    

                                                                      

wd_areaRape        64      4    55.91404    0.4726      57.36   0.0000

wd_areaWheat       64      4    180.1353    0.2896      26.10   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression
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2.7 Stata output of additional tests 

 

Figure 28: SUR regression of the acreage of wheat and rapeseed for all selected countries, including lagged residuals (2010 – 

2015). 

  

             _cons     4.095138    4.43063     0.92   0.355    -4.588738    12.77901

        lagresRape     .7481727   .0494639    15.13   0.000     .6512252    .8451203

       wd_arabland     -.000575   .0087555    -0.07   0.948    -.0177355    .0165855

wd_lagrpSugarbeet2    -.0039128   .0014993    -2.61   0.009    -.0068514   -.0009743

     wd_lagrpRape2     .0018152   .0007584     2.39   0.017     .0003289    .0033016

    wd_lagrpWheat2    -.0007517   .0013861    -0.54   0.588    -.0034684     .001965

wd_areaRape         

                                                                                    

             _cons     .3708473   13.50248     0.03   0.978    -26.09353    26.83523

       lagresWheat     .4032184   .0747873     5.39   0.000      .256638    .5497988

       wd_arabland      .055831   .0275107     2.03   0.042      .001911    .1097511

wd_lagrpSugarbeet2     .0065268   .0044817     1.46   0.145    -.0022572    .0153107

     wd_lagrpRape2     -.004606   .0023071    -2.00   0.046    -.0091279   -.0000841

    wd_lagrpWheat2     .0119647   .0041841     2.86   0.004     .0037641    .0201653

wd_areaWheat        

                                                                                    

                          Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                    

                                                                      

wd_areaRape       174      5    58.32876    0.6436     328.21   0.0000

wd_areaWheat      174      5    177.7494    0.2299      54.76   0.0000

                                                                      

Equation          Obs  Parms        RMSE    "R-sq"       chi2        P

                                                                      

Seemingly unrelated regression
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