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Chapter 1

Introduction

This text is developed by a special interest group in eddycorrelation. The group and its activities were initiated by
Henk de Bruin (Wageningen UR). The group is composed of researchers from:

• the Royal Netherlands Meteorological Institute (KNMI) in De Bilt (Wim Kohsiek, Bart van den Hurk, Cor
Jacobs and Fred Bosveld);

• Wageningen University, department of Meteorology and Air Quality (WUR-METAIR) (Arjan van Dijk until
April 2000, Henk de Bruin);

• Utrecht University, Institute for Marine and Atmospheric Research Utrecht (IMAU) (Arjan van Dijk: May
2000 – March 2003).

The objective of the special interest group is the development of

• Fundamental understanding of the eddycorrelation method.There are large discrepancies between estimates
for terms in the energy balance at the surface obtained via eddycorrelation and estimates found via other
methods. With a fundamental basis of the eddycorrelation method we will be better able to eliminate possible
causes of differences in observations. Furthermore we willbe able to estimate the consequences of certain
assumptions for the accuracy of estimated energy fluxes.

• A protocol for practical use of the eddycorrelation method,including corrections for tilt, trends, distortion
etcetera. Where possible the protocol will be implemented in a software library. Measurements which have
been done and processed according to this protocol will be more versatile in use. Researchers from different
groups can compare their results and conclusions, knowing that they have processed their data equally.
Consensus about a protocol will facilitate future experiments by providing the conditions and procedures,
which have to be taken into account and followed during the measurements.

The present study is meant to provide the basics of the eddy-correlation method. The theory of the eddy-covariance
method is deployed in chapter 2. Here the surface fluxes of sensible heat, water vapour, momentum and scalar
densities are related to measurable quantities at a finite height above the ground. This is done via continuity and
budget equations. In chapter 3 these relations are worked out for practical purposes. A step-by-step recipe is
provided for datareduction of eddy-covariance measurements. The software implementation of this recipe in the
software library ECPACK is presented in chapter B. A discussion on the definition of the sensible heat flux is given
in appendix A

The report and the software were mainly prepared by Arjan vanDijk while at Wageningen University (except for
the part on the planar fit method and corrections for flow distortion using 3D ellipsoids). The NetCDF-frontend
for ECPACK, the updated documentation and current maintenance is done by Arnold Moene.

The software as well as this report (and updated versions thereof) can be found at the website of the Meteorology
and Air Quality Group of Wageningen University:http://www.met.wau.nl/projects/jep .
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Chapter 2

Theory

This chapter provides the theory of the eddy-covariance method for the estimation of surface fluxes. The energy
budget equation at the surface is combined with the continuity equation for the layer between the surface and
measurement height. Relations are derived between the surface fluxes (sensible heat, evaporation, surface friction
and scalar density fluxes) and measurable quantities at finite height.

2.1 Definition of the problem

The dynamics of meteorological processes is strongly influenced by the available energy. At night, when the sun
is absent, the behaviour of atmospheric boundary layer is totally different than by day. Most of the transfer of
incoming energy from the sun to the Earth takes place at the Earth’s surface. An incoming energy fluxQ∗ (the net
radiation) is the net effect of incoming and outgoing long and short wave radiation (see figure 2.1):

Q∗ = K↓ +K↑+ L↓+ L↑ (2.1)

whereK↓ is global short wave radiation from the sun (both direct and diffuse), K↑ short wave radiation reflected
by the surface,L↓ incoming long wave radiation from clouds and atmosphere andL↑ long wave radiation reflected
and emitted by the surface.

Conservation of energy makes that we can formulate a budget equation for the energy flux at the surface, to see
where this incoming energy flux is going. The net radiation can do the following (see figure 2.2):

• Vaporize water (vaporizationE [kg m−2 s−1] with evaporation heatLv = 2.5 106 J kg−1 at 0oC). Energy
flux LvE is called the latent heat flux.

• Heat the soil (soil heat fluxG [W M−2])

• Heat the atmosphere (sensible heat fluxH [W M−2])

• Be absorbed by the crop (strength∆S [W M−2]). We will assume that the crop is not densely covering the
surface, and consequently we can neglect∆S.

In formula:

Q∗ = LvE+G+H+∆S

≃ LvE+G+H (2.2)

This is a balance at the surface, and therefore the quantities involved in this relation should be measured at the
surface. In practice one measures soil heat fluxG below the surface and evaporationE, net radiationQ∗ and
sensible heat fluxH at a certain distance above the surface. The idea is that turbulent transport is the key to defer
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Figure 2.1: Radiation balance at the surface. The net radiation is the heat which is effectively transferred to the
surface. It is a composition of incoming and outgoing short and long wave contributions
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Figure 2.2: Energy balance at the surface
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heat and water vapor from the surface. Molecular effects bring heat and vapor in the air, which is just above the
surface. The air just above the surface thus will have becomewarmer and more wet than higher layers of air. There
is a vertical gradient of heat and of vapor concentration. When the air of the lowest layer is mixed by turbulence
with air from higher layers, the vertical gradients will be levelled and there is vertical transport of heat and of water
vapor. This correlation between vertical fluxes and turbulent motions leads to the concept of eddy-correlation. The
main concern of eddy-correlation (and therefore of this study) is to translate the signals measured at finite height
above the surface into estimates for surface fluxes.

We will consider vertical fluxesH, E, τ andF(ξ) of respectively sensible heat, water vapour, horizontal momentum
and passive scalarξ (e.g. CO2). These quantities will be defined in the following section.The definition of the
flux H of sensible heat is less straightforward than the definitionof the evaporation or of the momentum transfer.
Many different definitions ofH are made in the literature. Therefore the problem of modelling and estimating the
sensible heat flux will be addressed in extra detail.

The continuity equation for an arbitrary quantity will be derived in section 2.3. We will integrate the continuity
equation for a horizontally homogeneous situation to construct a budget equation. Budget equations for the thin
layer, which is in adjacent to the surface and in which molecular diffusion is transformed into turbulent diffusion,
are presented in section 2.4.

The mean vertical velocity plays an important role in the convection of bulk properties. This velocity, which is
difficult to measure directly, is related to measureable quantities in section 2.5. Implications of this velocity for
evaporation, momentum transfer, sensible heat flux and transfer ofξ will be further elaborated.

In section 2.6 we will discuss some widely spread mis-interpretations of the sensible heat flux and their conse-
quences.

The relation between surface fluxes and quantities measuredat a certain height is given in section 2.7 under the
assumption of stationary, (statistically) homogeneous conditions.

2.2 Basic tools and definitions

In this section some basic tools are explained: continuity relations, which form the core of our physical analysis,
and Reynolds-decomposition, with which one separates fluctuations from bulk values.

2.2.1 Definition of surface fluxes

Before we can make an analysis of the characteristics of surface fluxes, we first have to make a solid definition of
what exactly is a surface flux. In general we can say thata surface flux is defined as the amount per unit volume
of a quantity that passes through a horizontal unit area on the surface. For the exchange of chemicals (water,
CO2, etc.) this definition is sufficiently detailed. For the sensible heat flux and for the shear stress, we have to be
more specific.

In appendix A we present a discussion on the definition of the sensible heat flux. It is shown that the following
definition is unambiguous and compatible with budget equation 2.2:
The sensible heat fluxH is defined as the flux of heat, which is transferred by the ground to the atmosphere
by thermal conduction in the laminar sublayer, during reversibel isobaric processes.

The definition of the shear stress is similar to the definitionof the sensible heat flux:The shear stressτ is defined
as the friction force exerted by the atmosphere on the Earth’s surface.This definition does not count the force,
which is used to accelerate water vapour, which is evaporated with zero velocity at the surface. Once airborne, all
forces which act on the vapour areinternal forcesin the atmosphere, and consequently irrelevant for the estimation
of the force on the surface.

From the definitions in this section it should be clear that sometimes we are only interested in one contribution to
the flux of a certain quantity, and not in the total vertical flux. The strictness of our definitions will be important.
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2.2.2 Reynolds-decomposition

Instantaneous contributions to the fluxes can vary capriciously from time to time, while the net exchange over
a longer time may be relatively constant. To estimate the mean values of the fluxes (over a time∆t, which we
still have to decide about), we introduce the so-called Reynolds decomposition of quantities into their mean and
fluctuating parts. Mean values will be marked with an overbar, fluctuating contributions by a prime, e.g.:

ξ(t) =ξ+ ξ′(t) (2.3)

ξ ≡ 1
∆t

∫ t0+∆t

t0

ξ(t) dt (2.4)

ξ′(t) ≡ξ(t)− ξ (2.5)

Naturally the mean value of a fluctuating term equals zero:

ξ′(t) = 0 (2.6)

Reynolds decomposition will be an important tool in the restof this study.

2.3 Continuity- and budget equations

In this section we will gain insight in quantities by making arelation, in which the time rate of change of the
concentration of a quantity is coupled to all known sources for that quantity. Such a relation is called the quantity’s
continuity equation. Integration of the continuity equation over a certain volume gives thebudget equation.
Budget equations will be used to construct expressions for surface fluxes of species, sensible heat and horizontal
momentum.

2.3.1 The continuity equation

We study the flux of quantityξ, whereξ gives the amount of a physical quantity per volume (its concentration).
The flux-vector associated with quantityξ will be called ~J(ξ), and gives the amount ofξ, which passes per unit
of time through a unit area. An important contribution to thetotal flux of quantityξ is convective flux~Jc(ξ). The
convective contribution gives the amount ofξ that is transported along with a mass flux. The instantaneousvalue
of the convective contribution~Jc(ξ) to the flux ofξ is given by the product of the physical quantity with velocity
vector~u (The components of velocity~u will be called (u,v,w)):

~Jc(ξ) ≡ ξ~u (2.7)

This is seen as follows: The velocity does not only give the pace with which the air is traveling (unit: m/s), it
also reflects the amount of volume, which crosses per unit of time through a unit surface (unit: (m3/m2)/s). In
convective flux~Jc we count both convection and molecular diffusion (which is amass-bound flux contribution). In
the study of fluxes of chemicals, the convective flux vector isthe only flux vector involved:

~J(chemicals)= ~Jc(chemicals) (2.8)

In the study of the transfer of heat or momentum there are morecontributions to the total flux than just the con-
vective term. Heat and momentum may also be transferred by conduction or friction. Furthermore heat may be
transferred by radiation. We will use symbols~Ji to denote other contributions to the flux vector ofξ than the con-
vective term (such as radiation and the flow of potential energy in heat exchange processes), where indexi counts
the contributions, and symbolsSi for sources and sinks ofξ.

The sources of quantityξ will be calledSi(ξ). Sources of chemicals can be found in chemical reactions and in the
evaporation of liquid chemicals. Sources of heat can be chemistry, viscous dissipation and phase transitions.
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With the above given notation for flux-vector~J and sourcesSi the general form for a continuity equation is:

Continuity: 0=
∂ξ

∂t
+div ~J(ξ)−

∑

i

Si(ξ) (2.9)

=
∂ξ

∂t
+div

ξ~u+
∑

j

~J j

−
∑

i

Si (2.10)

When we combine this relation with the following (usual) definition of the convective derivative:

d
dt
≡ ∂
∂t
+~u · ∇ (2.11)

then we find the following form for the continuity relation:

0=
dξ
dt
−

∑

i

Si + ξdiv~u+div


∑

j

~J j

 (2.12)

A quantity is called conserved when an outflux of that quantity implies that there will be accordingly less of it left
in the region where it came from. In other words: there are no sources and sinks ofξ:

Conservation: 0=
∂ξ

∂t
+div

ξ~u+
∑

j

~J j

 (2.13)

An example of a conserved quantity: Molecules of a certain kind (concentration̺ ξ) can only be exchanged via
either convection or via molecular diffusion (both represented by flux vector~Jc(̺ξ)). Molecular diffusion plays an
important role close to boundaries, where e.g. water molecules evaporate into a layer of air, which has very low
speed relative to the ground. The budget equation for a single chemical is therefore:

0=
d̺ξ
dt
+̺ξ div~uξ (2.14)

where~uξ represents the fractional velocity of theξ-molecules. For the mixture of air as a whole, we can use mean
velocity~u in relation 2.14.

For quantityqξ ≡ ξ/̺, which gives the amount per unit mass of the same quantity of whichξ gives the amount per
unit volume (̺ is air density), the following budget equation can be derived:

dqξ
dt
=

1
̺

d(̺ qξ)

dt
+qξ div~u=

1
̺


∂(̺qξ)

∂t
+div

{
̺qξ~u

} =
∑

i

S̃i −
1
̺

div


∑

j

~J j

 with S̃i ≡
Si

̺
(2.15)

In the derivation of relation 2.15 we have used conservationrelation 2.14 for̺ . Quantityqξ is called a ’specific
quantity’. Source strengths̃Si give the creation per unit time ofξ per unit mass, whileS is per unit volume.
Specific quantities can sometimes provide better insight into exchange processes than absolute quantities. When a
quantityξ is conserved, the continuity equation of the associated specific quantityqξ = ξ/̺ is:

dqξ
dt
= 0 (2.16)

even in situations with non-stationary density. This relation, which expresses that nothing of interest happens to a
conserved quantity, is much simpler than relation 2.14, which includes density effects.

2.3.2 The budget equation

To relate the surface flux to measurements at heightzM we have to specify all relevant sources and flux contributions
in continuity equation 2.10, and integrate it over a virtualboxV, which is situated directly above the surface patch
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of our interest. The measurement position is placed somewhere on the upper boundary of the box. The contact
area between the virtual box and the Earth’s surface will be called B0. The side boundaryBs of the box consists
of lines in vertical direction. The top surface of the box is taken parallel to ground surfaceB0, and is calledBt. To
achieve a stable estimate, we take the time average of the integrated continuity equation. The integrated continuity
equation, which is called thebudget equationof an arbitrary quantity with concentrationξ is:

0=
1
∆t

∫

V

ξ(t2)− ξ(t1)
dV

︸                       ︷︷                       ︸
storage

−
∑

i

∫

V
SidV

︸        ︷︷        ︸
creation

+

∫

Bt

ξ~u
 ·~noutdBt

︸                ︷︷                ︸
convection via top

+

∫

Bs

ξ~u
 ·~noutdBs

︸                ︷︷                ︸
convection via sides

−
∫

B0

ξ~uξ
 ·~nindB0

︸                 ︷︷                 ︸
emission from ground

+

∑

j

∫

Bt

 ~J j ·~nout

dBt

︸                    ︷︷                    ︸
other fluxes through top

+

∑

j

∫

Bs

 ~J j ·~nout

dBs

︸                    ︷︷                    ︸
other fluxes through sides

−
∑

j

∫

B0

 ~J j ·~nin

dB0

︸                   ︷︷                   ︸
other fluxes from ground

(2.17)

where~nout is a unit vector, perpendicular to the surface of boxV, and vector~nin is a unit vector, which for reasons
of convenience points from the Earth’s surface perpendicularly into virtual boxV. Velocity ~uξ is the velocity of
the gas-component, which carriesξ through the ground/atmosphere interface (most significantcandidate is often
evaporating water). At all other segments of the boundary ofV (i.e. onBs andBt) we assume that diffusion is
insignificant, and hence take~uξ = ~u.

2.3.3 Fluxes of species

For fluxes of chemicals, e.g. water vapour, we can takeξ = ̺ξ. Chemical reactions (source strengthSchem) and
evaporating droplets (source strengthSvap) can produce source contributions in the budget equation for a chemical.
The only way to gain or lose species through the boundaries ofa volume is via convection. For fluxes of species,
the term of interest in budget equation 2.17 is the emission from the ground:

F(̺ξ) ≡
1
B0

∫

B0

ξ~uξ
 ·~nindB0

︸                 ︷︷                 ︸
emission from ground

=
1

B0∆t

∫

V

̺ξ(t2)−̺ξ(t1)
dV

︸                             ︷︷                             ︸
storage

− 1
B0

∫

V
SchemdV

︸             ︷︷             ︸
chemical production

− 1
B0

∫

V
SvapdV

︸           ︷︷           ︸
vaporization of fog or rain

+
1
B0

∫

Bt

̺ξ~uξ
 ·~noutdBt

︸                       ︷︷                       ︸
convection via top

+
1
B0

∫

Bs

̺ξ~uξ
 ·~noutdBs

︸                        ︷︷                        ︸
convection via sides

(2.18)

In this relation density̺ ξ measures the density of the gas-fraction ofξ. Solid or liquidξ is not included in̺ ξ.

2.3.4 Sensible heat flux

The first work on the relation between vertical heat flux and eddy-correlation was written by G.I. Taylor (1914,
1915). A study, which started from budget equations in steadof from ad hoc assumptions, was first done by
Montgomery (1951, 1954).

We have defined the sensible heat flux as an energy flux. The study of energy involves thermodynamics, and we
adopt the definitions and notations developed in a textbook on thermodynamics by Riegel (1992, pages 237-247).
Our starting point will be the first law of thermodynamics, which states that energy is a conserved quantity, and
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that it can only be transferred either via a transfer of heat or by work done on a system. Letet be the total specific
energy of a system (an amount of mass), and dq̄ the heat added to a unit mass and dw̄ the work doneby the system
(symbol d̄represents an inexact differential). In formula the first law of thermodynamics is:

det = d̄q− d̄w (2.19)

where the amount of work done by the system is related to a change in volume via (α ≡ 1/̺ is the specific volume):

d̄w= pdα (2.20)

Total energyet includes internal energyU (the kinetic energy of the random molecular motion), the kinetic energy
of the center of mass of the system (mean motion energy)|~u|2/2 and potential energyφ (e.g. gravitation):

det = d̄q− d̄w= dU +d(|~u|2/2)+dφ (2.21)

Velocity ~u is the barycentric velocity field of the gas. In the atmosphere, two constituents are significant for the
energy balance: dry air (with fractional velocity~ud) and water vapour (fractional velocity~uv). The relation between
the atmospheric barycentric velocity of wet air and the velocities of the gas fractions is:

~u≡ ̺d~ud+̺v~uv

̺
(2.22)

In the literature we find the following definition of the internal energyU (see the book by Riegel):

Every system contains some quantity which cannot be changedwithout producing some change in at
least one of the state variables. This quantitytakes a unique valuefor every state of the system; it is a
function of state and is called theinternal energyof the system. (...). Although the internal energy of
a system is uniquely defined by the state of the system, we haveno way of knowing the ”value” of the
internal energy for any given state.We can only determine changes in internal energy. These changes
depend only on the beginning and end states of a system, and are independent of the process.

This definition of the internal energy is equivalent to the definition of a potential energy. It is important to
notice that onecannotdevise an experiment, which will give the internal energy ofa given reference state.

For an ideal gas we may relate changes in internal energy to changes in temperatureT via:

dU = cvdT (2.23)

wherecv is the specific heat at constant volume. Most atmospheric processes do not conserve the volume of the
mass, which is involved. In stead they take place with (more or less) constant pressure. Therefore we introduce
specific enthalpyh, which is also a function of state only. It is defined by the following relation:

h≡ U +αp ⇒ dU = dh−αdp− pdα = dh−αdp− d̄w (2.24)

The relation between changes in enthalpy and changes in temperature is:

dh= cpdT (2.25)

wherecp is the isobaric specific heat.

The total energy balance, presented in relation 2.21, can beformulated via changes in specific enthalpy as:

det = d̄q− d̄w= dh− d̄w−αdp+d(|~u|2/2)+dφ (2.26)

which gives the following conservation equation for specific enthalpy (n.b.: the balance is made per unit-mass):

0= − d̄q
dt
+

dh
dt
−αdp

dt
+

d(|~u|2/2)
dt

+
dφ
dt

(2.27)

The following source strengths (heat generated per unit of mass) are involved in heat transfer term dq̄/dt:
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• Chemical or nuclear reactions : source strengthQ̃.

• Viscous dissipation of kinetic energy : source strengthM̃.

• Condensation heat of water vapour : source strengthC̃.

and we can specify the following energy flux vectors, which can contribute to an influx of heat through the bound-
aries of a system:

• Radiation :~Jr .

• Thermal conduction :~Jh. This term will give us the sensible heat flux.

In formula form the expression for heat transfer is:

d̄q
dt
= Q̃+ M̃+ C̃− 1

̺
div

 ~Jr + ~Jh
 (2.28)

which combined with continuity relation 2.27 for specific enthalpy gives:

0=
d(h+φ+ |~u|2/2)

dt
+ Q̃+ M̃+ C̃− 1

̺
div

 ~Jr + ~Jh
−αdp

dt
(2.29)

This is a balance per unit mass (the balance of a specific quantity). From relation 2.15 for the general shape of the
continuity relation for specific quantities, we can see thata balance per unit volume is found by multiplication of
the equation by density and inclusion of convective terms through the boundaries:

0=
∂̺d(hd+φd+ |~ud|2/2)

∂t
+
∂̺v(hv+φv+ |~uv|2/2)

∂t
+Q+M+C

−div
 ~Jr + ~Jh+̺d(hd+φd+ |~ud|2/2)~ud+̺v(hv+φv+ |~uv|2/2)~uv

− dp
dt

(2.30)

Where removal of a tilde from a quantity means multiplication with density, turning a specific quantity into a
concentration per unit volume:

ξ̃ ̺ ≡ ξ (2.31)

and where fractional quantities associated with either thedry air fraction or the water vapour fraction are indicated
with indicesd for dry air andv for water vapour respectively:

ξ = ξd+ ξv (2.32)

We have converted most of the total time derivatives into partial derivatives. This is done to facilitate the transfor-
mation of the continuity equation into a budget equation. With only partial derivatives we can integrate relation 2.30
over a virtual box, which does not follow the mean motion of the air. Only the pressure term is still given as total
derivative. This term needs special attention, when one integrates the continuity equation: only the convective
change in pressure is relevant!

The convective terms transport the absolute enthalpy, potential energy and mean motion kinetic energy. This
implies that we have to give an expression for the absolute specific enthalpy and the absolute potential energy.
As we have pointed out earlier, enthalpy is defined as a potential energy, and hence it can only be known up to a
constant value, the reference value. None of the estimates,which we will make in this study, is allowed to depend
on the reference values of either enthalpy or of potential energy. The reason is that, just as with the internal energy,
there isno experiment that can give the enthalpy or the potential energy of a given reference state.

From differential relation 2.25 we can express the absolutespecific enthalpy as:

h=h(Tref)+
∫ T

Tref

cp(T)dT (2.33)

≃h(Tref)+cp(Tref)(T −Tref) (2.34)

=cp(Tref)T +b with b≡ h(Tref)−cp(Tref)Tref (2.35)
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Quantityb represents the reference energy. With this expression for absolute enthalpy, we can express the energy
flux vectors associated with convection of mass as follows:

• Convection of enthalpy with dry air:~Jd.

Jd ≡ (cpdT +bd+φd)̺d~ud (2.36)

• Convection of enthalpy with water vapour:~Jv.

Jv ≡ (cpvT +bv+φv)̺v~uv (2.37)

Constantsbd andbv are the reference energies of dry air and water vapour respectively. From the inclusion of
potential energiesφd andφv, for respectively dry air and for water vapour, we can already see that these terms will
introduce a second reference value problem. In fact there isno such problem: no physical experiment can reveal
the reference value of a potential energy field. If gravity isthe only potential involved, then specific potentialsφd

andφv have the same value. Fractional velocities~ud of dry air and~uv of water vapour can differ when there is
molecular diffusion. We assume that conduction~Jh plays a significant role only close to the ground. Away from
the ground turbulent transfer is dominant.

The budget equation for enthalpy is now (symbol∆ is used to represent the increase of a quantity fromt1 to t2; an
indexz indicates the vertical component of a quantity):

H ≡ Jhz

∣∣∣
z=0 =

1
B0∆t

∫

V
∆

̺d(cpdT +bd)
dV

︸                                ︷︷                                ︸
storage of enthalpy in dry air

+
1

B0∆t

∫

V
∆

̺v(cpvT +bv)
dV

︸                                ︷︷                                ︸
storage of enthalpy in water vapour

+
1

B0∆t

∫

V
∆

̺dφd
dV

︸                    ︷︷                    ︸
storage of potential energy in dry air

+
1

B0∆t

∫

V
∆

̺vφv
dV

︸                    ︷︷                    ︸
storage of potential energy in water vapour

+
1

B0∆t

∫

V
∆

̺d|~ud|2/2
dV

︸                          ︷︷                          ︸
storage in mean motion of dry air

+
1

B0∆t

∫

V
∆

̺v|~uv|2/2
dV

︸                         ︷︷                         ︸
storage in mean motion of water vapour

− 1
B0

∫

V
QdV

︸        ︷︷        ︸
creation via chemistry

− 1
B0

∫

V
MdV

︸        ︷︷        ︸
creation via viscous dissipation

− 1
B0

∫

V
CdV

︸        ︷︷        ︸
creation via condensation

+
1
B0

∫

Bt

 ~Jr +̺d(hd+φd+ |~ud|2/2)~ud+̺v(hv+φv+ |~uv|2/2)~uv
 ·~noutdBt

︸                                                                                        ︷︷                                                                                        ︸
loss via top

+
1
B0

∫

Bs

 ~Jr +̺d(hd+φd+ |~ud|2/2)~ud+̺v(hv+φv+ |~uv|2/2)~uv
 ·~noutdBs

︸                                                                                        ︷︷                                                                                        ︸
loss via sides

− 1
B0

∫

B0

 ~Jr +̺d(hd+φd+ |~ud|2/2)~ud+̺v(hv+φv+ |~uv|2/2)~uv
 ·~nindB0

︸                                                                                       ︷︷                                                                                       ︸
emission from ground

− 1
B0

∫

V

dp
dt

dV
︸          ︷︷          ︸

convective change of pressure

(2.38)

2.3.5 Ground shear stress

To estimate the ground shear stress, we will make a budget equation for the momentum. A term, which is only
relevant at the surface, is the momentum fluxJ̄̄ f by friction with the surface. A volume source of momentum is
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interaction with rain~R via the wakes of the drops. The only other significant body-force is buoyancy~B, which is
connected with density fluctuations and gravity. For the rest the continuity equation is determined by convection
(symbol⊗ gives the diadic product; in coordinates it is defined as

~ξ⊗~η


i j
≡ ξiη j ):

0=
∂̺d~ud

∂t
+
∂̺v~uv

∂t
− ~R− ~B+div

 J̄̄ f +̺d~ud⊗~ud+̺v~uv⊗~uv
 (2.39)

The associated budget equation is:

−~τ ≡ ~Jf z

∣∣∣∣
z=0
=

1
B0∆t

∫

V

̺d~ud(t2)−̺d~ud(t1)
dV

︸                                    ︷︷                                    ︸
storage in dry air

+
1

B0∆t

∫

V

̺v~uv(t2)−̺v~uv(t1)
dV

︸                                   ︷︷                                   ︸
storage in water vapour

− 1
B0

∫

V

~RdV
︸       ︷︷       ︸

pulling by rain

− 1
B0

∫

V

~BdV
︸       ︷︷       ︸

pulling by buoyancy

+
1
B0

∫

Bt

̺d~ud⊗~ud+̺v~uv⊗~uv

 ·~noutdBt

︸                                              ︷︷                                              ︸
convection via top

+
1
B0

∫

Bs

̺d~ud⊗~ud+̺v~uv⊗~uv

 ·~noutdBs

︸                                              ︷︷                                              ︸
convection via sides

− 1
B0

∫

B0

̺d~ud⊗~ud+̺v~uv⊗~uv

 ·~nindB0

︸                                             ︷︷                                             ︸
emission from ground

(2.40)

2.4 The homogeneous transition layer

In general relations 2.18, 2.38 and 2.40 for the surface fluxes of respectively species, sensible heat and momentum
are not easily related to one-point measurements. In this section we will reduce the amount of work by restricting
the calculation to what is called the transition layer. The transition layer is a thin layer just above the ground, which
is too thin to contain source terms and in which molecular diffusion is transformed into turbulent diffusion. The
transition layer will give a good description of the first half centimeter of the atmospheric boundary layer and in
certain cases it is even valid for a layer which includes the sensors (in which case it is called theconstant flux
layer).

We make the following assumptions about the transition layer (see Sun et al., 1995, p.3164):

• The top of the layerδz is above the viscous surface sublayer. This assumption implies that at the ground
fluxes are dominated by molecular diffusion and thermal conduction.

• At the top of the transition layer, the mixing of dry air and water vapour is dominated by turbulent diffu-
sion (see figure 2.3). This means that bits of wet air are torn apart into smaller bits of wet air, a process in
which both wet air constituents (dry air and water vapour) are subjected to the same set of velocity fluctu-
ations. From this observation we conclude that at the top of the transition layer velocities~ud, ~uv and~uξ of
respectively dry air, water vapour and speciesξ must be equal:

~ud(z= δz) = ~uv(z= δz) = ~uξ(z= δz) = ~u(z= δz) (2.41)

• At the surface themass flux is dominated by the evaporation of water. This implied that at the surface
the only non-zero velocity component is the vertical velocity of water vapour. The assumption is not valid
above surfaces with chemical reactions, like burning forests.

• Homogeneous vertical flow field. In an inhomogenous vertical flow field localized updraughtsor fixed
plumes can give a net vertical transport of dry air.

• Homogeneous terrain. Consider a wet spot of terrain, surrounded by dry terrain. The wet spot will evap-
orate water, but the vertical water vapour flux in the column of air straight above the wet spot will not be
constant. Advection of dry air into the column and advectionof wet air out of the column by horizontal
flow gives a net contribution to the balance of dry air. Assuming horizontal homogeneity we can neglect
convective terms in the budget equations via the side boundary of the virtual box.
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molecular diffusion

turbulent

diffusion

Figure 2.3: Thin layer adjacent to the surface over which budget equations are integrated

• The transition layer istoo thin for storage or creation effects to be significant.

• The surface is level. In non-level situations, the evaporation may interfere with terms in the budget equation
for horizontal momentum.

• The potential energy is a function of position and the potential difference between any two points in the
virtual box is too small to cause significant contributions to the budget equation.

• The influx of kinetic energy at the surface associated with evaporation is negligible.

With these restrictions, the surface fluxes of species, heatand momentum are given by the following expressions:

F(̺ξ) = ̺ξw
∣∣∣
δz

(2.42)

H = ̺d(cpdT + |~u|2/2)w
∣∣∣∣
δz
+ ̺v(cpvT + |~u|2/2)w

∣∣∣∣
δz
− ̺vcpvTwv

∣∣∣
0 (2.43)

−τξ = ̺duw|δz+ ̺vuw|δz (2.44)

2.5 Mean vertical velocity: The Webb-term

In all budget equations, which we have derived in section 2.3, convective fluxes~Jc(ξ) play an important role. In
relations 2.42, 2.43 and 2.44 for the relation between surface fluxes of species, sensible heat and horizontal momen-
tum and measurements at the top of the homogeneous transition layer, these convective fluxes are even dominant.
In this section we will show that the vertical convective fluxes cannot be directly estimated from measurements.
A method will be presented to circumvent the problems, related to the presence of an inmeasurable but significant
mean vertical velocity.

2.5.1 Origin of the ”eddy-correlation problem”

The mean vertical component of convective fluxes has the general form wξ. With Reynolds decompositions for
bothw andξ we can write this expression as follows:

Jcz(ξ) = wξ = wξ+w′ξ′ (2.45)

From relation 2.45 we see that there are two contributions tothe mean convective flux of quantityξ: one giving the
transport by the mean vertical velocity of the bulk (=mean value) of quantityξ, the other representing a correlated
behaviour of the vertical fluctuations and the fluctuations in quantityξ. When we regard the vertical fluctuations as
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actions of turbulent eddies, then we come to the picture of the second term as turbulent eddies picking up quantityξ

at a lower position, and transporting it to a higher level. This view of the second term in relation 2.45 has led to the
expressioneddy-correlation-method, when this relation 2.45 is used to estimate mean values of vertical fluxes.

One canin principleestimate vertical convective fluxes via direct applicationof relation 2.45 to measured datasets.
Nevertheless straightforward integration of instantaneous fluxes will not give a reliable estimate for the mean
convective flux. There is a basic problem, which prevents relation 2.45 from being of direct use. This problem,
which we will call theeddy-correlation problem, is caused by the immeasurability of mean vertical velocityw.
In practical situations the mean vertical velocity is small(∼ 0.1 mm/s), but not exactly zero. We introduce the
following notation:

Fm(ξ) ≡wξ

F f (ξ) ≡w′ξ′

β(ξ) ≡w′ξ′

ξ
=

F f (ξ)

ξ
(2.46)

Quantityβ(ξ), which has dimension m/s, is called thepushing velocityof quantityξ. The pushing velocity gives
the velocity with which quantityξ travels relative to the local mean vertical velocity.

In indifferent situations, i.e. quantityξ is not exchanged with the surface, the two termsFm(ξ) and F f (ξ) in
the flux will cancel (see figure 2.5 for a situation close to indifference with a small flux going off the surface).
Consequently we see that the termFm(ξ) is equally important as the termF f (ξ). In such situations the mean vertical
velocity is cancelled by the pushing velocity of quantityξ (this was pointed out for CO2-fluxes by Leuning et al.
(1982)). We will calculate an indirect method to estimate the mean vertical velocityw in an atmospheric boundary
layer. Here ”indirect” means ”via a set of fluctuation termsF f (ξi) of quantitiesξi”. The resulting expression will
be combined with relation 2.45 for mean vertical fluxes. The best known article on this field has been written by
Webb et al. (1980). Inclusion of a mean vertical velocity in estimates for mean vertical fluxes is therefore called the
Webb-correction. In our study we will extend Webb’s relations to include pressure fluctuations. Flux termFm(ξ)
is just one of the two terms in the expression for the flux and can be of the same order as termF f (ξ). Therefore
we prefer to call flux termFm(ξ) theWebb term in stead of the ”Webb correction”. The importance of a non-zero
mean vertical velocity was pointed out on incorrect groundsby Jones and Smith (1978) (who acknowledge their
error later (Smith and Jones, 1979)), and by Brook (1978). Their assumption that there is no net mass flux was
shown to be incorrect by Webb et al. (1980), Leuning et al. (1982), Webb (1982), Nicholls and Smith (1982) and
Businger (1982). Without any justification Lloyd et al. (1984) subtract the mean velocity contribution from their
definition of their surface fluxes, and refer to Webb et al for ”some small corrections”. The essence of Webb’s
correction is just to include the term, which Lloyd et al eliminated from their definition. It is peculiar to notice that
in recent literature some researchers still omit the Webb term (Kaimal, 1968).

The mean vertical velocity consists of three terms: an evaporation term, a heat-flux term and a friction term. These
three terms arise from the following mechanisms (the three mechanisms of mean vertical velocity generation are
schematically drawn in figure 2.4):

• Heat flux induced mean vertical velocity: When there is vertical transport of heat from the surface into
the atmospheric boundary layer, then there is a mechanism ofcompact blobs of cool air going down, and
of expanded blobs (with the same mass) of warm air going up. Wesee that exchange of heat at the surface
is directly coupled with the expansion of air at the surface.This means that, at the surface, there is a net
creation of volume, which is the origin of a net vertical velocity.

• Evaporation induced mean vertical velocity: Liquid water can evaporate at the surface. Since gaseous
water takes three orders of magnitude more space per unit of mass than liquid water, evaporating water is
effectively a source of gas at the ground. When 6 millimeterswater evaporate in a day, then 6 meters of pure
water vapour are ”created”, and the atmosphere is lifted up 6m. To satisfy continuity, this water condensates
at a higher level in the atmosphere, from where it will be sentback to the surface in its compact liquid form
during rain.

• Surface friction induced mean vertical velocity: Deceleration of air by friction at the surface induces
a negative vertical velocity. When a rough surface forces a blob of air to give up part of its horizontal
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momentum to that surface, then the velocity decreases. The pressure in that blob will increase, leading
to compression. The presence of a horizontal momentum flux indicates that the just described process of
blobs transfering horizontal momentum is systematic. We see that a horizontal momentum flux induced by
roughness gives a sink of volume at the surface.

The assumption that there is no net transport of dry air will give us sufficient tools to express the mean vertical
velocity in terms of fluctuations of the density of dry air. Tofind an expression for these dry air density fluctua-
tions, we will use standard thermodynamics of ideal gasses.When this will have been done, then we can find an
expression for the mean vertical velocity. The resulting expression for the mean vertical velocity will be used to
estimate surface fluxes of arbitrary quantityξ. In particular, we will apply the results of our study to the fluxes of
heat, water vapour and momentum.

Before Webb’s famous article was published, many scientists had assumed that there was no vertical velocity at
all (Robinson, 1951, see). Others assumed that there was a small velocity associated with heat transfer, but no
mass-flux related velocity component (Kohlsche, 1964, see).

5
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v

|u|

T+ T

v+ v

|u|

T+ T

v+ v

|u|- |u| T+ T

v+ v

|u|- |u|

Figure 2.4: Induction of mean vertical velocity via exchange with the surface of heat, water vapour and horizontal
momentum. In this example cold dry air (1) with a relatively high velocity approaches the surface (2). When the
air absorbs heat, it will expand (3). The evaporation of water into the air gives an increase in volume and hence
a vertical velocity (4). When the air looses part of its horizontal momentum (5), the pressure will increase, and
consequently the volume will decrease, giving a negative vertical velocity. The air (6) leaves the surface relatively
warm, wet and with low velocity (7).
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2.5.2 Mean vertical velocity in the transition layer

Dry air does neither dissolve in the surface, nor does it evaporate. This implies that there is no surface flux of
dry air (density̺ d) and therefore neither a flux of dry air at the top of the transition layer. This observation gives
sufficient grip to estimate the mean vertical velocity at thetop of the transition layer, and consequently estimate
surface fluxes. With this assumption and a Reynolds-decomposition of the net vertical flux of dry air, we find an
expression for the mean vertical velocity at the top of the transition layer:

0= w̺d = w̺a+w′̺′d ⇒w= −
w′̺′d
̺d
= −β(̺d) (2.47)

The constant-flux character of the transition layer guarantees that this velocity represents the mean vertical velocity
throughout the whole transition layer.

We see that the mean vertical velocity equals minus the pushing velocity (defined in relation 2.46) of the exchange
of dry air constituent. This means that a mean vertical velocity compensates turbulent transport of dry air, which
is conform our assumption of no net dry air flux.

2.5.3 Fluctuations in dry air density

In this subsection we will construct an expression for the fluctuations in dry air density, as function of fluctuations
in water vapour density, temperature, velocity and pressure. The analysis is still limited to the transition layer. We
start with the equation of state ofN moles of a mixture of ideal gasses with pressurep, volumeV, temperatureT.
R is the constant of Stefan-Boltzmann.

pV= NRT (2.48)

The number of moles of gas in the mixture per volume can be found via partial densities̺ i and mole-massesmi

for the contributing gasses:

N
V
=

∑

i

̺i

mi
(2.49)

According to Dalton’s law we can use partial densities̺i to construct the pressure of a gas mixture by superposition
of partial pressures from all constituent gasses (substitute N/V from relation 2.49 for the partial densities into
equation of state 2.48):

p
RT
=

∑

i

Ni

V
=

∑

i

̺i

mi
=
̺d

ma
+
̺v

mv
(2.50)

where the last equality follows from restriction of the gas-mixture to a combination of dry air (density̺d and
mole-massma) and water vapour (density̺v and mole-massmv). From all gasses, which evaporate at the surface,
water evaporates at by far the largest rate. Therefore, in the derivation of the mean vertical velocity we may neglect
the evaporation of other gasses like CO2.

We now introduce the Reynolds-decomposition of temperatureT, pressurep and of partial densities̺d of dry air
and̺v of water vapour:

̺d =̺a+̺
′
d (2.51)

̺v =̺v+̺
′
v (2.52)

p=p+ p′ (2.53)

T =T +T′ ⇒ 1
T
∼ 1

T

1− T′

T

 (2.54)

where the last step in decomposition 2.54 for temperature isfound via Taylor’s expansion up to first order in
temperature fluctuations.
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We take the mean value of equation of state 2.50 of wet air. Theresulting equation is then subtracted from
relation 2.50, which gives us a relation between the fluctuating contributions to the equation of state. With use of
decompositions 2.51, 2.52, 2.53 and 2.54 we find (up to first order in temperature fluctuations):

̺a
ma
+
̺v
mv
=

p

RT
(2.55)

̺′d
ma
+
̺′v
mv
=

p

RT


p′

p
− T′

T

 (2.56)

In relation 2.55 we have made use of the following assumption:

p′T′

pT
<< 1 (2.57)

When we substitute the right hand side of relation 2.55 into relation 2.56, then we find the following relation for
the fluctuating part of the density of dry air:

−
̺′d
̺a
= µσ

̺′v
̺v
+ (1+µσ)


T′

T
− p′

p

 (2.58)

whereµ is the ratio of the mole-masses of dry air and water vapour andσ gives the mixing ratio of water vapour
and dry air:

µ ≡ma

mv
∼ 1.6 (2.59)

σ ≡̺v
̺a
∼ 0.015 (2.60)

2.5.4 Pressure fluctuations

To gain better insight into the importance of pressure-fluctuations, we assume that the flow can be considered to be
inviscid, and that the velocity fluctuations are laminar disturbances on the mean flow field. With these restrictions
on the wind field, we can relate pressure fluctuations to velocity fluctuations via Bernoulli’s law:

p− p0 =
1
2
̺|~u|2 (2.61)

With a Reynolds-decomposition of both pressure, density and velocity we find the following relation for the fluc-
tuating pressure:

p′ = −̺ · |~u| · |~u|′− 1
2
̺′ |~u|

2
(2.62)

where̺ is the density of wet air:

̺ ≡ ̺d+̺v (2.63)

In atmospheric boundary flow one usually takes a frame of reference such that the direction of theu-component of
velocity is along the mean flow. In such a frame of reference the length of the velocity vector is therefore given by:

|~u| =
(u+u′)2

+v′ 2+w′ 2
0.5

(2.64)

=u

1+2
u′

u
+

u′ 2
+v′ 2+w′ 2

u2


0.5

(2.65)

∼u
1+

u′

u

 (2.66)

where the last equality follows by first order Taylor’s expansion. We see from relation 2.66 that only fluctuations
in the mean flow direction contribute to the fluctuation in thelength of the velocity. This is consistent with the
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observation that lateral velocity modifications (i.e. perpendicular to the mean flow) merely tilt the velocity without
changing its length.

With relation 2.66 for the fluctuating part of the length of the velocity vector we can simplify relation 2.62 for the
fluctuating pressure to:

p′ =− (̺a+̺v) uu′− 1
2

(̺′d+̺
′
v) u2

=−kp

2
u′

u
+
̺′d+̺

′
v

̺a+̺v

 (2.67)

where pressure coefficientk is defined by:

k≡
1
2̺u2

p
(2.68)

When combined with relation 2.67 for the fluctuating pressure, relation 2.58 for the fluctuating density of dry air
can be written as:

−
̺′d
̺a
=
σ

[
µ(1+σ)+k(1+µσ)

]

1+σ+k(1+µσ)

̺′v
̺v
+

(1+σ)(1+µσ)
1+σ+k(1+µσ)


T′

T
+2k

u′

u

 (2.69)

Up to first order inσ andk relation 2.69 is:

−
̺′d
̺a
= (1+µσ+k)

T′

T
+µσ

̺′v
̺v
+2k

u′

u
(2.70)

Bernoulli’s law is in fact invalid in vortical, or even turbulent, flow, but the weak intensity of most atmospheric
turbulence, when compared with the mean velocity, makes that with the analysis in this subsection we have at least
an estimate for the order of magnitude of pressure effects. We may assume that pressure coefficientk is fixed by
relation 2.68 up to a constant factor, which is or the order 1.

2.5.5 Practical estimation of convective fluxes in the transition layer

In expression 2.47 for the mean vertical velocity we can substitute relation 2.70 for the fluctuating part of the
density of dry air. This gives the following relation for themean vertical velocity in the constant flux layer:

w= (1+µσ+k)
w′T′

T
+µσ

w′̺′v
̺v
+2k

w′u′

u
(2.71)

One directly recognizes in relation 2.71 for the mean vertical velocity three contributions: The first term gives
the influence of the source of volume at the surface connectedwith temperature exchange. The second term in
relation 2.71 gives the effect of source of volume introduced by evaporation of water. The third term gives the
influence of net air compression, when horizontal velocity is transfered to the surface. These three effects are
schematically presented in figure 2.4.

The mean vertical velocity is a weighted sum of the pushing velocities connected with the transfers of heat, water
vapour and of horizontal momentum. The weighted contributions will be called thebulk pushing velocitiesB(ξ):

B(T) ≡(1+µσ+k)
w′T′

T
(2.72)

B(̺v) ≡µσ
w′̺′v
̺v

(2.73)

B(u) ≡2k
w′u′

u
(2.74)
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With neglection of flux dependences on momentum transfer (k= 0) our relation 2.71 for the mean vertical velocity
reduces to relation 14 in Webb et al. (1980)’s article:

w= (1+µσ)
w′T′

T
+µσ

w′̺′v
̺v

(2.75)

The mean vertical velocity from relation 2.71 can be used in relation 2.45 for the mean vertical convective flux of
physical quantityξ at the top of the transition layer:

Jcz(ξ) =wξ = wξ+w′ξ′

=ξ


w′ξ′

ξ
+ (1+µσ+k)

w′T′

T
+µσ

w′̺′v
̺v
+2k

w′u′

u

 (2.76)

2.5.6 Fluxes of species, sensible heat and momentum

2.5.6.1 Species

According to relation 2.42 the relation between measurements at the top of the transition layer and the actual
surface flux of species is fully determined by the convectiveterm. Therefore relation 2.76 gives the correct inter-
pretation of eddycorrelation measurements on the exchangeof quantityξ between the surface and the atmosphere:

F(ξ) = ξ


w′ξ′

ξ
+ (1+µσ+k)

w′T′

T
+µσ

w′̺′v
̺v
+2k

w′u′

u

 (2.77)

The measurement height is still limited to the unpractical distance of about 0.5 cm above the surface, since the
analysis was limited to the transition layer. Later in this study the results of this section will be extended to more
practical measurement heights.

With neglection of pressure fluctuations (k = 0) our relation 2.77 for the flux of quantityξ is compatible with
Webb’s relation 24:

F(ξ) = w′ξ′ + (1+µσ)
w′T′

T
ξ+µσ

w′̺′v
̺v
ξ (2.78)

In practical situations the mean vertical velocity is oftendominated by the contribution related to the heat flux.
When, in such a situation, we neglect the termµσ with respect to 1, then we find a good estimate for the flux of
quantityξ to be:

F(ξ) = wξ = w′ξ′ +
w′T′

T
ξ = F f (ξ)+β(T)ξ =

β(ξ)+β(T)
 ξ (2.79)

In other words: the pushing velocity of temperature pushes the mean concentration of quantityξ in vertical direc-
tion away from the surface, giving a contribution to the flux of ξ.

If ξ is indifferent, and is consequently not exchanged with the surface, then there is an equilibrium between the
pushing velocity ofξ and the pushing velocity of temperature. Via rough estimate2.79 for the flux ofξ we find:

F(ξ) = 0 ⇒ β(ξ) =
w′ξ′

ξ
= −β(T) = −w′T′

T
(2.80)

In words this relation tells us that when the heat flux pushes aquantity, which is indifferent for the surface, to
higher levels, then that quantity will push itself back intoplace. In such cases the fluctuation contributionF f (ξ)
can become negative, even when total fluxF(ξ) is positive (see figure 2.5).
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Figure 2.5: Flux contributions for a situation with a smallξ-flux away from the surface. The fluctuation termF f (ξ)
is negative, while the total fluxF(ξ) is positive.

2.5.6.2 Evaporation

A relation for the evaporation of water is directly found from relation 2.77, when we apply this relation to the flux
of water vapour̺ v:

E
≃ F(̺v)

 = ̺v
(1+µσ+k)

w′T′

T
+ (1+µσ)

w′̺′v
̺v
+ 2k

w′u′

u

 (2.81)

The water involved in the vapour flux is evaporated at the surface. The heat, which is necessary to evaporate the
liquid water at the surface, is called thelatent heat flux. The latent heat flux is given by the following relation:

Latent heat flux = λE (2.82)

whereλ is the evaporation heat of water.

2.5.6.3 Momentum

To apply the currently developed theory to the momentum flux we have to carefully manage all the terms in
relation 2.44. We neglect the third order correlation term.We arrive at the following expression:

τ =−
w

{
̺u+̺′u′

}
+̺w′u′+u̺′w′

 (2.83)

=−
w̺u+̺w′u′+u̺′w′

 (2.84)

=−
̺w′u′+u F(̺)

 (2.85)

In relation 2.84 the term̺′u′ is neglected compared with the term̺u. The mass fluxF(̺) in relation 2.85 is fully
determined by evaporationE (the surface does not evaporate dry air or soil).

When we substitute relation 2.81 for the evaporation into relation 2.85 for the momentum transfer, then we arrive
at the following expression (up to first order inσ andk):

τ = −̺u


w′u′

u
+ σ

w′T′

T
+ σ

w′̺′v
̺v

 (2.86)
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2.5.6.4 Sensible heat

In relation 2.43 for the sensible heat two types of terms can be found: one type associated with vertical convection
of enthalpy (this contribution is calledHenth), the other with vertical convection of kinetic energy (called Hkin):

H = ̺dcpdTw
∣∣∣
δz
+ ̺vcpvTw

∣∣∣
δz
− ̺vcpvTwv

∣∣∣
0︸                                              ︷︷                                              ︸

Henth

+
1
2
̺|~u|2w

∣∣∣∣
δz︸       ︷︷       ︸

Hkin

(2.87)

With use of a Reynolds decomposition of the mass-flux and temperature we can write the enthalpy-flux term as:

Henth=
cpd

(
̺dwT + (̺dw)′T′

)
+cpv

(
̺vwT + (̺vw)′T′

)
δz
−

cpv

(
̺vwv T + (̺vwv)′T′

)
0

(2.88)

We substitute the following observations in relation 2.88 for Henth:

• In the laminar sublayer the fluctuationsξ′ of any quantityξ are dominated by mean valuesξ:

ξ′
∣∣∣
z=0 = 0 ⇒ w′ξ′

∣∣∣
z=0 = 0 (2.89)

With this assumption we can eliminate the last term.

• The temperature of the transition layer differs from the surface temperature by an amount∆Ts. When we
combine this assumption with the old assumption that the mean mass flux of water vapour is constant through
the transition layer, then we can combine the third and the fifth term:

cpv̺vw T

δz
−

cpv̺vw T


0
= cpv̺vw∆Ts (2.90)

• The first term vanishes by virtue of the assumption that thereis no net dry air flux.

With these observations the integrated energy budget equation gives the following relation for the enthalpy con-
vection contribution to the sensible heat flux (notice that we did not assume zero mean vertical velocity!):

Henth= cpd T′ (w̺d)′
∣∣∣
δz
+cpv T′ (w̺v)′

∣∣∣
δz
+cpv̺vw∆Ts (2.91)

The specific heat of air is approximately given by the following relation taken from Nicholls and Smith (1982):

cp,wet air= cpd(1+0.84q) (2.92)

In our study we will assume that this dependency of the specific heat of wet air on the specific humidity is neg-
ligible, and assume thatcp (without reference to a gas) is constant. With this assumption, relation 2.91 forHenth

reduces to:

Henth=cp T′ (w̺)′
∣∣∣
δz
+cp̺vw∆Ts (2.93)

=cp T ̺



(
1+σ

∆Ts

T

)
w′T′

T
+w
̺′T′

T
+σ
∆Ts

T

w′̺′v
̺v


δz

(2.94)

In the second equality we have neglected third order correlations. The second term in this relation can be neglected
in comparison with the first term. This is easily seen via a consideration of the respective orders of magnitude,
indicated with symbolO (estimates are taken from Kohlsche (1964)):

O

|w′|
w

 ≃103 to 104 (2.95)

O

|T′|
T

 ≃10−3 to 10−4 (2.96)

O

|̺′|
̺

 ≃10−3 (2.97)
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and for the temperature jump at the surface we take

O

|∆Ts|

T

 ≃10−1 to 10−3 (2.98)

With these estimates we find (symbolR(ξ,η) denotes the normalized correlation function of quantitiesξ andη):

O


w̺′T′

̺w′T′

 =
O

 |̺′ |
̺



O
 |w′ |

w


R(̺,T)
R(w,T)

=(10−6 to 10−7)
R(̺,T)
R(w,T)

(2.99)

We can now derive a criterion for the density/temperature term in relation 2.94 being significant compared with
the velocity/temperature term. Let us assume that the density/temperature term has to be taken into account, when
it has a value, which is more than one percent of the velocity/temperature term. From the order of magnitude
estimates we see that this requires that the correlation coefficient of density with temperature should be at least
four orders of magnitude larger than the correlation coefficient of vertical velocity with temperature. In general
this condition will not be met. Therefore we have proved our hypothesis and we can neglect the second term in
relation 2.94.

The terms involving the temperature jump across the surfacecan be neglected via a similar reasoning. Only in
extreme conditions these terms can become relevant. Consequently relation 2.94 can be written as:

Henth= cp̺w′T′
∣∣∣
δz

(2.100)

It is important to recognize from this relation, that there is no Webb-term involved in the contribution to the sensible
heat flux from enthalpy convection! This is the most classic relation to have been used for flux estimation (e.g.by
Wesely et al. (1970)).

The term involving convection of kinetic energy is related to measurable quantities as follows: Take the mean
velocity along the first coordinate (we have done this already in the conversion of pressure fluctuations to velocity
fluctuations). The length of the velocity vector is then onlymodified by fluctuations in mean flow direction. This
gives:

|~u|2 =U
2
+u′2 (2.101)

(|~u|2)′ ξ′ =2U u′ξ′ (2.102)

With these expressions we can expandHkin as:

Hkin =
1
2

E
U

2
+u′2

+̺U w′u′+wU ̺′u′ (2.103)

The last term can be neglected compared with the middle term via relations 2.95 and 2.97. The first term gives the
vertical convection of kinetic energy (of both mean and turbulent flow fields) driven by evaporation. The second
term gives the loss of kinetic energy via friction with the surface.

In total the sensible heat flux can be related to measurable quantities at the top of the transition layer via:

H =

{
cp̺w′T′+

1
2

E
U

2
+u′2

+̺U w′u′
}

δz
(2.104)

We will now estimate the relative importance of these three contributions. We use the following characteristic
values:cp ∼ 1000 J kg−1K−1, ̺ ∼ 1 kg m−3, w′ ∼ u′ ∼ 1 m/s,T′ ∼ 0.5 oC, R(w,T) ∼ 0.5, E ∼ 6 mm per 12 hours,
U ∼ 1 m/s,R(w,u) ∼ −0.3. With these values we find:

Henth∼ 250 W m−2 (2.105)

1
2

E
U

2
+u′2

 ∼ 1.4 ·10−4 W m−2 (2.106)

̺U w′u′ ∼ −0.3 W m−2 (2.107)

From these estimates it is clear that, at the top of the transition layer, the sensible heat flux is sufficiently accurately
estimated by the enthalpy flux.
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2.6 Common practice in eddy-correlation

Many researchers use the following definition of the sensible heat flux (Kohlsche, 1964, see):

Common definition H ≡F(̺cpT) ∼ cpF(̺T)

=cp
̺wT +̺w′T′+w̺′T′+T w′̺′+̺′w′T′

 (2.108)

At the end of the former subsection we have already seen that we can neglect the third and the fifth terms in this
relation:

H =cp
w̺T +̺w′T′+T ̺′w′

 (2.109)

=cp
̺w′T′+T F(̺)

 (2.110)

The second term in this relation measures the flux of enthalpyassociated with the net vertical mass flux (which
equals evaporationE = F(̺)), with zero Kelvin as reference temperature. This counts all thermal energy in the
water molecules. Such a contribution by the evaporation to the sensible heat is not very realistic. Consider for
example a situation in which all radiation, which is received by the surface, is used to evaporate water (no soil
heat flux: the surface is a thermally isolated). Assume that there are no temperature fluctuations. In this case
there should not be a sensible heat flux, because our energy balance is already closed. Nevertheless, we find
a contribution toH via relation 2.110. The necessity to make a specific choice for the reference temperature
already tells the incorrectness of this expression. The difference between this expression and our expression 2.100
is relatively small, which is seen as follows: Follow the analysis of the momentum flux in section 2.5.6.3 and
substitute relation 2.81 for the evaporation into relation2.110. We find:

H = cp̺T

(1+σ)
w′T′

T
+ σ

w′̺′v
̺v

 (2.111)

Coefficientσ is of the order of 0.015. This implies that the difference between (disputable)relation 2.111 and
(correct) relation 2.100 is only small.

One way to eliminate the influence of enthalpy flux contribution measured from zero Kelvin is to assert that there is
no vertical net flux of mass. This incorrect reasoning (thereis a net mass flux and it equals evaporation) is presented
by Robinson (1951, page 65), Bernhardt (1961), Businger andDeardorff (1967), Bakan (1978) and Swinbank
(1951, page 142) (he is aware of the possible presence of a mean vertical velocity and couples the elimination of
the vertical mass flux to the necessity to make his analysis independent from the value of the reference enthalpy).

Other researchers try to brush absolute enthalpies under the carpet, by invoking a mysterious ”reference tempera-
ture” T0. Without any reference to its origin one subtracts thisT0, which is usually taken around the mean surface
temperature, from all temperatures. With the inclusion of this reference temperature, the unwanted effects are
reduced to insignificance, which clears the conscience. This strategy is adopted by e.g. Montgomery (1948, 1951,
1954, page 270), Businger (1982, page 1890), Kraus (1969, page 9) and Webb et al. (1980, page 93). Frank and
Emmitt (1981) simply put the reference temperature at 0 Kelvin and adopt a wrong expression for the mass flux.
It is no surprise that their findings predict differences in fluxes from other estimation methods of 25 percent. The
”reference temperature escape” from absolute enthalpies is pointed out to be conceptually wrong by e.g. Sun et al.
(1995).

Some researchers encounter problems when they neglect terms in relation 2.109 (which itself is incorrect). We
will now show that the three terms in relation 2.109 are of comparable absolute value. The reason why we study
an incorrect relation is that many discussions are still concerned with these details.

H =cp
w̺T +̺w′T′+T ̺′w′

 (2.112)

=cp
̺w′T′+T F(̺)

 (2.113)

=cp̺T

(1+σ)
w′T′

T
+ σ

w′̺′v
̺v

 (2.114)

From relation 2.113 it is obvious that if the air is dry (and asa consequence there is no net mass flux) then
relation 2.114 for the heat flux reduces to:

H(dry air)= ̺cp w′T′ (2.115)

27



We will now show that the three terms in expression 2.112 for the sensible heat flux are equally important:

cp w̺T(dry air)= cp̺w′T′

cp̺w′T′(dry air)= cp̺w′T′

cp T ̺′w′(dry air)=−cp̺w′T′

The first equality is made via relation 2.75 for the mean vertical velocity for dry air. The third equality is con-
structed via the observation that, via the equation of state, we can express density fluctuations in terms of tem-
perature fluctuations. Fluctuations in pressure are neglected when compared with fluctuations in temperature and
density. Pressure fluctuations are supposed to induce very quick motions in the fluid, which almost immediatelly
level out the differences in pressure. Consequently the fluid has no time to build up pressure fluctuations of any
importance. This assumption that pressure fluctuations arenegligible is called theBoussinesq approximation. With
this approximation we find:

̺′

̺
≃ −T′

T
(2.116)

Three (fundamentally disputable) assumptions about the flow, which are often made when one estimates the heat
flux from eddy-correlation measurements, lead to serious mis-estimations of the heat flux:

• When the density of air is mistakenly considered to be constant (but the mean vertical velocity is correctly
modelled), then relation 2.77 for the flux would have given us:

̺′ = 0 : assumption by mistake ⇒ H(dry air)= 2̺cp w′T′

This relation differs by a factor of 2 from relation 2.115. Weconclude that inclusion of density fluctuations
in calculations on heat exchange is essential.

• When one neglects the mean vertical velocity in the estimation of the heat flux via eddy correlation (but
correctly accounts for density fluctuations), then one willdraw the unrealistic conclusion that there is no
heat fluxby definition:

w= 0 : assumption by mistake ⇒ H(dry air)= 0

• The one who will simulaneously forget to account both for density fluctuations and for the mean vertical
velocity will make a correct estimation of the heat flux in dryair. Such a researcher is simultaneously
neglecting two contributions to the flux, which both are of the same order as the total flux. His luck and
success has its origin in the cancellation of the two terms, which he has neglected:

̺′ = 0 and w= 0 : assumptions by mistake ⇒ H(dry air)= ̺cp w′T′

2.7 The stationary homogeneous constant flux layer

The results of section 2.4 are impractical since they are derived for measurements at the top of the transition layer,
which is about 0.5 cm from the ground. We will now extend the relations from the former section to more realistic
measurement height. We will restrict the analysis to situations satisfying the following conditions:

• Stationary bulk temperature. If the bulk temperature of the portion of air below the sensor(s) changes
during the experiment, then the density will change. The change in mass of the air below the sensor will
induce a net flux of dry air through the sensor(s).

• Stationary bulk specific humidity. If the boundary layer builds up water content, then water vapour re-
places dry air constituent, which consequently has to move in upward direction through the sensor.

• Stationary bulk pressure. With an external change in bulk-pressure the density of dryair below the sensor
will be modified, resulting in a net vertical flux of dry air through the sensor.
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• Stationary bulk velocity. A change in bulk-velocity will influence the density of dry air below the sensor.
This gives a net vertical flux of dry air through the sensor.

Homogeneity is assumed both for the surface and for the turbulent flow above it (up to measurement height). For
the turbulent flow in the atmospheric boundary layer, homogeneity is imposed in a statistical sense: from place to
place the distribution of turbulent motions measured over measurement interval∆t must be constant. Among others
this assumption implies that there are no non-stochastic eddies. Permanent local updraughts are excluded from the
analysis in this section. For the fast, small scale structures (with timescale much faster than∆t) the homogeneity
assumption means that the high wavenumber range of the spectrum must be homogeneous. When the surface is
homogeneous, this seems a good assumption. Coherent structures with a lengthscale much larger than the distance
made by the mean velocity during measurement interval∆t will appear in the measurement as a contribution to the
mean velocity, and consequently have a homogeneous appearance. Difficulties may be caused by structures with
a timescale comparable with∆t. The effects of such eddies are not statistically averaged during the measurement
interval. In practice the velocity spectrum seldomly has a spectral gap at cycle-time∆t. Therefore in most cases
there will be motions with timescale comparable to∆t. In this section we will assume that there is a spectral
gap at∆t. In practice one has to keep in mind that this may not be a validassumption! In a situation, which is
homogeneous in the way just described, there is no mean contribution to the budget equations from convective or
other fluxes via the sides of the virtual box.

In this homogeneous constant flux layer, integration of the continuity equation can, as was done for the transition
layer, be restricted to integration over the vertical coordinate.

The assumption of a constant flux implies that storage and creation effects are negligible. The total flux is domi-
nated by convective and other fluxes (like radiation or conduction) and their sum does not vary with height. The
ratio of convective and other fluxes may vary with height.

Storage and creation can be neglected when the measurement height is too low to store or create a significant
amount ofξ in the atmospheric layer between the sensor and the surface.The height up to which this is a good
assumption can be estimated by comparison of the respectiveterms in the budget equations. A second condition
which allows for the neglection of storage is stationarity:at the end of the measurement the average characteristics
of the air between the eddycorrelator and the ground are the same as at the start of the experiment.

In contrast with the transition layer, the vertical gradient of physical quantities in the constant flux layer need not
be constant with height.

The budget equation for species (and in particular of water vapour) in the constant flux layer equals the budget
equation for the transition layer. Therefore relations 2.42 and 2.77 provide the correct relations between measure-
ments at the top of the homogeneous constant flux layer and thesurface fluxes. Relation 2.81 gives the correspond-
ing expression for evaporation. Similarly, relation 2.86 gives the relation for the vertical transport of horizontal
momentum.

In expression 2.38 for the sensible heat flux the only terms which are significant in the stationary, homogeneous
constant flux layer are the ones associated with loss via the top and emission from the ground:

H =
 ~Jr +̺d(hd+φd+ |~ud|2/2)~ud+̺v(hv+φv+ |~uv|2/2)~uv


δz

−
~Jr +̺d(hd+φd+ |~ud|2/2)~ud+̺v(hv+φv+ |~uv|2/2)~uv


0

(2.117)

With only gravitational potential energy involved this relation reduces to:

H = cp̺w′T′
∣∣∣
δz
+ Jrz

∣∣∣
δz
− Jrz

∣∣∣
0+cpE(T |δz− T |0)+E

gδz+
1
2

(U
2
+u′2)

∣∣∣∣∣
δz

+ ̺U w′u′
∣∣∣
δz

(2.118)

In practical situations the only significant terms are thoseassociated with enthalpy convection and with radiation
divergence:

H ≃ cp̺w′T′
∣∣∣
δz
+ Jrz

∣∣∣
δz
− Jrz

∣∣∣
0 (2.119)
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Chapter 3

Practice

Introduction

In chapter 2 we related surface fluxes of sensible heat, watervapour, momentum and scalar densities to measurable
quantities at finite height. In the current chapter we will show which way to follow when one is interpreting
eddy-correlation measurements in terms of these surface fluxes. Mean values and covariances have to be estimated
from collected time-series. On top of this many correctionsare involved. Some of these corrections refer to the
concept of eddy-correlation. Examples of this type of correction are tilt-correction for known misalignment of
the setup, non-zero mean vertical velocity, storage of relevant quantities in the air below the sensor and trend-
correction. Besides conceptual corrections there are manyinstrument-specific corrections, mostly associated with
non-ideal response. Examples of this type of correction are”tilt-correction” to enforce expected symmetries on
the measured flow, humidity- and side-windcorrection for sonic temperature, frequency-response correction for
structures smaller or faster than the sensors and oxygen-correction for humidity. In subsequent sections we will
address these steps in the analysis of EC-signals. In the final section to this chapter we will make error-estimates
for the mean values and for the surface-fluxes.

3.1 Recipe for datareduction

The following sequence of steps is made to convert sets of rawmeasured eddy-covariance data into flux-estimates
and associated tolerance levels:

1. Before any record of measured data is touched, correctionmatrix W̄̄dist for flow distortion by relatively small
ellipsoidal obstacles can be calculated via the procedure given in section 3.2.

2. Raw voltages and bytes are read from file. Known constant delays between the channels are compensated
by appropriate shifted reading of the sequences.

3. Synchronized raw data is converted from voltages and bytes into physical quantities with use of known
calibration functions. In this calibration step the sonic velocity is corrected for velocity bias following the
procedure given in section 3.3.1 and the sonic temperature estimates are corrected for side-wind via the
procedure in section 3.3.2. In the second iteration of this recipe, tiltcorrections are applied to the raw data as
part of the calibration. Inbothcalibration iterations all velocity vectors are correctedfor flow-distortion via
matrix W̄̄dist.

4. Provisional mean quantities are calculated via the procedure in section 3.4.

5. Slow measurements of a wet bulb system are used to assess whether the optical hygrometer suffers from
calibration drift. The procedure in section 3.3.3 is used tocorrect for this drift.
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6. For each run the mean and (co-)variances of the calibratedquantities are estimated via the procedure in
section 3.4.

7. Variances and covariances are corrected for linear additive trends following the procedure of section 3.5.

8. The effects of mis-alignment of the set-up on the mean quantities and on the (co-)variances is corrected for
via either of the following tilt-corrections:

(a) Yaw, pitch and roll-corrections according to the procedures outlined in sections 3.6.1, 3.6.2 and 3.6.3.
The assumptions are that the mean velocity per run cannot have a vertical component and that lateral
velocity correlations must vanish.

(b) The Planar Fit Method presented in section 3.6.4. This method assumes that the set-up has a stationary
misalignment. This misalignment is estimated from the collection of run-mean velocity vectors. The
planar fit method can be extended to effectively reproduce the results of the triple-tilt-correction in the
former suggestion, with the advantage that now the angles ofdifferent runs and of different set-ups are
comparable, which was not the case with the yaw, pitch and roll-angles of the triple tilt..

Both tilt-corrections involve simple matrix-multiplications on the mean quantities and on the (co-)variances.

9. Now that the tilt-angles are known, all previous steps (except for the first two steps) in this data-reduction
recipe are repeated, but now the tilt-corrections are carried out on the raw data. In this second iteration
tolerance estimates are generated for both mean quantitiesand for all (co-)variances using the method given
in section 3.11. To correctly perform tilt-corrections onewould have had to record all possible third- and
fourth-order correlations. Application of a second iteration eliminates the necessity for tilting of tolerances
of covariances, because the tilting is now performed on the raw data.

10. All mean values and (co-)variances which involve the sonic temperature are corrected for humidity effects
via the relations given in section 3.7. This correction is not applied to the raw data in the calibration-
process, because in practice the hygrometer may drop out forcertain samples or even during (short) periods.
Skipping the bad samples of the hygrometer will still permitfor the reliable estimation of mean humidity
and of covariances with humidity. Therefore humidity corrections which rely on these estimates can still be
used, whereas individual samples can no longer be corrected.

11. After correction of the sonic temperature for humidity,the mean sonic temperatureTs is compared with
the mean thermocouple temperatureTc. The sonic temperature relies on a single calibration constant: the
acoustic pathlength. A small error in the estimation of the acoustic pathlength can easily lead to a systematic
error in the sonic temperature of Kelvins. Possible errors in the estimate for the acoustic pathlength are
eliminated by mappingTs on Tc. This is done by multiplication of all factorsTs in the (co-)variances with
a factorTc/Ts:

Ts→ Tc ⇒ T′sx′→ T′sx′
Tc

Ts

(3.1)

The associated error∆l in acoustic pathlengthl is found via:

|∆l| ≃ 1
2

l
|∆T |
T

(3.2)

where|∆T | is the absolute difference betweenTs andTs, and whereT is either of the two mean temperature
estimates.

12. All (co-)variances involving humidity are corrected for oxygen sensitivity of the optical hygrometer via
the procedure given in section 3.8. The temperature estimates, which are used in the oxygen correction
procedure, were corrected for humidity in a previous step. This indicates that the relations for estimation
of temperature and of humidity are coupled and should therefore in principle be solved simultaneously. We
assume that our decoupled approach, which is first order in the errors involved, will provide sufficiently
accurate estimates when these errors are sufficiently small(corrections on corrections are considered to be
second order effects and consequently neglected).
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13. The Moore/Horst model presented in section 3.9 fitted with the Kaimal-model spectra are used to correct (co-
)variances for all types of frequency-response errors. Half of the absolute corrections which are made to the
covariances are quadratically added to the tolerance estimates which were already made for the covariances
(see section 3.9.1.9).

14. The Webb-velocity according to the relation presented in section 3.10 is added to the direct estimate for the
mean vertical velocity.

15. Surface fluxes are estimated from the mean values and (co-)variances at measurement heightδz via rela-
tions 2.42, 2.119 and 2.81):

F(̺ξ) = w′̺′
ξ

∣∣∣∣
δz
+ w ̺ξ

∣∣∣
δz

for scalarsξ with density̺ξ, e.g. water vapour:F(̺v) ≡ E

τ =−̺w′u′−u E for surface friction

H = cp̺w′T′
∣∣∣
δz
+ Jrz

∣∣∣
δz
− Jrz

∣∣∣
0 for sensible heat

Radiation divergence termsJrz

∣∣∣
δz

and Jrz

∣∣∣
0 should be available from additional peripheral measurements

conducted during each run.

16. Tolerance levels are estimated for the surface fluxes. Since both scalar fluxF(̺ξ) and surface frictionτ (and
notsensible heat fluxH!!) have a term dependent on mean velocityw, one should take care in incorporating
the tolerance ofw into the tolerance levels of the surface fluxes. Even when themean vertical velocity is
rotated out with a tilt-correction, then a statistical error in w remains. This error espresses how well one can
expect to eliminate the mean vertical velocity of other runswith the tilt-angles of this particular run. Here
the number of eddies plays a role: the largest turbulent structures will be horizontally oriented. This implies
that fluxes which depend on horizontal velocities (e.g. horizontal transport terms) will tend to have larger
tolerances than fluxes which depend on vertical velocity (the ground fluxes).

3.2 Flow distortion by small obstacles

Though it may seem a bit early in the datareduction process, we will start with the distortion of turbulent flows by
obstacles and how to compensate for this. The reasons are that the distortion matrix can be calculated even before
the measurement takes place and that the corrections involved influence other corrections in the datareduction
process (i.e. the tilt-corrections).

Most turbulence measurements are intrusive. This means that generally the setup (or the platform, the boom
or other apparatus) will induce systematic velocity errors. Generally such errors are attributed to tilt-errors and
accordingly processed. Wieringa (1980) has shown that the use of tilt-corrections to correct for flow-distortion can
cause severe errors in the estimates of fluxes.

For small obstacles Oost (1991) has made the following correction method: model the obstacle (plus its wake!) as a
3D ellipsoid and consider the flow around the obstacle as a time-varying homogeneous potential flow. For relatively
large eddies (when compared with the sizes of the obstacle) this assuption is assumed to be reasonable. The relation
between distorted and undistorted velocities is now a simple linear tensor-relation. The tensor can be calculated
straightforwardly from the classic analytic solution for potential flow around an ellipsoid by (Milne-Thomson,
1938). The possibility to have three unequal axes makes thismodel more general than the cylindre-correction
by Wyngaard (1981), which uses the same idea of time-varyinghomogeneous potential flow around the obstacle.

Correction matrixW̄̄dist, for an ellipsoid with semi-axes (b1,b2,b3) along the coordinate axes and for a measurement
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position (x1, x2, x3) (measured relative to the centre of the ellipsoid) is foundvia the following relations:

Wdist,i j =δi j

1+
b1b2b3

2−αi

∫ ∞
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dq

(b2
i +q)kq

− x j
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1

(b2
j +q)kλ

∂λ

∂xi
(3.3)
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This flow-distortion correction can only be correctly applied when the tilt-errors have been eliminated from the
measurements. Otherwise one will use the wrong position~x for the position of measurement in this flow distortion
correction (generally one will provide~x in a frame of reference which is supposed not to be tilted). For practical
problems we assume that both the yaw- and roll-corrections and the flow-distortion correction are small corrections,
such that their commutator can be neglected as a second ordereffect. This means that it is allowed to perform the
flow-distortion correction in the first calibration iteration in the recipe of datareduction, even though there has not
yet been any tilt-correction.

3.3 Calibration of the raw signals

The raw signals collected by the datalogging system has to becalibrated using the calibration relations established
in the laboratory prior to the field-experiment. To prevent X-talk between sensors and unnecessary uncertainties it
is best to apply these calibration relations on every sampleindividually. This as opposed to the use of calibration
relations linearized around the mean value for the interpretation of covariances.

To exploit the datalogging system to its maximum capacity, one should use analogue gain/offset-amplifiers to
map the range of the sensors onto the sampling range of the datalogger (usually± 10 Volt). The first step in the
processing of EC-data will be the compensation for gain and offset.

Calibrated samples should be validated by checking their values. Irrealistic quantities should be tagged as ’suspi-
cious’, and not be used in the estimation of mean and (co-)variances.

Three important calibrations should be carried out at calibration time:

• Velocity bias correction of sonic velocities.

• Side-wind correction of the temperature estimated via the sonic anemometer and

• Correction for calibration drift of optical humidity sensors.

Procedures to follow are:

3.3.1 Velocity bias correction for sonic

Sonic anemometers can suffer from systematic mis-estimation of the velocity (bias). Without proper correction
such persistent velocity contributions will be falsely attributed to a tilt-error in the setup. One should therefore
estimate the bias by placing the sonic in a closed box (zero velocity) and record its velocity estimate. This bias
should be subtracted from all velocity estimates. Researchers who use their own calibrations instead of factory
specifications may have already eliminated velocity bias intheir calibration relations.
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3.3.2 Side-wind correction of sonic temperature

Transmission timest1 (first firing) andt2 (return pulse in reversed direction) of two pulses are used to find the
component of the air-velocity in the direction along the axis through the transmitter/receiver couple. From these
two transmission times one estimates the so-calledsonic temperature Ts via the following relation (see Schotanus
et al. (1983), relation 4):

Ts≡
l2

4γR


1
t1
+

1
t2


2

(3.8)

wherel is the separation between transmitter and receiver, and where physical constantγR equals 403m2s−2K−1.
This relation gives correct temperature estimates when theair flow direction is along the acoustic path. When
velocity components normal to the acoustic path are involved, this relation has to be modified.

The acoustic pulses emitted by sonic anemometers go with thespeed of sound in a frame of reference that moves
with the air-flow. Consequently, the wavefront, which in themoving frame of reference has its bearing in the
direction of the axis from transmitter to receiver, will never arrive at the receiver (see figure 3.1). The firing of

Figure 3.1: Influence of lateral velocity on sonic pulse. On the left: this wavefront will not arrive at the receiver;
in the middle: the wavefront which will arrive at the receiver has an inclination and (on the right:) consequently a
lower velocity in the direction from transmitter to receiver.

the acoustic transmitter will have to follow an inclined bearing to reach the receiver. This results in an increase
of both transmission timest1 andt2, and consequently to underestimation of temperature. Schotanus et al. (1983)
have studied the relation between lateral windvn and temperature estimation using a sonic anemometer. From their
study we can derive a relation between sonic temperatureTs and a side-wind corrected estimate for the temperature
of dry air, Tdry:

Tdry = Ts+
v2

n

γR
(3.9)

For a single-path, vertically oriented sonic anemometer side-windvn is related to the velocity components via:

v2
n = u2

+v2 (3.10)

whereu andv represent the two lateral velocity components normal to theacoustic path. This correction can be
performed on all instantaneous data, since the required parametersu andv will be available for any sample with
valid Ts.
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Figure 3.2: Configuration of acoustic anemometer with one axis aligned with the vertical (model studied by Kris-
tensen and Fitzjarrald).

Figure 3.3: Acoustic paths of a 3D sonic anemometer with angleα specifying the deviation from the vertical ofall
threeacoustic paths. Note that the CSAT3 depicted here performs the side-wind correction internally.

For a sonic as shown in figure 3.2, with three orthogonal pathsof which one is vertically aligned, the relation is:

v2
n =

1
3

u2
+v2

+w2
+

1
2

(u+v)2
+w2
+

1
2

(u−v)2
=

 =
2
3

(u2
+v2
+w2) (3.11)

For small vertical velocities when compared with the horizontal velocities, this relation reduces to a relation dif-
fering from relation 3.10 by Schotanus et al. (1983) by a factor of 2/3.

For a sonic configured as in figure 3.3, with three acoustic paths~la, ~lb and~lc, which all have angleα with the
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vertical axis (α = 54.7o gives three perpendicular axes):

~la = l


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l
2
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2
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√
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(3.12)

the squared lateral velocity is the mean value of the squaredlateral velocities associated with these three axes:

v2
n =

1
3

v2
n,a+v2

n,b+v2
n,c



=
1
2

(1+cos2α)(u2
+v2)+w2sin2α (3.13)

Forα = 0 this relation reduces to relation 3.10 by Schotanus et al. (1983). For sonics with an angleα of 30o this
gives:

v2
n =

7
8

(u2
+v2)+

1
4

w2 (3.14)

Campbell CSAT sonicsdo have an angleα of 30o, however, those sonics do the side-wind correction internally
(as mentioned in the manual of the instrument) and a correction in software is not needed.

For the Gill Solent sonics angleα is 45o, which gives:

v2
n =

3
4

(u2
+v2)+

1
2

w2 for Gill-Solent (3.15)

This will generally (u2
+ v2 >> w2) give a smaller side-wind correction than relation 3.10 would have suggested.

This difference may even introduce systematic errors in temperature estimates if one erroneously applies rela-
tion 3.10 to data collected with Campbell or Gill/Solent sonics, because all correction terms are positive!

Some sonic anemometers include this side-wind correction in the electronics of the sonic (e.g. CSAT3 of Campbell
Inc.). Consequently, the correction does not need to be applied to the data. One should consult the manual of the
instrument to find out whether the correction is already applied in the instrument.

Schotanus et al. (1983) have included in their study the influence of humidity on temperature estimation via a sonic.
It is obvious that, to implement such a correction, one will have to use the signal from a hygrometer. In practice
hygrometers may have their black-outs, and as a consequenceit may happen that the humidity-correction can
only be performed on a small subset of the available time-series. Mixing of humidity-corrected and uncorrected
samples would lead to discontinuities in the calibrated time-series. These discontinuities would give unrealistically
high variance levels and fluxes. To prevent such artefacts from spoiling our flux-estimates, we postpone humidity-
correction of temperature estimates with a sonic until after averaging. Humidity-corrections will be applied to
sonic-temperature related variances, covariances and mean values only.

3.3.3 Calibration drift of optical hygrometers

All instrumentation should be (re-)calibrated prior to their use in a field-experiment. Factory-provided calibrations
may give a guideline for the type of response to be expected insuch recalibrations, but one should not rely on
their accuracy. Optical hygrometers easily can get dirty oraged, resulting in significant drift of the calibration.
Cleaning the lenses may help reduce this unwanted effect, but, to our experience, this does not sufficiently solve the
problem. There is however a profitable characteristic in optical hygrometers: in a good approximation humidity̺v
is proportional to the logarithm of their responseV(hygrometer):

log(V(clean hygrometer))∼ ̺v (3.16)

When a hygrometer gets dirty, then the amount of light caughtby the receiver will be reduced by a constant fac-
torαdirt, when compared with the clean situation. When we combine this relation with a Reynolds’ decomposition,
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we find the following relation between the response of a dirtyoptical hygrometer and humidity:

log(V(t,dirty hygrometer))= log(αdirtV(t,clean hygrometer)) (3.17)

= log(αdirt)+ log(V(t,clean hygrometer)) (3.18)

∼ cdirt +̺v(t) (3.19)

=

cdirt +̺v
+̺′v(t) (3.20)

wherecdirt is proportional to log(αdirt). From relation 3.20 we see that the signal from a dirty optical hygrometer
still correctly gives the fluctuating part of humidity. To find the mean component we have to rely on the signal from
a different measuring system, which runs parallel with the optical sensor, e.g. a psychrometer. Attempts to find
the mean humidity with the optical sensor are bound to fail: dirt can come onto the sensor during the experiment,
making invalid any recalibrations done in the lab.

The mean value of a psychrometer signal,̺v(psychrometer), is used to recalibrate optical hygrometers in-situ:

̺v(t, from optical hygrometer)→
̺v(t, from optical hygrometer)+

̺v(from psychrometer)−̺v(from optical hygrometer)
 (3.21)

Only the mean value of the parallel system is used. Thereforethis system may have slower response than the
optical sensor. When records of 30 minutes are analysed, a psychrometer system will be fast enough. Only when
(within the record which one is analysing) humidity drifts on a timescale relatively fast when compared with the
reaction time of the parallel system, then this in-situ recalibration method will be unreliable.

3.4 Estimation of mean values and (co-)variances

The estimation of mean values of huge datasets does involve sums of huge amounts of numbers. It may well be
that the dataset is so large that, halfway the establishmentof the sum, the fluctuating components in newly added
samples vanish when compared to the (huge) running sum due torounding-off errors. To eliminate this problem
some care must be taken. We use sharp brackets to indicate averages over all valid quantities:

< y>≡ 1
nvalid

∑

valid samples

y(t) (3.22)

When in a sum more than one quantity is involved the sum takes only those samples of whichall relevant quantities
are valid.

Mean valuesxi of the respective quantitiesxi are estimated via the following relation:

xi ≃< xi > + < xi− < xi >> (3.23)

The first term on the right represents a provisional mean value. In the second term we boost accuracy of the
estimate of the mean value by summing the differences of eachvalid sample from the provisional mean value. In
this way the rounding-off problem in the first term is eliminated, making the method apt to cope with large datasets.
It should be clear that the mean values are estimated in two scans through the data: one for the estimation of the
provisional mean, and a second to complete the estimation.

Once the mean values are known, the covariances are estimated via:

Cov(xi , x j) ≡ (xi − xi)(x j − x j) ≃< (xi − xi)(x j − x j) > (3.24)

3.5 Trend correction

The signals in eddy-correlation measurements contain variations which play a role in exchange processes and
variations which contribute to the RMS, but which are not related to transport phenomena. Diurnal variations e.g.
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happen to have major influence on the course of temperature and radiation, but in many cases their net budget
per day is relatively small. Consequently one may want to remove the slow fluctuations from the signals and
concentrate on the fast fluctuations with a turbulent origin. This action is calledtrend correction. Whether or not
trend removal influences the resulting estimates for fluxes may vary from case to case. There will definitely be
a reduction in variance and therefore a reduction in estimates which use variances in combination with Monin-
Obukhov similarity. Researchers are warned to take cautionwhen trends are removed.

There are many types of trends. The most common types are additive trends and multiplicative trends:

x(t) =xdetrended(t)+Trend(t) additive trend (3.25)

x(t) =xdetrended(t) ·Trend(t) multiplicative trend (3.26)

Signals can be corrected for such trends by inverting the above relations:

xdetrended(t) =x(t)+ x−Trend(t) additive trend (3.27)

xdetrended(t) =
x(t)

Trend(t)
multiplicative trend (3.28)

Popular ways for the estimation of trend functions in a set ofdata are: polynomial regression (first order fits are
most popular), a (possibly weighted) moving average applied to the set, (co-)sine functions. Without justification
for their preference micrometeorologists generally assume the additive trend model and consequently correct their
measurements by subtraction of the trend. Although e.g. in the case of radiation a multiplicative model for diurnal
trends gives the best representation of the physics behind the trend.

Linear additive trends are removed from time-seriesx(t) andy(t) and their covariance as follows (forx= y we find
the corresponding relation for variances):

xdetrended(t) =x(t)− t′ · x
′t′

t′2
(3.29)

x′y′detrended=x′y′−
x′t′

 ·
y′t′



t′ 2
(3.30)

After trend-correction the fluctuating part of the dataset will have many more changes of sign than before trend-
correction. Therefore a major advantage of trend-correction is shown by relations 3.104 and 3.105 for the tolerance
estimates for mean values of fluctuating quantities: when trend-correction is allowed then one can get much faster
statistical convergence of mean values by removing the trend. In other words: the error of mean values (e.g.
covariances) is much smaller after trend-correction.

Other ways to perform trend-correction, which we will not discuss, include digital filtering.

3.6 Tilt-correction

When an eddy-correlation setup is erected one will try to orient the vertical axis of the anemometer with the ”true”
vertical direction. In practice there will always be a (minute) deviation from the vertical and a corresponding
bias in the flux-estimates. To eliminate the bias from the fluxes one has to align the frame of reference with the
vertical using a coordinate rotation. The definition of whatis ”vertical” may depend on the mean wind direction.
Therefore one will have to estimate the misalignment anglesof the setup for each wind-sector individually. It is
common practice among micrometeorologists to place the first coordinate axis along the mean (horizontal) wind.
The subsequent rearrangement of coordinates involves another rotation map.

Let us assume that one individual rotation map is characterised by matrixĀ̄:

~x 7→ Ā̄ · ~x (3.31)
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This same map is used to map velocities, covariances of velocities with scalarss and Reynoldsstresses to the new
frame of reference:

~u 7→ Ā̄ ·~u ⇒ ui 7→
∑

j

Ai j u j (3.32)

~u′⊗ s′ 7→ Ā̄ · ~u′⊗ s′ ⇒
u′i s

′
 7→

∑

j

Ai j

u′j s
′
 (3.33)

~u′⊗ ~u′ 7→ Ā̄ · ~u′⊗ Ā̄ · ~u′ =
Ā̄⊗ Ā̄

 :
~u′⊗ ~u′

 ⇒
u′i u

′
j

 7→
∑

k

∑

l

AikA jl
u′ku

′
l

 (3.34)

The total tilt-correction is performed as a set of subsequent rotations following the above relations. These compos-
ing sub-rotations will be presented in this section. In sections 3.6.1, 3.6.2 and 3.6.3 we will address a method to
correct for set-up misalignment, which assumes that the tilt of the set-up can be found from the run-mean velocity
and from the lateral velocity fluctuation. In section 3.6.4 we will present an alternative method which assumes that
the tilt has been stationary throughout the collection of a set of runs. With this latter method one will find nonzero
run-mean vertical velocities and lateral velocity covariances.

3.6.1 Yaw-correction

The basic laws of turbulent exchange processes are independent of the choice of a frame of referenceu,v,w. To
facilitate discussions on the contributions to such processes we generally place the mean horizontal wind direction
along the first coordinate axis. As a consequence the mean wind v in lateral direction vanishes identically:

v≡ 0 (3.35)

This choice is imposed on our data, which had been taken in an arbitrary frame of reference, by application of the
following transformation:

Ā̄yaw=



u√
u2
+v2

v√
u2
+v2

0

− v√
u2
+v2

u√
u2
+v2

0

0 0 1


(3.36)

3.6.2 Pitch-correction

We assume that within measurement accuracy there is no mean vertical velocity over periods of the order of
30 minutes. Any mean vertical velocity arising from eddy-correlation measurements is the consequence of probe-
misalignment. When the yaw has already been corrected for using relation 3.36, then the pitch is corrected for
using the following transformation:

Ā̄pitch =



u√
u2
+w2

0 w√
u2
+w2

0 1 0
− w√

u2
+w2

0 u√
u2
+w2


(3.37)

whereu andw are mean velocities after yaw-correction.

An unresolved problem with pitch-correction is connected with the statistical error in the mean vertical velocity.
Only a limited number of independent samplings contribute to the mean vertical velocity, which therefore has a
non-zero tolerance following relations 3.104 and 3.105. This has an important implication: the pitch-angle will
not be accurately estimated and will change from record to record. A time-varying pitch-angle conflicts with
the suggestion that this angle represents a systematic misalignment of the setup. Long-term mean values of the
velocity components may solve this problem (possibly per wind-sector), but then for each data record there will
be a residual mean vertical velocity of the order of the tolerance given by relations 3.104 and 3.105. This residual
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mean vertical velocity was found to generally exceed the mean vertical velocity according to Webb et al. (1980).
It is therefore necessary to find out whether or not the mean vertical velocity per record represents true physics
(e.g. updraughts) or time-variations in the alignment of the setup. Experimental evidence is needed to clarify this
subject. A suggestion is to place several 3D anemometers close to one another and check if their respective residual
tilt-angles (per windsector) correlate in timeafter the long term tilt-corrections have been carried out.

3.6.3 Roll-correction

Provided that the mean wind direction does not change with height there is no lateral velocity-correlation. There-
fore all correlation of lateral velocity fluctuationsv′ with vertical velocity fluctuationsw′ is to be attributed to
misalignment of the setup with the vertical. To bring back eddy-correlation measurements to the proper coordinate
frame one has to roll the frame of reference around the mean wind direction (now along the first coordinate axis).
This involves the following transformation (see Wilczak etal. (2001)):

Ā̄roll =



1 0 0
0 cosβ sinβ
0 −sinβ cosβ


with β =

1
2

atan
2v′w′v′2−w′2


(3.38)

When the direction of the mean wind changes with height the above roll-correction is incorrect. In the process of
datareduction it is therefore important to assess whether or not the assumptionv′w′ = 0 is reasonable.

3.6.4 The planar fit-method for tilt-correction

Wilczak et al. (2001) have shown that it may be advisable to leave the path of ”classic” tilt-corrections as presented
in the former three sections. A collection of runs is assumedto be related to stationary set-up conditions: one
unique mis-alignment, involving two angles, describes thetilt-error for all runs. The most commonly used method,
the double rotation scheme with just yaw and pitch as presented earlier in this section, is shown to have two
disadvantages. The first is that the sampling error of the mean vertical velocity results in a tilt angle estimation
error. This adds a random noise component to the longitudinal stress estimate, making individual data run estimates
of the stress more uncertain. Second, for measurements overthe sea where the cross-stream stress is important, the
double rotation method is shown to overestimate the surfacestress, due to the uncorrected lateral tilt component.

The triple rotation method of the anemometer axes (yaw, pitch and roll as presented earlier), is shown to result
in even greater run-to-run stress errors due to the combinedsampling errors of the mean vertical velocity and the
cross-wind stress. Also, since it assumes that the true lateral stress is zero, it cannot be used for measurements over
the sea where the lateral stress term may be important.

The planar fit method computes a single set of anemometer tiltangles for a set of data runs. Since many data runs
are used to determine the tilt angles, it is much less susceptible to sampling errors. The method also allows one
to accurately compute the lateral component of the stress. Use of the planar fit method provides greatly improved
estimates of the surface stress than the other two commonly used methods.

The planar fit method will lead to non-zero run-mean verticalvelocities. Researchers who want to use eddy-
coviariance measurements to estimate scalar surface fluxes(e.g. evaporation and CO2) must take these mean
vertical velocities into account. The resultant flux contributions reflec the influence of long waves and large eddies
on the flux at measurement height.

A disadvantage of the planar fit method may be that, above heterogeneous terrain, the tilt-angles can depend on
the mean flow direction. With a higher order fit method (e.g. quadratic) it may be possible to account for such
directional dependencies of the tilt-angles. A second disadvantage is the supposition that setup-conditions have
remained constant throughout the collection of all runs. When one is measuring above fast growing crop or grass
this may not be a good assumption. Furthermore the mechanical structure of the setup (tethering and fixtures) may
not beexactlystationary up to the millimeter e.g. via temperature effects or via drying of the soil. When in such
cases the mean wind-direction changes systematically withtime, then the drift in orientation of the set-up will
correlate with the run-mean wind direction. The systemacy in the plot of the mean wind directions would then
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suggest a planar fit, which bears no relation to the actual tiltings of the set-up. A realistic approach may require
limitation of the total time over which one wants to use planar fitting to not more than one day.

3.6.4.1 ’Classic’ planar fit

For each runi the run mean horizontal and vertical velocities (um,i , vm,i andwm,i ) are recorded (subscriptm indicates
that the mean values are measured values in the tilted frame of reference). A planar least squares fit is applied to
the collection of run mean horizontal and vertical velocities to find constantsb0, b1 andb2 in:

wm= b0+b1um+b2vm (3.39)

The solution of the least squares problem is given by the following matrix equation:
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(3.40)

where a tilde is used to denote mean values over the collection of (products of) run-mean values. From coeffi-
cientsb1 andb2 they extract the following un-tilt tensorĀ̄pf:

Ā̄pf ≡



cosα 0 −sinα
0 1 0

sinα 0 cosα


·



1 0 0
0 cosβ sinβ
0 −sinβ cosβ


(3.41)

where

sinα = −b1√
b2

1+b2
2+1

sinβ = b2√
b2

2+1

cosα =

√
b2

2+1
√

b2
1+b2

2+1
cosβ = 1√

b2
2+1

One can incorporate into the planar fit matrix the yaw-rotation according to relation 3.36 of the first coordinate
axis into the mean velocity over the collection of all runs (see section 3.6.1):

Ā̄pf + yaw=



uday√
u2
day+v2

day

vday√
u2
day+v2

day

0

− vday√
u2
day+v2

day

uday√
u2
day+v2

day

0

0 0 1


· Ā̄pf (3.42)

where



uday

vday

wday


≡ Ā̄pf ·



ũ
ṽ
w̃


(3.43)

TensorĀ̄pf + yaw is applied to all samples or to the run-mean values and (co-)variances to untilt the set-up. In this
way measurements from different eddy-covariance setups, which in principle should measure the same turbulent
flow, are made directly comparable.

Wilczak et al. (2001) suggest that a possible mean vertical velocity bias in the sonic anemometer can be found via
the planar fit method in constantb0 from relation 3.39:

wbias= b0 (3.44)

3.6.4.2 Planar fit with no velocity bias

We have tested the use of relation 3.44 for the estimation of the vertical velocity bias by comparing direct measured
values for the bias, which were found by operating an anemometer during half an hour at zero velocity (in its box),
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with values found forb0 in planar fits to data measured with that same sonic. The mean velocity measured at zero
velocity was 4.8 cm/s. The value forb0 varied from 1 mm/s to 5 cm/s, dependent on which subset of runs(all
measured on the same day) was used for the planar fit. The capricious dependence ofb0 on the specific subset of
runs and its strong deviation from the directly measured value of the mean vertical velocity bias to our opinion
makesb0 an unreliable estimate for the vertical velocity bias. Thisis not surprising since the value ofb0 is found
by extreme extrapolation of the fit plane: from the sector within which all run-mean velocity vectors are found to
the point whereu= v= 0.

We assume that any bias in the vertical velocity has been measured experimentally and that it is accounted for in
the calibration function of the sonic. This implies that theplanar fit should be based on a plane through the origin,
which leads to the following relations:

wm=b1um+b2vm (3.45)


b1

b2

 =


ũ2 ũ v

ũ v ṽ2



−1

·


ũ w
ṽ w

 (3.46)

with the same relations betweenb1, b2 and tilt-anglesα andβ as with the original planar fit.

3.6.4.3 Planar fit for triple-rotation correction of one run

The frames of reference, which can be found by performing triple-tilt corrections per run, will generally differ from
the frame of reference, which is found by performing a planarfit correction for the collection of runs. The residual
tilt-angles, which give the differences between these frames, can best be found in a way similar to the planar fit
method. This guarantees that the residual angles of different runs and even of different setups are comparable (i.e.
are estimates for the same physical quantities). As with theabove planar fit method we define a plane with normal
vector (b1,b2,−1). Two equations are required to fix constantsb1 andb2. The first equation is found by placing
the run-mean velocity on the plane:



u
v
w


·



b1

b2

−1


= 0 (3.47)

The second equation is found by imposing zero correlation between lateral velocity fluctuations within the plane
and lateral velocity fluctuations perpendicular to the plane:







b1

b2

−1


×



u
v
w




·



u−u
v−v
w−w









b1

b2

−1


·



u−u
v−v
w−w



 = 0 (3.48)

This coupled set of equations is quadratic in variablesb1 andb2 and can be solved using e.g. Maple, which can
output the solutions in Fortran-format (expressions are too complicated to include in this text). Like with the planar
fit for a collection of runs, coefficientsb1 andb2 from the planar fit to a single run are used to estimate anglesα,
β and a yaw-angle per run, which fine-tune the planar fit into theclassic triple tilt correction. In a practical test
on 19 hours of turbulence measurements at 10 meters above thegrass in Cabauw anglesα, β were generally
smaller than 2 degrees. The residual yaw-angles reflected the expected variation in mean wind direction about the
day-mean velocity.

3.7 Correction of sonic temperature for humidity

From the signal of the sonic anemometer we can estimate the speed of sound, which is a measure for temperature.
To estimate temperature from the speed of sound we have to take into account that this velocity depends both on
temperature and on humidity. The relation is (in Kelvin of course):

T =
Tsonic

1+0.51q
(3.49)
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where the sonic temperatureTsonic has already been corrected for sidewind via relation 3.9. Relation 3.49 can
be used to correct both individual temperature samplings and the mean temperature. For the correction of (co-
)variances of temperature with a quantitysone gets correction relations via partial differentiationof relation 3.49:

T′s′ = c T′sonics
′ (3.50)

T′2 = c2 T′sonic
2 (3.51)

c≡ 1−0.51q−0.51Tsonic
q′s′

T′sonics
′

(3.52)

For the covariance of temperature with vertical velocity, which plays the central role in the estimation of the
sensible heat flux, this gives:

T′w′ = T′sonicw
′ −0.51qT′sonicw

′ −0.51Tsonicw′q′ (3.53)

The second term in this relation is new in comparison with relation 8 in the study by Schotanus et al. (1983).

3.8 Oxygen correction for optical hygrometer

An open path optical hygrometer probes air for water vapour as follows: a light-source emits a monochromatic
beam of ultraviolet light (for the krypton tube: 123.6 nm with a small secondary band at 116.5 nm and for Lyman-
α: 121.6 nm). A receiver measures which fraction of the emitted light is received at a distance of typically one
centimeter. The frequency of the ultraviolet light is such that water vapour will absorb the light. The fraction of
light which is absorbed per unit of length is proportional tothe concentration of the vapour. Including non-linear
effects the responseV of a hygrometer is related to the respective gas concentrations via the following formula:

−1
x

ln


V
V0

 (̺w,̺o) =− 1
x

ln


V
V0

 (̺w,ref,̺o,ref)

+kw(̺w−̺w,ref) + ko(̺o−̺o,ref) + higher order effects in̺w and̺o (3.54)

whereV0 is the response in vacuum,x is separation between transmitter and receiver,̺ refers to density andk
indicates extinction coefficients. Subscriptsw and o refer to water vapour and oxygen respectively. The first
three terms in the right hand side of relation 3.54 are linearisations of the relation around atmospheric conditions.
Tanner et al. (1993) adopts the following reference conditions: pressure 101325 Pa, temperature 305 K and zero
humidity. We make a slight modification to these conditions:instead of zero humidity we will refer to 10 gram
H2O/m3. The reason is that estimates for the extinction coefficientfor water vapour at zero humidity are highly
inaccurate, because they involve the derivative of a fitfunction at its boundary. Our extinction coefficients refer to
these modified atmospheric conditions. We estimate reference oxygen concentration̺o,ref (based on 21 percent
oxygen volume) to be 0.2685kgm−3.

To find extinction coefficientski we differentiate theoretical response relation 3.54. In formulae:

kw = −
1
x

dln
 V

V0


d̺w

∣∣∣∣∣∣∣∣
atm. cond.

for water vapour (3.55)

ko = −
1
x

dln
 V

V0


d̺o

∣∣∣∣∣∣∣∣
atm. cond.

for oxygen (3.56)

The latter sensitivity is an unwanted characteristic sincevia their oxygen sensitivities these hygrometers are sensi-
tive to temperature. A consequence of this double sensitivity of optical hygrometers is that estimates for the latent
heat flux will be influenced by the sensible heat flux. This cross-talk will have to be eliminated.

Tanner et al. (1993) suggest that new experiments have shownthat the oxygen-sensitivity coefficients published
in the past (Tanner, 1989) overestimate the actual oxygen sensitivity by a factor of 2! This sudden change of
insight has triggered us to perform calibrations of severalCampbell krypton hygrometers and compare the resulting
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coefficients with those of Tanner et al. (1993) and of Tanner (1989). Moreover two Mierij Lyman-α hygrometers
were included in the comparison (see van Dijk et al. (2003) for details). The extinction coefficients found in our
experiments indicated that one cannot assume universal values forkw andko. The smallest value found forko for
krypton tubes (1.3 10−3 m3 gram−1 m−1) differs from the largest value (3.4 10−3 m3 gram−1 m−1) by a factor of 3,
which itself was substantially smaller than the most recentvalue reported by Tanner (4.5 10−3 m3gram−1m−1). The
spread in values ofkw was less dramatic, but still significant. The differences found for the extinction coefficients
for Lyman-α hygrometers showed smaller differences than for the krypton-hygrometers, but this may be attributed
to the fact that only two Lyman-αs were tested. It is clear that for each individual hygrometer kw andko will have
to be estimated via calibration.

With extinction coefficientskw andko we can calculate correction factorsc, which correct raw latent heat esti-
matesLvE(raw) for oxygen sensitivity of the hygrometer. We will use relation 18 in the article by Tanner et al.
(1993):

LvE(corrected)= c(β)LvE(raw) (3.57)

c(β) = 1+0.23
ko

kw

Lvβ

cpT
(3.58)

whereβ is the Bowen-ratio andLv is the evaporation heat of water (2.45·106J kg−1. Note that a number of errors
related to relation 3.58 were present in van Dijk et al. (2003) (Jean-Martial Cohard, pers. comm., 2006): the units
of Lv were given incorrectly,cp was omitted, and the units of the factor 0.23 were given as gK−2J−1, rather than
0.23 being a dimensionless constant (equal to FracO

mO
mair

, for symbols see below equation 3.60). Probably, in van
Dijk et al. (2003)cp was absorbed in the constant 0.23, and the units ofLv were mixed up. From relation 3.58 we
see that correction factorc(β) varies in first order with the extinction coefficients. Thisimplies that small errors
in these extinction coefficients lead to second order variations in estimated latent heat. Therefore, with respect
to the oxygen correction of estimated latent heat fluxes, theextinction coefficients need not be known with very
high accuracy. Extinction coefficientkw for water vapour is of course not only related to the oxygen correction
of the evaporation, but also to the evaporation itself! Therefore for the actual estimation of evaporation one must
have better estimates forkw than necessary for the estimation of correction factorsc(β). When we select the best
hygrometers, which were used in our calibrations (both krypton and Lymanα), then the correction factors found
with use of relation 3.58 climb to a maximum of about 10 percent for very dry conditions (Bowen-ratio 5). This is
much less than found by Tanner. Our upper limit to the correction is small enough to allow for the conclusion that
both types of optical hygrometer are equally fit to be used under both wet and dry conditions.

The above method to correct latent heat estimates for oxygensensitivity of the hygrometer can be generalized to a
correction for all (co-)variances involving humidity:

x′̺′v→ c x′̺′v (3.59)

c= 1+FracO mo
p

RT2

ko

kw

x′T′

x′̺′v
(3.60)

for any quantityx, where FracO is the fraction of oxygen molecules in the air (generally 21%; above forests or
above burning terrain this constant may have a different value!). To correct the humidity-variance one has to use
the square of this factorc.

3.9 Correction for frequency response and path averaging

The smallest structure size in atmospheric flows is smaller than a millimeter and with high wind speeds (e.g.
10 m/s) this size corresponds with frequencies of the order of 10 kHz. Most instruments perform their probing
on larger volumes and their frequency-response is often much worse than 10 kHz. The consequence of such non-
ideal measurement is an underestimation of (co-)variances. Still one makes use of these non-ideal instruments
assuming that the estimated covariances can be corrected. To allow for such correction it is important that the lost
contribution is small. Turbulence spectra generally obey this condition. Using phenomenological spectra measured
by Kaimal et al. (1972) Moore (1986) has developed a set of correction relations for measured covariances. We
will review these corrections and jointly present the improvements on these corrections proposed by Horst (1999).
The results of the model by L.Kristensen and Fitzjarrald (1984) will be presented separately.
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3.9.1 The Moore-Horst model

The turbulent flux density can be measured using eddy-correlation, provided that fluctuations in the frequency
range in which turbulent transport takes place are all sensed. In practice, this condition is hardly met due to a
limited frequency response of the sensors and the data acquisition system, averaging over a path rather than taking
a point value, separation between sensors for different quantities, and filtering applied. For each of these effects
a theoretical co-spectral transfer function can be computed, which is unity for all frequencies for an ideal system.
Convolution of this loss factor with the actual turbulent spectrum of the considered quantity gives a fraction of the
true covariance that is actually sensed. Application of this method to really measured spectra will not be of much
significance, since these spectra show the shortcomings of the sensor configuration we were looking to correct for.
Therefore, theoretical spectra are used. The flux loss∆Fxy is then defined by

∆Fxy

Fxy
= 1−

∫ ∞
0 Txy(n)Sxy(n)dn

∫ ∞
0 Sxy(n)dn

(3.61)

wheren is the frequency,Txy the net co-spectral transfer function, andSxy the theoretical co-spectral distribution
function.

Moore (1986) worked out most of the frequency response correction for a Hydra flux measurement station (Shuttle-
worth et al., 1988). The special corrections applicable to closed path sensors as the LICOR6262 have been obtained
from Leuning and Moncreiff (1990). An overview of these corrections is also given by Moncreiff et al. (1995).
Sections 3.9.1.1 to 3.9.1.8 are a selection of ”Sparse canopy parameterizations for meteorological models”, PhD-
thesis Wageningen Agricultural University, ISBN 90-5485-491-X, by B.J.J.M. van den Hurk, 1996. References to
specific experiments have been removed.

3.9.1.1 Digital sampling at limited frequency

An analogue-to-digital sampling acquisition method causes aliasing of spectral contributions exceeding the Nyquist
frequency. When one is merely interested in the moments of one or more turbulent quantities this is not a problem,
since the moments are integrated over the entire spectrum.

Moore (1986) proposed that the effective transfer functionfor an analog-to-digital sampling system,Ta(n), was
given by:

Ta(n) = 1+


n
ns−n


3

n≤ ns/2 (3.62)

with ns the sampling frequency. For eq. 3.62 he assumed that aliasing is reduced by prefiltering the raw signal at
n= ns/2, causing negligible co-spectral power above the Nyquist frequency (see Figure 3.4 for an example).

However, since the spectral distribution of variance and covariance is irrelevant when determining the total variance
or covariance, the digital-sampling correction as given ineq. 3.62 should not be used.

3.9.1.2 Low-pass filtering

Low-pass filtering is applied to prevent aliasing, or folding frequencies higher than the Nyquist frequencyns/2
into lower frequencies (Stull, 1988). The transfer function Tv(n) is given by

Tv(n) =
1+


n
n0


4
−1

(3.63)

wheren0 is the cut-off frequency (atns/2). The time constant of the filter is given by 1/2πn0. Obviously, when no
low-pass filtering is appliedTv = 1. An example ofTv is shown in figure 3.4.

45



n [Hz]

10-2 10-1 100 101 102

tr
an

sf
er

fu
nc

tio
n

0

0.5

1

1.5

2

Figure 3.4: Examples of the low-pass filtering transfer function Tv(continuous line) and the analog-to-digital trans-
fer functionTa (dashed line) forns= 10Hz
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Figure 3.5: Example of the high-pass filtering transfer function Td for ns= 10Hz; shown areτd = 200s (continuous
line) and 600 s (dashed line)
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3.9.1.3 High-pass filtering (detrending)

The transfer functionTd(n) for a first order digital filter is to a very good approximation given by

Td(n) =
(2πnτd)2

1+ (2πnτd)2/αd
n≤ ns/2 (3.64)

An example is shown in Figure 3.5 forτd = 200 and 600 s. For linear detrending the choice of the interval length
is very similar to choosing a time constantτd for a running mean interval.

3.9.1.4 Sensor response and tube damping

The dynamic response of many sensors can be described by a simple first-order gain function:

Tr (n, τc) =
1+ (2πn)2τ2c

−1/2
(3.65)

whereτc is the time constant of the instrument. An example is depicted in figure 3.6.

A special case of damping of fluctuations is caused by the tubetransporting the air from the sonic anemometer
volume to a gas analyzer. Leuning and King (1992) present a transfer functionTt given by

Tt(n) =


√

exp(x/6Dut)
2πnr2t

D < 10
1 elsewhere

(3.66)

wherex is given by−(πnrt)2l, rt the tube radius,l the tube length,D the diffusivity of the gas being analyzed and
ut the air speed in the tube. Eq. 3.66 is strictly valid in cases where the flow within the tube may be considered to
be laminar, and density fluctuations at all frequencies travel down the tube with the same velocity,ut. Based on
expressions presented by Philip (1963), Leuning and King (1992) state that this applies to frequencies for which
2πnrt2/D < 10. For turbulent flow they propose the following transfer function

Tt(n) =
√

exp
−160Re−1/8rtn2l/u2

t

 Re> Rec (3.67)

whereRec is a critical Reynolds number, equal to±2300, andReis given by 2utrt/ν. Figure 3.7 shows an example
for both equations.

3.9.1.5 Sensor line averaging

In most cases a scalar quantity is measured over a (finite) path length rather than at a single point. The effect of the
spatial averaging involved can be described very well by

Tp(p) =
1

2π f

3+exp(−2π f )−4
1−exp(−2π f )

2π f

 (3.68)

where f is the normalized frequencynp/u, p being the averaging distance. Spatial averaging is relevant for all
sensors. However, the effect on the temperature measured using a thermocouple is considered small enough to
ignore a correction for this. The averaging path for the sonic temperature is equal to that of the vertical wind, and
will be discussed hereafter. For the closed- path analyzer the averaging path is determined by the length of the gas
chamber. An example is shown in figure 3.8.

The effect of spatial averaging on measurements of vector quantities is different to that for scalar quantities. Moore
(1986) gives a simplified transfer function for the verticalwind component, based on findings of Kaimal et al.
(1968). The transfer functionTw for averaging the vertical velocity over a path with distance p reads

Tw =
2
π f

1+
exp(−2π f )

2
− 3(1−exp(−2π f ))

4π f

 (3.69)

For the horizontal wind components a general function as eq.3.69 is not possible to give, since it depends on sensor
geometry and wind direction. For a symmetrical orthogonal set of transducers (as for the Kaijo Denki DAT310
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Figure 3.6: Example of the sensor response transfer function Tr for ns = 10Hz; shown areτc = 0.1s (continuous
line) and 0.5 s (dashed line).
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Figure 3.7: Example of the tube damping transfer functionTt; shown are eq. 3.66 for laminar flow (continuous
line) and eq. 3.67 for turbulent flow (dashed line). In both casesns = 10Hz, l = 4m, rt = 0.0015m,ut = 5m/s and
D = Dv = 2.5610−6m2/s
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Figure 3.8: Example of the transfer function for sensor lineaveraging for scalars,Tp, for p= 0.025mandu= 5m/s

device), the transfer functions can be computed for a horizontal wind from a direction of 45o compared to each
component. Then the sensor averaging transfer function canbe reduced to a single functionTu:

Tu =


sinπ f
π f


2

(3.70)

No attempt was made to investigate the assumptions leading to this formulation. Figure 3.9 provides an example
of Tw andTu.
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Figure 3.9: Example of the transfer function for sensor lineaveraging for vectors:Tw (continuous line),Tu (dashed
line). In both casesp= 0.20mandu= 5m/s
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Figure 3.10: Example for the sensor separation transfer functionTs for s= 0.20mandu= 5m/s

3.9.1.6 Sensor separation

Ideally, eddy correlation covariances are computed from measurements taken at exactly the same point. In practice,
usually a separation between different sensors is necessary. The loss of covariance due to sensor separation is a
function of the distance between the sensors and the angle ofthe wind direction relative to the separation path. For
practical purposes Moore (1986) developed a scheme which can be used to correct for both longitudinal and lateral
separation, provided that the sensor separations is small and open to the atmosphere:

Ts( f ) = exp
−9.9 f 1.5

 (3.71)

where f is the normalized frequency, given byns/u (see Figure 3.10).

3.9.1.7 Net transfer functions

The net transfer functions for the several covariances can be found by multiplying the relevant gain functions given
above. A net transfer function for the data acquisition system,Tn, can be specified, which applies to all sensors. It
is defined by

Tn = TaTdTv (3.72)

The net transfer functions for the separate variances and covariances depend further on sensor time constantτx,
averaging pathpx, diffusion coefficientDx and separation from thew-sensorswx. The subscriptx refers to vertical
wind whenx = w, horizontal wind in both directions forx = u, thermocouple temperature forx = T, sonic tem-
perature forx = s, humidity measured by Lyman-α and Krypton forx = q, and humidity and CO2-concentration
measured by a closed path device forx = h andc, respectively. Then the net transfer functions for the separate
variances are given by:

Tuu= TnTu,v(pu)T2
r (τu)

Tww= TnTw(pw)

TTT = TnT2
r (τT )

Tss= TnTw(pw)

Tqq= TnTp(pq)

Thh= TnTp(ph)T2
r (τh)Tt(Dh)

Tcc = TnTp(pc)T2
r (τc)Tt(Dc) (3.73)
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According to Moore (1986) the covariance transfer functions can be found from the variance transfer functions via

Txy =
√

TxxTyy (3.74)

which would consequently yield:

Twu= TnTr (τu)
√

Tw(pw)Tu,v(pu)

TwT = TnTs(swT)Tr(τT )
√

Tw(pw)

Tws= TnTw(pw)

Twq= TnTs(swq)
√

Tp(pq)Tw(pw)

Twh= TnTs(swh)Tr (τh)
√

Tp(ph)Tw(pw)Tt(Dh)

Twc = TnTs(swc)Tr (τc)
√

Tp(pc)Tw(pw)Tt(Dc) (3.75)

In a recent publication Horst (1999) has made clear that thisapproach to estimate the cospectral transfer function
neglects the phase-shift inherent in applying a frequency-dependent filter to time-series data. For two sensors
with a simple first-order response, each characterized by a different time constantτ, the spectral variance transfer
functions are:

Txx =
1

1+ω2τ2x
Tyy=

1

1+ω2τ2y
(3.76)

while the cospectral transfer function reads

Txy =
(1+ω2τxτy)+ω(τx− τy)Qxy/Sxy

(1+ω2τ2x)(1+ω2τ2y)
(3.77)

whereQxy is the quadrature spectrum andSxy the cospectrum. This relation only reduces to relation 3.76when the
time constants of the two sensors are equal:τx = τy.

3.9.1.8 Model spectra

For the description of the atmospheric spectra and cospectra the formulations of Kaimal et al. (1972) have been
used. The formulations provide a description of spectral energy Sxy as function of (normalized) frequencyf =
nz/u and stabilityz/Lv, z being the measuring height. The spectra are derived for the variance of the three wind
components and temperature, plus their mutual covariances. Moore (1986) concluded that spectra of the other
scalars (humidity and CO2) resembled the temperature spectra very well, and thus

Sqq= Shh= Scc = STT

Swq= Swh = Swc = SwT (3.78)

Furthermore, the spectra for both horizontal wind components are considered equal as well.

The general function ofSxx under stable conditions (z/Lv > 0) can be represented by

nSxx(n) =
f

Ax+Bx f 5/3
(3.79)

whereAx andBx are functions of the atmospheric stability. Also the cospectra are well reproduced under stable
conditions using a general equation:

nSwx(n) =
f

Awx+Bwxf 2.1
(3.80)

Table 3.1 gives the formulations ofAx, Bx, Awx andBwx.
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Variance spectra Ax Bx

x= w Aw = 0.838+1.172(z/Lv)
x= u Au = 0.2Aw Bx = 3.124A−2/3

x

x= T AT = 0.0961+0.644(z/Lv)0.6

Covariance spectra Awx Bwx

x= u 0.124(1+7.9z/Lv)0.75 2.34A−1.1
wx (corrected version - AvD)

x= T 0.284(1+6.4z/Lv)0.75

Table 3.1: Formulations ofAx, Bx, Awx andBwx for stable (co)variance spectra

Unfortunately, the unstable spectra are not easily defined,due to a dependence on the boundary layer heightzi .
Hojstrup (1981) developed suitable expressions for the horizontal and vertical wind velocity:

nSww(n) =


f

1+5.3 f 5/3
+

16f ξ

(1+17f )5/3

C−1
w (3.81)

and

nSuu(n) =


210f

1+33f 5/3
+

f ξ

ζ +2.2 f 5/3

C−1
u (3.82)

where

Cw = 0.7285+1.4115ξ Cu = 9.546+1.235ξζ−2/5

ζ =


z
zi


5/3

ξ =


z
−Lv


2/3

Sincezi was not known for most time intervals, a fixed value of 1000 m was chosen, as to represent a typical
condition.

No suitable models for atmospheric temperature spectra forunstable conditions are cited in literature. However,
Moore (1986) argued that for most conditions the spectra given by Kaimal et al. (1972) could be used. For the
temperature variance is given

nSTT(n) =



14.94f
(1+24f )5/3

f < 0.15
6.827f

(1+12.5 f )5/3
f ≥ 0.15

(3.83)

while the temperature cospectra read

nSwT(n) =



12.92f
(1+26.7 f )1.375 f < 0.54

4.378f
(1+3.8 f )2.4

f ≥ 0.54
(3.84)

The spectrum of momentum transfer is described by

nSuw(n) =



20.78f
(1+31f )1.575 f < 0.24

12.66f
(1+9.6 f )2.4

f ≥ 0.24
(3.85)

Based on these theoretical spectra and the transfer functions described above, Figure 3.11 gives an example of the
net frequency response corrections applied toσ2

u and tow′T′, for a specified height and wind speed.

3.9.1.9 Consequences of spectral corrections for tolerance estimates

The correction procedure proposed in this section assumes that the spectra found by Kaimal et al. (1972) are
representative for all conditions. This is a very idealisedpoint of view. To incorporate the uncertainty of this
correction procedure into the tolerance estimates for covariances we propose to (quadratically) add half the absolute
difference between corrected and uncorrected estimates tothe tolerance estimates for the covariances which were
based on other causes (e.g. statistics):

Tol −→
√

Tol2+
0.5 Freq.corr.

2
(3.86)
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Figure 3.11: Example of frequency response corrections as function ofz/Lv : ∆Fuu (continuous line);FwT (dashed
line). Configuration parameters are as follows:z= 10m, u = 5m/s, pu = pw = 0.20m, swT = 0.25m, τc = 0.5s
(thermocouple) andns= 10Hz

3.9.2 The Kristensen-Fitzjarrald model

L.Kristensen and Fitzjarrald (1984) and van Dijk (2002) have developed a procedure to find the transfer function of
vertical scalar fluxes, which are estimated from 3D sonic anemometer measurements (with finite paths of lengthl)
and scalar point-samples. The sonic is supposed to either have one of its acoustic paths aligned with the vertical
direction (L.Kristensen and Fitzjarrald (1984), see figure3.2) or to have its acoustic paths in a configuration along
three axes~la,~lb and~lc, which all have angleα with the vertical axis (α = 54.7o gives three perpendicular axes) (van
Dijk (2002), as shown in figure 3.3).

To get a non-zero flux, their model involves anisotropic turbulence and is therefore more complex than studies by
e.g. Kaimal et al. (1968) and Oncley (1989). Their statistical model for the true co-spectrum at heightz has a
k−7/3-behaviour for small waves (β is a stability dependent parameter):

Co(k) = βzwS (|k|z)−7/3 (3.87)

The measured cospectrum is related to this true cospectrum via

C̃o(k)=
∫ ∞

0

∫ 2π

0
K ·A

(√
k2+K2

)
· k

2
+K2sin2θ

k2+K2
·

· 1
3

sinc


~k ·~la

2

+sinc


~k ·~lb

2

+sinc


~k ·~lc

2



dθdK (3.88)

where functionsA andF are obtained from relation 3.87 for the underlying true cospectrum via

A(κ) =
1

3πκ2
·


2
3β


0.75

·wS·z·F



2
3β


0.75

· κ ·z
 (3.89)

F(s) =
91
30

s−7/3 (3.90)

The transfer functionTflux, which results from these relations:

Tflux ≡
C̃o(k)
Co(k)

(3.91)
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is estimated via numerical integration. The results for popular configurations (Campbell 3D sonic and Gill/Solent
with α = 30o) and for a sonic withα = 45o are plotted in figure 3.12.
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Figure 3.12: Transfer functions for sonic anemometers: thedashed line gives the results by Kristensen and Fitz-
jarrald, the continuous line is for the 3D Campbell/Solent type of sonic and the circles represent a configuration
where the acoustic paths make an angle of 45 degrees with the vertical axis. The quantity on the horizontal axis is
wavenumberk≡ 2π/λ of a flux-contribution made dimensionles with acoustic pathlengthl.

3.10 Webb term (mean vertical velocity)

In section 2.5 we have seen that, even though the soil may be ’firm’ (i.e. non-penetrable), there can be a non-zero
run-mean vertical velocity, inducing a flux-contributionFm(ξ) of transported quantityξ via (see relation 2.46):

Fm(ξ) ≡ wξ (3.92)

Generally the mean vertical velocity is too small to be directly measured. The three-angle tilt-correction method
(yaw, pitch and roll, see sections 3.6.1, 3.6.2 and 3.6.3) supposes that any measured mean vertical velocity must
be attributed to set-up misalignment. These tilt-corrections will assure that the direct estimate forw vanishes. An
indirect estimate forw is made via relation 2.71:

w=(1+µσ+k)
w′T′

T
+µσ

w′̺′v
̺v
+2k

w′u′

u

On the other hand, when the planar fit method (section 3.6.4) is used, there will be non-zero direct estimates for
the run-mean vertical velocity. This direct estimate must be added to the above indirect estimate, since the indirect
estimate is neglected/eliminated by the planar fit.

3.11 Estimation of tolerance levels

For both the mean values and the covariances we estimate tolerance levels. We define thetolerance Tol(x) of
quantityx asthe absolute deviation from that quantity such that the probability of the occurance of a sample
further away than the tolerance, after repeated estimationof x, is reduced to 4 percent. The tolerance gives
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us a tool to compare estimates and reject or confirm significant correspondence. For normally distributed samples
the tolerance is related to the standard-deviationσ(x):

Tol(x) = 2σ(x) for normally distributed samples (3.93)

For skew and nonnormal distributions one has to make separate estimates for upward- and downward tolerances,
where the factor 2 in relation 3.93 has to be replaced by factors c+ andc− taken such that the rejected fractions,
which deviate from the mean by more thanc− ·σ− in downward sense or by more thanc+ ·σ+ in upward sense,
equal 4 percent.

Tol−(x) = c− ·σ−(x)
Tol+(x) = c+ ·σ+(x)

for skew and nonnormal distributions (3.94)

Relations 3.93 and 3.94 give the tolerance for individual samples. Whennindep independentsamples of quantityx,
each with tolerance Tol(x), are used to estimate the mean valuex, then the tolerance of that mean value is better
than the tolerance of the individual samples by a factor

√
nindep:

Tol(x) =
1

√
nindep

Tol(x) (3.95)

The problem with this relation is to find the number of independent samplesnindep. To make sure that all infor-
mation is recorded scientists sample their quantities suchthat the samples have a (slight) overlap. In this way it
will be clear that the number of independent samples will often be substantially smaller than the total number of
samples in a record. Moreover, the datalogging system will often have one sampling frequency, adjusted to the
quantity with the fastest variations. As a consequence, theother quantities will be strongly oversampled.

To estimate the number of independent samples in a time-series we first study the characteristics of a stochastically
stationary process. We construct a time-series and supposethat the respective samplesxk are taken independently
from a possibly skew distribution around a mean valuex. We also suppose that the time series is long enough to al-
low for the estimation of probabilitiesp+,indep andp−,indep, providing the fraction of time that the signal has positive
deviation from the mean value or a negative deviation. With acollection ofNindep samples of whichN+,indep with
positive fluctuation around the mean value andN−,indep with negative fluctuation we estimatep+,indep and p−,indep

as follows:

p−,indep=
N−,indep

Nindep
and p+,indep=

N+,indep

Nindep
(3.96)

From sample to sample the sign of the fluctuating part of the signal has a probabilityp−,indep· p+,indep to go from
negative to positive and a probabilityp+,indep · p−,indep to go from positive to negative. Together the probabil-
ity pswap, indepof a change of sign to occur in the fluctuating part of the independent samples is:

pswap,indep= 2 p−,indep· p+,indep= 2
N−,indep·N+,indep

N2
indep

(3.97)

This gives an estimate for the numbernswap,indepof sign-changes that can be expected in a new collection ofNindep

independent samples:

Nswap,indep= Nindep· pswap,indep (3.98)

The ratio of the number of sign-changesNswap,indepand the probabilitypswap,indepof a sign-change brings us back
to the number of independent samplesNindep.

When the same signal as before is probed with higher and higher sampling frequency, a point will come where
the samples will become dependent. We assume that the total record of samples is still large enough to allow for
reliable estimation via relation 3.97 of probabilitypswap,indepfor the change of sign of fluctuationsin case the signal
would be independently probed:

pswap,indep= 2
N− ·N+

N2
(3.99)
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where nowN−, N+ and N refer to counting samples in the record of oversampled and hence dependent data.
Addition of dependent samples to a dataset consisting of independent samples will form a more or less smooth
bridge between the independent samples. As a consequence they will generally not alter the number of sign-
changesNswap of the fluctuating component in the signal, see figure 3.13. This brings us to the conclusion that

time

x’

x

N+

N-
Nswap

Figure 3.13: Root-counting of fluctuations in oversampled data with a skew distribution

the number of sign-changes in an oversampled signal provides a good measure for the detection of independent
samples:

Nswap≃ Nswap,indep= pswap,indep·Nindep (3.100)

Combination of relation 3.100 for the number of sign-changes of the fluctuations in an oversampled record with
relation 3.99 for the probability of such sign-changes to occur gives an estimate for the number of independent
samples which can be found in the record:

Nindep≃
Nswap

pswap,indep
=

Nswap·N2

2N− ·N+
(3.101)

When the mean value, which is subtracted from the samples to find the fluctuating component, is estimated from
the record itself, then one has to subtract one from the righthand side of relation 3.101 to compensate for the
resulting dependency in the fluctuating component of the data:

Nindep≃
Nswap·N2

2N− ·N+
−1 when mean values are estimated from the same dataset (3.102)

To illustrate the necessity for the extra subtraction, consider the sampling of a linearly increasing signal. In this
case all samples are dependent. The mean value estimated from this series will divide the data in two segments:
the first half has negative deviation from the mean and the second half has positive deviation. Via relation 3.101 we
would consider both segments as representations of two independent samples. It may however be that the whole
series represents just a small period in a signal dominated by much larger timescales. This would imply that the
record of samples is to be considered as only one independentsample. Relation 3.102 gives the correct number:
one independent sample!

In case of a non-skew signal positive and negative fluctuations have equal probabilities, which reduces rela-
tion 3.102 for the number of independent samples to:

Nindep≃ 2Nswap−1 for symmetric distributions (3.103)

Altogether (relations 3.102, 3.94 and 3.95) we have the following error-estimate for mean quantityx:

Tol−(x) =
c−σ−√

Nswap·N2

2N−·N+ −1
(3.104)

Tol+(x) =
c+σ+√

Nswap·N2

2N−·N+ −1
(3.105)
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An important item to bear in mind is the following: fluxes of scalar densities (e.g. evaporation) include a term
dependent on the mean vertical velocity. Even when this termis eliminated by a tilt-correction setting this mean
vertical velocity to zero, then the tolerance of this term cannot be neglected and should be quadratically added to
the tolerance in the covariance term!
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Appendix A

Discussion on the definition of the sensible
heat flux

This appendix provides a discussion in which different points of view on the definition of the sensible heat flux are
reviewed. The intention is to facilitate the discussion by explicitly showing the advantages and disadvantages of the
different methods. A central role is played by the energy balance at the surface. Therefore we recall relation 2.2:

Q∗ = LvE+G+H (A.1)

A.1 Interpretation A

The sensible heat flux is one of the terms in relation A.1 for the energy balance at the surface. In this context, the
surface is the thin layer of molecules which receive net radiation. The surface has a thickness comparable with
a few times the wavelength of the radiation and consequentlycan be considered to be two-dimensional. Two-
dimensional objects cannot contain much energy and therefore equation A.1 expresses that the energy flux, which
is fed to the surface by incoming net radiation, has to be componsated by fluxes which transport this energy away
from the surface. Heat is an amount of energy in transfer. Mechanisms for heat transfer are: radiation, convection
and conduction.

The radiative energy flux is excluded from the definition of the sensible heat flux since it has already been
accounted for in relation A.1 via net radiation termQ∗. What remains to be considered is the roles of conduction
and of convection for the definition of the sensible heat flux.

The energy, which is transfered in a conductive exchange from the two-dimensional surface to the atmo-
sphere, can be unambiguously counted: just compare the energy content of the thermodynamic system above the
surface before and after transfer.

By convection or diffusion molecules can traverse from one side of the two-dimensional surface (the soil)
to the other side (the atmosphere). Water is responsible forthe lion’s share of the exchange of matter between the
Earth’s surface and the atmosphere. The energy which was already present in those molecules before they entered
the ”surface” for some milliseconds will be found back in thesame molecules when they emerge at the other side
of the surface in the atmosphere. The thermal energy of the migrating molecules does (of course) represent energy.
Consequently a flux of mass through the surface does represent an energy flux, but this flux cannot be used to close
equation A.1. We shall call the convective heat fluxC. The independence of the energy budget equation at the
surface from mass flux through the surface, which is illustrated in figure A.1, is our motivation to excludeC from
the definition of the sensible heat flux. We may now define the sensible heat flux as follows:
The sensible heat fluxH is defined as the flux of heat, which is transferred by the ground to the atmosphere
by thermal conduction in the laminar sublayer, during reversibel isobaric processes.

One may nevertheless want to estimate convective heat transfer C to include its effect in large scale atmospheric
models. Warm molecules, which enter the atmosphere in warm conditions, can (after a long journey) influence the
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Figure A.1: Interpretation A: convection does not contribute to the energy balance at the surface. Consequently
only the conductive heat transfer is of interest for the sensible heat flux.
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dynamics of the atmosphere near the poles, where they interact with locally evaporated and consequently much
colder molecules. A second example of the influence of the convective heat flux can be observed in plants: plants
can extract heat from evaporated molecules, which are warmer than air molecules which were in the atmosphere
for a longer while. A large mass-flux through the surface of molecules with a different temperature can even
give a drift in temperature above the surface. This literally ”sensible heat” may therefore tempt the researcher to
incorporate a fraction∆C of the convective energy flux in the definition of sensible heat flux H, even though we
have already shown that this convective heat fluxC is of no importance for the energy budget at the surface. This
additional contribution to the sensible heat flux will depend on the temperature difference∆Tsurf/atm between the
surface and some representative parcel of air in the atmosphere. To close energy budget equation A.1 we have to
modify the definition of the soil heat flux accordingly:

Hmod≡Hconduction+∆C (A.2)

Gmod≡Gconduction−∆C (A.3)

∆C ∼∆Tsurf/atm (A.4)

from which we find

Q∗ =LvE+Gconduction+Hconduction (A.5)

=LvE+ (Gconduction−∆C)+ (Hconduction+∆C)

=LvE+Gmod+Hmod (A.6)

It seems an undesirable characteristic of these definitionsthat the soil heat flux depends on a temperature difference
between the surface and the atmosphere.

Apart from the absence of necessity and the conceptually peculiar consequences of inclusion of (part of) convective
heat fluxC in the definition of the sensible heat fux, there is a fundamental problem. Chemical potentialµ expresses
the amount of energy per unit mass of the transmigrating molecules involved (indicated with indexv) and this gives
us the following expression for convective heat fluxC:

C =̺µwv (A.7)

µ =cp,v(T −Tref) (A.8)

Tref is an arbitrary reference value, which reflects the similarity in definitions of internal energy and of potential
energy. For an unambiguous framework it is necessary to formulate definitions and theories about heat flux such
that they only depend on energy differences of the masses involved. In this way the reference energies of the
masses will not affect our conclusions.

The above definition of the sensible heat flux does not count mass fluxes (convective transport of heat), but only
conduction. Therefore it is directly clear that the sensible heat does not depend on reference values of energies
in masses. Following interpretation A, one concludes that,with the above motivation, there is a preference to use
symbolH for theconductivetransfer of heat from the surface to the atmosphere.

A.2 Interpretation B

The name ”sensible heat flux” makes clear thatH is that part of the energy flux balance, which can be sensed.
As in interpretation A, conduction of heat from the surface to the atmosphere is the most important contribution
to the sensible heat flux. Furthermore one cannot neglect theconvective transport of heat. Consider a situation
where a large, hot mass-flux comes through the surface (for example in volcanic areas or in a kettle which initially
contains relatively cold air and which is filled with hot air). In those situations (see figure A.2) a thermometer,
which is placed in the system of interest (the atmospheric boundary layer or the kettle), will indicate an increasing
temperature and from a physical point of view it would be absurd to negate this measurable effect. Even in the
absense of conductive heat transfer, the thermometer ”senses” a heat flux. This makes clear that the convective
heat transfer has to be somehow embedded in the definition of the sensible heat flux. Naturally it would be of
no physical significance to count all thermal energy in the mass-flux entering the system from zero Kelvin. The
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reference energy, to which interpretation A refers, can even include relativistic energyE =mc2. This would lead
to the assignment of absurdly high values to energy fluxes associated with mass fluxes. It is clear that thetransfer
of energy to the atmosphere from molecules that come from theother side of the surface is proportional to the
temperature difference between the molecules initially present in the atmosphere and the surface temperature. The
situation is illustrated in figure A.3. One can make estimates for this convective heat transfer by considering the

influx
of

hot air
at Ta > T0

T0 T1 > T0

H = 0
Figure A.2: Interpretation B: convection contributes to the sensible heat flux.

Ts

mixing layer

, <T>0

Figure A.3: Interpretation B: integration volume in the atmosphere for sensible heat flux

atmospheric boundary to be a semi-closed system. Collect all evaporating molecules close to the surface and bring
them to the average temperature in the mixing layer, by some imaginary heat exchange device. The joules from
this pre-heating process are to be counted. The evaporated water has now the average mixing layer temperature
and can be admitted to the atmosphere without further necessity to count energy fluxes. When the mass flux is
evenly spread over the mixing layer, which has mean temperature< T >0, then we find the following expression
for the convective contribution to the sensible heat flux:

Hconvect= ̺vcp,v(Ts− < T >0)
wv

hmix
(A.9)

wherehmix is the height of the mixing layer. If the evaporated mass is not evenly mixed with the atmosphere, then
one has to adopt a different value for atmospheric temperature< T >0. To avoid ambiguity we take the average
temperature of the mixing layer.
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A quantitative estimate for the convective heat flux is foundas follows. Let us assume the mixing layer, in which
the evaporated water is evenly spread, to have a height of about one kilometer, and assume that 4 millimeters of
water evaporate (yielding 4 meters of vapour). The relativemass contribution to the mixing layer, formed by the
evaporated water, is four promiles. Let the difference between the temperature of the evaporated water and the
average temperature in the mixing layer be some tens of degrees. Then the induced change in temperature of the
mixing layer would be some hundredths of degrees. This is toosmall to represent a significant convective heat flux
and therefore we can neglect the (nonzero!) convective contribution to the sensible heat flux.

A.3 Interpretation C

We define the sensible heat flux asthe rate of increase of the enthalpy of the atmosphere by transformations
at the surface.
We illustrate this definition with the following example: place an imaginary, vertically oriented cylinder of a certain
height on the surface. Take the height and conditions such that they can be considered horizontally homogeneous
and statistically stationary. Assume that there are no storage or source effects. This implies that there is no flux
divergence. Therefore the sensible heat flux which leaves the cylinder via the top equals the sensible flux entering
the cylinder via the bottom.

The number of moleculesn0, which per unit of time enter the cylinder at the bottom, equals the number of
moleculesna, which leave the cylinder at the top:

n0 = na (A.10)

We assume that the density in the cylinder is constant. Therefore turbulent mixing can change the composition of
the air at a certain height, but it does not alter the density.

Dry air and water vapour contribute to the outflux of molecules at the top of the cylinder proportionally to their
specific concentrations. The relatively high concentration of dry air constituents at the top of the cylinder will
induce an outflux out of the cylinder of mainly dry air molecules (see the first plot in figure A.4). Nevertheless we
have assumed stationary conditions, and when more water vapour enters the cylinder than leaves the cylinder via
the top, then the cylinder contents will become wetter and wetter (second plot in figure A.4). The assumption of
stationarity can therefore only hold when we assume that there is a water vapour concentration gradient. Turbulent
mixing will interchange wet air from in the cylinder with drier air from above the cylinder, thus maintaining
constant water vapour concentration in the cylinder (last two plots in figure A.4). We see that a mass flux at the
surface is transformed into a turbulent flux at the top of the cylinder.

The enthalpy fluxHE at the top consists of two components: the turbulent fluxHa, associated with the exchange
of parcels of wet and dry air, and a contributionHc,top associated with the mass flux. The latter can be written as:

Hc,top = namvcp,v(Ta−Tref) (A.11)

wheremv is the mole mass of water. At the bottom of the cylinder we haveconductionHconductionplus a mass flux
associated enthalpy fluxHc,surf. The latter can be expressed by:

Hc,surface= namvcp,v(Ts−Tref) (A.12)

The situation is illustrated in figure A.5. The budget equation for the energy in the cylinder is:

Ha = Hconduction+namvcp,v(Ts−Ta) (A.13)

We see that water vapour, which is warmer than the atmospheric air, contributes to the turbulent heat flux at a
certain height.

Let us consider the hydrological cycle. Water comes to the surface in the form of rain. In general the temperature
of the rain is lower than of the surface. The soil will have to spend energy to heat the rain while it infiltrates. From
this moment on the water is part of the soil and consequently will follow the temperature variations of the soil.
Before evaporation the water will first go to the surface and assume surface temperature. This heating of water to
surface temperature will be done at the cost of the soil heat flux, which influences the balance in equation A.1.
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Figure A.4: Interpretation C: An influx of water at the surface leads to an outflux of mostly dry air constituent.
Turbulent mixing is required to create a stationary situation.

63



Figure A.5: Interpretation C: integration volume in the atmosphere for sensible heat flux

The situation is comparable with a heater, which takes cold air from outside, heats it and ventilates the heated air
into a room. This situation is schematically drawn in figure A.6 and can be compared with figure A.2, correspond-
ing with interpretation B. It seems no longer sustainable tostick to the idea that, when a mass flux is involved,
definitions of surface fluxes should be independent of the atmospheric air temperature. To stay with the example
of the heater: When the temperature in the room is higher thanthe temperature of the air coming from the heater,
then the heater will have a cooling effect on the room, which is a negative sensible heat flux.

Figure A.6: The change in roomtemperatureTa is related to the convective contribution to the sensible heat flux
and depends on the difference in temperature between the airin the room and the air coming from the heater.

This reasoning also applies to the definition of the sensibleheat flux in the atmosphere: it depends on the atmo-
spheric temperature. Assume that, at a given moment, the atmospheric temperature rises. Then the sensible heat
flux will deminish. As a consequence a new equilibrium will beformed between the terms in relation A.1.
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Appendix B

Description of software library ECPACK

This appendix describes the core routines that are part of the FORTRAN-77 library ECPACK. The latest version
can always be obtained from the website of the Meteorology and Air Quality Group of Wageningen University
(under Research→ Joint Eddycovariance Project). Apart from the library routines discussed here, a complete data
analysis package is available that computes fluxes from eddy-covariance data stored in files using the NetCDF
format (http://www.unidata.ucar.edu/packages/netcdf). This package is included in the source code of the library
ECPACK as it is available from the website of the Meteorologyand Air Quality Group of Wageningen University.
Both ECPACK and the complete flux computation package are available for free under the GNU Public License
(http://www.gnu.org/licenses).

The highest level routines plus some general routines are intt ec gene.f. The correction routines are inec corr.f .
Routines that refer to physical processes are inec phys.f . Supporting mathematics routines are located in
ec math.f . Furthermore, two include files are used, viz.physcnst.inc andparcnst.inc . The documen-
tation presented here has been extracted from the source code using the Robodoc package (http://www.xs4all.nl/ rfs-
ber/Robo)
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B.1 parcnst.inc/parcnst.inc
NAME

parcnst.inc

FUNCTION

include file that defines various parameters (indicating
instruments etc.)

B.2 physcnst.inc/Rd
NAME

Rd

FUNCTION

Gas constant for dry air

SOURCE

PARAMETER(Rd = 287.04D0) ! [J/Kg.K]

B.3 physcnst.inc/Rv
NAME

Rv

FUNCTION

Gas constant for water vapour

SOURCE

PARAMETER(Rv = 461.5D0) ! [J/Kg.K]

B.4 physcnst.inc/RGas
NAME

RGas

FUNCTION

Universal gas constant

SOURCE

PARAMETER(RGAs = 8314.D0) ! [J/kmol.K]

B.5 physcnst.inc/Epsilon
NAME

Epsilon

FUNCTION

Infinitisimal number

SOURCE

PARAMETER(Epsilon = 1.D-30) ! [1]

B.6 physcnst.inc/Pi
NAME

Pi

FUNCTION

Pi

SOURCE

PARAMETER(Pi=3.1415926535897932385D0) ! [1]

B.7 physcnst.inc/Kelvin
NAME

Kelvin

FUNCTION

Temperature of 0 degree Celsius in Kelvin

SOURCE

PARAMETER(Kelvin = 273.15D0) ! [K]

B.8 physcnst.inc/GammaR
NAME

GammaR

FUNCTION

Constant in correction of sonic temperature in voor corss-w ind
(part of the Schotanus correction)
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SOURCE

PARAMETER(GammaR = 403.D0) ! [mˆ{2}sˆ{-2}Kˆ{-1}]

B.9 physcnst.inc/DifCo2
NAME

DiffCo2

FUNCTION

Molecular diffusivity CO2 at 30 degree Celcius (?)

SOURCE

PARAMETER(DifCO2 = 15.6D-6) ! [mˆ{2}sˆ{-1}]

B.10 physcnst.inc/DifH20
NAME

DiffH20

FUNCTION

Molecular diffusivity H20 at 30 degree Celcius (?)

SOURCE

PARAMETER(DifH2O = 25.7D-6) ! [mˆ{2}sˆ{-1}]

B.11 physcnst.inc/Karman
NAME

Karman

FUNCTION

Von Karman constant

SOURCE

PARAMETER(Karman = 0.4D0) ! [1]

B.12 physcnst.inc/GG
NAME

GG

FUNCTION

Gravitational acceleration

SOURCE

PARAMETER(GG = 9.81D0) ! [m sˆ{-2}]

B.13 physcnst.inc/MO2
NAME

MO2

FUNCTION

molecular weight of oxygen

SOURCE

PARAMETER(MO2 = 32.D0) ! [g molˆ{-1}]

B.14 physcnst.inc/MAir
NAME

MAir

FUNCTION

molecular weight of dry air

SOURCE

PARAMETER(MAir = 28.966D0) ! [g/mol]

B.15 physcnst.inc/MVapour
NAME

MVapour

FUNCTION

molecular weight of water vapour

SOURCE

PARAMETER(MVapour = 18.016D0)! [g/mol]
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B.16 physcnst.inc/Mu
NAME

Mu

FUNCTION

ratio: Mu = Mair/Mv

SOURCE

PARAMETER(Mu = 1.6078D0) ! [1]

B.17 physcnst.inc/Kok
NAME

Kok

FUNCTION

extinction for oxygen for Krypton hygrometer

NOTES

First the value from work of Webb (1980) was used
(KoK = 0.0085 [mˆ{3} gˆ{-1} cmˆ{-1}]). Now
a value due to van Dijk (1999) is used.
This constant may disappear from the library and may become
part of the user-supplied instrument specifications

SOURCE

PARAMETER(KoK = 0.0038D0) ! [mˆ{3} gˆ{-1} cmˆ{-1}]

B.18 physcnst.inc/Kwk
NAME

Kwk

FUNCTION

extinction for water vapour for Krypton hygrometer

SOURCE

PARAMETER(KwK = 0.143D0) ! [mˆ{3} gˆ{-1} cmˆ{-1}]

B.19 physcnst.inc/Kola
NAME

Kola

FUNCTION

Extinction for oxygen for Lymann-alpha

SOURCE

PARAMETER(KoLa = 0.001085D0) ! [mˆ{3} gˆ{-1} cmˆ{-1}]

B.20 physcnst.inc/Kwla
NAME

Kwla

FUNCTION

Extinction for water vapour for Lymann-alpha

SOURCE

PARAMETER(KwLa = 0.09125D0) ! [mˆ{3} gˆ{-1} cmˆ{-1}]

B.21 physcnst.inc/FracO2
NAME

FracO2

FUNCTION

Fraction of O2 molecules in air

SOURCE

PARAMETER(FracO2 = 0.21D0) ! [1]

B.22 physcnst.inc/Cp
NAME

Cp

FUNCTION

Specific heat of air

SOURCE

PARAMETER(Cp = 1004.67D0) ! [J Kgˆ{-1} Kˆ{-1}]
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B.23 physcnst.inc/Lv
NAME

Lv

FUNCTION

Latent heat of vaporization of water

SOURCE

PARAMETER(Lv = 2.45D6) ! [J Kgˆ{-1}]

B.24 physcnst.inc/MinT
NAME

MinT

FUNCTION

Lower limit for acceptance of temperature sample

SOURCE

PARAMETER(MinT = 243.D0) ! [Kelvin]

B.25 physcnst.inc/MaxT
NAME

MaxT

FUNCTION

Upper limit for acceptance of temperature sample

SOURCE

PARAMETER(MaxT = 333.D0) ! [Kelvin]

B.26 physcnst.inc/MinRhov
NAME

MinRhov

FUNCTION

Lower limit for acceptance of water vapour sample

SOURCE

PARAMETER(MinRhoV = 0.D0) ! [kg mˆ{-3}]

B.27 physcnst.inc/MaxRhov
NAME

MaxRhov

FUNCTION

Upper limit for acceptance of water vapour sample

SOURCE

PARAMETER(MaxRhoV = 1.D0) ! [kg mˆ{-3}]

B.28 physcnst.inc/MinRhoCO2
NAME

MinRhoCO2

FUNCTION

Lower limit for acceptance of CO2 sample

SOURCE

PARAMETER(MinRhoCO2 = 0.D0) ! [kg mˆ{-3}]

B.29 physcnst.inc/MaxRhoCO2
NAME

MaxRhoCO2

FUNCTION

Upper limit for acceptance of CO2 sample

SOURCE

PARAMETER(MaxRhoCO2 = 1.D0) ! [kg mˆ{-3}]

B.30 ecgene.f/ECG Main
NAME

EC_G_Main
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SYNOPSIS

CALL EC_G_Main(OutF,DoPrint,
RawSampl,MaxChan,Channels,NMax,N,MMax,M, PCal,PIndep ,
Psychro,CalSonic,CalTherm,CalHyg, CalCO2, P,
Calibr,
Sample,Flag,Mok,Cok,MIndep,CIndep,Rc,BadTc,
DoCorr, PCorr, ExpVar,
DirYaw, DirPitch, DirRoll,
Apf, SonFactr, O2Factor, FrCor,
Mean,TolMean,Cov,TolCov,
QPhys, dQPhys,
HAVE_UNCAL, Have_cal, DiagFlag, FirstDay)

FUNCTION

Integrated routine which:
- Calibrates raw samples
- Estimates mean values and covariances with respective tol erances
- Corrects the resulting mean values and covariances for all

effects selected by the user
- Estimates, from the final mean values and covariances, the surface-

fluxes with tolerances.

INPUTS

OutF : [INTEGER]
unit number of file for intermediate results

DoPrint : [LOGICAL]
write intermediate results to file?

RawSampl : [REAL * 8(MaxChan, MMax)
raw, uncalibrated samples

MaxChan : [INTEGER]
maximum number of channels in RawSampl

Channels : [INTEGER]
actual number of channels in RawSampl

NMax : [INTEGER]
maximum number of calibrated quantities

N : [INTEGER]
actual number of calibrated quantities

MMax : [INTEGER]
maximum number of samples

M : [INTEGER]
actual number of samples

PCal : [LOGICAL]
print results of slow sensor correction?

PIndep : [LOGICAL]
print number of independent samples?

DoCorr : [LOGICAL](NMaxCorr)
which corrections to do?

PCorr : [LOGICAL](NMaxCorr)
intermediate results of which corrections?

ExpVar : [REAL * 8](NMaxExp)
array with experimental settings

Psychro : [REAL * 8]
water vapour density of slow sensor (kg/mˆ3)

CalSonic : [REAL * 8(NNQ)]
array with calibration data of sonic

CalTherm : [REAL * 8(NNQ)]
array with calibration data of thermocouple

CalHyg : [REAL * 8(NNQ)]
array with calibration data of hygrometer

CalCO2 : [REAL * 8(NNQ)]
array with calibration data of CO2 sensor

P : [REAL * 8]
atmospheric pressure (Pa)

Calibr : [SUBROUTINE]
calibration subroutine

Apf : [REAL * 8(3,3)]
planar fit untilt matrix

HAVE_UNCAL: [LOGICAL(NMax)]
switch whether data for uncalibrated data

are available for each channel
FirstDay : [INTEGER]

day number of first sample in array (needed for
detrending data that pass midnight)

OUTPUTS
Sample : [REAL * 8(NMax, MMax)]

array with calibrated samples
Flag : [LOGICAL(NMax, MMax)]

validity flag (true means invalid) for all
calibrated samples

Mok : [INTEGER(NMax)]
number of valid samples for each quantity

Cok : [INTEGER(NMax,NMax)]
number of valid samples for each combination of
two quantities

MIndep : [INTEGER(NMax)]
number of independent samples for each quantity

CIndep : [INTEGER(NMax, NMax)]
number of independent samples for each
combination of two quantities

Rc : [REAL * 8(NMax)]
slope of linear regression in case liner detrending
has been done (for each quanity)

BadTc : [LOGICAL]
if more than half of the thermocouple samples are
wrong, flag thermocouple as bad

DirYaw : [REAL * 8]
yaw angle (degrees)

DirPitch : [REAL * 8]
pitch angle (degrees)

DirRoll : [REAL * 8]
roll angle (degrees)

SonFactr : [REAL * 8(NMax)]
correction factor for the covariances with specific
humidity

O2Factor : [REAL * 8(NMax)]
Correction factor due to oxygen correction for
covariance of humidity with each calibrated

FrCor : [REAL * 8(NMax, NMax)]
Correction factors for covariances for frequency
response

Mean : [REAL * 8(NMax)] (in/out)
Mean values of all calibrated signals

TolMean : [REAL * 8(NMax)] (in/out)
Tolerances in mean values of all calibrated signals

Cov : [REAL * 8(NMax,NMax)] (in/out)
Covariances of all calibrated signals

TolCov : [REAL * 8(NMax,NMax)] (in/out)
Tolerances in covariances of all calibrated signals

QPhys : [REAL * 8](NMaxPhys)] (in/out)
array with physical quantities

dQPhys : [REAL * 8](NMaxPhys)] (in/out)
array with tolerances physical quantities

HAVE_CAL : [LOGICAL(NNMax)]
switch whether data for calibrated data
are available for each channel

DiagFlag : [INTEGER](NMaxDiag)
count of flags occuring in diagnostic word of CSAT

AUTHOR

Arjan van Dijk, Arnold Moene

HISTORY

Revision: 03-04-2001: get mean W and its tolerance before ti lt
correction; export via interface (AM)

Revision: 28-05-2001: added passing of info on whether unca librated
data are available (AM)

Revision: 18-09-2002: removed calcomm.inc and added First Day
to interface (to pass it to calibration routine

Revision: 5-12-2002: added DoPF, PPF, Apf to interface to in clude planar fit
Revision: 13-01-2003: added vectorwind and dirfrom to inte rface
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Revision: 27-01-2003: removed physical quantities from in terface
and replace by QPhys
Put all correction info into DoCorr and PCorr, ExpVar

REvision: 29-01-2003: added have_cal to interface to
have it available in ec_ncdf

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_C_Main
EC_C_T05
EC_C_T06
EC_C_T08
EC_C_T10
EC_G_Reset
EC_G_ShwInd
EC_G_Show
EC_M_Averag
EC_M_MinMax
EC_M_Detren
EC_Ph_Q
EC_Ph_Flux
parcnst.inc

B.31 ecgene.f/ECG Reset
NAME

EC_G_Reset

SYNOPSIS

CALL EC_G_Reset(Have_cal, Mean, TolMean, Cov, TolCov, MIn dep,
CIndep)

FUNCTION

Routine to reset means and covariances based on availabilit y
of the uncalibrated data

INPUTS

Have_cal : [LOGICAL(NMax)]
switch for each channel whether calibrated
data are available

Mean : [REAL * 8(NMax)]
mean of quantities

TolMean : [REAL * 8(NMax)]
tolerance in mean of quantities

Cov : [REAL * 8(NMax,NMax)]
covariances of quantities

TolMean : [REAL * 8(NMax,NMax)]
tolerance in covariances of quantities

MIndep : [REAL * 8(NMax)]
number of independent samples

CIndep : [REAL * 8(NMax,NMax)]
number of independent samples in covariances

OUTPUT

Mean : [REAL * 8(NMax)]
mean of quantities

TolMean : [REAL * 8(NMax)]
tolerance in mean of quantities

Cov : [REAL * 8(NMax,NMax)]

covariances of quantities
TolMean : [REAL * 8(NMax,NMax)]

tolerance in covariances of quantities
MIndep : [REAL * 8(NMax)]

number of independent samples
CIndep : [REAL * 8(NMax,NMax)]

number of independent samples in covariances

AUTHOR

Arnold Moene

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc

B.32 ecgene.f/ECG ShwFrq

NAME

EC_G_ShwFrq

SYNOPSIS

CALL EC_G_ShwFrq(OutF,FrCor,NMax,N)

FUNCTION

Prints correction factors associated with frequency respo nse

INPUTS

OUTF : [INTEGER]
unit number of file

FrCor : [REAL * 8(NMax,NMax)]
freqency response correction factors for
each combination of quantities

NMax : [INTEGER]
maximum number of quantities

N : [INTEGER]
actual number of quantities

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc
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B.33 ecgene.f/ECG ShwInd
NAME

EC_G_ShwInd

SYNOPSIS

CALL EC_G_ShwInd(OutF,MIndep,
CIndep,NMax,N,M,Freq)

FUNCTION

Prints number of independent observations

INPUTS

OUTF : [INTEGER]
unit number of file

MIndep : [INTEGER(NMax)]
number of independent samples for
means

CIndep : [INTEGER(NMax,NMax)]
number of independent samples for
covariances

NMax : [INTEGER]
maximum number of quantities

N : [INTEGER]
actual number of quantities

M : [INTEGER]
total number of samples

Freq : [REAL * 8]
sampling frequency (Hz)

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc

B.34 ecgene.f/ECG ShwMinMax
NAME

EC_G_ShwMinMax

SYNOPSIS

CALL EC_G_ShwInd(OutF, N, Mins, Maxs)

FUNCTION

Prints min/max of series

INPUTS

OUTF : [INTEGER]
unit number of file

N : [INTEGER]
number of series

Mins : [INTEGER(NMax)]
min value of series

Maxs : [INTEGER(NMax)]
max value of series

AUTHOR

Arnold Moene

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc

B.35 ecgene.f/ECG ShwHead
NAME

EC_G_ShwHead

SYNOPSIS

CALL EC_G_ShwHead(OutF,String)

FUNCTION

Prints header to intermediate results file

INPUTS

OUTF : [INTEGER]
unit number of file

N : [CHARACTER]( * )
String to write

AUTHOR

Arnold Moene

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.36 ecmath.f/EC M ABCForm
NAME
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EC_M_ABCForm

SYNOPSIS

CALL EC_M_ABCForm(a,b,c,Root1, Root2, AllReal)

FUNCTION

Solves axˆ2 + bx + c = 0

INPUTS

a : [REAL * 8]
first coefficient

b : [REAL * 8]
second coefficient

c : [REAL * 8]
third coefficient

OUTPUTS
Root1 : [REAL * 8]

first root
Root2 : [REAL * 8]

second root
AllReal: [LOGICAL]

all roots real?

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.37 ecmath.f/EC M Averag
NAME

EC_M_Averag

SYNOPSIS

CALL EC_M_Averag(x,NMax,N,MMax,M,Flag,
Mean,TolMean,Cov,TolCov,MIndep,CIndep,Mok,Cok)

FUNCTION

From the given set of calibrated samples, calculate the aver ages,
variances, covariances and their tolerances.

INPUTS

x : [REAL * 8(NMax,MMax)]
Array with calibrated samples.
First index counts quantities; second counter
counts samples. Only the first N quantities
and the first M samples are used.

NMax : [INTEGER]
maximum number of quantities

N : [INTEGER]
actual number of quantities

MMax : [INTEGER]

maximum number of samples
M : [INTEGER]

actual number of samples
Flag : [LOGICAL(NMax, MMax)]

If flag(j,i) is true, then quantity j in sample
i is not ok.

OUTPUTS
Mean : [REAL * 8(NMax)]

The average value array x. Only samples with Flag = 0
are used.

TolMean: tolerance of Mean, defined as 2 * sigma / sqrt(NIndep)
where sigma is the standarddeviation of the quantities
and where the number of independent samples is estimated
as twice the number of sign-changes of the fluctuations
of the respective quantities around their means.

Cov : [REAL * 8(NMax,NMax)]
covariances

TolCov : [REAL * 8(NMax,NMax)]
tolerances of Cov, estimated in same way as tolerances
of mean.

MIndep : [INTEGER(NMAx)]
Number of independent samples in time series from
which means are calculated

CIndep : [INTEGER(NMAx,NMAx)]
Number of independent samples in time series from
which covariances are calculated

Mok : [INTEGER(NMax)]
number of valid samples for each quantity

Cok : [INTEGER(NMax,NMax)]
number of valid samples for each combination of
two quantities

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc

B.38 ecmath.f/EC M BaseF
NAME

EC_M_BaseF

SYNOPSIS

Value = EC_M_BaseF(x,FType,Order,C)

FUNCTION

Purpose : Calculate simple functions. Currently implement ed:
- Ordinary polynomials
- Polynomials in the natural logarithm of x

INPUTS

x : [REAL * 8]
argument of function
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FType : [INTEGER]
function type: NormPoly or LogPoly (defined in
parcnst.inc

Order : [INTEGER]
order of the polynomial

C : [REAL * 8(0:Order)]
array with coefficients

RETURN VALUE

return value : [REAL * 8]
value of polynomial

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc

B.39 ecmath.f/EC M Cardano
NAME

EC_M_Cardano

SYNOPSIS

CALL EC_M_Cardano(Poly, Root, AllReal)

FUNCTION

Uses the Cardano solution to solve exactly:
axˆ3 + bxˆ2 + cx + d = 0
"a" is not allowed to be zero.

INPUTS

Poly : [REAL * 8(0:3)]
coefficient of third order polynomial

OUTPUTS
Root : [REAL * 8(2,3)]

array with roots, first index are
real and imaginary part, respectively,
second index for three roots

AllReal: [LOGICAL]
all roots real?

AUTHOR

Arjan van Dijk

SEE ALSO

Abramowitz and Stegun

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.40 ecmath.f/EC M Det2
NAME

EC_M_Det2

SYNOPSIS

Value = EC_M_Det2(x)

FUNCTION

Give determinant of REAL * 8 2* 2-matrix

INPUTS

x : [REAL * 8(2,2)]
matrix

RETURN VALUE

return value :
[REAL* 8]
determinant

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.41 ecmath.f/EC M Determ
NAME

EC_M_Determ

SYNOPSIS

Value = EC_M_Determ(x)

FUNCTION

Give determinant of real 3 * 3-matrix

INPUTS

x : [REAL * 8(3,3)]
matrix
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RETURN VALUE

return value :
[REAL* 8]
determinant

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.42 ecmath.f/EC M Detren
NAME

EC_M_Detren

SYNOPSIS

CALL EC_M_Detren(x,NMax,N,MMAx,M,Mean,Cov,y,RC)

FUNCTION

Construct a linearly detrended dataset from a given dataset

INPUTS

x : [REAL * 8(NMax,MMax)] (in/out)
array with samples: x(i,j) = quantity i in sample j
only the first N quantities and the first M samples
are used. On output: detrended series

NMax : [INTEGER]
maximum number of quantities in x

N : [INTEGER]
actual number of quantities in x

MMax : [INTEGER]
maximum number of samples in x

M : [INTEGER]
actual number of samples in x

Mean : [REAL * 8(NMax)]
mean of all quantities

Cov : [REAL * 8 (NMax,NMAx)]
covariances of quantities used to find trend.

OUTPUT

RC : [REAL * 8(NMAx)]
Directional coefficients of linear regression
trend-lines.

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $
Revision 28-01-2003: remove argument y, since it causes ali assing (and is not

needed).

USES

parcnst.inc

B.43 ecmath.f/EC M DSwap
NAME

EC_M_DSwap

SYNOPSIS

CALL EC_M_DSwap(x,y)

FUNCTION

Interchanges x and y

INPUTS

x,y : [REAL * 8]
quantities

OUTPUTS
x,y : [REAL * 8]

quantities

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.44 ecmath.f/EC M Ell1Q
NAME

EC_M_Ell1Q

SYNOPSIS

CALL EC_M_Ell1Q(phi,alpha,ff,ee)

FUNCTION

Calculates the elliptic integrals F(Phi\Alpha) and
E(Phi\Alpha) using the Arithmetic-Geometric Mean process
as described in Abramowitz and Stegun, 17.6 (Numbers in
text refer to equations in A&S). Only ok for first quadrant

INPUTS

phi : [REAL * 8]
argument

alpha : [REAL * 8]
argument

OUTPUTS
ff : [REAL * 8]
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result
ee : [REAL * 8]

result

AUTHOR

Arjan van Dijk

SEE ALSO

Abramowitz and Stegun, 17.6

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.45 ecmath.f/EC M EllCoords
NAME

EC_M_EllCoords

SYNOPSIS

CALL EC_M_EllCoords(x,b,y,DyDx)

FUNCTION

Calculate the elliptic coordinates (Lambda, Mu, Nu) plus
derivatives Dy[i]/Dx[j] corresponding to the Carthesian
coordinates (x[1], x[2], x[3]) for an ellipsoid with
semiaxes (b[1], b[2], b[3]) with b[1]>b[2]>b[3].
Procedure cannot handle points at coordinateplanes.
Outside the ellipsoid the elliptic coordinates satisfy:
-b[1]ˆ2 < Nu < -b[2]ˆ2 < Mu < -b[3]ˆ2 < 0 < Lambda.

INPUTS

x : [REAL * 8(3)]
Carthesian coordinate

b : [REAL * 8(3)]
semi-axes of ellipsoid

alpha : [REAL * 8]
argument

OUTPUTS
y : [REAL * 8(3)]

new coordinate
DyDx : [REAL * 8(3,3)]

derivative

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

AUTHOR

Arjan van Dijk

USES

EC_M_Cardano
EC_M_DSwap
EC_M_SQR

B.46 ecmath.f/EC M Ellint
NAME

EC_M_Ellint

SYNOPSIS

CALL EC_M_Ellint(phi,alpha,ff,ee)

FUNCTION

Calculates the elliptic integrals F(Phi\Alpha) and
E(Phi\Alpha) using the Arithmetic-Geometric Mean process
as described in Abramowitz and Stegun, 17.6 (Numbers in
text refer to equations in A&S). ok for all angles.

INPUTS

phi : [REAL * 8]
argument

alpha : [REAL * 8]
argument

OUTPUTS
ff : [REAL * 8]

result
ee : [REAL * 8]

result

AUTHOR

Arjan van Dijk

SEE ALSO

Abramowitz and Stegun, 17.6

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_M_Ell1Q

B.47 ecmath.f/EC M InvM
NAME

EC_M_InvM

SYNOPSIS

CALL EC_M_InvM(a, aInv)
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FUNCTION

Find the inverse of real 3 * 3 matrix "a"

INPUTS

a : [REAL * 8(3,3)]
matrix

OUTPUTS
inv : [REAL * 8(3,3)]

inverse matrix

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_M_Determ

B.48 ecmath.f/EC M InvM2
NAME

EC_M_InvM2

SYNOPSIS

CALL EC_M_InvM2(a, aInv)

FUNCTION

Find the inverse of real 2 * 2 matrix "a"

INPUTS

a : [REAL * 8(2,2)]
matrix

OUTPUTS
inv : [REAL * 8(2,2)]

inverse matrix

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_M_Det2

B.49 ecmath.f/EC M ISwap
NAME

EC_M_ISwap

SYNOPSIS

CALL EC_M_ISwap(x,y)

FUNCTION

Interchanges x and y

INPUTS

x,y : [INTEGER]
quantities

OUTPUTS
x,y : [INTEGER]

quantities

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.50 ecmath.f/EC M ka
NAME

EC_M_ka

SYNOPSIS

Value = EC_M_ka(x,b)

FUNCTION

Returns = DSQRT((x+b(1) ** 2) * (x+b(2) ** 2) * (x+b(3) ** 2))
From equation 8

INPUTS

x : [REAL * 8]
argument

b : [REAL * 8(3)]
coefficient

RETURN VALUE

return value :
[REAL* 8]
result

AUTHOR

7
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Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.51 ecmath.f/EC M Map2Vec
NAME

EC_M_Map2Vec

SYNOPSIS

CALL EC_M_Map2Vec(a,x,y)

FUNCTION

Calculates the image of "x" under the map "a"; y(i) = a(ij)x(j )

INPUTS

a : [REAL * 8(2,2)]
the mapping matrix

x : [REAL * 8(2)]
the vector to be mapped

OUTPUT

y : [REAL * 8(2)]
the image of the map

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.52 ecmath.f/EC M MapMtx
NAME

EC_M_MapMtx

SYNOPSIS

CALL EC_M_MapMtx(a,x,y)

FUNCTION

Calculates the image of "x" under the map "a";
y(ji) = a(ki)a(lj)x(lk)

INPUTS

a : [REAL * 8(3,3)]
the mapping matrix

x : [REAL * 8(3,3)]
the tensor to be mapped

OUTPUT

y : [REAL * 8(3,3)]
the image of the map

AUTHOR

Arjan van Dijk

HISTORY

Revision: June 21, 2001:
- indices i and j in the mapping have

been interchanged. This has also been done in the
routines that used EC_M_MapMtx (EC_C_T05)

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.53 ecmath.f/EC M MapVec

NAME

EC_M_MapVec

SYNOPSIS

CALL EC_M_MapVec(a,x,y)

FUNCTION

Calculates the image of "x" under the map "a"; y(i) = a(ij)x(j )

INPUTS

a : [REAL * 8(3,3)]
the mapping matrix

x : [REAL * 8(3)]
the vector to be mapped

OUTPUT

y : [REAL * 8(3)]
the image of the map

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $
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B.54 ecmath.f/EC M MinMax
NAME

EC_M_MinMax

SYNOPSIS

Call EC_M_MinMax(x,NMax,N,MMax, M,Flag,Mins, Maxs)

FUNCTION

Determines minimum and maximum of quantities

INPUTS

x : [REAL * 8(Nmax,MMax)]
the sampled quantities

NMax : [INTEGER]
maximum number of quantities

N : [INTEGER]
actual number of quantities

MMax : [INTEGER]
maximum number of samples

M : [INTEGER]
actual number of samples

Flag : [LOGICAL(NMax, MMax)]
If flag(j,i) is true, then quantity j in sample
i is not ok.

OUTPUT

Mins : [REAL * 8(NMax)]
the minimum of each quantity, only taking into
account samples with Flag = 0

Maxs : [REAL * 8(NMax)]
the maximum of each quantity, only taking into
account samples with Flag = 0

AUTHOR

Arnold Moene

USES

parcnst.inc

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.55 ecmath.f/EC M MMul
NAME

EC_M_MMul

SYNOPSIS

CALL EC_M_MMul(a,b,c)

FUNCTION

Matrix C is product of 3 * 3-matrices A and B

INPUTS

a : [REAL * 8(3,3)]
first matrix

b : [REAL * 8(3)]
second matrix

OUTPUT

c : [REAL * 8(3)]
matrix product

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.56 ecmath.f/EC M MulVec
NAME

EC_M_MulVec

SYNOPSIS

CALL EC_M_MulVec(x,y)

FUNCTION

Multiply vector with a constant

INPUTS

x : [REAL * 8(3)]
vector

y : [REAL * 8]
constant

OUTPUT

x : [REAL * 8(3)]
vector multiplied with y

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $
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B.57 ecmath.f/EC M SortDecr
NAME

EC_M_SortDecr

SYNOPSIS

CALL EC_M_SortDecr(x,permutation)

FUNCTION

Sorts the elements of vector x in decreasing order;
permutation needed is returned as well

INPUTS

x : [REAL * 8(3)]
vector

OUTPUT

x : [REAL * 8(3)]
sorted vector

permutation :
[INTEGER(3)]
permutation to arrive at sorted vector

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_M_DSwap
EC_M_ISwap

B.58 ecmath.f/EC M SortUse
NAME

EC_M_SortUse

SYNOPSIS

CALL EC_M_SortUse(x,permutation)

FUNCTION

Reorders the elements of x according to permutation

INPUTS

x : [REAL * 8(3)]
vector

permutation :
[INTEGER(3)]
permutation to arrive at sorted vector

OUTPUT

x : [REAL * 8(3)]
sorted vector

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.59 ecmath.f/EC M specint
NAME

EC_M_specint

SYNOPSIS

CALL EC_M_specint(lambda,b,integral)

FUNCTION

Calculates the integrals:
\INT_(\lambda)ˆ(\infty) \frac{dq}{{b_{i}ˆ{2}+q}k_{q} }
References "G&R" in the code are to Gradshteyn and Ryzhik:
Tables of Integrals, Series and Products, 4th ed.,Ac. Press ,’65

INPUTS

lambda : [REAL * 8]
one lambda

b : [REAL * 8(3)]
vector of b-values

OUTPUT

integral : [REAL * 8(3)]
result

AUTHOR

Arjan van Dijk

SEE ALSO

References "G&R" in the code are to Gradshteyn and Ryzhik:
Tables of Integrals, Series and Products, 4th ed.,Ac. Press ,’65

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $
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B.60 ecmath.f/EC M SQR
NAME

EC_M_SQR

SYNOPSIS

Value = EC_M_SQR(x)

FUNCTION

Give the square of x

INPUTS

x : [REAL * 8]

RETURN VALUE

return value :
[REAL* 8]
result

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.61 ecmath.f/EC M UnSort
NAME

EC_M_UnSort

SYNOPSIS

CALL EC_M_UnSort(x, permutation)

FUNCTION

Unsorts the elements of x originally sorted using permutati on

INPUTS

x : [REAL * 8(3)]
vector

permutation :
[INTEGER(3)]
permutation to arrive at sorted vector

OUTPUT

x : [REAL * 8(3)]
unsorted vector

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.62 ecphys.f/EC Ph Flux
NAME

EC_Ph_Flux

SYNOPSIS

CALL EC_Ph_Flux(Mean,NMax,Cov,TolMean,TolCov,p,BadTc ,
WebVel, dirYaw)

FUNCTION

Construct estimates for surface fluxes from mean values and covariances

INPUTS

Mean : [REAL * 8(NMax)]
Means of all variables

NMax : [INTEGER]
Maximum number of variables

Cov : [REAL * 8(NMax,NMax)]
Covariances of all variables

TolMean: [REAL * 8(NMax)]
Tolerances in means of all variables

TolCov : [REAL * 8(NMax,NMax)]
Tolerances in covariances of all variables

p : [REAL * 8]
atmosperic pressure (Pa)

BadTc : [LOGICAL]
indicator whether thermocouple temperature is corrupt

WebVel : [REAL * 8]
Webb velocity (m/s)

DirYaw : [Real * 8]
Yaw rotation angle (degrees)

OUTPUT

QPhys : [REAL * 8](NMaxPhys)
array with physical quantities

dQPhys : [REAL * 8](NMaxPhys)
array with tolerances in physical quantities
tolerance in sensible heat flux with sonic temperature (W/m ˆ2)

AUTHOR

Arjan van Dijk, Arnold Moene

HISTORY

07-10-2002: added CO2 fluxes and WebVel to interface. Webb- term
is now computed with Webvel, rather than Mean(W)

26-01-2003: replaced physical quantities by QPhys
$Name: $
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$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_Ph_RhoWet
parcnst.inc
Cp
Lv

B.63 ecphys.f/EC Ph Q
NAME

EC_Ph_Q

SYNOPSIS

Spec_hum = EC_Ph_Q(RhoV,T,P)

FUNCTION

Calculate the specific humidity of wet air

INPUTS

Rhov : [REAL * 8]
Density of air (kg/mˆ3)

T : [REAL * 8]
Temperature (K)

P : [REAL * 8]
Pressure (Pa)

RETURN VALUE

return value : [REAL * 8]
Specific humidity (kg/kg)

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_Ph_RhoWet

B.64 ecphys.f/EC Ph QCO2
NAME

EC_Ph_QCO2

SYNOPSIS

Spec_CO2 = EC_Ph_QCO2(RHOCO2,RHOV,T,P)

FUNCTION

Calculate the specific CO2 concentration of wet air

INPUTS

RhoCO2 : [REAL * 8]
Density of CO2 (kg/mˆ3)

Rhov : [REAL * 8]
Density of air (kg/mˆ3)

T : [REAL * 8]
Temperature (K)

P : [REAL * 8]
Pressure (Pa)

RETURN VALUE

return value : [REAL * 8]
Specific CO2 (kg/kg)

AUTHOR

Arnold Moene

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_Ph_RhoWet

B.65 ecphys.f/EC Ph RhoDry
NAME

EC_Ph_RhoDry

SYNOPSIS

Rho_dry = EC_Ph_RhoDry(RhoV,T,P)

FUNCTION

Calculate the density of dry air component in wet air
Via Dalton’s law : Pressure is sum of partial pressures :
P = RhoV* Rv* T + RhoD* Rd* T

INPUTS

Rhov : [REAL * 8]
Density of air (kg/mˆ3)

T : [REAL * 8]
Temperature (K)

P : [REAL * 8]
Pressure (Pa)

RETURN VALUE

8
2



return value : [REAL * 8]
Density of dry part of air (kg/mˆ3)

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

Rd
Rv

B.66 ecphys.f/EC Ph RhoWet

NAME

EC_Ph_RhoWet

SYNOPSIS

Rho_dry = EC_Ph_RhoWet(RhoV,T,P)

FUNCTION

Calculate the density of wet air

INPUTS

Rhov : [REAL * 8]
Density of air (kg/mˆ3)

T : [REAL * 8]
Temperature (K)

P : [REAL * 8]
Pressure (Pa)

RETURN VALUE

return value : [REAL * 8]
Density of wet air (kg/mˆ3)

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_Ph_RhoDry

B.67 ecphys.f/EC Ph Struct

NAME

EC_Ph_Struct

SYNOPSIS

CALL EC_Ph_Struct(Sample,NMax,MMax,M,Flag,
XIndex,YIndex,
R,dR,Freq,CIndep,Cxy,dCxy)

FUNCTION

Calculate structure parameters <(x(r)-x(r+R)) * (y(r)-y(r+R))>/Rˆ2/3

INPUTS

Sample : [REAL * 8(NMax,MMax)]
Samples (quantities in first dimension, samples in
second dimension)

NMax : [INTEGER]
physical first dimension of array Sample.

MMax : [INTEGER]
physical second dimension of array Sample.

M : [INTEGER]
actual number of meaningful samples in array Sample.

Flag : [LOGICAL(NMax,MMax)]
if Flag(i,j) is true, then something is wrong with
quantity i in sample j.

XIndex : [INTEGER]
indicator of first quantity involved in
structure function.

YIndex : [INTEGER]
indicator of second quantity involved in
structure function.

R : [REAL * 8] :
separation in meters at which one wants to estimate
the structure function.

Freq : [REAL * 8] :
Sampling frequency in sˆ-1.

CIndep : [INTEGER[NMax,NMax])
Number of independent contributions by array Sample
to covariance between quantities selected with
XIndex and YIndex.

Rhov : [REAL * 8]
Density of air (kg/mˆ3)

T : [REAL * 8]
Temperature (K)

P : [REAL * 8]
Pressure (Pa)

OUTPUT

dR : [REAL * 8]
separation in meters corresponding with a delay
of one sample (i.e. tolerance in R)

cxy : [REAL * 8]
Structure parameter.

dcxy : [REAL * 8]
Tolerance of cxy.

AUTHOR

Arjan van Dijk

HISTORY
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$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $
Revision: 20-9-2002: added implicit none and inclusion of

parcnst.inc (needed for constants U,V, and W)
Revision: 27-01-2003: removed N from interface

USES

parcnst.inc

B.68 ecphys.f/EC Ph Obukhov

NAME

EC_Ph_Obukhov

SYNOPSIS

L = EC_Ph_Obukhov(Ustar,Tstar,Qstar ,MeanT)

FUNCTION

Calculate Obukhov length (taking into account buoyancy eff ect of
water vapour)

INPUTS

Ustar : [REAL * 8]
u* (m/s)

Tstar : [REAL * 8]
T* (K)

Qstar : [REAL * 8]
q* (kg/kg)

MeanT : [REAL * 8]
mean temperature (K)
actual number of meaningful samples in array Sample.

OUTPUT

return value : [REAL * 8]
obukhov length (m)

AUTHOR

Arnold Moene

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

physcnst.inc
GG
Karman

B.69 eccorr.f/EC C D01

NAME

EC_C_D01

SYNOPSIS

CALL EC_C_D01(x, b, aInv)

FUNCTION

This routines computes and applies the matrix for the
correction of turbulent air flow measurements for the
presence of small disturbing objects, like a box with
electronic apparatus. The approach followed is described i n:
(see SEE ALSO). The actual matrix is computed
in EC_C_D02.

INPUTS

x : [REAL * 8(3)]
Position vector of the point where measurements have been ta ken.
The ellipsoid is placed in the origin.
A right-handed frame of coordinates is chosen.
The flow is supposed to be expressed in this coordinate frame .
Therefore, when the flow velocity has positive components,
upstream measurement points are selected when by giving
vector x negative components!

b : [REAL * 8(3)]
Three ellipsoid semi-axes in meters. The ellipsoid is
supposed to be oriented along the coordinate axes.
Somehow the algorithm does not seem to like it when two or more
semi-axes are equal, or when your point x is in one of the
coordinate planes (one component of x equal to zero).
To circumvent problems one can take values slightly off
the problematic values.

OUTPUT

aInv : [REAL * 8(3,3)]
The matrix which can be used to correct samples and
covariances for flow distortion.
Sum_j aInv(i,j) * u(j) gives the distortion-corrected
image of measured velocity u.

AUTHOR

Arjan van Dijk

SEE ALSO

Oost, W. (1991). Flow distortion by an ellipsoid and its
application to the analysis of atmospheric measurements.
J.Atm.Oc.Tech., 8 No 3:331-340.
References in the code are to this article.

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_C_D02
EC_M_InvM
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B.70 eccorr.f/EC C D02

NAME

EC_C_D02

SYNOPSIS

CALL EC_C_D02(x, b, a)

FUNCTION

This routines computes the distortion matrix for the
correction of turbulent air flow measurements for the
presence of small disturbing objects, like a box with
electronic apparatus. The approach followed is described i n:
(see SEE ALSO).
Calculates the distortion matrix according to equation 12.

INPUTS

b : [REAL * 8(3)]
a vector containing the three semiaxes of the
ellipsoid

x : [REAL * 8(3)]
position where the distortion-matrix will be
calculated; coordinates are relative to the
center of the ellipsoid

OUTPUT

a : [REAL * 8(3,3)]
the distortion matrix, when applied to an
undisturbed wind, "a" gives the disturbed wind

AUTHOR

Arjan van Dijk

SEE ALSO

Oost, W. (1991). Flow distortion by an ellipsoid and its
application to the analysis of atmospheric measurements.
J.Atm.Oc.Tech., 8 No 3:331-340.
References in the code are to this article.

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_M_SortDecr
EC_M_SortUse
EC_M_EllCoords
EC_M_specint
EC_M_MulVec
EC_M_UnSort

B.71 eccorr.f/EC C F01

NAME

EC_C_F01

SYNOPSIS

CALL EC_C_F01(Mean, Cov, NMax, NSize, WhichTemp,
NSta, NEnd, NumInt, NS, TauD, TauV, CalSonic,
CalTherm, CalHyg, CalCO2,WXT)

FUNCTION

Calculate frequency response corrections for sensor respo nse, path
length averaging, sensor separation, signal processing an d dampening
of fluctuations in a tube. Based on publications in SEE ALSO.

INPUTS

Mean : [REAL * 8(NMax)]
Array of mean values of the quantities in
this experiment (only the first N quantities are used).

Cov : [REAL * 8(NMax,NMax)]
covariances of the fluctuations.

NMax : [INTEGER]
Physical dimension of array Mean

NSize : [INTEGER]
Number of quantities actually involved in this
experiment.

WhichTemp: [INTEGER]
Which temperature to use: thermocouple (Tcouple)
or sonic (TSOnic): see parcnst.inc

NSta : [REAL * 8]
Start frequency numerical integration.
Popular value: -5.D0 [unit?].

NEND : [REAL* 8]
End frequency numerical integration.
Popular value: LOG(5) = 0.69897D0 [unit?].

NumINT : [INTEGER]
Number of intervals in integration.
Popular value: 19.

NS : [INTEGER]
TauD : [REAL * 8]

Interval length for running mean.
Popular value: 0.D0 [unit?].

TAUV : [REAL * 8]
Low pass filter time constant.
Popular value: 0.D0 [unit?]

CalSonic : [REAL * 8(NQQ)]
Calibration specification array of
sonic anemometer.

CalTherm : [REAL * 8(NQQ)]
Calibration specification array of
thermometer.

CalHyg : [REAL * 8(NQQ)]
Calibration specification array of
hygrometer.

CalCO2 : [REAL * 8(NQQ)]
Calibration specification array of
CO2 sensor.

OUTPUT

WXT : [REAL* 8(NMax,NMax)]
Correction factors for covariances.

BUGS
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In the present configuration, only correction factors are c omputed
for the variances and for the covariances involving the vert ical
velocity. Other covariances get a factor of 1.

AUTHOR

Arjan van Dijk

SEE ALSO

Moore, C.J. (1986): ’Frequency Response Corrections for Ed dy
Correlation Systems’. Boundary Layer Met. 37: 17-35.

Philip, J.R. (1963): ’The Damping of Fluctuating Concentra tion
by Continuous Sampling Through a tube’ Aust. J. Phys. 16: 454 -463.

Leuning, R. and K.M. King (1991): ’Comparison of Eddy-Covar iance
Measurements of CO2 Fluxes by open- and closed-path CO2 anal ysers’
(unpublished)

HISTORY

28-05-2001: added info on which temperature should be used
in corrections (Sonic or thermocouple)

19-09-2002: added CalCO2 in interface
27-01-2003: replaced Nint by NumInt

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

Pi
EC_Ph_Obukhov

B.72 eccorr.f/EC C F02
NAME

EC_C_F02

SYNOPSIS

CALL EC_C_F02(WXT, NMax, NSize, Lower, Upper, Cov, TolCov)

FUNCTION

Apply frequency response corrections for sensor response, path
length averaging, sensor separation, signal processing an d dampening
of fluctuations in a tube. Based on publications given in SEE ALSO

INPUTS

WXT : [REAL* 8(NMax,NMax)]
Correction factors for covariances.

NMax : [INTEGER]
Physical dimension of array Mean

NSize : [INTEGER]
Number of quantities actually involved in this
experiment.

Lower : [REAL * 8]
Lower acceptance limit for frequency-response
factors. Correction factors smaller than Lower are
set to 1.

Upper : [REAL * 8]

Upper acceptance limit for frequency-response
factors. Correction factors larger than Upper are
Which temperature to use: thermocouple (Tcouple)
or sonic (TSOnic): see parcnst.inc

OUTPUT

Cov : [REAL * 8(NMax,NMax)]
covariances of the fluctuations.

TolCov : [REAL * 8(NMax,NMax)]
tolerances in covariances

SEE ALSO

Moore, C.J. (1986): ’Frequency Response Corrections for Ed dy
Correlation Systems’. Boundary Layer Met. 37: 17-35.

Philip, J.R. (1963): ’The Damping of Fluctuating Concentra tion
by Continuous Sampling Through a tube’ Aust. J. Phys. 16: 454 -463.

Leuning, R. and K.M. King (1991): ’Comparison of Eddy-Covar iance
Measurements of CO2 Fluxes by open- and closed-path CO2 anal ysers’
(unpublished)

HISTORY

28-05-2001: added info on which temperature should be used
in corrections (Sonic or thermocouple)

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.73 eccorr.f/EC C Main
NAME

EC_C_MAIN

SYNOPSIS

CALL EC_C_Main(OutF,
DoPrint, Mean,NMax,N,TolMean, Cov,TolCov,
DoCorr, PCorr, ExpVar,
DirYaw, DirPitch, DirRoll,
SonFactr, O2Factor,
CalSonic,CalTherm,CalHyg,
CalCo2,FrCor,
P, Have_Cal)

FUNCTION

Integrated correction routine applying ALL (user-selecte d)
corrections in this library on mean values and covariances.
All intermediate results can be output to a file.
Moreover they are returned to the calling routine in
respective variables.

INPUTS

(outputs and combined inputs/outputs are given as well,
but also under OUTPUT)
OutF : [INTEGER]

Unit number of file for intermediate results
DoPrint : [LOGICAL]

Print intermediate results ?
Mean : [REAL * 8(NMax)] (in/out)
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Mean values of all calibrated signals
NMax : [INTEGER]

Size of arrays with calibrated signals
N : [INTEGER]

Actual number of calibrated signals
TolMean : [REAL * 8(NMax)] (in/out)

Tolerances in mean values of all calibrated signals
Cov : [REAL * 8(NMax,NMax)] (in/out)

Covariances of all calibrated signals
TolCov : [REAL * 8(NMax,NMax)] (in/out)

Tolerances in covariances of all calibrated signals
DoCorr : [LOGICAL](NMaxCorr)

which corrections to do?
PCorr : [LOGICAL](NMaxCorr)

intermediate results of which corrections?
ExpVar : [REAL * 8](NMaxExp)

array with experimental settings
DirYaw : [REAL * 8] (out)

Yaw angle (degrees)
DirPitch: [REAL * 8] (out)

Pitch angle (degrees)
DirRoll : [REAL * 8] (out)

Roll angle (degrees)
SonFactr: [REAL * 8(NMax)] (out)

Correction factor due to Schotanus correction for
covariance of sonic temperature with each calibrated
signal.

O2Factor: [REAL * 8(NMax)] (out)
Correction factor due to oxygen correction for
covariance of humidity with each calibrated

CalSonic: [REAL * 8(NQQ)]
Calibration info for sonic anemometer

CalTherm: [REAL * 8(NQQ)]
Calibration info for thermocouple

CalHyg : [REAL * 8(NQQ)]
Calibration info for hygrometer

CalCO2 : [REAL * 8(NQQ)]
Calibration info for CO2 sensor

FrCor : [REAL * 8(NMax,NMax)] (out)
Correction factors for covariances for frequency
response

P : [REAL * 8]
Atmospheric pressure (Pa)

Have_Cal : [LOGICAL(NMax)]
Calibrated signal available for given quantity ?

OUTPUT

Mean : [REAL * 8(NMax)] (in/out)
Mean values of all calibrated signals

TolMean : [REAL * 8(NMax)] (in/out)
Tolerances in mean values of all calibrated signals

Cov : [REAL * 8(NMax,NMax)] (in/out)
Covariances of all calibrated signals

TolCov : [REAL * 8(NMax,NMax)] (in/out)
Tolerances in covariances of all calibrated signals

DirYaw : [REAL * 8] (out)
Yaw angle (degrees)

DirPitch: [REAL * 8] (out)
Pitch angle (degrees)

DirRoll : [REAL * 8] (out)
Roll angle (degrees)

SonFactr: [REAL * 8(NMax)] (out)
Correction factor due to Schotanus correction for
covariance of sonic temperature with each calibrated
signal.

O2Factor: [REAL * 8(NMax)] (out)
Correction factor due to oxygen correction for
covariance of humidity with each calibrated

FrCor : [REAL * 8(NMax,NMax)] (out)
Correction factors for covariances for frequency
response

WebVel : [REAL * 8] (out)
Webb velocity

HISTORY

28-05-2001: added info on whether uncalibrated data are
available for a given variable (mainly important
for sonic and/or Couple temperature since that
is used for various corrections)

07-10-2002: added WebVel to interface to pass
Webb velocity independent from Mean(W)

27-01-2003: removed BadTC from interface
replaced list of correction switches by DoCorr and PCorr, Ex pVar
replaced Nint by NumInt

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc
EC_C_T05
EC_C_T06
EC_C_T07
EC_C_T08
EC_C_T09
EC_C_T10
EC_C_T11
EC_C_Schot1
EC_C_Schot2
EC_C_Oxygen1
EC_C_Oxygen2
EC_C_F01
EC_C_F02
EC_C_Webb
EC_G_Show
EC_G_ShwFrq
EC_G_Reset

B.74 eccorr.f/EC C Oxygen1
NAME

EC_C_Oxygen1

SYNOPSIS

CALL EC_C_Oxygen1(MeanT, NMax, N, Cov, P,
HygType, WhichTemp, Factor)

FUNCTION

Contribution of other gases especially oxygen absorb
some of the radiation at the wavelengths at which the
hygrometer works.
This routine computes the correction factors. The
factors are applied in EC_C_Oxygen2

INPUTS

MeanT : [REAL * 8]
Mean temperature (Kelvin)

NMax : [INTEGER]
Size of array dimensions

N : [INTEGER]
Actual number of calibrated signals

Cov : [REAL * 8(Nmax,Nmax)]
Covariances

P : [REAL * 8]
Atmospheric pressure (Pa)
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HygType : [INTEGER]
Type of hygrometer (see parcnst.inc for codes)

WhichTemp : [INTEGER]
Use thermocouple temperature or sonic temperature ?
(Tcouple or TSonic, codes in parcnst.inc)

OUTPUT

Factor : [REAL * 8(NMax)]
Correction factor for the covariance with each of
calibrated signals

NOTES

Currently this routine knows about three types of hygromete r:
ApCampKrypton : the KH20 krypton hygrometer from Campbell S ci.
ApMierijLyma : the Lymann-alpha hygrometer from Mierij Met eo
ApLiCor7500 : the LiCor IR hygrometer (not sensitive to O2)

SEE ALSO

EC_C_Oxygen2

HISTORY

28-05-2001: added info on which temperature should be used
in corrections (Sonic or thermocouple)

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc
Kok
KwK
Kola
Kwla
FracO2
MO2
RGas

B.75 eccorr.f/EC C Oxygen2
NAME

EC_C_Oxygen2

SYNOPSIS

CALL EC_C_Oxygen2(Factor, Nmax, N, Cov)

FUNCTION

Contribution of other gases especially oxygen absorb
some of the radiation at the wavelengths at which the
hygrometer works.
This routine applies the correction factors that were
computed in EC_C_Oxygen1

INPUTS

Factor : [REAL * 8(NMax)]
Correction factor for the covariance with each of

calibrated signals
NMax : [INTEGER]

Size of array dimensions
N : [INTEGER]

Actual number of calibrated signals
Cov : [REAL * 8(Nmax,Nmax)] (in/out)

Covariances

OUTPUT

Cov : [REAL * 8(Nmax,Nmax)] (in/out)
Covariances

SEE ALSO

EC_C_Oxygen1

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc

B.76 eccorr.f/EC C Scal
NAME

EC_C_Scal

SYNOPSIS

CALL EC_C_Scal(Cal, UDum, VDum, WDum,
UError, VError, WError)

FUNCTION

To calibrate a sonic signal according to wind tunnel
calibration (for the moment this works for apparatus 6,
i.e. a wind tunnel calibrated sonic)

INPUTS

Cal : [REAL * 8(NQQ)]
Array of length NQQ with calibration info

UDum : [REAL* 8 ] (in/out)
One horizontal component (on exit: calibrated)

VDum : [REAL* 8 ] (in/out)
Another horizontal component (on exit: calibrated)

WDum : [REAL* 8 ] (in/out)
Vertical component (on exit: calibrated)

OUTPUT

UDum : [REAL* 8 ] (in/out)
One horizontal component (on exit: calibrated)

VDum : [REAL* 8 ] (in/out)
Another horizontal component (on exit: calibrated)

WDum : [REAL* 8 ] (in/out)
Vertical component (on exit: calibrated)

UError: [LOGICAL]
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error flag for U (.TRUE. if wrong data)
VError: [LOGICAL]

error flag for V (.TRUE. if wrong data)
WError: [LOGICAL]

error flag for W (.TRUE. if wrong data)

AUTHOR

Arnold Moene

CREATION DATE

September 26, 2000

NOTES

The method is based on a wind tunnel calibration of the sonic
The real velocity components can be derived from the
measured components and the real azimuth and elevation angl e.
But the latter are not known and have to be determined
iteratively from the measured components. The relationshi p
between the real components and the measured components is:

Ureal = Umeas/(UC1 * (1 - 0.5 *
((Azi + (Elev/0.5236) * UC2)*

(1 - UC3 * Abs(Elev/0.5236))) ** 2 ))
Vreal = Vmeas * (1 - VC1 * Abs(Elev/0.5236))
Wreal = Wmeas/(WC1 * (1 - 0.5 * (Azi * WC2)** 2))
and
Azi = arctan(V/U)
Elev = arctan(W/sqrt(U ** 2 + V** 2))

where UC1, UC2, UC3, VC1, WC1, WC2 are fitting coefficients.
An azimuth angle of zero is supposed to refer to a wind
direction from the most optimal direction (i.e. the ’open’
side of a sonic). Samples with an absolute azimuth angle of
more than 40 degrees are rejected.

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc

B.77 eccorr.f/EC C Schot1
NAME

EC_C_Schot1

SYNOPSIS

CALL EC_C_Schot1(MeanQ,MeanTSon,NMax,N,Cov,Factor,TS onFact)

FUNCTION

Compute correction factor for partial Schotanus et al. corr ection.
for humidity of sonic temperature, and of all covariances wi th
sonic temperature.
Sidewind-correction has already been applied in the
routine where the sonic signal is calibrated.

INPUTS

MeanQ : [REAL * 8]
mean specific humidity (kg/kg)

MeanTSon : [REAL * 8]
mean sonic temperature (Kelvin)

NMax : [INTEGER]
size of arrays

N : [INTEGER]
actual number of calibrated signals

Cov : [REAL * 8(NMax,NMax)]
covariance matrix of calibrated signals

OUTPUT

Factor : [REAL * 8(NMax)]
correction factor for the covariances with specific
humidity

TSonFact : [REAL * 8]
correction factor for sonic temperature

SEE ALSO

EC_C_Schot1

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc

B.78 eccorr.f/EC C Schot2
NAME

EC_C_Schot2

SYNOPSIS

CALL EC_C_Schot2(Factor,TSonFact,MeanTSoc, NMax,N,Cov )

FUNCTION

Apply correction factor for partial Schotanus et al. correc tion
as computed in EC_C_Schot1.
for humidity of sonic temperature, and of all covariances wi th
sonic temperature.
Sidewind-correction has already been applied in the
routine where the sonic signal is calibrated.

INPUTS

Factor : [REAL * 8(NMax)]
correction factor for the covariances with specific
humidity

TSonFact : [REAL * 8]
correction factor for sonic temperature

MeanTSon : [REAL * 8]
mean sonic temperature (Kelvin)

NMax : [INTEGER]
size of arrays
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N : [INTEGER]
actual number of calibrated signals

Cov : [REAL * 8(NMax,NMax)] (in/out)
covariance matrix of calibrated signals

OUTPUT

Cov : [REAL * 8(NMax,NMax)] (in/out)
covariance matrix of calibrated signals

SEE ALSO

EC_C_Schot1

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

physcnst.inc

B.79 eccorr.f/EC C Schot3
NAME

EC_C_Schot3

SYNOPSIS

TCORR = EC_C_Schot3(Temp,Rhov, Press)

FUNCTION

To do humidity part of Schotanus et al. correction on a
raw sample of sonic temperature, while specific humidity is not
yet known: to get specific humidity from the measured
Rhov one needs a temperature: if no thermocouple available
the only temperature is the sonic temperature.
(TSonic depends on specific humidity, to compute specific
humidity, one needs a temperature, Tsonics depends on
specific humidity ....etc.)
Sidewind-correction has already been applied in the
routine where the sonic signal is calibrated.

INPUTS

TEMP : [REAL* 8]
Sonic temperature (without hyumidity correction) (Kelvin )

Rhov : [REAL * 8]
absolute humidity (kg/mˆ3)

Press : [REAL * 8]
atmospheric pressure (Pa)

RETURN VALUE

return value : [REAL * 8]
corrected sonic temperature (Kelvin)

AUTHOR

Arnold Moene

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_Ph_Q

B.80 eccorr.f/EC C T01
NAME

EC_C_T01

SYNOPSIS

CALL EC_C_T01(DoWBias,SingleRun,uMean,NRuns,Apf,
Alpha,Beta,Gamma,WBias)

FUNCTION

Subroutine performs some preparations for the actual
Planar Fit Method. The actual work is done in routine EC_C_T0 2.

INPUTS

DoWBias: [LOGICAL]
compute bias in mean vertical wind (FALSE
implies that the mean vertical wind over all
runs is assumed to be zero

SingleRun: [LOGICAL]
Determine rotation for a single run

uMean : [REAL * 8(3,Nmax)]
matrix of run mean velocity vectors

NRuns : [INTEGER]
the number of runs

OUTPUT

Apf : [REAL * 8(3,3)]
the planar fit 3 * 3 untilt-matrix

Alpha : [REAL * 8]
tiltangle alpha in degrees

Beta : [REAL * 8]
tiltangle beta in degrees

Gamma : [REAL* 8]
Fixed yaw-angle in degrees associated with mean over all run s

WBias : [REAL * 8]
The bias in the vertical velocity

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

9
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EC_C_T02

B.81 eccorr.f/EC C T02
NAME

EC_C_T02

SYNOPSIS

CALL EC_C_T02(DoWBias,SingleRun,uMean,NRuns,Apf,
Alpha,Beta,Gamma,WBias)

FUNCTION

Subroutine computes angles and untilt-matrix needed for
tilt correction of Sonic data, using Planar Fit
Method, as described in James M. Wilczak et al (2001), ’Sonic
Anemometer tilt correction algorithms’, Boundary Meteoro logy 99: 127:150
References to formulae are to this article.
The planar fit matrix is extended with an additional yaw-cor rection
to turn the first coordinate into the direction of the mean wi nd
over all runs. This extra rotation makes results from differ ent
eddy-covariance systems comparable.
Furthermore, there is the option to determine a planar fit fo r
a single run (using all individual samples within a run,
rather than the mean velocities from a collection of runs as
in the classic planar fit method).

INPUTS

DoWBias: [LOGICAL]
compute bias in mean vertical wind (FALSE
implies that the mean vertical wind over all
runs is assumed to be zero

SingleRun: [LOGICAL]
Determine rotation for a single run

uMean : [REAL * 8(3,Nmax)]
matrix of run mean velocity vectors

NRuns : [INTEGER]
the number of runs

OUTPUT

Apf : [REAL * 8(3,3)]
the planar fit 3 * 3 untilt-matrix

Alpha : [REAL * 8]
tiltangle alpha in degrees

Beta : [REAL * 8]
tiltangle beta in degrees

Gamma : [REAL* 8]
Fixed yaw-angle in degrees associated with mean over all run s

WBias : [REAL * 8]
The bias in the vertical velocity

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_M_InvM
EC_M_InvM2
EC_M_MapVec
EC_M_Map2Vec
EC_M_MMul

B.82 eccorr.f/EC C T03
NAME

EC_C_T03

SYNOPSIS

CALL EC_C_T03(Mean,NMax,N,Cov,Speed,Stress,DumVecs,N N)

INPUTS

Mean : [REAL * 8(NMax)]
means of all variables

NMax : [INTEGER]
maximum number of variables (i.e. size of
various matrices)

N : [INTEGER]
number of variables in used

Cov : [REAL * 8(NMmax, NMax)]
covariances of all variables

NN : [INTEGER]
maximum size of second axis of DumVecs

OUTPUT

Speed : [REAL * 8(3)]
copy of means of all variables

Stress : [REAL * 8(3,3)]
copy of covariances of all variables

DumVecs : [REAL * 8(3,4:NN)]
copy of covariances of all variables with velocity componen ts

FUNCTION

Help routine for routines for correction of coordinate syst em
Temporaly stores means and covariances elsewhere

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

B.83 eccorr.f/EC C T04
NAME

EC_C_T04
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SYNOPSIS

CALL EC_C_T04(Speed,Stress,DumVecs,NN, Mean,NMax,N,Co v)

INPUTS

Speed : [REAL * 8(3)]
copy of means of all variables

Stress : [REAL * 8(3,3)]
copy of covariances of all variables

DumVecs : [REAL * 8(3,4:NN)]
copy of covariances of all variables with velocity componen ts

NMax : [INTEGER]
maximum number of variables (i.e. size of
various matrices)

N : [INTEGER]
number of variables in used

NN : [INTEGER]
maximum size of second axis of DumVecs

OUTPUT

Mean : [REAL * 8(NMax)]
means of all variables

Cov : [REAL * 8(NMmax, NMax)]
covariances of all variables

FUNCTION

Help routine for routines for correction of coordinate syst em
Copies back temporarily stored copies of means and covarian ces

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

parcnst.inc

B.84 eccorr.f/EC C T05
NAME

EC_C_T05

SYNOPSIS

CALL EC_C_T05(Mean,NMax,N,Cov,Map)

INPUTS

Mean : [REAL * 8(NMax)]
means of all variables

NMax : [INTEGER]
maximum number of variables (i.e. size of
various matrices)

N : [INTEGER]

number of variables in used
Cov : [REAL * 8(NMmax, NMax)]

covariances of all variables
Map : [REAL * 8(3,3)]

rotation tensor

OUTPUT

Mean : [REAL * 8(NMax)]
means of all variables

Cov : [REAL * 8(NMmax, NMax)]
covariances of all variables

FUNCTION

Routine to change coordinate system according to tensor "Ma p".
This routine is called by all tilt-correction procedures.
Both the mean velocity and the Reynoldsstresses and the
covariances of all velocity components with other quantiti es
are rotated.

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

EC_C_T03
EC_C_T04
EC_M_MapVec
EC_M_MapMtx
parcnst.inc

B.85 eccorr.f/EC C T06
NAME

EC_C_T06

SYNOPSIS

CALL EC_C_T06(Direction,Yaw)

INPUTS

Direction : [REAL * 8]
yaw angle

OUTPUT

Yaw : [REAL * 8(3,3)]
rotation tensor

FUNCTION

Construct rotation matrix for coordinate system
about a KNOWN yaw-angle around the vertical
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AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

Pi

B.86 eccorr.f/EC C T07
NAME

EC_C_T07

SYNOPSIS

CALL EC_C_T07(MeanU,MeanV,Direction)

INPUTS

MeanU : [REAL * 8]
mean u-velocity

MeanV : [REAL * 8]
mean v-velocity

OUTPUT

Direction : [REAL * 8]
yaw angle (degree)

FUNCTION

Give yaw-angle to transform coordinate system such that
v_mean = 0 (no mean lateral horizontal velocity component)

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

Pi

B.87 eccorr.f/EC C T08
NAME

EC_C_T08

SYNOPSIS

CALL EC_C_T08(Direction,Yaw)

INPUTS

Direction : [REAL * 8]
pitch angle

OUTPUT

Pitch : [REAL * 8(3,3)]
rotation tensor

FUNCTION

Give matrix for rotation about a KNOWN pitch-angle
around vector (0,1,0).

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

Pi

B.88 eccorr.f/EC C T09
NAME

EC_C_T09

SYNOPSIS

CALL EC_C_T09(MeanU,MeanW,Direction)

INPUTS

MeanU : [REAL * 8]
mean u-velocity

MeanV : [REAL * 8]
mean W-velocity

OUTPUT

Direction : [REAL * 8]
pitch angle (degree)

FUNCTION

Give pitch angle to transform coordinate system such
that w_mean = 0 (no mean vertical velocity component)
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AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

Pi

B.89 eccorr.f/EC C T10
NAME

EC_C_T10

SYNOPSIS

CALL EC_C_T10(Direction,Roll)

INPUTS

Direction : [REAL * 8]
yaw angle

OUTPUT

Roll : [REAL * 8(3,3)]
rotation tensor

FUNCTION

Give matrix to rotate coordinate system about a KNOWN
roll-angle around vector (1,0,0).

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

Pi

B.90 eccorr.f/EC C T11
NAME

EC_C_T11

SYNOPSIS

CALL EC_C_T11(MeanU,MeanW,Direction)

INPUTS

CovVV : [REAL * 8]
vv-covariance

CovVW : [REAL* 8]
vw-covariance

CovWW : [REAL* 8]
ww-covariance

OUTPUT

Direction : [REAL * 8]
roll angle (degree)

FUNCTION

Give roll angle to transform coordinate system such
that Cov(V,W) = 0 (vertical velocity fluctuations are
independent from horizontal fluctuations)

AUTHOR

Arjan van Dijk

HISTORY

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

Pi

B.91 eccorr.f/EC C Webb
NAME

EC_C_Webb

SYNOPSIS

CALL EC_C_Webb(Mean,NMax,Cov,P,WhichTemp, WebVel)

INPUTS

Mean : [REAL * 8(NMax)]
mean of all variables

NMax : [INTEGER]
maximum number of variables

Cov : [REAL * 8(NMax,NMax)]
covariance of all variables

P : [REAL * 8]
atmospheric pressure

WhichTemp: [INTEGER]
Use thermocouple temperature or sonic temperature ?
(Tcouple or TSonic, codes in parcnst.inc)

Mean : [REAL * 8(NMax)]
mean of all variables

9
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OUTPUT

WebVel : [REAL * 8]
Webb velocity (m/s)

FUNCTION

Mean vertical velocity according to Webb, Pearman and Leuni ng

AUTHOR

Arjan van Dijk

HISTORY

28-05-2001: added info on which temperature should be used
in corrections (Sonic or thermocouple)

07-10-2002: Webb velocity no longer passed through Mean(W) . Now
separate variable, WebVel is used for this.

$Name: $
$Id: ecpack.tex,v 1.2 2004/02/26 17:05:24 arnold Exp $

USES

Mu
parcnst.inc
EC_Ph_RhoDry
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