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Abstract 

Biemans, F. (2018). Transmission of digital dermatitis in dairy cattle: Population 

dynamics and host quantitative genetics. PhD thesis, Wageningen University and 

Research, Wageningen, The Netherlands 

 

Susceptibility, infectivity, the contact rate, and the duration of the infectious period 

together determine the basic reproduction ratio (R0). The R0 is the average number 

of secondary cases caused by a typical infectious individual in a fully susceptible 

population. It determines the ability of an infection to establish itself in a population. 

The threshold value is one; if R0 < 1 a typical infectious individual will infect on 

average less than one susceptible individual and the disease will die out with 

certainty. If R0 > 1 a major outbreak is possible, and sometimes such a disease may 

persist in a population. For endemic diseases in homogeneous populations, the 

prevalence in the equilibrium follows from R0 as 1 −
1

𝑅0
. Breeding strategies that aim 

to reduce the prevalence of endemic diseases should thus aim to reduce R0. Because 

R0 depends on both susceptibility and infectivity of the host population, genetic 

variation in both those traits should be taken into account. This thesis focusses on 

Digital Dermatitis (DD) in dairy cattle. DD is an endemic infectious claw disease 

associated with lameness. We collected time-series data on individual disease that 

might facilitate genetic selection against DD. In this thesis, we investigated 

transmission dynamics for DD and estimated genetic effects for both host 

susceptibility and host infectivity. We proposed a generalized linear mixed model to 

estimate SNP effects on both host susceptibility and host infectivity from time-series 

data on individual disease status. The model accounted for variation in exposure of 

susceptible individuals to infectious group mates, and for the infectivity genotypes 

of those group mates. The power to detect SNP effects was high for susceptibility 

but lower for infectivity. We applied the model to field data on DD to investigate the 

contribution of different disease classes to R0. The estimated R0 was 2.36, to which 

the class with irregular skin contributed 88.5%. Genomic estimated breeding values 

for R0 ranged from 0.62 to 6.68 with an accuracy of ~0.6. There were 135 SNPs with 

a suggestive association for several host susceptibility traits, and heritability 

estimates for these traits ranged from 0.09 to 0.37. These results show that genetic 

selection against DD is very promising; there is substantial heritable variation and a 

meaningful accuracy can be obtained from a limited amount of data.  
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1.1 Introduction 

Infectious diseases in livestock are a worldwide concern. First, they pose a threat to 

human health when they are zoonotic. Second, excessive or incorrect use of vaccines 

may lead to vaccine escape strains in viruses  (Wilson et al., 1998; Brueggemann et 

al., 2007), and incorrect use of antibiotics can lead to resistant bacteria (Neu, 1992). 

Third, infectious diseases affect animal health and welfare (Broom, 2006), and last, 

they cause economic losses due to a decrease in production, costs of treatment and 

prevention measures, time spent treating the disease, and in some cases culling of 

the animal (Read and Walker, 1998; Bennett and IJpelaar, 2005; van der Linde et al., 

2010). So, it is essential to keep searching for (additional) methods to fight infectious 

diseases. Selection and breeding for host individuals (i.e. livestock) with desirable 

traits with respect to infectious diseases can be such an additional method (Binder 

and Levitt, 1998; Stear et al., 2001). 

 

1.2 Selection and breeding  

Host susceptibility and host infectivity are two (sets of) host traits that affect disease 

transmission. Susceptibility is the relative risk to get infected when exposed to a 

typical infectious individual or to the infectious material of this typical infected 

individual in the environment. Susceptibility is a characteristic of the focal individual, 

and has a direct genetic effect (DGE). A DGE is a heritable effect of an individual that 

affects the phenotype (disease status) of the individual itself. Infectivity, on the other 

hand, is the relative propensity of an individual to infect a typical susceptible 

individual. Infectivity affects the disease status of other individuals rather than the 

disease status (fitness) of the focal individual itself, and has therefore an indirect 

genetic effect (IGE). An IGE is a heritable effect of an individual on the phenotype of 

another individual (Wolf et al., 1998; Bijma and Wade, 2008). For infectious diseases 

it is noteworthy that susceptibility has an indirect genetic effect, individuals with a 

low susceptibility have a lower chance of being infected and, therefore, have a 

reduced chance of infecting others (Anche et al., 2014).  

Indirect genetic effects can have a considerable and sometimes unexpected 

effect on the rate and direction of evolution by natural selection, and on response 

to selective breeding (Griffing, 1967; Moore et al., 1997; Bijma and Wade, 2008). This 

means that IGEs can, in principle, be used for genetic improvement of populations, 

and they need to be studied to understand the direction of selection response. 

However, studies on infectious diseases tend to focus on individual differences in 

susceptibility (sometimes measured as resistance) only (Woolhouse et al., 1998; 

Springbett et al., 2003). To make optimal use of all heritable variation that exist with 
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respect to transmission of infectious diseases, both host susceptibility and host 

infectivity should be taken into account. A key question is, however, how much 

genetic variation there is in (especially) infectivity. 

There is evidence of phenotypic variation in infectivity, e.g., super-shedders that 

shed many more infectious units compared to other individuals of the same species 

(Chase-Topping et al., 2008). Super-shedders could well be more infectious, i.e., be 

super-spreaders. Super-spreaders are assumed to infect disproportionally more host 

individuals compared to other individuals of the same species, not only because they 

shed more infectious units, but also for example because they make more infective 

contacts (Stein, 2011). If this observed variation in infectivity is (partly) genetically 

determined, infectivity can be selected against in order to reduce the transmission 

of infectious diseases. 

Knowledge of the amount of genetic variation in host infectivity is limited. It is 

expected that genetic variation in infectivity is not exhausted by natural selection, 

because infectivity affects the disease status of other individuals instead of the 

disease status (fitness) of the focal individual. Infectivity will only be affected by 

natural selection when feedback mechanisms like kin and group selection are 

present (Bijma and Wade, 2008). Even when such feedback mechanisms are present, 

selection on IGEs is generally weaker than on DGEs (Bijma, 2010). Therefore, there 

might be more genetic variation in infectivity compared to susceptibility.  

To fully understand and quantify the impact of genetic variation in host 

susceptibility and host infectivity on disease transmission, we should combine 

knowledge from the field of quantitative genetics with knowledge from the field of 

quantitative epidemiology. 

 

1.3 Epidemiology 

The field of quantitative epidemiology uses mathematical models and statistical 

methods to study disease spread through a population. In the often used 

compartmental model, individuals are assigned to a compartment that represents a 

specific disease status. Transitions between these stages can be modelled 

deterministically or stochastically. The rate at which transitions occur is determined 

by the model parameters. Both epidemics and endemics can be modelled with 

compartmental models. In this thesis, the focus is on transmission of endemic 

infectious diseases only.  

An endemic infectious disease can be modelled, for example, with a Susceptible-

Infectious-Susceptible-model (SIS-model). In this model, the total population (with 

size N) is divided into a susceptible compartment (S) and an infectious compartment 
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(I), with S + I = N. The symbols S and I denote the disease status of the individuals in 

the compartment as well as the number of individuals with that disease status. Since 

an infection is often transmitted via the environment (with the exception of e.g. 

sexual transmitted diseases), an extra environmental route (E) should be added to 

the model (see for example de Rueda et al., 2015):  

S → I → S, 

       ↓   

 E 

here, E denotes the amount of infection coming from the environment. 

In stochastic SIS-models, each individual moves between the two compartments 

with certain rate (probability per unit of time) determined by the model parameters. 

For S → I, the total transmission rate is 𝛽𝑆
𝐼

𝑁
, where β is the transmission rate 

parameter which contains information on the contact rate and transmission 

probability given contact (Kermack and McKendrick, 1927; Roberts and Heesterbeek, 

1993). With genetic heterogeneity among host individuals, the β depends on the 

susceptibility genotype of the susceptible individuals and the infectivity genotype of 

the infectious individuals (Bishop and MacKenzie, 2003; Nath et al., 2004). For I → S 

the recovery rate is 𝛼𝐼, where α is the recovery rate parameter that gives information 

on the average duration of the infectious period (1 𝛼⁄ ) and part of the infectiousness 

of the infected individuals.  

Together, the transmission rate parameter and the duration of the infectious 

period (the recovery rate parameter) determine the basic reproduction ratio R0. The 

R0 is the average number of secondary cases caused by a typical infectious individual 

in a fully susceptible population (May and Anderson, 1987). It is a population 

parameter, rather than a parameter of a single individual. The R0 contains 

information on the ability of an infection to establish itself in the population (May 

and Anderson, 1987). The threshold value is one, if R0 < 1 an infectious individual will 

infect on average less than one susceptible individual and the disease will die out. If 

R0 > 1 a disease can persist at an endemic level in a population, but in the stochastic 

model is may die out by chance.  

An endemic equilibrium exist when the transmission rate is equal to the recovery 

rate. At an endemic equilibrium level, S and I are constant, so each infectious 

individual infects on average exactly one susceptible individual. Thus, the effective 

reproduction ratio (RE), the average number of secondary cases caused by a typical 

infectious individual, is one. The relation between the susceptible fraction and the 
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basic reproduction ratio is: 𝑅𝐸 =
𝑆

𝑁
𝑅0 = 1. The endemic prevalence level follows 

from this as, 
𝐼

𝑁
= 1 −

𝑆

𝑁
= 1 −

1

𝑅0
. Figure 1.1 shows the relation between R0 and the 

infected fraction of the population in the endemic equilibrium. 

 

 
Figure 1.1. Relation between the basic reproduction ratio R0 and the infected 

fraction of the population (I/N, prevalence) in the endemic equilibrium, 
𝐼

𝑁
= 1 −

1

𝑅0
.  

 

1.4 Selection and breeding for reduced disease transmission 

Classic quantitative genetic approaches connect the disease of an individual to their 

own breeding value. Thereby they capture variation in susceptibility only, variation 

in exposure of susceptible individuals to infectious herd mates and variation in 

infectivity of the herd mates are ignored. However, the endemic prevalence level of 

a disease is determined by R0. Breeding strategies that aim to reduce the prevalence 

level should thus focus on reducing R0, preferably to a value below one. Because R0 

depends on both susceptibility and infectivity, the genetic variation in both of these 

traits should be taken into account. Estimating genetic variation in infectivity is 

difficult because infectivity is expressed by infected individuals only, and because 

genetic variation must be estimated indirectly from the number of susceptible group 

R0

In
fe

c
te

d
 f
ra

c
ti
o

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10



1 General introduction 

 

 

17 

 

mates that become infected. However, it is likely that the quality of the estimates 

can be improved when data on disease status are recorded multiple times (Pooley 

et al., 2014; Anacleto et al., 2015). So, breeding strategies should take variation in 

susceptibility, infectivity, and variation in exposure into account. 

 

1.5 Digital Dermatitis 

This thesis focusses on the endemic disease Digital Dermatitis (DD). DD is an 

infectious claw disease that mainly affects dairy and beef cattle, but is also observed 

in sheep (Sullivan et al., 2014), goats (Sullivan et al., 2015) and North American elk 

(Clegg et al., 2015). In dairy cattle, lesions occur usually on the hind feet above the 

interdigital space next to the heel bulbs (Figure 1.2) (Walker et al., 1995). The lesions 

can develop filiform papillae and be surrounded by hyperkeratotic skin with hairs 2-

3 times longer than normal (Read and Walker, 1998). DD is associated with lameness; 

a severely affected cow bears its weight on the toe of the affected foot, shakes the 

foot as if in pain, and shows reluctance to move (Bassett et al., 1990; Collighan and 

Woodward, 1997; Read and Walker, 1998).  

 

 
Figure 1.2. Digital Dermatitis lesions (red circle) usually occur above the interdigital 

space next to the heel bulbs of the hind feet of dairy cattle. 

 

Digital Dermatitis is transmitted via the environment, where the infectious “agent” 

is an amalgamation of microbes with a predominant bacterial component (Demirkan 

et al., 1999; Read and Walker, 1998; Rodríguez-Lainz et al., 1996; Sogstad et al., 2005; 

Vink et al., 2009). Spirochetes of the genus Treponema spp. are the most common 

bacteria in DD lesions (Clegg et al., 2015). Treponema spp. with a preference for 

keratinised cells probably penetrate the epidermal layers, while producing a 

keratolytic toxin. This degeneration of keratin layers stimulates epidermal 

proliferation and hyperplasia (Blowey et al., 1994). 
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Digital Dermatitis is prevalent in many countries, like Mexico (Argáez-Rodríguez 

et al., 1997), the Republic of Chile (Rodriguez-Lainz et al., 1998), the United Kingdom 

(Laven and Logue, 2006), the Netherlands (Holzhauer, 2006), the United States 

(Wells et al., 1999), Sweden (Manske et al., 2002), and Denmark (Nielsen et al., 

2009). In the Netherlands, about 90% of the herds was affected by DD in 2003 

(Holzhauer et al., 2006). In a cross-sectional study, 21.2% of the cows were affected, 

with within herd prevalences ranging from 0% to 83.0% (Holzhauer et al., 2006). 

Factors such as breed, herd size, lactation stadium, flooring system, and climate 

affect the prevalence in a herd (Holzhauer et al., 2006). 

Lesions can be classified with the standardized system that was developed by 

Döpfer et al. (1997) and extended by Berry et al. (2012). This system has six distinct 

classes (M0, M1, M2, M3, M4, and M4.1). Class M0 is skin without a macroscopically 

visible lesion. Class M1 is a small lesion of 0-2 cm, class M2 is a lesion of >2 cm, class 

M3 is a lesion covered by a scab, class M4 is irregular skin with dyskeratotis or surface 

proliferation, and class M4.1 is a small lesion (M1) in addition to irregular skin (M4) 

(Döpfer et al., 1997; Döpfer, 2009; Berry et al., 2012). Figure 1.3 to 1.8 show the 

distinct DD classes. Cows scored as M0 are considered susceptible to DD, while cows 

scored M1, M2, M3, M4, or M4.1 are infected.  

 

 
Figure 1.3. Claw without Digital Dermatitis; class M0, skin without a macroscopically 

visible lesion. 
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Figure 1.4. Claw with Digital Dermatitis class M1, a small lesion of 0-2 cm. 

 

 
Figure 1.5. Claw with Digital Dermatitis class M2, a lesion of >2 cm. 
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Figure 1.6. Claw with Digital Dermatitis class M3, a lesion covered by a scab. 

 

Figure 1.7. Claws with Digital Dermatitis class M4, irregular skin with dyskeratotis (a) 

and irregular skin with surface proliferation (b). 

 

a b 
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Figure 1.8. Claw with Digital Dermatitis class M4.1, a small lesion (M1) in addition to 

irregular skin (M4). 

 

Once infected, a cow can present several classes before it recovers (Döpfer et al., 

2012). A cow might not present all the classes, and the order it presents the classes 

when infected is not necessarily from M1 to M4.1. Based on the classes an infected 

cow presents, the cow can be categorized as one of three types: a type I cow never 

show class M2 but might have class M1 or M4; a type II cow show class M2 once, 

thereafter this class is absent for a long period; a type III cow show class M2 lesions 

repeatedly over a short period of time (Döpfer, 2009). This indicates that there is 

variation in the classes an animal presents, and in the duration of these classes. 

Furthermore, it is possible that the infectivity of the lesions differs between classes 

and animals. Some animals might therefore be more infectious than others are, and 

these differences in infectivity might be genetic.  

 

1.6 The gap 

Genetic variation in host susceptibility and host infectivity provides an opportunity 

to reduce disease transmission with selection and breeding, and may also help to 

unravel the mechanisms underlying disease transmission. However, there is a gap 

between animal breeding and quantitative epidemiology that must be bridged. 

Classic quantitative genetic approaches only capture variation in susceptibility, and 

fail to take into account variation in infectivity and exposure. 
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1.7 Aim 

In this thesis, we aim to estimate genetic effects on both host susceptibility and host 

infectivity for an endemic disease with a generalized linear model. The model is 

applied to data on DD. We extend the generalized linear model developed by Anche 

et al. (2015). They proposed this model to estimate relative effects of genes on 

susceptibility and infectivity from binary data on disease status collected at the end 

of an epidemic. Anacleto et al. (2015) showed that the quality of the infectivity 

estimates can be improved when data are recorded multiple times during the 

infection chain. Because, when the number (and possible phenotypes and 

genotypes) of the infectious individuals to which a susceptible individual was 

exposed are known when it did or did not become infected, this provides information 

on who infected whom (Pooley et al., 2014). An endemic is more suitable for multiple 

recordings compared to an epidemic as the occurrence of new cases is more 

predictable. In this study we, therefore, focus on the endemic disease DD.  

In chapter 2, we test the extended model in a simulation study. We simulate an 

endemic disease and observe the disease status of individuals repeatedly. We 

estimate genetic variation in susceptibility, and use the variation in the exposure of 

susceptible individuals to infectious herd mates to estimate genetic variation in 

infectivity. Bias and precision of the estimates are quantified for different effect sizes 

and the optimal recording interval is identified  

In chapter 3, we use phenotype data on DD to determine how the R0 for DD is 

composed. We investigate the distribution of the classes that are first observed after 

infection, the average duration of each class, and the infectivity of each class. With 

this information we determine the contribution of each class to R0.  

In chapter 4, the phenotype data on DD are combined with genotype data of the 

same animals. Here we estimate genetic variance components for host susceptibility, 

infectivity, and R0 for DD. Furthermore, we investigate the effect of including both 

susceptibility and infectivity in the model. Finally, different models are compared for 

the ability to predict whether or not a susceptible animal gets infected.  

In chapter 5, we perform several genome-wide association studies (GWAS) to 

detect single nucleotide polymorphisms (SNPs) associated with DD. We perform the 

GWAS with two different models. First a linear model is used to detect SNPs that are 

associated with host susceptibility to the different M-classes and the presence of 

active lesions. Next a generalized linear model is used to detect SNPs that are 

associated with host susceptibility and host infectivity to DD.  

Finally, I discuss the broader perspective of the study in the general discussion 

(chapter 6). I will focus on disease traits that were not considered in this thesis. Some 
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affect the basic reproduction ratio, like the duration of the infectious period and the 

indirect infectivity of a cow via the environment. Next, I will address breeding against 

infectious diseases in practice, i.e., the correlation between the estimated breeding 

value for R0 and the estimated breeding values for milk production and DD that are 

currently used. Furthermore, I will address the use of sensor systems for phenotype 

collection. Finally, I will propose an additional explanation for the lack of power to 

estimate differences in infectivity.  
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Abstract 

Infectious diseases in farm animals affect animal health, decrease animal welfare 

and can affect human health. Selection and breeding of host individuals with 

desirable traits regarding infectious diseases can help to fight disease transmission, 

which is affected by two types of (genetic) traits: host susceptibility and host 

infectivity. Quantitative genetic studies on infectious diseases generally connect an 

individual’s disease status to its own genotype, and therefore capture genetic effects 

on susceptibility only. However, they usually ignore variation in exposure to 

infectious herd mates, which may limit the accuracy of estimates of genetic effects 

on susceptibility. Moreover, genetic effects on infectivity will exist as well. Thus, to 

design optimal breeding strategies, it is essential that genetic effects on infectivity 

are quantified. Given the potential importance of genetic effects on infectivity, we 

set out to develop a model to estimate the effect of single nucleotide polymorphisms 

(SNPs) on both host susceptibility and host infectivity. To evaluate the quality of the 

resulting SNP effect estimates, we simulated an endemic disease in 10 groups of 100 

individuals, and recorded time-series data on individual disease status. We 

quantified bias and precision of the estimates for different sizes of SNP effects, and 

identified the optimum recording interval when the number of records is limited. 

We present a generalized linear mixed model to estimate the effect of SNPs on 

both host susceptibility and host infectivity. SNP effects were on average slightly 

underestimated, i.e. estimates were conservative. Estimates were less precise for 

infectivity than for susceptibility. Given our sample size, the power to estimate SNP 

effects for susceptibility was 100% for differences between genotypes of a factor 

1.56 or more, and was higher than 60% for infectivity for differences between 

genotypes of a factor 4 or more. When disease status was recorded 11 times on each 

animal, the optimal recording interval was 25 to 50% of the average infectious 

period. 

Our model was able to estimate genetic effects on susceptibility and infectivity. 

In future genome-wide association studies, it may serve as a starting point to identify 

genes that affect disease transmission and disease prevalence.  
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2.1 Introduction 

Infectious diseases in farm animals affect animal health, decrease animal welfare 

and can affect human health (Broom, 2006). Infectious diseases also cause economic 

losses due to disease-related costs, treatment costs, costs for prevention measures, 

and reduced production (Bennett and IJpelaar, 2005). Bacterial infections are often 

treated with antibiotics, which can lead to antibiotic-resistant bacteria (Neu, 1992). 

Viral infections can be prevented with vaccination, which can lead to vaccine escape 

strains (Wilson et al., 1998; Brueggemann et al., 2007). Thus, it is highly desirable to 

search for additional ways to fight transmission of infectious diseases. One such 

approach consists of selecting and breeding host populations for desirable traits 

regarding infectious diseases (Binder and Levitt, 1998). 

Two main sets of host traits affect transmission of infectious diseases: host 

susceptibility and host infectivity. Susceptibility is the relative risk of an individual to 

become infected when exposed to a typical (average) infectious individual or (for 

infectious diseases transmitted via the environment) the infectious material 

excreted by a typical infectious individual. Infectivity is the relative propensity of an 

infected individual to infect a typical (average) susceptible individual. 

Studies that investigate host genetic effects related to infectious diseases 

generally focus on host disease status, and link this to the genotype of the host 

(Woolhouse et al., 1998; Springbett et al., 2003). By linking own disease status to 

own genotype, only genetic effects on susceptibility are captured and variation in 

exposure of susceptible individuals to infectious herd mates is ignored, which may 

limit the accuracy of estimates of genetic effects on susceptibility. Moreover, there 

is evidence that genetic variability in infectivity exists as well. Variability in infectivity 

is found in, for example, super-shedders, i.e., individuals that shed many more 

infectious units than the average individual in the population (Chase-Topping et al., 

2008). This variability in shedding was found among individuals infected with the 

“same” pathogen and, thus could be due to host genetic differences. 

A host genetic effect on infectivity is an example of an indirect genetic effect (IGE) 

(Moore et al., 1997; Anche et al., 2014), which is a heritable effect of one individual 

on the phenotype of another individual (Bijma and Wade, 2008). IGE can have 

profound effects on the rate and direction of evolution by natural selection and on 

response to selective breeding (Wolf et al., 1998; Bijma et al., 2007b; Bijma and 

Wade, 2008; Anche et al., 2014). Thus, genetic effects on infectivity can be used for 

genetic improvement of populations that suffer from infectious diseases (Lipschutz-

Powell et al., 2012b; Anche et al., 2014) but its use requires different breeding 

strategies (Bijma and Wade, 2008; Lipschutz-Powell et al., 2012a; Anche et al., 2014). 
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To design optimal breeding strategies, it is essential to first quantify the genetic 

effects on infectivity. 

Genome-wide association studies (GWAS), in which effects of single nucleotide 

polymorphisms (SNPs) on a phenotype are estimated, are a common way to quantify 

genetic effects. To estimate effects of SNPs on susceptibility and infectivity, a 

generalized linear model with a complementary log-log link function can be used. 

This model has been applied to data on the final disease status of individuals after 

an epidemic disease (Lipschutz-Powell et al., 2014; Anche et al., 2015), but many 

diseases are endemic. Furthermore, it is likely that the quality of the estimates 

improves when data on individual disease status are recorded over multiple (short) 

time intervals during the infection chain in a population. Each interval can then be 

seen as an incomplete epidemic, in which only a fraction of the susceptible 

individuals become infected. For each interval, the infectious individuals to which a 

susceptible focal individual is exposed are known. Thus, more information on who 

infected whom and on the rate of infection is available, compared to information on 

the final disease status only, which is expected to improve the quality of the 

estimates for host genetic effects on susceptibility and infectivity (Anacleto et al., 

2015). 

Given the potential importance of genetic effects on infectivity, we set out to 

develop a model to estimate the effects of SNPs on both host susceptibility and host 

infectivity for an endemic disease. The model accounts for variation among 

susceptible individuals in exposure to infectious herd mates and for the genotypes 

of those herd mates. To evaluate the quality of the SNP effects estimated by the 

model, we simulated an endemic disease and recorded data on individual disease 

status multiple times during the endemic. We quantified bias and precision of the 

estimates for different sizes of SNP effects, and identified the optimal recording 

interval. 

 

2.2 Methods 

2.2.1 Transmission model 

Our objective was to develop a model to estimate the effect of single SNPs on disease 

transmission. Thus, we considered a genetically heterogeneous population of diploid 

individuals, with one locus for the susceptibility effect 𝛾, and one locus for the 

infectivity effect 𝜑. The susceptibility locus had two alleles, allele 𝐺 with value 𝛾𝐺  

and allele 𝑔 with value 𝛾𝑔. The infectivity locus also had two alleles, allele 𝐹 with 

value 𝜑𝐹  and allele 𝑓 with value 𝜑𝑓. We assumed additive allele effects on the log-

scale, by simulating effects as multiplicative on the original scale such that model 
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terms could be formulated as allele counts within individuals (Anche et al., 2015). 

Thus, susceptibility values were 𝛾𝐺𝐺 = 𝛾𝐺𝛾𝐺 = 𝛾𝐺
2 for genotype 𝐺𝐺, 𝛾𝐺𝑔 = 𝛾𝑔𝐺 =

𝛾𝐺𝛾𝑔 for genotype 𝐺𝑔/𝑔𝐺, and 𝛾𝑔𝑔 = 𝛾𝑔
2 for genotype 𝑔𝑔. Likewise, infectivity 

values were 𝜑𝐹𝐹 = 𝜑𝐹
2  for genotype 𝐹𝐹, 𝜑𝐹𝑓 = 𝜑𝑓𝐹 = 𝜑𝐹𝜑𝑓 for genotype 𝐹𝑓/𝑓𝐹, 

and 𝜑𝑓𝑓 = 𝜑𝑓
2 for genotype 𝑓𝑓. Note that multiplicative allele effects on the original 

scale introduce dominance on the original scale. Because the value for the 

heterozygote is lower than the average value of both homozygotes, i.e., 𝛾𝐺𝑔 <

0.5(𝛾𝐺𝐺 + 𝛾𝑔𝑔), the dominance is negative (see Discussion). 

An endemic disease was modelled with a stochastic compartmental susceptible-

infected-susceptible-model (SIS-model). In a SIS-model, two events can occur: 

infection of a susceptible individual and recovery of an infected individual. Infected 

individuals were immediately infectious and recovered individuals were immediately 

susceptible again. Thus, no lasting immunity to disease was assumed. Events 

(infection and recovery) occurred randomly with a probability per unit of time, 

depending on model parameters and disease status of individuals in the population. 

In a genetically homogeneous population, the expected rate with which 

susceptible individuals become infected equals 
𝑑𝑆

𝑑𝑡
= 𝛽𝐼

𝑆

𝑁
, where 𝐼 is the number of 

infectious individuals, 𝑆 the number of susceptible individuals, and 𝑆 + 𝐼 = 𝑁, i.e., 

the size of the closed population in which the endemic takes place (Kermack and 

McKendrick, 1927). The transmission rate parameter 𝛽 is a population specific 

constant that contains information on the contact rate and transmission probability 

between hosts (Roberts and Heesterbeek, 1993). 

In a genetically heterogeneous population, 𝛽 varies between pairs of individuals, 

depending on the susceptibility genotype of the susceptible individual and the 

infectivity genotype of the infectious individual. We assumed that, between 

individuals, the susceptibility genotype and the infectivity genotype have 

independent effects, which is known as separable mixing in epidemiology (Diekmann 

et al., 1990), i.e., the susceptibility effect of individuals that are susceptible is 

independent of the infectivity effect of individuals that are infectious. Thus, the 

transmission rate parameter 𝛽𝑖𝑗  from an infectious individual with infectivity 

genotype 𝑗 (𝑗 = 𝐹𝐹, 𝐹𝑓 or 𝑓𝑓) to a recipient susceptible individual with susceptibility 

genotype 𝑖 (𝑖 = 𝐺𝐺, 𝐺𝑔 or 𝑔𝑔) was defined as: 

 

𝛽𝑖𝑗 = 𝑐𝛾𝑖𝜑𝑗, 

 

where 𝛾𝑖  is the susceptibility value for genotype 𝑖 and 𝜑𝑗  the infectivity value for 

genotype 𝑗. Without loss of generality, we chose 𝛾𝑔 = 𝜑𝑓 = 1 as reference allele 
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values. Therefore, 𝛾𝑔𝑔 = 𝜑𝑓𝑓 = 1, so that 𝛽𝑔𝑔𝑓𝑓 = 𝑐. Thus, 𝑐 represents the 

transmission rate parameter from an infectious individual with infectivity genotype 

𝑓𝑓 to a susceptible individual with susceptibility genotype 𝑔𝑔. Since, 𝛾𝑔 = 𝜑𝑓 = 1, 

𝛾𝐺  represents the ratio of the value of allele 𝐺 over the value of allele 𝑔, and 𝜑𝐹  

represents the ratio of the value of allele 𝐹 over the value of allele 𝑓. For example, 

𝛾𝐺𝐺/𝛾𝐺𝑔 = 𝛾𝐺, and 𝛾𝐺𝑔/𝛾𝑔𝑔 = 𝛾𝐺. 

The total infectivity to which susceptible individuals are exposed at time 𝑡, 

depends on the total number of infectious individuals of each genotype at that time 

𝐼𝑗(𝑡) and is measured by ∑ (𝜑𝑗  𝐼𝑗(𝑡))𝑗 . Thus, the infection rate at time 𝑡 for 

susceptible individuals with genotype 𝑖 (𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖(𝑡)), depends on the 

susceptibility of genotype 𝑖 and on the total infectivity of infectious group mates: 

 

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖(𝑡) = 𝑐 𝛾𝑖
𝑆𝑖(𝑡) 

𝑁
∑ (𝜑𝑗𝐼𝑗(𝑡))𝑗 ,                 (Equation 2.1) 

 

where 𝑆𝑖(𝑡) is the number of susceptible individuals with genotype 𝑖 at time 𝑡. 

The probability per unit of time for an individual to recover and become 

susceptible again was given by the recovery rate parameter 𝛼 and was assumed to 

be the same for all genotypes. Note that a single 𝛼 does not imply the same 

infectious period for all individuals; because 𝛼 is a stochastic rate, the length of the 

infectious period follows an exponential distribution and thus shows random 

phenotypic, albeit not genetic, variation among individuals. 

 

2.2.2 Generalized linear model 

To estimate the effect of single SNPs on both host susceptibility and host infectivity, 

we developed a generalized linear model (GLM). The GLM was based on the infection 

rate given by Equation 2.1. We assumed that the recording interval, the disease 

status of individuals at recording, and the genotypes of individuals were known. 

For the sake of readability, the index 𝑡 is dropped in the following and, hence, 𝑆, 𝑆𝑖, 

𝐼, and 𝐼𝑗  refer to the number of individuals at the beginning of the interval. Then, the 

probability 𝑃𝑖  for a single susceptible individual with genotype 𝑖 to get infected when 

exposed to all infectious individuals during an interval ∆𝑡, follows from assuming a 

Poisson process within ∆𝑡. It is the probability of a non-zero outcome from a Poisson 

distribution, and follows from Equation 2.1 with 𝑆𝑖 = 1, 

 

𝑃𝑖 = 1 − 𝑒−𝑐𝛾𝑖(∑ 𝜑𝑗𝐼𝑗𝑗 )∆𝑡 𝑁⁄ .     (Equation 2.2) 
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The second term on the right-hand side is the zero-term of the Poisson distribution, 

which gives the probability of no infection. Thus, the number individuals with 

genotype 𝑖 that become infected during ∆𝑡, i.e., cases 𝐶𝑖, follows a binomial 

distribution with binomial total 𝑆𝑖, i.e., depends on the number of susceptible 

individuals of genotype 𝑖 at the start of the interval and the probability to become 

infected given by Equation 2.2 (Velthuis et al., 2003). Equation 2.2 assumes that 

infections are only caused by individuals that were infectious at the beginning of the 

interval (𝐼𝑗). In other words, the effect on the 𝑃𝑖  of individuals that became infected 

or recovered during the interval is ignored in Equation 2.2. This assumption is 

increasingly violated at longer recording intervals. Thus, we investigated the effect 

of the recording interval on the quality of the estimates and whether an optimum 

recording interval exists. 

Because the probability to become infected follows from the complement of the 

zero-term of the Poisson distribution (Equation 2.2), the complementary log-log is 

the appropriate link function to connect the explanatory variables to the expected 

value of the observed variable (Velthuis et al., 2003; Anche et al., 2015). Thus, a GLM 

with a complementary log-log link function was used to estimate effects of SNPs: 

 

cloglog(𝑃𝑖) = log(− log(1 − 𝑃𝑖)) = 

log(𝑐) + log(𝛾𝑖) + log (∑
𝐼𝑗

𝐼
𝜑𝑗𝑗 ) + log (

𝐼

𝑁
𝛥𝑡), 

 

where 𝐼 is the total number of infected individuals at the beginning of the interval, 

such that 
𝐼𝑗

𝐼
 represents the fraction of infectious individuals with infectivity genotype 

𝑗 at the beginning of the interval. As noted by Anche et al. (2015), this model is linear 

in log(𝛾𝑖) but not in log(𝜑𝑗). To linearize the model, the arithmetic mean of , 

∑
𝐼𝑗

𝐼
𝜑𝑗𝑗 , was approximated by the corresponding geometric mean, ∏ 𝜑

𝑗

𝐼𝑗

𝐼
𝑗  (Anche et 

al., 2015), such that log (∑
𝐼𝑗

𝐼
𝜑𝑗𝑗 ) ≈ log (∏ 𝜑𝑗

𝐼𝑗

𝐼𝑗 ) = ∑
𝐼𝑗

𝐼
log(𝜑𝑗)𝑗 . Now, the GLM is 

linear in both log(𝛾𝑖) and log(𝜑𝑗): 

 

cloglog(𝑃𝑖) ≈ log(𝑐) + log(𝛾𝑖) + ∑
𝐼𝑗

𝐼𝑗 log(𝜑𝑗) + log (
𝐼

𝑁
𝛥𝑡). 

 

Details on the error caused by this approximation are in the appendix of (Anche et 

al., 2015), and are less than 5% for infectivity effects up to a factor of 3 (i.e., 𝜑𝐹  

between 0.33 and 3.0). 
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By assuming multiplicative allele effects on the original scale, allele effects were 

additive on the log-scale. For susceptibility, for example, log(𝛾𝑔𝑔) = 0, log(𝛾𝐺𝑔) =

log(𝛾𝐺), and log(𝛾𝐺𝐺) = 2log(𝛾𝐺). Thus, under this assumption, the model can be 

expressed in terms of allele counts (Anche et al., 2015). Furthermore, we added a 

random group effect to account for possible additional (stochastic) differences in 

transmission between groups. When a random group effect is added to the model, 

the standard deviations of the estimated parameters are higher than those from a 

model without group included as a random effect. Although we did not simulate 

group effects in this study, they must be estimated in real data. Thus, we included a 

random group effect to better reflect the standard errors on the allele effect 

estimates that may be found in real data. A generalized linear mixed model (GLMM) 

allows for the inclusion of random effects resulting in the following final GLMM: 

 

cloglog(𝑃𝑖) = 𝑐0 + 𝑐1𝐶𝑜𝑢𝑛𝑡𝐺 + 𝑐2𝐶𝑜𝑢𝑛𝑡𝐹 + log (
𝐼

𝑁
∆𝑡).  (Equation 2.3) 

 

Where 𝑐0 = log (𝑐) is the intercept. To achieve that 𝛾𝑔 = 𝜑𝑓 = 1, such that 

log (𝛾𝑔) = log (𝜑𝑓) = 0, we counted alleles 𝐺 and 𝐹 within individuals, rather than 

alleles 𝑔 and 𝑓, such that the regression coefficients represent the value of a single 

copy of allele 𝐺 or 𝐹. For example, the ratio of 𝛾𝐺  versus 𝛾𝑔 is 𝛾𝐺 = 𝑒𝑐1, which is 

estimated by 𝛾𝐺 = 𝑒𝑐1̂. Thus, 𝐶𝑜𝑢𝑛𝑡𝐺 represents the number of 𝐺-alleles at the 

susceptibility locus of the susceptible individual, takes values 0, 1 or 2, and has 

coefficient 𝑐1 = log(𝛾𝐺).  𝐶𝑜𝑢𝑛𝑡𝐹 represents the average number of 𝐹-alleles at the 

infectivity locus in the infected individuals, takes real values between 0 and 2, and 

has coefficient 𝑐2 = log (𝜑𝐹). 𝐶𝑜𝑢𝑛𝑡𝐹 is calculated as 
2𝐼𝐹𝐹+𝐼𝐹𝑓

𝐼
, where 𝐼𝐹𝐹  is the 

number of infected individuals with genotype 𝐹𝐹 at the beginning of the interval and 

𝐼𝐹𝑓  is the corresponding number of infected individuals with genotype 𝐹𝑓. The 

denominator of 𝐶𝑜𝑢𝑛𝑡𝐹 is 𝐼 rather than 2𝐼 because 𝐶𝑜𝑢𝑛𝑡𝐹 is the average number 

of 𝐹 alleles rather than its proportion. Table 2.1 summarizes the relationship 

between the regression coefficients of the GLMM and the transmission rate 

parameters for each genotype. The final model term, log (
𝐼

𝑁
∆𝑡), is a known offset, 

i.e., an “explanatory variable” with coefficient equal to 1. The time period 𝛥𝑡 

determines the interpretation of the transmission rate parameter. For example, 

rates are per day when the time period 𝛥𝑡 is expressed in days. 
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Table 2.1. Relationship between the transmission rate parameters and the 

regression coefficients of the generalized linear mixed model for each genotype. 

Transmission rate parameter1 Expression in terms of regression coefficients 

𝛽𝑔𝑔𝑓𝑓  𝑒𝑐0 

𝛽𝐺𝑔𝑓𝑓  𝑒𝑐0+𝑐1  

𝛽𝐺𝐺𝑓𝑓  𝑒𝑐0+2𝑐1  

𝛽𝑔𝑔𝐹𝑓  𝑒𝑐0+𝑐2  

𝛽𝐺𝑔𝐹𝑓  𝑒𝑐0+𝑐1+𝑐2  

𝛽𝐺𝐺𝐹𝑓  𝑒𝑐0+2𝑐1+𝑐2 

𝛽𝑔𝑔𝐹𝐹  𝑒𝑐0+2𝑐2  

𝛽𝐺𝑔𝐹𝐹  𝑒𝑐0+𝑐1+2𝑐2 

𝛽𝐺𝐺𝐹𝐹  𝑒𝑐0+2𝑐1+2𝑐2 
1 The first two subscripts of 𝛽 indicate the susceptible genotype of susceptible 

individuals, the second two subscripts indicate the infectivity genotype of infectious 

individuals. It follows that 𝛾𝐺 = 𝑒𝑐1 and 𝜑𝐹 = 𝑒𝑐2. 

 

2.2.3 Simulations 

To evaluate the quality of the estimates from the above model, we simulated an 

endemic disease and quantified bias and precision of SNP effects estimated based 

on Model 3. Bias was defined as the difference between the estimated and true 

effects of each SNP and relative bias was defined as the bias relative to the true size 

of the effect. Absolute bias and relative bias were calculated on the original scale. 

Precision was measured by the root mean squared error (RMSE) of the estimated 

SNP effects on the original scale. Simulations were conducted in R version 3.2.3. and 

data were analysed with the R-package lme4 (Bates et al., 2014; R Core Team, 2017), 

using the glmer() function to solve the GLMM with Gauss-Hermite quadrature 

methods. 

A group (defined as closed and random mixing) consisted of 100 individuals, 

which resembles for example, a dairy herd in the Netherlands. In dairy herds, a 

limited number of sires is used, so that cows in the same herd are (slightly) more 

related to each other than to cows in other herds. We simulated such genetic 

heterogeneity by sampling allele frequencies for susceptibility (𝑝𝐺  and 𝑝𝑔 = 1 − 𝑝𝐺), 

and infectivity (𝑝𝐹  and 𝑝𝑓 = 1 − 𝑝𝐹) for each group from a beta distribution with a 

mean of 0.5 and standard deviation of 0.05. We chose a beta distribution for 𝑝 to 

ensure that allele frequencies are between 0 and 1. For the mean allele frequency, 

we used 0.5, which is simply the centre of the 0 to 1 interval. We assumed that the 

susceptibility effect of an individual and that same individual’s infectivity effect were 
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not correlated. Within groups, genotypes were sampled assuming Hardy-Weinberg 

equilibrium. The loci for susceptibility and infectivity were simulated in linkage 

equilibrium. 

Next, an initial disease status was modelled for each individual. Because interest 

was in obtaining data from the endemic phase of the disease, the endemic phase 

was started at the equilibrium in terms of number of susceptible and infectious 

individuals (details are in the Appendix). The next event, infection or recovery, was 

sampled using the direct method of the Gillespie’s algorithm (Gillespie, 1977), where 

the probability that a specific event occurred was proportional to the rate with which 

that event occurred (see (Anche et al., 2015) for an example). Thus, time-period 

between events was sampled from an exponential distribution with the sum of the 

rates of infection and recovery as parameter. If the endemic phase died out (no 

infectious individuals in the population), a random individual was infected 

immediately. This case was excluded from the analysed data, but included as 

explanatory variable in the model for subsequent cases. 

One replicate consisted of 10 groups of 100 individuals each. In each replicate, 

individual disease status was recorded 11 times, and individual genotypes were 

known. 

 

2.2.4 Scenarios 

Table 2.2 shows the input values for scenarios 1 and 2. 

In scenario 1, we varied 𝛾𝐺  and 𝜑𝐹  simultaneously between 0.3 and 1, while 

keeping 𝛾𝑔 = 𝜑𝑓 = 1, to investigate statistical power to identify SNP effects on 

susceptibility and infectivity. A value for 𝛾𝑔 = 0.3, for example, means that the 𝐺𝑔 

genotype is 1/0.3 = 3
1

3
 times less susceptible than the 𝑔𝑔 genotype, while the 𝐺𝐺 

genotype is 1/0.32 = 11.1 times less susceptible than the 𝑔𝑔 genotype. 

In scenario 2, we varied the recording interval while keeping the total number of 

recordings constant, in order to find the optimal recording interval. The recording 

interval ranged from 4.8 to 133.3% of the average infectious period (1/𝛼). For all 

recording intervals in scenario 2, 𝛾𝐺 = 𝜑𝐹 = 0.4. To check whether the optimal 

recording interval depends on the effect size, we also investigated a scenario with 

𝛾𝐺 = 𝜑𝐹 = 0.6. 
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Table 2.2. Input values for the simulations. 

Variable Scenario 1 Scenario 2 

SNP effect Recording interval 

Group size 100 100 

Trans. rate par. ref. type (c)1 0.8 – 0.145 0.6 

Recovery rate (𝛼) 0.0476 0.0476 

Average infectious period (1/𝛼) 21 days 21 days 

Value susceptibility allele 𝑔 (𝛾𝑔) 1 1 

Value susceptibility allele 𝐺 (𝛾𝐺) 0.3 – 1 0.4 

Value infectivity allele 𝑓 (𝜑𝑓) 1 1 

Value infectivity allele 𝐹 (𝜑𝐹) 0.3 – 1 0.4 

Frequency allele 𝑔 (pg) Beta(0.5,0.05) Beta(0.5,0.05) 

Frequency allele 𝑓 (pf) Beta(0.5,0.05) Beta(0.5,0.05) 

Basic reproduction ratio (𝑅0) 3.0 3.0 

Endemic reproduction ratio (𝑅)2 2.1 to 3.0 2.4 

Recording interval (% of 1/𝛼) 66.6%  4.8 to 133.3%  

Recording frequency 11 times (10 intervals) 11 times (10 intervals) 
1 Transmission rate parameter for the reference genotype 𝑔𝑔𝑓𝑓 
2 Details on the calculation of the endemic reproduction ratio are in the appendix 

 

2.3 Results 

Estimates in this section are averages of 200 replicates, except for Figure 2.1, which 

shows the result for one replicate. Infectivity estimates were not corrected for the 

geometric mean approximation because the error caused by this approximation was 

found to be small, as quantified (Tables 2.3 and 2.5). 

Figure 2.1 shows an example of the percentage of infected individuals for each 

susceptibility and infectivity genotype during 100 days of an endemic. The 

distribution of the susceptibility genotypes within the infected individuals differed 

from the genotype frequency for susceptibility in the whole population (Figure 2.1a). 

The 𝑔𝑔 genotype was overrepresented in the infected individuals because this 

genotype had above-average susceptibility, while the 𝐺𝐺 genotype was 

underrepresented in the infected individuals. Most of infected individuals, however, 

had the 𝐺𝑔 genotype, simply because there were more individuals with this 

genotype. An overview of genotype specific prevalences for different allele values is 

in Table A2.1 of the Appendix. The distribution of the infectivity genotypes within 

the infected individuals was similar to the genotype frequencies in the whole 
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population, because the susceptibility and infectivity loci were unlinked and in 

linkage equilibrium (Figure 2.1b). 

 

Figure 2.1. Percentage of infected individuals within a given susceptibility (panel a) 

and infectivity (panel b) genotype during 100 days of an endemic disease. Results are 

from one representative replicate with 𝑝𝑔 = 𝑝𝑓 = 0.5 and 𝛾𝐺 = 𝜑𝐹 = 0.4. 

 

In scenario 1, we varied 𝛾𝐺  from 1 to 0.3, so that the susceptibility effect, 𝛾𝑔 −

𝛾𝐺, varied from 0 to 0.7 (Tables 2.3 and 2.4). Since 𝛾𝑔 = 1, the susceptibility value of 

the 𝐺 allele ranged from 100 to 30% of that of the 𝑔 allele. Tables 2.3 and 2.4 show 
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the estimates of susceptibility and infectivity effects, bias, precision, and power for 

different allele effect sizes. All SNP effects were underestimated. As expected, 

absolute bias increased with absolute size of the effect, for both susceptibility and 

infectivity. However, relative bias decreased with absolute size of the effect. 

Precision was measured by the RMSE, with higher values indicating less precision.  

 

Table 2.3. Estimates of the effect of susceptibility, bias, precision, and power for 

different allele effect sizes. 

Input  

(𝜸𝒈 − 𝜸𝑮)1 

Estimate  

(𝜸𝒈 − �̂�𝑮)1 

Bias RMSE2 Power 

Absolute Relative 

0.0 -0.001 -0.001 -0.1% 0.033 2% 

0.1 0.087 -0.013 -13.4% 0.033 78% 

0.2 0.173 -0.027 -13.3% 0.039 100% 

0.3 0.265 -0.035 -11.7% 0.043 100% 

0.4 0.358 -0.042 -10.5% 0.046 100% 

0.5 0.457 -0.043 -8.6% 0.047 100% 

0.6 0.558 -0.042 -7.1% 0.046 100% 

0.7 0.663 -0.037 -5.3% 0.039 100% 
1 𝛾𝑔 = 1 

2 Precision was measured by RMSE and results are averages of 200 replicates. 

 

Table 2.4. Estimates of the effect of infectivity, bias, precision, power, and error 

caused by the geometric mean approximation (GMA). 

Input  

(𝝋𝒇 − 𝝋𝑭)1 

Estimate  

(𝝋𝒇 − �̂�𝑭)1 

Bias RMSE2 Power GMA error3 

Absolute Relative 

0.0 -0.011 -0.011 -1.1% 0.215 2.0% -0.0002 

0.1 0.029 -0.071 -71.4% 0.212 5.0% 0.0001 

0.2 0.125 -0.075 -37.5% 0.191 10.5% 0.0005 

0.3 0.197 -0.103 -34.3% 0.185 23.0% 0.0008 

0.4 0.279 -0.121 -30.2% 0.203 44.0% 0.0017 

0.5 0.350 -0.150 -30.0% 0.222 60.0% 0.0029 

0.6 0.449 -0.151 -25.2% 0.200 80.0% 0.0052 

0.7 0.529 -0.171 -24.5% 0.203 90.5% 0.0082 
1 𝜑𝑓 = 1 

2 Precision was measured by RMSE and results are averages of 200 replicates. 
3 �̂�𝐹 − �̂�𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝐺𝑀𝐴
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For infectivity, the RMSE was 4.3 to 6.6 times higher than for susceptibility. There 

was no clear relationship between RMSE and true size of the SNP effect. For 

susceptibility, power to detect a SNP effect, defined as the probability to find a 

significant effect given that it exists, i.e., the percentage of replicates with a 

significant SNP effect (P < 0.05), was 100% for all values of 𝛾𝐺 , except for 𝛾𝑔 − 𝛾𝐺 =

0.1, for which power was 78%. For infectivity, power increased from 5% for 

𝜑𝑓 −  𝜑𝐹 = 0.1 to 90.5% for 𝜑𝑓 − 𝜑𝐹 = 0.7. 

 

 

 
 

Figure 2.2. Susceptibility and infectivity estimates for different recording intervals. 

Markers show the estimates, which were averaged over 200 replicates. Input was 

𝛾𝑔 − 𝛾𝐺 = 𝜑𝑓 − 𝜑𝐹 = 0.6 (dashed line). Error bars show the standard deviation 

among replicates on the original scale. Further inputs are in Table 2.2, Scenario 2. 

 

In scenario 2, we varied the recording interval while keeping the total number of 

recordings constant. Figure 2.2 shows estimates of susceptibility and infectivity for 

different recording intervals. Table 2.5 shows the corresponding precision, power, 

and error caused by the geometric mean approximation (GMA).  
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Table 2.5. Precision, power, and error caused by the geometric mean approximation 

(GMA) for different recording intervals. 

1 Precision was measured by RMSE and results are averages of 200 replicates. Further 

inputs are in Table 2.2, Scenario 2. 
2 �̂�𝐹 − �̂�𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝐺𝑀𝐴

 

Recording 

interval as % of 

infectious time 

RMSE1  Power (%) GMA 

error2 Susceptibility Infectivity  Susceptibility Infectivity 

4.8 0.042 0.294  100.0 47.0 0.0154 

9.5 0.031 0.203  100.0 65.5 0.0133 

14.3 0.025 0.178  100.0 75.5 0.0115 

19.0 0.022 0.147  100.0 80.5 0.0105 

23.8 0.020 0.152  100.0 80.5 0.0090 

28.6 0.021 0.144  100.0 83.0 0.0088 

33.3 0.022 0.163  100.0 84.5 0.0088 

38.1 0.023 0.141  100.0 86.0 0.0080 

42.9 0.026 0.158  100.0 84.0 0.0076 

47.6 0.030 0.151  100.0 88.5 0.0074 

52.4 0.034 0.179  100.0 85.5 0.0061 

57.1 0.037 0.193  100.0 78,5 0.0053 

61.9 0.042 0.213  100.0 81.5 0.0055 

66.7 0.046 0.200  100.0 80.5 0.0052 

71.4 0.046 0.200  100.0 82.5 0.0052 

76.2 0.055 0.220  100.0 77.0 0.0045 

81.0 0.059 0.219  100.0 79.5 0.0042 

85.7 0.063 0.238  100.0 77.0 0.0041 

90.5 0.069 0.241  100.0 75.5 0.0037 

95.2 0.071 0.263  100.0 72.0 0.0032 

100.0 0.076 0.268  100.0 65.0 0.0033 

104.8 0.079 0.313  100.0 73.0 0.0028 

109.5 0.083 0.301  100.0 68.5 0.0030 

114.3 0.088 0.278  100.0 69.0 0.0028 

119.1 0.089 0.301  100.0 66.0 0.0026 

123.8 0.094 0.317  100.0 60.5 0.0024 

128.6 0.096 0.320  100.0 66.0 0.0022 

133.3 0.099 0.322  100.0 60.0 0.0023 
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For all intervals, SNP effects were underestimated, except for the 4.8%-interval, 

for which the susceptibility effect was slightly overestimated, 𝛾𝐺4.8%
= 0.605. 

Underestimation increased with length of the recording interval, which was more 

pronounced for infectivity. For susceptibility, bias was smallest (-0.04%) for the 

14.3% interval, while for infectivity, bias was smallest (-4.8%) for the 9.5% interval. 

For susceptibility, power was 100% for all intervals, while precision was highest from 

the 25% interval to the 50% interval, and decreased for longer and shorter intervals. 

For infectivity, both power and precision were highest from the 25% interval to the 

50% interval, and decreased for longer and shorter intervals. We found the same 

optimal recording interval for susceptibility and infectivity with 𝛾𝐺 = 𝜑𝐹 = 0.6 

(results not shown). 

 

2.4 Discussion 

Given the potential importance of genetic effects on infectivity, we developed a 

model to estimate effects of host SNPs on both susceptibility and infectivity. The 

model accounts for variation among susceptible individuals in the exposure to 

infectious herd mates, and for the genotypes of those herd mates. To test our model, 

we simulated an endemic disease in 10 groups of 100 individuals and recorded time-

series data on individual disease status. For different SNP effects and recording 

intervals, we quantified bias and precision of model estimates. SNP effects were on 

average underestimated, thus estimates were conservative. Underestimation of SNP 

effects on infectivity increased with length of the recording interval. In spite of the 

limited sample size simulated, power to detect SNP effects for susceptibility was 

high. Power to detect effects for infectivity was lower but became higher than 60% 

when the allele effect size was greater than a factor of 0.5. The optimal recording 

interval was similar for susceptibility and infectivity, around 25 to 50% of the length 

of the average infectious period. 

In the development of our model, we followed Anche et al. (2015), who 

considered epidemic diseases modelled by a SIR model. Given the importance of 

endemic diseases for livestock populations, we extended their approach to endemic 

diseases following a SIS model. Moreover, we considered time-series data on 

individual disease status, whereas Anche et al. (2015) considered the final disease 

status of individuals after an epidemic had gone through the population. With time-

series data, more information is available on who infected whom and on the 

variation among susceptible individuals in exposure to infectious herd mates. This 

increases the accuracy of SNP-estimates, particularly for infectivity (Anacleto et al., 

2015). We expect that our model can be easily extended to time-series data on 
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epidemic diseases that follow a SIR model, because the underlying principle is the 

same. Each time-period can be treated as an incomplete epidemic, where the 

number of susceptible and infectious individuals at the beginning of the period and 

the number of cases during the period must be recorded. 

Both susceptibility effects and infectivity effects were underestimated, which 

was more pronounced for longer recording intervals, likely because of unobserved 

infections and recoveries in-between the recording time points. Regarding 

underestimation of the susceptibility effect, a case is missed when a susceptible 

individual becomes infected and also recovers within the same time interval. Since 

recovery rate was the same for all genotypes, the probability to miss a case was 

higher for genotypes that are more susceptible. Hence, genotypes with higher 

susceptibility have a larger proportion of missed cases, which reduces the estimate 

of the susceptibility effect. Regarding underestimation of the infectivity effect, we 

used the number of infectious individuals of each genotype at the start of the time-

interval, 𝐼𝑗(𝑡), as explanatory variable in our model. However, there is loss and gain 

of infectious individuals during the interval because on the one hand, some of the 

initially infectious individuals may recover during the interval and thus no longer 

contribute to transmission, while on the other hand, some of the initially susceptible 

individuals may become infected during the interval and contribute to transmission 

from that time onwards. This loss and gain of infectious individuals is not accounted 

for by the model, which is more pronounced for longer intervals. In a (dynamic) 

equilibrium, the number of infectious individuals will, on average, tend to move 

towards its median value. Hence, the number of infectious individuals of a certain 

genotype at the beginning of the interval is systematically more extreme than the 

actual number of infectious individuals of that genotype averaged over the interval. 

Thus, in the model, the variance of the 𝐶𝑜𝑢𝑛𝑡𝐹-term is systematically too large, 

especially for longer intervals. This explains underestimation of the infectivity effect 

(i.e., 𝑐2) and the increase of this underestimation when the recording interval is 

longer. However, when the recording interval is short, there are no or only a few 

infections within an interval and, thus, the number of cases is too limited for precise 

estimations. Thus, given a fixed total number of recordings, short recording intervals 

lead to reduced precision of estimates, whereas long intervals lead to bias (Figure 

2.2). When the number of recordings is unlimited, the optimal recording interval will 

be short because the large number of records compensates for the limited precision 

of individual records but not for their bias. 

An assumption of our model is that cases within an interval are caused by the 

infected individuals at the beginning of that interval. Thus, there is a gain and loss of 
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infectious individuals that is not accounted for by the model. The impact of this error 

depends on the number of cases and the number of recoveries relative to the 

number of infected individuals at the beginning of the interval. In an endemic 

equilibrium, the number of cases within an interval equals, on average, the number 

of recoveries within an interval, 𝐶 = 𝛼𝐼. Hence, when expressed relative to the 

number of infected individuals at the beginning of the interval, the number of cases 

and the number of recoveries are both defined by the recovery rate 𝛼. Thus, the 

impact of the error caused by the assumption is determined by 𝛼, which suggests 

that the recovery rate (which equals the incidence in the endemic equilibrium) 

determines the optimum recording interval, rather than prevalence. 

Estimates of genetic effects on infectivity were less accurate than those on 

susceptibility. This is partly because infectivity is expressed only by the infected 

individuals. Furthermore, there is a trade-off between the quality of the 

susceptibility and infectivity estimates in relation to group size (Anacleto et al., 

2015). In large groups, more information is available on the order in which 

individuals become infected, which leads to better susceptibility estimates, while in 

small groups it is easier to establish who infected whom, which leads to better 

infectivity estimates. Because large groups have multiple infected individuals at any 

given point in time, genetic differences in infectivity have to be estimated indirectly 

from the number of susceptible group mates that become infected and from the 

genotype fractions among the infected individuals at different points in time. Thus, 

especially in populations that consist of large groups, more records and groups are 

needed to estimate genetic effects on infectivity than on susceptibility. 

We assumed that allele effects on susceptibility and infectivity were additive on 

the log-scale, such that the model could be formulated in terms of allele counts 

within individuals and the model could be tested without introducing estimation 

errors that might be present with additive allele effects on the original scale. Allele 

effects were, therefore, multiplicative on the original scale. With multiplicative allele 

effects, negative dominance is introduced on the original scale. The magnitude of 

the dominance relative to the additive effect, denoted as 𝑑/𝑎 following Falconer et 

al. (1996) is: 

 

𝑑

𝑎
=

𝛾𝐺𝑔−0.5(𝛾𝑔𝑔+𝛾𝐺𝐺)

0.5(𝛾𝑔𝑔−𝛾𝐺𝐺)
, 

 

with 𝛾𝐺 < 𝛾𝑔. So, for example, for a twofold effect with 𝛾𝐺 = 0.5 and 𝛾𝑔 = 1.0, the 

dominance deviation is one third of the additive effect. For a tenfold effect, 𝑑 𝑎⁄ =

−0.81. Hence, in our model, alleles that cause a large increase in susceptibility or 
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infectivity are almost completely recessive. Recessive alleles for susceptibility may 

be plausible because selection against recessive alleles with detrimental effects on 

fitness is inefficient, particularly when the frequency of the recessive allele is low. 

Hence, alleles that cause a large increase in susceptibility but are still segregating are 

probably recessive. Whether completely recessive alleles for infectivity are also 

plausible, is unknown at present. 

An alternative perspective is that our model estimates the average effects of 

alleles on the log-scale, regardless of presence or absence of dominance on the log-

scale. This is analogous to using ordinary additive models for estimating SNP effects, 

where the model captures the full average effect (𝛼) of an allele, including the 

relevant dominance component (𝛼 = 𝑎 + (𝑞– 𝑝)𝑑; (Falconer et al., 1996)). 

We determined �̂� for additive and multiplicative allele effects, to determine the 

impact on estimates when allele effects are additive on the original scale instead of 

multiplicative. Input values for the additive simulation were 𝛾𝐺𝐺 = 𝜑𝐹𝐹 = 0.16, 

𝛾𝐺𝑔 = 𝜑𝐹𝑓 = 0.58, and 𝛾𝑔𝑔 = 𝜑𝑓𝑓 = 1. So, with 𝑝 = 𝑞 = 0.5, the average effect 

𝛼 = 0.42 (Falconer et al., 1996). Estimates were 𝛾𝐺 = 0.45 and 𝛾𝐹 = 0.63, such that 

�̂� =
�̂�𝑔𝑔−�̂�𝐺𝐺

2
=

1−0.452

2
= 0.40 for susceptibility and �̂� = 0.30 for infectivity. For the 

multiplicative simulation, input values were 𝛾𝐺𝐺 = 𝜑𝐹𝐹 = 0.16, 𝛾𝐺𝑔 = 𝜑𝐹𝑓 = 0.4, 

and 𝛾𝑔𝑔 = 𝜑𝑓𝑓 = 1, such that, with 𝑝 = 𝑞 = 0.5, the average effect 𝛼 = 0.42. 

Estimates were 𝛾𝐺 = 0.44 and 𝛾𝐹 = 0.55, so �̂� = 0.40 for susceptibility, and �̂� =

0.35 for infectivity. This suggests that our model performs worse if allele effects are 

additive on the original scale instead of multiplicative. 

We estimated the effect of two SNPs, one for infectivity and one for 

susceptibility, without fitting the effect of other genes that may affect these traits. 

This approach is similar to genome-wide association studies (GWAS) or candidate 

gene studies, where SNP effects are often fitted one at a time. Hence, the model 

presented here can be used as a starting point to explore and identify which loci 

affect the trait of interest. One approach could be to estimate both the susceptibility 

effect and the infectivity effect of the same SNP, one SNP at a time. This would imply 

full linkage disequilibrium (LD) between the susceptibility SNP and the infectivity 

SNP, because they are one and the same SNP. However, in contrast to GWAS for 

ordinary (“direct”) traits, this would not imply full confounding of the two effects, 

because they are expressed in phenotypes of distinct individuals. Nevertheless, both 

effects may be partially confounded because herd mates are usually related. Hence, 

for GWAS, further research is required to investigate the effect of LD between SNPs 

for susceptibility and infectivity. Note that, while we considered absence of LD 

between loci in the simulated data, the statistical model that we developed 
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(Equation 2.2) does not make this assumption, because SNP effects are simply fitted 

as fixed effects in our model. Thus, estimates of SNP effects represent partial 

regression coefficients and, therefore, account for LD. As in any single-SNP GWAS, 

there may be genes elsewhere in the genome that affect the same trait and show LD 

with the SNP of interest. Such genes would bias estimates of the SNP of interest. 

Hence, after an initial single-SNP GWAS, the significant SNPs should ideally be fitted 

simultaneously, in order to account for LD. Moreover, in GWAS studies, significance 

thresholds need to account for multiple testing to avoid many false positives, and 

GWAS studies need to take population stratification into account. For traits affected 

by direct effects only, stratification can be accounted for by including a random 

polygenic effect in the model, with a covariance-structure given by a genomic 

relationship matrix. For infectious disease data, that model would need to be 

extended with polygenic effects for infectivity of infected contact individuals 

(Anacleto et al., 2015). The latter model may also be suitable for genomic prediction, 

where the purpose is to estimate breeding values of individuals, rather than single 

gene effects. 

Anche et al. showed that relatedness within groups resulted in better estimates 

of susceptibility and infectivity (Anche et al., 2015). When relatedness within groups 

is high, individuals with above/below average susceptibility will also have group 

mates with above/below average susceptibility, and individuals with above/below 

average infectivity will also have group mates with above/below average infectivity. 

Relatedness within groups, therefore, increases variation between groups, which 

improves the estimates (Anche et al., 2015). However, results from the field of 

indirect genetic effects indicate that relatedness may lead to confounding of direct 

and indirect effects. For example, when groups consist of a single family, direct and 

indirect effects are fully confounded (Bijma et al., 2007a). This result may extend to 

infectious disease data when loci for susceptibility and infectivity are in LD. Further 

research is needed to identify the optimal group structure with respect to 

relatedness for estimating genetic effects on susceptibility and infectivity. 

Knowledge of the amount of genetic variation in infectivity is very limited at 

present. In general, natural selection has a tendency to exhaust heritable variation 

in traits related to individual fitness. Infectivity, however, is an indirect genetic effect, 

that affects disease status of other individuals rather than that of the individual itself. 

Natural selection targets such indirect genetic effects only in the presence of feed-

back mechanisms, such as with kin and group selection (Bijma and Wade, 2008). 

Even in the presence of such feed-back mechanisms, selection on indirect genetic 

effects is weaker than on direct genetic effects (Bijma, 2010). Thus, infectivity may 

have been less exposed to natural selection and may exhibit more genetic variation. 



2 Model to estimate SNP effects 

 

 

49 

 

Presence of genetic variation is also suggested by the existence of super spreaders 

(Stein, 2011). The model presented here can be used as a starting point to determine 

the amount of genetic variation that is present for infectivity in populations. This may 

also help to better estimate effects on susceptibility because the model accounts for 

variation among susceptible individuals in their exposure to infectious herd mates 

and for the genotypes of those herd mates. 

When our model is extended with the relevant polygenic effects (as discussed 

previously), it can be used to estimate SNP effects on susceptibility and infectivity, in 

particular when more data on disease status and genotype become available. 

Opportunities to measure disease status on a regular basis lie in the increasing 

number of sensor systems that are used and will be used in the future (Steeneveld 

and Hogeveen, 2015). Current sensor systems are able to record animal activity, 

temperature, cells in milk, etc. In the future, these types of sensor data may provide 

regular information about the disease status of an animal. In addition, the number 

of animals that are genotyped increases rapidly. Combining the model developed 

here with genotype and sensor data may considerably enhance breeding against 

infectious diseases in livestock. 

 

2.5 Conclusions 

We developed a generalized linear mixed model to estimate SNP effects on both host 

susceptibility and host infectivity from time-series data on individual disease status 

for an endemic disease. In contrast to common models used in animal breeding, our 

model accounts for variation among susceptible individuals in their exposure to 

infectious herd mates and for the genotypes of those herd mates. With the use of 

simulated data, we quantified bias and precision of SNP effects estimated by the 

model and showed that the optimal recording interval is between 25 and 50% of the 

average infectious period when disease status is observed 11 times. When the 

recording interval was close to optimal, SNP effects were on average slightly 

underestimated. Infectivity estimates were less precise than susceptibility estimates. 

In future genome-wide association studies, the model presented here may be useful 

to estimate SNP effects that affect disease transmission and disease prevalence. 
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2.8 Appendix 

2.8.1 Distribution of susceptible genotypes in the endemic 

equilibrium 

In the absence of heterogeneity, the expected equilibrium prevalence follows from 

the basic reproduction ratio 𝑅0, and can be calculated as 1 −
1

𝑅0
 (Anderson et al., 

1992; Heffernan et al., 2005). 𝑅0 can be expressed as a function of average 

susceptibility �̅�, average infectivity �̅�, the transmission rate parameter of the 

reference genotypes 𝑐, and the recovery rate parameter 𝛼, 𝑅0 = �̅��̅�
𝑐

𝛼
 (Anche et al., 

2014). Average susceptibility was calculated as �̅� = ∑ 𝑝𝑖𝛾𝑖𝑖 , and average infectivity 

as �̅� = ∑ 𝑝𝑗𝜑𝑗𝑗 , where 𝑖 indexes susceptibility genotypes, 𝑗 indexes infectivity 

genotypes, and 𝑝𝑖  is the frequency of genotype 𝑖 in the population. 

However, with heterogeneity the equilibrium prevalence differs from the above 

result. At the start of an endemic phase, only few individuals are infected. Therefore, 

the susceptible fraction with susceptibility genotype 𝑖 (𝑓𝑟𝑎𝑐𝑆𝑖 =
𝑆𝑖

𝑆
) is similar to the 

genotype frequency of susceptibility genotype 𝑖 (𝑝𝑖) in the population, 𝑓𝑟𝑎𝑐𝑆𝑖 ≈ 𝑝𝑖 . 

In the endemic equilibrium, however, highly susceptible individuals have more 

chance to get infected, so the susceptible fraction with susceptibility genotype 𝑖 

differs from the genotype frequency of susceptibility genotype 𝑖 in the population, 

𝑓𝑟𝑎𝑐𝑆𝑖 ≠ 𝑝𝑖 . Thus, in the endemic equilibrium, the average susceptibility of the 

susceptible individuals is lower than the average susceptibility in a totally susceptible 

population, therefore, the average susceptibility equals: 

 

�̅�(𝑡) = ∑ 𝑓𝑟𝑎𝑐𝑆𝑖(𝑡) ∗ 𝛾𝑖𝑖 .                 (Equation A2.1) 

 

A lower average susceptibility in the equilibrium leads to a lower reproduction 

ratio and, therefore, a lower equilibrium prevalence as expected from the initial 

reproduction ratio. The reproduction ratio at time 𝑡, 𝑅(𝑡), in a population that is no 

longer fully susceptible is given by: 

 

 𝑅(𝑡)  =  �̅�(𝑡) ∗ �̅� ∗  
𝑐

𝛼
.                   (Equation A2.2) 

 

Because the susceptibility locus and the infectivity locus were in linkage 

equilibrium, the infected fraction with infectivity genotype 𝑗 (𝑓𝑟𝑎𝑐𝐼𝑗 =
𝐼𝑗

𝐼
) will be 

similar to the total fraction with infectivity genotype 𝑗 in the population, 𝑓𝑟𝑎𝑐𝐼𝑗 ≈

𝑝𝑗. 
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As we approach the equilibrium, the susceptible fraction with susceptibility 

genotype 𝑖 at time 𝑡 + 1 can be calculated from the susceptible fraction with 

susceptibility genotype 𝑖 at time 𝑡, and the corresponding 𝑅(𝑡), by: 

 

𝑓𝑟𝑎𝑐𝑆𝑖(𝑡 + 1) =
𝑝𝑖

1

𝑅(𝑡)
+

𝛾𝑖
�̅�

(1−
1

𝑅(𝑡)
)
.                 (Equation A2.3) 

 

By using Equations A2.1, A2.2, and A2.3 in an iterative process, the susceptible 

fraction with susceptibility genotype 𝑖 in the endemic equilibrium was found. In the 

endemic equilibrium three conditions were met: 

 

(i) 
𝑆𝑖

𝑁
=

1

𝑅
𝑓𝑟𝑎𝑐𝑆𝑖    for R > 1 

 

(ii) 
𝐼𝑖

𝑁
= (1 −

1

𝑅
) 𝑓𝑟𝑎𝑐𝑆𝑖

𝛾𝑖

�̅�
  for R > 1 

 

(iii) 
𝑆𝑖+𝐼𝑖

𝑁
= 𝑝𝑖 . 

 

Therefore, the genotype specific prevalences were known (conditions (i) and (ii)). 

The basic reproduction ratio, the reproduction ratio in the equilibrium and the 

genotype-specific prevalences for different effects are in Table A2.1. 

In this study, we started the endemic in the equilibrium. The distribution of the 

infected fraction of susceptibility genotypes in endemic equilibrium was obtained by 

a grid search for the point where conditions (i), (ii) and (iii)were met (note that the 

fastest way to reach the equilibrium goes through fractions that are in reality not 

possible, i.e., the path to the equilibrium is not real). 
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Table A2.1. Basic reproduction ratio and prevalence for different susceptibility 

effects. 

1 Reference genotype is ggff 
2 𝑝𝑔 = 𝑝𝑓 = 0.5, 𝛼 = 0.0476,  𝛾𝑔 = 𝜑𝑓 = 1 and 𝜑𝐹 =  𝛾𝐺. 

Value 

susceptibility 

allele 𝑮 (𝜸𝑮) 

Transmission 

rate parameters 

for reference 

type (𝒄)1 

Basic reproduction 

ratio2 

Prevalence 

Total Per susceptibility 

genotype Classic 

(𝑹𝟎) 

Equilibrium 

(𝑹)  𝑮𝑮 𝑮𝒈 𝒈𝒈 

0.3 0.8 3.00 2.10 0.52 0.25 0.53 0.79 

0.4 0.6 3.03 2.39 0.58 0.36 0.59 0.78 

0.5 0.45 3.00 2.59 0.61 0.45 0.62 0.77 

0.6 0.35 3.01 2.77 0.64 0.52 0.64 0.75 

0.7 0.28 3.07 2.94 0.66 0.58 0.66 0.74 

0.8 0.22 3.03 2.98 0.66 0.61 0.67 0.71 

0.9 0.18 3.08 3.07 0.67 0.65 0.67 0.70 

1.0 0.145 3.045 3.045 0.67 0.67 0.67 0.67 
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Abstract 

Digital Dermatitis (DD) is a claw disease mainly affecting the hind feet of dairy cattle. 

Digital Dermatitis is an infectious disease, transmitted via the environment, where 

the infectious “agent” is a combination of bacteria. The standardized classification 

for DD lesions developed by Döpfer et al. (1997) and extended by Berry et al. (2012) 

has six distinct classes: healthy (M0), an active granulomatous area of 0-2 cm (M1), 

an ulcerative lesion of >2 cm (M2), an ulcerative lesion covered by a scab (M3), 

alteration of the skin (M4), and a combination of M4 and M1 (M4.1).  

We hypothesize that classes M1, M2, M3, M4, and M4.1 are the potentially 

infectious classes that can contribute to the basic reproduction ratio (R0), the 

average number of new infections caused by a typical infected individual. Here, we 

determine differences in infectivity between the classes, the sojourn time in each of 

the classes, and the contribution of each class to R0. 

The analysis is based on data from twelve farms in the Netherlands that were 

visited every two weeks, eleven times.  

We found that 93.89% of the transitions from M0 was observed as a transition to 

class M4, and feet with another class-at-infection rapidly transitioned to class M4. 

As a consequence, about 70% of the infectious time was spent in class M4. 

Transmission rate parameters of class-at-infection M1, M2, M3, and M4 were not 

significantly different from each other, but differed from class-at-infection M4.1. 

However, due to the relative large amount of time spent in class M4, regardless of 

the class-at-infection, R0 was almost completely determined by this class. The R0 was 

2.36, to which class-at-infection M4 alone contributed 88.5%.   

Thus, M4 lesions should be prevented to lower R0 to a value below one, while 

painful M2 lesions should be prevented for animal welfare reasons. 
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3.1 Introduction 

Digital Dermatitis (DD) is a claw disease discovered in 1974 in cattle in Italy by Cheli 

and Mortellaro (Cheli and Mortellaro, 1974). The disease (mainly) affects the hind 

feet of dairy cattle (Read and Walker, 1998; Sogstad et al., 2005). Round lesions occur 

along the coronary band of the claws, above the interdigital space next to the heel 

bulbs (Walker et al., 1995). Lesions can be painful, prone to bleed, develop filiform 

papillae, and can be surrounded by hyperkeratotic skin with hairs longer than normal 

(Read and Walker, 1998).  

Digital Dermatitis is an infectious disease that is transmitted via the 

“environment”; environment is defined as any possible pathogen reservoir through 

which the infection can spread. The infectious “agent” is a combination of bacteria 

(Rodríguez-Lainz et al., 1996; Read and Walker, 1998; Demirkan et al., 1999; Sogstad 

et al., 2005; Vink et al., 2009), the most common bacteria present in DD lesions are 

spirochetes of the genus Treponema spp. (Clegg et al., 2015). Digital Dermatitis is 

associated with lameness; cows that are severely affected bear their weight on the 

toes of the affected foot, shake the foot as if in pain, and show reluctance to move 

(Bassett et al., 1990; Collighan and Woodward, 1997; Read and Walker, 1998).  

A standardized classification for DD lesions was developed by Döpfer et al. (1997) 

and was more extensively described by Berry et al. (2012). This classification 

comprises six distinct classes (M0, M1, M2, M3, M4, and M4.1). Class M0 is described 

as skin where lesions are macroscopically absent, class M1 as an active 

granulomatous area of 0-2 cm, class M2 as an ulcerative lesion of >2 cm, class M3 as 

an ulcerative lesion covered by a scab, class M4 as alteration of the skin with 

hyperkeratotic lesions that can have a proliferative aspect, and class M4.1 as altered 

skin (M4) with a painful focus (M1) (Döpfer et al., 1997; Döpfer, 2009; Berry et al., 

2012). Class M1, M2, and M4.1 are classes that describe circumscribed, red-greyish, 

moist, painful, and prone to bleed lesions (Speijers et al., 2010; Berry et al., 2012; 

Zinicola et al., 2015). Studies on DD tend to focus on these lesions because they can 

cause lameness. 

Here, we investigate what the contribution of the different classes to 

transmission is with the basic reproduction ratio R0. The R0 is the expected number 

of secondary cases that arise from one typical infectious individual in a fully 

susceptible population during its entire infectious period (Diekmann et al., 1990). 

When R0 < 1, a typical infectious individual infects on average less than one other 

individual and the disease dies out. We hypothesize that classes M1, M2, M3, M4, 

and M4.1 are the infectious classes that contribute to R0. When there is variation 

between classes in infectivity or in sojourn time, the contribution of each class to R0 
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may differ. We determine how R0 is composed by investigating the distribution of 

the first observed classes after infection, the average sojourn time in each class, and 

the infectivity of each class.  

 

3.2 Material and methods 

3.2.1 Data collection  

Between November 2014 and April 2015, twelve farms in the Netherlands were 

visited eleven times with a two-week interval between visits. Criteria for farms to be 

selected included a ≥ 20% DD prevalence based on hoof trimming records from the 

previous year, and the presence of a milking parlour. Two trained observers scored 

the hind feet of all lactating cows in the milking parlour. Feet were cleaned with a 

medium pressure water hose, and were macroscopically examined with the use of a 

strong flashlight and a swivelling mirror (Relun et al., 2011). Feet were scored 

according to the classification developed by Döpfer et al. (1997) and Berry et al. 

(2012). Both observers were always present at a farm. An observer either rinsed and 

scored the feet, or recorded cow ID and the disease class. The role of an observer 

could alter between farms.  

Missing values occurred when a cow was dried off or removed from the 

population for another reason. Farmers were not informed on the disease status of 

the cows. Farmers were, however, allowed to identify lesions themselves, and treat 

cows using their normal routine. Table 3.1 gives an overview of the characteristics of 

the farms enrolled in the study. 

To assess agreement between observers, Cohen’s kappa coefficient (Viera and 

Garrett, 2005) was calculated once immediately before, and two times during data 

collection. Kappa’s coefficient is a measure of the difference between the observed 

and expected agreement. It is expressed on a -1 to 1 scale, where negative values 

indicate systematic disagreement between observers, 0 is agreement that would be 

expected by chance, and 1 is perfect agreement.  

 

3.2.2 Methodology 

We calculated R0 based on methods of Diekmann et al. (2009) and Döpfer et al. 

(2012b). Digital Dermatitis has multiple infected classes that can all be consecutively 

presented by a single cow. The sojourn time in the infectious classes needs to be 

taken into account when calculating R0. The class that is first observed upon infection 

will be called the class-at-infection (Diekmann et al., 2009). After the class-at-

infection, a foot may reside in multiple other classes before returning to the 

susceptible class (M0). The sojourn time in the other classes can depend on the class-

at-infection. So for each class-at-infection, the length of the infectious period in each  
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class can be unique. During the infectious period feet with class-at-infection i have a 

certain average infectivity, measured by the transmission rate parameter βi, i 

denoting class-at-infection Mi. For a foot with class-at-infection Mi, the βi is a 

function of the infectivity of all the classes weighted by the sojourn time in these 

classes. 

We account for the transmission of DD via the “environment” (Laven, 2001). 

Here, the environment is defined as any possible pathogen reservoir through which 

transmission can occur, including e.g., the gastrointestinal tract, the nasal cavity, 

human caretakers or the actual environment. We assume that feet that are infected 

contribute fully to the current environmental reservoir, while feet that were infected 

at an earlier stage still contribute partly to the current environmental reservoir. The 

contribution to the environmental reservoir of feet that were infected earlier is 

assumed to decrease each interval Δt with factor λ, which may be interpreted as a 

survival rate. So from a foot that was infectious at t, the amount of pathogens that 

are in the environment at t+1is a fraction 𝜆, at t+2 a fraction 𝜆2, at t+3 a fraction 𝜆3, 

etc.  

The R0 is the expected number of secondary cases that arise from one typical 

infectious individual in a fully susceptible population during its entire infectious 

period (Diekmann et al., 1990). In general, R0 is the product of a transmission rate 

parameter (β) and the average infectious period (x), 𝑅0 = 𝛽𝑥. Because DD has 

multiple classes-at-infection, each with a possibly unique transmission rate 

parameter and infectious period, we need to take into account all the classes-at-

infection in the calculation of R0. The R0 is, therefore, a function of the probability 

with which class-at-infection Mi is entered (θi), and the transmission rate parameter 

and infectious period of the classes-at-infection, 𝑅0 = ∑ 𝜃𝑖𝛽𝑖𝑥𝑖𝑖 . Furthermore, feet 

that were infectious previously can still contribute to the current environmental 

reservoir. The total contribution of a foot that was infectious at t to the 

environmental reservoir is the summed contribution of that foot over an infinite 

number of periods, 1 +  + 2 + 3 + ... = (1 − 𝜆)−1. Therefore, the full equation for 

R0 is, 

 

𝑅0 = (1 − 𝜆)
−1∑ 𝜃𝑖𝛽𝑖𝑥𝑖𝑖 .      (Equation 3.1) 

 

The elements of the sum represent the contribution of class-at-infection i to R0. Each 

element of this equation was estimated from the data, as explained below.  
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3.2.2.1 Distribution of the classes-at-infection (𝜃𝑖) 

The infectious period starts with class-at-infection Mi (Diekmann et al., 2009). Given 

that an infection took place, class-at-infection Mi is entered with probability 𝜃𝑖, with 

i = 1, 2, 3, 4, or 4.1. Probability 𝜃𝑖  was estimated as the fraction of feet that were 

scored as M0 at t and as Mi at t+1. Only transitions from M0 to another class are 

taken into account, so that ∑ 𝜃𝑖𝑖 = 1.  

 

3.2.2.2 Sojourn time (xi) 

After the class-at-infection a foot may reside in multiple other classes before 

returning to class M0. To estimate the sojourn time in each class, the transitions 

between infected classes over a period Δt were compiled in matrix Σ with elements 

𝑝𝑘,𝑙 (k = l = 1, 2, 3, 4, or 4.1) ,  

 

𝚺 =

(

 
 

𝑝1,1 𝑝1,2 𝑝1,3 𝑝1,4 𝑝1,4.1
𝑝2,1 𝑝2,2 𝑝2,3 𝑝2,4 𝑝2,4.1
𝑝3,1 𝑝3,2 𝑝3,3 𝑝3,4 𝑝3,4.1
𝑝4,1 𝑝4,2 𝑝4,3 𝑝4,4 𝑝4,4.1
𝑝4.1,1 𝑝4.1,2 𝑝4.1,3 𝑝4.1,4 𝑝4.1,4.1)

 
 

. 

 

Here, 𝑝𝑘,𝑙  is the proportion of feet in class Ml that have moved to class Mk at the 

next observation. Throughout, subscripts k and l indicate the infected classes (Mk 

and Ml) in which a foot may reside, while subscript i specifically indicates the class-

at-infection (Mi). For example, 𝑝2,1 is the proportion of the feet in class M1 that have 

moved to class M2 at the next observation. Because feet may recover (return to M0), 

the sum of the elements in a column of matrix Σ can be smaller than one, 

i.e., ∑ 𝑝𝑘,𝑙𝑘 ≤ 1.  

The sojourn time in each class, given the class-at-infection, equals (Diekmann and 

Heesterbeek, 2000),  

 

𝐗 = (𝐈 − 𝚺)−1,       (Equation 3.2) 

 

where, 𝐗 is a matrix with elements 𝑥𝑘,𝑖.The elements represent the average sojourn 

time in class Mk given the class-at-infection Mi measured in observation intervals. 

So, the average total duration of the infectious period per class-at-infection (xi) is 

given by the sum of the elements in the columns of this matrix, 𝑥𝑖 = ∑ 𝑥𝑘,𝑖𝑘 . The I is 

an identity matrix with the same size as 𝚺. 
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3.2.2.3 Transmission rate parameter (βi) 

Because it was assumed that an environmental reservoir contributes to transmission 

of DD (Laven, 2001), a Susceptible-Infectious-Susceptible model (SIS-model) with an 

environmental reservoir (E) was formulated. (Figure 3.1) (see e.g., de Rueda et al., 

2015). 

 

 

Figure 3.1. Susceptible-Infectious-Susceptible-model (SIS-model), with an extra 

environment route (E). 

 

In Figure 3.1 S is the number of susceptible feet, I is the number of infected feet, and 

E is the infectious pressure coming from the environmental reservoir.  

In classic epidemiological models the infection rate of susceptible individuals 

equals 𝛽𝑆
𝐼

𝑁
, where S + I = N, and β is the transmission rate parameter (Kermack and 

McKendrick, 1927; Roberts and Heesterbeek, 1993). In these models there is only 

one infectious class, so the transmission rate parameter is a direct reflection of the 

infectivity. However, with DD, a foot can go through multiple infectious classes while 

it is infectious. We allow for possible variation in infectivity between the infectious 

classes by defining 𝜑𝑘  as the (relative) infectivity of class Mk. Thus, with multiple 

infectious classes k at time t, the infection rate at t is, 

 

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑡 = 𝑆𝑡 ∑ 𝜑𝑘
𝐸𝑘,𝑡

𝑁𝑡
𝑘 ,      (Equation 3.3) 

 

where Ek,t is the contribution of class k to environmental reservoir at time t, and Nt 

the total number of feet (susceptible and infected) at time t. With survival rate , 

𝐸𝑘,𝑡 = 𝐼𝑘,𝑡 + 𝜆𝐸𝑘,𝑡−1, where 𝐼𝑘,𝑡 is the number of feet of class k that are infectious at 

t, and 𝜆𝐸𝑘,𝑡−1 is the contribution to the environmental reservoir at time t of the feet 

of class k that were infectious at an earlier stage. In the analysis, the number of 

infections (cases) during an interval is connected to the environmental reservoir at 

the beginning of the interval.  

For the sake of readability, the index t is dropped from now on. Hence, 𝑆, 𝐼, 𝐼𝑘, 

𝐸, 𝐸𝑘  and N refer to the respective number at the beginning of the interval.  

A case was defined as a foot that was susceptible (M0) at the beginning of the 

interval and infected at the end of the interval. We assume that the number of cases 
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within an interval Δt follows a binomial distribution with binomial total S, i.e., the 

number of susceptible feet at start of the interval, and the probability to become 

infected during the interval (Velthuis et al., 2003). From Equation 3.3, the probability 

(P) for a single foot (S = 1) to get infected within period Δt is the probability of a non-

zero outcome from a Poisson distribution,  

 

𝑃 = 1 − 𝑒−∑ 𝜑𝑘
𝐸𝑘
𝑁𝑘 ∆𝑡.      (Equation 3.4) 

 

Because the probability to get infected follows from the zero-term of the Poisson 

distribution (Equation 3.4), a generalized linear mixed model (GLMM) with a 

complementary log-log link function was used to connect the explanatory variables 

to the observed variable (Velthuis et al., 2003; Anche et al., 2015; de Rueda et al., 

2015), 

 

cloglog(𝑃) = log(− log(1 − 𝑃)) = log (∑ 𝜑𝑘
𝐸𝑘

𝐸𝑘 ) + log (
𝐸

𝑁
𝛥𝑡),          (Equation 3.5) 

 

where 
𝐸𝑘

𝐸
 is the relative contribution of class k to the environmental reservoir, and 

log (
𝐸

𝑁
𝛥𝑡) is an offset, i.e., an “explanatory variable” with coefficient equal to 1.  

To make the model linear in log(𝜑𝑘), the arithmetic mean, ∑ 𝜑𝑘
𝐸𝑘

𝐸𝑘 , was 

approximated by the corresponding geometric mean, ∏ 𝜑𝑘

𝐸𝑘
𝐸

𝑘  (Anche et al., 2015), 

 

cloglog(𝑃) ≈ ∑
𝐸𝑘

𝐸𝑘 log(𝜑𝑘) +  log (
𝐸

𝑁
∆𝑡).                  (Equation 3.6) 

 

Infectivity of class k was expressed relative to a reference class, here M1, so that 

𝜑𝑘
′ = 𝜑1𝜑𝑘

′  with 𝜑1
′ = 1. Therefore, the first term on the right hand side of the 

model (Equation 3.6) becomes,  

 

∑
𝐸𝑘

𝐸𝑘 log(𝜑1𝜑𝑘
′ ) = ∑

𝐸𝑘

𝐸𝑘 (log(𝜑1) + log(𝜑𝑘
′ )) = 

∑
𝐸𝑘

𝐸
log(𝜑1) + ∑

𝐸𝑘

𝐸
log(𝜑𝑘

′ )𝑘𝑘 =  

log(𝜑1) + ∑
𝐸𝑘

𝐸𝑘 log(𝜑𝑘
′ ),                (Equation 3.7) 
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with 𝜑1
′ = 1, so that the summation in the right hand side may exclude the case 

where k = 1. 

Now, we have a linear model with an intercept representing log(𝜑1), and 

covariates for the relative contribution of class k, where k ≠1, to the environmental 

reservoir, 

 

cloglog(𝑃) = 𝑎1 + 𝑎2
𝐸2

𝐸
+ 𝑎3

𝐸3

𝐸
+ 𝑎4

𝐸4

𝐸
+ 𝑎4.1

𝐸4.1

𝐸
+ log (

𝐸

𝑁
∆𝑡), (Equation 3.8) 

 

where, 𝑎1 is the intercept, which is the log of the infectivity effect of class M1. The 

covariate 
𝐸2

𝐸
 is the relative contribution of class M2 to the environmental reservoir, 

etc. The 𝑎2, 𝑎3, 𝑎4, and 𝑎4.1 are the regression coefficients belonging to these 

covariates, and are the parameters of interest. To account for footbath use in-

between observations we also included a dummy variable (0/1) as a fixed effect in 

the model. Furthermore, a random farm effect was added to the model to account 

for stochastic differences between farms.  

Fitting the GLMM requires the values of Ek, which depend on the survival rate λ. 

The λ was assumed to be the same for each class. The λ was estimated by evaluating 

different values and determining the best fit (highest maximum likelihood) for the 

model (Equation 3.8). A large λ means that the pathogens remain in the environment 

for a long time. So, even when a foot has recovered, the pathogens from that foot 

may still reside in the environment. To determine the infectious pressure from the 

environment, we needed the number of infected feet of class k in the weeks prior to 

the first observation (Ek,t=0). Since we did not observe the number of infected feet per 

class in the weeks before the first observation, they had to be estimated. Therefore, 

we plotted for each farm the number of infected feet of class k over the entire 

observation period, and obtained the corresponding regression equation, 𝐼𝑘 = 𝑎 +

𝑏𝑡. Where, a is the intercept with the y-axis, b is the slope and t is the time. The 

intercept was used as the average number of infectious feet of class k before 

observations started (Ik,t=0). The contribution of class k on a farm to the 

environmental reservoir before the first observation was then estimated as 𝐸𝑘,𝑡=0 =
𝜆

1−𝜆
𝐼𝑘,𝑡=0. 

Because after the class-at-infection a foot may reside in multiple infectious 

classes, the regression coefficients need to be weighted according to the sojourn 

time in the different classes. By doing so, for each class-at-infection i a transmission 

rate parameter βi is estimated for the entire period that a foot is infectious, 
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�̂�𝑖 = 𝑒
𝑥1�̂�1+∑ (

𝑥𝑘,𝑖
𝑥𝑖
(�̂�1+�̂�𝑘))

4.1
𝑘=2

= 𝑒
�̂�1+∑ (

𝑥𝑘,𝑖
𝑥𝑖
�̂�𝑘)

4.1
𝑘=2 ,   (Equation 3.9) 

 

here, 
𝑥𝑘,𝑖

𝑥𝑖
 is the fraction of time spent in class k given class-at-infection i. The �̂�1 and 

�̂�𝑘  are the regression coefficients from the GLM; �̂�𝑘  does not include �̂�1, because 

that estimate (of reference class M1) is included in the intercept. Note that, 

therefore, in Equation 3.9 the sum in the exponent is over k = 2 to 4.1.  

To determine if there were significant differences between weighted regression 

coefficients, the contrasts of all pairs were tested against 0. If the 95% confidence 

interval (CI) of the contrast did not include 0, the weighted estimated regression 

coefficients were significantly different.  

 

3.2.2.4 Environmental reservoir 

Pathogens survived in de environment with a rate λ each period. So the total 

contribution of a foot to the environmental reservoir, expressed relative to the 

contribution during a single infectious time period, is 1 + 𝜆 + 𝜆2 + 𝜆3… =

(1 − 𝜆)−1. 

 

3.2.3 Implementation 

Data were analysed in Excel and R version 3.4.0. (R Core Team, 2017). The R-package 

vcd (Meyer et al., 2008) was used to calculate Kappa’s coefficient. R-package lme4 

(Bates et al., 2014) was used to estimate the transmission rate parameters. This 

package allows for inclusion of random group effects in the generalized linear mixed 

model to account for variation between farms. R-package multcomp (Hothorn et al., 

2008) was used for linear hypothesis testing of the transmission rate parameter 

estimates and for the computation of their 95% confidence interval. For the sojourn 

times and R0 we generated 95% confidence intervals through bootstrapping of the 

dataset, the dataset was analysed repeatedly with each time a different farm 

excluded. 

 

3.2.4 Classes grouped together 

In the first analysis, all classes-at-infection were analysed separately. In the second 

analysis, classes were combined into a simplified classification system because not 

all classes can be observed with certainty in the milking parlour. In the milking 

parlour M3 is often confused with M4 (Relun et al., 2011) and M2 with M4.1 (Solano 

et al., 2017a), so we merged these classes. Furthermore, class M1 was merged with 

the M2 and M4.1 class as well because of the resemblance with M2 lesions (Relun et 

al., 2011). Three groups remained: no lesions (M0), active lesions (M1, M2 and 
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M4.1), and inactive lesions (M3 and M4). In the third analysis, the classes-at-

infection of which the transmission rate parameters of the first analysis were not 

significantly different were grouped.  

 

3.3 Results 

Cows on farm A, B, C, E, F and K were scored by observer 1, and cows on farm D, G, 

H, I, J and L were scored by observer 2. Cohen’s kappa coefficient was 0.75 

(substantial agreement between observers, 95% CI [0.66, 0.84], n = 204 claws) 

immediately before data collection; and 0.85 (almost perfect agreement, 95% CI 

[0.78, 0.93], n = 164 claws) and 0.76 (substantial agreement, 95% CI [0.61, 0.90], n = 

52 claws), during data collection. 

Table 3.1 gives an overview of the characteristics of the farms enrolled in the 

study. In total 29,792 transitions were observed. The average time between 

observations (Δt) was 14.08 days. Farm specific prevalences ranged from 49.7% to 

78.0% on cow level and from 40.2% to 69.7% on foot level (Table 3.1). The average 

prevalence on foot level for each M-class is shown for each farm in Figure 3.2. 

 

 

Figure 3.2. Average prevalence and standard deviation of each M-class on foot level 

per farm. 
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3.3.1 Class-at-infection (𝛉𝐢) and sojourn time (xi) 

Table 3.2 summarizes the observed frequencies with which the classes-at-infection 

were entered per farm and for all farms together. The frequency over all farms was 

used in the R0 calculations. Class M4 was the most observed class-at-infection with 

a frequency of 93.89% for all farms together. 

Table 3.3 shows the transitions between classes at consecutive observations. On 

average 77.11% of the feet that were scored as M0 were also scored as M0 the next 

observation. Similarly, on average 72.89% of the feet that were scored as M4 were 

also scored as M4 the next observation. After that, transitions from classes M1, M2, 

M3, and M4.1 to class M4 were most common (42.28% to 63.19%).  

 

Table 3.3. Observed transitions between Digital Dermatitis classes (M0-M4.1) at 

consecutive observations. Transitions were summed over all farms and periods. The 

average observation interval was 14.08 days.  

From1 NA2 

 

M0 
 

M13 

 

M23 

 

M33 

 

M43 

 

M4.13 

 

 n total 
 To1 

NA2  0.8183 0.0391 0.0521 0.0312 0.0521 0.0373 0.0448  5,788 

M0  0.0925 0.7711 0.1458 0.0217 0.1458 0.1599 0.0522  10,969 

M13  0.0015 0.0022 0.0156 0.0217 0.0104 0.0091 0.0299  166 

M23  0.0067 0.0031 0.1719 0.4119 0.0556 0.0250 0.1381  747 

M33  0.0022 0.0047 0.0573 0.0569 0.0486 0.0239 0.0597  418 

M43  0.0762 0.1782 0.5156 0.4228 0.6319 0.7289 0.6269  11,428 

M4.13  0.0025 0.0016 0.0417 0.0339 0.0556 0.0160 0.0485  276 
          

n total  5,956 11,035 192 738 288 11,315 268  29,792 
1 Fraction transitioning from Ml to Mk, columns add up to 1.0.   
2 A transition from or to NA indicates that the animal was not observed the previous 

or next time. 
3 Within the dashed lines are the elements of matrix Σ that describes the transitions 

between infected classes.  

 

The transitions between infected classes over a period Δt, compiled in matrix Σ, 

are within the dashed lines of Table 3.3. With this matrix, the sojourn times were 

calculated. Table 3.4 shows the estimated sojourn time in class k given the class-at-

infection i and the 95% confidence intervals for the estimates. Estimate xk,i 

represents the number of periods of Δt = 14.08 days a foot resides in class k given 
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the class-at-infection i. For example, infections that were first observed as class M3 

reside on average 3.678 observation periods in class M4. 

 

Table 3.4. Estimated sojourn time in class k given the class-at-infection i in periods 

of Δt = 14.08 days, the 95% confidence interval of the estimates is between 

parentheses. 

Sojourn 

time in k 

Class-at-infection i 

M1 M2 M3 M4 M4.1 

M1 1.067 

(1.057-1.077) 

0.089 

(0.076-0.101) 

0.058 

(0.049-0.067) 

0.054 

(0.046-0.062) 

0.086 

(0.072-0.099) 

M2 0.515 

(0.433-0.598) 

1.962 

(1.826-2.098) 

0.318 

(0.277-0.359) 

0.255 

(0.219-0.291) 

0.489 

(0.436-0.542) 

M3 0.194 

(0.140-0.248) 

0.236 

(0.182-0.291) 

1.175 

(1.126-1.224) 

0.144 

(0.102-0.186) 

0.209 

(0.153-0.266) 

M4 3.601 

(3.386-3.815) 

4.142 

(3.889-4.395) 

3.678 

(3.414-3.942) 

4.755 

(4.527-4.984) 

4.078 

(3.849-4.306) 

M4.1 0.137 

(0.123-0.151) 

0.157 

(0.141-0.173) 

0.144 

(0.114-0.175) 

0.100 

(0.087-0.113) 

1.153 

(1.136-1.170) 

 

Figure 3.3 gives the average sojourn time in days in the infectious classes given 

the class-at-infection. For example, feet with class-at-infection M1 will be on average 

1.067 * 14.08 = 15.0 days in class M1. Note that moves between classes do not have 

to occur in any particular order. 

 

3.3.2 Transmission rate parameters 

A survival rate of 𝜆 = 0.9 gave the best fit for the GLMM (highest maximum 

likelihood). The estimated regression coefficient for footbath use was -0.093 and not 

significant (P = 0.11) and therefore dropped from the model. 

The estimated regression coefficients from the GLMM are in Table 3.5. With 

Table 3.5 and the matrix of sojourn times X, the weighted estimated regression 

coefficients were calculated (the exponent in Equation 3.9), and summarize in Table 

3.6. 
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Figure 3.3. Average sojourn time in days of an average infected foot in the different 

infected classes, given the class-at-infection. Moves between classes do not have to 

occur in any particular order. 

 

Table 3.5. Estimated regression coefficients. 

Regression 

coefficient 

Estimate Standard 

error 

𝑎1 -8.803 4.187 

𝑎2 5.027 5.223 

𝑎3 4.751 4.368 

𝑎4 5.510 4.184 

𝑎4.1 17.529 6.208 

 

The weighted estimated regression coefficient of class-at-infection M4.1 is 

significantly higher than the other weighted estimated regression coefficients. This 

is due to a combination of the high estimated regression coefficient of class M4.1 

(Table 3.5), and the relatively long sojourn time in class M4.1 of feet with class-at-

infection M4.1 (Figure 3.3).  

Transmission rate parameters βi follow by taking the exponent of the weighted 

regression coefficients bi (Table 3.6). 
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Table 3.6. Weighted estimated regression coefficients and estimated transmission 

rate parameters. 

Weighted 

regression 

coefficient  

Estimate Standard 

error 

95% confidence 

interval 

Transmission 

rate 

parameter β lower upper 

𝑏1 -4.1421 0.708 -5.950 -2.333 0.016 

𝑏2 -3.2551 0.385 -4.240 -2.270 0.039 

𝑏3 -3.2301 0.230 -3.817 -2.643 0.040 

𝑏4 -3.1721 0.071 -3.350 -2.990 0.042 

𝑏4.1 -1.1322 0.619 -2.713 0.449 0.322 
1/2 A different superscript indicates a significant difference in weighted regression 

coefficient (P < 0.05). 

 

3.3.3 Basic reproduction ratio R0 

With the above presented elements R0 was calculated. Table 3.7 shows the 

contribution of each class-at-infection to R0. Class-at-infection M4 contributes over 

88%. Furthermore, with a contribution of 2.089, it is the only class-at-infection that 

contributes >1.0 to R0. The other classes-at-infection contribute together 2.360-

2.089 = 0.290 to R0. Thus, R0 can be brought below one, only when the transmission 

caused by class-at-infection M4 is reduced. 

 

Table 3.7. Contribution of each class-at-infection to the basic reproduction ratio R0. 

Class-at-infection Contribution to R0 (95% 

confidence interval) 

Relative 

contribution (%) 

M1 0.010 (-0.022 – 0.042) 0.43 

M2 0.041 (0.0164 – 0.066) 1.75 

M3 0.053 (0.031 – 0.075) 2.24 

M4 2.089 (1.927 – 2.251) 88.53 

M4.1 0.167 (-0.093 – 0.426) 7.06 

   R0 2.360 (2.060 – 2.661)  

 

3.3.4 Classes grouped together 

In the second analysis, classes were combined into a simplified classification system: 

no lesions (M0), an active group (M1, M2 and M4.1), and an inactive group (M3 and 

M4). 

Matrix Σmerged describes the transitions within and between the active and 

inactive lesion classes, 
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𝛴𝑚𝑒𝑟𝑔𝑒𝑑 = [
0.3731 0.0519
0.5409 0.7509

]. 

 

With this matrix the sojourn times were calculated (Table 3.8).  

 

Table 3.8. Estimated sojourn time in the active (M1, M2, and M4.1) or inactive (M3 

and M4) class given the class-at-infection in periods of Δt = 14.08 days, the 95% 

confidence interval of the estimates is between parentheses. 

Sojourn 

time  

Class-at-infection 

Active Inactive 

Active 1.945 

(1.833-2.057) 

0.405 

(0.355-0.455) 

Inactive 4.233 

(3.991-4.455) 

4.895 

(4.666-5.123) 

 

The estimated regression coefficients from the GLMM for the active and inactive 

group are in Table 3.9. With the estimated regression coefficients and the sojourn 

times, the weighted estimated regression coefficients were calculated. There was no 

significant difference between the weighted estimated regression coefficients of the 

active classes and the inactive classes (Table 3.10).  

 

Table 3.9. Estimated regression coefficients when classes M1, M2, and M4.1 (active 

lesions) and M3 and M4 (inactive lesions) are merged. 

Regression 

coefficient 

Estimate Standard 

error 

𝑎𝑎𝑐𝑡𝑖𝑣𝑒
 -2.960 0.841 

𝑎𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒
 -0.196 0.904 

 

Table 3.10. Weighted estimated regression coefficients and estimated transmission 

rate parameters when classes M1, M2, and M4.1 (active lesions) and M3 and M4 

(inactive lesions) are merged. 

Weighted 

regression 

coefficient  

Estimate Standard 

error 

95% confidence 

interval 

Transmission 

rate 

parameter β lower Upper 

𝑏𝑎𝑐𝑡𝑖𝑣𝑒  -3.0943 0.234 -3.614 -2.575 0.045 

𝑏𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒  -3.1411 0.083 -3.325 -2.957 0.043 
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With the above presented elements R0merged was calculated, R0merged = 2.310. 

Table 3.11 shows the contribution of the active and inactive classes to R0, the inactive 

classes-at-infection contribute over 95%.  

 

Table 3.11. Contribution of each class-at-infection to the basic reproduction ratio R0. 

Class-at-

infection 

Contribution to R0 (95% 

confidence interval) 

Relative 

contribution (%) 

Active1 0.101 (0.080 – 0.123) 4.39 

Inactive2 2.208 (2.090 – 2.326) 95.61 

   R0 2.310 (2.192- 2.427)  
1 Classes M1, M2, and M4.1 were merged 
2 Classes M3 and M4 were merged 

 

In the third analysis, classes-at-infection M1, M2, M3, and M4 were grouped 

together because their weighted estimated regression coefficients were not 

significantly different (Table 3.6). Their estimated regression coefficients from the 

GLMM are in Table 3.12.  

 

Table 3.12. Estimated regression coefficients when class-at-infection M1, M2, M3, 

and M4 are grouped together. 

Regression 

coefficient 

Estimate Standard 

error 

𝑎𝑔𝑟𝑜𝑢𝑝
1 -3.385 0.100 

𝑎4.1 9.777 3.344 
1 Classes M1, M2, M3, and M4 were grouped together.  

 

Even though class M1, M2, M3, and M4 now have the same estimated regression 

coefficient, they still had different sojourn times in the infectious classes (matrix 𝐗). 

Table 3.13 summarizes the contribution of each class-at-infection to R0. Again, R0 is 

almost completely determined by class-at-infection M4 that contributes over 89%.  
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Table 3.13. Contribution of each class-at-infection to the basic reproduction ratio R0. 

Classes M1, M2, M3 and M4 were grouped and have the same estimated regression 

coefficient. 

Class-at-

infection 

Contribution 

to R0 

Relative 

contribution (%) 

M1 0.027 1.20 

M2 0.046 2.01 

M3 0.059 2.28 

M4 2.028 89.19 

M4.1 0.114 5.02 

   R0 2.274  

 

3.4 Discussion 

We determined the contribution of different classes-at-infection to R0. Over 93% of 

the feet had class-at-infection M4, and feet with another classes-at-infection rapidly 

transitioned to class M4 as well. As a consequence, about 70% of the infected time 

was spent in class M4. Transmission rate parameters of class-at-infection M1, M2, 

M3, and M4 were not significantly different, but differed from the transmission rate 

parameter of class-at-infection M4.1. However, because over 93% of the infections 

was first observed as class-at-infection M4, and because the sojourn time in class M4 

is relatively long, this class almost completely determined R0.   

Döpfer et al. (2012b) reckoned that only M2 and M4 lesions were infectious, and 

estimated that M2 lesions were on average two times as infectious as M4 lesions. 

However, we found in our dataset that class M4.1 had the highest estimated 

regression coefficient. The contribution of class M4.1 to the transmission rate 

parameters for classes-at-infection M1, M2, M3, and M4 was, however, minor 

because the sojourn time in class M4.1 was short.  

We found that M4 lesions were persistent, 70% of the infected time was spent in 

this class. This persistence could be due to the encysted Treponema spp. deep in the 

epidermis of M4 lesions (Döpfer et al., 2012a). Treponema spp. are able to penetrate 

the skin after the epidermis is eroded and the keratin layer is degenerated. The loss 

of the keratin layer is the first change that can be observed after infection. The loss 

is probably due to a keratolytic toxin produced by long spiral pathogenic organisms 

that are observed in the early stage of the infection (Blowey et al., 1994). The loss of 

the keratin layer is followed by hyperplasia and hypertrophy of the epithelium to 

over 100 cells/mm (normal epithelium is 5 to 70 cells thick) (Blowey et al., 1994; 

Döpfer et al., 1997). Next, the central and superficial layers of the epidermis are 
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eroded, possibly by proteolytic enzymes of Dichelobacter nodusus, and infiltrated 

with spirochetes (Blowey et al., 1994; Rasmussen et al., 2012). At this moment the 

spirochetes, Treponema spp. of phylotype PT1, PT3, PT6, PT8, and T. brennaborense, 

reside in the deep parts of the epidermis (Klitgaard et al., 2008; Rasmussen et al., 

2012). These Treponema spp. can undergo a morphological change from a spiral to 

an encysted form (Döpfer et al., 2012a). The change to an encysted form can be a 

protective mechanism within the host but it is also an important stage in 

transmission because the cyst increases the bacterium’s survival in the environment 

(Al‐Qudah et al., 1983). The optimal conditions for Treponema spp. to change to their 

encysted form are at 37°C in an anaerobic environment (Al‐Qudah et al., 1983). It is 

possible that these conditions are met in the deep parts of the epidermis. Both the 

location of the Treponema spp. deep in the epidermis and their encysted form makes 

the lesions hard to treat, hence, M4 lesions are persistent.   

Krull et al. (2014) observed that early-stage lesions did not quite fit in the M-

classification system. They, therefore, developed the Iowa DD scoring system based 

on morphological appearance and bacterial presence. The Iowa DD scoring system 

distinguishes normal skin (stage 0), lesion onset (stage 1), developing lesions (stage 

2), classical ulceration (stage 3), and chronic lesions (stage 4) (Krull et al., 2014; Krull, 

2015). Stage 1 and stage 2 are subdivided into type A and type B; type A lesions have 

an ulcerated appearance and are located in the interdigital cleft, and type B lesions 

have a thickened appearance and are located diffusely spread across the heel. Krull 

et al. (2016) observed that all infections started with an early lesion, i.e., stage 1 or 

stage 2 (cows were scored every three to four weeks). We, however, observed that 

the majority of feet that were scored as M0 at t and got infected, were scored as M4 

at t+1 (note that cows were scored every two weeks). Hyperkeratotic lesions of class 

M4 show similarities with the stage 1A and stage 1B lesion descriptions and pictures 

in Krull et al. (2014, 2015). We, therefore, suspect that lesions that were scored as 

M4 in our study would have been classified as stage 1A or stage 1B lesions with the 

Iowa DD scoring system. This would imply that M4 lesions are not (only) chronic 

lesions but can be early lesions as well.  

To simplify analysis classes M1 to M4.1 are often divided into two categories, a 

category with active lesions and a category with inactive lesions. The active lesions 

category consists of classes that describe circumscribed, red-greyish, moist, painful, 

and prone to bleed lesions (M1, M2, and M4.1) (Speijers et al., 2010; Berry et al., 

2012; Zinicola et al., 2015),the inactive lesions category consists of classes M3 and 

M4. Studies on DD tend to focus on active lesions because these lesions can be 

painful for the animal, and thus cause lameness. Because cows that show signs of 

lameness can be easily identified, it is plausible that active lesions are more often 
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treated than inactive lesions (Ettema et al., 2007). We showed, however, that 

inactive lesions contribute over 95% to R0. So, to stop transmission, the inactive 

lesions that contribute most to R0 should be prevented.  

We scored twelve herds, eleven times each, with a two-week interval between 

scorings. This resulted in one of the biggest datasets on DD transmission, with a 

relatively high number of scorings at relatively short intervals compared to other 

studies on DD transmission. Datasets used in other studies contained data from five 

herds, scored eight times, every three weeks (Döpfer et al., 2012b), thirty cows, 

scored eleven times, every four weeks (Berry et al., 2012), three herds, scored twelve 

times, every week, (Nielsen et al., 2012), or 138 cows, scored four times, every week 

(Holzhauer et al., 2008). Although, the study of Relun et al. (2012) has more data (52 

farms, scored seven times), the interval between scoring was longer, with scorings 

every four weeks.  

We chose a two-week scoring interval to maximize the number of farms in the 

study, while minimizing the risk of missing moves between classes. Our analysis 

showed, however, that classes M1, M2, M3, and M4.1 lasted on average less than 

two weeks (Figure 3.3). So, weekly scoring would be preferred to avoid missing 

transitions between classes (Tremblay et al., 2016). However, on all farms there was 

a (dynamic) endemic equilibrium prevalence. Missing transitions on endemically 

affected farms has less consequences compared to missing transitions on farms that 

undergo an epidemic outbreak (Tremblay et al., 2016). On an endemically affected 

farm, the distribution of the infected classes at a certain point in time reflects, on 

average, the distribution of the infected classes over the entire infectious period, i.e., 

if on average a foot resides in class M1 two days out of the 80 days a foot is infectious 

(2.5% of the time), then on average 2.5% of the infected feet will be scored as class 

M1 at a random moment in time because of the endemic equilibrium. Still, a 

short(er) scoring interval provides more information as more moves between classes 

within an individual can be observed. 

The risk on DD is affected by factors like lactation number, days in milk, the 

number of rear feet that are infected, days since treatment, etc. (Argáez-Rodríguez 

et al., 1997; Holzhauer et al., 2006; Relun et al., 2013; Krull et al., 2016). Heifers have 

the highest risk of getting infected, and after the second lactation this risk declines 

with each parity (Rodríguez-Lainz et al., 1996; Read and Walker, 1998; Somers et al., 

2005). The risk of getting infected is also higher the first months after calving (Argáez-

Rodríguez et al., 1997; Holzhauer et al., 2006). Furthermore, cows that are infected 

on one rear foot have a higher risk of developing a lesion on the other foot as well 

(Relun et al., 2013; Krull et al., 2016). Including these factors in the model (Equation 

3.8) would be methodically very challenging because all analyses were done on a 
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herd level. However, we were able to include a variable for footbath use in the period 

between observations (exact data on the days since treatment or footbath were not 

complete). The estimate for this factor had no significant effect and was hence 

dropped from the model. 

We scored the cows in the milking parlour without lifting their feet. With this 

scoring method we cannot observe lesions located in the interdigital space (Relun et 

al., 2011). Previous studies determined the sensitivity (SE) and specificity (SP) of 

parlour scoring by comparing this method to scoring in the trimming chute. When 

lesions are located on the heel bulb, the SE ranged from 0.79 to 0.93 and the SP 

ranged from 0.67 to 0.92 for absence (M0) versus presence (M1, M2, M3, or M4) of 

DD (Relun et al., 2011; Solano et al., 2017a). However, if lesions were located 

elsewhere on the foot, the SE was below 0.64 (Solano et al., 2017a). In the second 

analysis we merged lesion classes that are often confused. We choose to merge 

classes into an active and an inactive group based on previous studies (Speijers et al., 

2010; Berry et al., 2012; Zinicola et al., 2015). Merging classes is not trivial, another 

option is merging class M1 with M0, and class M3 with M4 and M4.1. The analysis of 

these groups also showed that the group that contained class M4 determined most 

(97.3%) of R0. We choose, however, to merge different classes because we did not 

want to assume a priori that lesion stage M1 is not infectious. To stop the 

transmission of DD, R0 should be lowered to a value below one. We found an R0 of 

2.36, 95% CI [2.06, 2.66], this value is within the range of R0 values (from 0.463 to 

3.273) estimated by Döpfer et al. (2012b). The R0 was almost entirely determined by 

class M4 lesions (88.53%), so an R0 below one can only be achieved by prevention of 

M4 lesions. An easy preventive measure that is often used on herd level is a footbath 

(Laven and Proven, 2000). Footbaths effectively reduce the prevalence of active DD 

lesions on farms with a high prevalence of active DD lesions (Solano et al., 2017b). 

However, a footbath does not effectively reduce the prevalence of other lesion 

classes, like class M4 (Solano et al., 2017b). So, footbaths do control clinical disease 

by reducing the severity of active lesions, but they do not prevent the occurrence of 

new lesions or the recurrence of existing lesions (Speijers et al., 2010; Teixeira et al., 

2010). It is therefore unlikely that by only using footbaths, DD will be eliminated from 

the herd (Laven and Proven, 2000; Speijers et al., 2010). Topical treatment of class 

M4 lesions with antibiotics is also difficult because the Treponema spp. reside deep 

in the epidermis, a place that might not be reached (Mumba et al., 1999). Therefore, 

further research on effective prevention of class M4 is crucial (Döpfer et al., 2012a). 

In conclusion, active lesions should be prevented for animal welfare reasons, while 

class M4 lesions should be prevented to lower R0 to a value below one for the disease 

to die out. 
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3.5 Conclusions 

We showed that, regardless of the class-at-infection, class M4 determines almost the 

entire basic reproduction ratio because of the high occurrence and a long duration 

of this lesion type, not because it has a higher infectivity. The endemic prevalence is 

a function of the transmission measured by the parameter R0. So, to lower the 

endemic equilibrium prevalence, focus should be on prevention of class M4.  
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Abstract 

For an infectious disease, the probability that a susceptible individual gets infected 

depends on its own susceptibility, on the number of infected contact individuals 

(“group mates”), and on the infectivity of those group mates. Together, 

susceptibility, infectivity, and the duration of the infectious period determine the 

basic reproduction ratio (R0). Breeding strategies that aim to reduce the prevalence 

should focus on reducing R0, preferably to a value below one. Here we estimate 

genetic variance components for host susceptibility, infectivity, and R0 for Digital 

Dermatitis (DD), an endemic infectious claw disease.  

We obtained phenotype data for 1513 Holstein-Friesian cows of twelve Dutch 

dairy farms. The cows were scored for DD disease status every two weeks for eleven 

times. The genotype data consisted of 75904 SNPs for 1401 of the phenotyped cows. 

Using four generalized linear mixed models, we modelled the probability that a 

susceptible individual became infected in an observation interval. All models 

included a genetic effect for susceptibility; model 2 and 4 also included a genetic 

effect for infectivity, while model 1 and 2 included a random interaction between 

farm and period. All models corrected for the variation in exposure of the susceptible 

individuals to infectious group mates.  

Models without an infectivity effect showed significantly lower bias, while 

models with an infectivity effect tended to have slightly higher accuracy. The 

estimated genetic variation was substantially higher for susceptibility than for 

infectivity. The GEBV for R0 of the model without infectivity and without the 

interaction term ranged from 0.62 to 6.68. The estimated additive genetic standard 

deviation for R0 was large, ~1.28, while the mean R0 was 2.36, so only about one 

genetic standard deviation greater than 1. After correcting for bias, the GEBV for R0 

showed large variation, six cows had a GEBV smaller than one, and the approximate 

accuracy of the GEBV was ~0.6. These results show that genetic selection against DD 

is very promising; there is substantial heritable variation and a meaningful accuracy 

can be obtained from a limited amount of data.  
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4.1 Introduction 

Disease transmission in a population is a dynamic process. The probability that a 

susceptible individual gets infected depends on its own susceptibility, the number of 

infected contact individuals (“group mates”) and on the infectivity of those group 

mates. The composition of the infectious fraction in the population will vary over 

time as some individuals get infected while others recover. To make optimal genetic 

inference, this variation should be taken in to account. However, current studies on 

genetic variability underlying infectious diseases tend to focus on individual 

differences in susceptibility (or resistance) only (Woolhouse et al., 1998; Springbett 

et al., 2003). Even without heterogeneity in infectivity, there is still the variation in 

number of infected individuals to which susceptible recipients are exposed. This 

variation is due to chance, and due to differences in susceptibility of the group 

members. Moreover, most likely there is variation in infectivity as well, 

demonstrated for example by superspreaders, being individuals that infect 

substantially more individuals compared to a typical infectious individual (Stein, 

2011).  

An individual’s infectivity affects the disease status of other individuals, rather 

than its own disease status. If the observed variation in infectivity has a genetic 

component, then that infectivity is an indirect genetic effect (IGE). IGEs can have a 

considerable effect on the rate and direction of evolution by natural selection, and 

on response to selective breeding (Griffing, 1967; Bijma and Wade, 2008). Hence, 

IGEs can and should be used for genetic improvement of populations, whenever they 

play a role. Thus, to make optimal use of all variation that exists with respect to 

diseases transmission, both host susceptibility and host infectivity should be taken 

into account. A key question is, thus, whether variation in (especially) infectivity can 

effectively be estimated from data on individual disease status. 

Together, susceptibility, infectivity, and the duration of the infectious period 

determine the basic reproduction ratio (R0). The R0 is the average number of 

secondary cases caused by a typical infectious individual in a fully susceptible 

population (May and Anderson, 1987). The R0 contains information on the ability of 

an infection to establish itself in the population (May and Anderson, 1987). The 

threshold value is one; if R0 < 1 an infectious individual will infect on average less 

than one susceptible individual and the disease will die out with certainty. If R0 > 1, 

a disease can affect a substantial proportion of the population. For endemic diseases 

in homogeneous populations, the prevalence in the equilibrium follows from R0 and 

equals 1 −
1

𝑅0
. Breeding strategies that aim to reduce the prevalence level should 

thus focus on reducing R0, preferably to a value below one. Because the R0 depends 
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on both susceptibility and infectivity, genetic variation in both those traits should be 

taken into account. 

In this study, we focus on an endemic infectious disease called Digital Dermatitis 

(DD). DD is a claw disorder that affects (mainly) the hind feet of dairy cattle (Read 

and Walker, 1998; Sogstad et al., 2005). Typically, a round lesion forms above the 

interdigital space next to the heel bulbs (Walker et al., 1995). These lesions can be 

painful and prone to bleed, and can develop filiform papillae or be surrounded by 

hyperkeratotic skin with hairs longer than normal (Read and Walker, 1998). Cows 

that are severely affected bear their weight on the toes of the affected foot, shake 

the foot as if in pain, and show reluctance to move (Bassett et al., 1990; Collighan 

and Woodward, 1997; Read and Walker, 1998). Therefore, DD has an impact on the 

welfare of cows and causes economic losses for the farmer (Bruijnis et al., 2012a, b). 

The prevalence of DD is affected by many factors, such as herd size, lactation 

stadium, flooring system, climate, and breed (Holzhauer et al., 2006). Optimizing 

management strategies is one way to reduce the DD prevalence on a dairy farm 

(Wells et al., 1999). Another way is to improve claw health through genetic selection 

(Van der Waaij et al., 2005; van der Linde et al., 2010; Van der Spek et al., 2013). 

Variation in host susceptibility for DD exists (Capion et al., 2012) and part of this 

variation is genetic (Van der Waaij et al., 2005). Whether there is genetic variation in 

host infectivity is unknown.  

The objective of this research is to quantify the genetic variation in host 

susceptibility, host infectivity and R0 for DD. Thereafter, the susceptibility and 

infectivity of each animal are estimated, and these estimates are used to calculate 

individual estimated breeding values for R0. Additionally, for model validation, 

models with and without genetic variation for infectivity are compared for their 

ability to predict whether a susceptible animal gets infected. 

 

4.2 Material and methods 

4.2.1 Phenotype data 

Phenotypes for DD were collected on twelve dairy farms in the Netherlands, 

between November 2014 and April 2015. Two observers (author FB being one of 

them) visited these farms eleven times with a two-week interval between visits 

(Biemans et al., 2017a). On each farm, one of the observers rinsed and scored the 

feet using the method of Relun et al. (2011), while the other recorded cow ID and 

the DD-status of the cow. All feet received a score from the standardized 

classification developed by Döpfer et al. (1997) and Berry et al. (2012). This 

classification comprises six distinct classes M0, M1, M2, M3, M4, and M4.1, where 

M0 is skin without macroscopic lesions, M1 is a small lesion of 0-2 cm, M2 is a lesion 
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of >2 cm, M3 is a lesion covered by a scab, M4 is irregular skin with dyskeratotis or 

surface proliferation, and M4.1 is a small lesion (M1) in addition to irregular skin 

(M4). A foot scored as M0 was classified as susceptible, while a foot scored as M1, 

M2, M3, M4, or M4.1 was classified as infected and infectious. 

Farmers were not informed on the DD status of the cows, but were allowed to 

identify lesions themselves and treat cows using their normal routine. Phenotypes 

were collected on 1513 cows, of which 1401 cows were genotyped (see below). On 

average, a cow was scored 8.7 times. Table 4.1 gives an overview of some 

characteristics of the farms enrolled in the study.  

 

4.2.2 Genotype data 

The Holstein-Friesian cows were genotyped with the Eurogenomics 10K chip. In the 

final analysis only cows with a call rate of >0.85 were included (n = 1401). Before 

imputation, quality control was performed on the data following the standard 

procedure of breeding company CRV. A genome-wide marker (SNP) was included 

only when the following criteria were met: 1) observed frequency that deviated 

<0.15 from expected Hardy Weinberg frequency; 2) minor allele frequency >0.025. 

Furthermore, inconsistent genotypes between parents and offspring were set to 

missing. The SNPs that passed the quality control were imputed to a set of 76438 

SNPs based on the Illumina BovineSNP50 chip and a custom chip from breeding 

company CRV, with a reference population of >1000 animals with genotypes on both 

chips. Thereafter, quality control was performed on the imputed data. A SNP was 

included in the final analysis only when the following criteria were met: 1) no strong 

deviation from Hardy Weinberg equilibrium (p-value >1*10-15); 2) missing rate <0.05; 

3) minor allele frequency >2%. In total 75904 SNPs passed the quality control and 

were included in the final analysis. 

 

4.2.3 Models 
In this section, we develop a generalized linear mixed model (GLMM) to estimate 

genetic parameters for susceptibility and infectivity. To develop the GLMM, we need 

to find the probability that a susceptible individual becomes infected in an 

observation interval. In the following, therefore, we first present an epidemiological 

model, then derive the infection probability from this model, and finally present the 

resulting GLMM.  
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DD is an endemic infectious disease with infections reoccurring in the same 

animals. The disease is persistent even in small cattle herds. We therefore used a 

stochastic compartmental susceptible-infected-susceptible-model (SIS-model) with 

an environmental route (E) (see e.g., de Rueda et al., 2015) to model disease 

transmission,  

. 

In this model, infection of a susceptible individual occurs randomly with a probability 

per observation period, depending on model parameters, the number of infected 

claws in the group, and the infection pressure coming from the environment. We 

modelled the probability that a susceptible individuals gets infected with a 

generalized linear mixed model (GLMM) as described previously in, for example, 

Velthuis et al. (2003), Anche et al. (2015), and Biemans et al. (2017b).  

In the SIS-model with an environmental route (E), the expected rate with which 

susceptible individuals get infected is  𝛽𝑆
𝐼+𝐸

𝑁
, where 𝐼 is the number of infectious 

claws, 𝑆 the number of susceptible claws, and 𝑆 + 𝐼 = 𝑁 the total number of claws 

in a group (twice the number of cows). The E is the infection pressure coming from 

the environmental reservoir, expressed as the equivalent number of currently 

infected individuals (i.e., I and E are on the same scale). The 𝛽 is the transmission 

rate parameter that contains information on the contact rate and transmission 

probability between individuals (Roberts and Heesterbeek, 1993). 

Because our interest is in genetic variation in susceptibility and infectivity among 

individuals, we consider the pairwise 𝛽 between a susceptible and an infected 

individual. This pairwise 𝛽 depends on the susceptibility genotype of the susceptible 

individual and the infectivity genotype of the infectious individual. Thus, the 

transmission rate parameter 𝛽𝑖𝑗  from an infectious individual j with infectivity φj to 

susceptible individual i with susceptibility γi is 

 

𝛽𝑖𝑗 = 𝑐𝛾𝑖𝜑𝑗,                        (Equation 4.1) 

 

where c is the overall contact rate.  

The expected rate with which susceptible individual i gets infected when exposed 

to all infectious claws in the group is the sum of the rates with each infected claw, 

and thus depends on the susceptibility of individual 𝑖, the number of infectious claws 

in the group, and their average infectivity:  
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𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖 = 𝑐 𝛾𝑖

∑ 𝜑𝑗𝑗

𝐼𝑔

𝐸+ 𝐼𝑡𝑜𝑡

𝑁
,                     (Equation 4.2) 

 

where 𝛽𝑖 = 𝑐 𝛾𝑖

∑ 𝜑𝑗𝑗

𝐼𝑔
, which is the pairwise 𝛽𝑖𝑗  averaged over the infectious group 

mates j of focal individual i. 

Here, we distinguished between the claws of infectious individuals that were 

genotyped, Ig, and the total number of infectious claws, Itot. We could estimate 

infectivity only for the genotyped individuals, but also non-genotyped infectious 

individuals contributed to infection. To account for all infectious individuals, we 

assumed that the claws of the non-genotyped cows had the same average infectivity 

as the claws of the genotyped cows (∑ 𝜑𝑗/𝐼𝑔𝑗 ). Thus, in the total number of 

infectious claws, both the claws from genotyped and non-genotyped infectious 

individuals are included, Ig ⊆ Itot.  

Strictly speaking, in the 
∑ 𝜑𝑗𝑗

𝐼𝑔
 term, we should average the infectivity over all claws 

that contribute to the current infection pressure, which is the sum of the currently 

infectious claws and the infection pressure from previous infectious claws via the 

environment. In other words, all claws that contribute to 𝐸𝑔 + 𝐼𝑔  should also be 

included in the 
∑ 𝜑𝑗𝑗

𝐼𝑔
 term. However, in the statistical software we did not manage to 

keep track of all those infectivity genotypes. For this reason, only the currently 

infected claws were included in the 
∑ 𝜑𝑗𝑗

𝐼𝑔
 term. Thus, our estimates of genetic 

variation in infectivity utilize only part of the variation in the infection pressure. This 

is issue is further addressed in the Discussion.  

The infection rate varied over time, depending on the average infectivity at t, the 

start of the interval ∆𝑡. The probability for cow i to get infected (be a case) when 

exposed to all infectious claws during ∆𝑡 follows from assuming a Poisson process 

within ∆𝑡. It is the probability of a non-zero outcome from a Poisson distribution. 

Following from Equation 4.2, 

 

𝑃𝑖(𝑡) = 1 − 𝑒
−𝑐𝛾𝑖(

∑ 𝜑𝑗𝑗

𝐼𝑔(𝑡)
)

𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡)
∆𝑡

,                  (Equation 4.3) 

 

where, 𝑃𝑖(𝑡) is the probability that cow i is a case in interval ∆𝑡.  

The number of cases within an interval follows a binomial distribution with a 

probability that follows from a Poisson process. Therefore, the complementary log-
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log is the appropriate link function to connect the explanatory variables to the 

expected value of the observed variable (McCullagh, 1984). From Equation 4.3, 

 

cloglog(𝑃𝑖(𝑡)) = log(𝑐) + log(𝛾𝑖) + log (
∑ 𝜑𝑗𝑗

𝐼𝑔(𝑡)
) + log (

𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡)
𝛥𝑡). 

                         (Equation 4.4) 

 

The last term in Equation 4.4, log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡)
∆𝑡), is an offset, i.e., an “explanatory 

variable” with coefficient equal to 1. The offset accounts for the infectious pressure 

coming from the environment at t (𝐸(𝑡) 𝑁(𝑡)⁄ ), the fraction of infectious cows 

(genotyped and non-genotyped) at t (𝐼𝑡𝑜𝑡(𝑡) 𝑁(𝑡)⁄ ), and the length of the interval 

(Δt).  

The infectious pressure coming from the environment was calculated as 

described in detail in Biemans et al. (2017a). In short, claws that were infected at an 

earlier stage still contribute partly to the current environmental reservoir. The 

contribution was assumed to decrease each interval Δt with factor λ, which may be 

interpreted as a survival rate of the pathogen. So the number of pathogens from a 

claw that was infectious at t that are in the environment is a fraction 𝜆 at t+1, a 

fraction 𝜆2 at t+2, a fraction 𝜆3 at t+3, etc. With survival rate λ, the values for E(t) 

were calculated as,  

 

𝐸(𝑡) = 𝜆(𝐼𝑡𝑜𝑡(𝑡 − 1) + 𝐸(𝑡 − 1)),                   (Equation 4.5) 

 

where 𝐼𝑡𝑜𝑡(𝑡 − 1) is the total number of infectious claws at t - 1, and 𝐸(𝑡 − 1) is the 

environmental reservoir at t - 1.  

Because we did not observe the number of infected claws in the period before 

the first (t = 1) observation, they were estimated with a linear model. We fitted the 

model to the number of infected claws over the observation period. The intercept of 

the model was used as the average number of infectious claws before observations 

started (𝐼𝑡𝑜𝑡(𝑡  0)). Thereafter, the value for the environmental reservoir before the 

first observation was estimated as, 𝐸(𝑡 = 0) =
𝜆

1−𝜆
𝐼𝑡𝑜𝑡(𝑡 = 0), which was used in 

Equation 4.5. 

Equation 4.4 is linear in the logarithm of susceptibility, but not in the logarithm 

of infectivity. Therefore, in the models in which the infectivity of the group mates 

was included (model 2 and 4, see below), we first moved the number of claws of the 

genotyped infectious cows into the offset, and then linearized the equation for 

infectivity following (Biemans et al., 2017b), 
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cloglog(𝑃𝑖(𝑡)) = log(𝑐) + log(𝛾𝑖) + log(∑ 𝜑𝑗𝑗 ) + log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡) 𝐼𝑔(𝑡)
𝛥𝑡)   

≈ log(𝑐) + log(𝛾𝑖) + ∑ log(𝜑𝑗) +𝑗 log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝐼𝑔(𝑡)𝑁(𝑡)
𝛥𝑡).               (Equation 4.6) 

 

4.2.4 Implementation 

Using a GLMM, we modelled the expectation of the number of cases over the 

number of susceptible feet of animal i within interval Δt, 𝑝𝑖𝑘𝑙(𝑡) = 𝐸 (
𝐶𝑖(𝑡)

𝐹𝑖(𝑡)⁄ ). 

Only the hind feet of the cows were scored, so a susceptible cow could have one or 

two susceptible feet (F) at the start of an interval, that were zero, one, or two cases 

by the end of the interval. Thus, the number of cases C (0, 1 or 2) for each susceptible 

animal followed a binomial distribution with binomial total F (1 or 2).  

 

Table 4.2. Overview of the fixed and random effects that are included in the four 

models.1  

Model  Random effects 

1  Gen. susceptibility focal ind. - Farm*period 
2  Gen. susceptibility focal ind. Gen. infectivity herd mates Farm*period 
3  Gen. susceptibility focal ind. - - 
4  Gen. susceptibility focal ind. Gen. infectivity herd mates - 

1 All models contained fixed effects for farm, period, parity, and months in milk; and 

a non-genetic random animal effect for the susceptible animal. 

 

We tested four models (Table 4.2). Model 1 included a random genetic effect for 

susceptibility only, and a random interaction between farm and period,  

 

cloglog(𝑝𝑖𝑘𝑙𝑡(𝑡)) = 𝑐0 +  𝐹𝑎𝑟𝑚𝑘 + 𝑃𝑒𝑟𝑖𝑜𝑑𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦𝑙 + 𝑐1𝑀𝐼𝑀 + 

                                     𝐹𝑎𝑟𝑚𝑘 . 𝑃𝑒𝑟𝑖𝑜𝑑𝑡 + 𝐴𝑛𝑖𝑚𝑎𝑙𝑖 + log(𝛾𝑖) + 

                                     log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡)
∆𝑡),       (Model 1)  

 

where c0 is the intercept. The fixed effects included were for farm (Farmk with k = A 

to L), period (Periodt with t = 1 to 10), parity (Parityl with l = 1, 2, or >2), and months 

in milk (MIM, a continuous variable). The random effects were the interaction 

between farm and period (Farmk.Periodt with k = A to L and t = 1 to 10), a non-genetic 

animal effect for animal i to account for repeated observations in different periods 
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(Animali), and an additive genetic effect for susceptibility of animal i (log(γ) 

~ N(𝟎, 𝐆σa
2), where G is the genomic relationships matrix among animals).  

Model 2 included random genetic effects for both susceptibility and infectivity,   

 

cloglog(𝑝𝑖𝑗𝑘𝑙𝑡(𝑡) =  𝑐0 + 𝐹𝑎𝑟𝑚𝑘 + 𝑃𝑒𝑟𝑖𝑜𝑑𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦𝑙 + 𝑐1𝑀𝐼𝑀 + 

                                    𝐹𝑎𝑟𝑚𝑘 . 𝑃𝑒𝑟𝑖𝑜𝑑𝑡 + 𝐴𝑛𝑖𝑚𝑎𝑙𝑖 + log (𝛾𝑖) + ∑ log(𝜑𝑗) +𝑗  

                                    log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝐼𝑔(𝑡)𝑁(𝑡)
∆𝑡),                     (Model 2) 

 

where ∑ log(𝜑𝑗)𝑗  are the random genetic effects for infectivity of the infectious 

group mates j of animal i, with (log(φ) ~N(𝟎, 𝐆σa
2)). 

We expected that the interaction between farm and period could be partly 

confounded with the genetic effect for infectivity, because previous IGE-studies 

showed that omitting group-effects may substantially inflate estimated genetic 

parameters for infectivity (Bergsma et al., 2008). To investigate this issue, we 

dropped the farm by period interaction from models 1 and 2, giving models 3 and 4,  

 

cloglog(𝑝𝑖𝑘𝑙𝑡(𝑡)) = 𝑐0 + 𝐹𝑎𝑟𝑚𝑘 + 𝑃𝑒𝑟𝑖𝑜𝑑𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦𝑙 + 𝑐1𝑀𝐼𝑀 + 𝐴𝑛𝑖𝑚𝑎𝑙𝑖 +  

     log(𝛾𝑖) + log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡)
∆𝑡),             (Model 3) 

 

cloglog(𝑝𝑖𝑗𝑘𝑙𝑡(𝑡)) = 𝑐0 + 𝐹𝑎𝑟𝑚𝑘 + 𝑃𝑒𝑟𝑖𝑜𝑑𝑡 + 𝑃𝑎𝑟𝑖𝑡𝑦𝑙 + 𝑐1𝑀𝐼𝑀 + 𝐴𝑛𝑖𝑚𝑎𝑙𝑖 + 

      log(𝛾𝑖) + ∑ log(𝜑𝑗) +𝑗 log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝐼𝑔(𝑡)𝑁(𝑡)
∆𝑡),        (Model 4) 

 

4.2.5 Data analyses 

The G-matrix was computed using method 1 of VanRaden (2008), using the calc_grm 

software (Calus and Vandenplas, 2016). We fitted the four models with ASReml 

v4.1.0 (Gilmour, 2015). Model fit was assessed with Akaike information criterion 

(AIC). The individual estimates for susceptibility and infectivity from ASReml refer to 

log(𝛾𝑖)̂  and log(𝜑𝑖)̂ . The estimates are on the log scale because of the 

complementary log-log link function (Equation 4.6). The susceptibility and infectivity 

estimates from ASReml are zero on average, log(𝛾)̅̅ ̅̅ ̅̅ ̅̅ = log(𝜑)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0, so �̅� ≈ �̅� ≈ 1. By 

taking the exponent of the estimates from ASReml, we obtained the genomic 



4 Genetic variance components for DD 

 

 

98 
 

estimated breeding values (GEBV) for susceptibility and infectivity relative to a 

typical (average) individual that has a GEBV of 1.  

 

4.2.6 Cross validation 

We validated the GEBV to obtain their bias and accuracy. We, therefore, performed 

a twelve-fold cross-validation on all four models. In each analysis the dependent 

variable, i.e., the cases (C), from one farm were censored from the dataset. For each 

susceptible animal i of the censored farm at t, we predicted the number of cases over 

the number of susceptible feet (𝐶𝑖(𝑡) 𝐹𝑖(𝑡)⁄ ) based on information of the other 

eleven farms. The value for 𝐶𝑖(𝑡) 𝐹𝑖(𝑡)⁄  that was predicted by the models is referred 

to as the predicted probability 𝑃�̂�(𝑡).  

However, as the fixed effects were nonlinear on the normal scale because they 

were estimated with a complementary log-log link function, correction of the 

observed records for fixed effects was not straightforward. To solve this issue, we 

translated both the predicted probabilities and the observed records to a standard 

(i.e., average) farm. Subsequently, we validated the models using the weighted 

correlation and regression of observed records on predicted probabilities (see 

Appendix for detailed methods). 

 

4.2.7 Basic reproduction ratio 

With the estimate breeding values for susceptibility and infectivity, we calculated 

individual breeding values for the basic reproduction ratio (�̂�𝑅0,𝑖). The �̂�𝑅0,𝑖  is the 

product of the relative susceptibility (𝛾𝑖), the relative infectivity (�̂�𝑖), the contact rate 

(c), and the average duration of the infectious period (1/α) (Anche et al., 2014), 

 

�̂�𝑅0,𝑖 = 𝛾𝑖�̂�𝑖𝑐/𝑎.                     (Equation 4.7) 

 

In model 1 and 3 variation in infectivity is not estimated, hence in these models �̂�𝑖 =

1. With an average R0 for DD of 2.36 on these farms (Biemans et al., 2017a) and the 

average product of the estimated relative susceptibility and relative infectivity, the 

value for c/a was calculated as 𝑐 𝛼⁄ =
2.36

�̂�𝑖�̂�𝑖
̅̅ ̅̅ ̅̅ .  

 

4.3 Results 

4.3.1 Model fit 

The fit of model 3 was better compared to model 1 (lower AIC), and the fit of model 

4 was better compared to model 2 (footnote of Table 4.3). The AIC of model 1 could 

only be compared to the AIC of model 3 because the dataset of these models was 
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the same, i.e., the offset in model 1 and 3 was different from the offset in models 2 

and 4 because only genotyped individuals could be included in the infectivity term. 

Similarly, the AIC of model 2 could only be compared to the AIC of model 4. 

 

4.3.2 Fixed effects 

The farm effect was significant (P < 0.05) in model 1 and 3, but not in model 2 and 4. 

For all four models there was a significant effect for period, parity, and months in 

milk. The probability of getting infected during an interval increased the first six 

periods and stabilized thereafter. The transmission rate parameter increased with 

increasing parity; it was 21% higher for parity 2 compared to parity 1, and 69% higher 

for parities >2 compared to parity 1. For months in milk, the transmission rate 

parameter decreased by 4% with every month in milk.  

 

4.3.3 Estimated variance components 

Table 4.3 shows the estimated variance components and their standard error (SE) on 

the log scale. The estimated variance is approximately the same on the normal scale, 

because 𝑣𝑎𝑟(ln(𝑥)) ≈ 𝑣𝑎𝑟(𝑥) around ln(𝑥) = 0 (x = 1) (Hosmer et al., 2008). For 

model 1, 2, and 4, the estimated genetic variance for susceptibility was about 0.55. 

In all these models a genetic effect for infectivity and/or the interaction term 

between farm and period was included. For model 3, the estimated genetic variance 

for susceptibility was lower, about 0.49. Similarly, the variance of the non-genetic 

random animal effect was about 0.95 for model 1, 2, and 4, and lower, about 0.92, 

for model 3. In model 3 there was no genetic effect for infectivity and no interaction 

between farm and period included.  

 

Table 4.3. Estimated variance components and their standard error (SE) for the 

genetic effect of susceptibility and infectivity, the interaction between farm and 

period, and the animal effect for the four models.  

Model Estimated variance (SE) of the random terms 

 Susceptibility  Infectivity  Farm*period Animal 

11 0.5554 (0.1417) - 0.2618 (0.0502) 0.9493 (0.1300) 

22 0.5552 (0.1408) 0.0044 (0.0021) 0.0992 (0.0703) 0.9479 (0.1300) 

31 0.4896 (0.1313) - - 0.9218 (0.1234) 

42 0.5542 (0.1414) 0.0075 (0.0015) - 0.9486 (0.1299) 
1 The difference in AIC between model 1 and model 3 was: AIC1 – AIC3 = 169.18 
2 The difference in AIC between model 2 and model 4 was: AIC2 – AIC4 = 3.94 
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4.3.4 Relative host susceptibility and infectivity 

The genomic estimated breeding values (GEBV) for susceptibility from model 1, 2 

and 4 were approximately the same and ranged from 0.26 to 3.45, while 

susceptibility GEBV from model 3 ranged from 0.28 to 3.06. A cow with a 

susceptibility GEBV of 0.26 is about four times less susceptible than an average cow, 

while a cow with a susceptibility GEBV of 3.45 is about 3.5 times more susceptible 

than an average cow.  

Figure 4.1. Genomic estimated breeding values (GEBV) for infectivity from model 2 

versus model 4. Each point represents one cow. The line shows y = x.  

 

The infectivity GEBV showed less variation compared to the susceptibility GEBV. 

Figure 4.1 shows the infectivity GEBV from model 2 plotted against the infectivity 

GEBV from model 4. The infectivity GEBV ranged from 0.95 to 1.06 for model 2, and 
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from 0.92 to 1.11 for model 4. Thus, the infectivity GEBV from model 2 show less 

variation than those from model 4. Part of the variation that is attributed to the 

genetic infectivity effect in model 4 is attributed to interaction between farm and 

period in model 2. This suggests that the infectivity GEBV from model 4 may include 

both a genetic and a non-genetic component, and may therefore be inflated, while 

the GEBV from model 2 may better represent the true breeding values. 

 

4.3.5 Cross-validation 

In the cross-validation, the number of cases over the number of susceptible feet 

(𝐶𝑖(𝑡) 𝐹𝑖(𝑡)⁄ ) was predicted for each susceptible animal on a censored farm. We 

used these predictions to validate the GEBVs to obtain their bias and accuracy. To 

facilitate comparison, both predictions and observations were translated to a 

standard farm and were averaged by animal (Appendix). 

Figure 4.2 and Table 4.4 show the weighted linear regression and correlation 

coefficients between the average observed number of cases over the number of 

susceptible feet (C/F) and the average predicted probability. Bias was smallest for 

models without the infectivity effect (Models 1 and 3) because regression 

coefficients of these models were closest to one. The weighted correlations 

coefficients were higher for models with the infectivity effect (Model 2 and 4). Thus, 

models without an infectivity effect showed significantly lower bias, while models 

with an infectivity effect tended to have slightly higher accuracy.  

 

Table 4.4. Weighted linear regression and correlation coefficients between the 

average observed number of cases over the number of susceptible feet (C/F) and the 

average predicted probability for the observations. 

Model Linear regression Correlation 

coefficient (SE) Intercept (SE) Regression 

coefficient (SE) 

1 0.151 (0.030) 0.815 (0.128) 0.200 (0.027) 

2 0.197 (0.021) 0.655 (0.103) 0.216 (0.027) 

3 0.140 (0.032) 0.847 (0.135) 0.198 (0.027) 

4 0.206 (0.020) 0.621 (0.096) 0.223 (0.027) 

 

4.3.6 Basic reproduction ratio 

Figure 4.3 shows the GEBV for the basic reproduction ratio (R0), calculated from 

susceptibility GEBV from model 3. The mean susceptibility GEBV was 1.081, which is 

slightly above one because of the transformation from the log scale to the normal 

scale. With an average R0 for DD on these farms of 2.36 (Biemans et al., 2017a), it 
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follows that c/a is estimated at 2.182. GEBV for R0 ranged from 0.62 to 6.68. There 

were 38 cows with a �̂�𝑅0,𝑖 < 1 out of the 1401 cows included.  

 

Figure 4.2. Weighted linear regression and correlation coefficients between the 

average observed number of cases over the number of susceptible feet (C/F) and the 

average predicted probability for the observations. 

 

Results in Figure 4.3 have not been corrected for the bias observed in the 

probability that an individual is infected (Figure 4.2, Model 3, b = 0.8474). Assuming 

that the bias in GEBV for susceptibility is approximately proportional to the observed 

bias in infection probability implies that GEBV for R0 in Figure 4.3 have to be 

shrunken, relative to their mean, by a factor 0.8474. It can be shown that this 

assumption is reasonable because predicted probabilities in Figure 4.2 are much 

smaller than 1, suggesting that multiple infections of the same susceptible claw 
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within a period are relatively unlikely. Resulting GEBV for R0 range from 0.88 to 6.02. 

Hence, after correcting for the bias in GEBV, the range in GEBV for R0 is still very 

large, and there are still six individuals with a GEBV for R0 below 1. (Note that DD is 

absent when R0 in a population is smaller than one.)  

 

Figure 4.3. Histogram of the individual GEBV for the basic reproduction ratio for all 

genotyped animals, based on results from model 3. 

 

The additive genetic variance of R0 is given by 𝜎𝐴𝑅0

2 = (�̅�2𝜎𝜑
2 + �̅�2𝜎𝛾

2 +

𝜎𝛾
2𝜎𝜑

2) (
𝑐

𝛼
)

2

≈ (𝜎𝛾
2 + 𝜎𝜑

2 + 𝜎𝛾
2𝜎𝜑
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𝑐

𝛼
)

2

 (Anche et al., 2014). Substituting the 

estimate from Model 3 (Table 4.3), taking the square root and shrinking the result by 

0.8474 to account for the bias, yields an estimated additive genetic standard 

deviation for R0 of 1.28. This result shows that the current R0 of 2.36 (Biemans et al., 
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2017a) is only about one genetic standard deviation greater than 1. Hence, this 

suggests that a genetic improvement of R0 by about one genetic standard deviation 

would be sufficient to eradicate DD.  

The approximate accuracy of the GEBV for R0 follows from the ratio of the 

standard deviation of GEBV over the additive genetic standard deviation of R0. After 

shrinking GEBV by 0.8474 to account for the bias, this accuracy equals ~60%. Hence, 

despite the relatively small reference population of ~1400 individuals in this 

experiment, GEBV for R0 have meaningful accuracy.  

 

4.4 Discussion 

We estimated the additive genetic variation in host susceptibility, infectivity, and R0 

for DD in dairy cattle. Furthermore, we calculated GEBVs for susceptibility, 

infectivity, and R0 for each animal. Four models were compared for their ability to 

predict whether a susceptible animal gets infected. All four models included a 

genetic effect for susceptibility; model 2 and 4 also included a genetic effect for 

infectivity, while model 1 and 2 included an interaction term between farm and 

period. All models corrected for the variation in exposure of the susceptible 

individuals to infectious group mates via the offset of the model. The estimated 

genetic variation was substantially higher for susceptibility than for infectivity. The 

estimated additive genetic standard deviation for R0 was large, ~1.30, and the mean 

R0 (2.36) was only about one genetic standard deviation greater than the important 

threshold value of 1. Furthermore, GEBV for R0 (corrected for bias) showed large 

variation, six animals had a GEBV smaller than 1, and the approximate accuracy of 

GEBV was ~0.6. These results show that genetic selection against DD is very 

promising; there is substantial heritable variation and a meaningful accuracy can be 

obtained from a limited amount of data.  

Farm, parity, period, and months in milk of the focal cow were included in the 

models as fixed effect. The transmission rate parameter was 21% higher for parity 2 

compared to parity 1, and 69% higher for parity >2 compared to parity 1. The 

prevalence also increased with parity. This is in contrast with most previous studies 

where DD was most prevalent in first and second parity cows (Argáez-Rodríguez et 

al., 1997; Read and Walker, 1998). For months in milk, the transmission rate 

parameter decreased with 4% per month in milk. This is in agreement with Argáez-

Rodríguez et al. (1997) who found that cows had the highest risk of DD in the first 

and third month of lactation, after which the risk decreased. The effect of parity and 

months in milk on the infectivity of a cow was not considered because incorporating 

these factors in the summed effect of the infectious group mates was difficult.   



4 Genetic variance components for DD 

 

 

105 

 

The infectivity estimates showed considerably less variation compared to the 

susceptibility estimates. However, this does not necessarily mean that there is 

indeed less variation in infectivity than in susceptibility. Because of technical 

difficulties, we included only the genetic effects of claws that were infectious at the 

start of the observation interval (t). However, the total infectious pressure was 

composed both of claws that were infectious at the start of the observation interval, 

and of claws that were infectious earlier. With an estimated survival rate () of the 

pathogen of 0.9 (Biemans et al., 2017a), 90% of the total infectious pressure 

originates from claws that were infectious before the start of the observation 

interval. This suggests that we may have disregarded the majority of the heritable 

variation in infectivity. Hence, the relevance of genetic variation in infectivity may be 

substantially larger than suggested by estimates presented here (Table 4.3). 

Unlike variation in susceptibility, variation in infectivity must be estimated 

indirectly. Infectivity estimates are based on the number of susceptible group mates 

that become infected and on differences in genotype among the infected group 

mates at different points in time. When there are multiple infected group mates, the 

accuracy of the infectivity estimates decreases (Anacleto et al., 2015). Especially in 

large groups, like this study (~100 cows), more records and groups are needed to 

estimate genetic variation in infectivity accurately. This issue is very similar to the 

estimation of indirect genetic effects from large groups (Bijma, 2010). 

We included a random interaction between farm and period in the first two 

models, to account for non-genetic effects of infectivity. This interaction serves to 

avoid overestimation of the genetic variance in infectivity (Anche, 2016), similar to 

the inclusion of a random group effect in the analysis of indirect genetic effects 

(Bijma et al., 2007; Bergsma et al., 2008). The genetic effect for infectivity and the 

interaction term were partly confounded, because both effects reflect the number 

of susceptibles that became a case within a certain period on a certain farm. 

However, confounding is not complete because of genetic relationships between the 

infectious animals across farms and periods. Nevertheless, our results suggest that 

inclusion of a random farm.period effect is essential to avoid overestimation of the 

genetic variation due to infectivity. 

The estimated variances for susceptibility (genetic and non-genetic) were lower 

for model 3 that did not include a genetic effect for infectivity nor an interaction 

between farm and period. Anacleto et al. (2015) showed that estimates for 

susceptibility are less accurate when genetic variation in infectivity is not accounted 

for. Indeed, we also found a slightly higher correlation in the cross-validation when 

infectivity was in the model, but this was accompanied by an inflation of the GEBV, 
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as shown by the regression coefficients in Figure 4.2. However, inflation of GEBVs 

can be remedied by shrinking them based on results of cross-validation, whereas a 

reduction in correlation cannot. Therefore, even when infectivity is not the trait of 

interest, it might be beneficial to include infectivity in the model to accurately 

estimate susceptibility GEBV (Anacleto et al., 2015). 

In the cross-validation, we estimated a weighted correlation of about 0.2 

between the observed and predicted number of cases over the number of 

susceptible feet. This value can be used to approximate the accuracy of the GEBV 

(𝑟𝑔,�̂�) (Calo et al., 1973),  

 

𝑟𝑔,�̂� ≈
𝑟𝑝,�̂�

√ℎ2
,                          (Equation 4.8) 

 

where, 𝑟𝑝,�̂� is the correlation between the observations and the predictions, and h2 

is the heritability of the trait. Heritability estimates for Digital Dermatitis from 

previous studies range from 0.05 to 0.29, depending on the model used (Schöpke et 

al., 2015). Assuming a heritability of 0.28, the accuracy of the predicted number of 

cases is 0.38. Note, this value represents the estimated correlation between the 

predicted number of cases for an individual (its “GEBV”) and its true expected 

number of cases given its genes (its true “breeding value”). This value is somewhat 

smaller than the approximate accuracy of the breeding values for R0 presented 

above. 

In general, studies on genetic variability of infectious diseases commonly focus 

on individual differences in susceptibility only, and those differences are estimated 

with a linear model that ignores variation in exposure among individuals. In this 

study, we used a GLMM to estimate genetic variability in susceptibility. Estimates 

were corrected for variation in exposure via the offset, and variation in infectivity of 

group mates was included. Further work is needed to quantify the benefits of such 

GLMMs over simpler linear models, to better account for the full genetic variation in 

infectivity via the environment, and to include genetic variation in the duration of 

the infectious period.  

 

4.5 Conclusions 

Genetic variance components for susceptibility and infectivity for Digital Dermatitis 

were estimated with four generalized linear mixed models. The model that included 

only a genetic effect for susceptibility and no interaction between farm and period 

had the best fit and predictive ability. Even though there was not a significant 

difference in infectivity among cows in this model, variation in exposure was still 
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accounted for via the offset. Furthermore, for each animal its relative susceptibility 

and relative infectivity compared to an average cow in this study were estimated. 

These estimates were used to calculate the individual GEBVs for the basic 

reproduction ratio. Estimated breeding values for R0 ranged from 0.62 to 6.68, and 

the mean R0 (2.36) was only about one genetic standard deviation greater than 1. 

Furthermore, genomic estimated breeding values for R0 (corrected for bias) showed 

large variation, six cows had an GEBV smaller than 1, and the approximate accuracy 

of GEBV was ~0.6. These results show that lowering transmission of DD with selective 

breeding is very promising.  
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4.8 Appendix 

4.8.1 Cross-validation 

In the twelve-fold cross-validation, we predicted for each susceptible animal of the 

censored farm in each period the number of cases over the number of susceptible 

feet (Ci/Fi) based on information of the eleven other farms. In general, the predicted 

probability for the number of cases over the number of susceptible feet can be 

calculated with the estimated effects. Because of the complementary log-log link 

function, these effects need to be back calculated to the original scale,  

 

𝑃�̂�(𝑡) = 1 − 𝑒−𝑒
∑ 𝐹�̂�+log(𝛾𝑖)̂ + log(

𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)
𝑁(𝑡)

∆𝑡)

,                     (Equation A4.1) 

 

when the genetic effect for infectivity was not included (model 1 and 3), and 

 

𝑃�̂�(𝑡) = 1 − 𝑒−𝑒
∑ 𝐹�̂�+log(𝛾𝑖)̂ +∑ log(𝜑𝑗)̂

𝑗 + log(
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝐼𝑔(𝑡)𝑁(𝑡)
∆𝑡)

,              (Equation A4.2) 

 

when the genetic effect for infectivity was included (model 2 and 4). In Equations 

A4.1 and A4.2, 𝑃�̂�(𝑡) is the predicted probability for the number of cases over the 

number of susceptible feet for animal i in the period from t to t+1, ∑ 𝐹𝐸 is the sum 

of the estimates for the fixed effects, i.e., the estimates for the intercept, farm k, 

period t, parity l, and months in milk. The log(𝛾𝑖)̂  is the estimated genetic effect for 

susceptibility on the log scale and ∑ log(𝜑𝑗)̂
𝑗  is the sum of the estimated genetic 

effects for infectivity of the infectious group mates of the susceptible focal individual 

on the log scale. The last term in Equations A4.1 and A4.2 is the offset. In the twelve-

fold cross-validation, the cases (C) of one entire farm were censored from the 

dataset, therefore, the random effects for the interaction between farm and period, 

and non-genetic animal effect for animal i could not be estimated for this farm. So, 

these random effects did not contribute to the predicted probabilities, they are, 

therefore, not included in Equations A4.1 and A4.2.   

To validate the estimated genetic effects, we wanted to estimate the probability 

that an animal would be a case during an interval independent of the fixed effects in 

the model. We achieved this independence by standardizing both 𝑃�̂�(𝑡) and 

𝐶𝑖(𝑡) 𝐹𝑖(𝑡)⁄ . We obtained the regression coefficients for the fixed effects for each of 

the four models that were applied to the full dataset were no data was censored. 

With these regression coefficients we calculated the average value of summed fixed 

effects (∑ 𝐹𝐸̅̅ ̅̅ ̅̅ ̅). The ∑ 𝐹𝐸̅̅ ̅̅ ̅̅ ̅ can be interpreted as a standard/average farm and a 
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standard/average cow. This ∑ 𝐹𝐸̅̅ ̅̅ ̅̅ ̅ was used in Equations A4.1 and A4.2 instead of the 

estimated fixed effects, 

 

𝑃�̂�(𝑡)∗ = 1 − 𝑒−𝑒
∑ 𝐹𝐸̅̅ ̅̅ ̅̅ ̅+log(𝛾𝑖)̂ + log(

𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)
𝑁(𝑡)

∆𝑡)

,                (Equation A4.3) 

 

for model 1 and 3, and 

 

𝑃�̂�(𝑡)∗ = 1 − 𝑒−𝑒
∑ 𝐹𝐸̅̅ ̅̅ ̅̅ ̅+log(𝛾𝑖)̂ +∑ log(𝜑𝑗)̂

𝑗 + log(
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝐼𝑔(𝑡)𝑁(𝑡)
∆𝑡)

,               (Equation A4.4) 

 

for model 2 and 4. Here, 𝑃�̂�(𝑡)∗ is the predicted probability for the number of cases 

over the number of susceptible feet for animal i in a period, as if it were an average 

cow with an average parity and months in milk, during a standard period, on a 

standard farm. Note that the genetic susceptibility and infectivity did differ between 

cows, and thus had an effect on the predictions. 

Similarly, we wanted to standardize the observed cases over the number of 

susceptible claws (𝐶𝑖(𝑡) 𝐹𝑖(𝑡)⁄ ), so that they would be independent of the fixed 

effects that contributed to that observation. The observations were transformed to 

the complementary log-log scale so that they were linear in the effects,  

 

log (− log (1 −
𝐶𝑖(𝑡)

𝐹𝑖(𝑡)⁄ ) = 

∑ 𝐹𝐸 + log(𝛾𝑖) +  log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡)
∆𝑡),                (Equation A4.5) 

 

for model 1 and 3, and, 

 

log (− log (1 −
𝐶𝑖(𝑡)

𝐹𝑖(𝑡)⁄ ) = 

∑ 𝐹𝐸 + log(𝛾𝑖) + ∑ log(𝜑𝑗) +𝑗 log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝐼𝑔(𝑡)𝑁(𝑡)
∆𝑡),               (Equation A4.6) 

 

for model 2 and 4. 

Next, the summed fixed effects ∑ 𝐹𝐸 in Equation A4.5 and A4.6 were replaced 

with the average value of the summed fixed effects (𝐹𝐸̅̅ ̅̅ ), and back calculated to the 

original scale to obtain the observed number of cases over the number of susceptible 

feet independent of the fixed effects ((𝐶𝑖(𝑡) 𝐹𝑖(𝑡)⁄ )∗), for all models, 
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(𝐶𝑖(𝑡) 𝐹𝑖(𝑡))⁄ ∗
= 1 − 𝑒−𝑒

((log (−𝑙𝑜𝑔(1−
𝐶𝑖(𝑡)

𝐹𝑖(𝑡)⁄ )))−∑ 𝐹𝐸+∑ 𝐹𝐸̅̅ ̅̅ ̅̅ ̅)

.              (Equation A4.7) 

 

Here, (𝐶𝑖(𝑡) 𝐹𝑖(𝑡)⁄ )∗ is the observed number of cases over the number of susceptible 

feet for animal i in a period, as if observed on an average cow with an average parity 

and months in milk, on a standard farm. Again, the genetic susceptibility and 

infectivity did differ between cows (see Equations A4.5 and A4.6), and affected the 

dependent variable. 

 

4.8.2 Correlation between observations and predictions 

We calculated weighted correlation coefficients between the average “corrected” 

observed number of cases over the number of susceptible feet ((𝐶𝑖(𝑡) 𝐹𝑖(𝑡)⁄ )∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) and 

the average “corrected” predicted probabilities (𝑃�̂�(𝑡)∗̅̅ ̅̅ ̅̅ ̅). The summed corrected 

observations and predictions were averaged over the number of times an animal was 

susceptible at the start of an interval. The number of times an animal was susceptible 

was used as the weight.   
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Abstract 

One approach to fight transmission of infectious diseases is selection and breeding 

for livestock with desirable traits that reduce disease prevalence. Disease prevalence 

in a population depends on the susceptibility and infectivity of the individuals. 

Knowledge of the genetic background of those traits would, therefore, facilitate 

efficient selection for lower prevalence. Here we investigate the genetic background 

of host susceptibility and infectivity for Digital Dermatitis (DD), an infectious claw 

disease in dairy cattle, using a genome-wide association study (GWAS). 

We obtained phenotype data on 1513 Holstein-Friesian cows of twelve Dutch 

dairy farms. The cows were scored for DD disease status and class (M0 to M4.1) every 

two weeks for eleven times. The genotype data consisted of 75,904 SNPs for 1401 of 

the phenotyped cows. We performed a GWAS with two models. First, a linear mixed 

model that associated SNPs with host susceptibility only. With this model we 

estimated genetic parameters for ten different DD-related host traits. Second, we 

used a generalized linear mixed model (GLMM) that associated SNPs with both host 

susceptibility and infectivity while taking the variation in exposure of susceptible 

cows to infectious herd mates into account.  

For the linear model there were no significant SNPs (FDR < 0.05), but there were 

135 suggestive SNPs (FDR < 0.30) for eight traits: for the presence of active lesion in 

the observation period; the fraction of observations a cow had an active lesion; the 

fraction of observations a cow had a M0, M1, M2, M4, or M4.1 on at least one claw; 

and the fraction of observations a cow was DD-free. Heritability estimates ranged 

from 0.093 to 0.367. For the GLMM there were no significant and no suggestive 

SNPs. SNP effects on susceptibility of the linear model had a correlation coefficient 

of only 0.70 with SNP effects on susceptibility of the GLMM, indicating that both 

models capture partly different effects.  
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5.1 Introduction 

One approach to fight transmission of infectious diseases is selection and breeding 

for livestock with desirable traits that affect disease prevalence. Disease 

transmission is affected by two sets of host traits, those affecting susceptibility and 

those affecting infectivity. Susceptibility is the relative risk that an individual gets 

infected when exposed to a typical infectious individual, or to infectious material 

excreted by a typical infectious individual. Infectivity is the relative propensity of an 

infected individual to infect a typical susceptible individual.  

In livestock genetic improvement, studies on genetic effects related to infectious 

diseases generally link the disease status of the host to the genotype of the host 

(Woolhouse et al., 1998; Springbett et al., 2003). Thereby they capture the genetic 

effects on susceptibility only, while the variation in exposure of susceptible 

individuals to infectious group mates and the variation in infectivity among those 

group mates is ignored. The infectivity of infected group mates, however, may 

contain a heritable component. In other words, infectivity may be an indirect genetic 

effect (Moore et al., 1997; Anche et al., 2014), i.e., a heritable effect of an individual 

on the phenotype of another individual (Muir, 2005). When infectivity contains a 

heritable component, selection for lower infectivity can also be used to improve 

populations by selective breeding (Lipschutz-Powell et al., 2012; Anche et al., 2014; 

Anacleto et al., 2015).  

Here we focus on host susceptibility and infectivity for Digital Dermatitis (DD), an 

infectious claw disease in dairy cattle. In infected cattle, round lesions that are 

sometimes painful form along the coronary band of the claws (Walker et al., 1995).  

Mainly the hind claws are affected by the disease (Read and Walker, 1998; Sogstad 

et al., 2005). Digital Dermatitis is transmitted via the environment, and the infectious 

“agent” is a combination of different bacteria (Rodríguez-Lainz et al., 1996; Read and 

Walker, 1998; Demirkan et al., 1999; Sogstad et al., 2005; Vink et al., 2009). Lesions 

can be divided into six distinct classes: skin where lesions are macroscopically absent 

(M0), a small lesion of 0-2 cm (M1), a lesion of >2 cm (M2), a lesion covered by a scab 

(M3), altered skin with dyskeratotis or surface proliferation (M4), and a small lesion 

in addition to altered skin (M4.1) (Döpfer et al., 1997; Döpfer, 2009; Berry et al., 

2012). Classes M1, M2, and M4.1 are sometimes referred to as the active classes 

because they describe circumscribed, red-greyish, moist, painful, and prone to bleed 

lesions (Speijers et al., 2010; Berry et al., 2012; Zinicola et al., 2015).  

The genetic variants associated with host susceptibility and infectivity for DD can 

be detected in a genome wide association study (GWAS) with the use of molecular 

markers such as SNPs. Results of previous GWAS studies on host susceptibility for DD 
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are inconsistent. Significant peaks have been detected on BTA26 (Scholey, 2011), on 

BTA1, 5, 8, 14 and 26 (Malchiodi et al., 2015), not at all (van der Spek et al., 2015), or 

on BTA3, 8, and 29 (Oberbauer et al., 2016). All these studies used a linear model to 

find associations between SNPs and host susceptibility. In addition, these studies did 

not take into account variation in exposure of susceptible individuals to infected herd 

mates, and variation in infectivity among those herd mates. 

Here we perform a GWAS with two different models. The first model is a linear 

mixed model that associates SNPs with host susceptibility only. With this model we 

estimate genetic parameters for ten different DD-related host traits. The second 

model is a generalized linear mixed model (GLMM) that associates SNPs with both 

host susceptibility and infectivity. In the GLMM, we also take the variation in 

exposure of the susceptible individuals to infectious herd mates into account.  

 

5.2 Material and methods 

5.2.1 Phenotype data 

Phenotypes were collected on twelve dairy farms in the Netherlands, between 

November 2014 and April 2015. Two observers visited the farms eleven times, every 

other week. One observer rinsed and scored the claws with the method of Relun et 

al. (2011), and the other observer recorded the cow ID and the DD-status of the cow. 

All hind claws were scored with the standardized classification developed by Döpfer 

et al. (1997) and extended by Berry et al. (2012). This classification comprises six 

distinct classes M0, M1, M2, M3, M4, and M4.1, Where, M0 is skin without 

macroscopic lesions, M1 is a small lesion of 0-2 cm, M2 is a lesion of >2 cm, M3 is a 

lesion covered by a scab, M4 is irregular skin with dyskeratotis or surface 

proliferation, and M4.1 is a small lesion (M1) in addition to irregular skin (M4). A claw 

scored as M0 was classified as susceptible, and a claw scored as M1, M2, M3, M4, or 

M4.1 was classified as infected and infectious. 

Farmers were allowed to identify and treat lesions but were not informed on the 

DD status of the cows by the observers. Table 5.1 gives an overview of some 

characteristics of the farms enrolled in the study. Phenotypes were collected on 1513 

cows, of which 1401 cows were also genotyped. The average number of observations 

per cow was 8.7, because some cows were removed from, or introduced into, the 

herd during the study.  
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5.2.2 Genotype data 

The cows (Holstein-Friesian) were genotyped with the Eurogenomics 10K chip.  In 

the final analysis only cows with a call rate of >0.85 were included (n = 1401). Quality 

control was performed on the data. A genome-wide marker (SNP) was included only 

when the following criteria were met: 1) observed frequency that deviated <0.15 

from expected Hardy Weinberg equilibrium frequency; 2) minor allele frequency 

>0.025. Furthermore, inconsistent genotypes between parents and offspring were 

set to missing. The SNPs that passed the quality control were imputed to a set of 

76438 SNPs based on the Illumina BovineSNP50 chip and a custom chip from 

breeding company CRV. Both chips had a reference population of >1000 animals with 

genotypes. After imputation, quality control was performed on the imputed data. A 

SNP was included in final analyses only when the following criteria were met: 1) no 

strong deviation from Hardy Weinberg equilibrium (p-value >1*10-15); 2) missing rate 

<0.05; 3) minor allele frequency >0.02. In total 75904 SNPs passed the quality control 

and were included in the final analysis. 

 

5.2.3 Traits 

With the linear model, we analysed five DD-related host traits (Table 5.2) that reflect 

only the susceptibility of cows. The first trait was disease status (0 = both claws 

susceptible, 1 = one claw susceptible, one claw infected, 2 = both claws infected) of 

each cow at each observation k (k = 1 to 11). A cow was infected when at least one 

claw received a score different from M0. The second trait was disease status for 

active lesions (0 = no active lesions observed (only M0, M3, or M4 lesions), 1 = at 

least one active lesion (M1, M2, or M4.1) observed) during the entire observation 

period. The third trait was the fraction of observations that a cow had at least one 

active lesion (Fractionactive). We chose the fraction, rather than the number, of 

observations because not all cows were scored the same number of times. The 

fourth trait was the fraction of observations a cow had a lesion of class Mi (FractionMi 

with i = 0, 1, 2, 3, 4, or 4.1). The fifth trait was the fraction of observations both claws 

were scored as M0, i.e., the fraction of observations a cow was free of DD 

(Fractionfree). Table 5.3 illustrates the DD-related host traits that were calculated 

from the M-class scores that a cow received at each observation.  
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Table 5.3. Example of M-class scores that a cow received at each observation, and 

the DD-related host traits that were calculated from these scores. 

Cow 

ID 

Farm 

ID 

Hind  

claw 

M-class at observation Total number of 

observations 1 2 3 4 5 6 7 8 9 10 11 

2047 L Left 4 4.1 2 4 2 1 0 4 4 3 NA 10 

  Right 3 4 2 0 2 1 0 1 4 3 NA 10 
               

Trait   Dependent variable for cow 2047  

1 Observation 1 2 3 4 5 6 7 8 9 10 11  

 Disease status 2 2 2 1 2 2 0 2 2 2 NA  

2 Active lesion observed = 1          

3 Fractionactive = 5/10 = 0.50          

4 FractionM0 = 2/10 = 0.20          

 FractionM1 = 2/10 = 0.20          

 FractionM2 = 2/10 = 0.20          

 FractionM3 = 2/10 = 0.20          

 FractionM4 = 5/10 = 0.50          

 FractionM4.1 = 1/10 = 0.10          

5 Fractionfree = 1/10 = 0.10          

 

With the GLMM we analysed whether the susceptible claws of a cow had become 

infected during an observation interval. Only the hind claws of the cows were scored, 

so a susceptible cow had one or two susceptible claws at the start of an interval (F = 

1 or 2), that were zero, one, or two cases by the end of the interval (C = 0, 1 or 2). 

The dependent variable was the number of cases over the number of susceptible 

claws, C/F, for each cow in each observation interval. The dataset for the GLMM 

consisted of 6099 cows that were susceptible at the start of an interval.   

 

5.2.4 Linear Model  

With the linear model, we investigated the association between SNPs and each of 

the five traits (Table 5.2),  

 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝒆,             (Model 1) 

 

where y is a vector of observations on a trait,  X is the incidence matrix for the fixed 

effects; b is a vector of fixed effects for SNP-genotype (0, 1, or 2), farm (A to L), and 

parity (1, 2, or >2); Z is the incidence matrix for the additive genetic effects; and a is 
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a vector of additive genetic effects, with 𝐚~N(0, 𝐆σa
2), where G is the additive 

genetic relationship matrix of the 1401 genotyped animals and 𝜎𝑎
2 is the additive 

genetic variance. For the first trait, disease status, we also included fixed effects for 

observation (1 to 11) and the interaction between farm and observation; and a 

random cow effect to account for repeated observations on a cow. Months in milk 

was not significant and therefore not included in the model. 

 

5.2.5 Generalized linear mixed model (susceptibility and infectivity) 

With the GLMM, we investigated the association between SNPs and host 

susceptibility and infectivity for DD. In contrast to the linear model, this GLMM is 

founded in epidemiological principles. In the GLMM, the variation in exposure of a 

susceptible individual to the infectious individuals, and the (genetic) variation in 

infectivity of the infectious individuals was taken into account. The use of a GLMM 

to analyse binary data on disease status has previously been described in, for 

example, Velthuis et al. (2003), Anche et al. (2015), and Biemans et al. (2017b).  

To define the GLMM, we need to find the probability that a susceptible claw 

becomes infected during an interval. To find this probability, we modelled DD-

transmission with a stochastic compartmental susceptible-infected-susceptible-

model (SIS-model) with an environment route E (see e.g., de Rueda et al., 2015), 

 

S → I → S 

       ↓   

 E 

 

In this model, two events can occur; a susceptible claw can get infected, and an 

infected claw can recover. These events occur randomly with a probability per unit 

of time depending on the model parameters, the number of infectious claws, and 

the infection pressure coming from the environment. The expected rate with which 

susceptible claws get infected is 

 

𝛽𝑆
𝐸+𝐼

𝑁
, 

 

where 𝑆 the number of susceptible claws, 𝐼 is the number of infectious claws, and N 

the total number of claws in a group (twice the number of cows), so that 𝑆 + 𝐼 = 𝑁. 

The E is the infection pressure coming from the environment, expressed in “currently 

infected individual equivalents”, so that E + I represents the total infection pressure 

expressed as the equivalent number of currently infected individuals. The 𝛽 is the 
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transmission rate parameter, a population specific parameter that contains 

information on the contact rate, and on the susceptibility and infectivity of the 

population.  

To model genetic variation in susceptibility and infectivity between individuals, 

we consider the pairwise transmission rate parameter 𝛽𝑖𝑗  between a susceptible 

claw of (focal) individual i and an infectious claw of its herd mate j. The transmission 

rate parameter 𝛽𝑖𝑗  from a single infectious claw of individual j with infectivity 𝜑𝑗  to 

one susceptible claw of individual i with susceptibility 𝛾𝑖  is: 

 

𝛽𝑖𝑗 = 𝑐𝛾𝑖𝜑𝑗,                     (Equation 5.1) 

 

where c is the average contact rate. In this expression, average susceptibility and 

infectivity are defined to be one, �̅� = �̅� = 1, so that c represents the transmission 

rate parameters for a typical pair of individuals i and j. In other words, c refers to an 

effective contact rate, not to a physical contact rate.  

When a claw of i is exposed to all infectious claws, the expected rate of infection for 

this claw depends on the susceptibility of i, on the number of infectious claws in the 

group, and on their average infectivity. The total transmission rate equals the sum 

of the rates due to each infectious claw,  

 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖 = 𝑐 𝛾𝑖

∑ 𝜑𝑗𝑗

𝐼𝑔
 

𝐸+ 𝐼𝑡𝑜𝑡

𝑁
.                 (Equation 5.2) 

 

Because not all cows were genotyped, we distinguished between the number of 

claws of infectious individuals that are genotyped, Ig, and the number of claws of 

infectious individuals in total, Itot, in Equation 5.2. The total number of infectious 

claws includes the claws from both genotyped and non-genotyped infectious 

individuals, Itot  Ig. We made the distinction because differences in infectivity could 

only be estimated for the genotyped infectious individuals, while in the transmission 

rate we wanted to account for the non-genotyped infectious individuals as well. 

Therefore, all infectious individuals are included in the last term of Equation 5.2, 

while the summation term, ∑ 𝜑𝑗/𝐼𝑔𝑗 , was calculated over claws of genotyped 

individuals only, and thus represents the average infectivity of the claws of 

genotyped infectious individuals.  

The probability that a susceptible claw becomes infected in an interval depends 

on the number of infectious claws of herd mates at the start (t) of the interval, and 

on their average infectivity. This probability follows from assuming a Poisson process 
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within the interval (∆𝑡), and is the probability of a non-zero outcome from a Poisson 

distribution. This probability follows from Equation 5.2 as, 

 

𝑃𝑖(𝑡) = 1 − 𝑒
−𝑐𝛾𝑖(

∑ 𝜑𝑗𝑗

𝐼𝑔(𝑡)
)

𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡)
∆𝑡

,                  (Equation 5.3) 

 

where, 𝑃𝑖(𝑡) is the probability that a claw of individual i becomes infected (is a case) 

in an interval Δt, and t indicates the start of the interval. Thus, the number of cases, 

Ci(t) = 0, 1, or 2, follows a binomial distribution, with binomial total Fi(t) = 1 or 2, and 

probability given by Equation 5.3.  

Because the probability of being a case follows a Poisson process, the 

complementary log-log is the appropriate link function to connect the explanatory 

variables to the expected probability to become infected (Equation 5.3),  

 

cloglog(𝑃𝑖(𝑡)) = log(𝑐) + log(𝛾𝑖) + log (
∑ 𝜑𝑗𝑗

𝐼𝑔(𝑡)
) + log (

𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡)
𝛥𝑡).  

        (Equation 5.4) 

 

The last term log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝑁(𝑡)
∆𝑡) is the offset, i.e., an “explanatory variable” with a 

fixed regression coefficient of 1. The offset accounts for the infection pressure 

coming from the environment at t, 𝐸(𝑡) 𝑁(𝑡)⁄ , the fraction of infectious claws at t, 

𝐼𝑡𝑜𝑡(𝑡) 𝑁(𝑡)⁄ , and the length of the interval, Δt.  

Details of the calculation of the infection pressure coming from the environment 

are described in Biemans et al. (2017a). In short, claws that are currently infected 

(Itot(t)) contributed fully to the current environmental reservoir, while claws that 

were infected at an earlier stage contributed partly to the current environmental 

reservoir (E(t)). The contribution was assumed to decrease each interval Δt with 

factor λ, which may be interpreted as a survival rate of the pathogen in the 

environment. The survival rate of DD pathogens was estimated to be 0.9 (Biemans 

et al., 2017a). So, the infection pressure from the environment due to a single claw 

that is infectious at time t equalled 0.9 at t+1, 0.92 at t+2, 0.93 at t+3, etc. Thus values 

for E(t) were calculated as,  

 

𝐸(𝑡) = 0.9 (𝐸(𝑡 − 1) + 𝐼𝑡𝑜𝑡(𝑡 − 1)),                 (Equation 5.5)  

 

which is the total contribution of the claws that were infectious at earlier stages to 

the environmental reservoir at time t.  
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For the first interval, calculation of Equation 5.5 requires information on the 

number of infectious claws before observations started. Since this number was 

unknown, we estimated it with linear regression within herd of the number of 

infected claws on the time point, where t = 1 represents the first observation. The 

intercept of the model was used as the average number of infectious claws before 

the first observation (𝐼𝑡𝑜𝑡(𝑡 = 0)), and the value for the environmental reservoir 

before the first observation was estimated as 𝐸(𝑡 = 0) =
0.9

1−0.9
𝐼𝑡𝑜𝑡(𝑡 = 0) (Biemans 

et al., 2017a).  

Equation 5.4 is not linear in infectivity. To solve this issue, we first moved the 

number of infectious claws of cows that were genotyped to the offset, 

 

cloglog(𝑃𝑖(𝑡)) = log(𝑐) + log(𝛾𝑖) + log(∑ 𝜑𝑗𝑗 ) + log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝐼𝑔(𝑡)𝑁(𝑡)
𝛥𝑡). 

 

Subsequently, we approximated log(∑ 𝜑𝑗𝑗 ) by ∑ log(𝜑𝑗)𝑗 , which is equivalent to 

approximating a geometric mean by the corresponding arithmetic mean (Anche et 

al., 2015; Biemans et al., 2017b), so that 

 

cloglog(𝑃𝑖(𝑡)) ≈  log(𝑐) + log(𝛾𝑖) + ∑ log(𝜑𝑗) +𝑗 log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝐼𝑔(𝑡)𝑁(𝑡)
𝛥𝑡).    

         (Equation 5.6) 

 

The final model to test the association between a SNP and the probability of 

infection was based on Equation 5.6, with additional fixed effects for farm, interval, 

parity, and months in milk, and random effects for the interaction between farm and 

interval, and animal. The final GLMM was,  

 

cloglog (𝑃𝑖𝑗𝑘𝑙𝑚(𝑡)) = 𝑐0 +  𝐹𝑎𝑟𝑚𝑘 + 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑚 + 𝑃𝑎𝑟𝑖𝑡𝑦𝑙 + 𝑐1𝑀𝐼𝑀 + 

                                     𝑐2𝑆𝑁𝑃𝑆𝑈𝑆,𝑖 +  𝑐3𝑆𝑁𝑃𝐼𝑁𝐹,�̅� + 𝐹𝑎𝑟𝑚𝑘 . 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑚 +  

                                     𝐴𝑛𝑖𝑚𝑎𝑙𝑖 + log (𝛾𝑖) + ∑ log(𝜑𝑗) +𝑗  

         log (
𝐸(𝑡)+𝐼𝑡𝑜𝑡(𝑡)

𝐼𝑔(𝑡)𝑁(𝑡)
∆𝑡).            (Model 2) 
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Here, 𝑃𝑖𝑗𝑘𝑙𝑚(𝑡) is the expectation of the number of cases over the number of 

susceptible claws of animal i within Δt, 𝐸 (
𝐶𝑖(𝑡)

𝐹𝑖(𝑡)⁄ ). The 𝑐0 is the intercept; Farmk 

is a fixed farm effect (k = A to L); Intervalm is a fixed interval effect (m = 1 to 10); 

Parityl is a fixed effect for parity (l = 1, 2, or >2); 𝑐1 is the fixed regression coefficient 

for months in milk (MIM a continuous variable); 𝑐2 is fixed the regression coefficients 

for susceptibility, where 𝑆𝑁𝑃𝑆𝑈𝑆,𝑖  represents the number of reference alleles of the 

susceptible cow i, and takes values 0, 1, or 2; and 𝑐3 is the fixed regression coefficient 

for infectivity, where 𝑆𝑁𝑃𝐼𝑁𝐹,�̅� represents the average number of reference alleles of 

the infectious claws on a farm, and takes real values between 0 and 2 (Biemans et 

al., 2017b). The random effects were the interaction between farm and interval 

(Farmk.intervalm with k = A to L and m = 1 to 10), a non-genetic animal effect to 

account for repeated observations (Animali), an additive polygenic effect for 

susceptibility of animal i (log(𝛾𝑖), with log(γ)~N(𝟎, 𝐆σa
2), where G is the genomic 

relationships matrix among animals), and an additive polygenic effect for infectivity 

of the infectious group mates j of animal i (∑ 𝑙𝑜𝑔(𝜑𝑗𝑗 ), with log(φ)~N(𝟎, 𝐆σa
2)). The 

last term in model 2 is the offset.   

 

5.2.6 Analyses 

We fitted the linear model for disease status (Table 5.2, trait 1) with ASReml v4.1.0 

(Gilmour et al., 2015). The G-matrix used in ASReml was computed using method 1 

of VanRaden (2008), implemented with calc_grm (Calus and Vandenplas, 2016). We 

fitted the linear models for the other traits (Table 2) with GCTA (Yang et al., 2011) 

for reasons of computing time. In GCTA, the chromosome on which the candidate 

SNP was located was excluded from the calculation of the genomic relationship 

matrix. We fitted the generalized linear mixed model (model 2) with ASReml v4.1.0 

(Gilmour, 2015). SNPs were fitted individually in succession, starting with the first 

SNP on BTA1, following the genome, and ending with the last SNP on BTA29. The 

significance threshold for both models was adjusted for multiple testing, using the 

package qvalue (Storey and Tibshirani, 2003) in R v3.4.0 (R Core Team, 2017) to 

obtain the false discovery rate (FDR). If FDR ≤ 0.30 the association was called 

suggestive, and if FDR ≤ 0.05 the association was called significant. Manhattan plots 

and quantile-quantile plots were created using package qqman (Turner, 2014). 

Phenotypic correlations between traits were calculated in ASReml v4.1.0. A 

correlation plot of the SNP effects was created with the R package 

PerformanceAnalytics (Peterson et al., 2014). 
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5.3 Results 

5.3.1 Trait comparison 

In Table 5.4 are the mean value and the standard deviation of all traits and the total 

number of observations in de dataset. Most traits consisted of one observation per 

cow (1401 observations in total) except disease status and C/F. 

 

Table 5.4. Mean trait value with the standard deviation and the total number of 

observations in de dataset. 

Dependent variable Mean Standard deviation # Observations 

Disease status 1.08 0.90 12195 

Active lesions observed 0.32 0.47 1401 

Fractionactive 0.09 0.18 1401 

FractionM0 0.57 0.41 1401 

FractionM1 0.01 0.05 1401 

FractionM2 0.06 0.14 1401 

FractionM3 0.02 0.07 1401 

FractionM4 0.56 0.38 1401 

FractionM4.1 0.02 0.07 1401 

Fractionfree 0.39 0.40 1401 

C/F1 0.21 0.38 6099 

1 Dependent variable in the generalized linear mixed model. 

 

In Table 5.5 are the phenotypic correlations between the traits analysed with the 

linear model. Mean disease status had a high phenotypic correlation with fractionM0 

(-0.95), fractionM4 (0.93), and fractionfree (-0.95). Furthermore, there were high 

correlations between fractionactive and fractionM2 (0.88), and between fractionM4 and 

fractionfree (-0.95).  
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5.3.2 Fixed effects 

In the linear model there was a significant effect (P < 0.05) for farm, observation, the 

interaction between farm and observation, and parity. The probability to be infected 

with DD increased with observation and with parity (Table 5.6).  

 

Table 5.6. Fixed effects estimates from the linear model on disease status (Trait 1, 

Table 5.2).  

Variable  Coefficient1 Standard error1 

Intercept  1.374 0.102 

Farm A 0.000 0.000 

 B -0.483 0.132 

 C -0.346 0.116 

 D -0.373 0.126 

 E -0.310 0.133 

 F -0.464 0.128 

 G -0.339 0.127 

 H -0.017 0.133 

 I -0.158 0.149 

 J -0.319 0.147 

 K -0.419 0.129 

 L -0.136 0.117 

Observation  1 0.000 0.000 

 2 0.082 0.076 

 3 0.079 0.077 

 4 -0.073 0.076 

 5 0.157 0.077 

 6 0.287 0.076 

 7 0.085 0.075 

 8 0.259 0.076 

 9 0.148 0.076 

 10 0.307 0.076 

 11 0.271 0.077 

Parity 1 -0.395 0.043 

 2 -0.157 0.040 

 >2 0.000 0.000 
1 Estimates were averaged over 75904 analyses. 
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In the GLMM, the farm effect was not significant. The main difference between 

farms was the number of the infectious individuals, which was accounted for by the 

offset. There were significant effects (P < 0.05) for interval, parity, and months in 

milk. The probability of getting infected with DD during an interval increased the first 

six observations and stabilized thereafter. The transmission rate parameter 

increased with increasing parity, it was 21% higher for parity 2 cows compared to 

parity 1 cows, and 69% higher in parity >2 cows compared to parity 1 cows. For 

months in milk, the transmission rate parameter decreased with 4% as months in 

milk increased with one. Higher-order effects of months in milk were non-significant.  

 

5.3.3 SNP effects linear model (susceptibility only) 

For all traits, the quantile-quantile plots and the allele frequency and SNP effects of 

the suggestive SNPs are in the Supplementary material (Figure S5.1 and Table S5.1). 

In the first analysis, we investigated the association of SNPs with the disease 

status of each cow at an observation (Table 5.2). Figure 5.1 shows the Manhattan 

plots of the GWAS for the disease status. There were no significant and no suggestive 

SNPs. 

 

 
Figure 5.1. Genome Wide Association Study for disease status for Digital Dermatitis 

(Trait 1, Table 5.2). Plotted is the position on the chromosome in base pairs against 

the –log10 P-value for each SNP. The data were analysed with a linear model (model 

1).  

 

In the second analysis, we investigated the association of SNPs with the presence 

of an active lesion during the entire observation period (Trait 2, Table 5.2). The top 

panel of Figure 5.2 shows the Manhattan plot of the GWAS for the presence of an 

active lesion. There were no significant SNPs, but there were three suggestive SNPs, 

two on BTA4 and one on BTA21. 
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In the third analysis, we investigated the association of SNPs with the fraction of 

observations a cow had an active lesion (Trait 3, Table 5.2). The bottom panel of 

Figure 5.2 shows the Manhattan plot of the GWAS for fractionactive. There were no 

significant SNPs but there were two suggestive SNPs, one on BTA1 and one on BTA14. 

 

 
Figure 5.2. Genome Wide Association Study for the presence of an active Digital 

Dermatitis lesion during the entire observation period (top) and the fraction of 

observations a cow had an active lesion (bottom) (Trait 3 and 4, Table 5.2). Plotted 

is the position on the chromosome in base pairs against the –log10 P-value for each 

SNP. The data were analysed with a linear model (model 1). The false discovery rate 

was 0.30 for suggestive SNPs (above the blue line).  

 

In the fourth analysis, we investigated the association of SNPs with the fraction 

of observations a cow was scored with a lesion of class Mi (i = 1, 2, 3, 4, or 4.1) (Trait 

4, Table 5.2). Figure 5.3 shows the Manhattan plots of the GWAS for the fractions. 

There were no significant SNPs but there were suggestive SNPs for all fractions 

except for M3. For fractionM0 there were 41 suggestive SNPs, of which 22 were on 

BTA14. For fractionM1 there were eight suggestive SNPS, of which six were on BTA2. 

For fractionM2 there was one suggestive SNP, for fractionM4 there were three 

suggestive SNPs, and for fractionM4.1 there was one suggestive SNP.  
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Figure 5.3. Genome Wide Association Study for the fraction of observations a cow 

received a score of class M0, M1, M2, M3, M4, or M4.1 on at least one claw (Trait 4, 

Table 5.2). Plotted is the position on the chromosome in base pairs against the –log10 
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P-value for each SNP. The data were analysed with a linear model (model 1). The 

false discovery rate was 0.30 for suggestive SNPs (above the blue line).  

 

In the fifth and final analysis, we investigated the association of SNPs with the 

fraction of observations a cow was susceptible, i.e., scored as M0 on both claws (Trait 

5, Table 5.2). Figure 5.4 shows the GWAS for the fraction. There were no significant 

SNPs but there were 76 suggestive SNPs, of which 16 SNPs were located on BTA23. 

Figure 5.4. Genome Wide Association Study for the fraction of observations a cow 

was Digital Dermatitis free, i.e., scored as M0 on both claws (Trait 5, Table 5.2). 

Plotted is the position on the chromosome in base pairs against the –log10 P-value 

for each SNP. The data were analysed with a linear model (model 1). The false 

discovery rate was 0.30 for suggestive SNPs (above the blue line). 

 

Eight SNPs had a suggestive association with multiple traits (Table 5.7). Seven of 

these SNPs were associated with the fraction of the observations a cow was DD-free. 

Two of these SNPs were also associated with the fraction of observations a cow was 

scored as M4, and five with the fraction of observations a cow was scored as M0.  

 

5.3.4 Generalized linear mixed model (susceptibility and infectivity) 

In the GLMM, SNPs were associated with both host susceptibility and infectivity for 

DD, taking variation in exposure of susceptible individuals into account. Figure 5.5 

shows the GWAS for susceptibility and infectivity. There were no significant and no 

suggestive SNPs. The –log10 P-values ranged from 0 to 5.11 for susceptibility, and 

from 0 to 4.35 for infectivity. SNP effects ranged from -0.77 to 0.79 for susceptibility 

and from -13.84 to 14.5 for infectivity. Overall, the standard error for the effects 

were large, particularly for infectivity effects.  
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Figure 5.5. Genome Wide Association Study on host susceptibility and host infectivity 

for Digital Dermatitis. Plotted is the position on the chromosome in base pairs 

against the –log10 P-value for each SNP. The data were analysed with a generalized 

linear mixed model (Model 2). 

 

5.3.5 Model and trait comparison 

Figure 5.6 shows the correlation matrix of the estimated SNP effects for all traits. The 

first ten traits were analysed with the linear model and the last two traits with the 

GLMM. The SNP effects of disease status had a high correlation with fractionM0 (-

0.94), fractionM4 (0.92), and fractionfree (-0.94). The SNP effects of disease status 

analysed with the linear model and susceptibility analysed with the GLMM had a 

correlation of 0.70. Furthermore, the SNP effects of FractionM4 had a high negative 

correlation with fractionfree (-0.95) and with fractionM0 (-0.85), while fractionfree had 

a high positive correlation with fractionM0 (0.84). Additionally, fractionactive had a 

moderate to high correlation with fractionM1 (0.43), fractionM4.1 (0.48), and 

fractionfree (-0.43), while it had a high correlation with fractionM2 (0.89). The SNP 

effects for susceptibility had a moderately high correlation with disease status, 

fractionM0, fractionM4, and fractionfree, whereas infectivity effects had a low 

correlation (between -0.14 and 0.12) with all other traits. 
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Figure 5.6. Visualization of the correlation matrix between the estimated SNP effects 

for all traits analysed. The diagonal shows histograms of the SNP effects, above the 

diagonal are the Pearson correlations coefficients for the SNP effects for different 

traits, and below the diagonal are bivariate scatterplots with a fitted line. The first 

ten traits (Table 5.2) were analysed with a linear model (Model 1), the last two traits 

were analysed with a generalized linear mixed model (Model 2).  

 

5.3.6 Heritabilities 

Heritability estimates ranged from 0.093 (fractionm1) to 0.367 (fractionfree) (Table 

5.8). The standard error of the estimates was small.  
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Table 5.8. Estimated heritabilities for the traits analysed with the linear model 

Trait 𝝈𝑨
𝟐  (SE) 𝒉𝟐 (SE) 

Disease status1 0.2073 (0.0015) 0.28 (0.01) 

Active lesions observed 0.0368 (0.0107) 0.18 (0.05) 

Fractionactive 0.0039 (0.0014) 0.13 (0.05) 

FractionM0 0.0516 (0.0088) 0.15 (0.05) 

FractionM1 0.0002 (0.0001) 0.09 (0.04) 

FractionM2 0.0020 (0.0009) 0.10 (0.04) 

FractionM3 0.0006 (0.0002) 0.16 (0.05) 

FractionM4 0.0446 (0.0073) 0.35 (0.05) 

FractionM4.1 0.0000 (0.0001) 0.01 (0.03) 

Fractionfree 0.0532 (0.0085) 0.37 (0.05) 
1 averaged over 75904 analyses with standard deviation between parentheses. 

 

5.4 Discussion 

We investigated the genetic background of digital dermatitis using GWAS with two 

different models. There were 1401 cows included in the analysis. First, we used a 

linear model to associate SNPs with different host susceptibility traits. There were 

no significant SNPs (FDR < 0.05), but there were 135 suggestive SNPs (FDR < 0.30) for 

eight traits: for active lesion observed during the entire observation period, the 

fraction of observations with an active lesion; the fraction of observations a cow was 

scored with an M0, M1, M2, M4, or M4.1 on at least one claw; and the fraction of 

observations a cow was DD-free. Second, we used a generalized linear mixed model 

to associate SNPs with host susceptibility and infectivity for DD while taking variation 

in exposure of the susceptible cows into account. There were no significant and no 

suggestive SNPs in this analysis. The SNP effects for the trait disease status (linear 

model) had a correlation of 0.70 with the trait susceptibility (GLMM). Heritability 

estimates ranged from 0.09 for fractionm1 to 0.37 for fractionfree. Our results suggest 

that DD is highly polygenic. 

 

5.4.1 Linear model (susceptibility only) 

With the linear model we analysed the fraction of observations a cow presented a 

lesion of class Mi (i = 0, 1, 2, 3, 4, or 4.1). We chose the fraction, rather than the 

number, of observations a cow presented a certain lesion as dependent variable to 

account for the number of times a cow was scored. Observations in which a cow was 

scored with the same lesions on both claws were only counted once. This way of 

counting lesion classes works well for infected claws, i.e., M1, M2, M3, M4, or M4.1, 
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because a cow scored with one of these classes is indeed infected at that 

observation. However, for the class M0 this is not the case. A cow with M0 on one 

claw and an infectious class on the other claw would count as an observation with 

M0, so as an observation at which the cow is susceptible, while in reality the cow is 

also infected. Thus, the fraction of observations with M0 is actually the fraction of 

observations a cow was not infected on at least one of both claws.  

For the fraction of observations scored as M0 on at least one claw, there were 41 

suggestive SNPs, of which 22 SNPs were located on BTA14 between base pairs 

10119721 and 10293408 (Figure 5.3). In this region, three different genes are 

located, HHLA1, OC90, and EFR3A (Table 5.9). The HHLA1 gene has orthologs in 

human and mice, but the function and expression of the gene is unknown in 

mammals (Kowalski et al., 1999). The OC90 gene has orthologs in human and mice 

where it causes secretion of an inner ear protein and is a protein component of 

otoconia (Kowalski et al., 1999). In mice OC90 is expressed in the inner ear and 

affects the balance (Zhao et al., 2008). The ortholog of the EFR3A gene in human is 

associated with autism spectrum disorders (Gupta et al., 2014). Based on the 

orthologs there seems to be no logical direct relation between the genes found in 

this region and DD in dairy cattle.  

For the fraction of observations scored as M0 on at least one claw (Figure 5.3), 

the SNPs located at base pair 41.646.786 and 41.771.165 of BTA19 had a significant 

(P < 0.0005) association with DD status in a previous study, but that study was based 

on 47 cows only (Scholey, 2011). 

 

Table 5.9. Genes on BTA14 in the region with suggestive SNPs, between base pairs 

10119721 and 10293408, for the fraction of observations a cow received score M0. 

Region (BP) Strand Gene symbol Gene description Gene type 

10,106,503-

10,130,802 

Forward HHLA1 HERV-H LTR-

associating 1 

Protein 

coding 

10,106,503-

10,127,283 

Forward HHLA1 HERV-H LTR-

association 1 

Protein 

coding 

10,142,426-

10,166,694 

Forward OC90 Otoconin 90 Protein 

coding 

10,171,320-

10,250,757 

Reverse EFR3A EFR3 homolog A Protein 

coding 
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The phenotypic correlation and the correlation of the SNP effects was high for 

fractionM0, fractionM4, and fractionfree. There is a strong relation between these traits 

because  claws were either susceptible (M0) or M4 the majority of the time they 

were infected (Biemans et al., 2017a).  Furthermore, five SNPs that were associated 

with fractionfree were also associated with fractionM0. The estimates for these SNPs 

were approximately the same. Also, two SNPs associated with fractionfree were also 

associated with fractionM4. As expected, the estimates of the suggestive SNPs were 

opposite (positive vs negative) for these traits. A SNP on BTA12 was associated with 

all of these three traits (Table 5.7). This SNPs is close to muscle blind like splicing 

regulator 2 (MBNL2) (Bae et al., 2010). Multiple species have this gene. It is a protein 

coding gene and plays a role in myotonic dystrophy in humans (Carpentier et al., 

2014). There seems to be no direct relation with DD in dairy cattle. 

 

5.4.2 Generalized linear mixed model (susceptibility and infectivity) 

In the second analysis, we used a generalized linear mixed model (GLMM) to analyse 

the probability that a cow would get infected in the interval between two 

observations. The susceptibility of the focal cow and the infectivity of her group 

mates were in the model as explanatory variables. Furthermore, variation in 

exposure of susceptible cows to infectious group mates was accounted for in the 

offset. There were no SNPs associated with host susceptibility and host infectivity 

(FDR < 0.30).  

We assumed that cows get infected via the environment. The total infectious 

pressure coming from the environment was composed of claws that were infectious 

at the start of an interval, and of claws of cows that were infectious at an earlier 

stage. In the offset we accounted for the total infectious pressure from all previous 

infections observed during the entire experiment. With this offset, the susceptibility 

estimates were corrected for the total variation in infectious pressure. However, the 

estimated infectivity effects of SNPs were based only on those claws that were 

infectious at the start of the interval; we did not consider the genotype of cows that 

were infectious at an earlier stage. Not considering those genotypes reduces the 

power to estimate infectivity effects of SNP, especially when the survival of 

infectious material in the environment is long. For DD, 90% of the infectivity was 

through claws that were infectious at an earlier stage. The power to associate SNPs 

with infectivity will increase when the claws of all cows that contribute to the 

infection pressure are considered. However, in the statistical software we did not 

manage to keep track of all those infectivity genotypes (of infectious claws and of 

previous infectious claws via the environment). Future GLMM on DD transmission 

should be extended to incorporate the infectivity of these claws as well.  
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5.4.3 Model comparison 

We analysed DD-related host traits with a linear model and a GLMM. Heritability 

estimates for DD-related host susceptibility traits ranged from 0.09 (fractionm1) to 

0.37 (fractionfree). Except for the heritability estimate for fractionfree, these estimates 

fall in the same range as heritability estimates for host susceptibility for Digital 

Dermatitis from previous studies (0.04 to 0.29), depending on the model used (Van 

der Waaij et al., 2005; van der Spek et al., 2013; Schöpke et al., 2015) . We only 

estimated heritabilities for the traits analysed with the linear model. Estimating 

heritabilities for traits analysed with a GLMM is not trivial because of the link 

function. With a complementary loglog link function, the estimated genetic variance 

components are on a log-scale. Back transforming these estimates to the original 

scale is possible (e.g., it has been done for GLMM with a logit or a probit link function 

(Roehe and Kalm, 2000)) but the transformation for a complementary loglog link 

function needs to be derived before it can be applied to the estimates in this study. 

Susceptibility effects of SNPs from the GLMM showed a moderately high 

correlation with those for disease status and fractionM4 from the linear model (~0.70; 

Figure 5.6). However, this correlation was clearly smaller than correlations between 

SNP-effects of similar traits analysed with the linear model (e.g., 0.92 between 

disease status and fractionM4 in Figure 5.6). This difference suggests that the GLMM 

captures partly different information than the linear model. One such difference is 

that some of the traits analysed with the linear model may also have captured 

genetic variation in the duration of the infectious period (e.g., disease status and 

fractionM4), which is not captured by the GLMM.  

Suggestive SNPs were found with the linear model, but not with the GLMM. Such 

SNP-effects may reflect true genetic variation, for example in the duration of the 

infectious period, but may also result from violation of model assumptions. The 

linear model analyses assumed a Gaussian distribution of residuals, which was 

clearly not the case. This may have caused the marginal inflation of P-values with the 

linear model, whereas P-values from the GLMM showed no inflation at all (see QQ-

plots in Supplementary Material).  

The GLMM allowed us to correct susceptibility estimates for variation in exposure 

and to include variation in infectivity of the group mates. Anacleto et al. (2015) 

showed that estimates for susceptibility are less accurate when genetic variation in 

infectivity is not accounted for. Therefore, even when infectivity is not the trait of 

interest, it might be beneficial to include infectivity in the model to accurately 

estimate susceptibility (Anacleto et al., 2015). However, the GLMM needs to be 

extended to better account for the full genetic variation in infectivity via the 

environment.  
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5.5 Conclusion 

We associated SNPs with different traits related to DD susceptibility and infectivity 

of the host. We identified 135 suggestive SNPs with a linear model for DD-related 

host traits on 20 chromosomes. We used a generalized linear mixed model to identify 

SNPs for host susceptibility and infectivity, but did not find significant or suggestive 

associations. In contrast to the linear model, in the GLMM variation in exposure of 

the susceptible cow to infectious group mates was accounted for, and genetic 

variation infectivity was estimated as well. The SNP effects for the trait disease status 

(linear model) had a substantial correlation (0.70) with the trait susceptibility 

(GLMM). Heritability estimates ranged from 0.09 for fractionm1 to 0.37 for 

fractionfree. 
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5.8 Supplementary material 

 

Table S5.1. Details on suggestive SNPs. 

Trait BTA BP MAF SNP 

effect 

SE SNP 

effect 

Variance 

explained 

Active 

lesions 

observed 

4 9865958 0.326 -0.0845 0.0187 8.53 

4 9906517 0.340 -0.0849 0.0188 8.78 

21 2534840 0.455 -0.0825 0.0188 9.17 

Fractionactive  1 5629481 0.067 0.0612 0.0134 12.31 
 

14 67961226 0.030 0.0878 0.0195 11.64 

FractionM0 1 69956409 0.195 -0.0721 0.0190 3.10 
 

5 32338737 0.343 -0.0626 0.0163 3.36 
 

6 97217326 0.424 0.0616 0.0160 3.53 
 

9 95836920 0.288 0.0636 0.0169 3.15 
 

11 93192585 0.164 0.0818 0.0209 3.49 
 

11 93206531 0.164 0.0787 0.0209 3.23 
 

11 99663236 0.433 0.0634 0.0155 3.75 
 

12 71831958 0.305 -0.0757 0.0173 4.62 
 

14 10119721 0.386 0.0642 0.0157 3.71 
 

14 10146833 0.408 0.0676 0.0156 4.20 
 

14 10150707 0.408 0.0669 0.0156 4.11 
 

14 10167188 0.408 0.0677 0.0156 4.21 
 

14 10169628 0.407 0.0671 0.0156 4.14 
 

14 10180119 0.405 0.0680 0.0155 4.24 
 

14 10187244 0.406 0.0672 0.0156 4.14 
 

14 10188636 0.408 0.0673 0.0156 4.15 
 

14 10200713 0.386 0.0642 0.0157 3.71 
 

14 10206900 0.386 0.0635 0.0157 3.63 
 

14 10210854 0.396 0.0619 0.0155 3.49 
 

14 10220237 0.407 0.0671 0.0156 4.14 
 

14 10222060 0.407 0.0663 0.0156 4.04 
 

14 10232947 0.408 0.0662 0.0156 4.02 
 

14 10238596 0.408 0.0674 0.0156 4.17 
 

14 10244476 0.407 0.0671 0.0156 4.14 
 

14 10270234 0.359 0.0629 0.0160 3.47 
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14 10271079 0.357 0.0634 0.0160 3.51 

 
14 10281314 0.359 0.0626 0.0160 3.43 

 
14 10283569 0.359 0.0629 0.0160 3.47 

 
14 10292310 0.359 0.0629 0.0160 3.46 

 
14 10293408 0.360 0.0630 0.0160 3.48 

 
19 21823640 0.349 -0.0676 0.0170 3.95 

 
19 41646786 0.184 0.0861 0.0206 4.24 

 
19 41771165 0.185 0.0854 0.0206 4.18 

 
19 42058156 0.447 -0.0586 0.0154 3.23 

 
21 47109228 0.049 0.1622 0.0369 4.69 

 
21 47150404 0.046 0.1620 0.0383 4.36 

 
21 58737991 0.024 0.1910 0.0493 3.19 

 
21 58738055 0.024 0.1932 0.0494 3.27 

 
23 30712904 0.453 0.0637 0.0158 3.82 

 
23 31741848 0.410 0.0625 0.0156 3.60 

 
23 40284986 0.109 0.0968 0.0244 3.45 

FractionM1 1 18244760 0.106 0.0134 0.0032 14.54 
 

2 53268617 0.113 0.0133 0.0032 15.32 
 

2 53268660 0.113 0.0138 0.0032 16.46 
 

2 53293034 0.112 0.0135 0.0032 15.61 
 

2 53307187 0.113 0.0132 0.0032 14.99 
 

2 54236610 0.173 0.0120 0.0026 17.65 
 

2 54257522 0.174 0.0118 0.0026 17.26 
 

16 2444029 0.129 0.0126 0.0030 15.42 

FractionM2 1 5629481 0.067 0.0517 0.0110 16.99 

FractionM4 9 51639398 0.339 -0.0673 0.0151 4.55 
 

9 51639576 0.339 -0.0693 0.0151 4.82 
 

12 71831958 0.305 0.0730 0.0159 5.06 

FractionM4.1 10 12645355 0.029 0.0344 0.0074 168.68 

Fractionfree 1 64378196 0.093 0.0930 0.0256 2.73 
 

1 72956333 0.476 -0.0585 0.0148 3.21 
 

1 1.18E+08 0.049 -0.1315 0.0360 3.01 
 

2 31211042 0.040 0.1408 0.0381 2.84 
 

3 9591430 0.479 0.0602 0.0153 3.40 
 

3 9602457 0.435 0.0601 0.0153 3.34 
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3 9602819 0.474 0.0554 0.0152 2.87 

 
4 21214710 0.377 0.0557 0.0152 2.74 

 
6 81270446 0.231 0.0664 0.0181 2.95 

 
6 83895649 0.202 0.0686 0.0186 2.85 

 
7 15388000 0.271 -0.0657 0.0166 3.21 

 
7 16790531 0.136 -0.0781 0.0217 2.70 

 
7 16811336 0.144 -0.0808 0.0213 3.02 

 
7 26383794 0.311 -0.0615 0.0162 3.04 

 
7 26383840 0.313 -0.0633 0.0161 3.24 

 
7 26681958 0.091 -0.0937 0.0256 2.72 

 
7 26820260 0.191 -0.0740 0.0192 3.18 

 
7 36831104 0.127 0.0864 0.0233 3.11 

 
7 36832260 0.126 0.0881 0.0234 3.22 

 
9 43713692 0.297 0.0600 0.0167 2.83 

 
9 50889943 0.316 -0.0597 0.0164 2.89 

 
9 50892579 0.316 -0.0606 0.0164 2.98 

 
9 51288088 0.227 -0.0704 0.0178 3.27 

 
9 51309233 0.243 -0.0679 0.0172 3.19 

 
9 51556481 0.403 0.0558 0.0148 2.82 

 
9 51639398 0.339 0.0658 0.0161 3.65 

 
9 51639576 0.339 0.0681 0.0161 3.90 

 
9 60005309 0.295 -0.0623 0.0162 3.03 

 
9 60045256 0.379 -0.0601 0.0153 3.20 

 
9 60350738 0.436 0.0553 0.0153 2.83 

 
9 60376659 0.369 0.0581 0.0156 2.95 

 
11 9746998 0.222 0.0695 0.0180 3.13 

 
11 97783769 0.473 0.0574 0.0155 3.08 

 
11 99265744 0.429 0.0581 0.0154 3.10 

 
11 99663236 0.433 0.0661 0.0152 4.04 

 
12 71831958 0.305 -0.0708 0.0169 3.99 

 
12 71943340 0.456 0.0546 0.0151 2.78 

 
12 71945647 0.456 0.0568 0.0150 3.00 

 
14 931162 0.206 -0.0713 0.0190 3.12 

 
14 996982 0.282 -0.0689 0.0167 3.62 

 
14 11287235 0.460 -0.0557 0.0155 2.90 
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15 23597899 0.493 0.0545 0.0149 2.79 

 
15 25668779 0.189 -0.0679 0.0188 2.66 

 
15 44432549 0.430 -0.0594 0.0157 3.25 

 
16 16697956 0.259 0.0660 0.0172 3.14 

 
16 16698099 0.257 0.0655 0.0173 3.08 

 
16 24254945 0.302 -0.0712 0.0172 4.01 

 
16 24938091 0.442 -0.0592 0.0152 3.25 

 
16 27691033 0.365 -0.0675 0.0158 3.97 

 
16 66422597 0.310 0.0592 0.0164 2.82 

 
16 70280355 0.157 0.0761 0.0207 2.89 

 
16 70280639 0.158 0.0759 0.0207 2.88 

 
16 70280803 0.160 0.0741 0.0206 2.77 

 
18 18594407 0.046 0.1287 0.0351 2.71 

 
21 2594377 0.386 -0.0619 0.0164 3.42 

 
21 2637648 0.386 -0.0619 0.0164 3.42 

 
21 47109228 0.049 0.1413 0.0360 3.52 

 
21 47150404 0.046 0.1409 0.0375 3.25 

 
22 517975 0.071 0.1141 0.0305 3.21 

 
23 13536059 0.273 -0.0608 0.0169 2.76 

 
23 14634231 0.397 0.0640 0.0156 3.69 

 
23 28788714 0.440 -0.0562 0.0150 2.93 

 
23 28788841 0.222 -0.0637 0.0176 2.63 

 
23 29745302 0.175 -0.0836 0.0198 3.78 

 
23 30712904 0.453 0.0635 0.0155 3.75 

 
23 30958975 0.346 -0.0690 0.0156 4.05 

 
23 31144592 0.377 -0.0613 0.0157 3.32 

 
23 31741848 0.410 0.0583 0.0153 3.09 

 
23 32213476 0.388 -0.0587 0.0153 3.08 

 
23 32759584 0.056 -0.1178 0.0325 2.74 

 
23 32759797 0.056 -0.1214 0.0321 2.95 

 
23 40284986 0.109 0.0957 0.0239 3.33 

 
23 49662342 0.199 -0.0756 0.0188 3.43 

 
23 49664725 0.200 -0.0721 0.0187 3.12 

 
23 49677937 0.200 -0.0751 0.0188 3.38 

 
26 33733727 0.235 0.0679 0.0185 3.12 
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Figure S5.1. Quantile-quantile plots for the p-values from the genome wide 

association studies for the traits presented in the main text. 
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6.1 Introduction 

The basic reproduction ratio R0 is defined as the average number of secondary cases 

caused by a typical infectious individual in a fully susceptible population (Diekmann 

et al., 1990). The R0 contains information on the ability of an infection to establish 

itself in the population (May and Anderson, 1987). The threshold value is one, if R0 < 

1 an infectious individual will infect on average less than one susceptible individual 

and the disease will die out. If R0 > 1 a major outbreak is possible, and sometimes 

such a disease persists at an endemic level in a population. Any strategy on reducing 

the prevalence level in a population, should aim therefore at reducing R0. Selection 

and breeding for host individuals with desirable traits with respect to infectious 

diseases can be combined with other mitigation methods to achieve a reduction in 

R0.  

Genetic improvement of populations requires estimating breeding values for the 

individuals in the population, and selecting the top individuals to breed the next 

generation. The breeding value reflects the genetic potential of an animal to produce 

offspring superior compared to the current generation. With regard to breeding 

against infectious diseases, we want to define individual breeding values for R0. 

Anche et al. (2014) showed that even though R0 is property of a population, while a 

traditional breeding value is property of a single individual, it is possible to define 

individual breeding values for R0 based on relative differences in host susceptibility 

and host infectivity.  

Since we cannot directly observe the breeding value of an individual, they need 

to be estimated based on phenotype data. The quality of the phenotype data affects 

the accuracy of breeding values. In chapter 2 we quantified the quality of 

susceptibility and infectivity estimates for different SNP effects and recording 

intervals based on simulated phenotype data on disease status. We extended the 

generalized linear model of Anche et al. (2015) and applied it to time series data of 

an endemic disease. We showed that SNP effects were on average underestimated 

and therefore conservative. The power to detect SNP effects was high for 

susceptibility but lower for infectivity. When the total number of observations was 

limited to eleven, the optimal recording interval in our simulated populations was 

similar for susceptibility and infectivity, and around 25 to 50% of the length of the 

average infectious period. 

In chapter 3, we applied the generalized linear mixed model to field data on 

Digital Dermatitis to determine the infectivity of the different disease classes. We 

estimated the length of the infectious period and the distribution of the first 

observed classes after infection. With these elements we estimated the contribution 
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of the different disease classes to R0. The R0 for Digital Dermatitis on these farms was 

estimated to be on average 2.36, to which the chronic state with hyperkeratotic 

lesions and, sometimes, a proliferative aspect (M4) contributed 88.5%.  

In chapter 4, we combined the phenotype data on Digital Dermatitis with 

genotype data of the same animals to estimate relative differences in host 

susceptibility and infectivity and individual breeding values for R0. Genetic variance 

components for susceptibility and infectivity were estimated with four generalized 

linear mixed models, while variation in exposure of the susceptible individuals was 

accounted for via the offset. For each animal, its susceptibility and infectivity 

relatively to the average cow were estimated. For all models, susceptibility estimates 

ranged from 0.26 to 3.45, and infectivity estimates ranged from 0.92 to 1.11. The 

model that included only a genetic effect for susceptibility and no interaction 

between farm and period had the best fit and showed the least bias, but models with 

a genetic infectivity effect showed slightly higher accuracy. The susceptibility 

estimates were used to calculate the individual breeding values for R0. Estimated 

breeding values ranged from 0.62 to 6.68, and 2.7% of the cows had a breeding value 

for R0 < 1.  

In chapter 5, we investigated the association between genetic markers (SNPs) 

and different traits related susceptibility and infectivity for DD. We used a linear 

model to identify SNPs associated with host susceptibility. The susceptibility traits 

were disease status at different time points, the fraction of observations a cow was 

scored with a certain lesion class, and the presence of active lesions. We did not find 

any significant SNPs, but there were 135 suggestive SNPs located on 20 different 

chromosomes. Thereafter, we used the generalized linear mixed model to 

investigate the association between SNPs and susceptibility and infectivity. The 

susceptibility trait was the effect of the cow on the probability that it got infected 

over a two-week period. The infectivity trait was the combined effect of the 

infectious group mates on this probability. We did not find any significant or 

suggestive associations. The SNP effects for susceptibility in the linear model (the 

trait disease status) had a substantial correlation (0.70) with the trait susceptibility 

in the GLMM. Heritability estimates ranged from 0.09 to 0.37 for different 

susceptibility traits. 

These chapters show promising results for lowering DD transmission with 

selective breeding for R0. In this discussion, I will focus first on disease traits that 

were not considered in this thesis. Some traits affect the basic reproduction ratio, 

like the duration of the infectious period and the “indirect infectivity” of a cow via 

the environment. Second, I will address breeding against infectious diseases in 

practice, focussing on the correlation between the estimated breeding value for R0 
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and the estimated breeding values for milk production and DD that are currently 

used. Furthermore, I will address the use of sensor systems for phenotype collection. 

Finally, I will propose an additional explanation for the lack of power to estimate 

differences in infectivity.  

 

6.2 Other disease traits 

6.2.1 Duration of the infectious period 

In this thesis we aimed to develop a method with which individual breeding values 

for R0 can be estimated. These breeding values can be used to reduce disease 

transmission and thus disease prevalence with selective breeding. The parameter 

that determines the prevalence in the endemic equilibrium is R0. The R0 is a function 

of the transmission rate parameter β and the recovery rate parameter α. The β is a 

disease specific parameter that is the product of the contact rate and the 

transmission probability given contact (Roberts and Heesterbeek, 1993). The β 

depends on the susceptibility genotypes of the susceptible animals 𝛾, the infectivity 

genotypes of the infectious animals 𝜑, and the average contact rate c. In a genetically 

homogeneous population, all individuals have the same level of susceptibility and 

infectivity, so there is a single β in the population, 𝛽 = 𝛾𝜑𝑐. In a genetically 

heterogeneous population, individuals can have a different level of susceptibility and 

infectivity, so β may vary between pairs of individuals. Assuming separable mixing, 

i.e., the susceptibility effect of individuals that are susceptible is independent of the 

infectivity effect of individuals that are infectious; the average β in the population 

depends on the average susceptibility and the average infectivity in the population, 

�̅� = �̅��̅�𝑐. The recovery rate parameter α is the probability per unit of time that an 

infected individual recovers (Diekmann and Heesterbeek, 2000). The α determines 

the average duration of the infectious period (
1

𝛼
). The R0 can be calculated as R0 =

𝛽

𝛼
. 

Thus, the R0 can be lowered by lowering (average) susceptibility, infectivity, contact 

rate, or the duration of the infectious period. In this thesis we focussed solely on 

(genetic) variation in host susceptibility and host infectivity, and used this to 

determine variation in R0. However, also (genetic) variation in the duration of the 

infectious period may contribute to variation in R0. Variation in the duration of the 

infectious period exists for DD. In chapter 3 we showed that the duration of the 

infectious period depends on the class-at-infection. If (part of) this variation is due 

to genetics, it is an additional source of heritable variation that affects disease 

transmission.  

The duration of the infectious period affects the infectivity of an animal. The 

longer an animal is infectious, the more susceptible animals it can infect. This effect 
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on infectivity exists next to infectivity 𝜑 that is included in the transmission rate 

parameter β. To make optimal use of all heritable variation in infectivity, variation in 

the duration of the infectious period should be taken into account as well.  

In the following section I try to estimate the genetic variation in the duration of 

the infectious period for each cow from the field data, to have an idea about the 

amount of variation that exists. However, from our dataset it was not possible to 

determine the duration of the infectious period for each cow directly. Some cows 

were already infected when data collection started, and the majority of the cows 

that got infected during data collection was either still infected when data collection 

ended or removed from the population before a recovery was observed. Since the 

data are not perfectly fit for estimating individual duration of the infectious period, 

the following estimates must be interpreted with caution. 

We collected the field data over a period of half a year, with a two-week interval 

between scorings. In total 1513 different cows were observed. Of these cows 220 

animals were never scored with an infectious class (M1, M2, M3, M4, or M4.1), 196 

animals had an infection on only one foot (the other foot remained uninfected), and 

the remaining 1097 animals had an infection on both feet (not necessarily 

simultaneously) at least once. In total 579 cows were scored with an infectious class 

at every observation. The number of times an animal was scored ranged from one 

to eleven, with an average of 8.7 scorings. In Table 6.1 are the number of times cows 

were scored and the fraction of time that cows were scored as infectious. The 

average fraction of observations a cow was scored as infectious was 0.61. When not 

taking the 220 cows into account that where never scored as infectious, the average 

fraction of observations a cow was scored as infectious was 0.71. 

I estimated the amount of genetic variation in the duration of the infectious 

period with ASReml v4.1 (Gilmour et al., 2015), with a simple linear model. The 

fraction of observations a cow was scored as infectious was the dependent variable, 

 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠𝑖𝑗 = 𝑚𝑢 + 𝑓𝑎𝑟𝑚𝑗 + 𝐶𝑜𝑤𝑖 , 

 

where, Fraction infectiousij is the fraction of observations that cow i on farm j was 

scored as infectious, mu is the intercept, farmj is the fixed effect for farm with j = A 

to L, and Cowi is an additive genetic effect for cow i (Cowi ~ N(𝟎, 𝐆σa
2), where G is 

the genomic relationships matrix among cows).  

The genetic estimate for the fraction of time a cow was infectious relative to an 

average cow is 𝛼𝑖
−1̂ =

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅+𝐶𝑜�̂�𝑖

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
=

0.71+𝐶𝑜�̂�𝑖

0.71
, where 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average fraction of observations a cow was scored as 
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infectious without taking the 220 cows that were never infectious into account. The 

𝐶𝑜�̂�𝑖  is the estimated breeding value for the infectious time of cow i. Estimates for 

𝛼𝑖
−1̂ ranged from 0.926 to 1.050. With these estimates the breeding value for R0 was 

calculated analogous to the calculation in chapter 4,  

 

�̂�𝑅0,𝑖 = 𝛾𝑖�̂�𝑖𝑐𝛼𝑖
−1̂. 

 

With an average R0 for DD of 2.36 on these farms (chapter 3) and the average product 

of the estimated relative susceptibility, relative infectivity, and relative infectious 

time, the value for c was calculated. Using the estimates from model 3 in chapter 4 

(this model included only a random genetic effect for susceptibility and no 

interaction between farm and period), 𝑐 =
2.36

�̂�𝑖�̂�𝑖𝛼−1̂̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 2.178. Figure 6.1 is a histogram 

of the estimated breeding values for the basic reproduction ratio for all genotyped 

animals. Estimated breeding values ranged from 0.59 to 6.66. There were 40 cows 

with a �̂�𝑅0,𝑖 < 1 for DD. Three cows that had a �̂�𝑅0,𝑖 > 1 in chapter 4 now have a 

�̂�𝑅0,𝑖 < 1, and one cow that had a �̂�𝑅0,𝑖 < 1 in chapter 4 now has a �̂�𝑅0,𝑖 > 1.  

 

Table 6.1. The number of times cows were scored and the fraction of observations 

cows were scored as infectious.  

Fraction 

of time 

infected 

Times scored  Total 

1 2 3 4 5 6 7 8 9 10 11 

 

 

0 28 14 13 7 16 10 15 20 17 12 68  220 

< 0, 0.1 ] - - - - - - - - - 18 43  61 

< 0.1, 0.2 ] - - - - 5 12 18 15 20 10 37  117 

< 0.2, 0.3 ] - - - 3 - - 7 10 10 10 34  74 

< 0.3, 0.4 ] - - 6 - 6 12 - 6 10 10 23  73 

< 0.4, 0.5 ] - 10 - 7 - 6 5 9 10 9 21  77 

< 0.5, 0.6 ] - - - - 2 - 10 - 6 4 14  36 

< 0.6, 0.7 ] - - 5 - - 4 - 9 5 6 24  53 

< 0.7, 0.8 ] - - - 1 3 - 11 12 15 8 31  81 

< 0.8, 0.9 ] - - - - - 6 11 14 20 16 29  96 

< 0.9, 1.0 > - - - - - - - - - - 46  46 

1.0 17 16 18 16 17 25 41 47 73 59 250  579 

             1513 

Average  0.38 0.52 0.56 0.60 0.47 0.55 0.60 0.60 0.65 0.60 0.64  0.61 
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Figure 6.1. Histogram of the individual breeding values for the basic reproduction 

ratio for all genotyped animals, when genetic estimates for the fraction of time a 

cow was infectious are taken into account. The relative susceptibility used in the 

calculation of �̂�𝑅0,𝑖  was estimated with Model 3 in chapter 4. 

 

To get insight in the potential genetic variation that exist in duration of the 

infectious period, I used a linear model with a fixed farm effect to estimate individual 

values. Including this additional genetic variation had little effect on �̂�𝑅0,𝑖. The 

estimates could improve when additional effects, for example fixed effects for parity 

and months in milk and a random farm effect, were included in the model. However, 

more importantly, the dataset should be improved. Now, the estimate for the 

duration of the infectious time was based on the fraction of observations a cow was 

scored as infectious. These estimates do not directly reflect the actual time a cow is 

infectious, especially the estimates for cows that were only observed one or two 

times. For accurate estimates of the infectious time, the entire infectious period 

from start to end should be observed for each cow. However, this would be highly 

unpractical in a field trial because cows need to be scored regularly and for a long 
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period of time. Automated sensor systems that provide regular data on disease 

status might be a solution (see below section Sensor systems).  

Another point related to dataset quality is the scoring accuracy. When diagnostic 

test are imperfect bias can arise. The quality of a diagnostic test can be assessed by 

comparing the test with its gold standard, and calculating the sensitivity and 

specificity of the diagnostic test. Sensitivity (SE) is the ability of a test to correctly 

identify infected animals, and specificity (SP) is the ability of a test to correctly 

identify animals that are not infected (Lalkhen and McCluskey, 2008). For SE and SP 

< 1.00, heritability estimates will be underestimated, and so is the genetic variance 

(Bishop and Woolliams, 2010). With regard to DD scoring, the milking parlour 

method of Relun et al. (2011) was compared with scoring in a trimming chute (gold 

standard). The SE of parlour scoring ranged from 0.79 to 0.93 and the SP ranged from 

0.67 to 0.92 for absence (M0) versus presence of DD (M1, M2, M3, or M4) when the 

lesion was located on the heel bulb (Relun et al., 2011; Solano et al., 2017). However, 

if lesions were located elsewhere, the SE was below 0.64 (Solano et al., 2017). When 

looking a specific M-classes, the SE for scoring in the milking parlour is low for class 

M1, M2, M3, and M4.1 (0 – 0.62), and high for class M4 (0.82) (Solano et al., 2017). 

Contrary, the SP is high for class M1, M2, M3, and M4.1 (0.96 – 1.00), and moderate 

for class M4 (0.76) (Solano et al., 2017).  

In Chapter 4 and in the calculations on the duration of the infectious period we 

distinguished claws on absence versus presence of DD. SE and SP estimates for this 

trait are relatively high but still smaller than one. Therefore, the observed genetic 

variance might be underestimated. So, the true genetic variance is probably greater, 

which could result in a higher response to selection than expected from the data.  

 

6.2.2 Infectivity of the environment 

In this thesis we assumed that there was an infectious pressure coming from the 

environment to which susceptible cows were subjected. Claws that were infected at 

the start of an interval contributed fully to the total infectious, while claws that were 

infected at an earlier stage could still contribute partly to the total infectious 

pressure. The contribution was assumed to decrease each interval Δt with factor λ, 

which was estimated to be 0.9 (Chapter 3). This means that in the endemic 

equilibrium, the total contribution of claws to infection is 1 + 𝜆 + 𝜆2 + 𝜆3 + ⋯ =
1

1−𝜆
=

1

1−0.9
= 10, to which claws that were infected at an earlier stage contribute 

𝜆

1−𝜆
=

0.9

1−0.9
= 9. Thus, the total infectious pressure is determined for 90% by claws 

that were infected at an earlier stage and only for 10% by claws that were infected 

at the start of an interval. However, genetic individual infectivity estimates were 
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calculated based only on the claws that were infected at the start of an interval, the 

10% of the total infectious pressure. By not take into account who contaminated the 

environment at an earlier stage, we may have disregarded the majority of the 

heritable variation in infectivity. This has probably no large effect on the quality of 

the susceptibility estimates, because they are corrected for variation in the total 

infectious pressure via the offset. However, the quality of the infectivity estimates 

will improve when all claws that contribute to infection (also those that were 

infectious earlier) are considered. Hence, the relevance of genetic variation in 

infectivity may be larger than the estimates presented in chapter 4. 

 

6.2.3 Tolerance, resistance, resilience 

Three disease traits that were not considered in this thesis are tolerance, resistance, 

and resilience. Tolerance is the ability of an animal to maintain performance despite 

being infected, where infection is the colonization of the host with a pathogen 

(Gibson and Bishop, 2005). Tolerance is measured as the change in performance 

following a change in pathogen burden in the animal (Doeschl-Wilson et al., 2012). 

Selection for tolerance is selection against the side effects of infection that affect the 

performance of the animal (Rausher, 2001). Resistance, on the other hand, is the 

ability of a host to resist colonization with a pathogen or to limit the amount of 

pathogens. Resistance is the opposite of susceptibility, a highly resistant animal has 

a low susceptibility and vice versa (Knap and Bishop, 2000). Either tolerance or 

resistance, or a combination of both make an animal resilient (Bisset and Morris, 

1996). Resilience is the performance of an animal irrespective of the exact pathogen 

burden in the animal (Doeschl-Wilson et al., 2012). Selection for resilience is thus 

selection against the side effects of infection, selection against infection itself, or 

both. Selection for tolerance does not necessarily reduce disease transmission, while 

selection for resistance does (Gibson and Bishop, 2005). When defining the breeding 

goal with regard to infectious diseases it is important to consider whether 

maintaining performance (select for tolerance), reducing transmission (select for 

resistance), or both at the same time (select for resilience) is the ultimate goal, and 

which traits fit this goal best.  

 

6.3 Breeding against infectious diseases in practice  

6.3.1 Correlation with other traits 

When a disease is rare or can be easily treated or controlled with other measures 

like adjusting management practises, selective breeding against disease 

transmission might be uneconomical (Stear et al., 2001). Costs for these type of 

diseases are relatively low and do not exceed benefits of a high production level. 
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Therefore, if these disease traits would be included in the breeding goal, they would 

have a relatively low weight compared to, for example, production traits. However, 

when a disease is endemic, persistent, and hard to eradicate, it can cost a farmer a 

lot of time and money especially when these diseases affect productivity of an animal 

over long periods of time. Furthermore, this type of disease can affect the welfare of 

an animal for prolonged periods. In this case, selective breeding can be an additional 

method (next to traditional treatment and control measures) to avoid or reduce cost 

and improve animal welfare. Whether selective breeding against disease 

transmission is economically desirable depends on the weight of this trait in the 

breeding goal and on the correlation of this trait with production traits.  

 

 
Figure 6.2. Estimated breeding value for milk production in kg provided by the 

breeding company against the estimated breeding value for the individual basic 

reproduction ratio estimated in Chapter 4 with Model 3.  
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Here I will investigate the relation between the estimated breeding value for the 

R0 of DD (Chapter 4) and the estimated breeding value for kg milk, estimated by the 

breeding company.  

 

6.3.1.1 Correlation with milk production  

The optimal scenario would be a strong negative correlation, where cows with a 

good (high) estimated breeding value for milk production would also have a good 

(low) estimated breeding value for R0, and vice versa. In the literature, there is no 

indication that cows with a high milk production have a greater risk at developing DD 

(Amory et al., 2008). However, cows affected with DD produce on average 122 kg 

milk less compared to unaffected cows (P = 0.35) (Argáez-Rodríguez et al., 1997). In 

our dataset, the correlation between the estimated breeding value for the basic 

reproduction ratio from chapter 4 and the genomic estimated breeding value for kg 

milk provided by the breeding company was 0.084 (Figure 6.2). So, there is no 

correlation between the estimated breeding value for R0 and the estimated breeding 

value for milk production. Given this value, selection against DD is possible without 

a loss in milk production.     

 
6.3.1.2 Correlation with breeding value for DD 

In Chapter 4 we estimated individual breeding values for the basic reproduction 

ratio. The susceptibility and infectivity of the host were taken into account while 

accounting for variation in exposure. Previous studies on genetic variation 

underlying infectious diseases generally focus on susceptibility only. Disease status 

of the host is linked to the genotype of the host (Woolhouse et al., 1998; Springbett 

et al., 2003). The correlation between the breeding value for digital dermatitis 

estimated by the breeding company and the breeding value for the individual basic 

reproduction ratio was -0.295 (Figure 6.3). So, there is a weak negative correlation 

between the estimated breeding value for R0 and the estimated breeding value for 

DD. A negative correlation was expected because there is a relation between the 

estimated breeding value for DD (susceptibility) and for R0 (in which susceptibility is 

included). Therefore, cows with a good (high) estimated breeding value for DD also 

have a good (low) estimated breeding value for R0. The difference in estimated 

breeding values occurs first because the estimates were based on different datasets. 

Furthermore, in the estimated breeding value for DD variation in infectivity and 

variation in exposure of the susceptible individual are ignored.  
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Figure 6.3. Estimated breeding value for digital dermatitis provided by the breeding 

company against the estimated breeding value for the individual basic reproduction 

ratio estimated in this Chapter 4 with Model 3.  

 

6.3.2 Sensor systems 

The phenotype data that are used in the current breeding program consist of 

trimming records obtained by professional claw trimmers. Both the farmer and the 

claw trimmer determine the amount and accuracy of the phenotype data. All cows 

in a herd are trimmed at the same time, or part of the herd is selected for trimming 

multiple times a year. The farmer selects cows in need of trimming; some cows with 

a claw disorder are not selected, for example because they do not show signs of 

lameness. Furthermore, scoring lameness is subjective, the perception and the skills 

of the farmer determine the quality (Whay, 2002), and the correlation between the 

presence of a claw disorder and lameness score is 0.50 at best (Winckler and Willen, 

2001). The claw trimmers on the other hand, score the disease status of a claw in the 

trimming chute, again there is subjectivity in scoring (Holzhauer et al., 2006). 

Furthermore, cows are only trimmed, and thus scored, by the claw trimmer once or 
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twice a year. However, in Chapter 2 we showed that both susceptibility and 

infectivity are underestimated when the interval between observations is large and 

the number of observations limited. A short observation interval with unlimited 

observations will increase the accuracy of the susceptibility and infectivity estimates. 

The accuracy of these estimates determine the accuracy of R0. So, for accurate 

breeding value estimation for R0, phenotype data must be collected regularly and on 

the whole herd.  

Opportunities lie in the increasing number of sensor systems used on Dutch dairy 

farms. In 2013 about 39% of the farms already had at least one sensor system 

(Steeneveld and Hogeveen, 2015). The most common sensor systems were a mastitis 

detection sensor system that analyse the milk, e.g., somatic cell count sensors, milk 

colour sensors, and electrical conductivity sensors; and a sensor system that detect 

activity, e.g., pedometers (Steeneveld et al., 2015). These type of sensors are an 

opportunity to obtain phenotypic data on disease status on a regular basis. However, 

the actual value of data depends on the sensor system’s output (Rutten et al., 2013). 

For example, the output of mastitis detection sensor systems is informative because 

it gives an indication on a specific disease; but the output from pedometers or 

activity meters is too general to be used directly, because general information on 

walking behaviour or frequency does not indicate a specific disease/claw problem 

(Rutten et al., 2013).  

The development of sensor systems that give detailed information on disease 

status (e.g., lameness) is ongoing. Examples are Pastell and Kujala (2007), who 

measured the leg-load distribution of dairy cattle during milking and used a 

probabilistic neural network model to detect lame cows; Poursaberi et al. (2010), 

who analysed the back posture of walking cows with video processing techniques to 

detect lameness in real time; and Van Hertem et al. (2013), who applied a logistic 

regression model to behavioural and production data to identify lame cows. For 

treatment purposes, regular data on the lameness status of a cow is useful. However, 

for breeding value estimation for lameness, data that is more specific on the cause 

of lameness is needed because lameness can have many causes. Two studies took a 

first step towards DD detection with sensor systems. First, Alsaaod et al. (2014), who 

suggested using infrared thermography to detect inflammation of the foot, which 

could be an indication of a DD infection. By measuring the difference in maximal 

temperature of the coronary band and the skin between rear and front claws, they 

could detect cows with DD on the rear claws only with a sensitivity of 89.1% and a 

specificity of 66.6%. Second, Frössling et al. (2017), who used an ELISA to detect 

Treponema phagedenis–like antibodies in serum and milk samples. For serum 

samples, the sensitivity was 11.7% and the specificity was 100.0% when results were 
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based on three different antigens. For bulk milk samples, the sensitivity was 80.0% 

and the specificity was 100.0%. Thus, the ELISA can distinguish, to some extent, a 

cow/herd with a DD infection from an uninfected cow/herd.   

For accurate DD detection, sensor systems must provide specific, accurate, and 

regular data on disease status. Results of previous studies show that more research 

is need to obtain accurate data on disease status. These type of data on DD status 

will make estimating breeding values for R0 on a large scale possible. 

 

6.4 Estimating susceptibility versus estimating infectivity 

In chapter 2 we showed that the power to detect SNP effects for susceptibility was 

high, but the power to detect SNP effects for infectivity was lower, especially when 

the difference in the allele effect size was small. Furthermore, we showed in chapter 

4 that there is more variation in the relative susceptibility estimates compared to the 

relative infectivity estimates (Figure 6.4).  

Part of the difference in susceptibility and infectivity estimates is because genetic 

differences in infectivity have to be estimated indirectly from the number of 

susceptible group mates that become infected and from the genotype fractions 

among the infected individuals at different points in time. This is especially an issue 

in populations that consist of large groups where there are multiple infected 

individuals at any given point in time. Furthermore, for estimating infectivity, the 

environment plays an important role. We assumed that that the total infectious 

pressure was proportional to the number of infectious cows plus the infectious 

pressure from the environment; saturation of the environment did not occur. In the 

following, I will discuss the implications for estimating infectivity when this 

assumption is not correct.  

In this thesis we assumed that the total infectious pressure is proportional to the 

number of infectious cows. This is in accordance with Kermack and McKendrick 

(1927) who proposed that the chance of an infection in a closed population is 

proportional to the number of susceptible and infectious individuals. The model 

parameters determine the rates with which individuals move through the states, 

 

(𝑆, 𝐼) → (𝑆 − 1, 𝐼 + 1) = 𝛽𝑆𝐼/𝑁  

 

(𝑆, 𝐼) → (𝑆 + 1, 𝐼 − 1) = 𝛼𝐼, 
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Figure 6.4. Relative susceptibility and infectivity for Digital Dermatitis from Model 2 

in Chapter 4 for all genotyped cows. Compared to a cow with average susceptibility 

and infectivity for DD (i.e., susceptibility = infectivity = 1): cows in quadrant I are more 

susceptible and more infectious, cows in quadrant II are less susceptible and more 

infectious, cows in quadrant III are less susceptible and less infectious, and cows in 

quadrant IV are more susceptible and less infectious. One cow is annotated, the 

relative susceptibility is 2.6, thus the cow is 2.6 times more susceptible to DD 

compared to the average susceptible cow, and the relative infectivity is 1.02, thus 

the cow is 1.02 more infectious compared to the average infectious cow. 

 

where S and I both denote the disease status and number of individuals with that 

disease status; S + I = N; β is the transmission rate parameter; and α is the recovery 

rate parameter.  

Around the same time, Greenwood (1931) proposed a stochastic model in which 

the probability that a susceptible individuals will become infected is a constant 



6 General discussion 

 

 

169 

 

(incidence rate), not depending on the number of infectious individuals. With the 

Greenwood assumption (adjusted from Stegeman, 2002), 

 

(𝑆, 𝐼) → (𝑆 − 1, 𝐼 + 1) = 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 ∗ 𝑆  

 

(𝑆, 𝐼) → (𝑆 + 1, 𝐼 − 1) = 𝛼𝐼, 

 

with 0 < incidence rate ≤ 1 for I > 0, and incidence rate = 0 for I = 0. 

  

 
Figure 6.5. Pathogen load against the probability for two susceptible individuals (one 

with a high susceptibility and one with a low susceptibility) to get infected, and the 

probability for two infectious individuals (one with a high infectivity and one with a 

low infectivity) to infect a typical susceptible individual. 

 

Whether one of these two models is correct for modelling DD-transmission is 

unknown. However, the existence of a threshold value for the infectious pressure 

(i.e., pathogen load in the “environment”) could be an additional explanation for the 
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lack of power to detect infectivity effects. Figure 6.5 shows a possible relation 

between the pathogen load in the environment and the probability to get infected, 

or infect an individual in a heterogeneous population. The probability for a 

susceptible individual to get infected increases with increasing pathogen load in the 

environment.  

Differences in susceptibility can exist and be estimated independent of the 

pathogen load. For example, the morphology of a claw can make a cow more or less 

susceptible compared to another cow (Van der Waaij et al., 2005). However, in the 

presence of a threshold, difference in infectivity only be estimated as long as the 

number of infectious individuals is below the threshold, thereafter, the 

“environment” is saturated, the infection probability has reached its asymptote, and 

differences in infectivity are both indistinguishable and irrelevant. Whether such a 

threshold exist for DD is unknown. However, if this is the case, observing 

transmission in small groups of animals could lead to better infectivity estimates, 

provided that the number of infectious animals is small enough for the pathogen 

load to remain below the threshold. In that case, the infection probability has not 

reached its asymptote, so differences in infectivity can exist and thus estimated. 

 

6.5 Closing remarks 

In this thesis we focused on developing methods to estimate genetic variation and 

breeding values from time-series data on an endemic disease. Furthermore, we 

explored the transmission dynamics and genetic variation for DD. We showed that 

phenotypic differences exist between cows (Chapter 3), and that there is substantial 

genetic variation in host susceptibility and infectivity for DD that can be estimated 

(chapter 4). Genomic breeding values for R0 had an accuracy of ~60%. Even though 

the reference population in this study was relatively small, ~1400 genotyped 

individuals, results shows that lowering DD transmission with selective breeding for 

R0 is very promising. Future work should focus on obtaining specific, accurate, and 

regular phenotype data on disease status. These type of data will increase the 

accuracy of the susceptibility and infectivity estimates, and therefore the accuracy 

of R0. The development of specific and accurate sensor system provides an 

opportunity to obtain such data.  Furthermore, they make estimating breeding 

values for R0 on a large scale possible.   
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Summary 

For an infectious disease, the probability that a susceptible individual gets infected 

depends on its own susceptibility, on the number of infected group mates, and on 

the infectivity of those group mates. Susceptibility is the relative risk of a host to get 

infected when exposed to a typical infectious individual, or to the infectious material 

of a typical infected individual in the environment. Susceptibility therefore affects 

the disease status of the focal individual itself. Infectivity is the relative propensity of 

an infected individual to infect a typical susceptible individual. Infectivity, therefore, 

affects the disease status of other individuals rather than of the focal individual itself. 

Susceptibility, infectivity, the contact rate, and the duration of the infectious 

period together determine the basic reproduction ratio (R0). The R0 is the average 

number of secondary cases caused by a typical infectious individual in a fully 

susceptible population. It determines the ability of an infection to establish itself in 

a population. The threshold value is one; if R0 < 1 a typical infectious individual will 

infect on average less than one susceptible individual and the disease will die out 

with certainty. If R0 > 1 a major outbreak is possible, and sometimes such a disease 

may persist in a population. For endemic diseases in homogeneous populations, the 

prevalence in the equilibrium follows from R0 as 1 −
1

𝑅0
. Breeding strategies that aim 

to reduce the prevalence of endemic diseases should thus aim to reduce R0. Because 

R0 depends on both susceptibility and infectivity of the host population, genetic 

variation in both those traits should be taken into account. 

This thesis focusses on Digital Dermatitis (DD) in dairy cattle. DD is an endemic 

infectious claw disease associated with lameness. Lesions form mainly on the hind 

feet above the interdigital space next to the heel bulbs. Because DD is endemic on 

most dairy cattle farms, time-series data on individual disease can be collected, 

which may facilitate genetic selection against DD. In this thesis, we investigated 

transmission dynamics for DD and estimated genetic effects for both host 

susceptibility and host infectivity with different models.  

In chapter 2, we proposed a generalized linear mixed model to estimate SNP 

effects on both host susceptibility and host infectivity from time-series data on 

individual disease status. The model accounted for variation in exposure of 

susceptible individuals to infectious group mates, and for the infectivity genotypes 

of those group mates. We used simulated phenotype data to quantify the quality of 

susceptibility and infectivity estimates for different SNP-effect sizes and recording 

intervals. SNP effects were on average underestimated and thus conservative. The 

power to detect SNP effects was high for susceptibility but lower for infectivity. 

When the total number of records was limited to eleven, the optimal recording 
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interval with respect to statistical power was similar for susceptibility and infectivity, 

and around 25 to 50% of the length of the average infectious period. 

In chapter 3, we applied a generalized linear mixed model to field data on DD to 

estimate the infectivity of the different disease classes. Furthermore, we estimated 

the duration of the different classes and the distribution of the first observed classes 

after infection. We used the infectivity, duration, and distribution to determine the 

contribution of each class to R0. The estimated R0 for DD in our dataset was 2.36. The 

class characterized by irregular skin with dyskeratotis or surface proliferation 

contributed 88.5% to R0. This class contributed so much to R0 mainly because it had 

a high occurrence and a long duration. The infectivity of this class was similar to that 

of the other classes.  

In chapter 4, we combined phenotype data on DD with genotype data of the 

same cows to estimate the heritable variation in host susceptibility and infectivity, 

and individual breeding values for R0. We used four different generalized linear 

mixed models. The model that included only a genetic effect for susceptibility and 

no interaction between farm and period had the best fit. This model did not include 

genetic effects for infectivity, but variation in exposure of susceptible individuals to 

infectious herd mates was accounted for. Genomic estimated breeding values 

(GEBV) for susceptibility ranged from four times less susceptible to about four times 

more susceptible than an average cow. GEBV for infectivity ranged from ten percent 

less infectious to ten percent more infectious than an average cow. GEBV for R0 

ranged from 0.62 to 6.68 while the mean R0 was 2.36.  After correcting for bias, the 

GEBV for R0 showed large variation, six cows had a GEBV smaller than one, and the 

approximate accuracy of the GEBV was ~0.6. These results show that genetic 

selection against DD is very promising; there is substantial heritable variation and a 

meaningful accuracy can be obtained from a limited amount of data.  

In chapter 5, we investigated the association between genetic markers (SNPs) 

and different traits related to susceptibility and infectivity for DD. We used linear 

models to identify SNPs that are associated with different host susceptibility traits, 

and a generalized linear mixed model to identify SNPs that are associated with host 

susceptibility and host infectivity. We did not find any significant associations, but 

identified 135 suggestive associations on twenty different chromosomes for several 

host susceptibility traits with the linear model. We did not find any significant or 

suggestive associations for host susceptibility and infectivity with the generalized 

linear model. The SNP effects for the susceptibility trait disease status in the linear 

model had a substantial correlation (0.70) with the trait susceptibility in the GLMM. 

Heritability estimates for different susceptibility traits ranged from 0.09 to 0.37. 
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In the general discussion (chapter 6), I first discussed disease traits that were not 

considered in this thesis, such as the duration of the infectious period, infectivity via 

the environment, tolerance, and resilience. Second, I addressed breeding against 

infectious diseases in practice, such as the correlation between the estimated 

breeding value for R0 in this thesis with the estimated breeding value for milk 

production and DD that are currently used. Furthermore, I addressed the role that 

sensor systems can play in the collection of phenotype data. Finally, I proposed 

saturation of the environment as an additional explanation for the lack of power to 

estimate infectivity effects. I concluded that (genetic) variation in the duration of the 

infectious period should be taken into account when calculating the breeding value 

for R0, to make optimal use of all heritable variation that exists. I also concluded that 

sensor systems provide an opportunity for specific, accurate, and regular data 

collection on disease status. These data can be used to accurately estimate breeding 

values for R0. Finally, I concluded that infectivity estimates can be improved when 

the role of the environment is taken into account.  
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Samenvatting 

Wanneer een infectieziekte een groep dieren treft, is de kans dat een individu in die 

groep geïnfecteerd raakt afhankelijk van de vatbaarheid van dat dier, van het aantal 

groepsgenoten dat geïnfecteerd is en van de infectiviteit van die groepsgenoten. 

Vatbaarheid is de kans dat een gezond dier geïnfecteerd raakt wanneer het wordt 

blootgesteld aan een infectieuze groepsgenoot, of aan infectieus materiaal dat in de 

omgeving is uitgescheiden door een infectieuze groepsgenoot. Vatbaarheid is dus 

gerelateerd aan de gezondheid van het dier zelf. Infectiviteit daarentegen is de kans 

dat een geïnfecteerd dier een vatbare groepsgenoot infecteert via direct contact of 

via de omgeving. Infectiviteit beïnvloed dus de gezondheid van andere dieren.  

Vatbaarheid en infectiviteit bepalen met onder andere de duur van de infectieuze 

periode de standaardreproductiefactor (R0). De R0 is gedefinieerd als het gemiddelde 

aantal infecties dat wordt veroorzaakt door een dier met een gemiddelde 

infectiviteit in een populatie waarin alle andere dieren vatbaar zijn. De waarde van 

R0 bepaalt of een infectie kan blijven bestaan in een populatie. De drempelwaarde is 

één: als R0 < 1 dan infecteert een infectieus dier gemiddeld minder dan één ander 

dier, waardoor de ziekte zich niet kan verspreiden en zal uitsterven. Als R0 > 1 dan 

infecteert een infectieus dier gemiddeld meer dan één ander dier, waardoor de 

ziekte zich kan verspreiden en grote uitbraken kunnen ontstaan. Maar nog steeds 

blijft de kans bestaan dat de ziekte door toeval uitsterft.  

Een ziekte die over een langere periode in een gelijkblijvend aantal dieren van 

een groep voorkomt noemen we een endemische ziekte. Het gemiddelde aantal 

geïnfecteerde dieren in een groep noemen we de prevalentie. Hoe hoog de 

prevalentie is hangt af van de R0. De prevalentie kan berekend worden als 1 −
1

𝑅0
. 

Om een ziekte in een groep te verminderen moeten we de prevalentie verlagen, en 

daarvoor moeten we focussen op het verlagen van R0. Omdat R0 afhangt van de 

vatbaarheid en infectiviteit van de dieren in een groep zijn beide kenmerken 

belangrijk. 

In dit proefschrift onderzoeken we de mogelijkheid om de prevalentie te verlagen 

door middel van fokkerij. Niet alle dieren hebben dezelfde vatbaarheid, er is variatie. 

Sommige dieren raken voortdurend geïnfecteerd en andere dieren vrijwel nooit. Het 

is mogelijk dat deze verschillen tussen dieren deels door de genetica (het DNA) van 

de dieren worden veroorzaakt. Hetzelfde geldt voor infectiviteit: sommige dieren 

scheiden meer pathogenen uit dan andere, wat deels door de genetica van het dier 

komt. Door dieren te selecteren met een lage vatbaarheid en infectiviteit kan de 

ziekte worden teruggedrongen als met deze dieren gefokt wordt. Bijvoorbeeld 
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doordat de dieren met goede genen niet gemakkelijk geïnfecteerd raken of, zodra ze 

geïnfecteerd raken, de ziekte niet gemakkelijk verspreiden.  

 In dit proefschrift kijken we naar Mortellaro in melkvee. Mortellaro is een 

endemische infectieziekte die op veel melkveebedrijven voorkomt. Koeien die 

geïnfecteerd zijn met Mortellaro hebben laesies op (voornamelijk) de achterpoten. 

Deze laesies zitten op de overgang tussen de klauw en de huid en kunnen pijnlijk zijn 

waardoor de koeien kreupel gaan lopen. Omdat Mortellaro endemisch is, is de ziekte 

voor een langere periode op een bedrijf aanwezig. Daardoor is het mogelijk om over 

een lange tijd informatie over de gezondheid van een koe te verzamelen. Die 

informatie kan gebruikt worden om de vatbaarheid en infectiviteit van een koe te 

schatten; belangrijk voor selectie en fokkerij. In dit proefschrift onderzoeken we hoe 

Mortellaro zich verspreidt en schatten we de genetische effecten voor vatbaarheid 

en infectiviteit met verschillende modellen.  

In hoofdstuk 2 presenteren we een model waarmee SNP-effecten voor 

vatbaarheid en infectiviteit kunnen worden geschat. SNPs zijn plekken op het 

genoom waar variatie voorkomt. SNPs kunnen worden gebruikt als genetische 

merkers waarmee bijvoorbeeld plekken op het genoom kunnen worden opgespoord 

die invloed hebben op de vatbaarheid van een dier. In hoofdstuk 2 hebben we 

infecties in groepen dieren gesimuleerd. Aan de hand van het aantal dieren dat 

geïnfecteerd raakte en de SNPs van deze dieren hebben we de vatbaarheid en 

infectiviteit geschat. Dit hebben we gedaan voor verschillende effectgroottes en met 

observatie-intervallen van verschillende lengte. De effecten van de SNPs werden 

over het algemeen onderschat en zijn dus conservatief; de ware effecten zijn nog 

groter. De optimale duur van het observatie-interval bleek 25% tot 50% van de totale 

duur van de infectieuze periode te zijn.  

In hoofdstuk 3 hebben we het model toegepast op de echte Mortellaro 

waarnemingen. Mortellaro heeft zes verschillende ziekteklassen en met het model 

konden we de infectiviteit van elke ziekteklasse schatten. Daarnaast hebben we de 

duur van elke klasse geschat en bepaald welke klassen direct na infectie 

geobserveerd worden. Met deze informatie konden we de bijdrage van iedere klasse 

aan R0 bepalen. De geschatte R0 in onze dataset was 2.36, een dier met een 

gemiddelde infectiviteit infecteert dus gemiddeld 2.36 andere dieren. De 

ziekteklasse waarin een verstoorde huid wordt waargenomen droeg 88.5% bij aan 

R0. De hoge bijdrage van deze klasse werd voornamelijk veroorzaakt door de lange 

duur; de infectiviteit van deze klasse kwam overeen met die van de andere klassen.  

In hoofdstuk 4 hebben we de Mortellaro-waarnemingen gecombineerd met 

genetische informatie van dezelfde koeien, met als doel de fokwaardes voor R0 en 

de genetische variatie in vatbaarheid en infectiviteit te schatten. Daarvoor hebben 
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we vier verschillende modellen gebruikt. Het beste model was het model met een 

genetisch effect voor vatbaarheid maar zonder een genetisch effect voor 

infectiviteit. In de modellen corrigeerden we voor de variatie in het aantal 

infectieuze dieren waaraan een vatbaar dier werd blootgesteld. De fokwaarden voor 

de vatbaarheid van koeien varieerden van vier keer minder vatbaar tot vier keer 

meer vatbaar dan een gemiddelde koe. De fokwaarden voor de infectiviteit van 

koeien varieerden van tien procent minder infectieus tot tien procent meer 

infectieus dan een gemiddelde koe. De fokwaarde voor R0 varieerde van 0.62 tot 

6.68 met een gemiddelde van 2.36. Deze resultaten laten zien dat genetische selectie 

tegen Mortellaro veelbelovend is; er is voldoende genetische variatie, en zelfs met 

een beperkte dataset hebben de waarden een beduidende nauwkeurigheid. 

In hoofdstuk 5 hebben we de relatie tussen SNPs en vatbaarheid en infectiviteit 

onderzocht. We hebben 135 suggestieve associaties op twintig verschillende 

chromosomen gevonden met een lineair model. De effecten van het kenmerk 

infectiestatus en het kenmerk vatbaarheid waren substantieel gecorreleerd (0.70). 

De erfelijkheidsgraden van verschillende vatbaarheidskenmerken varieerden van 

0.09 tot 0.37. 

In de algemene discussie (hoofdstuk 6) bediscussieer ik allereerst 

ziektekenmerken die in dit proefschrift niet aan bod gekomen zijn, zoals de duur van 

de infectieuze periode, infectiviteit via de omgeving, tolerantie etc. Daarna bespreek 

ik de correlatie tussen de geschatte fokwaarden voor R0 uit dit proefschrift en de 

geschatte fokwaarden voor melkproductie en Mortellaro die in de praktijk worden 

gebruikt. Verder bespreek ik de mogelijkheden die sensorsystemen bieden voor het 

doen van waarnemingen. Ten slotte opper ik dat het moeilijk kunnen schatten van 

infectiviteit wellicht komt door verzadiging van de omgeving. Ik concludeer dat de 

(genetische) variatie in de duur van de infectieuze periode moet worden 

meegenomen in de fokwaardeschatting van R0, dat met sensorsystemen regelmatig 

specifieke en accurate gegevens over de gezondheid van een dier verzamelend 

kunnen worden en dat de schattingen voor infectiviteit verbeterd kunnen worden 

wanneer de rol die de omgeving speelt wordt meegenomen in de berekening.  
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