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Abstract 

Social interactions are common for all living organisms. In animal breeding, these 

interactions are of interest as they are often a source of indirect genetic effects 

(IGEs). An IGE is a heritable effect of an individual on the trait value of another 

individual. In aquaculture populations and some plants, social interactions have an 

additional consequence – interactions in the form of competition inflate variability 

of trait values among individuals. The phenotypic variability of a genotype has been 

studied as a quantitative trait in itself, and is often referred to as inherited variability. 

The main objective of this thesis was to study the genetics of inherited variability, 

with a focus on the relationship between competition (i.e., IGEs) and variability.  

In the thesis, we used Nile tilapia as a model species. We found that variability of 

body weight and body size traits in Nile tilapia is heritable, and shows a large genetic 

coefficient of variation, which offers good opportunities for improvement of 

uniformity by means of genetic selection.  

To study the genetic relationship between social interactions and variability, we 

developed a quantitative genetic model that integrates both phenomena. In this 

model, interactions between social partners lead to divergence (competition) or 

convergence (cooperation) of their phenotypes (e.g., body weight) over their life 

time. The effects of social interaction in the model are heritable and can evolve. 

These effects comprise direct genetic effect of the focal individual and IGE of its 

social partner. With a simulation study we showed that the model yields increased 

variability of body weight with increase of competition, similar to what is observed 

in real aquaculture populations. Selection for cooperation will therefore lead to 

decreased variability. These findings suggest that IGEs may be creating an entire level 

of genetic variation in variability, that has so far been overlooked. Using existing 

statistical models, we show that direct genetic effects of competition on variability 

could be captured with a direct model of inherited variability, and similarly, IGEs of 

competition could be captured with an indirect model of inherited variability.  

According to kin selection theory individuals should show better social behavior, i.e., 

less competition, towards relatives, which should be reflected in their body weight 

and the variability thereof. We tested this hypothesis by comparing two treatments 

in an experiment, in which tilapia were reared in either kin or in non-kin groups. 

Individuals had significantly higher body weight in kin groups, however, there was 

no difference in variability of body weight between the two treatments.  

Findings of this thesis demonstrate that variability of body weight in tilapia is 

heritable and that genetic variation in variability may comprise not only direct 

genetic effects but also IGEs. Studies focusing on evolution of variability/uniformity, 

therefore, should consider IGEs. 
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1.1 Social interactions 

Many traits that are important for agriculture are complex quantitative traits. In 

animal breeding, it is desirable to improve these traits by means of genetic selection. 

A complete understanding of the potential of a trait to respond to selection requires 

identifying all sources of genetic variation underlying the trait. Traditional selection 

methods only consider the direct genetic effects (DGEs) of an individual’s own genes 

on the phenotypic value of the individual. The environmental effects on a trait 

expression are generally assumed as non-heritable, and therefore not able to evolve 

by selection. In certain cases, however, the environment itself may have a genetic 

basis. This alters the genetic architecture and inheritance of a trait.   

Animals are social beings who spend the majority of their lifetime engaged in 

interactions with conspecifics (Allee, 1927). These social interactions are often the 

most important part of the environment that individuals experience (Wolf, 2003; 

Frank, 2007). The environment created by social partners through actions such as 

competition or cooperation, is referred to as the social environment. Variation in the 

quality of the social environment can be attributed to traits expressed by social 

partners. Since these traits may reflect genetic variation, the socially provided 

environment can be heritable (Wolf et al., 1998; Bleakley and Brodie IV, 2009). The 

most extensively studied example of heritable environmental effects is the 

environment provided by a mother to her offspring (Dickerson, 1947; Willham, 1963; 

Falconer, 1965; Kirkpatrick and Lande, 1989; Cheverud, 2003; Bijma, 2011).  

When the environment contains a genetic component, the phenotype of an 

individual may not only be influenced by its own genes (DGEs), but also by genes of 

its social partners. This heritable effect of a social partner on trait values of the focal 

individual is known as an indirect genetic effect (IGE; referred to as associative 

effects in Griffing, 1967). IGEs give rise to additional genetic (co)variation, which has 

consequences for trait values and fitness of individuals that interact, and 

subsequently for the direction and magnitude of response to selection (e.g. 

Hamilton, 1964; Moore et al., 1997; Wolf et al., 1998).  

IGEs have been studied in animals (e.g. Ellen et al., 2014), plants (e.g. Mutic and Wolf, 

2007; Brotherstone et al., 2011), and microorganisms (Crespi, 2001), and both in 

natural (e.g. Wilson et al., 2011) and in domestic populations (e.g. Muir, 1996; Khaw 

et al., 2016). A number of studies have shown that social interactions can contribute 

substantially to heritable variation underlying a trait (reviewed by Ellen et al., 2014). 
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For animal breeders, social interactions with negative effect on trait values, health, 

and welfare, are especially of interest. Such interactions have been well-documented 

for laying hens, where cannibalistic behavior causes mortality (Muir, 1996; Ellen et 

al., 2008), and for pigs, where competition and tail biting leads to poorer growth and 

reduced animal welfare (Arango et al., 2005; Camerlink et al., 2013, 2014; Bergsma 

et al., 2013). In fish species, social interactions such as aggression and competition 

have been studied for their detrimental effect on growth of the population (medaka, 

Ruzzante and Doyle, 1991; Atlantic cod, Monsen et al., 2008; Nile tilapia, Khaw et al., 

2016). 

In summary, both empirical and theoretical work show that IGEs can considerably 

contribute to the potential of traits to respond to selection, and therefore need to 

be included in the genetic analysis of traits affected by social interactions. 

1.2 Social interactions and inherited variability  

So far, social interactions have been studied mainly in relation to their effects on 

fitness and trait values of individuals. However, in aquaculture populations, it has 

been observed that competition for feed and formation of social hierarchy also 

increases the variation of trait values among individuals (Jobling, 1995; Cutts et al., 

1998; Hart and Salvanes, 2000). The variability of trait values of a genotype, 

measured either on the same individual multiple times, or on multiple individuals 

belonging to the same family, can be studied as a quantitative trait on its own. This 

phenomenon is often referred to as inherited variability, genetic variation in 

uniformity, or heritable variation in environmental variance (SanCristobal-Gaudy et 

al., 1998; Mulder et al., 2008; Hill and Mulder, 2010). Genetic variation in trait 

variability suggests that some individuals are less sensitive to small fluctuations in 

the environment, which allows them to maintain a stable phenotype. 

The study of inherited variability has been an integral part of quantitative genetics 

for more than 70 years (Waddington, 1942), with growing interest in the topic over 

the last two decades, largely due to the development of methods to estimate genetic 

variance in variability (SanCristobal-Gaudy et al., 1998; Sorensen and 

Waagepetersen, 2003; Mulder et al., 2009; Rönnegård et al., 2010) and increasing 

empirical evidence for a genetic basis of variability in livestock, aquaculture, and 

laboratory populations (reviewed by Hill and Mulder, 2010). In addition, variability is 

an important economic trait in animal production, which further stimulated the 

research in this area.  
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In aquaculture, uniformity of body weight has recently been identified as one of the 

most important traits to be improved by selective breeding (Sae-Lim et al., 2012; 

Janssen et al., 2017; Omasaki et al., 2017). Studies in Atlantic salmon, rainbow trout, 

and Nile tilapia found a large genetic component in variability of body weight 

(Janhunen et al., 2012; Sonesson et al., 2013; Khaw et al., 2015; Sae-Lim, et al., 

2015a; Sae-Lim, et al., 2015b; Marjanovic et al., 2016). 

The relationship between competition and phenotypic variability is not unique for 

aquaculture, but can also be observed in plants. Plant breeders have successfully 

improved productivity of crops by selecting, partly unintentionally, less competitive 

phenotypes, which has resulted in more uniform crops (Donald, 1968; Austin et al., 

1980; Denison et al., 2003).  

These observations suggest that phenotypic variability may also be socially affected 

trait, with IGEs harboring genetic variation in variability that has so far been 

overlooked.  

1.3 Models of IGE and inherited variability 

The quantitative genetics of socially-affected traits have been studied in two 

modelling frameworks: variance component models and trait-based models 

(McGlothlin and Brodie, 2009; Bijma, 2014).  

In variance component models, the phenotype of the focal individual i (𝑃𝑖 ) who 

interacts with a single social partner j, is the sum of a direct genetic (𝐴𝐷,𝑖) and a 

direct environmental (𝐸𝐷,𝑖) component originating from the focal individual, and an 

indirect genetic (𝐴𝐼,𝑗) and an indirect environmental (𝐸𝐼,𝑗) component originating 

from its social partner j (Griffing, 1967): 

𝑃𝑖 = 𝐴𝐷,𝑖 + 𝐸𝐷,𝑖 + 𝐴𝐼,𝑗 + 𝐸𝐼,𝑗   (1) 

In this approach, DGEs and IGEs are estimated as random effects using linear mixed 

models and information on genetic relationships between individuals (Muir, 2005; 

Bijma, Muir, Ellen, et al., 2007). When all individuals are both donor and recipient of 

social interactions, each individual has a direct genetic effect 𝐴𝐷,𝑖, i.e., a direct 

breeding value expressed in its own phenotype, and an indirect breeding value 𝐴𝐼,𝑖, 

expressed in the phenotype of its social partner. The sum of 𝐴𝐷,𝑖  and 𝐴𝐼,𝑖 , i.e., the 

total breeding value, represents the total heritable impact of an individual on the 

population mean trait value, and the genetic unit of interest in the selection of 
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individuals for socially affected traits (Moore et al., 1997; Bijma, Muir, and Van 

Arendonk, 2007). 

The second type of IGE models, i.e., the trait-based models, define IGEs on the 

phenotype of the focal individual as a function of trait values of its social partners 

(Moore et al., 1997; Wolf et al., 1998; Bijma, 2014). For example, the level of 

aggression displayed by focal individual is often affected by body weight of its social 

partner (Thornhill, 1984; Smith and Brown, 1986). Therefore, for empirical use of this 

model, the traits causing the indirect effects need to be identified. If we consider 

interaction of two individuals, where the target trait and the trait causing the IGE are 

the same, the trait-based model equals (Moore et al., 1997) 

𝑃𝑖 = 𝐴𝑖 + 𝐸𝑖 + 𝜓 𝑃𝑗   (2) 

where 𝑃𝑖  is the phenotypic value of the focal individual i, 𝐴𝑖  is the additive genetic 

effect and 𝐸𝑖  the environmental effect originating from the focal individual, while 𝑃𝑗  

is the phenotypic value of its social partner j. The 𝜓 is known as the “interaction 

coefficient”, and it defines the strength of the social interaction. The 𝜓 can take 

positive or negative value, and is assumed constant in the population.  

Both types of IGE models, however, cannot fully make the connection between 

competition and variability observed in aquaculture and plant populations, since 

they model phenotypic variance as largely independent of the level of IGEs (for 

further explanation see General discussion - Chapter 6). In addition, observations 

from aquaculture suggest that behavior of a fish towards its social partners depends 

on its size relative to that of its partners. Therefore, to account for the competitive 

effect of body weight on growth rate in aquaculture, evolution of body weight needs 

to be modelled over the life of the interacting individuals. Current IGE models, 

however, are only applied to the final phenotype.  

Quantitative genetics of inherited variability is most commonly studied using a class 

of models which allow for genetic effects on both the phenotypic mean and the 

environmental or residual variance of a trait. In the classical quantitative genetic 

model variation in a phenotype is defined as 𝜎𝑃
2 = 𝜎𝐴

2 + 𝜎𝐸
2 (Falconer and Mackay,

1996), where 𝜎𝐴
2 is the additive genetic variance affecting the mean trait value and

𝜎𝐸
2 is the environmental variance, assumed to be constant for different genotypes.

However, when phenotypic variability differs among genotypes, part of that 

difference may be attributed to genetic variation in environmental variance, i.e. 

𝜎𝐸
2 = 𝐴𝑣 + 𝐸𝑣 , where 𝐴𝑣 is the breeding value for environmental variance and 𝐸𝑣 is
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the residual in environmental variance. Models for inherited variability, however, 

consider variability as a property of the focal individual, affected only by direct 

genetic effects, while the potential contribution of the social partner is ignored.  

In terms of available quantitative genetic models, social interactions and variability 

are poorly connected. Therefore, there is a need for new models to understand the 

relationship between competition and variability observed in aquaculture and plants 

populations, and the potential of inherited variability to respond to selection. 

1.4 Aim and outline of the thesis 

The observed relationship between social interactions and variability on the 

phenotypic level (Jobling, 1995; Cutts et al., 1998; Hart and Salvanes, 2000; Denison 

et al., 2003) strongly suggests an underlying genetic relationship between the two 

phenomena, of which very little is known. The main objective of this thesis, 

therefore, was to study the genetics of inherited variability and possibilities for its 

genetic improvement, focusing primarily on the relationship between competition 

and variability.  

Research presented in this thesis is a result of collaboration between Wageningen 

University & Research and Swedish University of Agricultural Sciences, in 

cooperation with WorldFish. WorldFish provided the data for Chapter 2 and the 

experimental facilities used to generate data for Chapter 5. Previous collaboration 

between Wageningen University & Research and WorldFish resulted in a PhD project 

which aimed to estimate direct and indirect genetic effects on growth rate in Nile 

tilapia (Khaw, 2015). This thesis builds on that knowledge, but primarily focuses on 

relationship between social interactions and variability. The large size differences 

related to competition for feed, together with the desire to reduce these differences 

by means of genetic selection (Ponzoni et al., 2005, 2011; Khaw et al., 2016), makes 

Nile tilapia an ideal species to study the relationship between social interactions and 

variability. Therefore, Nile tilapia was also used as a model species in this thesis.  

In Chapter 2 we investigate the potential for genetic improvement of inherited 

variability of harvest weight and body size traits in a domestic Nile tilapia population. 

We analyzed within-family variance of harvest weight, body length, depth, and 

width, by applying a double hierarchical generalized linear models (DHGLM) to 

individual trait values (Rönnegård et al., 2010). In addition to quantifying genetic 

variation in inherited variability of those traits, we also looked into possibilities of 
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simultaneous improvement of the level and the variance of the traits, by estimating 

the genetic correlation between these two components.  

Observations from aquaculture and plant populations indicate that inherited 

variability and IGEs are related via competition (Donald, 1968; Austin et al., 1980; 

Jobling, 1995; Cutts et al., 1998; Hart and Salvanes, 2000; Denison et al., 2003). The 

absence of quantitative genetic models to study the effects of competition on 

variability, however, hinders further research. In Chapter 3 we make a first step 

towards understanding the genetic relationship between social interactions and 

variability, by presenting a quantitative genetic model that integrates both 

phenomena. Furthermore, we use Monte Carlo simulation to demonstrate that the 

model produces the co-evolution of social interactions and variability observed in 

real populations. 

To exploit genetic variation in inherited variability originating from IGEs, we need 

statistical models to capture this effect. To our knowledge, however, it is entirely 

unknown to what extent currently available statistical models capture the effect of 

competition on inherited variability. We address this issue in Chapter 4 by 

investigating the ability of existing statistical models for inherited variability and for 

the phenotype itself, to capture the direct and indirect genetic effects of competition 

on variability.  

According to kin selection theory, genetic relatedness should influence social 

behavior, because individuals able to interact differently with kin vs. non-kin would 

have higher inclusive fitness (Hepper, 1986). In many animal species, relatives show 

better social behaviors to each other than to unrelated conspecifics, such as food 

sharing and reduced aggressiveness (Kareem and Barnard, 1982; Hepper, 1986; 

Hiscock and Brown, 2000; Gerlach et al., 2007). Moreover, some studies have shown 

that rearing in kin groups can significantly increase growth of individuals (Brown and 

Brown, 1996; Gerlach et al., 2007). Since interaction with kin leads to evolution of 

less competition (Bijma and Wade, 2008), the effect should also be seen in the 

variability of trait values. However, little is known of the ability of Nile tilapia to 

recognize kin, and therefore, whether the evolutionary mechanism of kin selection 

can be used to increase yield and decrease variability in this species. In Chapter 5 we 

conducted an experiment to investigate effects of relatedness in Nile tilapia, by 

comparing two treatments: rearing of fish in kin groups vs. rearing in non-kin groups. 

We investigated differences in average body weight and variability of body weight of 

individuals between both treatments.  
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The general discussion, Chapter 6, addresses several topics. First, I elaborate on 

integrating the two fields in quantitative genetics, social interactions and inherited 

variability. Second, I discuss benefits and downsides of selection for uniformity in 

domestic and natural populations. Finally, I give perspectives for selection for 

uniformity, future studies, and possible applications of the model developed in 

Chapter 3. 
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Abstract 

Animal breeding programs have been very successful in improving the mean levels 

of traits through selection. However, in recent decades, reducing the variability of 

trait levels between individuals has become a highly desirable objective. Reaching 

this objective through genetic selection requires that there is genetic variation in the 

variability of trait levels, a phenomenon known as genetic heterogeneity of 

environmental (residual) variance. The aim of our study was to investigate the 

potential for genetic improvement of uniformity of harvest weight and body size 

traits (length, depth, and width) in the genetically improved farmed tilapia (GIFT) 

strain. In order to quantify the genetic variation in uniformity of traits and estimate 

the genetic correlations between level and variance of the traits, double hierarchical 

generalized linear models were applied to individual trait values. Our results showed 

substantial genetic variation in uniformity of all analyzed traits, with genetic 

coefficients of variation for residual variance ranging from 39 to 58 %. Genetic 

correlation between trait level and variance was strongly positive for harvest weight 

(0.60 ± 0.09), moderate and positive for body depth (0.37 ± 0.13), but not 

significantly different from 0 for body length and width. Our results on the genetic 

variation in uniformity of harvest weight and body size traits show good prospects 

for the genetic improvement of uniformity in the GIFT strain. A high and positive 

genetic correlation was estimated between level and variance of harvest weight, 

which suggests that selection for heavier fish will also result in more variation in 

harvest weight. Simultaneous improvement of harvest weight and its uniformity will 

thus require index selection. 

Key words: genetic correlation, residual variance, Nile tilapia, additive genetic 

variance, trait level 
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2.1 Introduction 

In animal breeding, particular attention is paid to improving the mean level of traits 

through selection and this has been successful for many breeding programs. One 

such successful example is the genetically improved farmed tilapia (GIFT) project, 

which was led at WorldFish (http://www.worldfishcenter.org) and resulted in a line 

of tilapia known as the GIFT-strain. For this strain, a substantial realized genetic gain 

(>100 %) was achieved through 12 generations of genetic improvement for body 

weight at harvest (Ponzoni et al., 2011; Khaw, 2015). However, it is often desirable 

not only to improve the level of a trait, but also to reduce its variability (Mulder et 

al., 2008; Pun et al., 2013), because significant variation around the optimal value of 

a trait can have a negative impact on production performance, both in livestock and 

aquaculture (Cutts et al., 1998; SanCristobal-Gaudy et al., 2001a; Mulder et al., 

2008). In fish farming, differences in size among individuals are generally associated 

with competition for food within a group and the resulting feeding hierarchy (Jobling, 

1995; Cutts et al., 1998; Hart and Salvanes, 2000). The phenotypic coefficient of 

variation (CV) for body weight, apart from indicating variation of the trait is also an 

indicator of competitive interactions within a population (Jobling, 1995). For the GIFT 

strain, the CV ranges from 40 to 60 %, which is considered a high value (Ponzoni et 

al., 2005). 

Although good management during the grow-out phase can help reduce the CV, as 

noted by Ponzoni et al. (2011), its average value across eight generations of GIFT 

remained at around 40 %. A common approach in fish farming to decrease 

phenotypic variation in body size and weight is to grade or sort fish into groups, 

according to size. If fish are not graded, the large variation in weight and size at 

harvest reduces their market value and has animal welfare consequences (Sae-Lim 

et al., 2012; Khaw, Ponzoni, Yee, Aziz, Mulder et al., 2016). From the point of view of 

fish farmers, uniformity of growth and body size is one of the key traits to be 

improved (Sae-Lim et al., 2012). From the consumer’s point of view, weight but also 

body size and appearance traits, play an important role in buying decisions (Kause et 

al., 2003; Blonk et al., 2010; Colihueque and Araneda, 2014). 

An alternative approach to management procedures for reducing the variability of a 

trait is selective breeding. Selection for more uniform individuals requires that the 

variability of the trait itself has a genetic component, i.e., that there is genetic 

variation, which is also known as genetic heterogeneity of environmental (residual) 

variance (SanCristobal-Gaudy et al., 1998; Sorensen and Waagepetersen, 2003). In 
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this case, within a population, some animals will be less prone than others to 

phenotypic changes in response to small environmental fluctuations, and thus will 

have a more stable performance. Several studies on livestock and laboratory animals 

have demonstrated the existence of genetic differences in residual variance among 

genotypes and have quantified their magnitude (Ibáñez-Escriche et al.; SanCristobal-

Gaudy et al., 2001b; Damgaard et al., 2002; Sorensen and Waagepetersen, 2003; 

Gutiérrez et al., 2006; Rowe et al., 2006; Ibáñez-Escriche et al., 2008; Ibáñez-Escriche 

et al., 2008; Garreau et al., 2008; Mulder et al., 2009; Waddington, 2009; Rönnegård 

et al., 2013; Vandenplas et al., 2013). In aquaculture species, evidence for substantial 

genetic heterogeneity of residual variance comes from three studies on body weight 

in salmonids (Janhunen et al., 2012; Sonesson et al., 2013; Sae-Lim et al., 2015). A 

previous study on uniformity in Nile tilapia that analyzed the standard deviation of 

harvest weight using a traditional linear mixed model indicated a genetic basis for 

variability of harvest weight (Khaw, Ponzoni, Yee, Aziz, Mulder et al., 2016). 

However, to date, variability of harvest weight in Nile tilapia has not been analyzed 

at the variance level using double hierarchical generalized linear models (DHGLM). 

The DHGLM is a novel approach which can be used to study uniformity of individual 

trait values. The advantage of DHGLM compared to analyzing a variance or the 

standard deviation of a group is that it can take into account systematic effects on 

the variance of the individual record level such as sex of the fish. Genetic basis of 

variability of body size traits has not been explored in any species, except in humans 

for height (Yang et al., 2012). 

The main objective of our study was to investigate the potential for genetic 

improvement of uniformity of harvest weight and body size traits in the GIFT strain. 

For this purpose, we analyzed within-family variance of harvest weight, body length, 

depth, and width, by applying a DHGLM to individual trait values (Rönnegård et al., 

2010). To quantify the genetic relationship between the level and the variance of 

these traits, we also estimated the genetic correlation between these two 

components. 

2.2 Materials and methods  

 

2.2.1 Environment 

We used data that were obtained from an experiment that was specifically designed 

to estimate indirect genetic effects (IGE) for growth rate in the GIFT strain (Khaw, 

Ponzoni, Yee, Aziz and Bijma, 2016). This experiment was carried out between 2009 
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and 2012 at the Jitra Aquaculture Extension Centre of the Department of Fisheries, 

which is managed by WorldFish and located at Kedah State of Malaysia. WorldFish 

complies with the Malaysian laws on animal experiments. During this experiment, 

four batches of fish were produced, i.e., one batch each year (batch named per year). 

However, for the last batch (2012), a high level of mortality occurred due to extreme 

weather conditions, which resulted in an insufficient number of records, and thus it 

was excluded from the analysis. 

 

2.2.2 Experimental design 

To produce families, the GIFT breeding program uses a nested-mating design, where 

one male is mated to two females. For this work, we used the same mating scheme 

to produce the experimental fish, and thus two full-sib families were obtained from 

each father. Each full-sib family contributed 80 offspring to the experiment. Fry that 

belonged to the same full-sib family were nursed together and separately from other 

families. During the grow-out phase, fish were kept in groups. Before placing each 

fish in a group, they were individually identified with a PIT (Passive Integrated 

Transporter) tag. Following the optimal design for the estimation of IGE (Bijma, 

2010), families were assigned to groups so that each group consisted of members of 

two distinct, unrelated families. Both families contributed eight randomly selected 

individuals to each group to form groups of 16 members. Therefore, each family of 

80 offspring contributed to 10 distinct groups (i.e. 80/10 members per group). 

Unique combinations of families in groups were created using a block design, with 

11 families per block, where each family was combined only once with the other ten 

families in the same block. Hence, there were 55 family combinations i.e. groups, per 

block. Figure S2.1 (See Supplementary material) contains an example of the block 

design. If the number of available families for the last block was less than 11, an 

incomplete block was used with all remaining families. An outline of the various steps 

that were carried out for each batch is in Fig. 2.1. 

The groups were kept in net-cages that were placed in earthen ponds in rows and 

columns. For each batch, two ponds were available. Due to the small number of fish 

available for batch 2010, only one pond was used. The groups for each block were 

distributed randomly and as evenly as possible over both ponds. Thus, the 55 groups 

of a block were split into 27 groups for pond 1, and 28 groups for pond 2. 

During the grow-out phase, fish were fed with commercial dry pellets containing 

32 % of protein; the amount of pellets (3 to 5 % of average live weight) and feeding 

frequency (twice a day) were the same as for the GIFT selective breeding population. 
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However, because the fish were kept in net-cages rather than in communal rearing, 

the feeding strategy differed from that in the standard GIFT program. Rather than 

spreading the food over the entire surface of a pond, it was placed in the corner of 

each net-cage so that the fish could express their competitive tendency (see 

Discussion). More details on the experiment are in Khaw et al. (Khaw, Ponzoni, Yee, 

Aziz and Bijma, 2016; Khaw, Ponzoni, Yee, Aziz, Mulder et al., 2016). The GIFT 

technology manual provides a description of key husbandry procedures (Thodesen 

and Ponzoni, 2004). 

Figure 2.1 Outline of the experimental design for two paternal families. X represents any 
family from Block A, other than family 1; Y represents any family from Block B, other than 
family 12; an example of Block A is in Supplementary material (Figure S2.1). 

2.2.3 Records 

Fish were harvested 5 to 8 months after the grow-out period, when the average 

weight ranged from 200 to 250 g. At harvest, the following traits and parameters 

were recorded: live body weight (g), body measurements (length, depth, and width, 

in cm), tag number, sex, pond, and net-cage label. The age at harvest of each fish 

was computed from the recorded spawning and harvesting dates (Khaw, Ponzoni, 

Yee, Aziz and Bijma, 2016). Over three batches, phenotypic observations on body 
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weight and body measurements at harvest were available for 6,330 fish from 493 

groups. 

Ideally, each group should contain 16 individuals at harvest. However, due to 

mortality, some groups contained very few individuals, and a threshold was set for 

group and family size. Thus, groups that contained less than seven individuals in total 

or less than three fish per family were discarded, which reduced the number of 

groups to 446. With two families in each group, 892 family-by-group combinations 

and 6,090 individual records were available for each trait. Table 2.1 shows the 

number of observations at harvest (full dataset) and number of observations used in 

the analysis (edited or reduced dataset). The pedigree consisted of 34,517 records 

that traced the GIFT population back seven generations. 

Table 2.1 Number of groups, families per group, and individuals at harvest (C-
complete dataset) and after editing (R-reduced dataset) 

Batch 
Families Groups Families per group Individuals 

C R C R C R C R 

2009 66 66 209 188 418 376 2565
5

2461
12010 33 31 45 37 90 74 509 464 

2011 68 68 239 221 478 442 3256
6

3165
5Total 167 165 493 446 986 892 36 30

0

6090
0

2.2.4 Statistical analysis 

The environmental component in the phenotypic variation of a trait can be 

measured either on the same individual for which repeated observations are 

available or on the individuals belonging to the same family (Hill and Mulder, 2010). 

In our dataset, body weight and body measurements were recorded at harvest. 

Hence, only one record for each trait was available for each individual, but eight 

observations were recorded per family per group. To analyze the genetic 

heterogeneity of the environmental variance, different approaches have been 

proposed (Hill and Mulder, 2010) and we chose a DHGLM that models the residual 

variance of individual observations on the exponential scale, and can be interpreted 

as a multiplicative model (SanCristobal-Gaudy et al., 1998). On the level of the 

natural logarithm, the multiplicative model becomes additive. 

Sire and dam, group, kin, and social maternal effect were included as random effects. 



2 Genetic parameters for uniformity 

 

 

30 

 

A group effect was included to account for non-heritable indirect effects, which 

create a non-genetic covariance among individuals within the same group (Bergsma 

et al., 2008). If this covariance is present but not accounted for, it can cause bias in 

the estimated genetic parameters (Bijma et al., 2007). According to the kin selection 

theory, relatives can cooperate with each other (Hamilton, 1964; File et al., 2012), 

thus a non-genetic covariance between group mates belonging to the same family 

can arise. Therefore, we included a kin effect to account for this source of non-

genetic covariance, i.e., between group mates of the same family compared to group 

mates of the other family within a group (Khaw, Ponzoni, Yee, Aziz and Bijma, 2016).  

Finally, a social maternal effect was included that accounts for the non-genetic effect 

of the common maternal environment of one full-sib family on the performance of 

the other full-sib family in the group (Khaw, Ponzoni, Yee, Aziz, Mulder et al., 2016). 

In other words, we fitted a non-genetic effect of the mother of a full-sib family on 

the trait values of the other full sib family kept in the same group. Hence, we termed 

this effect “social”, because it is expressed in the trait values of the social partners 

of the offspring of a mother, rather than in her offspring themselves. 

2.2.4.1 Double hierarchical generalized linear models (DHGLM)  

Lee and Nelder (2006) developed a framework for the DHGLM, where level and 

residual variance of a trait can be modeled jointly with specified random effects. This 

approach has been applied in animal breeding by Rönnegård et al. (2010) who 

implemented the DHGLM in the statistical software SAS (Rönnegård et al., 2009) and 

ASReml 2.0 (Rönnegård et al., 2010). The DHGLM algorithm iterates between two 

sets of mixed model equations, i.e., a linear mixed model for the phenotypic records 

and a generalized linear mixed model for the response variable 𝜙𝑖. 𝜙𝑖  is defined as 

𝜙𝑖 = 𝐸(𝑒̂𝑖
2 (1 − ℎ𝑖)⁄ ), where 𝑒̂𝑖

2 is the squared residual for the 𝑖𝑡ℎ observation and 

ℎ𝑖  is the diagonal element of the hat matrix of y, corresponding to the same 

individual (Rönnegård et al., 2010; Mulder et al., 2013). As 𝜙 follows a 𝜒2 

distribution, 𝑒̂𝑖
2 (1 − ℎ𝑖)⁄  can be linearized using a log link function so that  log(𝜙) =

log[𝑒̂𝑖
2 (1 − ℎ𝑖)⁄ ] (Rönnegård et al., 2010). Instead of using a log link function, 

log[𝑒̂𝑖
2 (1 − ℎ𝑖)⁄ ] can be linearized using a first order Taylor-series expansion as 

shown by Felleki et al. (2012), which results in the response variable 𝜓𝑖 = log(𝜎̂𝑒𝑖
2 ) +

({[𝑒𝑖
2 (1 − ℎ𝑖)⁄ ] − 𝜎̂𝑒𝑖

2 } 𝜎̂𝑒𝑖
2⁄ ), where 𝜎̂𝑒𝑖

2  denotes the predicted residual variance for 

observation 𝑖, and ei is the residual for individual i. Due to linearization, a bivariate 

DHGLM can then be used: 
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[
𝐲
𝛙] = [

𝐗 𝟎
𝟎 𝐗V

] [
𝐛
𝐛v

] + [
𝐙Par 𝟎

𝟎 𝐙Parv

] [
𝐚

𝐚v
] 

+ [
𝐕 𝟎
𝟎 𝐕v

] [
𝐠

𝐠𝐯
] + [

𝐒 𝟎
𝟎 𝐒v

] [
𝐤

𝐤v
] 

+ [
𝐔 𝟎
𝟎 𝐔v

] [
𝐦

𝐦v
] + [

𝐞
𝐞v

], 

where 𝐲 is the vector of individual trait records (harvest weight, body length, depth, 

and width) and 𝛙 is the vector of response variables for the variance part of the 

model, expressed per individual (𝜓𝑖  as defined above). 𝐛 and 𝐛v are the vectors of 

fixed effects, while 𝐚 and 𝐚v are the vectors of additive genetic effects of the sire and 

dam of each individual, with (
𝐚
𝐚𝐯

) ~𝑁 (𝟎, [
σa

2 σa,av

σa,av
σav

2 ] ⨂𝐀), where the sire and 

dam variance are a quarter of the additive genetic variance: σa(v)
2 =

1

4
σA(v)

2 , σA(v)

2  

denoting the ordinary additive genetic variance. Note that we assume equal additive 

genetic variance for sire and dam, i.e., σsire(v)

2 = σdam(v)

2 = σa(v)
2 .  𝐠 and 𝐠v are the 

vectors of random group effects, with (
𝐠

𝐠v
) ~𝑁 (𝟎, [

σg
2 σg,gv

σg,gv
σgv

2 ] ⨂𝐈); 𝐤 and 𝐤v are 

the vectors of random kin effects, with (
𝐤

𝐤v
) ~𝑁 (𝟎, [

σk
2 σk,kv

σk,kv
σkv

2 ] ⨂𝐈); 𝐦 and 𝐦v 

are the vectors of social maternal effects, with (
𝐦
𝐦v

) ~𝑁 (𝟎, [
σm

2 σm,mv

σm,mv
σmv

2 ] ⨂𝐈); 

and 𝐞 and 𝐞v are the vectors of random residuals that are assumed to be 

independent and normally distributed (
𝐞

𝐞v
) ~𝑁 (𝟎, [

𝐖−1σe
2 0

0 𝐖v
−1σev

2 ] ⨂𝐈) with 

scaling variances σe
2 and σev

2 . The expectations for the scaling variances σe
2 and σev

2  

are equal to 1, because 𝐖 and 𝐖v already contain the reciprocals of the estimated 

residual variances per record. The 𝐗(𝐗v), 𝐙(𝐙v), 𝐕(𝐕𝐯), 𝐒(𝐒v) and 𝐔(𝐔v) are known 

design matrices assigning observations to the level of fixed, sire and dam, group, kin, 

and social maternal effects for 𝐲(𝛙), respectively. The weights, 𝐖 = diag(ψ̂)
−1

 and 

𝐖v = diag((1 − ℎ) 2⁄ ), are, together with vector 𝛙, updated in each iteration until 

convergence (Mulder et al., 2013). The social maternal effect was excluded for body 

width because the model did not converge, and for body length because it was not 

significant (𝜒1𝐷𝐹
2 = 2.66, 𝑝 = 0.264). The fixed effects included for trait level and 
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the variance part of the model were interaction of batch (2009, 2010, and 2011), sex 

(male and female), pond (1 and 2) and the linear covariate ‘age at harvest’. 

To facilitate interpretation in the Results section, the group effect for trait level is 

presented as g2 = σ̂g
2/σ̂P

2 , where σP
2  is the phenotypic variance, and the kin effect as 

k2 = σ̂k
2/σ̂P

2 . Moreover, for the genetic estimates, the genetic coefficient of variation 

(GCV) for trait level and its residual variance (GCVVe) are provided. These are defined 

as, GCV = σA /µ, where σA is the genetic standard deviation in trait level while µ is 

the population mean level of the trait (Houle, 1992), and, GCVVe = σAV /σE
2 , where 

σAV
 is the genetic standard deviation in the residual variance and σE

2  is the mean 

residual variance from the additive model (Mulder et al., 2007; Hill and Mulder, 

2010). When σAV

2  is on the exponential scale, as is the case for the residual variance 

in our analysis, GCVVe is close to√σAV

2   (Mulder et al., 2007; Hill and Mulder, 2010). 

2.3 Results 

2.3.1 Genetic parameters for trait levels 

Estimated genetic parameters for levels of harvest weight, body length, depth, and 

width are in Table 2.2. The estimated heritability for individual harvest weight 

(estimated by using the average residual variance across all observations) was equal 

to 0.25 (0.04) and the same value was obtained with a univariate model assuming a 

homogeneous residual variance (results not shown). The log-likelihood ratio tests 

indicated that both group and kin effects were highly significant (p < 0.0001). The 

group effect explained 13 % of the phenotypic variance, which shows that individuals 

within the same group are more similar to each other than to members of other 

groups. The kin effect explained 10 % of the phenotypic variance, which indicates 

that individuals within the same family are more alike compared to individuals of the 

other family in the group, in addition to their genetic similarity. We tested the model 

for harvest weight when group and kin effects were not included and found that 

removing one or both effects created an upward bias in the estimated variances for 

both the level and variance of the trait (results not shown). The social maternal effect 

was significant (p < 0.001) but small and explained 2 % of the phenotypic variance. 

Heritabilities of harvest weight and body width were similar (0.25 ± 0.05), while 

heritabilities of body length and body depth were a little higher (~0.30 ± 0.05). The 

group effect explained ~15 % of the phenotypic variance for length and depth, and 
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27 % for width. The kin effect explained ~10 % of the phenotypic variance for all 

three body size traits. 

Table 2.2 Genetic parameters for level of harvest weight, length, depth, and width 

Parameter Harvest weight Length Depth Width 

aσA 

2  573.46 (115.80) 0.732 (0.136) 0.202 (0.037) 0.034 (0.007) 

σe 
2  1426.3 (27.99) 1.443 (0.028) 0.365 (0.007) 0.067 (0.001) 

σg 
2  300.26 (42.81) 0.354 (0.047) 0.104 (0.012) 0.037 (0.004) 

σk 

2  240.29 (35.45) 0.235 (0.035) 0.047 (0.008) 0.013 (0.002) 

σm 
2  43.64 (20.83) _ 0.013 (0.006) _ 

σP 

2  2297.2 (70.78) 2.418 (0.081) 0.631 (0.022) 0.136 (0.005) 

h2 0.25 (0.04) 0.30 (0.05) 0.32 (0.05) 0.25 (0.05) 

bg2 0.13 (0.02) 0.15 (0.02) 0.16 (0.02) 0.27 (0.02) 

ck2 0.10 (0.02) 0.10 (0.01) 0.08 (0.01) 0.10 (0.01) 

dm2 0.02 (0.01) _ 0.02 (0.01) _ 

eGCV 0.14 0.05 0.06 0.06 

*Standard errors are indicated between brackets. 
aAdditive genetic variance was calculated as 4 times the sire-dam variance; bGroup effect, 

calculated as g2 = σ̂g
2/σ̂P

2; cKin effect, calculated as k2 = σ̂k
2/σ̂P

2; dSocial maternal effect, 

calculated as m2 = σ̂m
2 /σ̂P

2 . 

e Genetic coefficient of variation 
 

2.3.2 Genetic parameters for the variance of traits 

Estimated genetic parameters for the variance of harvest weight, body length, depth, 

and width are in Table 2.3. For all traits, the contribution of genetic effects to their 

variance was highly significant (p < 0.0001). Estimated GCVVe for harvest weight was 

high and equal to 0.58, whereas for body size traits, GCVVewere lower, i.e., 0.39, 

0.42, and 0.45 for length, depth and width, respectively. These estimates indicate 

that there is substantial genetic variation in the residual variance compared to the 

average value of the residual variance, for all analyzed traits. 
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Table 2.3 Genetic parameters for the variance of harvest weight, length, depth, 
and width 

Parameter Harvest 

weight

Length Depth Width 

aσA
2 0.343 (0.068) 0.156 (0.041) 0.184 (0.042) 0.203 (0.048) 

σe 
2 1.747 (0.034) 1.924 (0.038) 1.862 (0.036) 1.696 (0.033) 

bσg
2 0.040 (0.021) 0.031 (0.021) 0.031 (0.018) 0.073 (0.020) 

cσk 

2 0.078 (0.027) 0.098 (0.029) 0.022 (0.023) 0.062 (0.023) 

dσm
2 0.009 (0.009) _ 0.023 (0.011) _ 

eGCVVe
0.58 0.39 0.42 0.45 

*Standard errors are indicated between brackets
aAdditive genetic variance was calculated as 4 times the sire-dam variance;  bGroup
variance; cKin variance; dSocial maternal variance; eGenetic coefficient of variation at 
variance level.

2.3.3 Genetic correlations between level and variance of traits 

Estimated genetic correlations between level and variance for harvest weight and 

body size traits are in Table 2.4. The genetic correlation between level and variance 

for harvest weight was high and positive (0.60 ± 0.09), which implies that selection 

for increased harvest weight will also yield more variation in the level of this trait. 

For body size traits, genetic correlations between level and variance were lower than 

for harvest weight, and were not significantly different from 0 for length and width, 

but moderate and positive for depth (0.37 ± 0.13). 

Table 2.4 Genetic correlations between level and the variance for 
harvest weight, length, depth, and width 

Harvest weight Length Depth Width 

0.60 (0.09) 0.11 (0.16) 0.37 (0.13) 0.20 (0.15) 

*Standard errors are indicated between brackets

2.4 Discussion 

In this study, we used a DHGLM to estimate genetic variation in uniformity of harvest 

weight and three body size traits, i.e., length, depth, and width. Our results showed 

substantial genetic variation in uniformity of all analyzed traits, with GCVVe ranging 

from 39 to 58 %, while GCV  for trait levels ranged from 5 to 15 %. A strong genetic 

correlation of 0.60 was found between trait level and variance, which suggests that 
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selection for increased body weight at harvest will also result in more variation in the 

level of this trait. 

 

2.4.1 Heritability of individual harvest weight and body size traits 

Estimated heritability for individual harvest weight was moderate (0.25 ± 0.04), 

which is similar to results from previous studies on Nile tilapia (Khaw et al., 2009, 

2012; Ponzoni et al., 2011). To date, the GIFT strain has undergone 14 generations 

of selection for harvest weight. Our findings, together with the small average 

inbreeding coefficient of 3.1 % in the analyzed GIFT population, suggest that there is 

still a considerable amount of genetic diversity available for further selection, which 

is also in agreement with the positive genetic trend observed in the GIFT strain 

(Khaw, 2015). 

Heritabilities for individual body size traits were also moderate (0.25 to 0.32), which 

provide opportunities to improve body size traits in Nile tilapia. Body size traits could 

become traits of interest in future breeding programs since selection for heavier fish 

may lead to body shapes that deviate from the natural shape, the latter being 

favored by consumers (Nguyen et al., 2007; Trọng et al., 2013; Colihueque and 

Araneda, 2014). 

2.4.2 Genetic variance in uniformity of harvest weight 

Variance components that are estimated using the exponential model, as in this 

study, are independent of the scale of the trait, and thus, are comparable across 

traits and species (Sonesson et al., 2013; Rönnegård et al., 2013). We found a 

substantial additive genetic variance for uniformity of harvest weight (0.34 ± 0.07; 

Table 2.3), which is larger than that in a similar study on Atlantic salmon by Sonesson 

et al. (2013), who reported an additive genetic variance in the residual variance of 

0.17 on the exponential scale. Our estimates are also higher than those reported for 

livestock traits (Hill and Mulder, 2010; Rönnegård et al., 2013; Vandenplas et al., 

2013; Sell-Kubiak et al., 2015; Mulder et al., 2015). These findings suggest that the 

observed phenotypic variability of harvest weight in the GIFT strain has a substantial 

genetic component. 

Regardless of the underlying model, comparison of additive genetic parameters for 

uniformity across different studies can also be done by using the genetic coefficient 

of variation for residual variance (GCVVe) (Mulder et al., 2007; Hill and Mulder, 2010). 

GCVVe describes the change in residual variance when a genetic standard deviation 

of 1 is achieved in response to selection, relative to the mean of the residual 
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variance. In our study, GCVVe for harvest weight was large, i.e., 0.58. The 

proportional change in phenotypic variance can be calculated as GCVVe(σE
2 σP

2⁄ ), 

which in the case of harvest weight would be equal to 0.36. In the literature, GCVVe 

for variability of traits in livestock and laboratory animals usually ranges from 0.2 to 

0.6 (Hill and Mulder, 2010). For uniformity of body weight in rainbow trout, GCVVe 

of 0.37 and ~0.2 were reported by Janhunen et al. (2012) and Sae-Lim et al. (2015), 

respectively, which are lower than the values found in our study. The estimated 

GCVVe for harvest weight suggests that there is sufficient genetic variation to allow 

a substantial change in the residual variance of this trait compared to its average 

value within a single generation of selection, which would be much larger than that 

for harvest weight level (Table 2.2). However, it should be noted that the accuracy 

of selection for uniformity tends to be lower than for trait levels (Mulder et al., 2009), 

and that expressions for response to selection on environmental variability do not 

depend on GCVVe only (SanCristobal-Gaudy et al., 1998, 2001a; Mulder et al., 2007; 

Ibáñez-Escriche et al., 2008). 

2.4.3 Effect of data distribution 

The estimated level and variance for harvest weight could be influenced by the non-

normal distribution of harvest weight. In data on aquaculture species, skewness is 

not unusual (Jobling, 1986; Cutts et al., 1998). A skewed distribution can result from 

inter-individual competition and subsequent feeding hierarchy, with a few 

individuals dominating the rest of the group. However, in many statistical inferences, 

normality is assumed and this is especially important in the analysis of the genetic 

heterogeneity of environmental variance (Yang et al., 2011). To test whether genetic 

variation in residual variance is merely an artifact of a non-normal distribution, we 

applied a Box-Cox transformation to harvest weight. The transformation resulted in 

a normally distributed trait, which was then analyzed with the DHGLM. Results of 

the analysis (See Supplementary material, Table S2.1) showed that this 

transformation had only a minor effect on the estimated genetic parameters for trait 

level, but decreased the variance of the residual variance. Similar results were found 

in other studies that analyzed transformed traits (Yang et al., 2011; Sonesson et al., 

2013; Sae-Lim et al., 2015). Although the additive genetic variance of uniformity 

decreased somewhat after the Box-Cox transformation, this difference was not 

significant (p = 0.22). Thus, our results indicate that there is genetic variation in 

uniformity of harvest weight, irrespective of the scale of measurement of the trait. 

Unlike harvest weight, body length, depth, and width were normally distributed. 
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2.4.4 Genetic correlation between level and variance of harvest 

weight and body size traits 

Our results imply that the observed variation in harvest weight in the GIFT strain 

could be reduced by selective breeding. However, selection for more uniform fish 

may result in a trade-off on improvement of harvest weight. The genetic correlation 

between level and variance of harvest weight was high and positive, 0.60 (Table 2.4), 

which means that single-trait selection for heavier fish will increase the variation in 

harvest weight among individuals. Similar correlations were obtained by Sae-Lim et 

al. (2015). Simultaneous improvement of harvest weight and its uniformity will 

therefore require index selection. 

To maximize profit, not only uniformity of weight but also uniformity of size, may 

play an important role in fish farming, especially for markets where fish are sold as 

whole. The magnitudes of GCV for uniformity of body size traits and harvest weight 

were similar but improvement of body size traits based on the estimated correlations 

(Table 2.4) is expected to have a limited effect on the level of these traits. 

2.4.5 Factors affecting magnitude of variability and genetic 

variance in variability 

In our analyses we used a sire and dam model, which fits the additive genetic mid-

parent mean, while the Mendelian sampling deviation is part of the residual. This 

can potentially inflate the size of the estimated genetic variation in residual variance 

in case of heterogeneous Mendelian sampling variation, which is then confounded 

with the genetic part of the residual variance (Sonesson et al., 2013). A Mendelian 

sampling variance that is heterogeneous among families can result from differential 

inbreeding coefficients of parents, or from the presence of a major gene that is 

segregating in some families but not in others (Rowe et al., 2006). 

In aquaculture species, maternal common environmental effects can have an 

important role in explaining differences among families. These effects can be 

included in the estimation of genetic parameters as non-genetic effects that account 

for covariances between full-sibs due to a shared environment. In this study, 

maternal common environmental effects were excluded from the models because 

of convergence problems, which arose when those effects were included. The same 

issue was observed in other studies that used the same dataset and for which the 

results showed confounding of maternal common environmental effects and direct 

genetic effects ( Khaw, Ponzoni, Yee, Aziz and Bijma, 2016; Khaw, Ponzoni, Yee, Aziz, 

Mulder et al., 2016). The main difficulty that occurs when disentangling the two 
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effects is due to the mating of one male with two females. Moreover, in our 

experiment, mating was often partly unsuccessful and resulted in 1x1 mating 

instead. However, even a perfect 2x2 mating design results in limited power to 

separate genetic and maternal common environmental effects, at least at the 

variance level, as reported by Sonesson et al. (2013). Previous studies on a larger 

GIFT population for which 1x2 mating was more successful, detected significant 

maternal common environmental effects (0.34) for individual harvest weight 

(Ponzoni et al., 2011). Thus, our estimates of the genetic variance of uniformity may 

be inflated by the inability to fit maternal common environmental effects. 

A recent study on birth weight of mice treated environmental variability as a 

maternal trait, and found a positive response to selection (Formoso-Rafferty et al., 

2015). In an earlier study, the same authors found evidence that environmental 

variability of birth weight was more likely to be a maternal genetic trait than a trait 

due to direct genetic effects (Pun et al., 2013). In the study by Rutten et al. (2005), 

the variance of body weight due to common environmental effects, which include 

maternal genetic and non-additive genetic effects, decreased with age. Since in our 

study, traits were measured at harvest, maternal genetic or common environmental 

effects probably explain only a small proportion of the heterogeneity of residual 

variance. 

In Table S2.2 (Supplementary material), we present estimates of the fixed effects 

included in the model. All fixed effects had a significant impact on the magnitude of 

the observed variability. The effect of sex was especially large with males showing 

~1.3 times greater residual variance compared to females. This finding may be 

related to the competitive behavior expressed primarily by males. Mulder et al. 

(2009) showed that the estimated genetic correlation between residual variances for 

body weight of both sexes was only 0.11, which suggests that they are different 

traits. A similar analysis could be conducted on our data, to investigate whether the 

large effect of sex is associated with a genetic correlation for variability between 

sexes less than 1. Ponzoni et al. (Ponzoni et al., 2011) recorded the CV of body weight 

in the GIFT strain across eight generations and observed that good breeding 

management contributed to reduce the CV, although its average value remained at 

around 40 %. Thus, reducing uniformity will require both genetic and management 

interventions. 

 



2 Genetic parameters for uniformity 

 

 

39 

 

2.4.6 CV for harvest weight 

In our experiment, the feeding strategy differed from that in the ordinary GIFT 

breeding program. Instead of spreading food on the surface of the pond as in the 

GIFT breeding population, we placed it in the corner of the net-cages so that the fish 

showed their competitive tendency. The CV for harvest weight in our study (35 %) 

was lower than the values found in previous studies on the GIFT strain where fish 

were communally reared (48 to 59 %) (Ponzoni et al., 2005; Nguyen et al., 2007). 

Thus, there is no evidence that the level of competition between individuals was 

higher in our conditions than in the communal rearing conditions of these studies. In 

communal rearing, the feed is not spread over the entire pond’s surface because 

auto-feeders are not available, which may cause some competition. In addition, the 

fish in our experiment were kept in small net-cages and stocked at low density, while 

in commercial ponds all fish are kept together at high density. Because of the 

differences in rearing conditions, the question of whether our results can be 

extended to commercial situations remains open. A selection experiment, in which 

parents are kept in many small groups and selected for uniformity while offspring 

are evaluated under commercial conditions, would constitute the ideal proof. 

 

2.4.7 Future prospects 

Although studies on the genetic heterogeneity of environmental variance date as far 

back as 1942 (Waddington, 1942), selection experiments to improve uniformity in 

livestock are scarce. Still, some experiments (Rendel et al., 1966; Kaufman et al., 

1977; Argente et al., 2008; Boldin et al., 2012) that were based on divergent selection 

for phenotypic variance, provided evidence for a genetic component in the 

phenotypic variability and suggested the possibility that this variability could be 

reduced by selective breeding. To our knowledge, selection for uniformity has never 

been performed in aquaculture species. Nevertheless, the high GCVVe found in our 

and other studies on aquaculture species suggest that aquaculture populations are 

suitable to validate the estimated genetic parameters by a selection experiment. 

Selection for uniformity of body weight or size could lead to increased profit by 

producing more fish in the size range that is favored by the consumers. Moreover, 

from the point of view of animal welfare, uniformity of fish body weight and size 

could reduce competition, and thus possible stress, injuries, and even mortality. 

We studied the genetic variance of the residual variability. However, the total 

phenotypic variability also depends on other factors (Moreno et al., 2012), as shown 

by the significant fixed effects on variability, for example sex effect (see above). 

Hence, decreasing the total phenotypic variability even more would require reducing 
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the magnitude of these fixed effects. When the genetic correlation between growth 

rate in males and females differs from 1, it is possible, in principle, to remove the 

variability due to a difference in mean body weight between sexes. The magnitude 

of environmental effects, such as group and batch effects, is related to 

environmental sensitivity (and thus to genotype by environment interactions). 

Evaluating the prospects of reducing these components by genetic selection will 

require further research. 

An interesting property of the specific design of our experiment is that it allows the 

simultaneous study of uniformity and social effects such as group and kin effects in 

our study and indirect genetic effects, which were analyzed in other studies on the 

same data (Khaw, Ponzoni, Yee, Aziz and Bijma, 2016; Khaw, Ponzoni, Yee, Aziz, 

Mulder et al., 2016). However, the experimental setting and feeding strategy that 

we applied differed from those in a commercial setting. Thus, genotype by 

environment interactions may be present and our results may not represent 

uniformity in the case of commercial tilapia farms. The DHGLM approach could be 

used to test whether the genetic background of uniformity differs between both 

environments. Results from such a study would be a useful addition to our findings. 

2.5 Conclusions 

Our study revealed substantial genetic variation in uniformity of harvest weight and 

body size traits, which opens promising prospects for the genetic improvement of 

uniformity by selective breeding of the GIFT strain. The genetic correlation between 

level and variance of harvest weight was high and positive, which indicates that 

selection for heavier fish may also result in more variation in harvest weight. 

Simultaneous improvement of harvest weight and its uniformity will thus require 

index selection. 
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Family ID 2 3 4 5 6 7 8 9 10 11 

1 

 

 

1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 

2  2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 

3  3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 

4  4-5 4-6 4-7 4-8 4-9 4-10 4-11 

5  5-6 5-7 5-8 5-9 5-10 5-11 

6  6-7 6-8 6-9 6-10 6-11 

7  7-8 7-9 7-10 7-11 

8  8-9 8-10 8-11 

9  9-10 9-11 

10  10-11 

Figure S2.1 Example of the block design used to allocate two families to each 
group.  All families in the block are unrelated to each other. 
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Table S2.1. Genetic parameters for the mean and the 
variance of Box-Cox transformed harvest weight  

Parameter Mean Variance 

aσA
2 0.100 (0.019) 0.239 (0.052) 

σe
2 0.184 (0.004) 1.804 (0.035) 

σg 
2 0.050 (0.007) 0.035 (0.019) 

σk 

2 0.032 (0.004) 0.048 (0.025) 

σm 
2 0.008 (0.003) 0.014 (0.009) 

σP
2 0.323 (0.011) _ 

h2 0.31 (0.05) _ 

bg2 0.15 (0.02) _ 

ck2 0.10 (0.02) _ 

dm2 0.02 (0.01) _ 

eGCV 0.06 0.49 

*Standard errors are indicated between brackets
aAdditive genetic variance was calculated as 4 times the 

sire-dam variance; bGroup effect, calculated as g2 = σg
2/σP

2 ;

cKin effect, calculated as k2 = σk
2/σP

2; dSocial maternal effect,

calculated as m2 = σm
2 /σP

2 .

e Genetic coefficient of variation
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Abstract 

When individuals interact, their phenotypes may be affected not only by their own 

genes but also by genes in their social partners. This phenomenon is known as 

Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, 

competition not only affects trait levels of individuals, but also inflates variability of 

trait values among individuals. In the field of quantitative genetics, the variability of 

trait values has been studied as a quantitative trait in itself, and is often referred to 

as inherited variability. Such studies, however, consider only the genetic effect of the 

focal individual on trait variability and do not make a connection to competition. 

Although the observed phenotypic relationship between competition and variability 

suggests an underlying genetic relationship, the current quantitative genetic models 

of IGE and inherited variability do not allow for such a relationship. The lack of 

quantitative genetic models that connect IGEs to inherited variability limits our 

understanding of the potential of variability to respond to selection, both in nature 

and agriculture. Models of trait levels, for example, show that IGEs may considerably 

change heritable variation in trait values. Currently, we lack the tools to investigate 

whether this result extends to variability of trait values. Here we present a model 

that integrates IGEs and inherited variability. In this model, the target phenotype, 

say growth rate, is a function of the genetic and environmental effects of the focal 

individual and of the difference in trait value between the social partner and the 

focal individual, multiplied by a regression coefficient. The regression coefficient is a 

genetic trait which is a measure of cooperation; a negative value indicates 

competition, a positive value cooperation, and an increasing value due to selection 

indicates the evolution of cooperation. In contrast to existing quantitative genetic 

models, our model allows for co-evolution of IGEs and variability, as the regression 

coefficient can respond to selection. Our simulations show that the model results in 

increased variability of body weight with increasing competition. When competition 

decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, 

our model facilitates quantitative genetic studies on the relationship between IGEs 

and inherited variability. Moreover, our findings suggest that we may have been 

overlooking an entire level of genetic variation in variability, the one due to IGEs.  

 

Key words: inherited variability, uniformity, social interactions, competition, 

cooperation, indirect genetic effects, IGE, aquaculture  
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3.1 Introduction 

Social interactions are common in nature, and other individuals are usually the most 

important part of the environment experienced by an individual (Wolf, 2003; Frank, 

2007). The environment created by social partners through actions such as 

competition or cooperation, is referred to as the social environment. Variation in the 

quality of the social environment may originate partly from genetic variation in the 

social partners, which would make the social environment heritable (Wolf et al., 

1998). The classical example of a heritable environment is the one provided by a 

mother to her offspring in mammals (Dickerson, 1947; Willham, 1963; Falconer, 

1965; Kirkpatrick and Lande, 1989; Cheverud, 2003). 

 

In the traditional quantitative genetic model, the phenotype of an individual is the 

sum of the direct effect of its own genes (DGE) and an environmental effect. 

However, because the environmental effect includes a component due to the social 

environment, the phenotype of an individual is also a function of the genes of its 

social partners. The heritable effect of a social partner on the trait value of the focal 

individual is known as an Indirect Genetic Effect (IGE) (Griffing, 1967). IGEs have 

consequences for trait values and fitness of individuals that interact, and 

subsequently for the course of the evolutionary processes (e.g. Hamilton, 1964; 

Moore et al., 1997; Wolf et al., 1998).  

 

In the field of animal breeding, interest in social interactions has increased in recent 

decades, as both theoretical and empirical studies show that not only fitness but also 

trait values of individuals can be affected by genes of other individuals (Muir, 2005; 

Bijma, Muir, and van Arendonk, 2007; Bijma et al., 2007). IGEs have been studied in 

both animal and plant populations, and in a number of those studies social 

interactions contributed substantially to heritable variation in the trait (reviewed by 

Ellen et al., 2014). Well known cases of IGEs in domestic animals include cannibalistic 

behavior in laying hens, which causes mortality (Muir, 1996; Ellen et al., 2008), 

competition and tail biting in pigs, which is associated with poorer growth (Arango 

et al., 2005; Camerlink et al., 2013, 2014; Bergsma et al., 2013), and aggression and 

competition in fish species such as Nile tilapia and Atlantic cod, which reduces 

growth (Nielsen et al., 2014; Khaw et al., 2016).  

 

In addition to the effects of social interactions on trait values, it has been observed 

in aquaculture populations that competition for feed and formation of social 

hierarchies also inflates trait variability (Jobling, 1995; Cutts et al., 1998; Hart and 
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Salvanes, 2000). Because this pattern is so evident, variability in body weight among 

individuals has become a standard measure of the degree of competition in 

aquaculture; the degree of competition is measured by the coefficient of variation 

(CV) of body weight, where a high CV indicates strong inter-individual competition

(Jobling, 1995). In farmed fish populations, the CV is usually between 20-60 %

(Gjedrem, 2000; Ponzoni et al., 2005; Gjedrem and Baranski, 2009), which suggests

moderate to strong competition.

Indications of a close relationship between competition and variability are also 

coming from the field of plant breeding, where breeders have successfully improved 

productivity of crops by selecting, partly unintentionally, less competitive 

phenotypes, which also resulted in more uniform crops (Donald, 1968; Austin et al., 

1980; Denison et al., 2003). Moreover, the connection between yield, competition, 

and variability has also been made in game theory, where it was shown that the 

lowest competition and highest yield is achieved when plants are phenotypically 

uniform (Zhang et al., 1999). Hence, in plants, there is clear evidence of a genetic 

relationship, where reduced competition leads to less variability and higher yield. 

The variability of trait values of a genotype, measured either repeatedly on the same 

individual, or on multiple individuals belonging to the same family, has been studied 

as a quantitative trait in its own right. This trait is often referred to as “inherited 

variability” or “heritable variation in environmental variance” (SanCristobal-Gaudy 

et al., 1998; Mulder et al., 2007; Hill and Mulder, 2010). The study of variability has 

been a part of quantitative genetics for several decades already, but it has gained 

particular attention in recent years due to the development of new methods to 

estimate genetic variance in variability (SanCristobal-Gaudy et al., 1998; Sorensen 

and Waagepetersen, 2003; Mulder et al., 2009; Rönnegård et al., 2010) and 

substantial empirical evidence for a genetic basis of variability in livestock, 

aquaculture, and laboratory populations (reviewed by Hill and Mulder, 2010). In 

several fish populations, for example, it has been found that variability of body 

weight has a large genetic component (Janhunen et al., 2012; Sonesson et al., 2013; 

Khaw et al., 2015; Sae-Lim, Gjerde, et al., 2015; Sae-Lim, Kause, et al., 2015; 

Marjanovic et al., 2016). However, despite the clear relationship between 

competition and variability observed at the phenotypic level, inherited variability has 

not been connected to competition in quantitative genetic models. 

As social interactions are often a source of IGEs, the observed relationship between 

competition and variability on the phenotypic level (Jobling, 1995; Cutts et al., 1998; 

Hart and Salvanes, 2000; Denison et al., 2003) strongly suggests an underlying 
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genetic relationship between the two phenomena. At present, little is known of this 

genetic relationship, both in plants and animals, which may be due to a lack of 

quantitative genetic models that connect both phenomena. On the one hand, 

current quantitative genetic models of inherited variability ignore social interactions, 

since they treat variability as a trait of the focal individual only, ignoring the 

contribution of social partners. On the other hand, standard IGE-models cannot 

explain the relationship between competition and variability, since phenotypic 

variance is independent of the level of IGEs in those models. However, by ignoring 

IGEs, we may be overlooking an important component of heritable variation in trait 

variability.  

The joint study of IGEs and inherited variability could help us understand 

observations from animal and plant breeding, and possibly enable utilization of 

genetic variation that has so far been untapped. In addition, it may bring new insight 

in mechanisms of canalization or insensitivity of individuals to genetic and 

environmental changes (Waddington, 1942), and broaden our understanding of 

phenotypic evolution. Therefore, a joint study of IGEs and variability could make a 

significant contribution to the field of quantitative genetics, and its applications in 

animal and plant breeding and in evolutionary biology. 

As a first step towards unraveling the genetic relationship between social 

interactions and inherited variability, we present a quantitative genetic model that 

integrates both phenomena. We use Monte Carlo simulation to evaluate the 

behavior of the model, and demonstrate that the model mimics the co-evolution of 

social interactions and variability observed in phenotypic studies. 

3.2 Theory 

3.2.1 Model 

The genetics of socially-affected traits can be studied using two approaches; variance 

component models or trait-based models (McGlothlin and Brodie, 2009; Bijma, 

2014). In variance component models, the individual phenotype is divided into a 

direct genetic component originating from the focal individual, and an indirect 

genetic component originating from its social partner (Griffing, 1967). In this 

approach, it is not needed to know which traits are causing the IGE. Instead, DGEs 

and IGEs are estimated as random effects using linear mixed models and information 

on genetic relationships between individuals (Muir, 2005; Bijma, Muir, Ellen, et al., 

2007). See Table 3.1 for notation. 
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Table 3.1 Notation key  

Symbol Meaning 

  
DGE, IGE Direct genetic effect, indirect genetic effect 

i, j Focal individual, group mate of individual i 

𝑃𝑡,𝐺𝑅  Body weight in the current time point 

𝑃𝑡−1,𝐺𝑅  Body weight in the previous time point 

𝜇𝐺𝑅  Mean growth rate 

𝐴𝐺𝑅 Breeding value for growth rate 

𝐴𝐷  Direct breeding value for b – genetic resistance to competition 

𝐴𝐼 Indirect breeding value for b – genetic cooperation effect 

𝐸𝑝,𝐺𝑅, 𝐸𝑡,𝐺𝑅 Permanent and temporary environmental effects on growth rate 

𝐸𝐷, 𝐸𝐼  Direct and indirect environmental effects for b 

b Regression coefficient  

𝑏̅ Average regression coefficient 

b-value Regression coefficient which affects the phenotype of the focal  
individual 

σAGR

2 , σAD

2 , σAI

2  
Genetic variance for growth rate, direct and indirect genetic  
variance for b 

σEp,GR

2 , σEt,GR

2   Permanent and temporary environmental variance for growth  
rate 

σED

2 , σEI

2  Direct and indirect environmental variance for b 

𝜎𝑃𝐺𝑅
2  Phenotypic variance of growth rate 

ℎ2 Heritability of growth rate 

 

The trait-based models, in contrast, define IGEs on the phenotype of the focal 

individual as a function of trait values of its social partners (Moore et al., 1997; Wolf 

et al., 1998; Bijma, 2014). In this case, the traits causing the indirect effects need to 

be identified. When interaction is between two individuals, and the target trait and 

the trait causing the IGE, also known as the “effector trait”, are the same, the trait-

based model can be written as (Moore et al., 1997) 
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𝑃𝑖 = 𝐴𝑖 + 𝑒𝑖 + 𝜓 𝑃𝑗                                                                                                                (1) 

 

where 𝑃𝑖  is the phenotypic value of the focal individual i, 𝐴𝑖  is the additive genetic 

effect originating from the focal individual, 𝑃𝑗  is the phenotypic value of its social 

partner j, 𝜓 is the “regression coefficient” of 𝑃𝑖  on 𝑃𝑗, and 𝑒𝑖  is a residual. (With 

feedback, i.e., when trait levels of interacting individuals are reciprocally affected, 𝜓 

is not a true regression coefficient; see Bijma, 2014). We will use this model and 

observations from aquaculture as a starting point to draw a connection between 

IGEs and inherited variability.  

 

Phenotypic studies in aquaculture suggest that the behavior of a fish towards its 

social partners depends on its size relative to that of its partners, where larger fish 

are usually dominant and aggressive, while smaller fish are subordinate and 

submissive (Doyle and Talbot, 1986; Huntingford et al., 2012). In anemonefish, for 

example, large individuals are dominant members of social groups and display 

aggressive behavior towards subordinates (Fricke and Fricke, 1977; Iwata et al., 

2008). Similarly, Oscars (cichlid fish, Astronotus ocellatus) chase and attack smaller 

conspecifics, but avoid larger individuals (Beeching, 2010). Difference in body 

weight, therefore, affects phenotypes of the interacting individuals, with higher body 

weight giving a competitive advantage to the individual in terms of growth rate. 

Thus, to account for the competitive effect of body weight on growth rate, we need 

to model the evolution of body weight over the life of the interacting individuals.  

 

Therefore, we developed a basic quantitative genetic model involving interactions of 

two individuals. In this model, our target trait is growth rate between time point t-1 

and t, while the effector trait is the difference in body weight between the individuals 

that interact at the previous time point t-1. The change in body weight, i.e., growth 

rate, of the focal individual is a function of genetic and environmental effects of the 

focal individual itself on its growth rate, and of the difference in body weight 

between the social partner and the focal individual, multiplied by a regression 

coefficient,  

 

𝑃𝑡,𝑖 − 𝑃𝑡−1,𝑖  = 𝜇𝐺𝑅 + 𝐴𝐺𝑅,𝑖 + 𝐸𝑝,𝐺𝑅,𝑖 + 𝐸𝑡,𝐺𝑅,𝑖 + 𝑏𝑖𝑗(𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖)                        (2) 

 

where 𝑃𝑡,𝑖  is the body weight of focal individual i at time point t, 𝑃𝑡−1,𝑖  is body weight 

of i at the previous time point, 𝜇𝐺𝑅 is the mean growth rate of the population, 𝐴𝐺𝑅,𝑖  

is a (direct) breeding value for growth rate of individual i, 𝐸𝑝,𝐺𝑅,𝑖 and 𝐸𝑡,𝐺𝑅,𝑖  are 
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permanent and temporary non-heritable (“environmental”) effects of individual i, 

and 𝑏𝑖𝑗 is a regression coefficient. 

3.2.2 The meaning of 𝒃𝒊𝒋 

The 𝑏𝑖𝑗 in our model measures the effect of a difference in body weight between the 

social partner and the focal individual on the growth rate of the focal individual. 

Hence, the absolute value of 𝑏𝑖𝑗 reflects the strength of the social interaction. When 

𝑏𝑖𝑗 is negative, growth rate of individual i is reduced when j has higher body weight 

than i, indicating competition. Conversely, when 𝑏𝑖𝑗 is positive, growth rate of i is 

increased when j has higher body weight than i, indicating cooperation, i.e., “helping 

the one who lags behind” (Box 1). Thus, b is a measure of cooperation; negative b 

indicates competition, positive b cooperation, and an increase in b an increase of 

cooperation (i.e., less competition). The model described by Equation 2 can be 

written in matrix form for both individuals simultaneously, which may facilitate 

analysis of the behavior of the model (see Appendix A). 

3.2.3 Genetic variation in b 

Trait-based IGE models usually assume that the “regression coefficient” 𝜓 is constant 

within a population (Equation 1). However, several empirical studies that were able 

to estimate 𝜓, show that it may differ between genotypes (Kent et al., 2008; Bleakley 

and Brodie IV, 2009; Chenoweth et al., 2010). Hence, empirical studies suggest that 

𝜓 shows genetic variation, and can thus respond to selection. Following this 

evidence, we allow b to evolve. Therefore, b is not a fixed parameter, but specific for 

every interacting couple. We propose that heritable variation in b is a result of a 

direct genetic effect of the focal individual (𝐴𝐷,𝑖), representing resistance to 

competition, and an indirect genetic effect of its social partner, representing 

cooperative effect (𝐴𝐼,𝑗). While b is a property of both the focal individual and its 

social partner, it affects the phenotype of the focal individual only; we will therefore 

refer to this b as “the b-value of the focal individual”. Thus, for focal individual i with 

social partner j, the regression coefficient 𝑏𝑖𝑗 , i.e., the b-value of the focal individual, 

is given by  

𝑏𝑖𝑗 = 𝑏̅ + 𝐴𝐷,𝑖 + 𝐸𝐷,𝑖 + 𝐴𝐼,𝑗 + 𝐸𝐼,𝑗   (3) 

where 𝑏̅ represents the average regression coefficient, which is a population 

parameter that is negative under competition and positive under cooperation. The 

𝐴𝐷,𝑖  and 𝐸𝐷,𝑖  are the direct genetic and environmental effect of individual i on 𝑏𝑖𝑗 , 



3 Modelling the co-evolution of IGE and inherited variability 

 

 

57 

 

while 𝐴𝐼,𝑗  and 𝐸𝐼,𝑗  are the indirect genetic and environmental effect of individual j 

on 𝑏𝑖𝑗 . Appendix B contains extension of Equation 2 to accommodate larger group 

size. 

 

3.2.4 Inherited variability 

Note that our model does not include an explicit breeding value for inherited 

variability. Instead, as shown in the section “Simulation” below, genetic variation in 

variability is an emerging property of the model, resulting from genetic effects of 

competition, i.e., the direct and indirect breeding values for b. In other words, our 

model shows that heritable effects on competition result in inherited variability. In 

the Discussion section, we further investigate how breeding values for b correlate 

with direct and indirect breeding values for inherited variability (see section 

“Estimating b” below; see also section “Breeding values for b and variability”). 

 

3.2.5 Competition, cooperation, and the sign of 𝒃̅ 

We use the term “competition” to describe the situations where the larger individual 

continues to increase in size, while the smaller individual lags behind, leading to 

divergence of their body weights through time (Figure 3.1A). This is typical for 

populations where 𝑏̅ < 0. We use the term “cooperation” to describe the situation 

where individuals become increasingly similar in body weight over time (Figure 3.1B). 

This occurs when growth rate of the larger individual decreases, while the smaller 

one catches up. This is typical for populations where 𝑏̅ > 0. 

 

 

3.2.6 Asymmetry: 𝒃𝒊𝒋 vs 𝒃𝒋𝒊 

Note that we distinguish between resistance to competition (𝐴𝐷) and 

cooperativeness (𝐴𝐼), as these may be different properties of an individual. For 

example, consider the pair i and j in a population showing competition (𝑏̅ < 0).  

Figure 3.1 Expected growth curves of two individuals in a group under competition (A) and 
cooperation (B). 



3 Modelling the co-evolution of IGE and inherited variability 

58 

Box 1: Direct and indirect breeding values for b 

Direct breeding value (𝐴𝐷) is the additive genetic effect of the focal individual on its own b 
and is referred to as a “resistance to competition”. Negative 𝐴𝐷 would mean that the 
individual is sensitive to competition, while the individual with positive 𝐴𝐷 is resistant to 
competition. 

Indirect breeding value (𝐴𝐼) refers to additive genetic effect of a social partner on b of a focal 
individual. It is also referred to as “cooperativeness”. The social partner with negative 𝐴𝐼 is 
competitive, while the one with positive 𝐴𝐼 is cooperative. 

Each individual, therefore, has two breeding values for b - one that affects their own b and 
one that affects their social partner’s b.  

If we consider two individuals, i and j, that differ in their body size in the previous time period 
by 2 grams, such as that j is the larger individual, i.e., 𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖 = 2 g and 𝑃𝑡−1,𝑖 −

𝑃𝑡−1,𝑗 = −2 g, then the change in phenotype for individual i from time t-1 to t is given as 

∆𝑃𝑡,𝑖 =  𝑏𝑖𝑗(𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖) =  2𝑏𝑖𝑗,  and similarly ∆𝑃𝑡,𝑗 = 𝑏𝑗𝑖(𝑃𝑡−1,𝑖 − 𝑃𝑡−1,𝑗) = −2𝑏𝑖𝑗  

(Equation 2, assuming no effect of breeding value for growth and no environmental effects).  

As given in Equation 3, 𝑏𝑖𝑗 = 𝑏̅ + 𝐴𝐷,𝑖 + 𝐴𝐼,𝑗, where 𝒃̅ is population parameter, negative 

with competition and positive with cooperation, 0 when neutral. Correspondingly,  𝑏𝑗𝑖 =

𝑏̅ + 𝐴𝐷,𝑗 + 𝐴𝐼,𝑖 .

Competitive environment 

In the competitive environment, where, for example, 𝑏̅ = - 0.05, and both individuals are 
cooperative and resistant to competition, with breeding values of 0.03, i.e., 𝐴𝐷,𝑖 = 𝐴𝐷,𝑗 =

𝐴𝐼,𝑗 = 𝐴𝐼,𝑖 = 0.03, the change in growth for individual i (∆𝑃𝑡,𝑖) is 0.02 g , while ∆𝑃𝑡,𝑗 =  

- 0.02 g. However, if both individuals are competitive and sensitive to competition, 𝐴𝐷,𝑖 =

𝐴𝐷,𝑗 = 𝐴𝐼,𝑗 = 𝐴𝐼,𝑖 = - 0.03, then ∆𝑃𝑡,𝑖= - 0.22 g, while ∆𝑃𝑡,𝑗 = 0.22 g. Hence, in a competitive 

environment, when both 𝑏̅ and individual breeding values for b are negative, the larger 
individual grows fast, while the growth of smaller one is slowed down. Positive breeding 
values in a competitive environment lead to small increase in growth for the smaller
individual, and a small decrease for the larger one.
For explanation on chosen values see Simulation and Appendix C.

Cooperative environment 

In the cooperative environment, where 𝑏̅ is, for example, 0.05, and individuals have positive 
breeding values of 0.03, ∆𝑃𝑡,𝑖 = 0.22 g , while ∆𝑃𝑡,𝑗 = - 0.22 g. If both individuals have all 

negative breeding values of - 0.03, then ∆𝑃𝑡,𝑖= - 0.02 g, while ∆𝑃𝑡,𝑗 = 0.02 g. Therefore when 

both 𝑏̅ and individual breeding values for b are positive, the growth of the larger individual 
slows down, allowing the smaller individual to catch up. Negative breeding values in a 
cooperative environment lead to small increase in growth for the larger individual, and a 
small decrease in growth for the smaller individual. 
For more scenarios and effects of combining positive and negative breeding values for b, see 
Supplementary material (Tables S3.1 – S3.3). 
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Suppose that i is very competitive (𝐴𝐼,𝑖 < 0) and also resistant to competition (𝐴𝐷,𝑖 >

0), while j is very cooperative (𝐴𝐼,𝑗 > 0) but very sensitive to competition (𝐴𝐷,𝑗 <

0). Then the effect of j on i will be small, while the effect of i on j will be large 

(Supplementary material grey cells in Table S3.2). In other words, an individual that 

is strongly affected by its social partner, does not necessarily also have a strong effect 

on its social partner. Hence, b is non-symmetric, i.e., 𝑏𝑖𝑗 ≠ 𝑏𝑗𝑖 .  

3.3 Simulation 

We used Monte Carlo simulation to investigate whether our model (Equation 2) 

predicts the empirically observed relationship between competition and variability,  

and whether methods for selection against competition (e.g. group selection) also 

result in a reduction of variability. We considered five values for the average value 

of  b (𝑏̅), to which we refer as scenarios (Table 3.2). 

Table 3.2 Parameters used in simulation 

Parameters

Scenarios 

Parameters Competition Neutral Cooperation 

1 2 3 4 5 

Mean growth rate, 𝜇𝐺𝑅 10 g 

Genetic variance for growth 

rate, σAGR

2 1 g2 

Permanent environmental 

variance, σEp,GR

2 0.4 g2 

Temporary environmental 

variance, σEt,GR

2 0.6 g2 

Cooperation effect, 𝑏̅ -0.08 -0.05 0 0.05 0.08 

Direct and indirect genetic 

and environmental variance, 

σAD

2 = 𝜎𝐴𝐼
2 = 𝜎𝐸𝐷

2 = 𝜎𝐸𝐼
2

0.225 x 10-3 

Phenotypic variance, 𝜎𝑃𝐺𝑅
2

2 g2 

*𝜎𝑃𝐺𝑅

2  is calculated excluding b i.e. as 𝜎𝑃𝐺𝑅

2 = σAGR

2 + σEp,GR

2 + σEt,GR

2
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Negative values of 𝑏̅ correspond to competition (Scenario 1 – strong competition; 

Scenario 2 – moderate competition), while positive values reflect cooperation 

(Scenario 4 – moderate cooperation; Scenario 5 – strong cooperation). Scenario 3 

represents a neutral environment with 𝑏̅ = 0. 

The genetic values of all individuals in the population were simulated as inherited 

from their parents (base population), assuming Mendelian inheritance, while their 

environmental values were sampled from independent normal distributions. All 

individuals were randomly assigned to groups of 2 members. Phenotypes were 

constructed for 10 time points using Equations 2 & 3. Average starting weight was 

10 grams, and average growth rate between time points was also 10 grams. Hence, 

to illustrate the behavior of our model as simple as possible, we considered absolute 

growth. Obviously, for the analysis of real data, a more biologically realistic growth 

model, such as relative growth, may be used. For each scenario, there were 100 

replicates. Table 3.2 contains parameter values used in the simulation. Appendix C 

contains a detailed description of the simulation procedure. 

3.4 Relationship between 𝒃̅ and variability 

The relationship between competition and variability generated by our model was 

assessed at two levels. First, we considered the average within-group variance of 

body weight at the last time point. Second, we considered the overall phenotypic 

variance in the entire population. Results are presented in Figure 3.2 as averages 

over 100 replicates. 

Across the five scenarios both average within-group variance and phenotypic 

variance decreased curvilinear with increasing 𝒃̅, i.e., with increasing cooperation 

(Figure 3.2). The average within-group variance ranged from 376.4 g2 (sd, ±14.4 g2) 

to 20.9 g2 (sd, ±0.7 g2), which is an 18-fold difference in variability of body weight 

between scenarios 1 and 5. The phenotypic variance ranged from 457.3 g2 (sd, ± 15.7 

g2) to 95.1 g2 (sd, ± 2.6 g2), showing a 5-fold difference in variability between 

scenarios 1 and 5. These results show that our model results in a relationship 

between competition (𝒃̅) and variability that is also found in real data. 

The difference between the average within-group variance and the phenotypic 

variance is related to the similarity of group mates. Total phenotypic variance is the 

sum of between- and within-group variance. When group mates are independent 

and group size equals two, the average within-group variance is half of the 
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phenotypic variance. Average within-group variance, however, was much larger than 

half of the phenotypic variance in scenarios with negative b, but much smaller in 

scenarios with positive b. The correlation between group mates is calculated as 𝜌 =

𝜎𝑏
2−𝜎𝑤

2

𝜎𝑏
2+𝜎𝑤

2  where 𝜎𝑏
2 is between group variance and 𝜎𝑤

2  is within-group variance. In

scenarios with negative b, the correlation between group mates was negative, which 

means that group mates were dissimilar in the competitive environment (Figure 3.2). 

When b was positive, correlation between group mates was positive, indicating 

higher similarity of group mates in the cooperative environment (Figure 3.2). For 

𝑏̅=0, the average within-group variance was approximately one half of the 

phenotypic variance.   

3.5 Growth curve patterns in relation to b values 

In this section, we look into how variation in b around its average, affects the 

variability among group mates. Within every scenario (Table 3.2) 𝑏̅ was the same for 

all individuals; however, variation in b-values of individuals existed due to variation 

in direct and indirect genetic and environmental components that make up b 

(Equation 3). Therefore, in every scenario some groups would have individuals that 

Figure 3.2 Variability of body weight in a population and correlation between group mates 

across five scenarios i.e. five average b values (𝑏̅). Variability is expressed as the average 
within-group variance of body weight of two group mates and as overall phenotypic variance 

in the whole population.  
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both have high b-values, some groups would have individuals with low b-values, and 

variations in between. We hypothesize that group mates that both have high b-

values, i.e., that are both cooperative and resistant to competition, grow more 

uniform compared to those with low b-values, i.e., group mates that are both 

competitive and sensitive to competition.  

 

To illustrate this, we selected groups that have individuals with the highest and the 

lowest b-values for each of the scenarios. An additional condition when selecting 

groups was that individuals have an initial difference in their body weight of ~2 sd. 

The growth curves in relation to the level of b-values within a group are illustrated 

in panels A and D of Figure 3.3 for scenario 1 (𝑏̅ = -0.08, strong competition) and 5 

(𝑏̅= +0.08, strong cooperation). Results for scenarios 2-4 are presented in 

Supplementary material (Figures S3.1 - S3.3). Tables S3.4 and S3.5 in Supplementary 

material contain b-values of individuals from all the scenarios. 

 

In both scenarios 1 and 5, individuals in a group with the low b-values differed 

substantially in their final body weight (A panels, Figure 3.3). Individuals with the 

high b-values, however, maintained a similar body weight through time (D panels, 

Figure 3.3), which is in agreement with our hypothesis.  

 

We also looked into groups that had individuals with positive/negative combinations 

of b-values. When the initially larger individual had a negative b-value, its body 

weight increased over time, resulting in a larger size difference between the two 

group mates, unless the smaller individual had a positive b-value, which allowed it 

to catch up (Panels B, Figure 3.3). Similarly, the size difference decreased when the 

larger individual had a positive b-value, even when the smaller individual had a 

negative b-value (Panels C, Figure 3.3). It was also possible to get re-ranking of the 

individuals, i.e., the smaller individual can become the larger one. This can happen 

for example when the smaller individual has a high positive b-value, while the larger 

individual has a low negative b-value (Scenario 5, Panel B, Figure 3.3).  

 

Expressions (see Appendix A) for the expectation of the difference in the phenotypic 

values and the variance of this difference at time point T, i.e., 𝐸(𝑃𝑇,𝑖 − 𝑃𝑇,𝑗|𝑏𝑖𝑗 , 𝑏𝑗𝑖) 

and 𝑉(𝑃𝑇,𝑖 − 𝑃𝑇,𝑗|𝑏𝑖𝑗 , 𝑏𝑗𝑖), demonstrate that the phenotypic variance within a group 

is directly related to the sum of b-values within the group. The expressions show that 

the expected difference is zero if there is no initial difference at T=0, while the  
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3.5 Breeding values for b and variability 
Figure 3.3 Growth curves of two group mates (one larger than the other) that have lowest 
sum of b’s (A); the initially larger individual has negative b, the smaller one has positive b (B); 
the initially larger individual has positive b, the smaller one has negative b (C); lowest sum of 
b’s (D), for scenarios 1 and 5. Each panel shows one typical replicate. 

Scenario 1, 𝒃̅ = -0.08 

 

Scenario 5, 𝒃̅ = +0.08 
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variance depends directly on the sum of 𝑏𝑖𝑗  and 𝑏𝑗𝑖. More details can be found in 

Appendix A. 

 

3.6 Breeding values for b and variability 

If a connection between competition and variability exists not only on the 

phenotypic level but also on genetic level, we should see less variation in body size 

among the offspring of sires that have positive direct breeding values (𝐴𝐷) for b, as 

these individuals should be more resistant to competition. This links our model to 

the definition of inherited variability, where parents with low breeding values for 

variability have offspring with lower phenotypic variance. Figure 3.4A indeed shows 

that the correlation between 𝐴𝐷 of sires for b and variability of body weight of their 

offspring is negative, ranging from -0.55 (sd, ±0.07) to -0.20 (sd, ±0.09) across 

scenarios. This suggests that individuals that are genetically more resistant to 

competition are less variable. Moreover, offspring of sires with positive indirect 

breeding values (𝐴𝐼) for b should be less competitive. The group mates of these 

“social” individuals should therefore show less variability compared to group mates 

of individuals with negative indirect breeding values for b. In other words, 𝐴𝐼 of a 

sire affects the variability of phenotypes of the group mates of his offspring. As 

expected, Figure 3.4B shows negative correlations between 𝐴𝐼 of sires and variability 

of the group mates of their offspring. Figures 3.4A and 3.4B also show a small 

negative correlation between 𝐴𝐼 of a sire and variability of his offspring, and between 

𝐴𝐷 of a sire and variability of the group mates of its offspring. This result suggests a 

second-order effect; for the direct effect, for example, the 𝐴𝐷 of a sire first affects 

the trait values of its own offspring, which subsequently affects the variability of their 

groups mates in the next time period. For standard errors of the correlations see 

Supplementary material (Table S3.6). 

 

3.7 Selection 

Individual selection has often been used with great success for improvement of 

livestock and aquaculture traits. However, this type of selection ignores the 

contribution of IGE which may hamper the improvement of socially affected traits. 

An alternative strategy is a group selection, which takes indirect genetic effects into 

account (Griffing, 1976).  

 

To see how variability responds to selection, and whether we can capture direct (𝐴𝐷) 

and indirect genetic effects (𝐴𝐼) for b with existing selection methods, we performed 

three types of selection: individual selection for body weight, group selection for  
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body weight, and group selection for lower variance of body weight. In all three 

cases, selection was done using observations from time point 10. With individual 

selection, the 11 % of the heaviest individuals were selected as parents of the next 

generation. With group selection for body weight, the individuals from the 11 % of 

groups with the highest average body weight were selected. With group selection 
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for lower variance, the individuals from the 11 % of groups with the lowest variance 

in body weight were selected. We illustrate the effect of selection by using base 

population with 𝑏̅ = -0.08 (Scenario 1 – strong competition, Table 3.2). Selections 

were performed for 10 generations. Correlations between 𝐴𝐷 and 𝐴𝐼, 𝐴𝐷 and 𝐴𝐺𝑅, 

and 𝐴𝐼 and 𝐴𝐺𝑅, were all set to 0. See Appendix C for further details. Figure 3.5 

presents the results as averages over 100 replicates. For standard errors see 

Supplementary material (Tables S3.7 - S3.9). 

 

Individual selection increased mean body weight (Figure 3.5F), but also decreased 

𝐴𝐷 (Figure 3.5C) and 𝐴𝐼 (Figure 3.5D), causing an increase in variability in the 

population (Figure 3.5A). In other words, individual selection increased variability.  

 

Both types of group selection increased 𝐴𝐼 (Figure 3.5D), suggesting that group 

selection at least partially exploited genetic differences in indirect genetic effects on 

b. Variability of body weight decreased when group selection was made on variance, 

but increased slightly when group selection was for average body weight, however 

much less compared to individual selection (Figure 3.5A). This increase in variability 

with group selection for average body weight originated from a decrease in 𝐴𝐷. With 

group selection on variance, in contrast, 𝐴𝐷 increased (Figure 3.5C). Group selection 

on the variance, therefore, captured direct and indirect genetic effects on b better 

than group selection on the average body weight. Group selection on the variance 

did not change mean body weight, because the correlations between 𝐴𝐷 and 𝐴𝐺𝑅, 

and 𝐴𝐼 and 𝐴𝐺𝑅 were zero (Figure 3.5F). Group selection for average body weight, 

on the other hand, increased mean body weight in magnitude similar to individual 

selection (Figure 3.5F). 

 

3.8 Discussion 

We have proposed a quantitative genetic model that integrates competition and 

variability, and have shown through simulation that our model mimics the 

observation in real populations, where competition for resources increases 

phenotypic variability among individuals. In our model an improvement of the social 

environment through an increase in b, which was modelled as a heritable trait in 

itself, resulted in reduced variability.  
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Figure 3.5 Effect of three types of selection on average within-group variance (A), average b (𝑏̅)  
(B), average direct breeding value for b (C), average indirect breeding value for b (D), average 
breeding value for growth (E), and average body weight (F), in the population. 
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3.8.1 Estimating b 

The key parameter in our model is the regression coefficient b, which comprises both 

direct and indirect genetic effects. In other words, b is heritable and can respond to 

selection. Application of our model requires methods to estimate b and its genetic  

components. In the following, we discuss data requirements and propose models 

that could be used as a first step to estimate the average b and its direct and indirect 

genetic variance.  

Our b connects the difference in trait values between the group mate and the focal 

individual at the previous time point to the target phenotype of the focal individual 

at the current time point. Estimating b, therefore, requires data on group-structured 

populations, where competition occurs within groups, and repeated observations on 

the phenotypes of the group members (i.e., time-series data).  

First, to estimate the overall average level of competition, one could fit single fixed 

b for all groups, using the model 

𝑦𝑡,𝑖 = 𝑃𝑡+1,𝑖 − 𝑃𝑡,𝑖 = 𝜇 + 𝑏(𝑃𝑡,𝑗 − 𝑃𝑡,𝑖) + 𝑒𝑡,𝑖. 

In genetic analysis of outbred populations, interest is in the genetic (co)variances of 

growth and the direct and indirect effects on b (𝐴𝐺𝑅, 𝐴𝐷, and 𝐴𝐼 in Equations 2 & 3). 

In animal and plant breeding, for example, knowledge of those parameters would 

indicate prospects for genetic selection against competition and variability. In 

outbred populations, the following mixed model may serve as starting-point to 

estimate genetic variance components (ignoring non-genetic terms for simplicity),   

𝐲𝑡,𝑖 = 𝜇𝑡 + 𝑏̅∆𝐲𝑡−1,𝑖𝑗 + 𝐙𝐚𝐺𝑅 + 𝐙𝐷,∆𝑦𝑡−1,𝑖𝑗
𝐚𝐷 + 𝐙𝐼,∆𝑦𝑡−1,𝑖𝑗

𝐚𝐼 + 𝐞

where matrices and vectors are in bold and scalars are in italic. y is a vector of 

phenotypic observations, with elements 𝐲𝑡,𝑖 = 𝑃𝑡,𝑖 − 𝑃𝑡−1,𝑖, 𝜇𝑡 is an overall mean 

that may be specific to each time-point. The term 𝑏̅∆𝐲𝑡−1,𝑖𝑗  accounts for the average 

competition in the population, and ∆𝐲𝑡−1,𝑖j is a vector of phenotypic differences 

between the group-mate and the focal individual at the previous time point, with 

elements ∆𝐲𝑡−1,𝑖𝑗 = 𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖. The 𝐙𝐚𝐺𝑅  are the ordinary (random) additive 

genetic effects on growth rate. The 𝐙𝐷,∆𝑦𝑡−1,𝑖𝑗
𝐚𝐷 accounts for the direct genetic

effects in b, where 𝐚𝐷 is a vector of random direct genetic effects on b, and 𝐙𝐷,∆𝑦𝑡−1,𝑖𝑗

an incidence matrix for direct effects, with elements 𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖 in the row and 
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column for focal individual i. The 𝐙𝐼,∆𝑦𝑡−1,𝑖𝑗 
𝐚𝐼  accounts for the indirect genetic effects 

in b, where 𝐚𝐼 is a vector of random indirect genetic effects on b, and 𝐙𝐼,∆𝑦𝑡−1,𝑖𝑗 
 is an 

incidence matrix for indirect effects, with elements 𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖  in the row for the 

focal individual i and column for its group mate j. Hence, direct and indirect effects 

on b are so-called random regressions. Note that the above expression merely serves 

as starting point, and will have to be extended with non-genetic random effects, such 

random group effects and permanent individual effects (𝐸𝑝,𝐺𝑅,𝑖 in Equation 2). 

Moreover, there may be issues with the identifiability of the genetic variance 

components, which will depend on the family relationships within and between 

groups (see e.g. Appendix of Bijma et al., 2007). 

 

When time series data are not available, which may often be the case, another 

approach could offer a solution. Quantitative genetic models for inherited variability 

can be used to estimate genetic variance in variability from records on within-family 

variance. Figure 3.4A shows that variability of sire offspring is correlated with the 

direct breeding value for b of the sire. Figure 3.4B shows that variability of the group 

mates of the offspring is correlated with the indirect breeding value for b of the sire. 

Therefore, it may be possible to capture direct and indirect effects on b by fitting 

linear mixed models to the within-family variance, and to the variance of the group 

mates of a family, with sire as random effect. This analysis requires an appropriate 

family and group structure, but not time series data. More research is needed to see 

how breeding values for inherited variability correlate with direct and indirect effects 

on b, and how those effects can be fully captured.   

 

3.8.2 Evidence for genetic variation in 𝒃  

To the best of our knowledge, there are no estimates of b available in the literature. 

However, some indications for variation in b may come from estimates of 𝜓 (psi) in 

so-called trait-based models of IGE (Moore et al., 1997). When data are available on 

multiple discrete genotypes, such as inbred lines, fixed b-values could be estimated 

for each genotype, similar to the approach of Bleakley and Brodie IV (2009), who 

estimated 𝜓 in guppies (see Equation 1).  

 

This empirical study involved five inbred strains of guppies that differed genetically 

in their antipredator behavior. One individual from each (focal) strain was paired 

with three individuals from a different, unrelated strain i.e. social strain. In that way, 

each focal genotype was tested against different social environments. The results of 

the study show that the level of 𝜓 differed between the focal strains and in some 
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cases also depended on the social strain, suggesting genetic variation in 𝜓. In a 

similar experimental design, where the focal genotype was held constant while social 

groups varied, the social group effects were estimated for chemical signaling in D. 

melanogaster (Kent et al., 2008) and sexual display traits in D. serrata (Chenoweth 

et al., 2010), and both studies estimated and found variation in 𝜓. 

 

3.8.3 Implications for animal and plant breeding 

Phenotypic uniformity is an important trait in animal breeding. In the pig industry, 

for example, it is desirable to deliver animals within a preferred range to the 

slaughter house, while deliveries outside that range result in penalties for the farmer 

(Hennessy, 2005; Mulder et al., 2008). In aquaculture, fish that deviate too much 

from the average size are usually not sold, which reduces revenues. In addition, large 

size differences in fish populations stimulate competition, which reduces welfare 

and health of the animals. Better understanding of inherited variability, therefore, is 

interesting from an economic and animal welfare point of view. In plants, variability 

may also emerge as a commercially important trait, as some studies suggest that 

higher uniformity is related to higher productivity (Zhang et al., 1999; Denison et al., 

2003).  

 

There is substantial evidence of a genetic basis of variability, which has been 

obtained through selection experiments and by quantifying genetic variation in 

variability (reviewed by Hill and Mulder, 2010). Recently, methods have been 

developed to detect QTLs that control variability, so-called vQTLs (see Rönnegård 

and Valdar, 2011; Ronnegard and Valdar, 2012), and these have been found in 

studies of litter size in pigs (Sell-Kubiak et al., 2015), several morphological traits and 

days to flowering in maize (Ordas et al., 2008), and locomotor behavior in fruit flies 

(Ayroles et al., 2015). Furthermore, several mechanisms resulting in vQTL effects 

have been proposed (Rönnegård and Valdar, 2011; Ronnegard and Valdar, 2012) 

including: epistatic gene interaction, gene-by-environmental interaction, multi-

allelic additive effects underlying a QTL and scale of measurement for the observed 

phenotype. However, until now variability has been studied only in relation to direct 

genetic effects of the focal individual. Here, we considered an alternative mechanism 

that gives rise to genetic variation in variability, which does not only involve the 

genotype of the focal individual, but also a genetic effect of the social partner, and 

hence adds another layer to the complexity of inherited variability. The genetic 

contribution of the social partner is ignored in current QG models for inherited 

variability, which may reduce accuracy of estimated breeding values and response 

to selection. When traits are affected by social interactions, selection strategies that 
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accounts for both direct and indirect genetic effects can result in higher response 

(for example, Griffing, 1976; Muir, 1996; Bijma, Muir, Ellen, et al., 2007). Our findings 

suggest that future breeding programs aiming to reduce variability may also need to 

consider increasing b. 

 

3.8.4 Implications for evolutionary biology 

In evolutionary biology, the study of canalization focuses on the absence or 

suppression of phenotypic variation. Hence, breeding for uniformity can be seen as 

an analogue of the evolution of canalization. Results of our model suggest that 

canalization may have a social genetic component. Evolution of canalization, 

therefore, could also be studied in the light of the regression coefficient b. A better 

understanding of the genetic mechanisms affecting variation may also increase our 

understanding of the potential for evolutionary change (Flatt, 2005). For example, 

traits may show less variability in some populations than in others, which is often 

attributed to low genetic variation. With canalization, however, phenotypic variation 

may be low while the underlying genetic variation is high, which can hinder 

phenotypic evolution (Flatt, 2005). 

 

Mulder et al. (2016) showed that within-nest variability of fledging weight in a 

natural population of Great Tit (Parus major) has a genetic component and is under 

stabilizing selection. In that study, phenotypic variability was considered either a trait 

of the individual, or a trait of its parents, and it was discussed how this view would 

change the interpretation of the genetic parameters. Here we focused at connecting 

differences in phenotypic variability between individuals to the level of competition, 

which may be useful for future studies on variability in natural populations.  

 

Kin selection theory predicts that individuals should interact differentially with kin 

vs. non-kin, because this increases their inclusive fitness (Hamilton, 1964b). Together 

with results of our model, this prediction suggests that related individuals should 

show less variability. In other words, groups consisting of relatives should have 

higher 𝒃̅ than groups of unrelated individuals. Hence, our findings suggest that 

canalization may partly evolve by kin-selection.  

 

3.9 Conclusion 

We presented a quantitative genetic model in which direct and indirect genetic 

effects lead to inherited variability of trait values on the phenotypic level. The b from 

our model can respond to selection, and changes in b resulted in changes in 
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variability, indicating the co-evolution of social interactions and inherited variability. 

Selection results showed that the effect of IGEs on b is ignored in classical mass 

selection, but can be partly captured by group selection on the mean or the variance. 

The latter also resulted in a decrease of variability. These findings suggest that we 

may have been overlooking an entire level of genetic variation in variability, the one 

due to IGEs. Genetic improvement of social effects, therefore, may be a promising 

route to reduce variability. 
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Appendix A 

In this appendix, explicit expressions for the expectation and the variance of the 

difference between the phenotypic values for individual i and j at time point T are 

derived, i.e. 𝐸(𝑃𝑇,𝑖 − 𝑃𝑇,𝑗|𝑏𝑖𝑗 , 𝑏𝑗𝑖) and 𝑉(𝑃𝑇,𝑖 − 𝑃𝑇,𝑗|𝑏𝑖𝑗 , 𝑏𝑗𝑖) respectively. By deriving 

these formula, given the parameters 𝑏𝑖𝑗  and 𝑏𝑗𝑖, it is possible to study the effect of 

these parameter values on the expectation and variance of the phenotypic 

difference. The derived formulae show that the expected difference is 0 if there is 

no initial difference at T=0 (i.e. ∆𝑃0 = 0), whereas the variance depends directly on 

the sum of 𝑏𝑖𝑗  and 𝑏𝑗𝑖.  

 

The model used throughout the paper for individuals i and j is 

 

𝑃𝑡,𝑖 = 𝑃𝑡−1,𝑖 + 𝜇𝐺𝑅 + 𝐴𝐺𝑅,𝑖 + 𝐸𝑝,𝐺𝑅,𝑖 + 𝐸𝑡,𝐺𝑅,𝑖 + 𝑏𝑖,𝑗(𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖)                            

 

𝑃𝑡,𝑗 = 𝑃𝑡−1,𝑗 + 𝜇𝐺𝑅 + 𝐴𝐺𝑅,𝑗 + 𝐸𝑝,𝐺𝑅,𝑗 + 𝐸𝑡,𝐺𝑅,𝑗 + 𝑏𝑗,𝑖(𝑃𝑡−1,𝑖 − 𝑃𝑡−1,𝑗)                           

 

Let ∆𝑃𝑡 = 𝑃𝑡,𝑖 − 𝑃𝑡,𝑗, ∆𝐴𝐺𝑅 = 𝐴𝐺𝑅,𝑖 − 𝐴𝐺𝑅,𝑗, ∆𝐸𝑝,𝐺𝑅 = 𝐸𝑝,𝐺𝑅,𝑖 − 𝐸𝑝,𝐺𝑅,𝑗  and ∆𝐸𝑡,𝐺𝑅 =

𝐸𝑡,𝐺𝑅,𝑖 − 𝐸𝑡,𝐺𝑅,𝑗. Then we have the recursive formula: 

 

∆𝑃𝑡+1 = (1 − (𝑏𝑖𝑗 + 𝑏𝑗𝑖)) ∆𝑃𝑡 + ∆𝐴𝐺𝑅 + ∆𝐸𝑝,𝐺𝑅 + ∆𝐸𝑡,𝐺𝑅  

 

which can be written in explicit form for time T (in our simulations T=10): 
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∆𝑃𝑇 = 𝜆𝑇∆𝑃0 + ∑ 𝜆𝑡(∆𝐴𝐺𝑅 + ∆𝐸𝑝,𝐺𝑅)

𝑇−1

𝑡=0

+ ∑ 𝜆𝑡∆𝐸𝑡,𝐺𝑅

𝑇−1

𝑡=0

 

 

where 𝜆 = 1 − (𝑏𝑖𝑗 + 𝑏𝑗𝑖). 

 

Noting that the first sum is a geometric series multiplied by a constant the formula 

can be simplified: 

 

∆𝑃𝑇 = 𝜆𝑇∆𝑃0 +
𝜆𝑇 − 1

𝜆 − 1
(∆𝐴𝐺𝑅 + ∆𝐸𝑝,𝐺𝑅) + ∑ 𝜆𝑡∆𝐸𝑡,𝐺𝑅

𝑇−1

𝑡=0

 

 

Thus, the expected difference given the parameters 𝑏𝑖𝑗  and 𝑏𝑗𝑖  is: 

 

E(∆𝑃𝑇|𝑏𝑖𝑗 , 𝑏𝑗𝑖) = 𝜆𝑇∆𝑃0 +
𝜆𝑇 − 1

𝜆 − 1
E(∆𝐴𝐺𝑅 + ∆𝐸𝑝,𝐺𝑅) + ∑ 𝜆𝑡E(∆𝐸𝑡,𝐺𝑅)

𝑇−1

𝑡=0

 

= 𝜆𝑇∆𝑃0 +
𝜆𝑇 − 1

𝜆 − 1
E(∆𝐴𝐺𝑅 + ∆𝐸𝑝,𝐺𝑅) +

𝜆𝑇 − 1

𝜆 − 1
E(∆𝐸𝑡,𝐺𝑅) 

 

and is equal to 0 for ∆𝑃0 = 0. 

 

The variance of the difference in phenotypes given the parameters 𝑏𝑖𝑗  and 𝑏𝑗𝑖  is: 

 

𝑉(∆𝑃𝑇|𝑏𝑖𝑗 , 𝑏𝑗𝑖) = (
𝜆𝑇 − 1

𝜆 − 1
)

2

𝑉(∆𝐴𝐺𝑅 + ∆𝐸𝑝,𝐺𝑅) + ∑(𝜆𝑡)2

𝑇−1

𝑡=0

𝑉(∆𝐸𝑡,𝐺𝑅) 

= (
𝜆𝑇 − 1

𝜆 − 1
)

2

𝑉(∆𝐴𝐺𝑅 + ∆𝐸𝑝,𝐺𝑅) +
𝜆2𝑇 − 1

𝜆 − 1
𝑉(∆𝐸𝑡,𝐺𝑅) 

 

For the special case 𝑏𝑖𝑗 + 𝑏𝑗𝑖 = 0,  𝑉(∆𝑃𝑇|𝑏𝑖𝑗 , 𝑏𝑗𝑖) = 𝑇2 × 𝑉(∆𝐴𝐺𝑅 + ∆𝐸𝑝,𝐺𝑅) +

𝑇 × 𝑉(∆𝐸𝑡,𝐺𝑅).  

 

Furthermore, 
𝜆𝑇−1

𝜆−1
< 𝑇 and 

𝜆2𝑇−1

𝜆−1
< 𝑇 for 𝜆 < 1, and for 𝜆 > 1 we have 

𝜆𝑇−1

𝜆−1
> 𝑇 

and 
𝜆2𝑇−1

𝜆−1
> 𝑇. Recall that 𝜆 = 1 − (𝑏𝑖𝑗 + 𝑏𝑗𝑖). Thus the variance of the phenotypic 

difference will be smaller than the variance for a model without social interaction 
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effects (i.e. 𝑃𝑡,𝑖 = 𝑃𝑡−1,𝑖 + 𝜇𝐺𝑅 + 𝐴𝐺𝑅,𝑖 + 𝐸𝑝,𝐺𝑅,𝑖 + 𝐸𝑡,𝐺𝑅,𝑖  ) if 𝑏𝑖𝑗 + 𝑏𝑗𝑖 > 0 , and 

larger if 𝑏𝑖𝑗 + 𝑏𝑗𝑖 < 0 .  

 

Matrix version of the model 

In the following part of the appendix, it is shown how the model can be written in 

matrix form and the variance of the individual phenotypes (given 𝑏𝑖𝑗  and 𝑏𝑗𝑖) can be 

derived. Hence, an advantage of writing the model in matrix form is that we can 

derive an expression for the variance of the individual phenotypes, whereas in the 

previous derivations the variance of the phenotypic difference was derived. 

Furthermore, by studying the eigenvalues of the matrices in the model, the 

sensitivity to stochastic environmental effects can be assessed. The matrix notation 

can also be a tool to simplify computations in simulation studies. 

 

An important result derived below is that the phenotypic values at the final time 

point T are sensitive to the simulated environmental variables (error terms) if 𝑏𝑖𝑗 +

𝑏𝑗𝑖 < 0. 

 

Equation 2 can be written in matrix form for the two individuals i and j 

simultaneously as: 

 

𝑃𝑡+1 = 𝐵𝑃𝑡 + ∆ + 𝜀𝑡 

 

𝑃𝑡 = (
𝑃𝑡,𝑖

𝑃𝑡,𝑗
) 

 

𝐵 = (
1 − 𝑏𝑖𝑗 𝑏𝑖𝑗

𝑏𝑗𝑖 1 − 𝑏𝑗𝑖
) 

 

∆= (
𝜇𝐺𝑅 + 𝐴𝐺𝑅,𝑖 + 𝐸𝑃,𝐺𝑅,𝑖

𝜇𝐺𝑅 + 𝐴𝐺𝑅,𝑗 + 𝐸𝑃,𝐺𝑅,𝑗
) 

 

𝜀𝑡 = (
𝐸𝑡,𝐺𝑅,𝑖

𝐸𝑡,𝐺𝑅,𝑗
) 

 

with expectation and variance for ∆  and 𝜀𝑡  

 

𝐸(∆) = (
𝜇𝐺𝑅

𝜇𝐺𝑅
) , 𝑉(∆) = (𝜎𝐴𝐺𝑅

2 + 𝜎𝐸𝑝,𝐺𝑅
2 )𝐼  
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𝐸(𝜀𝑡) = (
0
0
) , 𝑉(𝜀𝑡) = 𝜎𝜀

2𝐼 

 

In the formula for 𝑉(∆), the two individuals are assumed to be unrelated. 

 

At time T (with T=10 in our simulations) we then have 

 

𝑃𝑇 = 𝐵𝑇𝑃0 + ∑ 𝐵𝑘∆

𝑇−1

𝑘=0

+ ∑ 𝐵𝑘

𝑇−1

𝑘=0

𝜀𝑘 

 

In the simulations, the initial phenotypes were set to zero, i.e. 𝑃0 = 0. Hence, the 

first term can be ignored and we can focus on the second and third terms, i.e. the 

sums, in the above formula.  

 

Let 𝐵 = ΓΛΓ−1 be the spectral decomposition of 𝐵, with eigenvalues 𝜆1 =1 and  

𝜆2 = 1 − (𝑏𝑖𝑗 + 𝑏𝑗𝑖). One can note that the phenotypes at time T, i.e. 𝑃𝑇 , will be 

sensitive to the simulated environmental variables (error terms) if 𝑏𝑖𝑗 + 𝑏𝑗𝑖 < 0 

because the dominating eigenvalue will then be greater than 1.  

 

Furthermore, the first sum in the above formula is a geometric series and can be 

written as: 

 

∑ 𝐵𝑘∆

𝑇−1

𝑘=0

= Γ(

𝑇 0

0
𝜆2

𝑇 − 1

𝜆2 − 1

)Γ−1∆ 

 

with expectation 

 

𝐸 (∑ 𝐵𝑘∆

𝑇−1

𝑘=0

) = Γ(

𝑇 0

0
𝜆2

𝑇 − 1

𝜆2 − 1

)Γ−1𝐸(∆) 

 

The variance of the sum is 

 

𝑉 (∑ 𝐵𝑘∆

𝑇−1

𝑘=0

) = Γ(

𝑇 0

0
𝜆2

𝑇 − 1

𝜆2 − 1

)Γ−1(Γ−1)′ (

𝑇 0

0
𝜆2

𝑇 − 1

𝜆2 − 1

)Γ′𝑉(∆) 
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The variance of the second sum is 

 

𝑉 (∑ 𝐵𝑘

𝑇−1

𝑘=0

𝜀𝑘) = ∑ 𝐵𝑘

𝑇−1

𝑘=0

(𝐵𝑘)′𝑉(𝜀𝑘) 

 

With  

 

𝑉(𝜀𝑘) = 𝐼𝜎𝜀
2 

 

and 

∑ 𝐵𝑘

𝑇−1

𝑘=0

(𝐵𝑘)′ = Γ

(

 
 

𝐴11𝑇 𝐴12

𝜆2
𝑇 − 1

𝜆2 − 1

𝐴21

𝜆2
𝑇 − 1

𝜆2 − 1
𝐴22

𝜆2
2𝑇 − 1

𝜆2
2 − 1 )

 
 

Γ′ 

 

Where 𝐴𝑘𝑙 is the element on row k and column l in the matrix 𝐴 = Γ−1(Γ−1)′ 

Thus 

 

𝑉 (∑ 𝐵𝑘

𝑇−1

𝑘=0

𝜀𝑘) = Γ

(

 
 

𝐴11𝑇 𝐴12

𝜆2
𝑇 − 1

𝜆2 − 1

𝐴21

𝜆2
𝑇 − 1

𝜆2 − 1
𝐴22

𝜆2
2𝑇 − 1

𝜆2
2 − 1 )

 
 

Γ′𝜎𝜀
2 

 

with 𝐴11 = 𝐴22 =
2(𝑏𝑖𝑗

2 +𝑏𝑗𝑖
2 )

(𝑏𝑖𝑗+𝑏𝑗𝑖 )
2
 and 𝐴12 = 𝐴21 =

𝑏𝑗𝑖−𝑏𝑖𝑗

(𝑏𝑖𝑗+𝑏𝑗𝑖 )
2 √2(𝑏𝑖𝑗

2 + 𝑏𝑗𝑖
2). 

 

Using the matrix of eigenvectors 

 

Γ =

(

 
 
 
 
 √

1

2

𝑏𝑖𝑗

√𝑏𝑖𝑗
2 + 𝑏𝑗𝑖

2

√
1

2

−𝑏𝑗𝑖

√𝑏𝑖𝑗
2 + 𝑏𝑗𝑖

2

)

 
 
 
 
 

 

 

and its inverse 
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Γ−1 =

(

 
 
 
 

𝑏𝑗𝑖

√𝑏𝑖𝑗
2 + 𝑏𝑗𝑖

2

𝑏𝑖𝑗

√𝑏𝑖𝑗
2 + 𝑏𝑗𝑖

2

√
1

2
−√

1

2 )

 
 
 
 

×
√2(𝑏𝑖𝑗

2 + 𝑏𝑗𝑖
2)

𝑏𝑖𝑗 + 𝑏𝑗𝑖

 

 

Using the relationship 𝑉(𝑃𝑇,𝑖 − 𝑃𝑇,𝑗) = (1 −1)𝑉(𝑃𝑇) (
1

−1
)  and applying several 

steps of straightforward derivations, the same expression for the variance of the 

phenotypic difference is derived as above 

 

𝑉(𝑃𝑇,𝑖 − 𝑃𝑇,𝑗|𝑏𝑖𝑗 , 𝑏𝑗𝑖) = 2𝐷1 (𝜎𝐴𝐺𝑅
2 + 𝜎𝐸𝑝,𝐺𝑅

2 ) + 2𝐷2𝜎𝜀
2 

 

with 𝐷1 = (
𝜆2
𝑇−1

𝜆2 −1
)

2

 and 𝐷2 =
𝜆2
2𝑇−1

𝜆2
2−1

 for 𝑏𝑖𝑗 + 𝑏𝑗𝑖 ≠ 0,  whilst for 𝑏𝑖𝑗 + 𝑏𝑗𝑖 = 0 we 

have 𝐷1 = 𝑇2 and 𝐷2 =  𝑇.  Hence, we have derived the variance for the difference 

between phenotypes of two group members, i.e., 𝑉(𝑃𝑇,𝑖 − 𝑃𝑇,𝑗|𝑏𝑖𝑗 , 𝑏𝑗𝑖).  

 

Furthermore, the above derivations give an explicit expression for the variances (and 

covariances) of the individual phenotypes for the two group members, i.e., 

𝑉 ((
𝑃𝑇,𝑖

𝑃𝑇,𝑗
) |𝑏𝑖𝑗 , 𝑏𝑗𝑖). Using this expression one can assess how the variances (and 

covariances) at time T depend on the values of 𝑏𝑖𝑗  and 𝑏𝑗𝑖 . 

 

Appendix B 

 

Larger group size 

We presented a model for interaction between 2 individuals. To accommodate 

interactions among more individuals, Equation 2 could be extended as follows  

 

𝑃𝑡,𝑖 − 𝑃𝑡−1,𝑖 = 𝜇𝐺𝑅 + 𝐴𝐺𝑅,𝑖 + 𝐸𝑝,𝐺𝑅,𝑖 + 𝐸𝑡,𝐺𝑅,𝑖 + ∑ 𝑏𝑖𝑗
𝑛
𝑗=1 (𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖)              (5)  

 

so that the effect of a difference in trait value between a group mate j and focal 

individual i is summed over the n group mates.  
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Appendix C 

 

Simulation description 

 

Population structure 

Monte Carlo simulations were conducted using the R software (R Development Core 

Team, 2011). We first simulated a base population of 100 sires and 10,000 dams, all 

unrelated. Each animal was assigned a breeding value for growth rate and direct and 

indirect breeding value for b, drawn from a multivariate normal distribution. Next, 

we created the offspring population by mating each sire with 100 randomly chosen 

dams. Each sire had 100 offspring. The total number of individuals in the offspring 

population was 10,000. The breeding values for growth rate and direct and indirect 

breeding values for b in the offspring population were simulated as the average 

breeding value of sire and dam, plus a Mendelian sampling term drawn from 

𝑁 ([
0
0
0
] ,

1

2
[

σAGR

2 0 0

0 σAD

2 0

0 0 σAI

2

]). Each offspring was also given the permanent and 

temporary environmental effect on body weight, as well as direct and indirect 

environmental effects on b. These were sampled from 

𝑁,([

0
0
0
0

] ,

[
 
 
 
 
σEp,GR

2 0 0 0

0 σEt,GR

2 0 0

0 0 σED

2 0

0 0 0 σEI

2
]
 
 
 
 

)

 
 

. All genetic and environmental covariances 

were set to zero. Individuals from offspring population were randomly assigned to 

groups of 2 members, creating 5000 groups in total. Finally, growth curves of 

individuals were simulated by creating phenotypes for 10 time points using Equation 

2. Therefore, each individual had repeated observations. 

 

For the selection part, we used a simulated population of individuals (offspring 

population) as explained in previous paragraph to be the base population. Three 

types of selections were performed, individual and 2 group selections, using 

phenotypes from the last time point i.e. time point 10. Individual selection was made 

on body weight, by selecting 11% of best individuals. First group selection was made 

on average body weight of the pair making up a group, while second group selection 

was performed on the squared difference in body weight within a pair, i.e. the 

variance among the two group mates. In both group selections 11% of best groups 

were selected. Selections were performed for 10 generations. To maintain the same 
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number of individuals through selection (10 000), sex ratio and mating was 

performed differently in the selection generations compared to the base. Sex was 

randomly assigned to 1100 selected individuals in 1 male : 10 females probability, 

and 1 male was mated with 10 randomly chosen females. The genetic and 

environmental values of offspring, group assignment and phenotype construction 

was done in the same manner as described in the previous paragraph.  

 

Parameters  

Table 3.2 contains parameters used in the simulation. In farmed aquaculture species, 

for example Nile tilapia, fish weights around 10 grams (g) when it is first stocked into 

the pond, and between 100-200 grams at the end of the growth period. To connect 

our results somewhat to aquaculture species, we have set 10 g as a mean starting 

weight and assumed that in every time period individuals gain on average 10 g. 

Therefore, mean growth rate, (μGR) was 10 g. The genetic standard deviation of 

growth rate (σAGR
) was 10% of μGR, which was 1 g, therefore σAGR

2  was 1 g2.  

 

The range of 𝑏̅ values was from -0.08 to 0.08. Standard deviation of 𝑏̅ was set as 60% 

of  𝑏̅= -0.05. Therefore, standard deviations of genetic and environmental 

components of b were calculated as √𝜎𝐴𝐷

2 + 𝜎𝐴𝐼

2 + 𝜎𝐸𝐷

2 + 𝜎𝐸𝐼

2 = 0.6𝑏̅, and since all 

variances were assumed equal, each of them had value of 0.225 x 10-3 (Table 3.2).  

Repeatability was set to 0.7 and heritability of growth rate to 0.5, in absence of social 

interactions (b=0). Phenotypic variance was calculated as 𝜎𝑃
2 = σAGR

2 /ℎ2 and was 

equal to 2 g2, permanent environmental effect on growth (σEp,GR

2 ) as 0.2𝜎𝑃
2 = 0.4 g2 

and temporary environmental effect (σEt,GR

2 ) as 0.3𝜎𝑃
2 = 0.6 g2 (Table 3.2).  

 

Five simulated scenarios were based on 5 different values of 𝒃̅ (Table 3.2). For the 

selection part, only a base population was used with 𝒃̅ of -0.08 to test the effect of 

selection on variability. 
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Table S3.1 Effect of b x difference in body weight on change in body weight of the focal 

individual when 𝑏̅ = 0 (no competition or cooperation) 
 

𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖 

= 2 g 
∆𝑃𝑡,𝑖 

𝑃𝑡−1,𝑖 − 𝑃𝑡−1,𝑗 

= −2 g 
∆𝑃𝑡,𝑗 

Focal  
individual i 

Social partner j Focal  
individual j 

Social partner i 

𝐴𝐼,𝑗  = 0.03 𝐴𝐼,𝑗  = - 0.03 𝐴𝐼,𝑖  = 0.03 𝐴𝐼,𝑖  = - 0.03 

𝐴𝐷,𝑖  = 0.03 0.12 g 0 g 𝐴𝐷,𝑗 = 0.03 - 0.12 g 0 g 

𝐴𝐷,𝑖  = - 0.03 0 g - 0.12 g 𝐴𝐷,𝑗 = - 0.03 0 g 0.12 g 

 

Table S3.2 Effect of b x difference in body weight on change in body weight of the focal 

individual when 𝑏̅ = - 0.05 (competition) 
 

𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖

= 2 g 
∆𝑃𝑡,𝑖 

𝑃𝑡−1,𝑖 − 𝑃𝑡−1,𝑗

= −2 g 
∆𝑃𝑡,𝑗 

Focal  
individual i 

Social partner j Focal 
individual j 

Social partner i 

𝐴𝐼,𝑗  = 0.03 𝐴𝐼,𝑗  = - 0.03 𝐴𝐼,𝑖  = 0.03 𝐴𝐼,𝑖  = - 0.03 

𝐴𝐷,𝑖  = 0.03 0.02 g -0.1 g 𝐴𝐷,𝑗 = 0.03 -0.02 g 0.1 g 

𝐴𝐷,𝑖  = - 0.03 -0.1 g -0.22 g 𝐴𝐷,𝑗 = - 0.03 0.1 g 0.22 g 

 

Table S3.3 Effect of b x difference in body weight on change in body weight of the focal 

individual when 𝑏̅ = 0.05 (cooperation) 
 

𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖

= 2 g 
∆𝑃𝑡,𝑖 

𝑃𝑡−1,𝑖 − 𝑃𝑡−1,𝑗

= −2 g 
∆𝑃𝑡,𝑗 

Focal 
 individual i 

Social partner j Focal 
individual j 

Social partner i 

𝐴𝐼,𝑗  = 0.03 𝐴𝐼,𝑗  = - 0.03 𝐴𝐼,𝑖  = 0.03 𝐴𝐼,𝑖  = - 0.03 

𝐴𝐷,𝑖  = 0.03 0.22 g 0.1 g 𝐴𝐷,𝑗 = 0.03 g -0.22 g -0.01 g 

𝐴𝐷,𝑖  = - 0.03 0.1 g -0.02 g 𝐴𝐷,𝑗  = - 0.03 

g 
-0.01 g 0.02 g 
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Figure S3.1 Growth curves of two group mates (one larger than the other) that have lowest 
sum of b’s (A); the initially larger individual has negative b, the smaller one has positive b 
(B); the initially larger individual has positive b, the smaller one has negative b (C); lowest 
sum of b’s (D), for scenario 2. Each panel shows one typical replicate.  

 

Scenario 2, 𝒃̅ = -0.05 

 

Figure S3.2 Growth curves of two group mates (one larger than the other) that have lowest 
sum of b’s (A); the initially larger individual has negative b, the smaller one has positive b 
(B); the initially larger individual has positive b, the smaller one has negative b (C); lowest 
sum of b’s (D), for scenario 3. Each panel shows one typical replicate. 

Scenario 3, 𝒃̅ = 0 
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Table S3.4 Maximum and minimum sum of b’s for two individuals in a group, 
averaged over 100 replicates 

Scenario 1 2 3 4 5 

Min -0.32 (0.01) -0.26 (0.01) -0.16 (0.01) -0.06 (0.01) 0.003 (0.01) 

Max -0.01 (0.01) 0.05 (0.01) 0.15 (0.01) 0.25 (0.01) 0.31 (0.01) 

 

Figure S3.3 Growth curves of two group mates (one larger than the other) that have lowest 
sum of b’s (A); the initially larger individual has negative b, the smaller one has positive b 
(B); the initially larger individual has positive b, the smaller one has negative b (C); lowest 
sum of b’s (D), for scenario 4. Each panel shows one typical replicate. 

Scenario 4, 𝒃̅ = +0.05 
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Table S3.5 Values of b, sum of b’s and squared difference of two individuals in a 
group for five scenarios 

Panel b Sum of b’s Squared 
difference Larger individual Smaller individual 

Scenario 1 (Figure 3.3) 

A -0.16 -0.14 -0.31 1983.7 

B -0.10 0.005 -0.09 908.6 

C 0.007 -0.07 -0.06 1377.5 

D 0.01 0.004 0.02 243.4 

Scenario 2 (Figure S3.2) 

A -0.13 -0.11 -0.25 1026.7 

B -0.08 0.05 -0.03 272.4 

C 0.04 -0.11 -0.07 646.1 

D 0.03 0.009 0.04 131.8 

Scenario 3 (Figure S3.3) 

A -0.09 -0.06 -0.15 328 

B -0.09 0.01 -0.08 194.4 

C 0.07 -0.03 0.05 64 

D 0.05 0.01 0.15 8.7 

Scenario 4 (Figure S3.4) 

A -0.04 -0.01 -0.05 117.3 

B -0.04 0.06 0.02 81.8 

C 0.14 -0.01 0.13 81.6 

D 0.10 0.15 0.25 2.74 

Figure 5 (Figure 3.3) 

A -0.002 -0.004 -0.006 232.03 

B -0.02 0.1 0.08 25.7 

C 0.08 -0.001 0.08 33.3 

D 0.13 0.18 0.3 1.4 
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Abstract 

Phenotypic variability of a genotype is relevant in natural and domestic populations. 

In the past two decades, variability has been studied as a genetic trait in its own right. 

This trait is often referred to as inherited variability, heritable variation in 

environmental (residual) variance, or environmental canalization. So far, studies on 

inherited variability have only considered genetic effects of the focal individual, i.e., 

direct genetic effects on inherited variability. Observations from aquaculture 

populations and some plants, however, suggest that an additional source of genetic 

variation in inherited variability may be generated through competition. Social 

interactions, such as competition, are often a source of Indirect Genetic Effects (IGE). 

An IGE is a heritable effect of an individual on the trait value of another individual. 

Studies have shown that IGEs may substantially affect heritable variation underlying 

the trait and the direction and magnitude of response to selection. To understand 

the contribution of IGEs to evolution of environmental canalization in natural 

populations, and to exploit such inherited variability in animal and plant breeding, 

we need statistical models to capture this effect. However, to our knowledge it is 

unknown to what extent the current statistical models that are commonly used for 

IGE and inherited variability capture the effect of competition on inherited 

variability. Here we investigate the potential of current statistical models for 

inherited variability and trait values, to capture the direct and indirect genetic effects 

of competition on variability. Our results show that a direct model of inherited 

variability almost entirely captures the direct genetic effect of competition on 

variability, as illustrated by high correlations between estimated genetic effects and 

simulated direct breeding values. Similarly, an indirect model of inherited variability 

captures indirect genetic effects of competition. Models for trait levels, however, 

capture only a small part of the genetic effects of competition. Capturing genetic 

effects of competition, therefore could be possible with direct and indirect models 

of inherited variability but may require a two-step analysis. 

 

Key words: inherited variability, canalization, competition, indirect genetic effects, 

IGE, statistical models  
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4.1 Introduction 

Some genotypes may produce less variable phenotypes compared to others in 

response to perturbations in both genome and environment. The genetic 

mechanism that leads to insensitivity of a phenotype to genetic and non-genetic 

perturbations is known as “canalization” (Waddington, 1942). Evolution of 

canalization is often associated with stabilizing natural selection for an optimal 

phenotype, as such selection favors mechanisms that reduce variance around the 

optimum (Waddington, 1942; Wagner et al., 1997; Flatt, 2005; Edgell et al., 2009). 

Long-term stabilizing selection of a trait is therefore expected to reduce phenotypic 

variation. 

 

Depending on the source of perturbation, canalization can be either genetic or 

environmental. In the following we refer only to environmental canalization. 

Environmental canalization is commonly inferred from size of the environmental 

variance (𝑉𝐸) of a genotype. In other words, genotypes that produce more stable 

phenotypes have lower 𝑉𝐸, and a decrease of 𝑉𝐸  due to selection indicates 

canalization (Gibson and Bradley, 1974; Wagner et al., 1997; Flatt, 2005).  

 

Phenotypic variability of a genotype is relevant not only in natural populations, but 

also in agriculture. In animal and crop production, uniformity of traits is often of 

economic importance. In the pig industry, for example, excessive variability in size 

and weight of animals is penalized by slaughterhouses, so that delivering animals 

within a preferred range has an economic benefit (Hennessy, 2005; Mulder et al., 

2008). In aquaculture, fish that deviate too much from the average size are usually 

not sold, which reduces revenues (Khaw et al., 2016; Marjanovic et al., 2016). Low 

𝑉𝐸  in crops is desirable, as it indicates stability against unpredictable conditions 

(Edwards and Jannink, 2006). Selection for trait uniformity in animal and plant 

breeding is an analogy of evolution of canalization in natural populations.  

 

The phenotypic variability of a genotype, measured either repeatedly on the same 

individual, or on multiple individuals belonging to the same family, has been studied 

as a quantitative trait in its own right. This concept was first introduced by 

Waddington (Waddington, 1942), and has been an integrative part of quantitative 

genetics ever since, with the growing interest in the topic over the last two decades, 

largely due to the development of methods to estimate genetic variance in variability 

(SanCristobal-Gaudy et al., 1998; Sörensen and Waagepetersen, 2003; Mulder et al., 

2009; Rönnegård et al., 2010). Inheritance of the phenotypic variability of a genotype 
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is often referred to as “inherited variability” or “heritable variation in environmental 

variance” (SanCristobal-Gaudy et al., 1998; Mulder et al., 2007; Hill and Mulder, 

2010). There is strong evidence of genetic variation in VE. The study by Mackay and 

Layman (2005), who compared bristle number of different isofemale lines of 

Drosophila, is one of the best evidences that genotypes differ in 𝑉𝐸, i.e., that 

environmental canalization has a genetic component. A number of studies in plant 

and animal populations also showed that variability often has a substantial genetic 

component (reviewed by Hill and Mulder, 2010). 

Research on inherited variability has focused primarily on quantifying genetic 

variation in VE, and some selection experiments have been performed to investigate 

how variability responds to selection (Hill and Mulder, 2010). With the availability of 

genomic data, scientists started to look for QTLs that control variability of trait 

values, known as vQTL (Ordas et al., 2008; Mulder et al., 2013; Sell-Kubiak et al., 

2015; Ayroles et al., 2015). All studies so far have only considered genetic effects of 

the focal individual, i.e., direct genetic effects on inherited variability. Observations 

from aquaculture populations, and some plants, however, suggest that an additional 

source of genetic variation in inherited variability may be generated through 

competition. Hence, we may currently be overlooking a component of inherited 

variability. 

In aquaculture populations, competition for feed not only decreases productivity and 

survival of the animals, but also inflates variation in trait values among individuals 

(Jobling, 1995; Cutts et al., 1998; Hart and Salvanes, 2000). Phenotypic studies show 

that populations displaying less competition tend to grow more uniform and have 

higher average performance (Jobling, 1995; Cutts et al., 1998; Hart and Salvanes, 

2000). Plants also express competitive behaviors, for example by increasing their leaf 

area, height, and branching of stem and roots (Zhang et al., 1999; Denison et al., 

2003; File et al., 2012). In plant breeding, kin-group selection for higher plot 

performance in crops has resulted in less competitive phenotypes of individual 

plants and a more uniform appearance of crop fields (Donald, 1968; Austin et al., 

1980; Denison et al., 2003). These results clearly suggest a close relationship 

between competition and VE. 

In quantitative genetics, the effects of social interactions, such as competition, on 

trait values of individuals is usually modelled within the framework of Indirect 

Genetic Effects (IGE). An IGE is a heritable effect of an individual on the trait value of 

another individual (Griffing, 1967; Moore et al., 1997). Several studies have shown 
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that IGEs may substantially affect heritable variation underlying the trait and the 

direction and magnitude of response to selection (Hamilton, 1964a, 1964b; Griffing, 

1976; Ellen et al., 2007; Bijma et al., 2007; Bijma, 2011). Because of IGEs, heritable 

variance of a trait may exceed the phenotypic variance, while in other cases IGEs can 

completely remove heritable variance (Bijma, 2011; Costa e Silva et al., 2017). 

Therefore, it has become widely accepted that inclusion of IGEs in trait models is 

important for understanding the potential of trait levels to respond to selection. 

Until recently we lacked the tools to investigate whether IGEs also contribute to 

genetic variation in variability. IGE-models come in two types; variance-component 

models and trait-based models (Griffing, 1967; Moore et al., 1997; reviewed by 

McGlothlin and Brodie, 2009, and Bijma, 2014). Variance component models cannot 

explain the observed relationship between competition and variability, because 

phenotypic variance is independent of the average level of the IGE. Trait-based 

models lead to a relationship between competition and variability, but on the 

population level this relationship is identical for competition and cooperation, which 

does not reflect the pattern observed in real populations. On the other hand, current 

models of inherited variability treat variability as a property of a single individual, 

ignoring the component due to competition.  

We recently proposed a quantitative genetic model that allows for a relationship 

between IGEs and inherited variability (Marjanovic et al., in press). In this model, 

competition between social partners leads to divergence of their phenotypes (e.g., 

body weight) over their life time. Hence, the model allows for indirect genetic effects 

to lead to differences in variability of trait values, on both group and population level, 

similar to observations in real populations.   

To understand the contribution of IGEs to evolution of environmental canalization in 

natural populations, and to exploit such inherited variability in animal and plant 

breeding, we need statistical models to capture this effect. The model of Marjanovic 

et al. (submitted) can be used to estimate effects of competition, but it requires 

time-series data, which are often not available. The use of existing statistical models 

for IGE and inherited variability applied to a final phenotype would be an easier 

approach. However, to our knowledge it is unknown to what extent such models 

capture the effect of competition on inherited variability.  

Here we investigate the potential of existing statistical models for inherited 

variability and trait values, to capture the direct and indirect genetic effects of 
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competition on variability. To address this issue, we conducted a simulation study in 

which competition between social partners (i.e., IGEs) leads to inherited variability 

of trait values, using the model of Marjanovic et al. (in press). Subsequently, we 

analyzed these data with four models. The ability of those models to capture direct 

and indirect genetic effects on variability was tested by comparing estimated genetic 

effects from each of the models with simulated direct breeding values for trait level, 

and with direct and indirect breeding values for competition.  

4.2 Materials and Methods 

4.2.1 Quantitative genetic model 

In this section, we summarize the quantitative genetic model of Marjanovic et al. 

(in press) that integrates IGEs and inherited variability. The parameters were 

chosen to represent growth of fish as an example.  

In this model, we consider groups of two individuals. Each individual is both a focal 

individual in the model for its own phenotype, and a social partner in the model for 

the phenotype of its group mate. Our target phenotype is individual growth rate, 

modelled over time. In aquaculture, growth of individuals is affected by the 

difference in body weight between interacting individuals, with higher body weight 

giving a competitive advantage to an individual in terms of growth (Doyle and Talbot, 

1986). Therefore, the phenotypic value for growth rate of the focal individual is 

affected by the ordinary direct genetic and environmental effects of the focal 

individual itself, and by the difference in body weight between the focal individual 

and its social partner. The degree to which the difference in body weight affects the 

phenotype of an individual is measured by a regression coefficient b, 

𝑃𝑡,𝑖 − 𝑃𝑡−1,𝑖  = 𝜇𝐺𝑅 + 𝐴𝐺𝑅,𝑖 + 𝐸𝑝,𝐺𝑅,𝑖 + 𝐸𝑡,𝐺𝑅,𝑖 + 𝑏𝑖𝑗(𝑃𝑡−1,𝑗 − 𝑃𝑡−1,𝑖)  (1) 

where 𝑃𝑡,𝑖  is the body weight of focal individual i at time point t, 𝑃𝑡−1,𝑖  is body weight 

of i at the previous time point, 𝜇𝐺𝑅 is the mean growth rate of the population, 𝐴𝐺𝑅,𝑖  

is a (direct) breeding value for growth rate of individual i, 𝐸𝑝,𝐺𝑅,𝑖 and 𝐸𝑡,𝐺𝑅,𝑖  are 

permanent and temporary non-heritable (“environmental”) effects of individual i, 

and 𝑏𝑖𝑗  is a regression coefficient. 
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The absolute value of 𝑏𝑖𝑗  describes the strength of the social interaction. The sign of 

b is a measure of cooperation, where a negative b indicates competition, while a 

positive b indicates cooperation. 

In this model, b is not a fixed parameter, but a composite genetic trait that can evolve 

over generations. The b exhibits genetic variation due to a direct genetic effect of 

the focal individual (𝐴𝐷,𝑖), representing genetic resistance to competition, and an 

indirect genetic effect of its social partner, representing the genetic cooperative 

effect (𝐴𝐼,𝑗). Hence, the model allows for variation among individuals in sensitivity to 

competition, so that some individuals may suffer less than others from the presence 

of a large social partner. Similarly, the model allows for variation among individuals 

in competitive effect. Some individuals may be large at the expense of their group 

mate, whereas other large individuals may not suppress growth of their social 

partner. Thus, for focal individual i with social partner j, the regression coefficient 𝑏𝑖𝑗  

is given by  

𝑏𝑖𝑗 = 𝑏̅ + 𝐴𝐷,𝑖 + 𝐸𝐷,𝑖 + 𝐴𝐼,𝑗 + 𝐸𝐼,𝑗   (2) 

where 𝑏̅ represents the average regression coefficient, which is a population 

parameter that is negative under competition and positive under cooperation. The 

𝐴𝐷,𝑖 and 𝐸𝐷,𝑖  are the direct genetic and the environmental effect of individual i on 

𝑏𝑖𝑗 , while 𝐴𝐼,𝑗 and 𝐸𝐼,𝑗 are the indirect genetic and environmental effect of individual 

j on 𝑏𝑖𝑗 . Negative values of 𝐴𝐷 indicate that individual is sensitive to competition (as 

compared to an average individual), while an individual with positive 𝐴𝐷 is resistant 

to competition. Similarly, an individual with negative 𝐴𝐼 is competitive, while an 

individual with positive 𝐴𝐼 is cooperative. Note that b is non-symmetric, i.e., 𝑏𝑖𝑗 ≠

𝑏𝑗𝑖, as individuals may differ in their breeding values for b. In other words, an 

individual that is strongly affected by its social partner, does not necessarily also have 

a strong effect on its social partner. 

Therefore, in the total model (Equations 1 & 2) there are three breeding values – a 

direct breeding value for growth (𝐴𝐺𝑅), a direct breeding value for b (𝐴𝐷), and an 

indirect breeding value for b (𝐴𝐼). 
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4.2.2 Simulation 

 

4.2.2.1 Population structure 

We simulated a family-structured population using the model proposed above 

(Equations 1 and 2). Our objective was to test whether currently available models 

for IGE and inherited variability capture the effect of IGE on variability, rather than 

to investigate statistical power of those models. For this reason, we simulated large 

data sets, so as to avoid that limited power would blur the results. 

 

We first simulated a base population of 100 sires and 10,000 dams, all unrelated. 

Each animal in the base population was assigned a breeding value for growth rate, 

and a direct and indirect breeding value for b, drawn from a multivariate normal 

distribution. Next, the offspring population was created by mating each sire with 100 

randomly chosen dams. To create records on body weight for the analysis of trait 

levels, each dam produced 10 offspring, resulting in 1,000 offspring per sire, and a 

total of 100,000 offspring. Because analysis of variability was performed on records 

grouped by family (see below), we simulated a larger data set for the analysis of 

variability, so as to increase precision of estimates. Thus, to create records on 

variability of body weight, each dam produced 100 offspring, resulting in 10,000 

offspring per sire, and a total of 1 million offspring.  

 

The breeding values for growth rate and direct and indirect breeding values for b of 

the offspring were simulated as the average breeding value of the sire and dam, plus 

a Mendelian sampling term drawn from 𝑁 ([
0
0
0
] ,

1

2
[

σAGR

2 0 0

0 σAD

2 0

0 0 σAI

2

]). In addition, 

each offspring was assigned a permanent and temporary environmental effect on 

body weight, and direct and indirect environmental effects on b. These were drawn 

from 𝑁 ([

0
0
0
0

] ,

[
 
 
 
 
σEp,GR

2 0 0 0

0 σEt,GR

2 0 0

0 0 σED

2 0

0 0 0 σEI

2
]
 
 
 
 

)

 
 

. The genetic and environmental 

covariances were all set to 0. Groups of two members were created by randomly 

assigning a social partner to each individual, which resulted in 50,000 groups for the 

analysis of trait levels, and 500,000 groups for the analysis of trait variability.  
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Subsequently, phenotypes for 10-time points were obtained for all individuals by 

using Equations 1 & 2. Body weight at the last time point was used as the trait of 

interest and may for example reflect harvest weight in fish. Simulations were 

conducted using the R software (R Development Core Team, 2011).  

4.2.2.2 Parameters 
Table 4.1 shows the parameters used in the simulations. Starting weight of the 

individuals was set to 10 g. Mean growth rate (μGR) was also 10 g. The genetic 

standard deviation of growth rate (𝜎𝐴𝐺𝑅 ) was set to 1 g. (See Marjanovic et al., in 
press) for examples of the typical behavior of populations for these parameter 

values). 

The 𝑏̅ values used in the simulation were -0.05 (competition), 0 (no social 

interaction), 0.05 (cooperation). Standard deviation of 𝑏̅ was set as 60% of 0.05; 𝜎𝑏 = 
0.03. Therefore, standard deviations of genetic and environmental components of b 

had to satisfy √𝜎𝐴
2
𝐷 + 𝜎𝐴

2
𝐼 + 𝜎𝐸

2
𝐷 + 𝜎𝐸

2
𝐼 = 0.03. All standard deviations were

assumed equal, hence each of them had a value of 0.015 (Table 4.1). Repeatability 

was set to 0.7 and heritability of growth rate to 0.5, in the absence of social 

interactions (b=0). Phenotypic variance was calculated as 𝜎𝑃
2 = σAGR

2 /ℎ2 and was 

equal to 2 g2, permanent environmental effect on growth (σEp,GR

2 ) as 0.2𝜎𝑃
2 = 0.4 g2

and temporary environmental effect (𝜎𝐸𝑡,𝐺𝑅
2 ) as 0.3𝜎𝑃

2 = 0.6 g2 (Table 4.1).

In addition to default values of 𝜎𝐴𝐷
, 𝜎𝐴𝐼

, and 𝜎𝐴𝐺𝑅
, we also simulated data where

these values were 3x larger or 3x smaller (Table 4.1). These values were used to test 

the effect of magnitude of genetic variance on the estimates. In total, we tested 21 

scenarios with different values of 𝜎𝐴𝐷
, 𝜎𝐴𝐼

, 𝜎𝐴𝐺𝑅
, and b (Table 4.2).

Finally, we investigated how a non-zero genetic correlation affects estimated 

correlations, by simulating data with correlations of -0.5 or +0.5 between 𝜎𝐴𝐷
, 𝜎𝐴𝐼

,

𝜎𝐴𝐺𝑅
, and default values for the other parameters.

For the analysis of inherited variability, each scenario had 100 replicates. For the 

analysis of levels of a trait, each scenario had 10 replicates.  
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Table 4.1 Parameters used in the simulation 

Parameters Default values Alternate values 

Mean growth rate, 𝜇𝐺𝑅 10 g 

Starting weight 10 g 

Genetic standard deviation for 

growth rate, σAGR

1 g 3 g or 0.3 g 

Cooperation effect, 𝑏̅ -0.05, 0, or 0.05

Direct and indirect genetic 

standard deviation, 𝜎𝐴𝐷
= 𝜎𝐴𝐼

0.015 0.045 or 0.005 

Direct and indirect 

environmental standard 

deviation, 𝜎𝐸𝐷
= 𝜎𝐸𝐼

0.015 

Phenotypic variance, 𝜎𝑃𝐺𝑅
2 * 2 g 18 g or 0.18 g 

Permanent environmental 

variance, σEp,GR

2 0.4 g 3.6 g or 0.036 g 

Temporary environmental 

variance, σEt,GR

2 0.6 g 5.4 g or 0.054 g 

*𝜎𝑃𝐺𝑅

2  was calculated assuming b = 0 i.e. as 𝜎𝑃𝐺𝑅

2 =
σAGR

2

ℎ
, where ℎ = 0.5. 

**𝜎𝐸𝑝,𝐺𝑅

2 was calculated as 0.2𝜎𝑃𝐺𝑅

2 , and 𝜎𝐸𝑡,𝐺𝑅

2 as 0.3𝜎𝑃𝐺𝑅

2 .
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Table 4.2. Scenarios 

Scenario 𝒃̅ effect 𝝈𝑨𝑫
𝝈𝑨𝑰

𝝈𝑨𝑮𝑹

Default 
scenario 

1 Competition 0.015 0.015 1 
2 Neutral 0.015 0.015 1 
3 Cooperation 0.015 0.015 1 

Different 𝜎𝐴𝐷

4 Competition 0.045 0.015 1 
5 Neutral 0.045 0.015 1 
6 Cooperation 0.045 0.015 1 

7 Competition 0.005 0.015 1 
8 Neutral 0.005 0.015 1 
9 Cooperation 0.005 0.015 1 

Different 𝜎𝐴𝐼

10 Competition 0.015 0.045 1 
11 Neutral 0.015 0.045 1 
12 Cooperation 0.015 0.045 1 

13 Competition 0.015 0.005 1 
14 Neutral 0.015 0.005 1 
15 Cooperation 0.015 0.005 1 

Different 𝜎𝐴𝐺𝑅

16 Competition 0.015 0.015 3 
17 Neutral 0.015 0.015 3 
18 Cooperation 0.015 0.015 3 

19 Competition 0.015 0.015 0.3 
20 Neutral 0.015 0.015 0.3 
21 Cooperation 0.015 0.015 0.3 

* Parameter values that differ from those in default scenario are given in bold.

**Competition corresponds to 𝑏̅ of -0.05; Neutral corresponds to 𝑏̅ of 0; Cooperation 

corresponds to 𝑏̅ of +0.05. 

4.2.3 Statistical models 

We estimated genetic effects for the target trait and its variability using two models 

each. These were i) a direct sire model for inherited variability, ii) an indirect sire 

model for inherited variability, iii) a direct sire-dam model for the trait, iv) and an 

indirect sire-dam model for the trait. For all four models, genetic effects were 

estimated using residual maximum likelihood (REML) implemented in ASReml 4.1 

software (Gilmour et al., 2015). Subsequently, we estimated Pearson correlations 

between the estimated genetic effects from each model and each of the simulated 

breeding values. Estimated genetic effects from sire models were correlated with 

simulated breeding values of sires, while estimated genetic effects from sire-dam 
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models were correlated with simulated breeding values of both sires and dams. 

Table 4.3 gives an overview of calculated correlations. Models are explained in detail 

below. 

4.2.3.1 Direct sire model for inherited variability
As a measure of the direct component of inherited variability, we used the log-

transformed within-family variance of body weight. Log transformed within-family 

variance of one full-sib family was treated as a trait of the sire, so that each sire had 

100 observations of within-family variance, each based on 100 offspring per sire-dam 

combination. This model corresponds to an ordinary model for inherited variability 

(Rowe et al., 2006), and gives estimates of half of the direct breeding values of a 

sire for inherited variability (s𝐷). The model was: 

y𝑣,𝐷 = μ + Z𝐷𝑠 s𝐷 + e,

where y𝑣,𝐷 is the vector of log-transformed within-family variance of body weight, µ 

is the overall mean, s𝐷 is a vector of direct random genetic effects of sires, with 

s𝐷~N(0, 𝜎𝑆
2
𝐷 ), where 𝜎𝑆

2
𝐷

 is the direct sire variance, Z𝐷𝑠
 is an incidence matrix linking 

observations to sires, and e is the vector of random residuals, with e~N(0, 𝜎𝑒
2).

Table 4.3 Overview of estimated correlations between estimated and simulated 

breeding values
Model Estimated genetic 

effects 
Simulated breeding 

values 

Analysis of the variability 𝐴𝐺𝑅
* 𝐴𝐷𝑏

𝐴𝐼𝑏

Direct sire model 𝐬𝐷  

𝒓
Indirect sire model 𝐬𝐼  

Analysis of the trait  

Direct sire and dam model 𝐩𝐷  

Indirect sire and dam model 𝐩𝐼 

*Estimated genetic effects from sire models were correlated with simulated breeding 
values of sires, while estimated genetic effects from sire and dam models were correlated 
with simulated breeding values of sires and dams.
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4.2.3.2 Indirect sire model for inherited variability 
Indirect genetic effects are expressed in the phenotypes of social partners. 

Therefore, to estimate indirect random genetic effects of sires for variability (s𝐼), 

we used the log-transformed variance of body weight of the group mates of full-sib 

families descending from the sire. Thus, each sire had 100 records, which were the 

log-transformed variance of body weight of the group mates of each of the 100 

families produced by a sire. The model was: 

y𝑣,𝐼 = μ + Z𝐼𝑠
s𝐼 + e,

where y𝑣,𝐼 is the vector of log-transformed variance of body weight of group mates 

of full-sib families descending from the sire, µ is the overall mean, s𝐼 is the vector of 

indirect random genetic effects of a sire, with s𝐼~N(0, 𝜎𝑠
2
𝐼 ), where 𝜎𝑠

2
𝐼
 is the indirect 

sire variance for variability, Z𝐼𝑠 is an incidence matrix linking observations to sires, 
and e is the vector of random residuals, with e~N(0, 𝜎𝑒

2).

4.2.3.3 Direct sire-dam model for the trait 
Here we use an ordinary sire-dam model, which assumes equal genetic variance for 

sires and dams. The model was as follows: 

y𝑡,𝐷 = μ + Z𝐷𝑝
p𝐷 + e,

where y𝑡,𝐷 is the vector of individual body weight records of offspring, µ is the 

overall mean, p𝐷 is the vector of direct random genetic effects of sires and dams 

(“parents”), with p𝐷~N(0, 𝜎𝑝
2
𝐷

), where 𝜎𝑝
2
𝐷

 is the direct sire-dam variance, Z𝐷𝑝
 is an 

incidence matrix linking observations to parents, and has “1” in the column for the 

sire and in the column for the dam of the offspring producing the record, and e is 

the vector of random residuals, with e~N(0, 𝜎𝑒
2).

4.2.3.4 Indirect sire-dam model for the trait 
In this model, we link individual observations on individual to the sire and dam of the 

group mate of an individual. The model was:  

y𝑡,𝐼 = μ + Z𝐼𝑝p𝐼 + e,

where y𝑡,𝐼 is the vector of individual body weight records of individuals, µ is the 

overall mean, p𝐼 is the vector of indirect random genetic effects of the parents of 



4 Capturing indirect genetic effects on phenotypic variability 

106 

the group mate of the focal individual, with p𝐼~N(0, 𝜎𝑝
2
𝐼
), where 𝜎𝑝

2
𝐼
 is the indirect 

sire-dam variance, Z𝐼𝑝 is an incidence matrix with “1” in the column for the sire and 

in the column for the dam of the group mate of the focal individual, and e is the 

vector of random residuals, with e~N(0, 𝜎𝑒
2).

4.3 Results 

4.3.1 Variability models 

Both direct and indirect estimated sire effects for variability showed near zero 

correlations with simulated breeding values of sire for growth (𝐴𝐺𝑅, Tables 4.4 & 

4.5). Therefore, variability models do not capture trait level, which is expected.  

Direct effects: The estimated direct sire effects on variability showed strongly 

negative correlations with simulated direct breeding values for b (𝐴𝐷𝑏
), under 

competition, cooperation and for neutral b (Table 4.4). Therefore, offspring of sires 

that are resistant to competition (i.e., have higher b) show lower variability of body 

weight. Correlations between estimated sire effects and simulated indirect breeding 

values for b (𝐴𝐼𝑏
), on the other hand, were near zero, under competition, 

cooperation, and for neutral b. These results indicate that cooperative effects of sires 

(𝐴𝐼𝑏
) have negligible effect on within-family variance. In conclusion, these results 

suggest that current (i.e., direct) models of inherited variability capture mostly the 

direct genetic effects (𝐴𝐷𝑏
) of competition, but not the indirect effect (𝐴𝐼𝑏

). In other 
words, they capture the sensitivity of individuals to competition, but not the 

competitive effects of individuals on the phenotypes of their group mates. 

With higher direct genetic variation in b (𝜎𝐴𝐷 ; compared to the default value), or 
lower indirect genetic variation in b (𝜎𝐴𝐼 ), estimated correlations between estimated 
direct sire effects and simulated direct breeding values for b (𝐴𝐷𝑏

) were slightly 
more negative. The opposite was true for lower direct genetic variation in b (𝜎𝐴𝐷

) 
and higher indirect genetic variation in b (𝜎𝐴𝐼 ). When direct genetic variation in b 
was small, or when indirect genetic variation in b was large, the direct model for 

inherited variability captured more indirect genetic effects, resulting in higher 

negative correlations between estimated direct sire effects and simulated indirect 

breeding values for b (Table 4.4). 
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Indirect effects: Correlations between estimated indirect sire effects on variability 

and simulated indirect breeding values for b (𝐴𝐼𝑏
) were strongly negative, in

competition, cooperation, and neutral scenarios (Table 4.5). These correlations 

suggest that group mates of offspring of sires that have high 𝐴𝐼𝑏
, i.e., sires that are

cooperative, have lower variability. Similar to the previous model, correlations 

between estimated indirect sire effects and simulated direct breeding values for b 

(𝐴𝐷𝑏
) were low and negative under competition, and close to zero under

cooperation and for neutral b. Thus, indirect models of inherited variability capture 

mostly indirect genetic effects of competition, but not the direct effects (𝐴𝐷𝑏
). In

other words, they capture the competitive effects of individuals on the phenotypes 

of their group mates, but not the sensitivity of individuals to competition. 

With higher indirect genetic variation in b (𝜎𝐴𝐼
), the correlation between estimated

indirect genetic effects of a sire and indirect breeding values for b was more 

negative. When 𝜎𝐴𝐼
 was low or when direct genetic variation in b (𝜎𝐴𝐷

) was high,

correlations between estimated indirect genetic effects of a sire and simulated direct 

breeding values for b slightly increased. 

4.3.2 Trait models 

Correlations between estimated sire and dam effects for growth from both direct 

and indirect sire-dam models for trait values, and simulated direct and indirect 

breeding values for b were near 0 (results not shown). Trait models, therefore, do 

not capture genetic effects of competition generated by the model in Equations 1 

and 2. This result is not surprising, as the classical sire-dam model does not include 

IGEs, while the indirect sire-dam model is essentially the variance-component 

version of an IGE model, which does not make a connection between the level of 

IGEs and trait variability. 

Direct effects: Direct sire and dam effects for growth showed a strongly positive 

correlation with simulated direct breeding values (~0.83) for all scenarios (results not 

shown). Correlations were lower than 1 because dam effects were based on only 10 

observations; Correlations were near 1 when considering sires only (results not 

shown).  

Indirect effects: Indirect sire and dam effects showed a moderate negative 

correlation (-0.33) with simulated breeding values for growth under competition, but 

a moderate and positive correlations (0.26) under cooperation. Thus individuals with 
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high genetic potential for growth reduce growth of their group mates under 

competition, but increase growth of their group mates under cooperation.   

Changes in values of 𝜎𝐴𝐺𝑅
, 𝜎𝐴𝐼

, and 𝜎𝐴𝐷
, had only minor effect on the estimated

correlations.  

Table 4.4 Correlations between estimated direct sire effects for 
variability and simulated breeding values for growth, and direct and 
indirect breeding values for b 

Scenario* 𝒃̅ effect 𝑨𝑮𝑹 𝑨𝑫𝒃
𝑨𝑰𝒃

1 Competition 0.02 -0.96 -0.15

2 Neutral 0.02 -0.96 0.04

3 Cooperation 0.02 -0.91 0.07

4 Competition 0.02 -0.98 -0.05

5 Neutral 0.02 -0.98 -0.02

6 Cooperation 0.02 -0.96 0.02

7 Competition -0.01 -0.80 -0.33

8 Neutral 0 -0.80 -0.04

9 Cooperation 0 -0.60 0.19

10 Competition 0 -0.80 -0.46

11 Neutral 0 -0.87 -0.22

12 Cooperation 0 -0.85 0.05

13 Competition -0.01 -0.97 -0.03

14 Neutral -0.01 -0.96 0.01

15 Cooperation -0.01 -0.91 0.05

16 Competition 0 -0.96 -0.14

17 Neutral 0 -0.96 -0.02

18 Cooperation 0 -0.91 0.09

19 Competition 0.01 -0.96 -0.16

20 Neutral 0.01 -0.96 -0.04

21 Cooperation 0.01 -0.91 0.07

*Details of the scenario’s are summarized in Table 4.2.
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Table 4.5 Correlations between estimated indirect sire effects for 
variability and simulated breeding values for growth, and direct and 
indirect breeding values for b 

Scenario* 𝒃̅ effect 𝑨𝑮𝑹 𝑨𝑫𝒃
𝑨𝑰𝒃

1 Competition 0.01 -0.15 -0.93

2 Neutral 0.01 -0.04 -0.91

3 Cooperation 0.01 0.08 -0.84

4 Competition 0.02 -0.43 -0.81

5 Neutral 0.02 -0.17 -0.87

6 Cooperation 0.01 0.15 -0.83

7 Competition -0.01 -0.04 -0.94

8 Neutral -0.01 0 -0.90

9 Cooperation -0.01 0.03 -0.84

10 Competition -0.02 -0.04 -0.98

11 Neutral -0.02 -0.01 -0.98

12 Cooperation -0.02 0.03 -0.97

13 Competition 0 -0.26 -0.69

14 Neutral 0 0 -0.61

15 Cooperation 0 0.19 -0.47

16 Competition 0 -0.12 -0.93

17 Neutral 0 -0.01 -0.92

18 Cooperation 0 0.11 -0.85

19 Competition 0 -0.15 -0.93

20 Neutral 0 -0.04 -0.91

21 Cooperation 0 0.07 -0.85

*Details of the scenario’s are summarized in Table 4.2.
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4.3.3 Genetic correlations between breeding values 

Above reported results are based on data where genetic correlations between 

simulated breeding values were 0. We also investigated scenarios with correlations 

of -0.5 or +0.5 between breeding values (with default values for the other 

parameters). Results are in Supplementary material, Tables S4.1-S4.4. As expected, 

estimated correlations between genetic effects from the direct sire model and 

𝐴𝐼𝑏
 and 𝐴𝐺𝑅  increased, when 𝐴𝐷𝑏

 had non-zero correlation with 𝐴𝐼𝑏
 and 𝐴𝐺𝑅 

(Supplementary material, Table S4.1). Similarly, an increase in estimated correlations 

was observed between genetic effects from the indirect sire model, when 𝐴𝐼𝑏
 had a 

non-zero correlation with 𝐴𝐷𝑏
 and 𝐴𝐺𝑅 (Supplementary material, Table S4.2), and in 

trait models when 𝐴𝐺𝑅 had a non-zero correlation with 𝐴𝐷𝑏
 and 𝐴𝐼𝑏 .

4.4 Discussion 

We investigated whether current statistical models for inherited variability and for 

trait values capture direct and indirect genetic effects of competition on variability. 

Our results show that a direct model of inherited variability almost entirely captures 

the direct genetic effect of competition on variability, as illustrated by large 

correlations between estimated genetic effects and simulated direct breeding values 

for b. Similarly, an indirect model of inherited variability captures indirect genetic 

effects of competition. Models for trait levels, however, capture only little of the 

genetic effects of competition. 

4.4.1 Capturing b 

In Marjanovic et al. (in press) we developed a quantitative genetic model 

(Equation 1 & 2) in which the regression coefficient b comprises both a direct and an 

indirect genetic effect. Using simulations, we demonstrated that IGEs and variability 

can co-evolve, because the regression coefficient can respond to selection. 

Therefore both direct and indirect genetic effects on b affect phenotypic variability. 

In current direct quantitative genetic models for inherited variability, the 

contribution of the social partner is ignored, which is illustrated by results of this 

study, where the direct sire model for inherited variability failed to capture indirect 

genetic effects on b. In contrast, the relationship between estimated genetic effects 

of a sire and simulated direct genetic effects for b showed a consistently linear 

relationship (Figure 4.1). Response to selection for higher uniformity, relying on 

direct genetic effect only, may be less effective as an entire level of potential genetic 

variation is not exploited. In addition, presence of IGEs on b may cause response in  
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variability to divergence from its expectation, particularly when they are correlated 

to direct genetic effects on b (Ellen et al., 2014). 

When traits are affected by social interactions, selection strategies that account for 

both direct and indirect genetic effects can result in higher response (for example, 

Griffing, 1976; Muir, 1996; Bijma, Muir, Ellen, et al., 2007). Future breeding programs 

aiming to reduce variability may need to improve both direct and indirect genetic 

effects. By using an indirect sire model for inherited variability, we showed that 

estimated genetic effects of a sire had a high correlation with the simulated indirect 

breeding values for b. Also this relationship is remarkably linear (Figure 4.2). 

 Direct sire model for inherited variability – default scenarios 

Competition   Cooperation 

A

B

C

Figure 4.1 Correlations between estimated direct genetic effects of a sire for variability and 
simulated direct breeding values of a sire for growth (A), simulated direct breeding values of 
a sire for b (B), and indirect breeding values of a sire for b (C) under competition and 
cooperation.  
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Capturing genetic effect of competition on variability, therefore, is promising with 

models for inherited variability, but may require a two-step analysis, in which direct 

and indirect genetic effects are estimated separately, and subsequently combined 

into a total breeding value for variability, analogous to IGE models for trait values 

(Bijma et al., 2007). The benefit of such an approach is that it only requires group-

structured data, but not time-series data, as the analysis is performed on the final 

phenotype. Using a one-step approach to estimate direct and indirect breeding 

values for b would be challenging with the experimental design used in this study, 

where groups consisted of two individuals and offspring of a sire were randomly 

assigned to groups. Since each individual was both a focal individual and a social 

partner, calculation of the direct and social within-family variance would require 

using the same individual twice. In other words, the same data would be used to 

 Indirect sire model for inherited variability – default scenarios 

Competition   Cooperation 

A

B

C

Figure 4.2 Correlations between estimated indirect genetic effects of a sire for variability and 
simulated direct breeding values of a sire for growth (A), simulated direct breeding values of 
a sire for b (B), and indirect breeding values of a sire for b (C), under competition and 
cooperation. 
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calculate the variance among the offspring of each sire and to calculate the variance 

among the social partners of the offspring of each sire. In the present study, we 

followed the experimental design of Marjanovic et al. (in press), which has groups of 

only two individuals. However, the need for a two-step analysis can be avoided by 

using larger groups consisting of members of two families each. In such a design, the 

y-variable could be the within-group variance of each family in the group (two 
records per group), and both a direct effect of the family and an indirect effect of the 
partner family could be fitted. Alternatively, if multiple observations of body weight 
of two individuals in a group are available, direct and indirect genetic components of 
b could be estimated using random regression method (Marjanovic et al, in press).

4.4.2 Validation experiments 

To validate results of this study and the previous study by Marjanovic et al. (in press), 

the proposed models should be applied to empirical data. Empirical data could give 

insight into whether the theoretical possibility that IGEs contribute to genetic 

variation in variability, are also biologically relevant, and in which situations. In 

addition, it would allow to test the statistical models proposed here and to optimize 

methods and models for future studies aiming to estimate genetic effects of 

competition. Selection experiments where one selection strategy involves selection 

for direct genetic effects on variability only, while the other would select for both 

direct and indirect genetic effects, would also allow to quantify the contribution of 

IGEs to response to selection in variability. 

The experiments should have a group structure with, e.g., two individuals per group, 

similar to our simulated data. However, subsequent trials involving larger group sizes 

may also be conducted to test the single-step analysis suggested above and to 

quantify the effect of group size on the estimates. For groups of two individuals, data 

on both individuals in each group should ideally be collected at several time points. 

Such time-series data would allow to use a random regression approach as 

suggested by Marjanovic et al. (in press), but also the direct model and the indirect 

model for inherited variability presented in this study could be used. The 

experiment could be performed using zebrafish as a model organism, as this 

species shows substantial competition and fast growth. 

For estimation of direct and indirect breeding values for b in a commercial setting, 

new phenotyping techniques that involve video tracking of individuals in 3D space 

could be used in the future (see for example idTracker, http://www.idtracker.es/). 

These techniques would give multiple observations on individual trait values (for 

http://www.idtracker.es/
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example body weight calculated from the 3D image, i.e., volume of the individual) 

and information on social interactions between individuals. 

4.5 Conclusion 

Our results show that a direct model of inherited variability almost entirely captures 

the direct genetic effect of competition on variability, while an indirect model of 

inherited variability captures indirect genetic effects of competition. Models for trait 

levels, however, capture only little of the genetic effects of competition. The 

estimation of direct and indirect genetic effects of competition therefore is possible 

with models for inherited variability, but may require a two-step analysis or a 

different data set-up involving larger groups.  
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Supplementary material 

 

Table S4.1 Estimated correlations between simulated breeding 
values and estimated genetic effects, when simulated breeding 
values are genetically correlated 

Direct sire model for inherited variability 

Correlation 0.5 between simulated 𝐴𝐷𝑏
 and 𝐴𝐼𝑏

 

 𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐷𝑉,𝑠
 

competition 0.0 -0.96 -0.61 
cooperation 0.0 -0.90 -0.31 

 
Correlation -0.5 between simulated 𝐴𝐷𝑏

 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐷𝑉,𝑠
 

competition 0.0 -0.95 0.32 
cooperation 0.0 -0.91 0.53 

 
Correlation 0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐷𝑏

 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐷𝑉,𝑠
 

competition -0.59 -0.95 -0.20 
cooperation -0.64 -0.90 0.06 

 
Correlation -0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐷𝑏

 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐷𝑉,𝑠
 

competition 0.58 -0.95 -0.18 
cooperation 0.64 -0.90 0.08 

 

Correlation 0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐷𝑉,𝑠
 

competition 0.0 -0.95 -0.11 
cooperation 0.0 -0.91 0.05 

     

Correlation -0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐷𝑉,𝑠
 

competition 0.0 -0.96 -0.16 
cooperation 0.0 -0.91 0.05 
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Table S4.2 Estimated correlations between simulated breeding 
values and estimated genetic effects, when simulated breeding 
values are genetically correlated 

Indirect sire model for inherited variability 

Correlation 0.5 between simulated 𝐴𝐷𝑏
 and 𝐴𝐼𝑏

 

 𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.0 -0.56 -0.93 
cooperation 0.0 -0.33 -0.81 

 
Correlation -0.5 between simulated 𝐴𝐷𝑏

 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.0 0.38 -0.93 
cooperation 0.0 0.52 -0.86 

 
Correlation 0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐷𝑏

 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.19 -0.01 -0.91 
cooperation 0.34 0.23 -0.78 

 
Correlation -0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐷𝑏

 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition -0.20 0.0 -0.90 
cooperation -0.36 0.24 -0.78 

 

Correlation 0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition -0.47 -0.13 -0.92 
cooperation -0.44 0.10 -0.84 

     

Correlation -0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.46 -0.14 -0.93 
cooperation 0.42 0.09 -0.85 
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Table S4.3 Estimated correlations between simulated breeding 
values and estimated genetic effects, when simulated breeding 
values are genetically correlated 

Direct sire-dam model for the trait 

Correlation 0.5 between simulated 𝐴𝐷𝑏
 and 𝐴𝐼𝑏

 

 𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.83 0.0 0.0 
cooperation 0.84 0.0 0.0 

 
Correlation -0.5 between simulated 𝐴𝐷𝑏

 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.83 0.0 0.0 
cooperation 0.83 0.0 0.0 

 
Correlation 0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐷𝑏

 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.83 0.41 0.0 
cooperation 0.83 0.42 0.0 

 
Correlation -0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐷𝑏

 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.83 -0.41 0.0 
cooperation 0.83 -0.41 0.0 

 

Correlation 0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.83 0.0 0.41 
cooperation 0.83 0.0 0.42 

     

Correlation -0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition 0.83 0.0 -0.41 
cooperation 0.83 0.0 -0.41 
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Table S4.4 Estimated correlations between simulated breeding 
values and estimated genetic effects, when simulated breeding 
values are genetically correlated 

Indirect sire-dam model for the trait 

Correlation 0.5 between simulated 𝐴𝐷𝑏
 and 𝐴𝐼𝑏

 

 𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition -0.33 0.0 0.0 
cooperation 0.27 0.0 0.0 

 
Correlation -0.5 between simulated 𝐴𝐷𝑏

 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition -0.33 0.0 0.0 
cooperation 0.28 0.0 0.0 

 
Correlation 0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐷𝑏

 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition -0.33 -0.16 0.0 
cooperation 0.28 0.13 0.0 

 
Correlation -0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐷𝑏

 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition -0.33 0.15 0.0 
cooperation 0.28 -0.14 0.0 

 

Correlation 0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition -0.33 0.0 -0.17 
cooperation 0.28 0.0 0.13 

     

Correlation -0.5 between simulated 𝐴𝐺𝑅 and 𝐴𝐼𝑏
 

  𝐴𝐺𝑅 𝐴𝐷𝑏
 𝐴𝐼𝑏

 

𝐴̂𝐼𝑉,𝑠
 

competition -0.33 0.0 0.16 
cooperation 0.28 0.0 -0.14 
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Abstract 

In a wide range of animal species relatives show better social behavior to each other 

than to unrelated conspecifics, for example, food sharing and reduced 

aggressiveness. Such behavior has the potential to increase inclusive fitness and it 

may therefore have evolved through the process known as kin selection. In addition 

to fitness benefits in natural populations, reduced competition may also lead to 

increased performance in agricultural populations. In aquaculture populations, 

competition for feed is a big issue, as it reduces growth, and inflates phenotypic 

variability among individuals. In domestic Nile tilapia, for example, the coefficient of 

variation (CV) of body weight is between 40 % - 60 %, which is high. One potential 

way to reduce competition and increase yield and uniformity of trait values in Nile 

tilapia is to utilize the consequences of past kin selection, i.e., the evolution of kin 

discrimination and cooperative behavior among relatives. However, it is almost 

entirely unknown whether relatedness in Nile tilapia leads to higher growth rates, 

better uniformity, and possibly higher survival. In this study we compared two 

experimental treatments: rearing of fish in kin groups vs. rearing in non-kin groups, 

in order to investigate whether relatedness affects performance traits in domestic 

Nile tilapia. We analyzed average body weight, standard deviation and CV of body 

weight, and survival, between the two treatments. Results of our study show that 

individuals had significantly higher body weight in groups composed of kin (8.6 ± 2.6 

g), indicating that domestic Nile tilapia may exhibit kin-biased behavior. The effect 

of relatedness was higher for males than females, which may be related to a higher 

level of competition in males. There was no difference in variability of body weight 

and survival between the two treatments. Aquaculture farming may benefit in yield 

by rearing individuals in groups composed of relatives. 

 

Key words: Nile tilapia, kin selection, kin discrimination, competition, phenotypic 

variability, uniformity, body weight  
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5.1 Introduction 

Personal fitness is the ability of an individual to survive and produce offspring, and 

by that contribute to the gene pool of the next generation. Propagation of own 

genes, however, is not only achieved through direct descendants. In his influential 

paper from 1964, Hamilton showed that because relatives tend to share genes, 

promoting survival and reproduction of relatives may increase the evolutionary 

success of an individual’s own genes (Hamilton, 1964a). This indirect fitness benefit, 

together with personal or direct fitness, constitutes an inclusive fitness, which is 

maximized through kin selection. Kin selection describes the process of natural 

selection which alters the frequencies of genes shared by relatives through actions 

that increase survival and reproduction of relatives (Fletcher & Michener, 1987; 

Smith, 1964). The most striking example of kin selection is the evolution of sterile 

workers in haplodiploid social insects (Hamilton, 1964a, 1964b).  

 

According to kin selection theory, genetic relatedness should influence social 

behavior, because individuals able to interact differently with kin vs. non-kin would 

have higher inclusive fitness (Hepper, 1986). In a wide range of animal species, it has 

been noticed that relatives show better social behavior to each other than to 

unrelated conspecifics, such as food sharing and reduced aggressiveness (Kareem 

and Barnard, 1982; Wilkinson, 1984; Hepper, 1986; Hiscock and Brown, 2000b; 

Wahaj et al., 2004; Gerlach et al., 2007). The ability of an individual to distinguish 

between kin and non-kin is known as kin recognition (Hepper, 1986).  

 

In aquaculture populations, kin recognition occurs in a sibling-sibling and parent-

offspring context (Green et al., 2008). Several species of fish, including Atlantic cod 

(Herbinger et al., 1997), coho salmon (Quinn and Busack, 1985), common shiners 

(Ferguson and Noakes, 1981), zebra fish (Gerlach et al., 2007), black-chin tilapia 

(Pouyaud et al., 1999), and Eurasian perch (Gerlach et al., 2001) are known to show 

kin-biased behavior. Fish mostly use visual and chemosensory cues to recognize kin 

(Fletcher and Michener, 1987; Hiscock and Brown, 2000a; Olsén et al., 2004). 

 

The majority of studies on kin recognition in fish were focused on the asymmetry in 

behaviors such as shoaling, aggressiveness, and food sharing of individuals kept in 

kin versus non-kin groups. In addition, studies on zebra fish, Atlantic salmon, and 

rainbow trout, showed that rearing in kin groups can significantly increase growth of 

individuals (Brown and Brown, 1996; Gerlach et al., 2007). The observed increase in 

growth performance has been associated with a lower level of competition and 
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stress in kin groups, which subsequently allowed individuals to acquire higher 

amounts of food and spend more time eating (Brown and Brown, 1996; Gerlach et 

al., 2007).   

 

In aquaculture populations, competition for feed not only reduces performance of 

individuals, but also inflates phenotypic variability among individuals (Jobling, 1995; 

Cutts et al., 1998; Hart and Salvanes, 2000). Formation of a social hierarchy, where 

dominant fish monopolize the majority of the feed, creates large size differences 

among individuals. Aquaculture breeding programs aim to improve growth and 

survival of individuals, while uniformity of trait values recently emerged as a 

commercially important trait (Sae-Lim et al, 2012; Khaw, Ponzoni, Yee, Aziz, Mulder, 

et al, 2016; Marjanovic et al, 2016; Janssen et al, 2017).  

 

The level of competition in aquaculture populations is usually assessed by the 

coefficient of variation (CV) of body weight, where a high CV indicates strong inter-

individual competition and a low CV suggests little competition, i.e., a good social 

environment (Jobling, 1995). In one of the most cultured fish species around the 

world, Nile tilapia, the CV of body weight is between 40% and 60%, which is 

considered as high and undesirable (Ponzoni et al., 2005). 

 

One potential way to reduce competition in Nile tilapia and increase yield and 

uniformity of trait values, is to utilize the consequences of past kin selection, i.e., the 

evolution of kin discrimination. If individuals are able to discriminate kin, and as a 

result show more cooperative behavior to their relatives, then the mean 

performance, uniformity, and survival of individuals are expected to be higher in 

groups of kin compared to groups of non-kin (Brown and Brown, 1996). However, to 

our knowledge, effects of relatedness on growth rate and phenotypic variability have 

been investigated only in natural and laboratory populations of fish, but not in 

aquaculture. Also for Nile tilapia it is almost entirely unknown whether relatedness 

leads to higher growth rates, better uniformity, and higher survival of related 

individuals.  

 

Here we investigate whether relatedness affects the performance in domestic Nile 

tilapia. We conducted an experiment in which we compared two treatments: rearing 

of fish in kin groups vs. rearing in non-kin groups. We investigated differences in 

average body weight, standard deviation, CV of body weight, and survival, between 

both treatments. 
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5.2 Material and methods 

 

5.2.1 Environment  

The experiment was carried out in two batches between October 2015 and August 

2016. Each batch lasted 4 months. The experiment was performed at WorldFish, 

scientific research organization located in Penang, Malaysia 

(http://www.worldfishcenter.org). WorldFish complies with the Malaysian laws on 

animal experiments.  

 

5.2.2 Experimental design  

We used brood fish from generations 14 and 15 of the Genetically Improved Farmed 

Tilapia (GIFT) strain to produce the experimental fish for batch 1 and batch 2, 

respectively. Families were created by mating each male with a single female, 

resulting in total of six full-sib families per batch. All families were unrelated to each 

other. After mating, fertilized eggs of each family were transferred into separate 

incubators until hatching.  

 

When larvae had reached the fry stage (in 1-2 weeks depending on the temperature), 

fry of each family were transferred to separate nursery hapas, where they remained 

until tagging. The nursery hapas for all families in the experiment were installed in 

the same fiberglass tank to reduce any environmental differences. The water flow in 

the tank allowed for the exchange of chemical cues between different families. 

Consequently, all individuals were exposed to both kin and non-kin chemical cues.  

 

When fish reached the tagging size of 5 grams on average, they were individually 

identified with PIT (Passive Integrated Transponder) tags. At this time, initial weight, 

size (length, depth, and width), and date of tagging of each individual were recorded. 

Subsequently, tagged fish were placed in experimental tanks. As experimental tanks, 

we used 30 units of black round plastic tanks, which were stocked with 50 fish each.  

 

Fish received one of two treatments (Table 5.1): 

 

-  Treatment 1: Kin. Tanks contained a single focal family, where all 50 individuals 

were full-sibs. 

 

-  Treatment 2: Mix. Tanks contained a mix of families; Half of the fish (n = 25) were 

from a single focal family used also in treatment 1, while the other 25 fish were from 
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a mix of three other families (“partner families”) that were unrelated to the focal 

family from treatment 1.   

Table 5.1 Overview of the experimental design for one batch 

Treatment 1 - Kin Treatment 2 - Mix 

Focal fishb Focal fish + Partner fishd 

R
ep

lic
at

e
 

eR1 Fa F2 F3 F1 + mixc F2 + mix F3 + mix 

R2 F1 F2 F3 F1 + mix F2 + mix F3 + mix 

R3 F1 F2 F3 F1 + mix F2 + mix F3 + mix 

R4 F1 F2 F3 F1 + mix F2 + mix F3 + mix 

R5 F1 F2 F3 F1 + mix F2 + mix F3 + mix 

aFocal full-sib family (F1, F2, F3); bFish from the focal full-sib family; cMix of three full-sib 
families, unrelated to family F1, F2, and F3; dFish from the mix; eR1 through R5 indicate 
replicates 1 through 5. The second batch had the same set-up, but contained 3 different 
focal families, so that a total of 6 focal families was used in the entire experiment. 

Therefore, out of the six families (per batch), three were used as the focal 

families/fish, while fish from the three other families, which we hereafter refer to as 

partner fish, were combined together to make a mix. Individuals from the partner 

families were randomly assigned to each tank. Per batch, fifteen tanks were 

allocated to each treatment. There were five replicates per full-sib family in both 

treatments. The second batch had the same set-up, but used three different focal 

families. Hence, in total there were six focal families, each with five repeats per 

treatment, and two treatments, giving a total of 60 tanks in the experiment.  

All fish were stocked in the experimental tanks on the same day. However, one tank 

in batch 1 and treatment 2, suffered high mortality just prior to the start of the 

experiment and was therefore left empty until the first measuring, when it was re-

stocked. Fish from this tank, therefore, had a shorter grow-out period of ~27 days 

compared to individuals from other tanks. From stocking time, the experiment lasted 

four months, which is close to the ordinary grow-out period in Tilapia kept in ponds. 

During the growth period, fish were fed twice a day with commercial pellet feed 

containing 40% of protein. The feed was spread manually across the surface of the 

tanks. All fish were harvested during a 72h period. The grow-out period of each fish 

was computed as the time from the stocking date to the harvest date.   
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5.2.3 Records 

During the experiment, body weight and survival of the fish were measured once a 

month, resulting in five repeated observations, including the initial measurement 

(Table 5.2). The sex of each fish was also recorded during the harvest.  

 

Each batch started with 1500 fish in total. However, during the experiment some fish 

died, resulting in a reduced number of live fish at the end of the experiment, being 

1152 in batch 1, and 1055 in batch 2. Therefore, the total number of records was 

2207 (Table 5.2). 

 

Our main interest was to investigate whether individuals from the same family show 

differences in body weight, uniformity, and survival, between the two treatments. 

For this purpose we analyzed body weight both on the individual level and on the 

group level, while uniformity of body weight and survival were analyzed only on the 

group level to have measures of variance and survival rate, respectively. Since fish 

from the partner families were present only in treatment 2, they were excluded from 

the analysis of the treatment effect. Table 5.3 summarizes the data used in this 

analysis. 

 

The number of individual observations for the analysis of the treatment effect on the 

body weight was 1617. Observations on the group level were obtained by pooling all 

the records of focal individuals in the tank per treatment, for example, average body 

weight of the focal family in the tank. Uniformity of body weight was expressed as 

the coefficient of variation (CV) of body weight at the final measuring, and as the 

standard deviation (SD) of final body weight of the focal family within a tank. The CV 

was calculated as 
𝜎

µ
∗ 100%, where σ is the standard deviation of body weight of the 

focal family in the tank, and µ is the mean body weight of the focal family in the tank. 

Survival was calculated as 
𝑛ℎ

𝑛𝑠
∗ 100%, where 𝑛ℎ is number of focal individuals per 

tank at harvest, and 𝑛𝑠 is the number of focal individuals per tank stocked. There 

were total of 60 observations for CV, SD of body weight, and survival, available for 

the analysis.  

 

In addition, we wanted to test the effect of the size of the kin group on performance, 

i.e., whether individuals perform better when they are grouped with more siblings.  
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For this purpose, we used the data from treatment 2, where individuals from the 

focal families had 24 siblings, whereas individuals from the partner families had only 

~7 siblings on average. We compared mean, CV and SD of body weight, and survival, 

of focal fish versus partner fish. Hence, for this analysis we had two observations per 

tank, resulting in a total of 60 observations. 

 

5.2.4 Statistical analysis  

All statistical analyses were performed using ASReml 4.1 (Gilmour et al., 2015). 

Summary statistics were obtained using the R programming software (R 

Development Core Team, 2011). Significance levels were calculated using a Wald-

test for fixed effects and a likelihood-ratio test for random effects. 

 

5.2.4.1 Individual level  

The model for individual body weight was  

 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞 =  µ + 𝑑𝑎𝑦𝑠𝑖 + 𝑑𝑎𝑦𝑠𝑖
2 + 𝐼𝑊𝑗 + (𝑜𝑥𝑦𝑔𝑒𝑛 ×  𝑏𝑎𝑡𝑐ℎ)𝑘𝑙 + 𝑠𝑒𝑥𝑚  

+ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑛 + 𝑓𝑎𝑚𝑖𝑙𝑦𝑜 + 𝑇𝑎𝑛𝑘𝑝  + (𝑟𝑜𝑤 ×  𝑏𝑎𝑡𝑐ℎ)𝑞𝑙 + 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞 ,              (1) 

 

where 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞  is the individual body weight at harvest,  is the intercept, 𝑑𝑎𝑦𝑠𝑖  

is the linear effect of the length of the grow-out period (i = 97, 119-125), fitted as a 

covariate, 𝑑𝑎𝑦𝑠𝑖
2 is the corresponding quadratic effect, accommodating a non-linear 

relationship between body weight at harvest and the grow-out period, 𝐼𝑊𝑗  is the 

effect of individual initial weight, i.e., weight at the start of the experiment, fitted as 

a covariate, (𝑜𝑥𝑦𝑔𝑒𝑛 ×  𝑏𝑎𝑡𝑐ℎ)𝑘𝑙  is the fixed effect of interaction between 𝑜𝑥𝑦𝑔𝑒𝑛 

and 𝑏𝑎𝑡𝑐ℎ accounting for differences in oxygen supply to each tank within the batch 

(kl = 1-6), 𝑠𝑒𝑥𝑚 is the fixed effect of sex of the individual (m = Male, Female, Missing), 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑛 is the fixed effect of the treatment (n = 1, 2), 𝑓𝑎𝑚𝑖𝑙𝑦𝑜 is the random 

effect of full-sib family (o = 1-6), 𝑇𝑎𝑛𝑘𝑝 is the random effect of experimental tank (o 

= 1-60), (𝑟𝑜𝑤 ×  𝑏𝑎𝑡𝑐ℎ)𝑞𝑙 is the random effect of interaction between 𝑟𝑜𝑤 and 

𝑏𝑎𝑡𝑐ℎ accounting for potential effects of the row within the batch where 

tank/individual was placed, (ql = 1-10),  and 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞  is the residual. All random 

effects were modeled as independent and normally distributed. 

 

5.2.4.2 Group level 

In the analysis of treatment effect on average body weight, CV and SD of body weight 

we applied the following model: 
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𝑦𝑖𝑗𝑘𝑙 =  µ + 𝐺𝐼𝑊𝑖 + 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗 + 𝑓𝑎𝑚𝑖𝑙𝑦𝑘 + 𝑒𝑖𝑗𝑘𝑙 ,                                                  (2)   

    

where 𝑦𝑖𝑗𝑘𝑙  is the average body weight, CV of body, or SD of body weight of a focal 

family in the tank, 𝐺𝐼𝑊𝑖  is the effect of average initial body weight, CV, or SD of initial 

body weight of the focal family (each corresponding to the given y), fitted as a 

covariate, 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗  is the fixed effect of the treatment (j = 1, 2), 𝑓𝑎𝑚𝑖𝑙𝑦𝑘  is the 

random effect of focal family (k = 1-6), and 𝑒𝑖𝑗𝑘𝑙  is the residual. The effects of 𝑑𝑎𝑦𝑠, 

𝑑𝑎𝑦𝑠2, 𝑜𝑥𝑦𝑔𝑒𝑛 ×  𝑏𝑎𝑡𝑐ℎ, and 𝑟𝑜𝑤 ×  𝑏𝑎𝑡𝑐ℎ were not significant for traits on the 

group level and were not included in model 2.  

 

For the analysis of survival the model was: 

 

𝑦𝑖𝑗𝑘 =  µ + 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝑓𝑎𝑚𝑖𝑙𝑦𝑗 + 𝑒𝑖𝑗𝑘 ,                                                                    (3) 

 

where 𝑦𝑖𝑗𝑘  is the survival of the focal family in the tank, 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖  is the fixed 

effect of the treatment (i = 1, 2), 𝑓𝑎𝑚𝑖𝑙𝑦𝑗  is the random effect of focal family (j = 1-

6) and 𝑒𝑖𝑗𝑘  is the residual. The effect of initial weight (𝐺𝐼𝑊) was not significant for 

survival and thus omitted. 

 

5.2.4.3 Size of kin group 

Using the data from treatment 2 we tested whether the number of relatives in a 

group (“size of kin group”) affected the trait values. In treatment 2, individuals of 

focal families had 24 relatives initially, whereas individuals from partner families 

initially had ~7 relatives on average. Hence, a difference in trait value between focal 

and partner families may reflect their number of relatives. We investigated the effect 

on kin group size on individual and average body weight, CV and SD of body weight, 

and survival. The model for the individual body weight was:  

 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 =  µ + 𝑑𝑎𝑦𝑠𝑖 + 𝑑𝑎𝑦𝑠𝑖
2 + 𝐼𝑊𝑗 + (𝑜𝑥𝑦𝑔𝑒𝑛 ×  𝑏𝑎𝑡𝑐ℎ)𝑘𝑙 + 𝑠𝑒𝑥𝑚 +

𝐾𝐺𝑆𝑛 + 𝑓𝑎𝑚𝑖𝑙𝑦𝑜 + 𝑇𝑎𝑛𝑘𝑝  + (𝑟𝑜𝑤 ×  𝑏𝑎𝑡𝑐ℎ)𝑞𝑙 + 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞 ,                                (4)   

 

where 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 is the individual body weight of fish from treatment 2 and 𝐾𝐺𝑆𝑛 is 

the fixed effect of kin group size (n = Focal, Partner), 𝑓𝑎𝑚𝑖𝑙𝑦𝑜 is the random effect 

of the family (o = 1-8). Other effects were as described in model 1.  

 

The model for body weight expressed on the group level was: 
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𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 =  µ + 𝑑𝑎𝑦𝑠𝑖 + 𝐴𝐼𝑊𝑗 + 𝐾𝐺𝑆𝑘 + 𝑓𝑎𝑚𝑖𝑙𝑦𝑙 + (𝑟𝑜𝑤 ×  𝑏𝑎𝑡𝑐ℎ)𝑚𝑛 +

𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜 ,        (5)    

where 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 is the average body weight of a focal or partner family within a tank, 

𝐴𝐼𝑊𝑗  is the average body weight of that family at the start of the experiment. Other 

effects were as described in the previous model.  

The model for CV of body weight was: 

𝑦𝑖𝑗𝑘𝑙𝑚 =  µ + 𝐶𝑉𝐼𝑊𝑗 + 𝐾𝐺𝑆𝑘 + 𝑓𝑎𝑚𝑖𝑙𝑦𝑙 + 𝑒𝑖𝑗𝑘𝑙𝑚 ,  (6)    

where 𝑦𝑖𝑗𝑘𝑚  is the CV of body weight of a focal or partner family within a tank, 𝐶𝑉𝐼𝑊𝑗  

is the CV of body weight of that family at the start of the experiment. Other effects 

were as described in model 4. 

For SD of body weight the model was: 

𝑦𝑖𝑗𝑘𝑙𝑚 =  µ + 𝑑𝑎𝑦𝑠𝑖 + 𝑆𝐷𝐼𝑊𝑗 + 𝐾𝐺𝑆𝑘 + 𝑒𝑖𝑗𝑘𝑙𝑚 ,  (7)    

where 𝑦𝑖𝑗𝑘𝑚  is the SD of body weight of a focal or partner family within the tank, 

𝑆𝐷𝐼𝑊𝑗  is the SD of body weight of the family at the start of the experiment. Family 

effect was not significant and therefore omitted. Other effects were as described in 

model 4. 

For survival the model was: 

𝑦𝑖𝑗𝑘𝑙𝑚 =  µ + 𝑑𝑎𝑦𝑠𝑖 + 𝐾𝐺𝑆𝑗 + 𝑓𝑎𝑚𝑖𝑙𝑦𝑘 + (𝑟𝑜𝑤 ×  𝑏𝑎𝑡𝑐ℎ)𝑙 + 𝑒𝑖𝑗𝑘𝑙𝑚   (8)    

where 𝑦𝑖𝑗𝑘𝑚  is the survival of a focal or partner family within the tank. See model 4 

for details on other effects. Effects included in model 4 but not in models 5-8 were 

either not significant or not estimable (Tank and Sex). 

5.3 Results 

5.3.1 Descriptive statistics  

Table 5.3 shows the descriptive statistics. Overall survival was 74.5%, which is similar 

to survival observed in the GIFT population reared in communal ponds (Khaw et al., 
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2010), also in experimental setting (Khaw et al., 2016). Over two experimental 

batches, we collected a total of 2207 fish with phenotypic records. The average 

group (tank) size at harvest was 36.8 individuals, indicating an average mortality of 

13.2 fish per tank. The overall phenotypic mean of body weight of the whole 

population was 46.2 g, which is much lower than the ~100-200 g reported in Nile 

tilapia populations for a similar period of growth in communal ponds 

(http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en). The lower 

value can be related to the available space for growth, which was much smaller in 

the experimental tanks compared to communal ponds. The CV of body weight at 

harvest of 47.5 %, however, does correspond to values previously reported for the 

communally reared GIFT strain (48 % by Ponzoni et al., 2005; 59.8 % by Nguyen et 

al., 2007, 40 % by Khaw et al., 2010). The average CV within groups was slightly lower 

(38.6 %). 

5.3.2 Estimated effects 

Table 5.4 gives estimated effects of the treatment and the size of the kin group, and 

their significance. 

5.3.2.1 Effect of the treatment on body weight 

The treatment effect on individual body weight was strongly significant (p=0.003), 

with fish in kin groups (treatment 1) being 8.6 g (se ± 2.6 g) heavier on average 

compared to individuals in mixed groups (treatment 2), and focal families from kin 

groups being on average 9.9 g (se ± 2.8 g, p = 0.001) heavier than the same families 

in mixed groups when analyzing tank averages. Standard deviation (sd) of individual 

body weight in both treatments was ~20.5 g (22.7 in Treatment 1 and 18.3 in 

Treatment 2, Table 5.3), meaning that the effect of treatment on both individual 

body weight and average body weight of focal family is rather large, as it equals 

almost half a sd. 

Males were on average 13.3 g (se ± 1.5 g) heavier than females. To test whether the 

treatment effect differed for male and female body weight, we divided dataset in 

two based on sex, and applied model 1. Individuals without recorded sex were 

excluded (n = 497). Estimated treatment effects (results not shown) indicate that 

individual body weight in treatment 1 for males was 12.42 g (se ± 3.8 g, p = 0.003) 

higher compared to treatment 2, and 7 g (se ± 3.4 g, p = 0.04) for females. The larger 

effect of treatment in males is probably related to their higher phenotypic mean 

body weight of 53.1 g, compared to 42.1 g for females, but it may also be that a 

http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en
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Table 5.3 Data summary – number of observations (N), mean (µ), minimum and 
maximum, and standard deviation (σ) of analyzed traits for focal families in two 
treatments, mix and in overall population 

Trait aN µ Min Max σ 

Treatment 1,  focal families 

Individual body weight (g)  1074 a46.3 3.8 191.2 22.7 

Mean body weight (g) 30 50.1 29.8 103.9 17.3 

CV of body weight (%) 30 37.1 26.8 58.1 6.9 

SD of body weight (g) 30 18.4 9.2 40.9 7.0 

Survival (%) 30 71.6 28.0 96.0 16.4 

Treatment 2,  focal  families 

Individual body weight (g) 543 38.1 4.9 116.6 18.3 

Mean body weight (g) 30 40.5 23.8 69.6 11.7 

CV of body weight (%) 30 37.2 18.7 55.8 9.0 

SD of body weight (g) 30 14.8 6.9 29.7 5.6 

Survival (%) 30 72.4 36.0 100.0 13.3 

Treatment 2, partner families 

Individual body weight (g) 590 52.8 12.3 152.5 22.3 

Mean body weight  (g) 30 53.7 36.0 82.7 11.3 

CV of body weight (%) 30 35.2 24.9 56.5 7.2 

SD of body weight (g) 30 19.3 9.9 35.3 7.1 

Survival (%) 30 78.5 48.0 96.0 11.1 

Overall population 

Individual body weight (g) 2207 46.2 3.8 191.2 22.1 

Mean body weight  (g) 30 48.5 29.9 103.9 14.3 

CV of body weight (%) 2207 47.8 - - - 

CV of body weight (%) 60 38.6 24.1 58.1 6.6 

SD of body weight (g) 60 18.7 9.2 40.1 6.4 

Survival (%) 2207 74.5 - - - 

Survival (%) 60 73.6 28.0 98.0 13.9 
aTraits with 30 or 60 observations are group-averages. Because of mortality, the number 
of individuals per group varied. As a consequence, the average of individual trait values 
may differ from the average of group means. 
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higher level of relatedness and cooperation in treatment 1 is especially benefiting 

male performance, as competition is more frequently and more aggressively 

orchestrated through male-male interactions (Huntingford et al., 2012). Dividing 

estimated treatment effects for each sex by their average body weight we obtained 

a relative effect of the treatment of 23.4% for males and 16.6% for females, 

suggesting that the higher estimated treatment effect in males goes beyond a scaling 

effect, and may possibly be related to the behavior of male fish. 

5.3.2.2 Effect of the treatment on variability of body weight and 

survival In the analysis of variability of body weight, the effect of treatment was 

significant for the SD of body weight (p = 0.001). CV of body weight, 

however was not significantly different between the treatments (p = 0.863), 

suggesting that once standard deviation was adjusted for the mean, the apparent 

effect of treatment on 

Table 5.4 Significance and effect of treatment for focal families, and kin group 
size for focal families versus partner families in treatment 2.  

Trait Model p-value Effect (SE) 

Focal families, treatment 1&2  Treatmenta 

Individual body weight (g) 1 0.003 8.6 (2.6) 

Mean body weight (g) 2 0.001 9.9 (2.8) 

CV of body weight (%) 2 0.863 0.3 (1.8)  

SD body weight (g) 2 0.001 4.4 (1.3) 

Survival (%) 3 0.722 -1.4 (4.0)

Focal vs partner families in treatment 2         Kin group sizeb 

Individual body weight (g) 4 0.751 -1.2 (3.4)

Mean body weight (g) 5 0.397 -3.4 (3.8)

CV of body weight (%) 6 0.448 3.2 (3.8)

SD body weight (g) 7 0.904 -0.18 (1.5)

Survival (%) 8 0.312 -6.1 (3.1)

a Effect of treatment 1 compared to effect of treatment 2 which was set to 0 
b Effect of large kin group (i.e. focal family compared to smaller kin group (i.e. partner 
fish) which was set to 0. 
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variability disappeared. Treatment effect on survival was also non-significant 

(p=0.722). Grouping traits by sex in the analysis did not affect the significance of 

estimated treatment effects.   

5.3.2.3 Effect of kin group size 

While individuals from focal families grew better in treatment 1 compared to 

treatment 2, within treatment 2 body weight did not differ significantly between 

focal families and partner families (for individual weight -1.2 ± 3.4, p = 0.751, for 

mean body weight -3.4 ±3.8, p = 0.397). The difference in variability (for CV 3.2 ± 3.8, 

p = 0.448, for SD -0.18 ± 1.5, p = 0.904) and survival (-6.1 ± 3.1, p = 0.312) was also 

not significant. Hence, our results give no evidence for an effect of the size of kin 

group on body weight, uniformity, or survival. 

5.4 Discussion 

In this study we conducted an experiment to investigate whether relatedness affects 

performance, uniformity, and survival in domestic Nile tilapia by comparing two 

treatments: rearing of fish in kin groups vs. rearing in non-kin groups. We found that 

individuals from focal families grew significantly better in kin groups, which was 

observed on both individual and average group level. The difference in variability of 

body weight and survival, however, was not significantly different between the 

treatments.  

5.4.1 Effects of relatedness 

Results of our study show that individuals grew significantly better in groups 

composed of kin, suggesting that domestic Nile tilapia may exhibit kin-biased 

behavior. This finding is in agreement with previous studies in zebrafish larvae 

(Gerlach et al., 2007) and juvenile Atlantic salmon and rainbow trout (Brown and 

Brown, 1996) that both showed improved growth in kin groups. As an indicator of 

kin-biased behavior, and possible increased cooperation among relatives, we used 

growth rate on individual and group level in both treatments, rather than fish 

behavior. In fact, little is known of whether tilapia species modify their behavior in 

the presence of relatives, except for black-chin tilapia which prefer to aggregate with 

kin (Pouyaud et al., 1999). In Atlantic salmon and rainbow trout (Brown and Brown, 

1996), an increase of body weight in kin groups has been associated with reduced 

aggressive behavior, while in zebrafish (Gerlach et al., 2007) no such change in 

behavior was observed. In Nile tilapia we lack such behavioral studies, and therefore 

the cause of the observed increase in body weight in kin groups is unknown. On the 

one hand, fish may change their behavior as a reaction to chemosensory cues such 
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as odor, which does not necessarily require previous exposure to kin. On the other 

hand, individuals may express less competition towards each other simply due to 

familiarity. In our study, all fish were placed in the same fiber tank allowing for 

circulation of chemosensory cues across all families, and therefore, possibly avoiding 

changes in behavior due to chemosensory familiarity during the nursery period. 

However, individuals from the same full-sib family were placed in the same nursery 

hapa, separated from other families, which may have allowed them to recognize 

their relatives later in life based on visual familiarity. Observational studies on 

behavior of Nile tilapia in kin versus non-groups may help to unravel the mechanism 

underlying the effect on body weight found here.  

The magnitude of the treatment effect on body effect found in our study may be 

biased to some degree due to inability to fit the effect of the column in our model, 

as it was fully confounded with the treatment effect. (Tanks were spatially organized 

in rows and columns, as illustrated in Table 5.1). The effects of the column in which 

tanks were placed have partly been accounted for by fitting the oxygen x batch 

interaction in the model (Model 1). The oxygen supply was the most noticeable 

difference between columns in the experiment. However it is difficult to say to what 

extent this effect accounts for all the variation between columns, and whether a part 

of the potential column effect might have been picked up by the treatment effect.  

The relationship between competition and variability of trait values is well-

documented in aquaculture (for example, Jobling, 1995; Hart and Salvanes, 2000). 

However in our study we did not find evidence of increased uniformity of body 

weight in kin groups vs. non-kin groups. The above mentioned studies on juvenile 

Atlantic salmon and rainbow trout (Brown and Brown, 1996) also assessed the effect 

of relatedness on variability by comparing coefficients of variation in weight changes 

between kin and non-kin groups. Their results showed less variability in weight gain 

in kin groups, which the authors associated with a lower level of aggressive 

interactions, especially those targeting slower-growing individuals. Beacham (1989) 

studied variability of growth in juvenile coho salmon, reared under different degrees 

of relatedness. In contrast to our study, Beacham (1989) found a higher within-family 

variability in families reared in full-sib groups, compared to families reared in mixed 

groups of 10 families. The differences in variabilities were attributed to differences 

in family growth rates and competitive ability, as fish from faster growing families 

may show lower within-family variance in mixed family groups due to their ability to 

out-compete slower growing families. In our study, however, we did not observe this 

effect. 
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5.4.2 Aquaculture breeding and farming 

Aquaculture breeding programs in fish primarily aim to improve growth rate in 

populations by selective breeding. In GIFT Nile tilapia, substantial genetic gain has 

been achieved (>100%) through 16 generations of genetic selection for body weight 

at harvest (Ponzoni et al., 2011; Khaw, 2015). Fish farmers, therefore, can 

significantly benefit from buying genetically improved fish. However, genetics is only 

one component of the phenotype; good managing procedures are necessary to 

express potential response in body weight. The findings of our study suggest that 

one such managing procedure could be to maintain a high level of relatedness within 

the rearing group. We found an increase in body weight of individuals growing in kin 

groups of ~9 grams, which is large compared to an average body weight of ~46 g and 

a standard deviation of ~22 g (Table 5.3). We only investigated two levels of 

relatedness – full-sibs and non-kin, i.e., close to 0 relatedness. Despite the large 

family sizes in aquaculture species, producing full-sib groups sufficiently large to fill 

an entire pond may be challenging in commercial production. More research is 

needed to investigate whether the use of a limited number of large families might 

yield similar benefits as found here for complete full-sib families.  

 

In our experiment males were heavier than females, which is a common observation 

for GIFT Nile tilapia (for example, Ponzoni et al., 2005). Heavier and faster growing 

males have drawn the attention of many researchers who advocate the production 

of ‘all male Tilapia’ (e.g., Mair et al., 1997). For such practices, grouping related 

individuals together during the grow-out may be especially beneficial, as we found 

that the effect of relatedness is much higher for males than for females. 

 

5.5 Conclusions 

Results of our study show that individuals grow significantly better in groups 

composed of kin, suggesting that domestic Nile tilapia exhibits kin-biased behavior. 

The effect of relatedness was higher for males than for females, beyond a simple 

scaling effect. This finding may be related to a lower level of competitive interactions 

among relatives, which are usually more expressed by males. Our results suggest 

that yields in aquaculture farming may be increased by rearing related individuals 

together. 
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Table S5.1. Estimated variances of analyzed traits with standard errors within the 
brackets (Results from ASReml). 

Parameter 
Individual 

body weight 
Average body 

weight 
SD of body 

weight 
CV of body 

weight 
Survival 

Data Focal families, treatment 1&2 

Model 1 2 2 2 3 

      

Family 
58.11  
(50.1)  

59.18 
 (47.72) 

4.84  
(4.93) 

20.49  
(16.39) 

17.17 
(24.51) 

Tank 
83.35  

(20.38) 
- - - - 

Row x Batch 
3.07  

(10.23) 
- - - - 

Residual 
163.92  
(5.88) 

91.73  
(17.95) 

20.91  
(4.11) 

46.58  
(9.13) 

212.75 
(41.31) 

Data Focal and partner families in treatment 2 

Model 4 5 6 7 8 

Family 
16.30  

(12.35) 
3.05  

(5.98) 
- 

17.06  
(15.23) 

2.74 
(22.86) 

Tank 
15.50  
(7.52) 

- - -  

Row x Batch 
8.42  

(8.51) 
10.68  
(9.05) 

- - 
4.39 

(15.03) 

Residual 
171.12  
(5.01) 

28.25  
(6.35) 

15.31 
(3.060) 

48.23  
(9.55) 

118.18 
(26.86) 
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6.1 Introduction 

Social interactions are common in nature and are an important part of the 

environment experienced by individuals. When individuals interact, their 

phenotypes may be affected by genes in their social partners. This heritable effect 

of a social partner on the trait value of the focal individual is known as an indirect 

genetic effect (IGE) (Griffing, 1967; Moore et al., 1997). IGEs can also be interpreted 

as a genetic component in the social environment, i.e., the environment created by 

social partners. In the terms of classical quantitative genetic model, where the trait 

value of an individual is a function of genetic and environmental effects, 𝑃 = 𝐺 + 𝐸, 

the E-term is partly heritable when IGEs occur (Wolf et al., 1998; Bleakley and Brodie 

IV, 2009; Bijma, 2014). However, the classical model assumes that the environmental 

effects are not heritable. Therefore, there was a need to extend the model to 

incorporate IGEs, which led to development of two modelling frameworks for IGE, 

variance component models and trait based models.   

 

IGEs may not only affect the mean trait value, but also variation of the trait around 

its mean. In fish and some plant populations, competition has been shown to 

increase variability of trait values. In the past two decades, variability has been 

studied as a genetic trait in its own right. This trait is often referred to as inherited 

variability or heritable variation in environmental (residual) variance (SanCristobal-

Gaudy et al., 1998; Mulder et al., 2007; Hill and Mulder, 2010). As social interactions 

are often a source of IGEs, the observed relationship between competition and 

variability on the phenotypic level (Jobling, 1995; Cutts et al., 1998; Hart and 

Salvanes, 2000; Denison et al., 2003) strongly suggested an underlying genetic 

relationship between the two phenomena. Here our knowledge, however, is quite 

limited, because despite the clear phenotypic relationship between competition and 

variability, inherited variability has not been connected to competition in 

quantitative genetic model. On the one hand, variance component and trait-based 

IGE models cannot fully explain the observed relationship between competition and 

variability. On the other hand, models for inherited variability treat variability as a 

property of a single individual. 

 

In this thesis we studied genetics of inherited variability, with specific focus on the 

relationship between variability and competition, and the contribution of IGEs to 

genetic variation in variability.  
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In Chapter 3 we proposed a quantitative genetic model that allows for indirect 

genetic effects to lead to differences in variability of trait values, similar to 

observations in real aquaculture and plant populations. Integrating IGE and inherited 

variability, and reasons why it was necessary to develop a new model, will be the 

first topic that I will address in this chapter. 

 

In this thesis we studied genetics of inherited variability. In Chapter 2 we investigated 

the genetic basis of variability in body weight and size in a domestic Nile tilapia 

population. Chapter 3 & 4 focused on the relationship between variability and 

competition and how to capture genetic effects of competition on variability. In 

Chapter 5 we investigated the effect of relatedness on the level of variability. 

Understanding the genetic basis of variability is important in animal and plant 

breeding, both from an economic and an animal welfare point of view. Breeding for 

uniformity is an analogue of the evolution of canalization in natural populations 

(Waddington, 1942). In evolutionary biology, canalization is studied for its role in 

phenotypic evolution (Flatt, 2005). Genetic changes in variability, therefore may 

have an important impact in both domestic and natural populations. Benefits and 

downsides of such impact will be next topic I will address. 

 

Finally, I will conclude this chapter by giving perspectives for selection for uniformity, 

discuss the need for future studies, and possible applications of the model developed 

in Chapter 3. 

 

6.2 Social interactions and inherited variability: bringing 

two worlds together 

As mentioned above, traits affected by social interactions can be modelled using two 

theoretical frameworks, variance component models and trait based models. Both 

of these frameworks have been developed from maternal effects theory, which 

describes a special case of indirect genetic effects, where indirect effects of a mother 

on the phenotypes of offspring have a heritable component (Dickerson, 1947; 

Willham, 1963; Falconer, 1965; Cheverud, 1984; Kirkpatrick and Lande, 1989).   

 

In the variance component model, the phenotypic value of the focal individual i (𝑃𝑖), 

who interacts with a single social partner j, is a function of a direct genetic effect of 

the focal individual (𝐴𝐷,𝑖), an indirect genetic effect attributed to the social partner 

(𝐴𝐼,𝑗), and a residual (e) (Griffing, 1967): 
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𝑃𝑖 = 𝐴𝐷,𝑖 + 𝐴𝐼,𝑗 + 𝑒                                                                                                               (1) 

 

In the trait-based model, the indirect genetic effect of the social partner on the trait 

value of the focal individual is modelled as a function of the trait value of the social 

partner. If the trait of interest and the trait causing the IGE are the same, the trait-

based model (assuming interaction of two individuals) specifies the phenotypic value 

of the focal individual i as a function of the direct genetic effect of i (𝐴𝑖), non-

heritable effects of i (𝑒𝑖), and the phenotype of social partner j (𝑃𝑗) multiplied by an 

interaction coefficient, 𝜓 (Moore et al., 1997): 

 

𝑃𝑖 = 𝐴𝑖 + 𝑒𝑖 + 𝜓 𝑃𝑗                                                                                                                (2) 

 

In the original trait-based IGE-model, the 𝜓 is a population parameter that describes 

the magnitude of IGEs, i.e., the strength of the social interaction, and is considered 

constant within a population.  

 

The clear distinction between these models gives them certain advantages and 

disadvantages in the study of IGEs, depending on the research question and available 

data. For example, in the variance component model, the traits causing the IGEs do 

not need to be specified. Instead, the social effect is added to the model as a random 

genetic effect, and the indirect genetic variance is estimated based on genetic 

relationships in the data. The variance component model, therefore, gives estimates 

of direct and indirect genetic effects, but does not disclose the mechanism 

underlying the IGEs. Trait-based models, in contrast, require knowledge of the traits 

causing the IGE, but in return quantify the mechanism underlying the social 

interaction.  

 

To understand the observations from aquaculture and plant populations, where 

competition for resources increases variability, in this thesis we wanted to integrate 

IGEs and inherited variability into a single model. Considering available IGE models 

and models for inherited variability for such study, we encountered the following 

issues : 

 

1) current IGE-models and models for inherited variability cannot fully explain 

the observed relationship between competition and variability 

2) the interaction coefficient 𝜓 in the trait-based IGE model has the same 

value for all interacting individuals, i.e., it shows no flexibility 
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3) IGEs are usually applied to a “final”  phenotype, whereas the effect of 

competition accumulates over time. 

 

6.2.1 Modelling the relationship between competition and 

variability 

In this section I will elaborate on issue number one, by showing the connection 

between the level of IGEs and variability, or the lack thereof, for each model. 

 

In the variance component model (Equation 1), when pairs of interacting individuals 

are unrelated, phenotypic variance can be decomposed into the variance of direct 

genetic effects (𝜎𝐴𝐷
2 ), the variance of indirect genetic effects (𝜎𝐴𝐼

2 ), and the residual 

variance (𝜎𝑒
2):  

 

𝜎𝑃
2 = 𝜎𝐴𝐷

2 + 𝜎𝐴𝐼
2 + 𝜎𝑒

2                                                                                                             (3)         

      

From here it becomes clear that phenotypic variance is only affected by the variance 

of indirect genetic effects in the population, not by their level. This model, therefore, 

was not adequate for our research question, as observations from real populations 

show that competition and cooperation, i.e., sign of average level of IGEs, have a 

very different effect on variability, whereas variance is always positive and only gives 

insight in the variation of IGEs in the population around the mean. This was also 

demonstrated in Chapter 4, where indirect models for the trait capture only little of 

the genetic effects of competition on variability. 

 

In the trait-based model, if we assume that 𝑃𝑖  and 𝑃𝑗  are the same trait, and that 

both individuals are both donor and recipient of social interaction, i.e., Equation 2 

also applies to individual j, then the phenotypic variance on the population level can 

be derived as follows (Moore et al., 1997): 

 

𝑃𝑖 = 𝐴𝑖 + 𝑒𝑖 + 𝜓 (𝐴𝑗 + 𝑒𝑗 + 𝜓 𝑃𝑖)                                                                                    (4) 

 

(1 − 𝜓2)𝑃𝑖 = 𝐴𝑖 + 𝑒𝑖 + 𝜓 (𝐴𝑗 + 𝑒𝑗)                                                                                 (5) 

 

Solving the equation gives 

 

𝑃𝑖 =
𝐴𝑖 + 𝐸𝑖 + 𝜓 (𝐴𝑗 + 𝐸𝑗)

1 − 𝜓2
;          𝑃𝑗 =

𝐴𝑗 + 𝐸𝑗 + 𝜓 (𝐴𝑖 + 𝐸𝑖)

1 − 𝜓2
                                  (6) 
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And phenotypic variance equals  

 

𝜎𝑃
2 =

(1 + 𝜓2)(𝜎𝐴
2+𝜎𝐸

2)

(1 − 𝜓2)2
                                                                                                      (7) 

 

When |𝜓|=1, the phenotypic values and the phenotypic variance are undefined 

(Bijma, 2014). Note that Equation 7 gives the phenotypic variance in a population 

consisting of many interacting pairs of individuals, not the variance within a pair. 

Equation 7 shows that the level of 𝜓 affects the phenotypic variance, however, the 

effect is symmetrical for positive and negative values of 𝜓, due to 𝜓2 term in both 

the numerator and denominator. Figure 1, Panel A, illustrates how phenotypic 

variance changes with 𝜓. This differs from observations from real populations, where 

competition leads to increase of phenotypic variability, while cooperation decreases 

variability.  

 

Now let us consider the variance within a pair (“group”) of two individuals (𝜎𝑃𝑤𝑔
2 ) in 

the trait-based model 

 

𝜎𝑃𝑤𝑔
2 = 𝑣𝑎𝑟 (𝑃 − 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒) =  

1

4
𝑉𝑎𝑟(𝑃𝑖 − 𝑃𝑗)                                                              (8) 

 

Using Equation 6, we can express 𝑃𝑖 − 𝑃𝑗  as  

 

𝑃𝑖 − 𝑃𝑗 =
(1 − 𝜓)(𝐴𝑖 + 𝐸𝑖) − (1 − 𝜓)(𝐴𝑗 + 𝐸𝑗)

1 − 𝜓2
=   

(𝐴𝑖 + 𝐸𝑖) − (𝐴𝑗 + 𝐸𝑗)

1 + 𝜓
         (9) 

 

The variance of 𝑃𝑖 − 𝑃𝑗  in the trait-based model then becomes  

 

𝑉𝑎𝑟(𝑃𝑖 − 𝑃𝑗) =  
2(𝜎𝐴

2+𝜎𝐸
2)

(1 + 𝜓)2
                                                                                              (10) 

 

and the within-group variance equals 

 

𝜎𝑃𝑤𝑔
2 =  

1

2

(𝜎𝐴
2+𝜎𝐸

2)

(1 + 𝜓)2
                                                                                                             (11) 

 

The final equation shows that the within-group variance depends on 𝜓 rather than 

𝜓2, so that positive and negative values of 𝜓 have different effect on within-group 
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variance, i.e., negative values lead to higher 𝜎𝑃
2
𝑤𝑔

, and positive to lower 𝜎𝑃
2
𝑤𝑔

. This is

shown in Figure 1, Panel B, where an increase in 𝜓 causes a drop in variability. 

The 𝑏𝑖𝑗  in our model (Chapter 3) measures the effect of a difference in body weight 

between the social partner and the focal individual on the growth rate of the focal 

individual. The absolute value of 𝑏𝑖𝑗  reflects the strength of the social interaction, 

however b can have both positive and negative values. Negative b indicates 

competition, positive b cooperation, and an increase in b an increase of cooperation. 

An increase in cooperation in our model leads to a decrease in variability on both 

population and within-group level, as shown in Figure 2 in Chapter 3. Deriving 

expressions for phenotypic and within-group variance for our model is rather 

challenging, as the phenotype of the focal individual depends on the phenotypes 

from the previous time point of both social partner and focal individual. Therefore, 

in this chapter for our model I present the pattern of change of variability as a 

function of b numerically, by using data simulated in Chapter 4 and fitting model 

with mean and random group effect to the final phenotype, i.e., phenotype at the 

last time point, using ASReml 4.1 (Gilmour et al., 2015). This model gives estimates 

for within-group, between-group, and phenotypic variance, which were estimated 

for populations where average b is -0.05, 0, or +0.05 (Figure 6.1, Panel D-F).

Comparing our model with the trait-based model, we can see that the main 

difference occurs for the phenotypic variance. The change in within-group variance 

shows a similar pattern for both models. Since phenotypic variance includes both 

within- and between-group variance, the observed difference must be related to the 

latter. 

Starting with the expression from Equation 6, the between-group variance for trait-

based model is derived as follows: 

The group average is given by 

𝑃̅ =
𝑃𝑖 + 𝑃𝑗

2
=

(𝐴𝑖 + 𝐸𝑖 + 𝐴𝑗 + 𝐸𝑗)(1 + 𝜓)

2(1 − 𝜓2)
 (12) 

The between-group variance equals the variance of the group average, 
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𝜎𝑃̅
2 = 𝜎𝑏𝑔

2 =

1
2

(𝜎𝐴
2 + 𝜎𝐸

2)(1 + 𝜓)2

(1 − 𝜓2)2
=

1
2

(𝜎𝐴
2 + 𝜎𝐸

2)

(1 − 𝜓)2
                                                     (13) 

 

Plotting 𝜎𝑏𝑔
2  for different values of 𝜓 using Equation 13 shows an increase in 

between-group variance with an increase of 𝜓 (Figure 1, Panel C). In our model 

(Figure 1, Panel F), however, we can see the decrease in the between-group variance.  

In conclusion, the relationship between competition and variability on the within-

group level is modelled in a similar way in our model (Chapter 3) and the trait-based 

model. The main difference between the models can be seen on the population level, 

where the trait-based model shows symmetrical level of variability for positive and 

negative values of 𝜓, while our model shows decrease in variability with positive b. 

My expectation is that competition leads to higher variability on both within-group 

and population level, which has also been noticed for several species of fish 

(Mccarthy et al., 1992; Jobling, 1995; Ponzoni et al., 2005, 2011). Therefore our 

model depicts the co-evolution of competition and variability more realistically 

compared to ordinary trait-based IGE-models. 

 

Finally, I will show that models for inherited variability fail to connect variability and 

the level of IGE, using the additive model as an example. The phenotypic value of the 

focal individual i in the classical model is a function of direct genetic effect of i on the 

mean (𝐴𝑚,𝑖) and direct environmental effect of i on the mean (𝐸𝑖): 

 

𝑃𝑖 = 𝐴𝑚,𝑖 + 𝐸𝑖       or     𝑃𝑖 = 𝐴𝑚,𝑖 + 𝜒𝜎𝐸,𝑖                                                                       (14) 

 

where 𝜒 is a standard normal deviate, 𝜒~N(0,1) for the environmental effect. With 

genetic variation in environmental variance: 

 

𝜎𝐸,𝑖
2 = 𝜎𝐸

2 + 𝐴𝑣,𝑖                                                                                                                       (15)  

 

so that 

𝑃𝑖 = 𝐴𝑚,𝑖 + 𝜒√𝜎𝐸
2 + 𝐴𝑣,𝑖                                                                                                    (16)                                                                                                       

 

where 𝜎𝐸
2 is the mean environmental variance and 𝐴𝑣,𝑖  is the direct genetic effect of 

i for environmental (residual) variance. Models for inherited variability, therefore 

only consider direct genetic effects of the focal individual on its own variability, 

ignoring a possible contribution of the social partner. We confirmed this observation  
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     Trait-based model                                            Our model 

 

Figure 6.1 Pattern of change in phenotypic, within-group, and between group variance with change 
in 𝜓 in trait-based model, and change in b in our model. Panels A, B, and C, were made using 

Equation 7, 11, and 13, receptively, assuming 𝜎𝐴
2 + 𝜎𝐸

2 = 1; Panels D, E, and F, were made using 
estimates from ASReml 4.1, averaged over 10 replicates for each value of b. 
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in Chapter 4, by applying a direct sire model for inherited variability to simulated 

data. The model captured almost entirely the direct genetic effects of competition 

(direct breeding values for b), but very little of the indirect genetic effect of 

competition. 

 

6.2.2 Genetic variation in ψ 

In the ordinary trait-based model, 𝜓 is assumed to be constant, i.e., to have the same 

value for all interacting individuals. While done for simplicity, the assumption of 

constant 𝜓 is rather crude and unrealistic. It is more likely that 𝜓 varies within the 

population, meaning that 𝜓 itself may respond to selection (Chenoweth et al., 2010).  

Demonstrating genetic variation in 𝜓 is a challenging task, but can be done, for 

example, by using multiple discrete genotypes, i.e., inbred lines. Relying on such 

data, Bleakley and Brodie IV (2009) estimated 𝜓 in guppies and showed that it differs 

between the focal inbred strains. In addition, the level of 𝜓 in some cases also 

depended on the social (partner) strain, suggesting that both focal and partner strain 

contribute to variation in 𝜓. Similarly, studies on chemical signaling in D. 

melanogaster (Kent et al., 2008) and sexual display traits in D. serrata (Chenoweth 

et al., 2010) also found variation in 𝜓. 

 

In our study, we wanted to allow variability and competition to co-evolve. For that 

purpose, the b itself needed to be heritable. Inspired by the above-mentioned study 

on guppies, but also by a study on cannibalistic behavior in laying hens, which shows 

that such behavior depends on genetic effects of both the social partner (the pecker) 

and the victim (Ellen et al., 2008), we modelled b as a composite quantitative genetic 

trait. In other words, b expresses genetic variation due to direct genetic effects of 

the focal individual and indirect genetic effects of the social partner. Related to our 

trait, it means, that the effect of a difference in body weight between the social 

partner and the focal individual on the growth of the focal individual, depends on 

genetic competitiveness of the social partner and genetic resistance to competition 

of the focal individual. Therefore, b shows genetic variation and can evolve, which 

facilitates research on evolution of trait variability due to changes in IGEs. 

 

An additional issue with 𝜓 comes from the feedback effect (Moore et al., 1997; 

Bijma, 2014). The “feedback” refers to the situation where the “indirect” genetic 

effects of the focal individual affect its own trait value, indirectly through the social 

partner. For example, the level of aggression in the focal individual affects the level 

of aggression in the social partner, which subsequently affects the level of aggression 

in the focal individual. In those cases, 𝜓 is not a true regression coefficient, because 



6 General discussion 

 

 

156 

 

P and E in Equation 2 are correlated (Bijma, 2014). The b in our model, however, is a 

true regression coefficient because the phenotype of the focal individual is affected 

by phenotype of the social partner from the previous time point, but not vice versa. 

Therefore, time-series data eliminates the problem of feedback. 

 

6.2.3 Formation of variability 

In many species, fitness of an individual depends on its size relative to the size of the 

other individuals (Smith and Brown, 1986). Fish that are larger often win fights, which 

allows them to acquire more resources (Huntingford et al., 2012). Because 

probability of success in a competitive interaction between individuals depends on 

body size, individuals tend to modify their behavior based on their body size relative 

to that of social partner. Larger fish, therefore, are usually aggressive, while smaller 

ones are submissive (Huntingford et al., 2012). In aquaculture, this causes the 

formation of a social hierarchy, where large fish are at the top of the hierarchy and 

have priority to feed, while subordinate fish show lower food intake and growth 

(Vera Cruz and Brown, 2007). As a consequence, dominant individuals show higher 

and more stable growth, compared to subordinate fish (Mccarthy et al., 1992). Such 

high discrepancy in growth ultimately leads to increase of variation in body size in 

time, which has been observed on both group and population level (Jobling, 1995; 

Ponzoni et al., 2005, 2011).  

 

This brings us to the third issue related to IGE models – as evident from Equation 1 

& 2, these models only consider IGEs on the final phenotype. Observations from 

aquaculture, however, show that variability develops over time. In our model we 

simulated growth curves in order to incorporate competitive effect of body weight 

on the growth of focal individuals and mimic the observations from aquaculture 

population, therefore giving a more realistic impression of how IGEs affect the level 

of variability. We did, however, for simplicity assume that direct and indirect genetic 

effects are the same at the different time points, which from biological perspective 

may not be true, i.e., the level of competition may differ between different stages of 

fish life. 

 

6.2.4 Other traits 

In trait-based models, the indirect effect on the phenotype of the focal individual 

depends on specific traits of the social partner. Therefore, the traits causing the 

effect, also known as effector traits, need to be identified. Such information is usually 

obtained from behavioral studies, and may involve more than one trait. In our model, 

the effector trait was the difference in body size between the social partner and the 
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focal individual, which was chosen based on findings in a number of studies on fish 

behavior (Huntingford et al., 2012). However, other traits may be used as a predictor 

of variability of body weight instead, or in addition, to the difference in body size. 

Most likely, these would be traits related to feeding behavior or feed intake and feed 

efficiency, i.e., traits that affect growth of individual.  

In Chapter 3 & 4 we demonstrated our model using a fish population as an example. 

However the model may be applicable to other animals, and to plant populations, 

where a relationship between competition and variability has been observed. In 

those populations, effector trait(s) may be very different. For example, in domestic 

pigs variability of body weight can also be related to social hierarchy (Meese and 

Ewbank, 1973). Several studies suggested initial weight as a key trait for the rank of 

a certain individual, while higher body weight later in life may not give a competitive 

advantage (McBride et al., 1964; Meese and Ewbank, 1973). In plants, traits such as 

height, branching, leaf area, length and branching of the root, determine the 

competitive ability of an individual (Denison et al., 2003). The difference in level of 

these traits between social partner and focal individual may be used as an effector 

traits to investigate relationship between competition and variability. In addition to 

differences in trait values in plants, distance between interacting individuals would 

also be needed to take into consideration, as individuals close to each other may 

exhibit more competitive interactions compared to those that are spaced more 

distantly. 

6.3 Benefits and consequences of selection for uniformity  

The main focus of this thesis was on the relationship between competition and 

variability, which was inspired by observations from aquaculture and plant 

populations. However, the relationship between these two phenomena may already 

have existed long before the development of complex organisms and may have 

played a crucial role in the development of multicellularity. 

To understand the evolution of cooperation, scientist often apply game theory, for 

example a “prisoner’s dilemma” game. According to the prisoner’s dilemma, when 

two individuals interact, three outcomes are possible: both individuals cooperate; 

one individual cooperates while other one cheats; both individuals cheat. The 

scenario where both individuals cooperate brings the highest payoff for both 

individuals, but that behavior evolves only under certain conditions. Steven A. Frank 

(2007) gives several examples to demonstrate how mutual cooperation may have 
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been a key component in the development of multicellular organisms. What I find 

interesting in these examples is how a high level of cooperation also goes with a high 

level of uniformity. Slime molds, for instance, live most of the time as single cells, but 

in certain situations, such as food shortage, they may form aggregations. These 

aggregates consist of two parts – reproductive cells that form spores, and stalk that 

raises spores up from the ground. It has been noticed that when these aggregations 

contain genotypes that are represented more in reproductive part rather than in 

stalks, i.e., cheating genotypes, the reproductive output of the whole aggregate is 

decreased because of lower stalk (Frank, 2007). Similarly, if genotypes produce cells 

in such way that they are equally represented in both parts, success of the whole 

aggregate is increased. Therefore, in slime molds, mutual cooperation leads to 

higher uniformity, and vice versa, and higher fitness. These cellular organizations can 

be considered as predecessors of multicellular organisms (Frank, 2007). 

To avoid the possibility of cheating genotypes, multicellular organisms develop from 

a single-cell, so that all tissue cells are essentially clones. Mutations, however may 

happen, causing genetic variation and conflict within the tissue. If one of the 

genotypes has a competitive advantage compared to other, for example, faster cell 

growth, it may result in severe consequences, such as formation of tumors. 

Uniformity on the tissue level, therefore, is extremely important. Cell mechanisms 

such as DNA repair system and apoptotic control evolved to eliminate extreme 

phenotypes, but in addition genetic and environmental canalization may have had 

an important role in maintenance of uniformity against small changes in genome and 

environment (Flatt, 2005). Uniformity, therefore may have relevance for evolution 

of multicellular organisms and for the stable functioning of such organisms.  

In natural populations, uniformity may arise through stabilizing selection for an 

optimal phenotype (Waddington, 1942; Wagner et al., 1997; Flatt, 2005; Edgell et 

al., 2009). If the phenotype is at, or near optimum, the variation around optimum is 

disadvantageous, and an increase in uniformity increases mean fitness of the 

population. In a study on within-family variance of fledging weight in the great tit, 

authors found evidence of stabilizing selection on within-family variance (Mulder et 

al., 2016). In addition, their results show that families with a high or low within-family 

variance had lower fitness compared to families with an intermediate within-family 

variance. In some species of fish, uniformity in size, shape, and color, may have 

evolved through increase of survival of those individuals, as phenotypic similarity 

between fish that swim together make it difficult for a predator to focus on a single 

prey, which is known as “confusion effect” (Landeau and Terborgh, 1986). In 
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conclusion, evolution of uniformity/canalization, is often related to an increase in 

mean fitness of the population, irrespective of whether such populations consist of 

single cells or individual organisms. 

In domestic populations, uniformity of animal products has a clear economic benefit 

(Hennessy, 2005). In some cases, an increase in uniformity may also lead to higher 

survival, for example for litter size in pigs (Sell-Kubiak et al., 2015), and increased 

welfare, as in aquaculture where uniformity reduces competition and the need for 

grading (Khaw et al., 2016).   

While a reduction of variation may be beneficial, a loss of phenotypic variation may 

also hinder phenotypic evolution and reduce the ability of a population to adapt to 

a changing environment (Wagner et al., 1997; Flatt, 2005), which is especially 

relevant for natural populations. However, while phenotypic variation may be low, 

the underlying genetic variation may accumulate because it is hidden from the force 

of natural selection (Wagner et al., 1997; Flatt, 2005). Under extreme environmental 

conditions, a genotype may become “decanalized”, causing more rapid evolution 

(Flatt, 2005). For example Drosophila heat-shock protein Hsp90 buffers genetic 

variation, unless a stressful environment occurs, such as change in temperature. 

Buffering ability then becomes compromised and may lead to the expression of new 

phenotypes (Rutherford and Lindquist, 1998). These results illustrate that 

phenotypic canalization can go together with the maintenance of heritable variation, 

so that canalization does not necessarily threaten adaptive potential.  

6.4 Future perspectives 

Selection for uniformity of body weight in aquaculture could lead to increased profit 

by producing more fish in the size range that is favored by the consumers, and 

reducing the need for frequent grading of the fish during the grow-out period, which 

bares not only financial benefits but also benefits for the welfare of the fish. 

Results of theoretical and empirical studies on inherited variability suggest that 

variability could be reduced by means of genetic selection. However, selection 

experiments to improve uniformity are scarce, and are mostly limited to laboratory 

populations (Rendel et al., 1966; Kaufman et al., 1977; Argente et al., 2008; Boldin 

et al., 2012; Blasco et al., 2017). Findings of Chapter 2, together with estimates of 

genetic variation in variability in several other species of fish (Janhunen et al., 2012; 

Sonesson et al., 2013; Sae-Lim, Gjerde, et al., 2015; Sae-Lim, Kause, et al., 2015), 
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suggest that aquaculture populations are suitable to validate the estimated genetic 

parameters by a selection experiment.  

 

Given the finding of Chapter 3, two selection experiments could be performed. A 

first experiment, where selection is based only on direct genetic effects on 

variability, and a second experiment where selection involves both direct and 

indirect genetic effects on variability. These experiments could give us insight into 

how much of genetic variation in variability could be attributed to variation in IGEs.  

The experiments should have a group structure with, e.g., two individuals in a group, 

similar to our simulated data in Chapter 3 & 4. However, subsequent trials involving 

larger group sizes may also be conducted to test whether the magnitude of effects 

of competition change with an increase of group size. Data on both individuals in 

each group should be collected at several time points. Time-series data would allow 

to use random regression approach as suggested in Chapter 3, but also the direct 

model and the indirect model for inherited variability presented in Chapter 4. Half  

sib – full sib designs, similar to that proposed in Chapter 4, with multiple 

observations of within-family variance per sire, and individuals from the same family 

in both experiments, could be used for estimation of direct and indirect genetic 

effects of competition. Validation and comparison of the models using real data 

could make a significant contribution to optimization of methods and models for 

future studies aiming to estimate genetic effects of competition.  

 

Ideally, these experiments should be performed on aquaculture populations. 

However, large scale experiments using commercial fish stocks may require 

considerable investments in finances, facilities, labor, and time. Alternatively, the 

two proposed selection strategies could be compared by using zebrafish as a model 

organism. Zebrafish show fast growth and a substantial level of competition, they 

are small, robust, and easy to maintain. Even though they are not commercial fish, 

they could elucidate possibilities to improve uniformity in aquaculture, and give an 

impression of how much IGEs could contribute to the evolution of uniformity. In 

addition, the genome of the zebrafish has been fully sequenced at high quality, which 

would facilitate research on genetic and molecular mechanism underlying inherited 

variability.  

 

One of the main obstacles in incorporating uniformity in aquaculture breeding 

programs is often high and positive genetic correlation between level and variance 

of harvest weight, meaning that selection for uniformity will cause decrease in 

selection response in body weight, which is highly undesirable, especially giving the 
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low economic value of uniformity (Janssen et al., 2017). It would be interesting to 

see how indirect genetic effects for b correlate with genetic effects for body weight, 

and whether selection on IGEs only, could be used to improve uniformity, without 

consequences for growth.  

 

In Chapter 3 & 4 we suggested approaches to estimate genetic effects of 

competition, more specifically how direct and indirect genetic effects on b could be 

estimated for each individual. In Chapter 3 we indicate that random regression could 

be used to estimate genetic components of b, using group-structured population and 

time series data, while in Chapter 4 we tested models which are only applied to the 

final phenotype of individuals within group, therefore avoiding need for multiple 

observations. Such specific type of data may not be easily available, especially for 

fish growing in commercial setting. However, with the development of new 

phenotyping techniques that involve video tracking of individuals in 3D space, 

generating such data could become common practice (see for example idTracker, 

http://www.idtracker.es/). These techniques would give multiple observations on 

individual trait values (for example body weight calculated from the 3D image, i.e., 

volume of the individual) and information on social interactions between individuals. 

 

In Chapter 3 & 4 we proposed a model for interaction of two individuals, and 

discussed how our model could be extended to incorporate IGEs of multiple 

individuals on the growth of the focal individual. With an increase of group size, IGEs 

of an individual may show a so-called dilution effect, i.e., decrease in magnitude, due 

to less time spent in interacting with each of its group mates (Bijma, 2010). Dilution 

of IGEs does not always happen with increase of group size, for example, alarm 

signaling in birds will have a similar effect in small and large groups. However, with 

traits such as growth, where the amount of food is limited, dilution is likely to 

happen. One main assumption of the dilution effect is that social partner interacts 

with all group members and in equally intensity, hence IGEs get diluted over a large 

number of individuals. However for large groups, my expectation is that individuals 

will interact mostly with small number of same/familiar individuals. This would lead 

to partitioning of a large group into small sub-groups, so that IGEs might not become 

heavily diluted. I believe identification of such sub-groups could also be possible with 

new phenotyping techniques, once they scale up to simultaneously track larger 

numbers of individuals, which is one of the main future goals of the developers of 

such technologies.  
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6.5 Conclusions 

To overcome issues of current IGE models and models for inherited variability, 

integrating social interactions and inherited variability required development of a 

new model, which was presented in this thesis. The model allows for competition 

and variability to co-evolve, suggesting that uniformity could be increased through 

improvement of direct and indirect genetic effects. Estimation of genetic effects of 

competition requires group-structured data, and also observations from multiple 

time points in case of estimation with random regression. With development of new 

phenotyping techniques such data may become commonly available, facilitating 

application of our model. Ideally, contribution of IGEs to evolution of variability 

should be quantified in a selection experiment. 
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Summary 

Social interactions are common in nature and are an important part of the 

environment experienced by individuals. In the traditional quantitative genetic 

model, the phenotype of an individual is determined by the direct effect of its own 

genes and an environmental effect. With social interactions, however, the 

phenotype of an individual may also be affected by genes of its social partners. Such 

effects are known as Indirect Genetic Effects (IGE). IGEs can contribute substantially 

to heritable variation underlying the trait, and may even reverse the direction of 

response to selection. A related topic is the inheritance of phenotypic (or residual) 

variability. The variability of trait values of a genotype, measured either repeatedly 

on the same individual, or on multiple individuals belonging to the same family, has 

been studied as a quantitative trait in its own right. This trait is often referred to as 

inherited variability, heritable variation in environmental variance, or environmental 

canalization. Results demonstrated substantial genetic variation in variability for 

many traits. In some species, IGE and inherited variability are related via 

competition. In aquaculture species and some plants, for example, competition 

inflates variation of trait values among individuals.  

As social interactions are often a source of IGEs, the observed relationship between 

social interactions and variability on the phenotypic level, strongly suggests an 

underlying genetic relationship between the two phenomena, of which very little is 

known. The main objective of this thesis, therefore, was to study the genetics of 

inherited variability and possibilities for its genetic improvement, focusing primarily 

on the relationship between competition and variability, and using Nile tilapia as a 

model species.  

In Chapter 2 we investigate the potential for genetic improvement of inherited 

variability of harvest weight and body size traits in a domestic Nile tilapia population. 

We analyzed within-family variance of harvest weight, body length, depth, and 

width, by applying a double hierarchical generalized linear models to individual trait 

values. Our results showed substantial genetic variation in variability of all analyzed 

traits, suggesting good prospects for the genetic improvement of uniformity by 

means of genetic selection. For example, residual variance of harvest weight could 

be reduced by 58 % with one generation of selection, while proportional change in 

phenotypic variance would be 36 %. Selection for lower variability of harvest weight 

in Nile tilapia, however, would come with a consequence on the level of harvest 

weight, due to high and positive estimated genetic correlation between the two. 
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Not only direct, but also indirect genetic effects may contribute to genetic variation 

in variability, as hinted by observations from real populations. In Chapter 3 we make 

a first step towards understanding the genetic relationship between social 

interactions and variability, by presenting a quantitative genetic model that 

integrates both phenomena. In our model, competition between social partners 

leads to divergence of their phenotypes (e.g., body weight) over their life time. The 

effects of competition in our model are heritable, and therefore, can evolve. These 

effects comprise direct genetic effect of the focal individual and indirect genetic 

effect of its social partner. Simulation results show that our model yields increased 

variability of body weight with increase of competition, similar to what is observed 

in real aquaculture populations. Selection for cooperation, i.e., lower competition, 

will therefore lead to decreased variability. These findings suggest that we may have 

been overlooking an entire level of genetic variation in variability, the one due to 

IGEs. 

To exploit genetic variation in inherited variability originating from IGEs, we need 

statistical models to capture this effect. In Chapter 4 we investigate the potential of 

current statistical models for inherited variability and trait values, to capture the 

direct and indirect genetic effects of competition on variability. Our results show that 

a direct model of inherited variability almost entirely captures the direct genetic 

effect of competition on variability, as illustrated by high correlations between 

estimated genetic effects and simulated direct breeding values. Similarly, an indirect 

model of inherited variability captures indirect genetic effects of competition. 

Models for trait levels, however, capture only little of the genetic effects of 

competition. Capturing genetic effects of competition, therefore could be possible 

with direct and indirect models of inherited variability, but may require a two-step 

analysis. 

According to kin selection theory, genetic relatedness should influence social 

behavior, because individuals able to interact differently with kin vs. non-kin would 

have higher inclusive fitness. In addition to fitness benefits in natural populations, 

reduced competition may also lead to increased performance in agricultural 

populations. One potential way to reduce competition and increase yield and 

uniformity of trait values in Nile tilapia is to utilize the consequences of past kin 

selection, i.e., the evolution of kin discrimination and cooperative behavior among 

relatives. In this study we compared two experimental treatments: rearing of fish in 

kin groups vs. rearing in non-kin groups, in order to investigate whether relatedness 

affects performance traits in domestic Nile tilapia. We analyzed average body 
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weight, standard deviation and CV of body weight, and survival, between the two 

treatments. Results of our study show that individuals had significantly higher body 

weight in groups composed of kin (8.6 ± 2.6 g), indicating that domestic Nile tilapia 

may exhibit kin-biased behavior. However, there was no difference in variability of 

body weight and survival between the two treatments. 

In Chapter 6, I showed why integrating social interactions and inherited variability 

required development of a new model, and what are the advantages of the new 

model, compared to current IGE models and models for inherited variability. The 

most striking difference between the models comes from modelling of relationship 

between competition and variability. IGE models and models of inherited variability 

cannot fully explain this relationship between competition and variability as 

observed in real population, especially on the population level. Our model, however, 

allows for indirect genetic effects to lead to differences in variability of trait values, 

on both group and population level. Furthermore, in this chapter I discussed benefits 

and consequences of selection for uniformity, and proposed future empirical studies 

that could give insight into biological relevancy of the theoretical possibility that IGEs 

contribute to genetic variation in variability.  
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