Creating impacts with open data for agriculture and nutrition in Kenya

BO-20-007-440 ‘Add Q1 Creating impact open data in Kenya’

December 2017

Peter Verweij
Onno Roosenschoon
Martin Parr
Kiringai Kamau
Martin Macharia
Chipo Msengezi
Summary

Open data is data that anyone can access, use and share. It is widely recognised as a priority goal by the development community and a driver for economic growth. Open data has the potential to contribute to one of the sustainable development goals: ending hunger. Recent high level interest has drawn special attention to the importance of open data in light of growing and critical global challenges affecting the health and welfare of people everywhere, including: the G8 Open Data Charter in 2013, the World Bank in 2014 and the GODAN Summit in New York in 2016. The June 2017 Ministerial Conference on Open data for Agriculture and Nutrition hosted by the Kenyan Minister for Agriculture, Livestock and Fisheries culminated in the Nairobi declaration in which 15 African countries commit themselves to strengthen the role of open data for their agricultural development.

The Government of Kenya is actively pursuing an open data policy in the field of agriculture and nutrition and has its own open data portal that features hundreds of data sets on agriculture and nutrition. There are also many other data collections that are of great value. With all these data sources available on the supply side, there is scope to deploy them for creating impacts in agriculture and nutrition, specifically with respect to food security. However, steps of enrichment of data to information and knowledge need to be taken, just as understanding the (user) needs or the beneficiaries that could work with the data.

This project scoped the supply (i.e. available datasets) and demand (requirements of end users) of (open) data for agriculture and nutrition in the Kenyan context and developed showcases and a prototype, that focused on potential impacts of use of data in agriculture and nutrition in Kenya. The showcases and prototype are transferable to other African countries:

1. Support to student led agricultural extension (led by University of Nairobi)
2. Using open data to support evidence-based policy making (led by WEnR)
3. Supporting start-ups (led by CTA)
4. Joint actions across the value chain for people, planet and profit (led by CABI). This showcase is the basis for the prototype (co-developed by WEnR and CABI).

During a reflection workshop in Nairobi with over 25 representatives from Kenyan government, business and research, feedback was gathered to test whether the problem was correctly identified, if the right (open) data was used, if the proposed solution was workable and whether the solution had an obvious business model with stakeholders.

Main findings include:

- collaboration among value chain players through open data will optimize the supply chain with shared benefits
- business involvement is crucial to guarantee continuity of a solution and must be present from the onset.
- User driven co-development is necessary to identify required data, share local data and open local data since not all the required data is openly available, or easily accessible.
- prototyping is a useful mechanism to match supply with demand.

We recommend co-development of a prototype to bring open data closer to a fully functioning application via a standardised method. The prototype could focus on the middle-tier of identifying and obtaining the right inputs and strengthen the position of and trust between farmers, agri-dealers and traders.
Introduction

Recent high level interest has drawn special attention to the importance of open data in light of growing and critical global challenges affecting the health and welfare of people everywhere (2013 G8 Open Data Charter, post-2015 Data Revolution and recommendations from a 2014 UN Independent Expert Advisory Group). The recent GODAN Summit 2016 in New York highlighted the potential of open data to contribute to one of the sustainable development goals: ending hunger. It ended with a commitment of many governments and other stakeholders to further develop innovations in open data towards ending hunger.

The Ministry of Economic Affairs (directorate ELVV), the Netherlands, has been involved in GODAN since 2013 and its involvement in open data has focused on the aspect of creating impacts. As a result of the efforts of ELVV, the following outcomes were achieved:

1. Internationally the focus on impacts and end-user driven is well accepted and clearly setting the agenda of GODAN as an international network. This focus helps the Netherlands to benefit from the international activities taken up by the GODAN network.
2. New partnerships were created between Dutch private sector players and international partners that allow new services to be developed and Dutch private sector partners to have a visual position.

The Government of Kenya is actively pursuing an open data policy in the field of agriculture and nutrition and has its own open data portal that features hundreds of data sets on agriculture and nutrition. There are also many other data collections that are of great value in the open data space.

At the GODAN Summit 2016 a group of partners met in a side meeting to discuss potential collaboration around showcasing open and private data for use in agricultural and nutritional development in Kenya. These partners were: Government of Kenya, University of Nairobi, CABI, Ministry of Economic Affairs of the Netherlands, CTA, Rothamsted Research, Netherlands Space Office and Wageningen University & Research.

In this first step in the collaboration, CABI, CANIS (University of Nairobi), CTA and Wageningen University & Research participated to scope the best options for creating impacts with open data in the Kenyan nutritional and agricultural context, which resulted in this workshop in Kenya.

Objectives of the workshop

The objectives of this workshop were twofold:

1. Scoping the supply (i.e. available data sets) and demand (requirements of end users) of (open) data for agriculture and nutrition in the Kenyan context
2. Develop showcases focusing on potential impacts of use of data in agriculture and nutrition

The rationale behind these two objectives is that the Dutch Government strongly believes that open data for agriculture and nutrition should be based on three pillars. Any approach should be:

- Impact driven
- Putting the end user should be in the driving seat
- Focused on a chain approach
Joint reflection on the showcases with stakeholders from KALRO, KEPHIS and the Ministry of Agriculture, Livestock and Fisheries and the Director General of KNBS, allows us to arrive at a shared understanding, obtain feedback from the participants in the workshop on the showcases, understand the main drivers of change but also what the barriers are, and enable a focused action agenda going forward in building the showcases and prototype and building capacity on open data.

Approach

The workshop discussions were based on practical cases in the Kenyan context. In order to achieve this, we developed showcases with factsheets for 4 cases (fully described in Annex III) which are:

1. Support to student led agricultural extension (CANIS)
2. Supporting start-ups in agriculture and nutrition (CTA)
3. Using open data to support evidence-based policy making (Wageningen Environmental Research)
4. Joint Action across the value chain for people, planet and profit (CABI, Wageningen Environmental Research)

Each showcase is described in terms of:
- Title of the showcase;
- Description of the problem and potential solution;
- Expected impacts/benefit, including beneficiaries;
- Data sources and topics;
- Workflow of using the data, with what actors, and how;
- Transferability of the showcase to other locations.

The presentation of these four cases was followed by parallel breakout groups per showcase. In these groups we focussed on validation of the cases and completeness check. More specifically, the following questions were used to give direction:

- Have we correctly identified the problem? If not, what is the problem then; how could it be redefined?
- Do we have the right data to help build a solution? If not, why not?
- Is it FAIR (Findable, Accessible, Interoperable, Reusable)
- If a solution is proposed in a case, is it workable?
- Is there an obvious business model behind a solution? If not, what could it be?
- Are the right stakeholders involved?

The afternoon session started with a presentation of a prototype which was based on showcase 4. This prototype was presented as a series of PowerPoint slides showing possible functionality of the prototype as a non-clickable demo (see annex VII). This presentation and the presentation of the other three showcases were used as input for discussion in parallel breakout groups, in order to define an action plan for a working prototype.

Workshop outcomes

From the parallel sessions in the morning and the short discussion directly after the presentation of the prototype, it turned out that most of the questions and remarks were focused around the following topics:

- Business models
- Applicability of the prototype
- Use of local data
Business models

It did not come as a surprise that business models in the context of open data were in many people's minds. Many organisations are interested in opening their data but are unsure of the associated costs and benefits. It requires a transition in thinking, from a business model of selling data and updates of data towards selling services based on the needs of potential customers. It is a transition from supply driven to demand driven business.

Whatever business model is applied, the following questions are a good starting point:

- What are your organization's' goals?
- How is data used now, and how could it be used better in the future?
- How can you get data driven value for your business?
- How do the business models compare?

Many of the participants in the workshop were representing the Kenyan government, universities and NGO's. Many of these organisations are not necessarily interested in promoting open data not for their own financial gain, but in order to have wider social, environmental and economic benefits. In contrast, some of the participants were representing business which do have a direct interest in increasing benefits for their own organisation.

These seemingly contrasting goals do not necessarily mean different business models. It could well be that instead of a simple business model (a farmer or a donor or a agrobusiness pays for the data or service) rather a mixed, or freemium, model could be the way to go. Such models could serve both the goals of government, as businesses who want to make a profit. As an example of a freemium model, a basic version of a product, or service, can be made available for free, financed by the government, with a version of the product, or service, that may have added value attracting an additional price tag.

As examples of these added services, value added service insurance or, access to plant doctors came up. The free product acts as marketing, establishing the provider in the marketplace and increasing the take-up of the paid-for product. Whatever model is being implemented, the general feeling was that the service model should not be too complex, nor the payment options.

It was generally acknowledged that there exist many examples around us that we should learn from. These included applications developed in other sectors e.g PharmNet. It also emerged that we must learn from sustainability challenges experienced by other services e.g icow. Trust was also established as a key factor for development of any successful application. It was therefore agreed that for the success of one of the variants of the prototype it would be vital to develop a certification scheme for ago-dealers and to accredit agribusinesses and agro-dealers with certificates approved by a trusted body: the agrochemical association of Kenya (AAK) and/or KEPHIS. It was noted that the proposed platform could act as a builder of trust by profiling only certified agribusinesses or gives more prominence to certified agribusinesses in search results. For certification to happen it is important to closely work together with agribusinesses and innovation hubs

2. https://www.businesscalltoaction.org/member/pharmnet
3. http://www.icow.co.ke
4. http://www.agrochem.co.ke
5. http://www.kephis.org
(we note that there are about 8,000 stockists/ agro dealers in Kenya).

Quality of the provided services is also key so agencies like KALRO, CABI and CANIS can provide quality assurance.

Applicability of the prototype

The prototype
- Should provide information to all value chain actors (input suppliers, policy enablers/ supporters, producers and consumers)
- Consumers – subsidies, price regulation, quality control
- Traders/ distributors – infrastructure, issues to address post harvest handling, value addition and processing, market research and access to finance/ credit
- Policy enablers – sensitization/ awareness, advocacy
- Policy supporters – Data infrastructure, adoptive research

Use of local data

Most of the data used in the prototype originate from global or national sources (e.g. soil-, meteo- and market price data). The advantage of these large scale data sources is the enablement of their automated processing facilitated by the data’s uniformity across space and time. Local data (e.g. crop variety, crop calendars, outbreaks of pests and diseases, pesticide and fertilizer use) are expected to enrich, improve the quality and broaden the scope of potential services. Many data sources for local data were identified by their attending owners. The owners declared to be eager to open up their local data for societal impact, but they require support for doing so. Opening up may be hampered by political, privacy, economic competition and trade sensitivity issues but also because there is lack of capacity or awareness to do so. Since many data sources are available; an approach for determining what data to open up first is needed. Co-development with the intended end-users and data-providers is elementary to ensure service acceptance and uptake. The prototype is a useful basis for starting such co-development.

Concluding remarks and recommendations

Concluding remarks

During the workshop many things were said by the participants. Some of these remarks were shared amongst participants, others were valid only for specific participant applications.

The following list covers the shared conclusions of the group, which are the result of the discussions in the breakout groups on the 4 cases and reported back plenary, or the result of the discussions in the afternoon, where we discussed business model, applicability of the prototype and the use of local data.

- For any solution to be successful, looking at the whole value chain is crucial.
- Identify the problem holder and define the problem, start with the demand and from there work towards the supplier.
- Local problems need local data to solve them
- Don’t reinvent the wheel. There are successful examples of Open Data initiative around us. Learn from what they did
Without trust or confidence that data is valid and partners are qualified, initiatives are bound to fail.

Cooperation, collaboration and co-creation by the partners in the value chain are key.

Capacity building and awareness of each other's needs is important at all levels.

Be aware of cultural differences.

There is more data available that people think, but is is not open (yet) or is in an unusable format.

Having data not opened up is not always because of commercial or legal restrictions, but in many cases because there is lack of awareness that data when shared could be very useful to others.

Recommendations

Further developing a prototype seems a perfect way to intensify collaboration and to investigate how co-creation and co-development can lead to an application or service with a sustainable business model behind. The participants are aware that working together along the whole value chain is crucial.

Having said that, there seems to be particular interest in the role of the agri dealers in the chain. Certification of agri dealers by and under supervision of independent institutions such as KALRO, CABI and CANIS working with trade agencies such as AAK might be a good step forward in strengthening this part of the value chain. More particular, this will increase farmers's trust that they are buying the right product/service by an agri dealer.

The next prototype could then focus on this part of the chain, in order to mobilize agri dealers to responsibly bring timely inputs (seeds, fertilizers, pest control products) to farmers in need of fertilizer or pest control in Kenya combined with certification of agri dealers with an ICT solution (principally mobile) to link farmers to certified agribusiness. This will help to counter use of fake agro chemicals and will increase trust. Open weather data, open data on soils and plant diseases etc should be integrated in this prototype to support better informed farm management by smallholders.
Annex I - Agenda

Location: KALRO, Kaptagat road, Loresho Nairobi Kenya
Date: October 3, 2017

08:15 Guest arrival and registration
08:45 Introductions
 - Welcome by the host (Dr. Eliud Krieger, Director General, KALRO)
 - CANIS (Prof. Kiama, Principal CAVS)
 - Government of the Netherlands (Rik Martens, first secretary food security)
 - Government of Kenya, Director General, Kenya National Bureau of Statistics
 - Global Open Data for Agriculture and Nutrition (Martin Parr & Onno Roosenschoon, GODAN)
 - PlantWise Kenya (Florence Chege, CABI)
09:00 Workshop participant introduce themselves
09:30 Workshop objective (Onno Roosenschoon, WEnR)
10:00 Show case presentations
 - Support to student led agriculture (Kiringai Kamau, CANIS)
 - Using open data to support evidence-based policy making (Peter Verweij, WEnR)
 - Supporting Start-ups (Chipo Msengezi, CTA)
 - Joint actions across the value chain for people, planet and profit (Martin Macharia, CABI)
10:45 TEA BREAK
11:00 Parallel breakout groups per showcase: validation / completeness check
11:45 Plenary reporting

12:45 LUNCH BREAK

14:00 Presentation of prototype (Martin Macharia and Peter Verweij)
14:15 Plenary feedback round
15:15 COFFEE and parallel breakout groups to define action plan for prototype
16:00 Plenary reporting
16:40 Joint reflection
 - Find priority actions
 - Round of feedback: what lessons did you learn? What could be actions for you?
17:15 Closing

18:00 Depart for drinks and dinner
Annex II - Participants

Wageningen University & Research, CABI, CANIS and CTA undertook an open data showcase in September 2016 which has culminated to the workshop that was undertaken in Nairobi by the High level Open Data Showcase partners as follows:

Presenters

1. Onno Roosenschoon, Facilitator
2. Kiringai Kamau, Showcase 1
3. Peter Verweij, Lead Consultant – Showcase 2 and prototype
4. Chipo Msengezi, Showcase 3
5. Martin Macharia, Showcase 4 and prototype

Participants

The following people participated in the meeting for the full duration of the workshop or only in the morning or afternoon session:

<table>
<thead>
<tr>
<th>NAME</th>
<th>ORGANISATION</th>
<th>EMAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander Valetor</td>
<td>Yielder</td>
<td>alexander@yielder.world</td>
</tr>
<tr>
<td>Andrew Guchu</td>
<td>KPCU</td>
<td>wachiragichu@gmail.com</td>
</tr>
<tr>
<td>Anthony Esilaba</td>
<td>KALRO</td>
<td>anthony.esilaba@kalro.org</td>
</tr>
<tr>
<td>Boniface Akuku</td>
<td>KALRO</td>
<td>boniface.akuku@kalro.org</td>
</tr>
<tr>
<td>Byron Anangure</td>
<td>RCMD</td>
<td>banangure@rcmrd.org</td>
</tr>
<tr>
<td>Chipo Msengezi</td>
<td>CTA & GODAN</td>
<td>msengezi@cta</td>
</tr>
<tr>
<td>Daniel Karanja</td>
<td>CABI</td>
<td>d.karanja@cabi.org</td>
</tr>
<tr>
<td>Eunice Ringera</td>
<td>KEPHIS</td>
<td>eringera@kephis.org</td>
</tr>
<tr>
<td>Felister Makini</td>
<td>KALRO</td>
<td>felister.makini@kalro.org</td>
</tr>
<tr>
<td>Florence Chege</td>
<td>CABI</td>
<td>f.chege@cabi.org</td>
</tr>
<tr>
<td>Francis Muthami</td>
<td>KCSAP (MOALF)</td>
<td>fkmuthami@kapp.go.ke</td>
</tr>
<tr>
<td>G.A Keya</td>
<td>KALRO</td>
<td>george.keya@kalro.org</td>
</tr>
<tr>
<td>Gerbren Haaksma</td>
<td>Yielder</td>
<td>guerbren@yielder.world</td>
</tr>
<tr>
<td>Humphrey Wattanga</td>
<td>CRA</td>
<td>wattanga@gmail.com</td>
</tr>
<tr>
<td>Jan Willem</td>
<td>eProd</td>
<td>janwillem@eprod-solutions.com</td>
</tr>
<tr>
<td>John Mburu</td>
<td>University of Nairobi</td>
<td>mburu@uonbi.ac.ke</td>
</tr>
<tr>
<td>John Mburu</td>
<td>AGECON</td>
<td>jmburu@yahoo.com</td>
</tr>
<tr>
<td>John Nderitu</td>
<td>UON</td>
<td>huria@uonbi.ac.ke</td>
</tr>
<tr>
<td>Joseph Kariuki</td>
<td>VACID Africa</td>
<td>joseph.kariuki2011@gmail.com</td>
</tr>
<tr>
<td>Kenneth Mubea</td>
<td>RCMD</td>
<td>mubea@rcmrd.org</td>
</tr>
<tr>
<td>Kiringai Kamau</td>
<td>CANIS</td>
<td>kiringai@gmail.com</td>
</tr>
<tr>
<td>Martin Macharia</td>
<td>CABI</td>
<td>m.macharia@cabi.org</td>
</tr>
<tr>
<td>Martin Parr</td>
<td>CABI & GODAN</td>
<td>m.parr@cabi.org</td>
</tr>
<tr>
<td>Muchiri Nyaggah</td>
<td>LDRI</td>
<td>muchiri@developcocal.org</td>
</tr>
<tr>
<td>Mutthoni Livingstone</td>
<td>UTANRMP</td>
<td>mlivingstone2004@gmail.com</td>
</tr>
<tr>
<td>Nduta Karanja</td>
<td>Digital Hands Africa</td>
<td>ndutakaranja@gmail.com</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>27.</td>
<td>Niek Van Duivenbooden</td>
<td>Trimpact Wageningen</td>
</tr>
<tr>
<td>28.</td>
<td>Onno Roosenschoon</td>
<td>Environmental Research & GODAN</td>
</tr>
<tr>
<td>29.</td>
<td>Patrick Mwaniki</td>
<td>KNBS</td>
</tr>
<tr>
<td>30.</td>
<td>Peter Verweij</td>
<td>Wageningen Environmental Research</td>
</tr>
<tr>
<td>31.</td>
<td>Rose Makenzie</td>
<td>EKN</td>
</tr>
<tr>
<td>32.</td>
<td>Wachira Kagwongo</td>
<td>Kenya Potato Council</td>
</tr>
<tr>
<td>33.</td>
<td>Patrick Musila Mwaniki</td>
<td>KNBS</td>
</tr>
</tbody>
</table>
Annex III - Support to student led agricultural extension (showcase 1)

Factsheet

Support to student led agricultural extension

Extension workers engage communities and learning activities for rural people. They do this by bringing scientific research and new knowledge to agricultural practices through informal education.

The government driven extension officer system no longer exists. CSIR supports students through new smaller organizations with a greater focus on building the extension officer role. We have identified a number of organizations that are working in the sector and that they are all problems to food security, rural, state, nationale levels.

Expected impacts and benefits

- Increased productivity and nutritional wards
- Positive awareness of open funding and subsidies
- Improved interest in establishing new agricultural practices, access to new visits and resources against old barriers
- New opportunities for students
- Fresh data is collected at low cost and made available in open data
- CSIR is making the work of an extension officer available through open data collection in local and University

Workflow

- CSIR is working on making open data available
- Students may experience new ways of collecting data through open data collection
- Cooperative students may use their newly acquired data in developing new

Transferrability

- CSIR is working on making open data available
- Students may experience new ways of collecting data through open data collection in local and University
- Cooperative students may use their newly acquired data in developing new

Presentation
Identification of the problem

· Yes the problem has been correctly identified as poor extension services

Data

· We have enough data and right data

FAIR

· The data is not easily findable, accessible, interoperable and reusable
| Business model | · There is a business model but need to look at others and also what has been tested in other countries
| | · Need to involve the government |
Annex IV - Using open data to support evidence-based policy making (showcase 2)

Factsheet

Creating impact with open data: Kenya agriculture and nutrition

Using open data to support evidence-based policy making

Potato is the second most crop in Kenya and an important source of income. There is a clear increase in the production and remuneration of potatoes in terms of number of harvests, volume and geographical spread.

Potential production in Kenya is expected to escalate further as the existing selective change impacts on food crops like maize and sweet potato by increasing the number of harvests. Potato cultivation has a yield gap on small potato varieties comprising by farmers accessibility to markets, low availability of these varieties and post-harvest losses due to lack of storage facilities.

Expected impacts and benefits

- Increased understanding of farmers’ needs: During the workshop, participants are encouraged to share in their sector and socio-economic data.
- Participating farmers can develop understanding of trends by visualising trends of variables and link multiple factors. Potential research might involve additional policy impacts for policy analysts, or an added storage facility.
- Government awareness on the importance of post-harvest loss to the potato value chain leading to better policy making.
- Farmers could understand the growing demand for potatoes and was chosen in the past planning.
- Future research could understand how to best utilise the growing potential of potatoes.

Workflows of using open data for making informed decisions include the use of the new data and any additional data.

Transferability

This type of participatory setting can apply in a variety of settings such as
- Community-wide stakeholder participation, setting
- Economic, health, social, political, governmental, commercial and
- Scientific, as well as other non-economic-type participatory processes.

Advice on actions needed to enable operationalisation

- Identification of economic participants in the new data and any additional data.
- Participants in the participatory setting by using open data.
- Understanding of the potential benefits of participating in the participatory setting by using open data.

Creating impact with open data: Kenya agriculture and nutrition

Using open data to support evidence-based policy making

Factsheet

Presentation

Creating impact with open data: Kenya agriculture and nutrition

Using open data to support evidence-based policy making

Climate change and food crops (1/2)

Observations: maize under pressure

- Important food crops in Kenya include
 - Maize (grown in 90% of the farms, 25% of the agricultural employment)
 - Potato
 - Bananas, beans, and peas

- Maize is under pressure
 - Accelerating effects of climate change
 - Increasing spread of diseases

- Action: combat diseases (Steps are shown, ensure access to crop protection products)

Climate change and food crops (2/2)

Longer term: adapt to climate change

- Potential for potato
 - Already 2nd largest food crop in Kenya
 - Already important source of income
 - Climate change has positive effects on potato yields in Kenya
 - But: supply-demand gap on desired potato varieties and quality
 - Lack of farmer accessibility to markets
 - Local availability of varieties
 - Price fluctuations due to lack of storage facilities

Participatory mapping & modelling

QUICKScan issue and hotspot identification

Participatory mapping approach

- Facilitated workshop with decision makers, administrators and experts
- Integrating expert knowledge, tacit knowledge and values

Software tool

- To support the exploratory dialogue
- By linking knowledge to available spatial and statistical data

Example QUICKScan workshop

Coffee production in Colombia

- Which coffee areas are, production-wise, most affected by climate variability change?
- What factors determine production levels?

Process (1/3)

Setup

- Two 2-day workshops
 - National scale
 - Local scale

Participants

- Ministry of agriculture
- Local government
- Coffee federation (FNC)
- National and private sector
- SC/SLFDOS (supervision and management, infrastructure, cost, spatial data)
- Extension offices

Open data

- AERI (Agricultural Emission Model and rural energy assessment, raster)
- National population of households - health
- ClimateAdapt - climate variability projections (raster)
- FNC – land use map (raster)
- Hansen – world deforestation map (raster)

Closed data

- FNC & NPSD – Farms locations, size, yields, farmer age and – gender
- FNC – water saving and pollution reduction implementations

Process (2/3)

Issue inventory

- Break out groups
- Inventory of drivers for coffee production (and check against available data)
- Discussion on potential scenarios
- Determine potential measures and their likely impacts

Process (2/3)

Issue inventory

- Break out groups
- Inventory of drivers for coffee production (and check against available data)
- Discussion on potential scenarios
- Determine potential measures and their likely impacts

Results of a group (scenario)

- Drivers: soil climate, topography, farmer age, schooling, input availability, etc.
- Climate scenarios: warmer, more extreme events
Feedback

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Remark</th>
</tr>
</thead>
</table>
| Identification of the problem | - The showcase identifies a real problem (climate change effects on food crops)
- Quantity and quality of food crops and impact of climate change
- Transition to nutritious food available while recognizing changes in the environment/ climate
- Soil depletion
- Attention to climate resilient crop varieties
- Changes in consumer requirements, varieties |
| Right data | - Kenya soil survey datasets (find out about their coverage)
- Look for Soil fertility maps (although done along time ago)
- Look for KEPHIS datasets/national pesticide datasets |
| Business model | - Crops must be profitable
- Cultural aspects influence crop choices
- Dual agricultural economy needs to be put into consideration (large and small scale farmers) |
| Stakeholders | Policies must be in place/ options for development
| | Build consensus among the stakeholders
| | Mapping – climate change (soil, crops)
| | The workshop to build a solution on data needs (stakeholders)
| | Bring together data owners (soils, fertilizer) and Data analysis expertise
| | Work to identify issues and set action plans
| | Choices must be made based on knowledge and incentives |
Annex V - Supporting start-ups in agriculture and nutrition (showcase 3)

Factsheet

Creating impact with open data: Kenya agriculture and nutrition

Supporting start-ups in agriculture and nutrition

Digital technology is gaining attention in providing platforms for youth to engage in farming as a viable business. Through events such as Youth Agripreneurs that identify and support value chain start-up business youth wanting to design software and data solutions in agriculture and related fields.

WORKFLOW
Open data has the potential to be leveraged to catalyze youth engagement as a pathway to gaining a foothold in the agricultural sector. Youth have the potential to bring new and innovative ideas to the agriculture sector. The TwigaTech initiative leverages ICTs for farmer training and information exchange.

THE MARKET CONTEXT
The Government of Kenya has identified the agriculture sector as a key driver for youth employment in the country. ICTs can play a pivotal role in increasing agricultural productivity and creating employment opportunities for youth. The program aims to create an enabling environment that supports youth-led business endeavors in the agriculture sector.

AGRICULTURE & NUTRITION
Kenya is a significant agricultural country, ranking as a leading exporter of horticultural products. The country faces challenges in terms of productivity, access to market, and climate change. The initiative leverages ICTs to address these challenges and create opportunities for youth entrepreneurship.

EXPECTED IMPACTS AND BENEFITS
- Improved access to market information for youth
- Increased access to training and skill development programs
- Enhanced connectivity between farmers and consumers
- Improved access to credit and financial services
- Increased visibility for youth-led agricultural enterprises

WORKFLOW OF THE DATA
1. **Data Collection**
 - Gathering data from various sources
 - Standardizing data formats
 - Integrating data from multiple systems

2. **Data Analysis**
 - Conducting statistical and analytical studies
 - Identifying trends and patterns
 - Reporting findings to stakeholders

3. **Data Visualization**
 - Creating visual representations of data
 - Graphs, charts, and infographics

4. **Data Sharing**
 - Distributing data to relevant stakeholders
 - Ensuring accessibility and usability

TRANSFERABILITY
- The initiative can be replicated in other countries with similar agricultural contexts
- Scalability is a key aspect of the initiative, allowing it to be adapted to different scales

ADVICE ON ACTIONS NEEDED TO ENABLE OPERATIONALISATION
- Building robust data collection and management systems
- Ensuring data security and privacy
- Creating a supportive policy environment for youth entrepreneurship

Presentation

Creating impact with open data:
Supporting start-ups in agriculture and nutrition

Youth Entrepreneurship - ICTs and Open Data

Almost half of the graduates produced yearly from universities in Africa do not get jobs
Average youth unemployment in Africa hovers around 12 percent.

Digital technologies are gaining attention in providing platforms for youth to engage in farming as a viable business.

Open Data increases the business and employment opportunities for the young people and improves the image of agriculture

Open Data stimulates new technology and solutions to boost agriculture and better nutrition.
Data sources

CTA AgriHack Talent Programme

Facilitated by the AGDRIS Project

AgriHack involves a start-up competition, provides business training/boot camp, offers grants, hackathons and facilitates access to investments, additional capacity building and promotional opportunities.

HACKATHON

An event where entrepreneurs, computer programmers and development stakeholders collaborate intensively to develop an ICT application or platform addressing a specific challenge.

Case: FarmDrive, Kenya
First AgriHack winner 2013

Alternative Credit Scoring for Smallholder Farmers

FarmDrive uses mobile phones, alternative data, and machine learning to close the critical data gap that prevents financial institutions from lending to creditworthy smallholder farmers.

SMALLHOLDER FARMER

1. SMS the word FARMDRIVE to 21342 to register
2. Keep records of your expenses, revenues, and yields.
3. Apply for a loan
4. Get approved and receive your loan via M-PESA
5. Repay your loan on time

FarmDrive, Kenya
Alternative Credit Scoring for Smallholder Farmers

FINANCIAL INSTITUTIONS

Increased Profitability
Risk Mitigation
Cost Reduction

Farmers’ data → Credit risk algorithm → credit scores that account for the many factors that affect the repayment capacity of farmers.

- Reduction of costs on the-ground recruitment expenses
- Data-driven loan product development reduce losses
- Scalability of FarmDrive’s model reduces operational costs

Farm Drive’s use of data

- They collect data from farmers – land data, crop data, yield data, demographic data etc.
- Weather and climate data
- Soil data

Data is fed into their algorithm to calculate the credit scores

Young start-ups do not have much funds to spend on datasets – mainly open data
Feedback

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Remark</th>
</tr>
</thead>
</table>
| Identification of the problem | - Interrogate development plans e.g. review the 2017 – 2022 government strategy on agriculture specifically on access to markets and youth engagement in agriculture
- Many farmers (including youth) have challenges finding markets for their produce
- Use ICT to expose (at a cheap cost) what agricultural commodities are produced and available for sale
- Youth lack business opportunities and support hence find agriculture less profitable
- Understand Kenya (80% of the land is dry and livestock farming is predominant, high unemployment, low education)
- Engage stakeholders to find entry points, bring together people with the problems and those with the solutions |
| Right data | Yes the right data is available but:
- Need to prioritise open data (markets)
- Make information available
- Start with the market, who has the problem?
- Enable the farmer get the information wanted |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Business model</td>
<td>· Work with businesses that are already working and have</td>
</tr>
<tr>
<td></td>
<td>succeeded in sustainability</td>
</tr>
<tr>
<td></td>
<td>· Start with people already doing something</td>
</tr>
<tr>
<td>Stakeholders</td>
<td>· All actors in the value chain (input suppliers, researchers,</td>
</tr>
<tr>
<td></td>
<td>enablers (government) and consumers</td>
</tr>
<tr>
<td></td>
<td>· Identify value chains where we could add value (especially</td>
</tr>
<tr>
<td></td>
<td>in the leather industry)</td>
</tr>
</tbody>
</table>
Annex VI - Joint action across the value chain for people, planet and profit (showcase 4)

Factsheet

Creating impact with open data: Kenya agriculture and nutrition

Joint Action across the value chain for people, planet and profit

Smallholder farmers experience crop losses of 30-40% as a result of pests and diseases. This has negatively affected crop yields, household incomes and livelihoods.

Four interventions and learn-through-do on ex-creasino livestock and disease control, resulting in a strong and coordinated response across the entire value chain. The training was delivered at key locations, allowing the majority of farmers to access and benefit from the training.

Expected impacts and benefits

- Agricultural transformation, less risk, higher production, improved access to food
- Farmers’ livelihoods improved, resulting in improved access to resources for production
- Farmers have the knowledge to produce vegetables and sell their products
- Farmers can access credit through the microfinance sector, providing a greater variety of products
- Improved sector services, protecting farmers, minimizing costs for quality management
- Transferability

Advice on actions needed to enable operationalisation

- Strengthen farmer capacity to collect data and ensure sustainability
- Build partnerships to ensure sustainability
- Develop sustainable approaches to the value chain
- Develop partnerships with other organizations

Presentation

Background of the problem

- Smallholder farmers in Sub-Saharan Africa experience 30-40% crop losses as a result of pest and diseases.
- At the same time, annual soil degradation from nutrient mining and erosion is estimated to be equivalent to USD 4 billion worth of fertilizer.
- Weak market linkages and poor transport infrastructure mean that farmers are unable to sell surplus produce resulting in wastage and loss of potential income.
- Smallholder farmers struggle to access the needed inputs in terms of improved seeds, quality fertilizers and crop protection products at the right time, in the right quantity and quality, in reasonable proximity to their farms and at a reasonable price.

AND

- They often do not have the needed cash or credit to pay for the inputs.
As part of the solution

- Farmers need access to timely and accurate information on:
 - how to combat pest and diseases,
 - how to manage their soils in a manner that best suits their conditions, what crop varieties best suit their local soils and climate and are resistant to local pests and diseases,
 - how to manage pest attacks to minimise losses and maximise profit, which crops or varieties sell well locally, or withstand transport to more distant markets and how to access information on inputs.
- Farm input suppliers, agro-dealers and extension advisors on the other hand need information on the right products and recommendations to give to farmers relevant for the local conditions.

So what is needed

- Data needs to be available and accessible to everyone in a usable form to provide free practical solutions to policymakers, input suppliers and farmers.
- The power of using huge amounts of data generated every day and from diverse sources leveraged with parallel developments in information and communication technologies and data science has yet to be fully exploited to enable smallholder farmers access accurate and timely data on weather, plant and soil health as well as market information to plan and achieve the best yield and crop prices.
- In the developing world many farmers use mobile phones as their main communication tool and therefore mobile phones can be used to channel this information once packaged in a usable format.

How do we link supply and demand for open data to address the challenges

- The proposed prototype aims to combine localised open spatial data on:
 - crop suitability,
 - soil fertility, climate,
 - pests and diseases and
 - market information on selected crop - maize.
- The tool will process these spatial layers using geo-statistical techniques and
- present the information on an interface/dashboard that enables the user source content for decision making.

Expected impacts / Benefits

- Enable farmers get localized crop pest, disease and soil management information
- Equip extension officers and agro-dealers with information to provide farmers with suitable input for their local context
- Ensure that the right pest, disease and soil management products and services are available locally
- Provide information that is responsive to local pest and diseases and soil health problems in a usable format
- Bridge information gaps by identify geographical similar areas in terms of agro-ecological zones so that farmers and extension service providers in areas that are similar, even though far apart, can share and learn from each other on best practices, or take advantage of available management practices that have worked in other similar regions.

Data

- Maize crop suitability map
 - Maize crop cover - AFIS (http://afisasolis.net/)

- Soil data
 - Soilprints.org
 - http://data.teric.org/openfilter/srv/enp/catalog_search?metadata/464629a2-6351-4f9c-98d6-4699ae9f96e9
 - organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments, and available water capacity.

Expected impacts / Benefits

Crop pest and diseases

- The PlantWise Knowledge Bank - a global resource to help combat plant health problems. The database allows user to select their location from a menu to view country- or region-specific plant health information.

Climate/weather data

- http://www.meteo.go.ke
- weather.com
<table>
<thead>
<tr>
<th>Aspect</th>
<th>Remark</th>
</tr>
</thead>
</table>
| Identification of the problem | · Information gaps farmers face need data from different sources (joint action)
 · Data from different sources is presented in different formats and might be confusing |
| Business model | · How will the tool sustainable/ How will the tool pay for itself
 · Can we involve the private sector and provide the information as a paid service
 · Are farmers willing to pay for the information provided by the tool, the tool needs to provide detailed information for farmers to be willing to pay for the information
 · Find out what existing tools provide to farmers |
| Right data | · Include soil maps developed by KALRO
 · Integrate affordable soil test kits in the innovation
 · Planwise online data management platform might not have data on very current plant problems and very complex problems because there is a validation process that has to be done before the data is commissioned |
| Identification of the problem | · Information gaps farmers face need data from different sources (joint action)
 · Data from different sources is presented in different formats and might be confusing |
Annex VII - Prototype

A prototype based on showcase 4 entitled ‘Joint action across the value chain for people, planet and profit’ was presented to the workshop participants and individual feedback sought. The prototype represents a practical implementation of the showcase. Based on the plenary feedback, the individual responses were grouped into 3 critical topics concerning the prototype. The 3 topics/subjects which included applicability of the prototype, business model in the prototype, use of local data and stakeholder involvement were further discussed in breakout groups and solutions to address the topics identified. The feedback from the 3 groups is outlined below.

Presentation

Recap. of showcase objective
Crop losses for small holder farmers - maize

- Pest and diseases -> 30-40% crop losses
- Struggling to access crop protection products
- Weak market linkages -> unable to sell surplus produce
- Weak market linkages -> don't know what crop is in demand
- Unfitting crop quality as result of management, harvesting method and packaging

Maize value / supply chain

Prototype
How we envisage its usage

Users

User applications

Data services

Open API and services

Prototype SaaS and services

Open API and services
Suggestions

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business model</td>
<td>· Explore a simple Vs mixed Vs freemium model - Simple : farmers pays or donor pays or agribusiness pays</td>
</tr>
<tr>
<td></td>
<td>· We must learn from from sustainability challenges experienced by other services e.g icow example</td>
</tr>
<tr>
<td></td>
<td>· Service model should not be too complex</td>
</tr>
<tr>
<td></td>
<td>· Payment options to explore (payment for application download, commoditize data, shop window model, agribusiness incentives)</td>
</tr>
<tr>
<td></td>
<td>· Learn from applications developed in other sectors e.g (PharmNet)</td>
</tr>
<tr>
<td></td>
<td>· Work closely with agribusinesses and innovation hubs (there are about 8,000 stockists/ agrodealers)</td>
</tr>
<tr>
<td></td>
<td>· Develop a certification scheme for ago-dealers</td>
</tr>
<tr>
<td></td>
<td>· Accredit agribusinesses/ agro-dealers with certificates approved by the agrochemical association of kenya or KEPHIS</td>
</tr>
<tr>
<td></td>
<td>· Agencies like KALRO, CABI and CANIS can provide quality assurance</td>
</tr>
<tr>
<td></td>
<td>· The platform profiles only certified agribusinesses or gives more profile to certified</td>
</tr>
<tr>
<td></td>
<td>· Application purchased with value added service (e.g. Insurance, access to plant doctors)</td>
</tr>
<tr>
<td>Applicability of the prototype</td>
<td>· Should provide information to all value chain actors (input suppliers, policy enablers/ supporters, producers and consumers)</td>
</tr>
<tr>
<td>Use of local data</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Consumers – subsidies, price regulation, quality control</td>
<td></td>
</tr>
<tr>
<td>Traders/ distributors – infrastructure, issues to address post harvest handling, value addition and processing, market research and access to finance/ credit</td>
<td></td>
</tr>
<tr>
<td>Policy enablers – sensitization/ awareness, advocacy</td>
<td></td>
</tr>
<tr>
<td>Policy supporters – Data infrastructure, adoptive research</td>
<td></td>
</tr>
<tr>
<td>What to grow – location data (open street maps, RCMRD, Agro-ecological Zones), soil maps (AFSIS, KALRO, Ministry of pants), precipitation data (GEOclim data, Kenya meteorological data, TAHMO)</td>
<td></td>
</tr>
<tr>
<td>Crop management – crop advice (KALRO), crop calendar (Ministry of agriculture, county government extension, crop mask), Pest and disease (Pesticide and Products Control Board –PPCB): online book updated annually</td>
<td></td>
</tr>
<tr>
<td>CROPNUT – soil data especially fertility data</td>
<td></td>
</tr>
<tr>
<td>LandPKS – Data on suitability of crops</td>
<td></td>
</tr>
<tr>
<td>Selling crops – data from farmer organizations, AgriProFocus (agribusiness, support development projects, supply and market information, trade data)</td>
<td></td>
</tr>
<tr>
<td>Market prices – Ministry of agriculture (gives data daily to mass media), Betta grains</td>
<td></td>
</tr>
<tr>
<td>Trade data (AgriProFocus, National Potato Council, different agencies (Tea, coffee etc., cooperatives (e.g. Milk cooperatives), KEPHIS (required seed)</td>
<td></td>
</tr>
</tbody>
</table>
Annex VIII - Inventory of lessons learnt

<table>
<thead>
<tr>
<th>Organisation</th>
<th>The way forward / what did you learn</th>
</tr>
</thead>
</table>
| KEPHIS | Safe trade facilitation; reduced interception for effective market access and importation of low risk materials (protection of Kenya's agriculture)
How:
 ● Online (open data) access to pest reports/distribution in Kenya
 ● Reduced budget costs on surveillances
 ● Effective pest risk analysis
 Support farmers in pest identification (laboratory), improve on pest reporting; reduce cost on diagnosis
 An online app for facilitating pest diagnosis and management (Expert sharing portal)
 Training farmers/farmer advisory on pest disease diagnosis and management:
 ● Lab tests
 ● Lab results
 ● Recommendations given (Can be online advisory or face to face consultancy)
 Gap: Deficit in pest and disease management. |
| CABI | Learned more about options for development of services that can make use of Plantwise data. Want to work with Wageningen + CABI ARC to move to develop a solid proposal.
 Write up a business case for the agribusiness certification + platform. Project and pitch back to funders of this workshop in Government of Netherlands. |
| Digital Hands Africa | I have learnt about the startup competition from CTA. Working with young people and the greatest challenge our organization has is mentorship. I believe I could elaborate with CTA for mentorship to help young people venture into agriculture.
 I have learnt the impact of open data on agriculture
 I commit to promote youth involvement in agriculture using open data |
| YIELDER | To further develop the case of open data for farmers we seek to partner with:
 The student extension service (partnership)
 PlantWise/CABI; CTA agritech and mentorship; WeNR as partner on projects/proposals; Ministry of water for learning/partner pilot; KALRO as information partner |
| KALRO |
 ● I have learnt that the effective application of open data in agricultural development requires a collaboration effort to achieve the desired outcomes.
 ● KALRO can collaborate with the public and private partnerships that include NARES.universities, NGO’s, private sector, CGIAR and international Agricultural Research Centers in Kenya in agriculture and nutrition, open data sharing and dissemination for improving agricultural productivity
 ● Promotion of utilization of research knowledge by the shareholders. |
- Promote the piloting of open data in commercialization of agriculture value chains.
- Work with partners to responsibly open up data
- Investing in capacity building and sharing data to support farming communities
- Improve investment to support youth in agriculture as well as data initiatives.

Upper Tana Natural Resources Management Project

- Project objective of: Food security and incomes for rural communities
- Joint Activity: Development of appropriate application that can support data gathering, sharing and learning
 - Lesson: The importance of Open Data in KM & Learning for impacts in agriculture & nutrition.
 - Action: Work with students who will support in data gathering and development of possible farmer friendly applications for data use, sharing, decision making.
 - Learnt many uses of open data (e.g. crop management, pest, disease management.)

RCMRD

Participants have experiences moving forward which can be a good engagement point for learning the best experiences.

- RCMRD has an open data portal. We look forward to having more collaboration with stakeholder from this workshop e.g. CABI who have open data.
- Workshop will be well organized.
- Share our experiences as a center
- Copy model of engagement from meeting (facilitation)
- Priority actors as KALRO
- Facilitate data collection and compilation into open data sets for dissemination to the relevant stakeholders in the agriculture and nutrition sector in Kenya

National Potato Council of Kenya

- Use open data as a business model for National Potato Council of Kenya.
- Wish NPCK to partner with marketers.

VACID Africa

VACID could benefit from collaboration with CABI in farmer linkages.

1. Network with others on the topic/actions of open data possibilities.

CABI Kenya

- Geo conferencing clinics-Working with RCMRD
- Sharing crop diseases alerts-working with e.g. water watch cooperative
- Link plant line to our data4Ag programme and our goal of employment generation.
- Data exists, but who can deliver the data is not clear.
- Projects that work on Open Data seem not to know each other increasing risks to duplicate efforts.
- A partnership of KALRO, WeNR, CABI, and CANIS would help create tools that will deliver information to smallholder farmers,
- Currently most of the data/info sits in databases
- Collaboration in open data
- Joint workshops (frequent) in order to share developments after this workshop e.g. RCMRD
- help a breakfast meeting on data sharing in April 2017
- User groups in open data
- Data sharing agreements
- Capacity building-RCMRD can collaborate in terms of resource persons etc.
- Joint projects
- Funding opportunities e.g. GCF

- Continue to seek a sustainable mechanism for plant clinics because they give/generate ‘unique data’ in Kenya not being gathered by any other organization to date & which can be used to improve agriculture in Kenya.
- Investigate other initiatives on youth in Agritec/startups, m-cubators, hackathons, etc. in Kenya.
- What can I learn? Who can I collaborate with?
- Mapping of actors that can provide local data with DevSAT ® (Pending funding)

<table>
<thead>
<tr>
<th>CANIS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Many efforts are already ongoing which would benefit from the Student Led Agricultural Extension</td>
<td></td>
</tr>
<tr>
<td>- KALRO has the infrastructure to support the data driven dimension of the CANIS aTex thinking</td>
<td></td>
</tr>
<tr>
<td>- CANIS learned that many data aligned initiatives are being undertaken in silos by research and implementation partners</td>
<td></td>
</tr>
<tr>
<td>- CANIS undertakes to seek out each partner with a desire to work with others and promote collaboration between them through CANIS mandate of networking and information sharing</td>
<td></td>
</tr>
<tr>
<td>- CANIS will assess the value chain orientation of the programmes implemented by partners and align them through a food systems aligned value chain implementation using open data thinking</td>
<td></td>
</tr>
</tbody>
</table>
Annex IX - Draft business model for linking certified agribusinesses to farmers

Key challenges to address

- Farmers receive much of their farm input practice advice from agridealers
- Good agricultural practice from CABI, KALRO, etc is not reaching enough farmers because they are not currently using agridealers fully to promote it.
- How can farmers trust that they are being sold the right product / service?
- Any viable farmer advice service must learn from sustainability challenges faced by farmer-pays services in the mobile sector including well thought through examples such as iCow.

The solution

- We seek to mobilize agridealers to responsibly bring timely inputs (seeds, fertilizers, pest control products) to farmers in need of fertilizer or pest control in Kenya
- Combines a certification of agridealers with an ICT solution (principally mobile) to link farmers to certified agribusiness
- Seeks to counter use of fake agrochemicals
- Certification model developed with the Agrochemical Association of Kenya (AAK) and involves training component to achieve certification.
- Platform profiles only certified business or (alternatively gives enhanced prominence to those businesses)
- Agridealer pays because…
 - Certification seen as an added stamp of quality
 - Route to farmers
 - Intelligence on demand
- UX considerations considered could be packaged alongside other value-added services which might help sustainability (some free and others paid for) such as
 - Crop insurance
 - Find a Plant Doctor
 - Market price
 - Weather

Conditions for success

- Validated by user and market needs assessments
- Effective engagement with a network of up to 8000 agridealer stockists in Kenya
- ICT service developed with innovation hub in Kenya
- Ministry buy-in. Note importance of this scheme in helping the task of traceability.
- Donor or other investment to take concept to market-viable model

Is anyone else doing this?

- Not that we know of - at least not in Kenya
"PharmaNet" in another sector has some similarities
Akorion in Uganda also cited as an interface between farmers and private sector decision support

Fit of the Current Prototype

Core service proposition should not be too complex. Prototype as currently posited is too general and UX too complex and needs revising for more focussed addressing of user needs.