
 

Experimental validation of geosmin uptake in rainbow trout, Oncorhynchus 
mykiss (Waldbaum) suggests biotransformation 

Schram, E., Schrama, J. W., van Kooten, T., Kwadijk, C. J. A. F., Kampen, 
H., Kampen, H., ... Murk, A. J. 

 

This article is made publically available in the institutional repository of Wageningen 
University and Research, under article 25fa of the Dutch Copyright Act, also known 

as the Amendment Taverne. 

Article 25fa states that the author of a short scientific work funded either wholly or 
partially by Dutch public funds is entitled to make that work publicly available for no 
consideration following a reasonable period of time after the work was first 
published, provided that clear reference is made to the source of the first publication 
of the work. 

For questions regarding the public availability of this article, please contact 
openscience.library@wur.nl. 

Please cite this publication as follows: 

Schram, E., Schrama, J. W., van Kooten, T., Kwadijk, C. J. A. F., Kampen, H., 
Kampen, H., ... Murk, A. J. (2018). Experimental validation of geosmin uptake in 
rainbow trout, Oncorhynchus mykiss (Waldbaum) suggests biotransformation. 
Aquaculture Research, 49(2), 668-675. https://doi.org/10.1111/are.13496 

mailto:openscience.library@wur.nl


OR I G I N A L A R T I C L E

Experimental validation of geosmin uptake in rainbow trout,
Oncorhynchus mykiss (Waldbaum) suggests biotransformation

Edward Schram1 | Johan W Schrama2 | Tobias van Kooten1 | Christiaan J A

F Kwadijk1 | Harm Kampen1,2 | Jan W van de Heul1 | Johan A J Verreth2 | Albertinka

J Murk3

1Wageningen Marine Research,

Wageningen University & Research,

IJmuiden, The Netherlands

2Aquaculture and Fisheries Group,

Wageningen University & Research,

Wageningen, The Netherlands

3Marine Animal Ecology Group,

Wageningen University & Research,

Wageningen, The Netherlands

Correspondence

Edward Schram, Wageningen Marine

Research, Wageningen University &

Research, IJmuiden, The Netherlands.

Email: Edward.schram@wur.nl

Funding information

European Commission; European Regional

Development Fund (ERDF) – Interreg IV A

Flanders – The Netherlands: AquaVlan

Abstract

The bioconcentration of waterborne geosmin in rainbow trout, Oncorhynchus mykiss

(Waldbaum) was assessed. Fifty rainbow trout with a mean (SD) weight of 226.6

(29.0) g and lipid content of 6.2 (0.6) % (w/w) were exposed to geosmin in static

water for 0, 2, 4, 6, 8, 12, 24, 36, 48 and 120 hr, with one tank containing five fish

for each exposure period. Geosmin concentrations were measured in fish tissue and

water samples collected over time. With time the geosmin concentration in the fish

increased and decreased in the water. However, the total absolute amount of geos-

min in the system declined over time which could be explained by induction of

biotransformation. This is in accordance with the decreasing lipid normalized

geosmin levels in the liver compared with the liver-free carcass. Geosmin distribu-

tion within rainbow trout clearly is not exclusively governed by the lipid content of

tissues. In vivo geosmin bioconcentration in rainbow trout is slower and the body

burden reached is lower than the generally accepted theoretical model predicts.

K E YWORD S

bioconcentration, biotransformation, geosmin, off-flavour, rainbow trout, water-lipid

partitioning

1 | INTRODUCTION

Off-flavour is the presence of undesired sensory properties in food

items. Most common in aquaculture products are earthy-musty off-

flavours caused by the presence of the lipophilic chemicals geosmin

(4S,4aS,8aR)-4,8a-Dimethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-4a-

ol) and 2-methylisoborneol (1,2,7,7-tetramethylbicyclo[2.2.1]heptan-

2-ol, MIB) in fish tissues (Howgate, 2004). Geosmin and MIB are

secondary metabolites produced by a wide range of microbiota com-

mon to land-based aquaculture systems. Actinomycetes and

cyanobacteria are considered the most important geosmin and MIB

producers in aquaculture systems (reviewed by Krishnani, Ravichan-

dran & Ayyappa, 2008). Off-flavour in farmed fish is one of the most

significant economic problems for land-based aquaculture (Robin,

Cravedi, Hillenweck, Deshayes & Vallod, 2006; Vallod, Cravedi, Hil-

lenweck & Robin, 2007).

Fish rapidly bioconcentrate waterborne lipophilic chemicals in

their tissues (reviewed by Streit, 1998). Geosmin and MIB are

assumed to be predominantly exchanged between water and fish by

passive diffusion via the gills (Howgate, 2004) given their respective

octanol/water partition coefficients of 3.57 and 3.31 (Clark, Gobas &

Mackay, 1990). Diffusion of the chemicals is driven by the difference

in chemical potential or fugacity between water and lipid fractions in

the system. Equilibrium is reached when the fugacities in water and

lipid fractions are equal (Howgate, 2004). Distribution of lipophilic

chemicals over different tissues within an organism is influenced by

their lipid content and perfusion (Nichols et al., 1990). Ultimately

lipophilic chemicals reach equilibrium in the lipid fraction of different
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tissues in an organism (Bertelsen et al., 1998; Tietge et al., 1998;

Gobas et al., 1999; all in Arnot & Gobas, 2006) and the lipid normal-

ized chemical concentrations are then equal among tissues.

Howgate (2004) presented a one-compartment model to

describe the time-kinetics of geosmin and MIB bioconcentration in

fish, including theoretical uptake and excretion rate constants for

rainbow trout. In this model, uptake and depuration are the two

dominant processes in geosmin and MIB bioconcentration. Biotrans-

formation, growth dilution and faecal egestion are assumed to be

insignificant and therefore not included in the model. In Howgate’s

(2004) model, the assumptions and theoretical rate constants have

not been validated experimentally.

The first goal of the present study was to assess the accuracy of

model-predicted geosmin bioconcentration in rainbow trout based

on Howgate’s (2004) theoretical rate constants. We hypothesized

that experimental geosmin bioconcentration equals model-predicted

bioconcentration. The second goal was to verify the assumption that

uptake and depuration are the two dominant processes in geosmin

bioconcentration. We predicted the uptake by the fish of geosmin

from the water to follow first order kinetics. The geosmin removal

from the water then equals the accumulation of geosmin in the fish.

The third goal was to verify the assumption that within the fish

geosmin is distributed according to the lipid content of tissues. We

hypothesized that lipid-normalized geosmin concentrations in the

whole fish and the liver are equal.

To test these hypotheses we exposed rainbow trout, Oncorhynchus

mykiss (Waldbaum) to waterborne geosmin for 0 up to 120 hr in air-

tight tanks with static water and monitored geosmin levels over time

in water, whole fish, liver and head space air of the tanks.

2 | MATERIALS AND METHODS

2.1 | Bioconcentration experiment

The bioconcentration experiment was performed in 180 L polyester

tanks with static water. The design of the geosmin exposure tanks

aimed to minimize and quantify any geosmin losses via volatilization

and adsorption to the tank and its auxiliary equipment (system

losses). To this end each tank was covered by a 6 mm thick glass

cover sheet and sealed air-tight to the tank by Duct tape. The glass

covers were equipped with a circular hatch (diameter 150 mm) to

allow for introduction of fish. The hatches were covered by glass

sheets (200 9 200 mm) during the experiment.

Head space was minimized by maximum filling of the tanks with

water. Teflon tubing was used where contact with tank water was

inevitable (aeration, water sampling). Tubing (in and outflowing air,

water sampling) entered the tank via air-tight transits. Each tank was

equipped with an air-pump set at an air inflow of 300 ml/hr for oxy-

gen supply. Air was extracted from each tank by a central vacuum

pump at a flow rate slightly above that of the incoming air to create

an under-pressured head space in the tank. For each tank extracted

air was washed over a glass gas washing bottle filled with 1 L

methanol to collect any volatilized geosmin.

One day before the start of the bioconcentration experiment, a

single batch of 1,900 L local tap water was spiked with 8,143 ll of a

70 lg/ml geosmin (Sigma Aldrich) stock solution in acetone and

mixed well, resulting in a nominal geosmin concentration of 308 ng/

L. Four hours before the start of the experiment, nine exposure

tanks were filled with 170 L of the geosmin solution. According to

preliminary model predictions (see below) an initial geosmin level in

the water above 300 ng/L should result in geosmin levels in water

and fish above analytical detection limits at all sampling points. Fifty

rainbow trout with a mean (SD) weight of 226.6 (29.0) g and a mean

(SD) lipid content of 6.2 (0.6) % (w/w) were randomly split into ten

groups of five fish. One group served as t = 0 fish sample. The other

nine groups were randomly divided over nine exposure tanks at

t = 0. Fish were exposed to geosmin for ca. 2, 4, 6, 8, 12, 24, 36, 48

and 120 hr with one tank for each exposure time prior to sampling.

A control treatment without fish was not included in the experi-

ment as the stability of the geosmin concentration in the water of

the exposure tanks had already been established in a preliminary sta-

bility study. The stability study was conducted in accordance with

the OECD guideline for bioconcentration studies in fish (OECD,

2012), using two of the 9 identical exposure tanks filled with 170 L

water spiked with geosmin. Tank water was aerated as described for

the bioconcentration experiment. Water samples for geosmin analy-

sis were collected from both tanks at t = 0 and t = 120 hr. Geosmin

concentrations were 160 and 155 ng/L and t = 0 and 160 and

150 ng/L at t = 120 hr, which demonstrates that 97%–100% of the

geosmin concentration measured at t = 0 remains in the exposure

tanks during 120 hr.

Water samples for geosmin analysis (250 ml in glass containers)

were collected from each geosmin exposure tank at t = 0 and just

before fish sampling and stored at 4°C. Upon fish sampling approxi-

mately 99% of the water volume was quickly drained from the expo-

sure tank. Fish were euthanized by adding 3 ml/L phenoxy ethanol

to the remaining tank water and then removed from the tank. Livers

were dissected, pooled per tank and stored in glass containers at

�80°C. Liver-free carcasses (the entire fish except for the liver) were

pooled per tank, homogenized using a refrigerated mincer (DRC C10,

PSV Group, Genainville, France) and stored at �80°C in glass con-

tainers. Total biomass per tank was measured at t = 0; individual fish

weight was measured upon fish sampling (Mettler PM40).

Dissolved oxygen concentration, and water temperature (Hach

Lange Multimeter) were measured in each tank at t = 0 and upon

fish sampling. Overall mean (SD) dissolved oxygen concentration was

5.5 (0.9) mg/L. Overall mean (SD) water temperature was 18.8

(0.3)°C.

Gas washing bottles were sampled upon fish sampling. Immedi-

ately after each fish sampling, the tank, air-stone, glass cover sheet

and tubing were rinsed with 50 ml methanol to wash off any

adsorbed geosmin. All methanol samples were stored in glass bottles

at 4°C prior to geosmin concentration measurement.

The treatment of the fish was in accordance with Dutch law con-

cerning animal welfare, as approved by the ethical committee for

animal experimentation of Wageningen UR Livestock Research.
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2.2 | Geosmin and lipid analysis

Liver-free carcass samples and liver samples were thawed overnight

at 4°C. From each sample a subsample of approximately 1 g was

taken. To each subsample 100 ll of internal standard solution (D5-

geosmin in water, 1 lg/ml, Sigma Aldrich) was added. Samples were

extracted by accelerated solvent extraction (ASE, Dionex, Amster-

dam, The Netherlands) at 40°C using a 15:85 (v/v) pentane-dichloro-

methane mixture. After extraction, 1 ml of hexane was added to the

extract. Extracts were concentrated to 1 ml by gently evaporating

the pentane-dichloromethane mixture (Rotavap, Heidolph) and

stored in 2 ml amber coloured glass vials at �20°C until geosmin

concentration measurement.

To each water sample (250 ml) 100 ll of internal standard solution

(D5-geosmin in water, 1 lg/ml) was added. Methanol samples origi-

nating from the gas washing bottles and the rinsing of equipment were

diluted approximately 20 times in demineralized water and subse-

quently treated the same as the water samples. Water samples were

extracted via an extraction cartridge (Sep-Pak� Vac 6 cc (1 g) Certi-

fied tC18) which were then eluted with 5 ml diethyl ether. Water was

removed from the collected diethyl ether by addition of dried sodium

sulphate. Diethyl ether samples were then separated from the sodium

sulphate by manually transferring the liquid to another glass tube. The

sodium sulphate was washed three times with 5 ml diethyl ether to

ensure full transfer of geosmin. The extracts were concentrated to

1 ml under a gentle nitrogen gas flow and stored in an amber coloured

glass vial at �20°C until geosmin measurement.

Geosmin concentrations were measured on a Shimadzu GCMS2010

(GC) coupled to a GCMS-QP2010 Ultra (MS) detector (Shimadzu, ‘s

Hertogenbosch, The Netherlands) as described in detail in Schram,

Schrama, Kusters, Kwadijk and Palstra (2016). The method for geosmin

concentration measurement was validated in low fat (6% w/w) fish sam-

ples according to NEN 7,777 (Anonymous, 2011) and established a limit

of detection of 6.1 ng/g, a recovery of 93.5%–99.2% and an extended

uncertainty (U) of 27.8%. The 95% confidence interval of measured

geosmin concentration equals the measured value � U/2.

Lipid content of the liver-free carcass samples and liver samples

was determined using the gravimetric method according to Bligh and

Dyer (1959) modified by De Boer (1988).

2.3 | Calculations and statistics

The total amounts of geosmin in the system compartments (liver-

free carcass, liver, water and gas washing bottles) were calculated

for each sampling point by multiplying the measured geosmin con-

centrations with the respective masses or volumes.

Bioconcentration can be described mathematically by an organ-

ism-water two compartment model:

dCB

dt
¼ k1CWD � ðk2 þ kE þ kM þ kGÞ CB (1)

where CB is the chemical concentration in the fish (g/kg), CWD the

chemical concentration in the water (g/L), k1, k2, kE, kM and kG the

rate constants (days�1) for the uptake from the water k1, excretion

to the water k2, faecal egestion kE, metabolic biotransformation kM

and growth dilution kG. The sum of k2, kE, kM and kG represents the

total elimination or depuration rate constant kT (Arnot & Gobas,

2006). As the fish in our study were starved prior to the experiment

and not fed during the experiment, we excluded the rate constants

for faecal egestion and growth dilution from the model. In contrast

to Howgate (2004) we do not rule out biotransformation of geosmin

and thus maintain the metabolic biotransformation rate constant kM

in the model. Equation 1 then simplifies to:

dCB

dt
¼ k1CWD � k2CB � kMCB (2)

In experimental settings the chemical concentration of lipophilic

compounds in the water declines over time due to the uptake of

chemicals by organisms (Arnot & Gobas, 2006). Since our experimen-

tal system had static water and a high biomass to water volume

ratio, we predicted a declining geosmin concentration in the water

over time due to uptake in the fish. To account for a decline of the

geosmin concentration in the water in the current experiment, we

extended the bioconcentration model by allowing CWD to vary over

time, which is described by:

dCWD

dt
¼ zk2CB � zk1CWD (3)

where the first term describes the increase in concentration as a result

of depuration from fish and the second term is the change rate of the

concentration in the water as a result of uptake by fish. The parameter

z is the ratio of fish biomass to water volume, which is used to account

for the different masses. We assume that fish and water have an iden-

tical density of one. We solved the system formed by Equations (2)

and (3) analytically using Mathematica 9.0 (Wolfram Research, Cham-

paign, Illinois, USA) to yield equations for CB(t) and CWD(t):

CB tð Þ ¼ 1
2D

e�
1
2 t k2þ kM þ k1z þ Dð Þ�k2 CB0 þ kMCB0 � 2k1CWD0

� k2CB0e
tD � kMCB0e

tD þ 2k1CWD0e
tD � k1CB0z

þk1CB0e
tDzþ CB0Dþ CB0e

tDDÞ
(4)

CWDðtÞ ¼ 1
2D

e�
1
2t ðk2 þ kM þ k1z þ DÞ�� k2CWD0 � kMCWD0

þ k2CWD0e
tD þ kMCWD0e

tD � 2k2CB0zþ k1CWD0z

þ 2k2CB0e
tDz� k1CWD0e

tDzþ CWD0Dþ CWD0e
tDD

�
(5)

where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4 k1 kMzþ k2 þ kM þ k1 zð Þ2

q
, CB0 is the chemical

concentration in the fish (g/kg) at t = 0, CWD0 the chemical concen-

tration in the water (g/L) at t = 0 and t is time (days).

Experimental rate constants for uptake (k1), depuration (k2) and

biotransformation (kM) were estimated by fitting the equations for

CB(t) and CWD(t), respectively, to the observed geosmin concentra-

tions in the fish and the water by non-linear regression analysis. The

liver-free carcass samples were used to represent the geosmin con-

centration in the intact fish CB, which is appropriate given the mini-

mal contribution of the liver (~1.5%) to the total mass and geosmin
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content of the intact fish. Theoretical uptake (k1) and depuration (k2)

rate constants representative for the experimental fish were calcu-

lated according to Howgate (2004), taking into account mean fish

body weight, fish lipid content and water temperature in the experi-

ment. As Howgate (2004) does not consider geosmin biotransforma-

tion, the theoretical metabolic biotransformation rate constant kM

was set at zero.

The equations for CB(t) and CWD(t) were used to predict the

development over time of the geosmin concentrations in fish and

water, using the experimentally determined (experiment based pre-

diction) and theoretical (theory based prediction) rate constants. For

hypothesis-testing the 95% confidence intervals of the experimental

estimates for the rate constants were compared. Rate constants

were considered significantly different at p < .05 when 95% confi-

dence intervals showed no overlap.

Geosmin concentrations in liver-free carcass samples and liver

samples were normalized for lipid content by dividing the measured

geosmin concentration by its lipid content. The geosmin concentra-

tions in the lipid fractions of the liver-free carcass and the liver were

predicted to increase with exposure time (Howgate, 2004; OECD,

2012). The measured geosmin concentrations were related to natural

logarithm transformed exposure times by linear regression analysis.

We hypothesized that geosmin is distributed over the liver-free car-

cass and the liver according to their lipid contents and reaches equi-

librium in the lipid fractions, in which case the ratio between the

lipid normalized geosmin content of the liver and the liver-free car-

cass R equals 1. To assess the development of this ratio towards 1

with increasing exposure time, the lipid-normalized liver:liver-free

carcass ratio was related to exposure time t using Equation (6).

R ¼ R0 � e �k tð Þ þ A (6)

where R0 equals the ratio between the lipid normalized geosmin

content of the liver at t = 0, k a term for the change in the ration

over time and A the asymptote. The model parameters were esti-

mated by non-linear regression analysis.

All statistical procedures were performed in SAS 9.1.

3 | RESULTS

3.1 | Geosmin in water and fish

Geosmin concentrations, volumes and masses of system compo-

nents, and the total amounts of geosmin in the various system com-

ponents are presented per exposure time in Table 1. The total

amount of geosmin in the water declined over time while in the fish

the total amount of geosmin increased (Table 1). The total amount

of geosmin in the system declined over time and the loss of geosmin

from the system exceeded geosmin accumulated in the fish

(Table 1). During the first 12 hr of the experiment no geosmin was

detected in the gas washing bottles, and this increased from <0.1 at

t = 24 hr to 860 ng at t = 120 hr. In total less than 4% of the total

amount of geosmin in water and fish together was found in the gas

washing bottles. No geosmin was detected in the methanol used to T
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rinse the exposure tanks and auxiliary equipment upon termination

of the geosmin exposure. Geosmin losses due to evaporation and

adsorption to rinse the exposure tanks and auxiliary equipment were

therefore almost negligible.

3.2 | Theoretical versus experimental geosmin
bioconcentration

Exposure of rainbow trout to waterborne geosmin resulted in an

increase in the geosmin concentration in the fish (Figure 1a) and a

steady decline of the geosmin concentration in the water (Figure 1b).

The equations for CB(t) and CWD(t) provided significant fits to, respec-

tively, the observed geosmin concentrations in the liver-free carcass

and to the observed geosmin concentrations in the water. The esti-

mates for the uptake, excretion and biotransformation rate constants

all show large 95% confidence intervals (Table 2). The theoretical

rate constant for geosmin excretion by rainbow trout does not differ

from the two experiment-based estimates. The theoretical uptake

rate constant for geosmin by rainbow trout is higher than the uptake

rate constant estimated from the observed geosmin uptake by the

liver-free carcass but lower than the uptake rate constant estimated

from the observed geosmin decline in the water (Table 2). The theo-

retical predictions consequently show a faster geosmin uptake in the

fish (Figure 1a) and a slower decline of the geosmin concentration in

the water (Figure 1b). In the theoretical prediction the biotransfor-

mation rate constant (kM) was set at zero and geosmin levels in fish

and water reach steady-states. For both experiment based predic-

tions kM was estimated to be larger than zero. Consequently the

model predicts constant geosmin removal from the system and the

concentrations in fish and water do not reach a steady-state. Instead

the geosmin concentration in the fish first peak and then start to

decline (Figure 1a). The geosmin concentration in the water contin-

ues to decline at the point where the geosmin concentration in the

theoretical prediction stabilizes (Figure 1b).

3.3 | Geosmin uptake: liver-free carcass versus liver

Geosmin exposure of rainbow trout resulted in a significant

increase over time of the geosmin concentration in the lipid frac-

tion of the liver-free carcass, while the highest geosmin concentra-

tion in the lipid fraction of the liver was reached already at the

first sampling point (2 hr) and declined thereafter (Figure 2a). The

ratio between the lipid-normalized geosmin concentration in the

liver and the liver-free carcass initially declined and then stabilized

after ca. 20 hr at approximately 0.5 (Figure 2b), showing that the

geosmin concentration was consistently lower in the liver than in

the liver-free carcass.

4 | DISCUSSION

Based on the generally accepted model for geosmin bioconcentra-

tion in fish (Howgate, 2004), the predicted uptake of geosmin by

rainbow trout exposed to waterborne geosmin will result in a decline

of the geosmin concentration in the water and an increase in the

geosmin concentration in the fish. We indeed observed an increase

in the geosmin concentration in the liver-free carcass of rainbow

trout, which coincided with a decline of the geosmin concentration

in the water. These findings are in accordance with the general con-

sensus on the uptake by fish of waterborne lipophilic chemicals in

general (Nichols et al., 2007) and geosmin in particular (Howgate,

2004) and were previously reported by Robertson, Hammond, Jaun-

cey, Beveridge and Lawton (2006).
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F IGURE 1 Observed and predicted geosmin bioconcentration in
rainbow trout (a) and the concurrent decline of the geosmin
concentration in the water (b). The predictions are based on the
equations for CB(t) (a) and CWD(t) (b). The theoretical predictions are
based on theoretical uptake (k1) and excretion (k2) rate constants
according to Howgate (2004), adapted to the mean fish body
weight, fish lipid content and water temperature in the experiment.
The experiment-based predictions are based on the experimental
uptake, excretion and biotransformation rate constants estimated by
fitting the equation for CB(t) to the observed geosmin concentrations
in the liver free carcass (a) and the equation for CWD(t) to the
observed geosmin concentrations in the water (b). Both are
significant fits, respectively to the observed geosmin concentrations
in the liver-free carcass and water (non-linear regression analysis,
p < .0001)

672 | SCHRAM ET AL.



We exposed rainbow trout to geosmin in closed systems with sta-

tic water of limited volume (high biomass:water ratio). During expo-

sure in static water, the uptake of the chemical by the fish is expected

to cause a decline in the water exposure concentration, especially

when both the biomass:water volume ratio and the affinity of the

chemical for the fish are high. Advantage of exposure in static water is

that it requires far less of the target chemical than exposure in flow

through systems (e.g. according to the OECD 305 test guideline). The

uptake and depuration rate constants, however, are intrinsic proper-

ties of the organism and therefore independent from the exposure

system. A static system thus provides a cost-effective alternative for

flow through exposure systems when the studied chemical is expen-

sive, as is the case for geosmin. Monitoring the decline of the chemical

concentration in the water over time (CWD(t)) next to the increase in

the concentration in the fish over time (CB(t)), provides and additional

data set that describes the time-kinetics of the bioconcentration of

the chemical. In theory, both data sets yield the same estimates for the

rate constants of the bioconcentration process, provided that the

chemical partitions to no other compartments than the fish and water

compartment and that biotransformation, growth dilution and faecal

egestion are absent or taken into account.

In the current bioconcentration experiment, the observed increase

in the geosmin concentration in the fish (CB(t)) and the decline of the

geosmin concentration in the water (CWD(t)) lead to conflicting mod-

elling results. The observed geosmin uptake in the fish was lower than

the theoretical rate constants predict, which implies a lower concur-

rent decline of the geosmin concentration in the water than the theo-

retical rate constants predict. However, the opposite was observed:

the geosmin concentration in the water declined faster than predicted

by the theoretical rate constants. The observed decline of the geosmin

concentration in the water implies a faster geosmin uptake in the fish

than predicted by the theoretical rate constants and observed in the

fish. These conflicting modelling results are reflected by the significant

differences among the estimates and theoretical values for the uptake

rate constant k1. The observation that the decline of the geosmin con-

centration in the water is not reflected by a corresponding geosmin

increase in this fish suggests that the rate constants estimated from

the observed geosmin concentration in the water are overestimations

or that some process is overlooked. The rate constants estimated from

the observed geosmin concentrations in the fish seem a better repre-

sentation of the actual values. Oxygen saturation in the experiment

was rather low at 60%–65% saturation. Oxygen concentration in the

water is an important determinant of the gill ventilation rate (Neely,

1979) and higher gill ventilation rates result in higher uptake (k1) and

depuration (k2) rate constants (equations in Howgate, 2004). The

experimental oxygen conditions thus probably led to relatively fast

TABLE 2 Theoretical and experimentally determined geosmin uptake rate constants (k1), excretion rate constants (k2) and metabolic
biotransformation rate constant (kM) for rainbow trout

Background

k1 k2 kM

Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI

Theoretical (Howgate, 2004) 307a 1.24 0a

Experimental (CB(t)) 180b 35.2 97–263 1.69 0.64 0.17–3.23 0.12ab 0.10 �0.11–0.36

Experimental (CWD(t)) 1,073c 236.1 515–1,631 4.87 1.98 0.19–9.55 0.56b 0.23 0.02–1.11

Experimental (CB(t)) excluding t = 0* 100b 20.8 49–151 0.0017 0.25 �0.62 to 0.62 0.21b 0.07 0.046–0.38

Experimental (CWD(t)) excluding t = 0* 162b 21.1 111–214 0.43 0.17 0.004–0.86 0.12ab 0.11 �0.15 to 0.38

Experimental uptake, excretion rate and metabolic biotranformation constants were estimated by fitting the observed geosmin uptake in the liver-free car-

cass CB to the equation for CB(t) and by fitting the observed geosmin concentration in the water CWD to the equation for CWD(t). Estimates without overlap

in their 95% confidence intervals were considered significantly different from each other and these are indicated by different letters in superscript.

*See Discussion.
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F IGURE 2 (a) Lipid-normalized geosmin concentration (ng/g lipid)
over time in the liver-free carcass and the liver of rainbow trout
during geosmin exposure. (b) The ratio between lipid-normalized
geosmin concentrations (ng/g lipid) in liver and whole body over
time during geosmin exposure. Ratio = 2.70 9 e(�0.37 9 Time) + 0.52.
Model p-value = .0002
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geosmin uptake in the fish and high values for the uptake (k1) and

depuration (k2) rate constants compared with uptake at 100% oxygen

saturation. However, the final geosmin concentration reached in the

fish was probably not affected by the low oxygen saturation as the

bioconcentration factor (k1/k2) does not depend on the gill ventilation

rate. Jointly taken, it appears that net geosmin uptake in vivo is less

than theoretical rate constants predict for rainbow trout. It should be

noted that although oxygen concentration and temperature do not

appear directly in the model we used, these factors are accounted for

since the estimated rate constants are specific for the experimental

conditions.

Clearly the decline of the geosmin water concentration cannot

be fully explained by the uptake of geosmin in the fish. Therefore,

biotransformation in the fish and other geosmin sinks have to be

considered. Given the stable concentration of waterborne geosmin

in the preliminary stability study without fish, system losses of geos-

min due to volatilization, adsorption to the tanks or geosmin removal

by microbial degradation (Ho, Hoefel, Bock, Saint & Newcombe,

2007) seem unlikely. Growth dilution and faecal egestion may con-

tribute to the loss of chemicals from fish (OECD, 2012), but not

from the system. Growth dilution and faecal egestion are unlikely as

the exposure period was short, the fish were not fed the day before

and during geosmin exposure and no faeces were observed in the

exposure tanks. Any faeces present inside the fish would be included

in the liver free carcass sample.

Most geosmin was lost from the system between t = 0 and

t = 1.8 hr. In this period, the geosmin concentration in the water

showed a strong decline which did not result in a corresponding

increase in the geosmin concentration in the fish. The strong initial

decline of the geosmin concentration in the water therefore cannot be

entirely attributed to uptake in the fish; other, unknown geosmin sinks

also seem to play a role. We therefore excluded the observed geosmin

concentrations in fish and water at t = 0 and used the observed levels

at t = 1.8 hr (5.5 ng/g and 180 ng/L) as the initial geosmin concentra-

tions in fish and water to estimate the rate constants by fitting the

equations for CB(t) and CWD(t) to, respectively, the observed geosmin

concentrations in the fish and the water. The results are included in

Table 2. The so obtained estimate for the uptake rate constant based

on the observed geosmin levels in the fish does not differ from the

estimate including the data observed at t = 0. The uptake rate con-

stant based on the geosmin decline in the water is strongly affected

by excluding the t = 0 data: the estimated rate constant for uptake

from the water no longer differs from the estimate based on the

observed geosmin uptake in the fish. Excluding the observations at

t = 0 does not change the notion that net geosmin uptake in vivo is

less than theoretical rate constants predict for rainbow trout.

Although assumed to be absent in fish (Howgate, 2004) biotrans-

formation of geosmin has in fact never been investigated. Biotrans-

formation of lipophilic compounds such as geosmin is very likely as

biotransformation pathways have very low substrate specificity and

almost any non-polar (lipophilic) compound can be metabolized

(Jakoby & Ziegler, 1990), and several biotransformation pathways

have been established in fish (Kleinow, Melancon & Lech, 1987). We

therefore did not rule out geosmin biotransformation and maintained

the metabolic biotransformation rate constant in the bioconcentra-

tion model. The model-based equations we used to describe the

kinetic profiles of geosmin in water and fish provided both signifi-

cant as well as visually satisfactory fits to the observed data.

Biotransformation will result in a lower bioconcentration of compounds

than predicted based on their lipophilicity (Lech and Bend, 1980;

Kleinow et al., 1987), which is exactly what we observed. Rather

than reaching the equilibrium states as would be the case in absence

of biotransformation, the measured levels in water and fish suggest

removal of geosmin from the system, which is in accordance with

the notion of induced biotransformation. Our kinetic profile for

geosmin bioconcentration shows large resemblance with the kinetic

profile for trifluralin bioconcentration in rainbow trout, for which

biotransformation has been established (Schultz & Hayton, 1999).

Biotransformation affects the distribution and accumulation of

chemicals in fish (Kleinow et al., 1987). Presence of significant geos-

min biotransformation in fish would thus open new opportunities for

off-flavour mitigation and management next to geosmin depuration.

Large variations in biotransformation pathways have been demon-

strated among fish species but also among individuals of the same

species (Kleinow et al., 1987). Variation in biotransformation capacity

can both be inherent, have a genetic basis, and be the result of

induction or inhibition by environmental factors and ubiquitous

chemicals (Kleinow et al., 1987). Variation with a genetic basis opens

opportunities to increase biotransformation capacity by selective

breeding. Induction of biotransformation during off-flavour depura-

tion may enhance geosmin elimination and thereby reduce the

required depuration time as well as improve depuration results. All

this clearly requires further investigations, with establishing the

actual presence of geosmin biotransformation and its relative contri-

bution to geosmin elimination being first priorities.

The geosmin concentration in the lipid fraction of the liver at the

end of the experiment was approximately twofold lower than the

geosmin concentration in the lipid fraction of the rest of the body.

Following absorption from the water by the gills, lipophilic com-

pounds are distributed throughout the fish’ body via the circulatory

system and exchanged with all vascularized tissues and organs

(Streit, 1998). Circulating lipophilic compounds accumulate rapidly in

highly perfused organs such as the liver. Accumulation is slower in

organs with lower blood flow, such as muscle and adipose tissue

(Barron, 1990, 1995; Bickel, 1984; Gunkel and Streit, 1980; all in

Streit, 1998). The relatively high levels of geosmin we observed in

the rainbow trout liver shortly after the start of the exposure to

geosmin may thus be explained by the high perfusion of this organ.

The following decline of the geosmin content of the liver relative to

the rest of the fish body can be explained by induced biotransforma-

tion in the liver, known for its high biotransformation capacity. This

quite plausible mechanism could explain the development over time

towards a decreasing geosmin concentration in the liver lipids com-

pared with the liver-free carcass lipids (ratio from ~1.5 at t = 2 hr to

~0.5 at t = 120 hr). Clearly, geosmin distribution within the fish is

not exclusively governed by the lipid content of tissues.
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5 | CONCLUSION

The current study reveals that rainbow trout bioconcentrates water-

borne geosmin, but in vivo bioconcentration is less than the generally

accepted model predicts based on theoretical rate constants assuming

passive distribution based on lipophilicity only. Clearly, geosmin distri-

bution within rainbow trout is not exclusively governed by the lipid

content of tissues, given the different lipid-normalized geosmin con-

centrations in liver compared with the liver-free carcass. Geosmin

removal from the water exceeded the concurrent geosmin bioconcen-

tration in the fish. The observed geosmin concentrations in the water

and liver free carcass can be described by model-based equations that

include biotransformation. The liver usually is the main site of

biotransformation, which can explain the relatively low lipid-normalized

geosmin levels in the liver, after initial fast uptake, compared with

those in the rest of the fish. Because biotransformation affects the dis-

tribution and accumulation of chemicals in fish, we advise to perform

dedicated biotransformation studies aimed at detecting geosmin and

2-methylisoborneol metabolites to confirm the suggested biotransfor-

mation of both off-flavour causing compounds.
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