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Preface

Alfred Stein, Frits Penning de Vries® and Johan Schut®

1. Dept. of Soil Science and Geology, Wageningen Agricultural University, PO Box 37, 6700 AA
Wageningen, The Netherlands
2. DLO Research Institute for Agrobiology and Soil Fertility (AB-DLO) P.O. Box 14, 6700
AA, Wageningen, The Netherlands
3. Department of Plant Breeding, Wageningen Agricultural University, P.O.Box 386, 6700
AJ Wageningen, the Netherlands

email: alfred.stein@bodlan.beng.wau.nl

Data are crucial to derive valid conclusions in various applications. Data are needed to feed
and develop models, and to validate models. Data are needed for a quantitative statistical
approach, and data are needed in information systems to reliably display spatial units. Every
specific datum has its own quality: how reliably was it measured, is it representative for a
larger area of land, is it constant in time, what does it represent, and what factors have
determined its values? Data are becoming increasingly available by new digital techniques, the
electronic superhighway and the laws which enforce open access of data collected with public
money. But are these the data that we need? And if so, how can these be accessed and handled
efficiently?

In this publication the written papers of the PE-seminars ‘Data in Action’ are
collected. The series was a follow-up of the previous series ‘Models in Action' (Stein, Penning
de Vries and Schotman, 1996). This time we emphasize the role of data for agricultural
purposes. Again we aimed at a volume which well extends beyond the disciplinary context.
We focused on statistics, information science, models and scale, although we realize that these
concepts act intermixedly. »

At this place we like to thank the CT de Wit Research School of Production Ecology
for their financial and organizational support.

ref. Stein A, Penning de Vries FWT, Schotman P, 1996, Models in Action. Proceedings of a
seminar series 1995/1996. Quantitative Approaches in Systems Analysis No. 6, June 1996.
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1. Data and models

No modelling without experimentation

Data are used to develop models, to feed models, to validate models and to apply models. In
particular the use of dynamic models has already become widespread. Despite this development,
the basic data are the cornerstone for developing, validating, running and extrapolating models. In
the first seminar we focus on the interaction between data and models.







1.1 Modelling crop-weed interactions and weed population
dynamics: the need to combine modelling and
experimentation’

Martin J. Kropff"’, Jacco Wallinga’ and Bert (L.A.P.) Lotz’

1. Wageningen Agricultural University, Department of Theoretical Production Ecology P.O.
Box 430, 6700 AK Wageningen, The Netherlands
2. DLO Research Institute for Agrobiology and Soil Fertility (AB-DLO) P.O. Box 14, 6700 AA,
Wageningen, The Netherlands
E-mail martin.kropff@staff.tpe.wau.nl

For the development of weed management systems with minimum herbicide use quantitative
understanding of weed population dynamics and crop-weed interactions is required. Models, that
integrate the available quantitative knowledge, can be used to design preventive measures, to
develop long-term and short-term strategies for weed management, to assist in decision making
to determine if, when, where and how weeds should be controlled and to identify new
opportunities for weed control. Eco-physiological simulation models for crop-weed competition
simulate growth and production of species in mixtures, based on eco-physiological processes in
plants and their response to the environment. Such models helped to improve insight into the
crop-weed system and can be used for various purposes like the development of simple
predictive yield-loss models, threshold levels or the design of competitive plant types. The
collection and generation of data was essential for the development and evaluation of these
models. For strategic weed management decisions, preventive measures and the identification of
new opportunities for weed control, quantitative insight into the dynamics and spatial patterns of
weed populations is also required. The complexity of the process and the long-term character of
weed population dynamics make the use of models necessary. Different modelling approaches
have been developed and are described briefly. The development and application of these
models has been limited because of data availability.

1. Introduction

Weed management has been one of the key issues in most agricultural systems, especially before
herbicides became available. The use and application of herbicides was one of the main factors
enabling intensification of agriculture in developed countries in the past decades. More recently,
the availability of herbicides has been coupled to intensification of agriculture in developing
countries as well. However, increased concern about environmental side effects of herbicides,
the development of herbicide resistance in weeds and the necessity to reduce cost of inputs have
resulted in greater pressure on farmers to reduce the use of herbicides. This has led to the
development of new strategies for weed management.

The strategy to improve weed management systems based on increased precision with
respect to weed management consists of three components (Kropff 1996):
(1) reduce weed effects through adapted crop management (Prevention),

"This paper is based on earlier publications (Kropff and Van Laar, 1993; Kropff, 1996 and Kropff, Wallinga and
Lotz, 1996)
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(2) improve decision-making with respect to weed control (Decision making),
(3) improve control technology (Control)

The first component (prevention) involves any aspect of management that favours the
crop relative to the weeds. This includes the development of competitive crop varieties with
minimum trade-off between competitiveness and yield potential of the cultivar. Systems analysis
and simulation are indispensable tools for the study of such complex interrelationships and may
help bridge the gap between knowledge at the process level and management at the field level.

The second component (decision making) consists of strategic (long term) decisions, tactic
decisions (for a season) and operational decisions in the field. That requires long-term and short-
term strategies for weed management, to assist in decision making to determine if, when, where
and how weeds should be controlled

The third component (control) deals with the development/improvement of weed control
technology and is strongly related to precision technology. Three ways to control weeds can be
distinguished: biological, mechanical and chemical weed control. There are many ways in which
control technology can be improved ranging from precision mechanical weed management tools
to precision herbicide treatments

To improve weed management systems, based on this strategy with the three components,
quantitative insight into both crop-weed interactions and the dynamics of weed populations in
space and in time is required. Because of the complexity of the processes and the long term
aspects in population dynamics, models are required to obtain such quantitative insight and to
make the knowledge operational.

This paper reviews the state of the art with respect to modelling crop-weed interactions
and weed population dynamics and discusses the role of data collection and generation.

2. Modelling Crop-Weed Interactions And Weed Population Dynamics
2.1. Modelling crop-weed interactions

Weeds affect crop yield as a result of competition between the crop and weeds for growth-
limiting resources, i.e. light, water and nutrients. The quantitative understanding of crop-weed
interactions was reviewed in detail by Kropff & Van Laar (1993). Two types of models for crop-
weed interactions have been developed: (i) descriptive regression models with a few parameters
that can be determined by fitting the model to observed data, and (ii) expanded eco-
physiological crop growth models that simulate competition for the growth-determining (light)
and -limiting (water and nutrients) resources between species.

One of the first systematic approaches to study competitive phenomena, developed by De
Wit (1960), used an experimental design (the replacement series in which the mixing ratio
varies, but total density remains constant) with a model to analyze the results. However, only in
the early 1980s an approach was developed to describe competition over a range of population
densities with varying mixture ratios and at a range of total densities (reviews by Spitters, 1989;
Kropff and Van Laar, 1993). These descriptive regression models are based on the same
principle as the approach of De Wit (1960): the non-linear hyperbolic relationship between yield
and plant density. ,

These descriptive regression models have a static character -- a description is given of
competition effects at a certain moment.

It has been demonstrated that competition effects can be simulated by expanded eco-
physiological crop growth models that simulate competition for the growth-determining (light)
and -limiting (water and nutrients) resources (review Kropff and Van Laar, 1993).
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On the basis of insights obtained with the eco-physiological models, an alternative
regression model was developed to predict yield loss using observations of relative leaf area or
cover of weeds shortly after crop emergence (Kropff & Spitters, 1991). This is an example of a
study where a model was used to generate hypotheses and theoretical data to facilitate evaluation
of a simple model before starting laborious experiments to test the model.

2.1.1 Descriptive models for crop weed-interactions

The most widely used regression model to describe effects of competition at a certain moment is
the hyperbolic yield-loss weed density model (Cousens 1985):

aN
Yy, =—¥— (H

1+2 N,
m

where Y gives the yield loss, Ny, is the weed density, a describes the yield loss caused by

adding the first weed per m? and m the maximum yield loss. These hyperbolic yield-density
equations fit well to data from experiments where only the weed density is varied (Kropff et al.
1984, Cousens 1985). However, the parameters a and m may vary strongly among experiments
due to the effect of other factors on competition processes (Kropff and Van Laar 1993). Because
both weed density and the period between crop and weed emergence strongly determine the
competitive relationship between crop and weeds (Kropff et al. 1984, Cousens et al. 1987,
Kropff et al. 1992), more robust prediction of yield loss on the basis of early observations should
be based on these two factors.

The eco-physiological model INTERCOM (Kropff and Van Laar, 1993) was used to
analyse the possibility to predict yield loss early in the season, based on observations of the
relative leaf area index of the weeds. A very close relationship was predicted between relative
leaf area index of the weeds and yield loss for a wide range of weed densities and periods
between crop and weed emergence. Based on these results, an alternative approach for early
prediction of crop losses by weed competition was introduced by Kropff and Spitters (1991). A
simple descriptive regression model for early prediction of crop losses by weed competition was
introduced by Kropff & Spitters (1991) and extended by Kropff et al. (1995). This model relates
yield loss to relative weed leaf area (L, expressed as weed leaf area /crop+weed leaf area)

shortly after crop emergence, using the ‘relative damage coefficient’ g as the main model
parameter next to the maximum yield loss m:

L
YL — q w (2)
1+(—q—-1) L,
m

Because leaf area accounts for density and age of the annual weeds, this regression model
accounts for the effect of weed density and the effect of the time of weed emergence (Kropff &
Spitters 1991). An example is given in Figure 1 which shows the relation between yield loss in
sugar beet and the parameters density and relative leaf area of Chenopodium album L. based on
data from Kropff et al. (1995). Lotz et al. (1996) evaluated the approach over a wide geographic
region and found that the descriptive value of the model is good, but that the current predictive
ability is still insufficient for precision weed management.

In conclusion, the relative leaf area-yield loss regression model accounts for the effect of
weed densities, different flushes of weeds and the period between crop and weed emergence.
However, the effect of other factors, such as transplanting shock or severe water stress, is not
accounted for, because the regression models do not account for underlying processes. Clearly,
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Figure 1. Yield loss in sugarbeet related to the density of Chenopodium album L. (A) and relative leaf area of
Chenopodium album L. (B) for different dates of weed emergence: circles 1, squares 5 and triangles 12 days
after the crop. Redrawn after Kropff et al. 1995.

the interaction of models and data has been crucial in developing the approaches, but will also be
essential in further developing models that can be used for practical application.

2.1.2 Eco-physiological models for crop weed-interactions

Competition is a dynamic process that can be understood from the distribution of the growth-
determining (light) or -limiting (water and nutrients) resources over the competing species and
the efficiency with which each species uses the resources. Eco-physiological models that
simulate these processes provide insight into competition effects observed in (field) experiments
and may aid in seeking ways to manipulate competitive relations, such as those between crop
and weeds by determining the most important factors in crop-weed competition.

The eco-physiological model INTERCOM described by Kropff and Van Laar (1993)
consist of coupled crop growth models equal to the number of competing species. Under
favorable growth conditions, light is the main factor determining the growth rate of the crop and
its associated weeds. From the leaf area index (LAI) of the species, the vertical distribution of
their leaf area and their light extinction properties, the light profile within the canopy is
calculated. It is assumed that the horizontal distribution of leaves is homogeneous. Based on the
species characteristics for the photosynthetic light response of single leaves, the vertical
photosynthesis profile of each species in the mixed canopy is obtained. Integration over the

height of the canopy and over the day gives the daily assimilation rate for each species. After
subtracting the respiration requirements for maintenance, the net daily growth rate in kg dry
matter/ha per day is obtained using the conversion factor. The dry matter produced is partitioned
among various plant organs, using partitioning introduced as a function of the phenological
development stage of the species. Phenological development rate is tracked in the model as a
function of ambient daily average temperature.
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Height growth rate is calculated as a function of temperature. However, when competition
results in rates of daily dry matter growth are insufficient to allow further height growth, height
growth rate is reduced.

To account for drought stress effects, a simple water balance for a free draining soil profile
is attached to the model, tracking the available amount of soil moisture during the growing
season. Transpiration and growth rates of each species are reduced when available soil moisture
drops below a certain level. Competition for water is thus closely linked to aboveground
competition for light because transpiration is driven by the absorbed amount of radiation and the
vapor pressure deficit inside the canopy. Direct competition for water as a result of differences
in rooting density is not accounted for.

For the parameterisation of these processes, many controlled environment studies and field
experiments have been conducted. Kropff and Van Laar (1993) described the most important
species specific data that are required for the model and also how these parameters can be
estimated or experimentally determined. Experiment-specific input requirements of the eco-
physiological model include geographical latitude, standard daily weather data, soil physical
properties, dates of crop and weed emergence, and weed density. A detailed description of the
eco-physiological simulation model is given by Kropff & Spitters (1992).

Most parts of the eco-physiological model have been evaluated and tested for monoculture
crops (Table 1). The eco-physiological competition model has been tested with data from
competition experiments with maize (Zea mays L.), yellow mustard (Sinapis arvensis L.) and
barnyard grass (Echinochloa crus-galli L.) (Kropff et al., 1984; Spitters, 1984; Spitters & Aerts,
1983). Additional validation of the eco-physiological model was performed using data from
critical period experiments with the same species (Weaver et al., 1992). This model was
evaluated subsequently (Kropff et al., 1992) using data with tomato (Lycopersicon esculentum
L.)-pigweed (Amaranthus retroflexus L.) and tomato-eastern black nightshade (S. americana)

Table 1. Observed and simulated yields of weed-free crops, in Harrow (Canada) and Wageningen
(Netherlands) (Kropff and Van Laar, 1993)

Simulated yield
Crop Site Year Observed yield**
(kg ha-1) (kg ha1)
Tomato (seeded) Harrow 1984 3172 + 222 3009
Tomato (seeded) Harrow 1985 2704 + 260 3290
Tomato (transpl.) Harrow 1984 2736 + 164 2990
Tomato (transpl.) Harrow 1985 4189 + 330 4312
Maize Wageningen 1982 13110 + 1940 13901
Maize Wageningen 1983 8440 + 210 8459
Sugar beet Wageningen 1984 14900 + 1397 14870
Sugar beet Wageningen 1985 23100 + 1233 20644
Sugar beet Wageningen 1986 20400 + 687 20450
Rice Los Banos 1992 7068 + 169 7002

* Yields of tomato, maize, sugar beet and rice represent fruit, grain, root and panicle dry
weight, respectively.
** Means + standard errors.
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Figure 2. Simulated (using the model INTERCOM) and observed yield loss in rice by competition with
Echinochloa crus-galli L. for direct seeded and transplanted rice for different data sets. Redrawn after

Kropff & Van Laar (1993).
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(Weaver et al., 1987) in Canada. Yield loss-weed density responses, effects of transplanting vs.
direct seeding and effects of weed-free or weed-infested periods (critical period experiments)
were simulated accurately. In figure 2 the model INTERCOM was also evaluated for rice and E.
crus-galli (Kropff and Van Laar, 1993).

Although further validation of the eco-physiological models using independent data sets
may be required, the results of different studies indicate that interplant competition can be well
understood from the underlying physiological processes.

2.2 Modelling weed population dynamics

Models have been developed to integrate the knowledge on life-cycle processes. Figure 3
shows the life cycle of annual weeds. The main processes involved are germination and
emergence of seedlings from seeds in the seed bank in the soil, establishment and growth of the
weed plants, seed production, seed shedding and seed mortality in the soil. Competition plays a
major role in establishment and growth and therefore strongly affects the population dynamics of
weeds. Besides natural processes, man has a major impact on the spread of weeds at all different
scales. The different mechanisms of dispersal have been discussed in detail by Cousens &
Mortimer (1995), who concluded that apart from wind dispersal few quantitative studies have
been conducted on these mechanisms. Because most weed seeds remain very close to the plant
(Harper 1977), weed patterns in fields do not change dramatically in time (Wilson & Brain
1991) which may be a basis for precision agricultural practices.

Plants
Establishment (Weeds) Seed production

Seedlings [~ 0 Seeds

Dispersal
Germination

Seedbank
‘ Death,
Predation

Figure 3. Schematic diagram for the life cycle of a weed in competition with crops in annual cycles.
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Comprehensive models that are based on physiological principles are only available for
parts of the life cycle: (as discussed) plant growth and competition (Kropff & Van Laar 1993)
and germination and emergence (L.M.Vleeshouwers, in prep.). In contrast, processes like seed
shedding, seed dispersal and predation of seeds are poorly understood. The most detailed models
that encompass the whole life-cycle have been developed for species like Avena fatua L.
(Cousens et al. 1986), Alopecurus myosuroides Huds. (Doyle et al. 1986) and Galium aparine L.
(Van der Weide & Van Groenendael 1990). The basic structure of most models was described
by Spitters (1989).

Not all models are aimed at understanding and integrating detailed knowledge. Another
objective is to predict future weed infestations. Models for forecasting need to be robust, and
they generally exhibit a better predictive capability when they contain only a few parameters,
even if there is complete understanding of underlying processes. The various complex processes
in the life-cycle are then blended into a few lumped parameters like a germination rate, a
reproduction rate and a mortality rate. Forecasting future infestations is bound up with very
large error margins, irrespective of our understanding of weed population biology, since some
key factors like future weather conditions are unknown.

Apart from the level of detail at which the life-cycle is studied, three different modelling
approaches to integrate individuals into a population can be distinguished (Durrett & Levin
1994, Kropff et al. 1996): (i) the density based models, (ii) the density based models that take
spatial gradients in density into account and (iii) the individual based models which also account
for spatial processes.

Of the modelling approaches, individual based models are the most comprehensive, but as
a result of their complexity they quickly run into computing problems and the complexity is not
always required. The density based model can be very useful to roughly explore options for long
term weed management strategies. The individual based models can be very helpful to identify
opportunities for site specific weed management (Kropff et al. 1996).

The availability of data, especially on soil bound processes has been a major setback for
the development and evaluation of population dynamics models.

3. Modelling and Weed Management

As mentioned in the introduction, three aspects can be distinguished in the strategy to

improve weed management systems (Kropff 1996):

(1) reduce weed effects through adapted crop management (Prevention),

(2) improve decision-making with respect to weed control (Decision making),
(3) improve control technology (biological, mechanical and chemical) (Control)
Modeling approaches that have been developed can be used for all three aspects.

The first component of the strategy to improve weed management involves any aspect of
management that favors the crop relative to the weeds. The eco-physiological simulation model
INTERCOM for interplant competition was used to identify traits that determine the competitive
ability of a crop. The most important traits were: rapid early leaf area -, tiller - and height
development, and more horizontally oriented leaves in early growth stages (vertical ones later on
because of yield potential) (Kropff & Van Laar 1993). In experiments, rice varieties that differed
in these traits were evaluated with respect to their competitive ability versus a standard purple-
coloured variety. The variety with all required traits, Mahsuri, reduced the growth of the purple
variety so much, that all purple rice plants had died before the final harvest (M.J.Kropff,
unpublished results). Detailed studies on trade-offs between different traits are underway (L.
Bastiaans et al. in prep.).
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Figure 4. Schematic representation of the decision making process in weed management.

Other examples of preventive measures are stale seed beds, specifically designed crop
rotations (like the inclusion of grass, which is very competitive, in the rotation), intercropping or
relay cropping etc.

The second component of the strategy is the improvement of the decision making process
which consists of strategic (long term) decisions, tactic decisions (for a season) and operational
decisions in the field. Here, precision in time and space is required. It involves long-term and
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short-term strategies for weed management, to assist in decision making to determine if, when,
where and how weeds should be controlled.

The decision-making process for tactical and operational decisions in a weed management
system based on post-emergence observations is illustrated in Figure 4. To allow rational
decision making, the severity of weed infestation shortly after crop emergence should be
estimated. Criteria must be defined (i.e., the objectives and planning horizon of the farmer) to
enable economic decision making.

The third component is to improve control technology. Here the models can be very
helpful as well. For example, to evaluate the impact of sublethal dosages of herbicides, and the
risk involved, or the analysis of the impact of biological control agents.

4. Conclusions

Options to improve weed management systems with a minimum herbicide use exist in all
components of the strategy: prevention, decision making and control. Quantitative insight in
weed population dynamics and crop weed interactions is essential for that purpose. Such
quantitative insight is summarized and made operational in models. From the experience
obtained it can be concluded that model development and experimentation at different levels of
complexity is needed for successful progress in the development of weed management programs
with minimum herbicide use.
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1. Introduction

Crop models can be used for many purposes (Boote et al., 1996). They can be an aid in interpreting
experimental results, they can be research tools in order to understand the interactions of the
numerous factors in crop growth and production, they can assist farmers in decision making. For
these different aims, models must give a realistic representation of the complex reality. Therefore,
the model must not only be compared to data from the field, to evaluate its ability to give a good
account of the reality, but it must also be build in taking into account the results from experimental
data, so that the descriptions of the natural phenomena (model structure and parameters) will be
derived from observation rather than on speculation (Monteith, 1996).

In this paper, several relationships existing between a model (its building and its use) and
data will be illustrated in taking as an example the model I realized to simulate the seed number on
each reproductive node of a pea stem (Jeuffroy, 1994).

A pea plant is generally composed of a main stem, and can bear some branches, the number
of which being highly variable. On each stem, from the base to the top, can be firstly observed
some vegetative nodes, bearing only a composed leaf. Then, from the first flowering node, which is
about the fifteenth node on the cultivar Solara, each following node bears a composed leaf, and one
or several flowers, which will give pods containing seeds, if they do not abort. Flowers appear
successively on the different nodes, and the development and growth of the pods and seeds is
sequential : thus various organs at different ages can exist on a same stem at a given date : )]
vegetative organs in development (as the apex continues to develop during the reproductive period),
(2) young flowers (on the upper nodes), (3) young pods below and (4) old pods with filling seeds
on the first reproductive nodes. Many reproductive organs (flowers, pods and seeds) generally abort
on a pea stem. The proportion of aborted organs is not constant among the different nodes, resulting
in a heterogeneous distribution of seed numbers among the different nodes, which is called the
profile of seed number. As development is sequential, the seed number on each node is not fixed at
the same time. Thus the seed formation on the successive nodes is not realized in the same
environmental conditions. For example, a limiting factor occurring early will reduce the seed
number on the first nodes ; if it occurs later, it will only have an effect on the last nodes of the stem.
Moreover, it can be assumed that the seed formation on the last nodes depends on what happened
on the first nodes. Thus in many situations, the total seed number per stem can be understood only
if we understand the seed formation on each node.
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Figure 1. The two main forms of profiles of seed numbers per node observed in the fields.

In farmers’ fields, various profiles are observed. They have mainly two typical forms
(Figure 1), even when no limiting factor is observed. Some of them are rather high, with a high
number of flowering nodes, and generally bear few seeds on the first reproductive nodes; the others
are low, with few flowering nodes, and a high number of seeds on the first reproductive nodes. In
the two cases, the seed number decreases regularly on the upper nodes. The total seed number per
stem is linked to the form of the profile, and the highest seed numbers per stem are generally
obtained on profiles rather low. In order to understand the high yield variability observed in
farmers, which is mainly linked to the variability of seed numbers (Doré, 1992), it is thus essential
to understand the diversity of these profiles.

In the literature, the main hypothesis to explain the profiles is nutritional : as there are many
sinks on a stem, of various kinds and ages, there is a high competition for assimilates between
them, and particularly between pods, explaining their different seed numbers. As the organs
involved in this competition are numerous and from various nature, as the complexity of the
competition is high, the only means to understand this competition seemed to make a model
including assimilate partitioning. It is thus assumed that the variability of the profiles of seed
numbers per node observed in the fields will only be understood with a model.

- The model is a tool to understand
the diversity observed in the fields.

2. The structure of the model

2.1 Seed and plant development

In the pod life, three main developmental stages can be defined : flowering, final stage in seed
abortion and physiological maturity. Between flowering and final stage in seed abortion, cell
divisions occur in the ovules (Ney et al., 1993). During this period, a whole pod or some of the
ovules contained in it may abort, reducing the final seed number of the pod. After the final stage in
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seed abortion the seeds cannot abort any more in the pod (Pigeaire et al., 1986) : the seed number is
fixed in the pod. This stage corresponds also to the beginning of seed filling (Ney et al., 1993).

At the stem scale, the progression of these three main stages along the stem is linear in
cumulative degree-days (Ney and Turc, 1993) : the duration between the occurrence of a stage on
two consecutive nodes is constant, about 45 degree-days for the flowering, and about 40 degree-
days for the final stage in seed abortion in cv. Solara. It is thus possible to know precisely the age
of each pod of the stem, every day during the reproductive period, as soon as the date of beginning
of flowering on the stem is recorded. Moreover the period of formation of seed number can be
defined precisely between flowering of the first flower (FLO1) and the final stage in seed abortion
of the last reproductive node (FSSA). This will be the period concerned for the model.

2.2 The model framework (Figure 2)

The original assumption of the model is that the seed number of a pod depends on the pod growth
dynamics before its final stage in seed abortion (Figure 2). This was demonstrated for individual
pods from all nodes, on various situations in the field (Jeuffroy and Chabanet, 1994). Then, the
growth dynamics of each pod depends on the whole stem growth dynamics and on the pattern of
assimilate partitioning among all sinks of the stem along time. Assimilate partitioning can then
depend on the nature and age of the various sinks in competition, which are mainly developmental
variables.

The inputs of the model are thus the characteristics of plant development and mean daily
temperature, in order to simulate pod age at each node and the end of the vegetative development,
and the mean growth rate per stem, in order to estimate the amount of available assimilate at each
daily step.

INPUTS At each day between Beginning of Flowering OUTPUTS
and Final Stage in Seed Abortion® -
Characteristics of plant
development :
progression of
flowering and SSA
along the stem
- Pod age at each node
- End of vegetative Pod growth | 3| Seed number
/ development ? per node per node
Mean temperature per day Assimilate
partitioning

Vegetative
growth

accumulated per stem

\ Fmoum of dry matter

Mean growth rate per stem
during
BF-FSSA

Figure 2. Structure of the model (according to hypothesis of plant functioning). BF = beginning of flowering :
FSSA = final stage in seed abortion.
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The whole model is thus composed of three main modules, (1) the estimation of seed
number per pod according to early pod growth, (2) assimilate partitioning between sinks, and (3)
determinism of the end of flowering (fixing the final number of flowering nodes). In this paper, I
will focus on the module of assimilate partitioning.

3. The module of assimilate partitioning
3.1 The hypothesis of assimilate partitioning

Assimilate partitioning is the weak point of the majority of the available crop models (Whisler et
al., 1986). Several analytical results exist in the literature in order to build this module. Yet, they
are sometimes in contradiction or insufficient. Finally some questions still arise from literature. The
first one concemns the possibility of internodal translocation of assimilate during the period of seed
formation. Some physiological studies showed that the majority of assimilates allocated to a pod
came from the subtending leaf (Flinn and Pate, 1970) while other studies showed the possibility for
a pod to receive assimilates even if its subtending leaf did not produce assimilate (Szynkier, 1974).
If the possibility of assimilate transfer between nodes exists, the second question concerns the
existence of a hierarchy in the carbon distribution among the various sinks, some of them having
priority on others. Finally the rules of assimilate partitioning among sinks during the whole period
of seed set must be determined. In order to answer these questions, which are the structural
assumptions of the model, several experiments were realized.

"~ Dataarenecesar
- plant functioning, given

) ‘eﬁstructure of the model

3.2 The experiment to test these hypothesis

A first experiment was realized in order to analyze the possibility of assimilate transfer among
nodes, and the general determinants for assimilate partitioning. It was thus necessary to work on
short periods and not only with biomass balance sheets, because of the hlgh varlablhty between
plants. The experiment was then carried out in controlled environment, with "“C-labeling. For the
question of assimilate translocation, some individual nodes were shaded, the whole plant was fed
14COZ, and the pods from the shaded nodes were analyzed (see Jeuffroy and Warembourg, 1991, for
details). For the question of priority of some sinks, control plants and partially shaded plants were
given "“CO, (Jeuffroy and Warembourg, 1991), the latter producing only one-fourth assimilates
recovered form controls.

3.3 Some results

The possibility of assimilate translocation between nodes was demonstrated (Jeuffroy and
Warembourg, 1991), for several nodes and at various stages.

For the question of hierarchy, the amount of assimilates recovered in the different vegetative
organs from the shaded plants was very low compared to the
control, but the proportion of “C recovered in one vegetative organ compared to the total amount in
the plant was the same between shaded and control plants (Figure 3). Thus the proportion of
assimilates allocated to one vegetative sink does not vary according to the total amount of available
assimilate in the plant.
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Figure 3. Relative distribution of *C-assimilates among vegetative organs (dpm % of total recovered in plant).
Comparison between control and shaded plants. Bars indicate standard errors (only for the high % dpm).
(From Jeuffroy and Warembourg, 1991).

On reproductive organs, the result was less obvious, as there was a high variability between
pods (Figure 4). Nevertheless, it was not possible to show an effect of the total amount of
assimilates produced on the proportion allocated to each pod. Looking at the pods more precisely, it
was possible to link the proportion of ““C allocated to one pod either to its relative dry matter
(compared with all the pods) or to its relative seed number, according to the stage of the pod
(before or after its final stage in seed abortion).

Thus, it was not possible to determine some priority of sinks over others, including in the
competition between vegetative and reproductive sinks. The amount of assimilate allocated to each
sink depends on its demand, proportional to the pod dry matter (for pods before final stage in seed
abortion), proportional to the pod seed number (after this stage), and proportional to the difference
between the final number of flowering nodes and the number already developed (for vegetative
organs, Jeuffroy, 1991).
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Figure 4. Relative distribution of *C-assimilates among pods (dpm % of total recovered in plant). Comparison
between control and shaded plants. Bars indicate standard errors. (From Jeuffroy and Warembourg, 1991).

The calculations of the amounts of assimilates allocated to each sink at each step then
required the estimation of the parameters for these demands.

3.4 Estimation of the model parameters

This new step required another experiment, as it was better to estimate these parameters directly in
the field, where the model had to be used. In this experiment, some particular conditions were
necessary, in order to measure the potential growth of a pod, which was the definition for pod
demand. On field grown plants, we cut off the apex after the development of 4 flowering nodes and
let only one pod on each stem, in order to prevent competition on the stem. Then, we measured
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individual pod dry matter, which was adjusted to an exponential model in the first part of the life
(before final stage in seed abortion) and to a linear model in the second part (between this stage and
physiological maturity). This curve gave us the parameters for pod demand (Jeuffroy and Devienne,
1995). The same principles were applied for the estimation of the vegetative demand parameters
(Jeuffroy, 1991).

3.5. Evaluation of the assimilate partitioning module in the field

With these two experiments (labeling and parameter estimation), the rules for assimilate
partitioning were determined. But, it was necessary to verify them in the conditions where the
model had to be used, because the plants obtained in controlled environments in the first
experiments were very different form those observed in the field. Thus, another experiment was
realized in the field, different from that used for parameter estimation (Jeuffroy and Devienne,
1995).

Experxmental data. are necessary to ev ,
in the range of 51tuat10ns where the model must be sed

Evaluating this module of assimilate partitioning in a large range of situations to be covered by the
whole model, we got various sowing dates and densities during two years, inducing a large range of
inputs of the model (Table 1). The mean growth rate per stem ranged from 5 to 14 mg/stem/degree-
day, and the final number of flowering nodes from 4 to 10. Variability existed also in the
developmental parameters. Here, observed and simulated values of dry matter per organ were
compared. There was a good fit between observed and simulated vegetative dry matter increments,
calculated between two successive sampling dates (Figure 5), and also for pod dry matter at each
sampling date (Figure 6). The model gave also a good simulation of the growth dynamics of
vegetative and reproductive organs (Figure 7).

N
(9)]

N
o

15 -

10 -

Simulated VDM increment (mg/stem/dd)
E0

0 T T 1] T
0 5 10 15 20 25
Observed VDM increment (mg/stem/dd)

|-m- 1989 -=- 1992 — Y=X |

Figure 5. Relationship between observed and simulated vegetative dry matter increments (VDM), calculated
between two successive sampling dates during the period of seed set, on the situations from Table 1.
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Figure 6. Relationship between observed and simulated pod dry matter per node, at each sampling date during
the period of seed set, on the situations from Table 1.

\

5000

4000 -

N W
o o
o o
o O

-
o
o
o

o
‘

]l
\
)
|

DRY MATTER (mg/stem)

700 800 900 1000 1100 1200
CUMULATIVE DEGREE-DAYS SINCE SOWING

= VDM obs — RDM obs m TDM obs
— VDM sim - - RDM sim — TDM sim

Figure 7. Simulated and observed growth dynamics of vegetative and reproductive parts of a pea plant. VDM =
vegetative dry matter ; RDM = reproductive dry matter ; TDM = total dry matter; obs = observed ; sim =
simulated.
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4. Analysis of the various profiles of seed numbers per node observed in the
fields with the model

The initial aim for the building of the model was to understand the diversity of the profiles of seed
numbers per node observed in the field. In order to test the ability of the model to give a good
account of this range, an evaluation of the model in a large range of situations in the field was
carried out. This step also aimed to determine the range of validity for the model.

The evaluation of the whole model was realized on the range of sowing dates and densities
presented in Table 1, resulting in a large range of the inputs and outputs. Figure 8 shows the
observed profiles of seed number for the situations tested : some of them are high with few seeds at
the bottom, while others are lower with many seeds at the base.

The analysis can then be detailed on two situations particularly differing in number of
flowering nodes and in mean growth rate, the 3rd (D3S1) and the 10th (S11) cases on Table 1.
There is a good fit between the observed and the simulated profiles in the two cases (Figure 9).
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Figure 8. Observed profiles of seed numbers per node on the situations from Table 1. (From Jeuffroy and
Devienne, 1995).

A: sowing 14 March 1989, 117 stems m’ (A), 156 stems m” (0J), 257 stems m*(H)

B: sowing 31 March 1989, 61 stems m *(a), 107 stems m™(CJ), 194 stems m™~ ()

C: sowing 19 April 1989, 81 stems m’ ? (1), 141 stems m”*(0J), 175 stems m” ()

D: sowing 24 February 1992, 67 stems m’ *(a), 97 stems m*(J), 159 stems m*(H)
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Figure 9. Comparison of the simulated and observed profiles of seed numbers per node on two situations from
Table 1 (S11 and D3S1). S11 = sowing 24 February 1992, 67 stems m~, D3S1 = sowing 14 March 1989, 257
stems m~, obs = observed, sim = simulated.

The two different forms of profiles can be interpreted with the model. The higher number of
reproductive nodes obtained on S11 (because of a better nitrogen nutrition status of the crop at the
beginning of flowering, Jeuffroy and Sebillotte, 1997) means that the vegetative development and
growth continued during a longer period on this treatment. In the competition between vegetative
organs and the first growing pods, a very small amount of assimilate was allocated to the pods, in
comparison to their demand. This resulted in a small number of seeds on these nodes, when
compared to the same nodes on the other treatment D3S1, for which the competition between
vegetative and reproductive organs was very short. Later in the cycle, the competition for
assimilates among pods in the two situations resulted in a higher amount of assimilates allocated to
the older pods, reducing the seed number on the upper last ones.

As the model gave also a good account of the observed profiles for the other situations
tested , it can be concluded that it is a good tool to understand the diversity of the situations
observed in the range of inputs tested. Yet there are some situations still not explained by the
model. For example, the model generally overestimated the seed number on the last nodes,
probably because it is necessary to consider the filling seeds as having a priority in assimilate
distribution, as it was shown on soybean (Munier-Jolain, 1994). The lack of fit is then an help to
improve the model. In the case of this model, some modules are being improved in our team, for
example the estimation of the vegetative demand, and the prediction of the final number of
reproductive nodes.

The lack of it between observed and s1mulated SItuatlons
~ helps to improve the model - =
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5. Analyzing the effect of limiting factors with the model

The model already allows us to go further, and to give an account of the effect of limiting factors
which are not included in the model. For example, in evaluating the model during the year 1991,
the simulated profile was very different from the observed one, particularly on the nodes 3 and 4
(Figure 10). Looking at the climatic data, it was observed that several days with very high
maximum temperature occurred during the period of seed set. And it is known in the literature that
high temperatures during seed set cause seed abortion (Lambert and Linck, 1958 ; Karr et al;, 1959)
and that the period of highest sensitivity for the pods is the second half of the period between
flowering and FSSA (Jeuffroy et al., 1990). In comparing the days with high temperature to the
period of seed formation on each node, it appeared that these days occurred during the period of
sensitivity of the nodes 3 and 4 (Figure 11), and could explain the gap between the observed and
the simulated profiles. The model then enables to quantify the yield loss due to the limiting factor.

N
n o » o

FLOWERING NODE
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Figure 10. Comparison of the simulated and observed profiles of seed numbers per node on one situation in
1991.
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Figure 11. Comparison of the periods of seed formation on each node and the days with high maximum '
temperature.

6. Conclusion

In this description of building and use of a model for seed number per node on pea, several
relationships between data and model were illustrated.

1. The model is a tool to understand the diversity observed in the fields.

2. Data are necessary to test the hypothesis of plant functioning, giving the model structure.

3. The experiment is a source for the estimation of the model parameters.

4. Experimental data are necessary to evaluate the sub-models in the range of situations where the
model must be used.

5. The lack of fit between observed and simulated situations helps to improve the model.

6. The model gives an account of the effects of limiting factors which are not included in the model
and quantifies their effects.
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Wind erosion is a major soil degradation processes in the African Sahel. Wind-blown material
contains nutrients and therefore wind erosion causes a decline in soil fertility. This paper quantifies
soil and nutrient losses by wind erosion. Soil particle transport was measured in the Sahelian zone
of Niger with 21 sediment catchers in a plot of 40 by 60 m during four storms. During the two
biggest storms, sediments were collected and analysed for total K, C, N, and P. The main mass of
nutrients was transported just above the soil surface by saltation. The suspended nutrient mass
fluxes were an order of magnitude lower than the saltation fluxes but were extended to greater
heights. Therefore, suspension transports also significant quantities of nutrients. Mass budgets were
calculated for the four nutrients and the following losses from the experimental plot during the two
storms were estimated: 57.1 kg ha' K, 79.6 kg ha’ C, 18.3 kg ha' N, and 6.1 kg ha" P. The
observations of total mass transport were used for a geostatistical analysis. Storm based maps of
mass transport were produced with kriging. The maps show a large spatial variation in particle mass
transport and were used to estimate net soil losses from the experimental plot. In total, 45.9 ton ha'
got lost during the season.

1. Introduction

Wind erosion is the removal of soil material (soil particles, nutrients and organic matter) by wind.
Linked to wind erosion is sedimentation, which is the deposition of wind-blown material. Between
erosion and sedimentation, the material is transported by saltation, creep and suspension (Bagnold,
1973). Saltating particles jump and bounce over the surface, reaching a maximum height of
approximately 1 m, but the main particle mass moves just above the soil surface. Saltation
transports soil particles with sizes roughly between 63 and 500 mm. When saltating particles fall to
the soil surface they not only eject other saltating particles but also induce creep, the rolling and
sliding of larger particles (>500 mm), and suspension, the raising and transport of dust particles
(<63 mm). During a storm, creep can move particles over distances from a few centimetres to
several metres, saltating particles travel from a few metres to a few hundred metres, and suspension
transport ranges from several tens of metres to thousands of kilometres.

Wind-blown material contains nutrients and organic matter (Zobeck and Fryrear, 1986), and
hence, wind erosion causes a decline in soil fertility. Long-term agricultural effects are decreasing
crop yields and, in the worst cases, degraded land which cannot be used for agriculture anymore.
The loss of nutrients is usually ascribed to suspension transport (e.g., Zobeck and Fryrear, 1986;
Leys and McTainsh, 1994). Suspension selectively removes the finest soil particles that contain
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disproportionately greater concentrations of plant nutrients (Young et al., 1985). However, little
information exists on nutrient transport by saltation, which moves the main mass of soil particles
(Chepil, 1945). Creep is considered not to tranport significant quantities of nutrients, since it
transports mainly coarse sand which is poor in nutrients.

Quantification of wind erosion is difficult because of large spatial and temporal variability in
particle mass fluxes (Wilson and Cooke, 1980). Soil erodibility is determined by several variables
like soil texture, surface roughness and topography. These variables usually show spatial variation,
resulting in spatial variation in soil erodibility and thus in wind-blown mass transport as well.
Moreover, erosive storms differ in duration, wind speed, and wind direction, which causes a wide
range of particle mass transport rates.

The objective of this study was to quantify soil and nutrient losses by wind erosion from
detailed observations of soil particle transport.

2. Materials and Methods

A field experiment was conducted in the African Sahel, at the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT) Sahelian Center (ISC). The site is located in South-
West Niger, 45 km south of the capital, Niamey. The region is characterised by chemically and
physically poor, sandy soils, and harsh climatic conditions. Wind erosion occurs mainly during the
early rainy season (May - July) when short (10 - 30 min) wind storms often precede rainfall events.
Normally, about ten of those events occur during the season.

2.1 Quantification of particle mass transport

Wind erosion was measured in a plot of 40 by 60 m on a sandy alfisol, during the rainy season of
1993. The measurements of horizontal particle mass transport were conducted with Modified
Wilson and Cooke sediment catchers (Fig. 1; Sterk and Raats, 1996). Twenty-one catchers were
regularly distributed over the plot in three rows of six, and with the three remaining catchers placed
between two rows (Fig. 2). Four storms were sampled during the whole season.

- The MWAC catcher has seven sediment traps attached at heights between 0.05 and 1.00 m
(Fig. 1), which means that trapped materials were a mixture of saltation and suspension particles.
Creep particles were not trapped. After a storm, the sediment in each trap was collected and
weighed. Through the seven observations of horizontal particle mass flux per catcher, a model was
fitted to describe a vertical profile (Sterk and Raats, 1996):

q(z) = a(&z—u)'b + cexp(—g—) o)

where ¢(z) is the horizontal particle mass flux (kg m” s”) at height z (m), and a, &, b, c, and [ are
regression coefficients. Integration of the vertical profile over height from z = 0 to 1 m and
correction for the trapping efficiency of the MWAC catcher (= 0.49) resulted in a total particle
mass transport rate (kg m" s”) at the point of sampling. When multiplied by the storm duration, a
total particle mass transport value (kg m") was obtained. This value represents the total mass of
sediment below 1 m that passed a strip 1 m wide and perpendicular to the mean wind direction of
the storm. It is assumed that the contribution of the sediment moving above 1 m to the total mass
transport was negligible.




G. Sterk et al. , 31

- copper frame
o= 1.00m

N

outlet inlet

ey
S\

| R

o= 0.75m

sample bottle

- 0.50m
sample bottle

= 0.26 m
- 0.19m
0.12 m
0.05m

Lo

soil surface
. , pvc tube

| v oo

Figure 1. The Modified Wilson and Cooke sediment catcher.

2.2 Quantification of nutrient transport

From the 18 catchers in the three rows of six, the materials trapped at three heights (0.05, 0.26 and
0.50 m) and samples of topsoil material were collected. The samples were analysed with regard to
total element contents of potassium (K), carbon (C), nitrogen (N), and phosphorus (P). Total K and
P were measured with X-ray fluorescence, and total C and N were measured with gas
chromatography (Sterk et al., 1996).

Through the nutrient contents of the wind-blown sediment a simple power function was fitted
to describe the vertical profiles of K, C, N, and P contents (Zobeck and Fryrear, 1986):

1(z) = pZ* @

where T(z) is the total element content (mg kg') at height z, and p and g are (positive) regression
coefficients. In this model, T = 0 at z = O suggesting that creep is not transporting nutrients.
Multiplication of eq. (1) and (2) yields an equation that describes the vertical profile of horizontal
nutrient mass fluxes (Sterk et al., 1996):

fiz) = pqua(é—u)"’ + cexp(—%)] 3)
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where f (z) is the horizontal mass flux (mg
60 m”s”) of a certain element at height z. The
nutrient mass flux profiles were
numerically integrated over height from z
= 0 to 1 m. The total nutrient mass
transport rates (mg m' s') were obtained
after correction for the overall trapping
efficiency of the MWAC catcher.
Multiplying the total nutrient mass
transport rates by the storm duration
resulted in total nutrient mass transport
values (mg m").
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Figure 2. Experimental plot with positions of 21 MWAC
sediment catchers.

Spatial dependence between different observations was modelled with the variogram. Since
21 observations are not sufficient to reliably estimate a variogram for each storm (Webster and
Oliver, 1992), the analysis was extended from the space domain into the space-time domain (Sterk
and Stein, 1997).

The four storms were pooled to create one data set for variogram estimation. Two
assumptions underlie this procedure: (i) the expectation exists and is independent of the position s
but may depend upon time t, E[X(s,# )] = m(t) and (ii) the variance of the difference between X(s,?)
and X(s+h,7) is finite and is not dependent of s. It is defined as:

4
Var[X(s,t)-X(s+h,t)] = E[X(s,t)-X(s+h, )]’ X

= (h1) ¥,

where y(h,7) is the variogram at time #, and 4 is the lag distance between any two points in the
space domain. Moreover, it is assumed that the four storms are independent temporal replicates of
wind-blown mass transport, with similar spatial correlation structures (Sterk and Stein, 1997).
Hence, by standardizing the four storms a variogram can be estimated which is independent of
time.

The storms were standardized to the mean mass transport value of all four storms:




G. Sterk et al. 33

~ iisLj
Wsirt;) = L, x(si L )
H;

where y(s;,t) is the standardized mass transport at observation location i and for storm j, and [i,
and ﬁj are the mean mass transport values of the standardized data set and the j-th storm,
respectively. Obviously, the conditions (i) and (ii) are now fulfilled, i.e. E (s, )] ={_, and Var
[Y(s,?) - Y(s+h,t)] is independent of time z.

Using the standardized observations, variogram values were estimated with (Sterk and Stein,
1997):

4 njh)
Y (h) = j22i) - V(s +ht 6
7.(h) §2nj(h)§[y(s t;)-Wsi+ht)] (6)

Now each pair of standardized observations at times ¢ with j = 1,..,4 contributes to estimate the
variogram. Through the estimation variogram a spherical model was fitted:

0 for h=0
g =1Co+C-(b(hIN~3(hIr)’) for O<h<r @
C,+C for h>r

where the parameter C, is the nugget constant, C the sill parameter, and r the range parameter of the
variogram model (Journel and Huijbregts, 1978). The parameters C,, C, and r were estimated with
a weighted nonlinear regression procedure.

. The obtained variogram model was converted into four variogram models, one for each
storm. The range parameter of the model is the same for all storms, but the nugget constant and the
sill parameter are dependent on the storm’s mean mass transport. New values were calculated using
the mean mass transport values of the four storms ( ﬁj) and the mean mass transport value of the

standardized data set ({1, ):

Coj = Cos(=ip ®)
C;, = cs(kfi)z 9)
i,

where j denotes the storm number and s the standardized data set.

Maps of wind-blown mass transport were produced with kriging. The program OKB2D from
the Geostatistical Software Library (Deutsch and Journel, 1992) was applied. This program uses a
two-dimensional ordinary kriging algorithm. At each time z, (j = 1,..,4) it predicts a value of mass
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transport (X ) at a location (s,) on the basis of a number (v ) of surrounding neighbourhood points
measured at the same storm. The predictor P for the value X(s,,,) is a linear combination of the v
observations x(s,,,),.....,.X(S,, 1)

P=3 AX(s1,) (10)

The v weights [ are calculated such that P is unbiased and that the variance of the prediction error
is minimal. This procedure requires information about the variogram of the regionalised variable. A
detailed description of the calculation procedure can be found in geostatistical handbooks (e.g.,
Journel and Huijbregts, 1978).

3. Results

3.1 Particle mass transport

A total of four storms occurred during the 1993 rainy season (Table 1). During the first storm, one
catcher was not functioning, so, only 20 measurements of particle mass transport were made during
that particular event. For each sediment catcher and storm, eq. (1) was fitted through the measured
particle mass fluxes at seven heights. Figure 3 shows a fitted particle mass flux profile for one
sediment catcher during the storm of 1 July 1993. The profile has a maximum at the soil surface
and decreases sharply with increasing height. In general, the fitted profiles showed good agreement
with the observations. Average deviations between measured and calculated mass fluxes increased
from 0.1% at the lowest sampling level to 38.0% at the highest level. The larger deviations at the
higher sampling levels were caused by bigger measurement errors due to the very small quantities
trapped at those heights (Sterk and Raats, 1996).

In Table 1 the summary statistics of the total mass transport observations for the four storms
are given. The mean values indicate that the storms had very different magnitudes. The second and
third storms were classified as small storms, whereas the first and the fourth were large storms.

Table 1. Characteristics of four wind erosion events in SW Niger, 1993 rainy season.

Total mass transport

Storm date Wind speed Wind direction Mean cv Range
ms’ kg m” % kg m"
13 June 10.3 SE 102.7 359 24.0-213.6
27 June 7.6 S 15.5 33.4 7.2-26.0
30 June 8.9 SE 32.0 46.3 9.6-68.9

1 July 9.2 SSE 149.9 345 68.9-2827
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Figure 3. Fitted profiles through measured particle mass fluxes and potassium (K) mass fluxes.

Table 2. Average enrichment ratios of trapped erosion materials for two storms in SW Niger, 1993 rainy
season.

Enrichment ratiot

Storm date Height K C N P
m

13 June 0.05 1.18 1.33 0.83 0.98
0.26 1.91 2.39 1.42 1.10
0.50 2.06 3.02 2.08 1.14

1 July 0.05 1.27 1.47 0.83 0.91
0.26 2.58 2.63 1.33 1.40
0.50 4.15 4.74 2.25 1.98

T Ratio of the content of a certain element in the eolian material and the content of that element
in the topsoil.
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3.2 Nutrient mass transport

Chemical samples of wind-blown material were only taken during the first and fourth storms. The
quantities obtained from the second and third storms were too small for chemical analysis. The
measured nutrient contents of the wind-blown material showed an increase with height. This is
illustrated by the average values of the enrichment ratio (Table 2), which is the ratio of the
contentof a certain element in the eroded material to the content of that element in the topsoil.
Equation (2) was fitted to all nutrient contents and the regression coefficients obtained were used in
eq. (3) to describe the nutrient mass flux profiles of K, C, N and P. In Fig. 2, a fitted curve of the
potassium mass flux is shown for the same catcher and storm as the particle mass flux profile. For
C, N and P similar shaped curves were obtained. From the nutrient mass flux profiles the total
nutrient mass transport values were determined and used to calculate nutrient losses from the
experimental plot. Mass budgets were determined for both storms and all four elements by
averaging the total nutrient mass transport values in the outermost rows of MWAC catchers (Fig.
3). Two rows contributed to input and two to output of sediment. The average wind direction of a
storm determined the rows contributing to input and output, respectively. During both storms,
wind-blown particles were entering the plot over the southern and eastern boundaries, and left the
plot over the northern and western boundaries. The calculated nutrient losses from the experimental
plot were: 57.1 kg ha' K, 79.6 kg ha’ C, 183 kg ha' N, and 6.1 kg ha' P. These losses are equal to
approximately 3% of the nutrient masses that were present in the top 0.10 m of the soil. The actual
losses were even higher because (i) the nutrient-rich suspended material above 1 m was not
included in the calculations, and (ii) the second and third storms caused also nutrient losses.

3.3 Mapping particle mass transport

All 83 observations of particle mass transport were standardized with eq. (5) to the reference value
of 75 kg m", equal to the mean of the four storms. The standardized variogram was estimated with
eq. (6), and a spherical model (eq. (7)) was fitted through the variogram values. This model has a
nugget variance (C,,) of 15.1 kg’ m”, a sill value (C,) of 1220 kg’ m”, and a range (r ) of 52.1 m.
The variogram was converted with eq. (8) and (9) into four storm-specific variograms, which were
used for kriging.

Table 3. Calculated soil losses from the experimental plot.

Net soil loss

Storm date Linear interpolation Kriging
Mg ha Mg ha’
13 June 8.4 12.5
27 June 2.0 2.0
30 June 6.6 4.6
1 July 26.4 26.8

Total 434 45.9
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Figure 4. Maps of wind-blown mass transport (kg m”) produced by kriging. Storm dates are (A) 13 June, (B) 27
June, (C) 30 June, and (D) 1 July, 1993.



38 Data in Action

The produced maps (Fig. 4) provide the best linear unbiased predictions (BLUP) (Stein and
Corsten, 1991) of total particle mass transport at each unsampled location at a given time and are
therefore well suited for calculating net soil losses from the experimental plot. For all four storms
mass budgets were determined by averaging the kriging predictions along the four boundaries. Two
boundaries contributed to input and two to output of sediment, respectively. The best possible
estimate of net soil loss is obtained when the boundaries coincide with the outermost rows of
sediment catchers (Fig. 2), because the variance in prediction error is lowest along these rows.
During the first, third, and fourth storms, the sediment moved into the plot across the southern and
eastern boundaries and left the plot via the northern and western boundaries. During the second
storm, only the southern and northern boundaries contributed to input and output of particle mass.
The calculated soil losses from the kriging predictions were compared with soil losses calculated by
averaging the mass transport values at the observation locations only (Table 3). This second
procedure, which is similar to the nutrient mass budget calculations, is based on linear interpolation
between the MWAC catchers in the outermost rows.

4. Discussion

The horizontal mass flux of wind-blown particles decreases sharply with height (Fig. 3). Just above
the soil surface, saltation is the dominant mass transport mode, whereas suspension mass transport
becomes dominant around the 1 m level. At 0.50 m, saltation and suspension are equally important
(Sterk and Raats, 1996). The strong decrease of particle mass flux with height justifies the
assumption that the mass of sediment moving above 1 m can be neglected.

In general, suspended dust is richer in nutrients than the coarser saltation material (Table 2),
owing to a higher percentage of clay and silt particles. However, the K mass flux profile (Fig. 3)
shows that the main mass of nutrients is transported in the height range where saltation is dominant.
This was explained by the presence of saltation-size aggregates that contain clay and silt particles
and thus nutrients (Sterk et al., 1996). The nutrient mass fluxes moved by suspension are an order
of magnitude lower than the saltation mass fluxes but not insignificant. They are extended to a
height of several hundred metres. Hence, suspension may also transport considerable amounts of
nutrients.

- The maps produced with kriging (Fig. 4) show the horizontal distribution of storm based
mass transport. They clearly show that particle mass transport is characterized by a large spatial
variability. Because of this variation, the traditional method of describing soil loss per unit area
(Table 3) is not the best erosion indicator (Wilson and Cooke, 1980). It is more useful to
distinguish erosion and deposition areas in the plot from downwind gradients in gray values.
Positive gradients (from light to dark) are associated with erosion, negative gradients (from dark to
light) with deposition, and zero gradients with transport only. Combining this information with
maps of soil characteristics, surface roughness, crop characteristics and topography may lead to a
better understanding of wind erosion processes.

The pattern of mass transport is not constant but changes from storm to storm. Prediction of

those patterns with a wind erosion model would require very detailed input of soil characteristics,
crop characteristics and wind field at many positions, which makes modelling at such a detailed

level virtually impossible.

The total soil loss from the plot as determined from the kriging predictions is slightly (5.8%)
higher than the total soil loss calculated with linear interpolation (Table 3). Comparing individual
storms, however, shows that larger differences in net soil losses exist between the two calculation
methods. Since kriging takes the spatial correlation structure of mass transport into account, it is
assumed to provide better estimates of net soil losses from the experimental plot.
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5. Conclusions

Wind erosion in the Sahelian zone of Niger causes significant losses of soil particles and nutrients.
Saltation transports the main mass of both, but suspension may also transport significant quantities
since the fluxes are extended to much greater heights than the saltation fluxes.

Saltation can only result in a local transport of soil particles and nutrients. Once picked up by
the wind, saltating soil particles are moved in a downwind direction until they are deposited near
some obstacle such as trees, bushes, fences, etc. Therefore, it leads to a local redistribution of soil
particles and nutrients. The main sources are unprotected fields, and the main sinks are areas
protected by vegetation (e.g. fallow land) or soil conservation measures. Redistribution within a
field may also occur, which can be determined from the maps produced by kriging (Fig. 4).

The fine suspended dust which is raised from the field by a convective storm may be carried
over long distances, resulting in a loss of fine soil particles and nutrients from the area and thus
enhancing regional soil degradation. Apart from losses, there are also inputs of dust. During the dry
season, fine suspended dust from the Sahara is transported towards the Sahel, where it partly settles.
During the early rainy season, some of the dust raised by a convective storm is immediately
deposited by rain wash-out. Whether there is a net loss or gain of dust due to suspension transport
in the Sahel is unclear. Soil surfaces that are well protected against erosion can only benefit from
dust deposits. However, most areas have inadequate protection against strong winds and probably
lose more fine particles than they gain.
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2. Statistics for agricultural data

Maximum information from data

The contribution of statistics to data collection and data use is clearly visible when collecting
representative data. Modern approaches include the use of data ‘as they are collected’, and
data-driven statistical techniques are increasingly developed. Model parametrization methodology,
comparable to optimization with least squares and the maximum likelihood criteria in statistics are
important subjects in modelling efforts, as well as handling missing data.







2.1 Some Spatial Statistical Tools for Pattern Recognition
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Modern analysis of patterns in spatial or mapped data relies increasingly on spatial statistical models
of varying degrees of complexity. In this paper two specific modelling approaches are examined
which can be applied to discrete spatial patterns ie. the distribution of objects or counts of objects n
spatial regions. These two approaches are : the analysis of correlated random effects via empirical
Bayes and full Bayes methods; and the analysis of clustering where cluster locations are directly
modelled. Both approaches require the use of Markov chain Monte Carlo methods in their full
Bayesian implementation.

1. Modern Pattern Recognition
1.1 Introduction

Pattern Recognition has developed within a wide variety of disciplines. Perceptual recognition
problems are found in Psychology, while image processing (segmentation or higher level recognition)
have been studied within Engineering, Physics and Statistics. Many of the tasks of image processing
involve the recognition of structured patterns in arrays of data elements which have a spatial
distribution. As such, the area of spatial statistics (Cressie, 1991) has contributed a considerable
amount to the analysis of pattern recognition problems. In agricultural applications, there are many
cases where mapped data, eg. from satellite imagery or ground-based surveys, are used and problems
of a recognition nature arise. The remainder of this paper deals with two possible approaches to
modelling mapped data, where discrete observation units are found eg. counts of events within
regions, or locations of objects. These data types are frequently encountered in recognition problems
and applications in agriculture should be clear.

1.2 Applications

The analysis of heterogeneity in discrete spatial data has received some increased attention in
recent years (Clayton and Kaldor, 1987; Besag et al., 1991). Most recently, Breslow and Clayton
(1993) have proposed a general framework for the analysis of generalised linear models with random
effects which can be correlated or uncorrelated. In the work here described, we specify an approach
to modelling discrete data of various kinds which allows the introduction of spatial correlation via a
prior distribution for parameters of the model. This correlation is specified quite generally and leads
to Geostatistics-liked estimators for parameters, when suitable prior covariance functions are
specified. Here we examine situations where the canonical parameter of the observation distribution

(and hence the data likelihood) can be described by a prior spatial Gaussian process and hence a
realisation of the parameter will be multivariate normally distributed. In what follows we examine
both Maximum aposteriori (MAP) estimators for the models considered and fully Bayesian analysis
via Markov Chain Monte Carlo methods. The former are equivalent to Kriging estimators of
standard Geostatistics.
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Note the models discussed below have wide applications in an agricultural context, wherever
discrete data (counts or locations) are studied in a spatial context. Some examples of agricultural
applications are: land use map reconstruction; remote sensing of animal herds; soil science:object
recognition/modelling in thin sections; veterinary science: disease mapping, pollution assessment and
medical imaging.

2. General Random Effect Modelling Framework

In this section we propose a general framework for the incorporation of spatial prior structure
in the analysis of observational data of discrete nature. The approach can be applied to Poisson,
Binomial and also point process observational models and it will be shown that the normal
observational model, which yields Kriging estimators is a special case of the approach advocated
here. Define x,:i=1(1)n to be the cartesian coordinates of locations in a planar region. A study
window (A) is defined within which events are mapped. In the examples considered here, complete
realisations are examined, and the events could consist of counts within regions contained wholly or
partly within A or point events themselves. In the case of regions, we define n regions wholly or
partly in A. For point events, the {x ,.} are point event locations, whereas for counts they are region

'centres’. We define the log-likelihood of n events as:
I(xn)=YIn f(x;;n) ey
i=1

where f{.) is a probability density function and 1 is a p dimensional parameter vector (p < n). We
assume that (1) is a conditional likelihood given 1, where 1 has a prior distribution denoted by 7(m).
In general, we assume that m(m) includes the spatial correlation structure and trend components
describing 1. Hence m can be regarded as a hyperparameter in this case. The joint posterior
distribution is given by:

P, (;c;n)oc exp(I(xn)).m(n) @

In general, it is often not possible to derive simple closed-form estimators for trend or covariance
parameters in (2). Clayton and Kaldor (1987) suggested using a quadratic approximation to a
poisson data likelihood and this led to the use of the EM algorithm. It is also possible to use Markov
chain Monte Carlo methods such as the Gibbs Sampler or Metropolis-Hastings(M-H) (see, eg. Besag
et al., 1991, Breslow and Clayton, 1987). This does not require the use of an approximation to the
data likelihood.

In our work we demonstrate the use of the predictive distribution based on an asymptotic
expansion (quadratic Taylor approximation) of the likelihood. This approximation yields maximum
aposteriori (MAP) estimators with little computational effort. These estimators reduce to Kriging
estimators when the likelihood is exactly normal. We also compare this approximation to a simple
Metropolis-Hastings algorithm for exploring (2), which avoids some of the computational problems
of the Gibbs Sampler applied to this problem. A novel feature of this work is the use of fully
specified spatial covariances in the spatial prior model for the data. This is equivalent to the Bayesian
interpretation of Kriging, where a spatial Gaussian prior distribution is assumed and a normal
likelihood for the observational data is also employed (see eg. Cressie, 1991, p172). Lawson and
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coworkers have applied these models to Poisson count data in epidemiological examples (Lawson,
1994, Lawson et al., 1996a).

2.1 The Quadratic Approximation

In this approach, we define first the saturated estimate of 1 based on (1), ie. the solution of
l (xln)‘ ,=0

where the prime denotes differentiation with respect to the subscript. This saturated estimate is
denoted as 7 . The likelihood evaluated at 7 is denoted as . By adopting a second order Taylor

expansion of l(xl’r\) about 7 it is possible to integrate out M from the posterior distribution. If a
spatial Gaussian prior distribution is assumed with T(n) ~ MVN (Fo, K), where Fisann X p design

matrix, o is a p X 1 vector of parameters, and K is a covariance matrix, then the predictive density of
7 leads to generalised least squares estimates for o

a=(F K F) F'Kq 3)

where K, =K - (‘I’")‘1 and " is the second derivative of ¥ wrt 1. The parameter covariances,

based conditionally on 1 are:
cov(a)=(F'K. F) - @)

This is just the regression of | on F with covariance matrix K. This general result can be applied
to a range of data likelihoods and table 1 displays a few examples of saturated estimators for a
variety of discrete data models. The final entry in table 1 is included as non-stationary Poisson
process models are of importance in the analysis of health risks related to putative sources of
pollution hazard and spatial ecological modelling. Note that this approach can be generalised to the
Generalised liner model. Define, in the usual notation, with canonical parameter 1, the log-likelihood

Table 1 : Common discrete models and their saturated canonical parameter estimators and information

datatype  m; (count) y, (count) x; (location)

model Poisson (A;)  Bin (m,P,) Poisson process

n A =e" P =exp(n; )/ {1 +exp(n,.)} Ax)= ")

n ln(mi) ln{y,- / (mi - }’i)} —ln(Ai)

—y'  diag(m,) )y, I,
diag{—————-—-—(m' ) }

m, : region total in Binomial example; A,. - ith Dirichlet tile area
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I = (y0-5(0))/a®)+c(3.0)
and V(L) = (du/do)a),
with E(y) = w=db/de withn=g(u)

Then ¥ = {y-b@)} ¥ (w)e'(w)
and E(-¥") = W.V(u)

where W = (V(u)™.(du/ dn))

The validity of the approximation will depend on the closeness of the quadratic approximation. For
example, in the Gamma case, only certain combinations of parameters will be valid, and in the

Poisson process case A(x;)>>0 Vx e A.
2.2 Goodness of Fit and Residual Analysis

Under the full posterior distribution the MAP estimate of 1, n™ say, is given by
n"=R"'T %)

where R=K"' -¥" and T=K'Fa—¥"f|+¥'. Hence the MAP estimate can be directly

evaluated by substitution of & and estimated covariance parameters in K. In the assessment of
goodness-of-fit it is possible to compare models by their posterior probability or its log. In addition,
an ABIC criterion is also available (Ogata, 1991). Crude residuals can be computed as

and their variance can also be estimated. Assessment of residual diagnostics can always be carried
out by generating a residual envelope from samples of residuals from the fitted model and comparing
the observed residuals with this envelope (Gelman et. al. (1995) provide examples of this approach).

2.3 Model Comparison, MCMC and data example

The above estimators use an approximation to the data likelihood and in some cases this may yield
relatively poor estimates of parameters. To assess the appropriateness of the method we have
compared the results to those obtained from posterior sampling using an Markov chain Monte Carlo
method. The available methods of posterior sampling are reviewed in Gilks et al. (1996), Smith and
Roberts (1993) and also in Gelman et al. (1995). Breslow and Clayton (1993) have applied a Gibbs
Sampler to a disease mapping problem where the adjacencies of regions define a simple
autocorrelation structure (Gaussian Intrinsic Autoregression). Our approach differs in two respects.
First, we adopt a full spatial Gaussian prior distribution for 1 This allows full definition of distance-
based dependence between regions which we believe to be more appropriate for disease correlation.
Second, while it is possible to construct a Gibbs Sampler which includes spatial covariance and range
parameters, it is more straightforward to adopt a Metropolis-Hastings (M-H) algorithm. The reason
for this is that the acceptance probability for a proposed new parameter value is defined as:
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where ¢(,) is the proposal distribution for 6, and only the proposal parameter value {6 } is compared

to the current value {6}. This allows vector 6, as well as single 6 updating (Besag and Green, 1993),
a feature not usually directly available within a Gibbs Sampler. The other advantages are that the
conditional distribution of ©* (say) given other parameters is not required. This often requires
rejection sampling, and, usually finding a conditional maximum aposteriori estimate of 6. Hence, M-
H sampling has significant advantages in this application area.

We apply the above MAP estimators and MCMC method to an example of discrete data: Sudden
Infant death incidence in North Carolina USA. In this example we compare the MAP results with
modal estimates produced by a MCMC Metropolis-Hastings algorithm. We assume that the proposal
distribution is symmetric and independent of previous 6 values. In addition, we employ uniform
indifference prior distributions for covariance and o parameters to allow comparison of the resulting
estimates with those obtained by approximate MAP estimation.

Example: Sudden Infant Deaths in North Carolina

Cressie and Chan (1989) presented an analysis of counts of Sudden Infant Death (SID) in the 100
counties of North Carolina USA, for the period 1974-1978 (see also Cressie, 1991). It is thought
that the counts of SID are related to deprivation gradients in the state. The original analysis
addressed this issue, while here we provide an example of spatial modelling based on a constant state
wide expected rate (2.06/1000 live births). Figure 1 displays the smoothed standardised mortality
ratio (SMR) county-wise for the state of North Carolina. In this example the regions (counties) are
irregular and they display considerable spatial structure. The SMRS appear to be high in the north-
west, north-east and the south. For modelling purposes we have assumed a Poisson data likelihood
with intensity:

Table 2. Results for the best subset ABIC model

parameter MAP estimate  standard error  Modal M-H estimate  gtandard error*z
1 -1.0867 3.8419 -1.216 0.921

x 28.780 6.2697 20.572 8.915

y 17.677 6.6576 14.232 4.782

x2 8.3156 8.8170 2.159 2.019

y? -26.603 4.9683 -24.782 5.293

o 1.0008 03557 1.8647 0.0122

R 0.2008 0.0354"1 0.00151 0.00139
log(posterior) -116.151 -104.2

ABIC 242.30 218.4

"1, s.e. estimated from REML likelihood curvature
"2, s.e. estimated from final 100 converged iterations




48 Data in Action

A, =e, -exp{n,) where ¢; is the expected count, m; is the SIDS count for the ith county, and the
saturated estimate is 7, =log(m; / e,) . Table 2 displays the results for the best subset model for a set
of 5 spatial variables. Figure 2a displays the MAP estimate of log (relative risk) for the best model

fit. The M-H algorithm was checked for convergence using conventional diagnostic checks (see eg.
Gelman et al., 1995) and convergence occurred within 5000 iterations.The results suggest that there

is a linear (x-y) component and also a quadratic term in the SID surface (yz). The main difference

between MAP and MCMC modal estimates here is the lack of spatial correlation found in the M-H
result. Otherwise the two approaches give similar results. The residual surface for the MAP estimates
(figure 2b) shows considerable unexplained structure in the north-east and north-west counties, and
hence the model is not completely successful in accounting for the spatial structure over the whole

study region. Note that Cressie and Chan (1989) also found considerable residual structure in such
areas after fitting deprivation models.

ame
Q90 W1 1.‘\ 38

Figure 1 North Carolina: SMR surface for SIDS in the 100 counties
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Figure 2a. MAP estimate of log(relative risk) for North Carolina
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Figure 2b. Residual surface from MAP estimation for North Carolina
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3. General Cluster Modelling Framework

The analysis of clustering in spatial point data has attracted increased interest in recent years. A
growing interest in environmental issues both in the general public and the scientific community, has
led to interest in clusters of disease related to environmental hazards eg. power stations, incinerators,
electromagnetic fields or toxic waste dumping sites.

In this section, an approach to the analysis of clustering in small area health data is proposed,
which can accommodate both of the above cases, via direct modelling of clustering within a more
general model framework. The methods used are primarily Bayesian, as considerable use is made of
MCMC methods. The methods have considerable generality and can be applied to both case event
and counts of cases in arbitrarily-defined regions.

3.1 Model Development

The data y and cluster centres X are point patterns:

y={y1, ............ ym},m>0, ;€T
X={x1, ............ xn},nZO,xiEU,

where T, U are bounded open sets in R*. By allowing U to differ from 7, we allow the possibility of
locating putative cluster centres outside the window of observation of the data (7). This makes some
allowance for the edge effect where data could appear in the window but a centre lies outside ie. the
boundary splits a cluster so that some part of the form is censored. The observed data {y} are
address locations of cases of disease, observed within 7 and a fixed time period. Diseases of interest
could be leukaemias, which are thought to cluster weakly (Cuzick and Hills, 1991), or possibly,
respiratory disease, such as respiratory cancer, larynx cancer or bronchitis, which could relate to one
or more sources of health hazard (eg. incinerators, waste dump sites etc.). In either case, unobserved
heterogeneity in the environment and/or population experiencing the disease events could lead to
clustered disease incidence over the window 7.

In what follows we represent this modelling approach by using the first order intensity of the
process, with suitable parameterisation for particular applications:

Mylx)=g(y). f(v.x.0). ©6)

In all the applications we examine, g(y) is considered to represent the background 'at-risk' process,
and f{.) is defined as a function of y, x and a parameter vector 8. The exact form of f{.) will be
determined by the application. We assume a multiplicative link between the population background
and f{.) which implies that any spatial structure modelled in f{.) will be directly modified by variations
in g(y). The alternative of a pure additive link (see, eg. Breslow and Day, 1987, p142), would imply
that spatial structures modelled in f{.) (eg. clusters) were of fixed size and hence unaffected by the
population structure. This would appear to be inappropriate for spatial epidemiological data. In the
application discussed here g(y) is estimated non-parametrically from an external data set and analysis
is made conditional on g(y). Issues relating to the estimation of g(y) are discussed further by

Lawson (1996¢) and Lawson and Waller (1996).
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Case Event Models

Where case event locations are to be modelled, it is possible to define a general point process model.
Assume that, conditional on the x, the case events are independently distributed as a modulated
heterogeneous Poisson Process with intensity given by (6). In the case of clustering, we condition on
the realisation of a spatial stochastic process governing the x locations. Hence, for this case, we
require a 'prior' spatial distribution to describe the x behaviour. In both cases, however, the general
model of conditional independence of cases is assumed to have intensity:

Jj=1 i=1

Aylx)= g<y>-(l+n2h(y —xj)}-fl(Hf (y*B))

where the disease is known to cluster, but the analysis is also a function of y* covariables (Lawson,
1996b).

Prior Distributions and Cluster Structure
Prior distributions must be provided for the components 7, , x and parameters in h(y - x). Typically,

the number of centres is assumed to have a Poisson (p) distribution, while x could follow a
homogeneous Poisson process. The author and co-workers (Lawson, 1996a; Baddeley et al., 1996)
discuss the theoretical justification for this in non-modulated cluster processes and Cox processes.
Alternative specifications for the x prior distribution (eg. a Markov inhibition process) can be
suggested. The cluster distribution function can take a variety of forms. Here we use

h’(y - X) = _2_1%(_ e-[lly-—x]]]z/z,( (7)

a radially isotropic gaussian form with parameters | and cluster variance k. The possibility of
allowing a flexible cluster shape, via density estimation of A(.), may be attractive in situations where
the exact form of clusters cannot be parameterised.

Applications in Count Modelling

Small area data is often available only as counts of cases within arbitrary regions (usually census
tracts). The methods applied to case event data can be applied here also. Given the conditional
independence assumption, then counts in disjoint regions are independent Poisson distributed with

integrated intensity given by L X(ulx)du, where A is an arbitrary region. It is therefore possible to

recover the intensity function %(ylx) , suitably parameterised, based on count data.

3.2 Algorithm

The development of Markov Chain Monte Carlo (MCMC) methods and other iterative simulation
tools (Tanner, 1991; Besag and Green, 1993), has allowed the implementation of algorithms which
can explore posterior distributions of the spatial problems identified above.

Basic Point Event Algorithm
In the most general Bayesian formulation of the cluster model, we define the joint posterior
distribution of {x,0/ as
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P(x,0) o L(ylx).p(x).g(®) (8)

where

L(ylx)= {ﬁ 567 Ix)} .exp{-jr A(ul X)dll} &)

i=1

p(x) = prior distribution for x (Markov inhibition or Uniform) and n, (Poisson (p)), g(6) = prior
distribution for cluster function parameters, and

Ay, 1x) = g(yi).(1+gh(yi —xj)) . (10)

where there are n, unknown centres. Note that the final fixed-foci term has been dropped for
simplicity.

The derivation and properties of the following algorithm are discussed in Lawson (1996a) and
Lawson et al. (1996b). The posterior distribution (8) could be explored by conventional iterative
simulation methods, except for the cluster term, where a summation with a random upper limit
occurs. This is essentially a mixture problem, and the parameters in this problem are best explored by
a reversible jump Metropolis-Hastings (MH) sampler (Geyer and Mdller, 1994; Green, 1995),
involving a mixture kernel. Essentially the joint distribution of x and »n, must be explored during
each iteration. This can be achieved by a spatial-birth-death-shift (SBDS) algorithm, where centres
are added, deleted or shifted with given probability. A sequence of likelihood ratios can be specified
for each case. In general, for a new configuration x', the posterior density ratio is, conditional on
other parameters:

L(ylx') p(x')
L(yix) p(x)

(1n

This ratio is evaluated for x within the SBDS algorithm based on an MH criterion. A proposal
configuration x’ is accepted with probability

Alx,x) = min{l Plx'6) q(x"x)} (12)

T P(x,8) g(x,x)

where q(x',x) is the proposal distribution for the new state. Often the proposal distribution for a
point u is defined as a function of A(y - u) itself, (e.g. lZ',"lh(yi —u),,) as simpler uniform
me="=

proposals can lead to high rejection rates. We use Markov inhibition priors for x, as the peaked
nature of the likelihood surface can lead to multiple response, and it is important to propose
spatially-separate new x values to avoid this problem. To this end, the Strauss prior can be used, and
is defined for the proposed addition of a point u as
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p(x vua)

Cp(x)

where B and 0 <7y < 1 are parameters and n.(u) counts the number of x within R of u. Similar ratios

can be defined for deaths and shifts. The detailed specification of the acceptance ratios are found in
Lawson (1995) and Lawson (1996a).

The parameters of the cluster distribution function, and other prior distributions can be treated
conventionally. In most cases here, we assume that n, has a Poisson (p) prior distribution. This

=By (13)

parallels the assumptions which specify a Poisson Cluster Process in ordinary point process models
(Diggle, 1983; Lawson, 1995). It is also possible to assume a prior distribution for p, and a Gamma
distribution is often used. We have no strong prior reason to assume any other distribution than a
uniform indifference prior on a suitable range (usually < m).

The cluster distribution parameters (I, k), based on model (7), are also assumed to have
uniform indifference priors. The sampler steps used for p, u and x differ depending on whether a
Gibbs or MH step is simple to implement. A Gibbs step is straight forward for p, whereas to
implement a Gibbs step for K or [L requires an optimisation step (to obtain ml estimates), and in these
cases an MH step is used.

The count cluster modelling case
It is possible to extend this basic point event algorithm to the case where only counts of the
case disease are observed within arbitrary regions. This application of the algorithm is of
considerable importance given the ready availability of such data and level of interest in its analysis.
We assume that conditional on the x, the process is a regionalised heterogeneous Poisson
process governed by A(ylx) and

E(n,)= in Aulx)du = A(A,1x) (14)

where A, denotes the ith region, and »n, the disease count in the region. As disjoint regions are

independent under conditioning, then the {n,} are Poisson distributed with rates A(Ailx)

Conditional on N, where N = z;n ;» the likelihood for p regions is

n;

L(nlx,0)= lil ZA(i(Iz)I )

Now in this case we do not observe the point case events but only know their region totals.
However, for unknown foci locations (x) we can use directly the basic point process algorithms and
replace the likelihood ratios with those based on (15). Note that the use of (15) requires integration
over arbitrary regions.

(15)

Define {ij }, Jj= l(l)n ., the point locations of case events within the ith region. In each region,

the conditional distribution of z given {n,0 } is given by:
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(n,8) - —— 2 16)

o, Mud

Hence, within the ith region, the joint distribution of {z ,j} is

H::l x(zif )
{f, Ml

The important result of this algorithm is that the likelihood (or full posterior distribution) is now a
function of the 'pseudo-data’ (z) and hence point process modelling can be used via augmentation to
model count data. Assuming that it is required to estimate cluster centres {x} from the count data,
then suitable parameterisation of A(z) with cluster terms and the inclusion of an inner M-H iteration
for {x,nJc }, prior to the @ step, provides a cluster version of this algorithm. We use the following

a7

finite element mesh numerical approximation to evaluate regional integrals:

J, Mu)du = YA, (18)

j=1

where j denotes the jth mesh triangle for the ith region, and T, is the triangle area (see eg. George,
1991). The intensity, A ;, is evaluated at the triangle incentre.

Data Example: Respiratory Cancer in Central Scotland
In this example we examine the clustering tendency of respiratory cancer (ICD code: 162) in Falkirk,
central Scotland, a town formerly associated with a variety of heavy industries during the early to
mid 20th century. For the purposes of this example, respiratory cancer incidence in a subset of 26
contiguous Falkirk census enumeration districts (eds) has been recorded for a five year period 1978-
1983. The total cancer count, expected count based on 16 age X sex strata and external (Scottish)
rates for the period, and digitised ed boundaries are available for this example. Figure 3 displays the
location map and outline ed map. Deprivation indices in this case were not available. The intention in
the following analysis is to demonstrate the application of the count data algorithm to the estimation
of cluster structure.

We have applied the count data algorithm, including augmentation of point events, with the

following conditions. We initialise z with CSR events in A, = 2; A,. New values of z are rejection

sampled from ?\,(z’ ) M-H updates are used for |1, whereas a Gibbs step is straightforward for p (the
cluster rate parameter) and k. These steps are based on the augmented z likelihood, with g assumed
constant across regions and k(zij ) =E, C(z ,.j), where C(z,.j) represents the cluster model terms. We

have only included the unknown foci term for this example. A Markov (Strauss) prior has been
included. Figure 4 displays the results of augmentation applied to this data set. Convergence
occurred relatively quickly (< 200 iterations of main algorithm). There is some evidence that the
number of centres lies in the range of 1 to 3, although the parent rate mode is 1.12. The posterior
marginal distribution of centres is relatively uniform.
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Figure 3. Falkirk example: enumeration district (ed) map.
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Figure 4a. Falkirk example: parent rate and cluster variance qq plots (last 50-50 iterations)
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Figure 4b. Falkirk example: posterior marginal densities of parent rate and cluster variance.
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Figure 4c. Falkirk example: cluster centre posterior marginal distribution.
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—

Figure 4d. Falkirk example: final iteration z distribution realisation

4 Conclusions and Further Work

The main conclusion of this work is that it demonstrates the flexibility of hybrid MCMC
algorithms in the analysis of point process models with heterogeneous backgrounds. The main future
development of this work lies in the modelling of general cluster situations with additional (non-
specific) random effects (correlated or uncorrelated). The extension to space-time is straightforward
but portends a wide application area.
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2.2 Data use and Bayesian statistics for model calibration
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Bayesian statistics summarizes knowledge about a model's parameters in the form of a probability
distribution. It provides a theoretically simple way to combine existing information about the
parameters with information from new data. This feature makes Bayesian statistics particularly
attractive for the combination of the diverse types of information required to set the parameters of a
parameter-rich model. By way of example, the problem of calibrating parameter-rich models using
system-specific observational data and general information from literature is considered from the
Bayesian viewpoint. This viewpoint provides theoretical insights. Moreover, recent developments in
Bayesian numerical methods hold a promise for actually performing calibration. It is noted that
Bayesian methods provide an excellent starting point for uncertainty analysis and decision support.

1. Introduction

Suppose one has to adapt a model's parameters to a specific system. In general, mere observational
(non-experimental) data about the system are insufficiently informative to set all parameters when the
model has many of them. One often encounters the problem that the exogenous circumstances under
which the data originated constitute only a small part of what the system may experience, so that
different parameter settings may result in nearly equal fits to the observations, but to widely different
predictions under new circumstances.

A major asset of system modelling is its capability to integrate information from diverse
sources. Accordingly, it would be sensible and economical to remedy data shortage by scrutiny of the
literature for additional information on the parameters. Literature data often originated under a
broader range of exogenous circumstances, but they rarely pertain to the specific system for which
the parameters have to be set. Most often, literature information alone is insufficient to parameterize
a model for a specific situation (e.g. Kabat et al., 1995; Metselaar and Jansen, 1995a).

When both sources of information are insufficient by themselves, one obviously should try to
combine them.

Bayesian statistics provides elegant ways to combine old (prior) information with new data,
into accumulated (posterior) information. In Bayesian statistics, one summarizes knowledge about a
parameter in the form of a probability distribution for that parameter. If the parameter is a vector, the
distribution will be multivariate. Both prior and posterior are distributions. Probabilities that
summarize one's knowledge are called 'epistemic’ probabilities. Their status differs from frequentist
probabilities, as occur for instance in coin tossing: such probabilities can be measured, whereas
epistemic probabilities are more subjective. (e.g. Box & Tiao, 1973; Kroese et al. 1995.)

This paper discusses Bayesian methods for calibration and validation of a model. Moreover,
it is briefly indicated that these methods connect quite well to uncertainty analysis and decision
support.

Section 2 describes common problems with the classical analysis of observational data when
the number of parameters to be estimated is large. We present the elements of Bayesian statistics in
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Section 3. The next section treats the construction of a distribution describing the information about
parameter values retrieved from literature. Section 5 discusses how parameter uncertainty is
translated into prediction uncertainty. Bayesian calibration forms the subject of Section 6. It results
in probabilistic predictions. Section 7 briefly discusses possibilities to validate such predictions. The
consequences for decision support, of having probabilistic predictions, are touched upon in Section
8. The paper ends with a discussion in Section 9.

2. Problems with the classical analysis of observational data

A typical example of a classical statistical problem is the following. Let vector y denote observations
of a system, while vector 6 denotes the model-parameters to be estimated, and vector x the

exogenous circumstances. Vector f{x, ) denotes the corresponding model predictions. The whole is
related by

y=flx,0)+¢

where vector € denotes the difference between observations and predictions, caused by measurement
and model errors.

Typical regularity conditions for the above problem are the following. (i) Identifiability. When
vector 67 is unequal to 0?, vector f{x, 8”) is unequal to f{x, 8?). (i) Differentiability: vector f{x, 6)
of model predictions has finite partial derivatives with respect to 6, up to order 3. (iii) Presence of a
randomness model: vector € is random, with known probability density, g(€) say, that may involve a
small number of additional parameters. There are quite a few more regularity conditions, but these
three suffice for the present purposes.

Under the above luxurious circumstances it is often possible to show that, with a large set of
data, an estimator of  exists that is approximately normally distributed with mean 6, and with a
covariance matrix that can also be estimated (e.g. Cox and Hinkley, 1974).

Now the problem with calibrating parameter-rich models is that very often none of the above
regularity conditions is satisfied. (i) Identifiability. The model predictions can for instance be
insensitive to changes of a sleeping parameter, belonging to a subprocess that is not activated under
the prevailing exogenous circumstances. Anyhow, if the number of parameters is greater than the
number of observations, the identifiability condition will not be met. (ii) Differentiability. Many
parameter-rich models respond discontinuously to parameter changes, by which fact the
differentiability condition is violated. (e.g. Metselaar and Jansen, 1995b.) (iii) Presence of a
randomness model. The observations of a system can constitute quite disparate quantities, e.g. time
series of leaf area, time series of weights of organs, waiting times for first occurrences. In such a
case, it is implausible to assume independent identical normal errors or something equally simple. A
more refined model is required that somehow reflects the different types of data. Duplicate
measurements are quite welcome to enable the formulation of a model for the random effects.

The differentiability requirement is the least fundamental of the three conditions.
Approximate normality of the estimator will be spoilt under non-differentiability. Moreover, many
common tools for finding the estimator and assessing its accuracy require differentiability. But apart
from that, non-differentiability can be overcome by brute computer force. In contrast, non-
identifiability reflects a serious data shortage, which might be overcome, however, when the data are
supplemented with additional information. Obviously, for all statistical approaches, a model for the
randomnes