

Soil carbon sequestration under old and new, grazed grassland in the Netherlands

Jantine van Middelkoop, Wageningen University and Research

MACSUR Science Conference 2017, Berlin

Introduction

- Soil carbon sequestration mentioned as mitigation measure.
 the 4/1000 Initiative
- C sequestration in soils might buy us time to develop mitigation strategies

Climate Change 2014 Mitigation of Climate Change

Working Group III Contribution to the Assessment Report of the mental Panel on Climate Change Sequestration: Increasing the size of existing carbon pools, thereby extracting CO₂ from the atmosphere (e.g., afforestation, reforestation, integrated systems, carbon sequestration in soils)

Soils in the Netherlands

- Agricultural land:
- 2 million ha of agricultural land
- 1 million ha of grassland
- 1 million ha of arable land of which 0.2 million ha maize

National trend OM

eurofins agro

Organische stof

Grassland experiment

- Long term measurements of SOM in experiment,
- Experiment was set up to measure and understand mid/long term P response (in cooperation with WER: Ehlert&Regelink)
- SOM was measured, P has no effect
- No grassland renewal (no tillage)

Grassland experiment

- Experiment started in 1997: close to actual practice in The Netherlands
 - Manure application at balanced P level (input = output),
 N (close to) application standard
 - Alternately grazed and mowed (ca. 50-50 in DM)
 - 1) Sandy soil, 2) Dry sandy soil, 3) Young marine clay (reclaimed in 1957, grassl since 1973), 4) Peat soil
 - Swards established in 1) 1994 2) 1989 3&4) <1989
 - (-1) ((-1)) ((-

No (provable) change of SOM

No (provable) change of SOM, "redistribution" to upper layer

Dry sandy soil, south NL

Dry sandy soil, south NL, SOM

No (provable) change of SOM

Dry sandy soil, south NL, SOM

No (provable) change of SOM, "redistribution" to upper layer

Young marine clay, centr NL, SOM

Increase of SOM, 1% in 18 years, 0.051%/a

Increase of SOM, 1% in 18 years, 0.051%/a Control of the grassland area

Peat soil: C loss by definition: 0-10cm in 1997 is not the same layer as in 2015

Young Marine clay

Increase SOM: 1% in 18 years \approx 0.051%/a in 0-30 cm 4 promille would be 0.024%/a

 $1.4 \text{ g/cm}^3 \times 30 \text{ cm} \times 0.00051 \times (10^4 \times 10^4)/10^6$ =2.1 ton SOM/(ha × a) = 0.96 ton C/(ha × a)

 \rightarrow 44/12 × 0.96 = 3.5 ton CO₂/(ha × a)

Control < <15000 ha in NL, <1,5% of the grassland area</p>

- How much OM is roughly added? Estimation per ha:
- 50 m³ applied slurry = 1500 kg eff OM
- manure patches = 500 kg eff OM
- 2000 kg eff OM by grass (turnover)
- 4000 eff OM ≈ 1800 kg C
- ca. 50% is measured in SOM increase

Hypotheses

- Under "old" grassland increasing C in soil is difficult at actual system and GAP, probably saturation occurs/has occurred
- Young marine clay can still sequester more C and saturation level is higher than on sandy soils
- For grassland on dairy farms in NL the opportunity for C sequestration seems limited at actual system under GAP

Plans

- Use the data for model evaluation (e.g. introductory carbon balance model ICBM, Andrén&Kätterer, 1997)
- Find strategies with models in which C under grassland is preserved and sequestered where possible
- Can we find different system (sylvopastoral systems?) to sequester C to a higher saturation level?

For further information please visit: www.macsur.eu