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Preface

The easiest way of learning the principles of modeling and simulation is by using a simulation
language. The equations of the model are written in a file and the simulation language calculates the
behaviour of the system through time. The user does not have to worry about the details of the
calculation method and about a lot of trivial matters concerning input and output.

The programs used in practical research, however, serve other than educational needs. They have
to run on the computer types used now and in the future. Standardization of relatively well-
established parts of a model is essential for progress and cooperation. And finally, simulation models
are combined more and more with user-friendly shells, with procedures for parameter optimization
and with Geographic Information Systems. All this requires the flexibility of a well-defined and widely
available computer language.

For writing a simulation model in Fortran 77, many tools are in use at AB-DLO and TPE-WAU. The
numerical procedure and the parts for input and output do not have to be written again and again for
every new program. Still, one has to know how to use these tools and one has to understand the
overall Fortran structure in which new equations are plugged in. It was the late Prof. C.T. de Wit who
convinced us that standardized "simulation modules" were nice, but not enough. There still is a
conflict between the requirements of good teaching and the tools used in research.

It is this conflict that made us produce the Fortran Simulation Translator (FST), a program which
translates the statements of a simulation language into a standard Fortran simulation module, which
can be immediately combined with all the existing tools. Like any other simulation language, FST can
be used as a black box between model equations and simulation results. Experienced users,
however, can take the intermediate Fortran source as a starting point for further work.

The lack of array variables in the first version of the FST translator appeared to be a more serious
limitation than we first thought. In version 2, we have implemented array variables and state arrays.
In doing so, we have kept in mind the purpose of FST which is the solution of a teaching problem in
the first place. This has led to some restrictions on the use of array variables.

The first proposals for FST have been discussed with Herman van Keulen, Jan Goudriaan, Frits
Penning de Vries and Peter Leffelaar. Gon van Laar did a lot of testing work while translating CSMP
programs into FST. Her enthusiasm for our error messages and bugs has helped us to finish the job.
We thank Michel Verbeek for writing the FST shell for DOS machines. And we thank many
users_without_manual for their comments and patience.

We hope FST will prove to be a valuable tool, in teaching, in research and in between.

Haren, Wageningen, June 1996
Kees Rappoldt, Daniel van Kraalingen
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Samenvatting

Het eerste deel van dit rapport vormt een inleiding in het gebruik van FST, de “Fortran Simulation
Translator’. FST is een programma dat de statements van een eenvoudige simulatietaal omzet in
een equivalent Fortran-programma met enkele daarbij behorende datafiles. Dit Fortran-programma
is goed gestructureerd en bevat slechts een minimale “overhead’. Het bevat in feite weinig meer dan
de vergelijkingen van het simulatiemodel in een zodanige vorm dat het model doorgerekend kan
worden met behulp van standaard subroutines. Het gegenereerde Fortran-programma kan daarom
uitstekend als uitgangspunt worden gebruikt voor verdere modelontwikkeling. Op deze manier is
gepoogd de afstand te verkleinen tussen enerzijds het onderwijs in systeemanalyse en anderzijds de
praktijk van het onderzoek. Ter ondersteuning van het onderwijs is veel aandacht besteed aan
goede foutmeldingen.

lets ingewikkelder onderwerpen zoals het gebruik van array-variabelen en het aanroepen van
Fortran-subroutines komen in afzonderlijke hoofdstukken aan de orde. Er is een hoofdstuk met
voorbeelden, waarvan een aantal is bedoeld voor gebruikers met ervaring in het maken van
modellen. Een meer formele beschrijving van de regels voor het maken van een FST-model vormt
een apart hoofdstuk: de “Reference Manual”. Tenslotte wordt het gegenereerde Fortran beschreven.

De structuur van de gegenereerde Fortran-modules sluit nauw aan bij de in deze serie rapporten
gedocumenteerde FSE-structuur. Ten behoeve van de simulatie van gewasgroei is het gebruik van
weersgegevens in FST teruggebracht tot het opgeven van een land, een station en een startjaar.
Naast FSE, kan er ook Fortran worden gegenereerd dat geschikt is voor Runge-Kutta integratie en
waaraan door de ervaren gebruiker “state” en “time events” kunnen worden toegevoegd.

Summary

The first part of this report is an introduction in the use of FST, the Fortran Simuiation Translator.
FST is a program which translates the statements of a simple simulation language into an equivalent
Fortran program with datafiles. This generated Fortran program is well-structured and contains little
more than the equations of the simulation model in a form which can be executed by standard
numerical subroutines. Therefore, the generated Fortran program may well be used as a starting
point for further model development. In this way we tried to close the gap between the needs of
teaching at one hand and the Fortran programs used in practical research at the other hand. The
use of FST in teaching implies that much attention has been paid to the quality of error messages.

Somewhat more complicated subjects like array variables and subroutine calls are treated in
separate chapters. There is also a chapter with example programs, somé of them meant for
experienced modellers. A formal description of the rules for FST is given in the “Reference Manual”.
Finally, the generated Fortran is documented.

The generated Fortran makes use of FSE, a Fortran structure documented in this report series. FSE
supports crop growth simulation, for instance by reducing the use of weather data to specifying a

country, a station and a start year. The same FST model can also be used to generate a Fortran
module which can be combined with Runge-Kutta integration. The experienced user can add time or
state events to this generated Fortran






1. Introduction

1.1 Qutline of this manual

In this manual the Fortran Simulation Translator (FST) is introduced and documented. Chapter 2
explains the use of FST by means of a simple example program. In Chapter 3, the various aspects
of FST are described in more detail. Chapters 4 and 5 are entirely devoted to the topics "Array
variables" and "Subroutine call's". Chapter 6 gives some ideas and examples.

Chapter 7 introduces the file structure behind a model run with FST. This file structure is important
for users who want to understand the installation of FST. But also other users who merely inspect
error messages, input files, output files and listings will appreciate some understanding of the
underlying structure. Chapter 8 is the Reference Manual of FST with a systematic description of the
various variable types and statements.

For the advanced user, Chapter 9 provides a description of the generated Fortran subroutines, the
generated data files and a brief description of the “drivers”, the numerical subroutines that organize
the calculations. A brief documentation of the linked libraries TTUTIL and WEATHER is also given,
but for details on these libraries the reader is referred to other manuals.

The idea of a simulation language is far from new and in this introductory chapter we give our
reasons for developing this one. Then some remarks are made on the type of models suitable for
FST and the limitations of FST.

As part of our testing work, various biological and physical models have been implemented in FST.
The cover pages of each chapter contains a graph of simulation results with a brief description of the
underlying model. Most of the programs used for these graphs are discussed in this manual.

1.2 Why another simulation language?

A simulation language enables a concise computer representation of a mathematical model.
Therefore, de Wit and his co-workers at Theoretical Production Ecology (TPE-WAU) developed their
crop growth models in CSMP (Continuous Systems Modeling Program, (IBM,1975)). By using a
simulation language, the details of the numerical method and the procedures for input and output
tables remain separated from the scientific model itself.

Nevertheless, during the last 10 years, the models used at TPE and AB-DLO have slowly evolved
from programs written in CSMP to programs entirely written in Fortran. Several reasons can be given
for that change. The first one is that Fortran subroutines form a good way to standardize well-
established parts of large models. This standardization is essential for progress and cooperation,
both within and between institutes. Examples are the subroutines for crop photosynthesis which are
widely used in crop growth models. The second reason for the gradual shift to Fortran is the
impossibility to maintain CSMP on new types of computers and in combination with new Fortran
_compilers. The third reason is that a simulation language tends to be closed in itself, whereas

simulation models are combined more and more with procedures for parameter optimization and
GlS. ‘ ’

Simulation models in Fortran are difficult to handle, however. They require experience and a lot of
discipline from the user. Within an organization, efficiency can be preserved only if the structure of
the models and their technical, non-scientific parts are standardized. Our contribution to that
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standardization can be found in van Kraalingen & Rappoldt (1989), Rappoldt & van Kraalingen
(1990), van Kraalingen et al. (1991), and van Kraalingen (1995). This work has reduced the writing
of a new model to writing a single "simulation module", a Fortran subroutine in a precisely defined
form containing the equations of the model and some necessary "overhead".

Even a standardized simulation module appeared to be more difficult to handle than a simulation
language. As also mentioned in the Preface, there still appeared to be a conflict between the
requirements of research groups and the tools needed in teaching the principles of simulation and
crop growth. We hope that FST, the Fortran Simulation Translator, closes this gap. It has been
designed to form a bridge between the use of a simulation language on the one hand and research
models in Fortran on the other.

FST translates the statements of a simulation language into a Fortran simulation module. Hence, the
central part of the Fortran program, the part containing the actual equations, is generated by the
computer running FST. The generated Fortran module is linked with procedures for numerical
integration, for reading input files and producing output files. Then the model can be executed.

To a generated simulation module belong several data files, also generated. And for reading these
data files, the generated Fortran program contains calls to input subroutines from the utility library

TTUTIL (Rappoldt & van Kraalingen, 1990 ; van Kraalingen & Rappoldt, 1996). This illustrates the

high degree of integration between FST and the Fortran tools developed earlier.

FST is not meant as a general simulation language. On the contrary, FST is limited to the state
variable approach of continuous systems and only two integration methods have been implemented.
FST generates an interesting intermediate product, however: a well structured Fortran program with
data files. The possibility to use this generated Fortran as a starting point for further work makes
FST a valuable tool. As far as we know, none of the existing simulation languages offers this
possibility, although they may well be more powerful from a mathematical or numerical point of view.

The high quality of the FST-generated Fortran model is reflected, for instance, by the possibility of
reruns for (many) different values of arbitrary input parameters. The new parameter values just have
to be specified in a data file. This implies that FST models can be easily combined with procedures
for parameter optimization and GIS. Calling the generated Fortran model from any higher level
system (like a GIS system) does not require changes in the generated Fortran.

The main function of FST, a bridge between teaching and research, implies that there is no need for
extending its possibilities indefinitely. We feel that the present version 2.0 serves the purposes it was
meant for and we do not foresee major extensions in the future.

1.3 Principles and limitations of FST

The FST translator is a program, which reads the statements of an "FST simulation model".
Obviously, there are rules for writing a model in FST and these rules define the simulation language.
For historical reasons, part of the FST simulation language is equal to CSMP. Other aspects have
been adapted or are completely new.

An FST simulation model follows the so-called "state variable approach”. The status of a system is
described by one or more continuous state variables. These state variables change with time. The
rates of change depend on the current values of the state variables, on time itself and possibly on a
number of "model parameters". Clearly, the state variables have to be given initial values. Starting
from these initial values, future values of the state variables are then calculated by integrating the
rates of change.
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An FST simulation model contains little "overhead". A model may just consist of equations for the
rates of change, the start values of the state variables, the start and finish time and the names of the
output variables (see also Chapter 2). After reading the statements of the FST model, the translator
"thinks them over" and writes an equivalent Fortran module with associated data files.

The FST translator does more than just copying the model equations to a Fortran subroutine. The
internal consistency of the model is carefully verified. A quantity A is expressed in terms of B and C,
for instance. In an ordinary programming language, A can be redefined many times. In an FST
model, however, there can be only one such statement. If, in addition, B is expressed in terms of A
and C, the FST translator produces an error message because A depends on B and B depends on
A. The FST translator can produce more than 350 different error messages. Much attention was paid
to their clarity. An FST model without translation errors is, at least technically, a good model.

The rate of change belonging to a state variable is in fact its first order time derivative. Formally, the
equations for the rates of change form a set of coupled, first order differential equations, the
"equations of change". Analytical solutions of the equations of change are the most elegant ones but
they are impossible in most situations. In the literature on numerical solutions, simulation is
sometimes described as "solving an initial value problem" and many different methods are known.
For a readable introduction we refer to Press et al. (1986). In the technical literature, the programs
which implement the various methods are known as "ODE solvers" (ODE means Ordinary
Differential Equation). In FST, only the basic Euler integration and a Runge-Kutta method with
controlled integration error have been implemented.

The two integration methods used in FST have been implemented in the form of “model drivers”.
These are Fortran subroutines that “drive” the simulated process from beginning to end. The
integration methods used in FST are both explicit methods. This implies that FST is not suitable for
solving equations that require an implicit integration method. A second limitation is that time and
state events during the simulated process are not possible. Such events are moments or system
states at which special things happen. Some of the model drivers themselves, however, can handle
time and state events. Hence, experienced users can add events to an FST-generated Fortran
module (see Chapter 9).

The simulation language FST lacks control structures. An FST model consists of a number of
mathematical relations between quantities without IF..ELSE..END IF or other control structures. In
case of two alternative formulas there are simple tricks to get around this limitation. in complicated
cases, however, one needs a separate Fortran subroutine which contains the desired structure. The
subroutine is then called from the main FST program. The Fortran statements of the subroutine are
not verified by the FST translator.
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Figure 2.1 on the title page of this chapter. Two biological populations with sizes N1 and N2
according to the Lotka-Volterra competition model in Listing 2.3 on page 15. The model has been

initialized at 40 start positions along the edge of the graph. The 40 curves describe the status of the
system through time. From each start position the two populations eventually reach the same
equilibrium status given by (N1,N2) = (625,1500).



2 Getting started

The Fortran Simulation Translator (FST) has to be installed on your computer. If this has not been
done yet, you need the installation instructions for the computer type you use. These instructions are
provided with the floppy disks. :

Once FST has been installed you need to know the commands for running an FST program. The
first step is always to type in the program with a text editor. This results in a file with a name usually
ending with extension .FST. The second step, running the model, is usually an automated procedure
which is started by pressing a single key. In other cases one has to give a sequence of commands.
Some details for Macintosh, MS-DOS and VAX/VMS can be found in Chapter 7. Also for an
overview of the various computer programs and files involved in a model run, we refer to Chapter 7
(especially Figure 7.2 on page 88).

Although the procedure for running an FST model differs among different types of computers, the
FST simulation language itself is the same on all machines. This chapter begins with a simple
example which is then extended in two different ways.

2.1 A small FST program

The model in Listing 2.1 shows a small FST model, which is easily typed into a file. It describes
exponential growth according to the well-known equation

dr _
dt

with, as initial condition, the value 1.0 for the state variable X.

ax

The first statement, INITIAL, marks the beginning of the initial calculations. These calculations have
to be carried out before the actual process simulation is started. This simple model does not require
initial calculations, however, and the initial section is empty.

The second statement, DYNAMIC, marks the beginning of the dynamic calculations. There are two
dynamic calculation statements, the INTGRL (“integral’) statement and the calculation of the rate of
change RX. The INTGRL statement tells the FST translator that X is a state variable which has to be
initialized as IX and whose rate of change is RX. The calculation of RX is the actual equation of
change, expressing RX as function of the state variable X.

The indentation of the two calculation statements in Listing 2.1 is optional. The indentation is used in
this chapter to emphasize the difference between calculation statements and other types of
statements. Later in this manual indentation is not used.

The INCON statement defines the initial constant IX. The PARAMETER statement defines the yet
undefined model parameter A, appearing in the expression for RX. This completes the description of
exponential growth. Note that the values assigned to IX and A in the INCON and PARAMETER

statement need to be real numbers and cannot be replaced by expressions: Hence,-the INCON-and——

PARAMETER statements are not calculations.

The last four statements are necessary for a numerical solution. The TRANSLATION_GENERAL
GENERAL statement selects a numerical method, i.e. Runge-Kutta integration method implemented
in the driver RKDRIV. This is a "work horse" suitable for many problems involving ordinary
differential equations. RKDRIV adapts its time step in order to control the accuracy of the numerical
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solution. The other general driver EUDRIV (activated by writing DRIVER="EUDRIV') and the FSE
driver (activated with a TRANSLATION_FSE statement) use the value of DELT as a fixed time step.

Clearly, the translator also has to know a start and finish time for the simulation (STTIME and
FINTIM). The time step DELT is used as a first guess only. The actual time steps taken are made
smaller or larger according to the accuracy of the integration steps. Finally, X is selected as output
variable and the time interval between successive output values is set by setting the timer variable
PRDEL to 0.5 ‘

Listing 2.1 Exponential growth in FST

INITIAL <-calculations from here are initial

DYNAMIC <-calculations from here are dynamic
X = INTGRL (IX,RX) <-state, initial value and rate of change
RX = A * X <-calculation of rate of change

INCON IX=1.0 _ <-set initial value

PARAMETER A=0.1 <-a single model parameter

TRANSLATION GENERAL DRIVER='RKDRIV' <-the translation mode is selected

TIMER STTIME=1.0 ; FINTIM=10.0 ; DELT=0.1 <-see text on DELT

PRINT X <-some output is required

TIMER PRDEL=0.5 <-time interval between output times

Execution of the model in Listing 2.1 leads to an output file RES.DAT in which the value of X is given
between the start time STTIME and the final time FINTIM with intervals 0.5. Before extending this
model in the next sections, there are a few remarks to be made.

The FST program in Listing 2.1 shows that a variable can be used in calculations before it is defined
as a model parameter or as an initial constant with INCON. In fact, the order of the statements in
Listing 2.1 is almost arbitrary. The only two requirements are that the INITIAL statement precedes
the DYNAMIC statement and the DYNAMIC statement precedes the two calculation statements. All
statement orders that satisfy these two requirements lead to the same result. This implies that the
INCON, PARAMETER, TRANSLATION_GENERAL, TIMER and PRINT statements can be put
anywhere in any order, also in between the calculation statements.

Although statement order is almost free, it is useful to adopt a certain style. In Listing 2.1, for
instance, the first four statements give the equations of the model. The INCON and PARAMETER
statement specify the numerical input values and the last four statements control the simulation and
its output.

The most important exception on the rule of a free statement order is the distinction between initial
and dynamic calculations. This distinction is made by means of the section statements INITIAL and

DYNAMIC. There are several other FST section statements. Some of them are introduced in Section
2.2 below. The full structure of an FST program is described in Section 3.1.1.

2.2 Extension 1. Weather dependent growth

The exponential growth model of Listing 2.1 uses a constant relative growth rate A. Now, this relative

growth rate is made dependent on temperature leading to the program in Listing 2.2. In addition to
the temperature dependency, also technical changes have been made, which illustrate the
possibilities of FST. An overview of the changes is:

e The program has been given a title by means of a TITLE statement.

e Comment statements beginning with a "*" have been added to the model

e The MODEL and END statements are introduced.

e The initial amount IX is calculated.
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e The relative growth rate A depends on the average daily temperature. This dependency is
described as a FUNCTION specified by a few points. Between these points function values are
estimated by means of linear interpolation.

e The average daily temperature is estimated from the daily minimum and maximum value.

A WEATHER statement is used specifying a country, a station and a year. The use of weather

data implies that the unit of time is day.

A FINISH condition is set.

There are a few more output variables.

The selected driver is changed into EUDRIV.

Two more runs are made, for 1986 and 1987, by means of two rerun sections following the

MODEL section.

Below, these changes are clarified in greater detail.

2.21 A program TITLE

The TITLE statement describes the content of the model. The descriptive text could be written also
in comment statements. The advantage of a TITLE statement, however, is that the text appears in
the output file and in the header of the generated Fortran program.

2.2.2 Program sections and statement order

The second statement in Listing 2.2 is the MODEL statement, which marks the beginning of the
model section. The model section is terminated by the first END statement. For clarity, the model
section of Listing 2.2 has been indented. The model section of an FST program contains all
calculation statements, input statements, control statements and output statements. Note that the
program of Listing 2.1 consists of a model section only.

In fact, the MODEL statement is optional. in short FST programs, like the one in Listing 2.1, the
MODEL statement is often omitted, but in more complicated programs it is useful to distinguish
between the model section (the core of the program) and the other sections.

The distinction between initial calculations and dynamic calculations was introduced already in the
previous section 2.1. Listing 2.2 shows that these sections (in fact subsections) lie entirely within the
model section. The INITIAL section is not empty this time. It contains the calculation of the initial
value IX, which depends on parameter B. The PARAMETER statement defining B immediately
follows the calculation of IX, thus expressing that IX and B belong together. The PARAMETER
statement could have been placed anywhere in the model section, however.

The three calculation statements for X, RX and TDMEAN form the DYNAMIC section. They describe
the dynamic behaviour of the system. After finishing the simulation, it is possible to carry out so-
called terminal calculations for evaluating the results of the model. These terminal calculations form
the terminal section, which is preceded by the section statement TERMINAL. A terminal section is
not present in Listing 2.2.

- Hence, the calculation statements of a model are organized in three groups: the initial, dynamic and

terminal calculations. The three groups are preceded by the section statements INITIAL, DYNAMIC
and TERMINAL. Within each group the order of the calculations is free. The indentation of the
calculation statements in Listing 2.2 is optional and the other statements of the model section may
be placed in between the calculation statements, like for instance the PARAMETER statement
defining B.
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2.2.3 An interpolation FUNCTION

The relative growth rate A is no longer a model parameter but is calculated as function of the
average daily temperature TDMEAN. This dependency is specified by of means an interpolation
function. The statement "A=AFGEN(TFUN,TDMEAN)" interpolates between the points of the
function TFUN which in turn is defined in the FUNCTION statement.

Listing 2.2  Exponential growth depending on average temperature

TITLE Temperature Dependent Growth <- model title appears in output file
MODEL <- the FST model starts from here
INITIAL <- calculations from here are initial
IX = ABS(B) <- calculate initial value IX
PARAMETER B=1.0 <- the model parameter B required for IX
DYNAMIC <- calculations from here are dynamic
X = INTGRL (IX,RX) <- state, initial value and rate of change
RX = A * X <- calculation of rate of change
A = AFGEN (TFUN, TDMEAN) <- AFGEN interpolates between points of TFUN

* empirical function relating the relative
* growth rate to daily average temperature

FUNCTION TFUN = -20.0, 0.0, ... <- note the statement continuation in FST !!
+0.0, 0.0,
+20.0, 0.1, ... <- between 0 and 20 degrees the relative
+40.0, 0.1, ... growth rate increases. Above 40 degrees it
+42.0, 0.0, steeply decreases, reaching 0.0 at 42
+50.0, 0.0 degrees.
* estimate the average daily temperature

TDMEAN = (TMMN + TMMX) / 2.0

WEATHER CNTR='NLD' ; ISTN=1 ; IYEAR=1985 <- country, station Wageningen and year

WEATHER WTRDIR='C:\SYS\WEATHER\' <- weather data directory

FINISH X > 100.0%IX <- a finish condition

TIMER STTIME=1.0 ; FINTIM=1000.0 ; DELT=1.0 <- unitoftimeis a day, due to WEATHER use
TIMER PRDEL=1.0

PRINT X, TMMX,RX <- three output variables
TRANSLATION GENERAL DRIVER='EUDRIV' <- translation mode and driver
END <- end of MODEL section
WEATHER IYEAR=1986 <- rerun for 1986
END <- end of first rerun
WEATHER IYEAR=1987 <- rerun for 1987
END <- end of second rerun
STOP <- end of all calculations

2.2.4 WEATHER

The next step is to calculate the average daily temperature TDMEAN. In Listing 2.2 this is done as
the average of the daily maximum temperature TMMX and daily minimum temperature TMMN.
TMMX and TMMN are predefined variables. They cannot be defined by the user and their values are
taken from data files specified by the WEATHER statement(s).

“The function of the WEATHER statements is to select a country, a station and a start year. Further,
the directory with weather data files has to be specified. This information enables FST to access
weather data files by means of the procedure described in van Kraalingen et al. (1991). In that report
also the format of the weather data files is described. Note these files are not read by the FST
translator itself. The data files are accessed only during the actual model runs. Lacking weather files
or absent data items may lead to a runtime error message of the weather system as described in
van Kraalingen et al. (1991).



2 Getting started 13

Apart from the two daily temperatures, there are four other predefined weather variables: the total
global radiation RDD, the vapor pressure at 9 a.m. VP, the average wind speed WN and the daily
rainfall RAIN. Further, some weather station data and some calendar data are supplied by means of
similarly predefined variables (see for details Section 3.2.4.4).

The use of weather data implies that the unit of time is a day. The value of STTIME should be
between 1.0 and 365.999... for an ordinary year and between 1.0 and 366.999... for a leap year.
During the simulation, the values of the weather variables are automatically updated each day. If a
next year is reached, the data of that next year are accessed.

2.2.5 A FINISH condition

In order to keep the output values within limits, the simulation is terminated as soon as X becomes
100 times as large as IX. This is achieved by means of the FINISH statement. The ordinary finish
time FINTIM, defined in the first TIMER statement, is used as a safeguard against excessive
simulation times. It is set to a 1000 days and the time step DELT is 1 day.

More than a single FINISH statement may occur in an FST model (see Section 3.2.4.5). The
simulation is terminated as soon as at least one of the conditions is valid.

226 Why EUDRIV?

The choice of the driver EUDRIV requires some explanation. We have a rough description of the
temperature dependency of A, making use of the average daily temperature approximated as
(TMMN+TMMX)/2.0. The daily temperature cycle is not taken into account and, as a consequence,
the growth process within each day is not really considered. Therefore, the driver EUDRIV with a
fixed time step of 1.0 day is a suitable choice.

For a truly continuous model, like the one in Listing 2.1, the driver RKDRIV is the right choice. In
Listing 2.2, however, we have jumps in TMMX and TMMN while going from one day to the other.
Therefore there are also jumps in TDMEAN and in the relative growth rate A. The driver RKDRIV
would interpret these jumps as the result of a lack of accuracy and would then reduce its time steps
around midnight. Clearly, the result of such calculations would still be close to the result obtained by
EUDRIV. The use of RKDRIV for a growth rate specified per full day, however, is at least inefficient
and may also be seen as a conceptual error.

227 Programming style

The END statement marks the end of the model section. Overviewing the entire model section it
should be noted that the state variable X is the first dynamic variable calculated, then its rate of
change RX depending on A, then A depending on TFUN and TDMEAN. Then the function TFUN is
defined and TDMEAN is found from weather data. Finally, the required weather data are specified.
This is an example of a top-down approach to the problem. At first, the relations between the
important model variables are given. Then the variables appearing in those relations are calculated,
and finally, the remaining undefined parameters are specified. This programming technique heavily
relies on the fact that the statement order in the model section is essentially free (with the exception
that initial, dynamic and terminal calculations cannot be mixed).
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A free statement order has its price. In the model section, each "user variable" has to be defined
once and only once. The FST translator carefully verifies the completeness of a model and does not
produce results if variables are left undefined, are defined twice, or if there are any loops in their
interdependency (for instance, A depends on B, B on C and C on A).

In the dynamic section of Listing 2.2, one might see an interdependency loop in the INTGRL
statement, defining the state variable X, in combination with the calculation of RX, in which X occurs.
INTGRL statements, however, are kept outside the evaluation of dependency loops. The reason is
that the interdependency between X and RX belongs to the state variable approach: given the value
of the state variable(s), the rate(s) of change can be calculated. The INTGRL statement in Listing 2.2
just means that a state variable X has to be initialized as IX and that RX is its rate of change. Ina
sense, the interdependency of X and RX is the very reason for writing the model.

2.2.8 Rerun sections

A very useful facility of FST is the possibility to specify reruns. After a complete model section a
rerun can be specified by simply redefining one or more variables. In Listing 2.2 the start year I[YEAR
has been redefined twice in two rerun sections. Similarly, parameter B could be redefined by means
of another PARAMETER statement. Each rerun section is terminated with an END statement and
the whole sequence may be terminated with a STOP statement.

Calculations may not occur in rerun sections. The calculations define the mathematical structure of
the model, which cannot be changed. Reruns are always based on new variable values. These are
not necessarily numerical values, however. Also the value of DRIVER or the country name in a
WEATHER statement can be redefined in a rerun section.

229 Results

Results of the model in Listing 2.2 are shown in Figure 2.2. The vertical scale is logarithmic which
implies that the curves show the relative increase of X (exponential growth would lead to a straight
line). The curves indeed show that the relative growth rate strongly increases in the northern
temperate summer starting around day 80.
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_ Figure 2.2 The status variable X as function of time for the program in Listing 2.2.
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2.3 Extension 2: A second state variable

We add a second state variable X2 to the model in Listing 2.1. The equations of change for the two
state variables X1 and X2 are coupled, which means that the rate of change for X1 depends on both
X1 and X2. Listing 2.3 gives the adapted model. Again, we make some remarks on the changes.

The TITLE, MODEL and DYNAMIC statements have been discussed already in Section 2.2. The
dynamic calculations in Listing 2.3 show that the inclusion of a second state variable is
straightforward. A second INTGRL statement is added and the rates of change are just calculated
according to the two equations of change describing the system.

Listing 2.3  Growth with intra- and interspecific competition

TITLE Lotka-Volterra competition <- model title appears in output file
MODEL <- the FST model starts from here
INITIAL <- there are no initial calculations
DYNAMIC <- calculation from here are dynamic
* the state variables
X1 = INTGRL (IX1,RX1) <- time integration for state variable X1
X2 = INTGRL (IX2,RX2) <- time integration for state variable X2
INCON IX1 = 100.0 ; IX2 = 100.0 <- two initial conditions

* the growth rates
RX1 = RGR1 * X1
RX2 = RGR2 * X2
* the relative growth rates reduced by competition
RGR1 = Al * (1.0 - X1/K11l - X2/K12)
RGR2 = A2 * (1.0 - X2/K22 - X1/K21)
* the maximum relative growth rates <- the model parameters with their meaning
PARAMETER Al=0.1 ; A2=0.2 indicated in comment statements
* the carrying capacities for the species alone
PARAMETER K11=1000.0 ; K22=2000.0
* the competition parameters
PARAMETER K12=4000.0 ; K21=2500.0
* gimulation control
TIMER STTIME=0.0 ; FINTIM=100.0 ; DELT=0.1 ; PRDEL=1.0

|

TRANSLATION GENERAL DRIVER='RKDRIV' <- the model is continuous
PRINT X1,X2
END
INCON IX1 = 240.0 ; IX2 = 100.0 <- reruns for a series of start values
END
INCON IX1 = 380.0 ; IX2 = 100.0
END
INCON IX2 = 2340.0 ; IX1 = 1500.0
END
INCON IX2 = 2620.0 ; IX1 = 1500.0
END
INCON TX2 = 2900.0 ; IX1 = 1500.0
END :
2.3.1 On the model

The implemented equations of change are
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The parameters A1 and A2 are the relative growth rates at low values of both X1 and X2. For larger
values, the two growth rates are reduced. It can be shown that there is a stable equilibrium when
K21>K11 and K12>K22. This means, roughly speaking, that stability requires the intraspecific
competition to be stronger than the interspecific competition.

2.3.2 The INCON and PARAMETER statements

An INCON or PARAMETER statement can be used to define several variables in a single statement.
The various definitions are separated by means of a semicolon ";". In Listing 2.3, each PARAMETER
statement defines a pair of model parameters, which expresses the symmetry between the two
equations of change. Alternatively, each model parameter can be defined by means of a separate
PARAMETER statements. There is no functional difference between the two methods. It is just a
matter of style.

2.3.3 The reruns

Listing 2.3 shows just a part of the 39 rerun sections in the original FST file. In each rerun section the
initial conditions are redefined. Figure 2.1 on the title page of Chapter 2 shows the results of the 40
simulation runs, not as function of time, however, but as lines in the (X1,X2) plane.

Each point of that plane represents a possible status of the system. The 40 initial conditions were
chosen along the edge of a rectangle in the plane. From each of the 40 initial positions, the system
has followed a path through "state space". The figure shows that all these paths end up in the same
point (625,1500), the stable equilibrium between the populations X1 and X2. This equilibrium is
clearly independent of the initial conditions. It depends, however, on the values of the four
parameters K11, K12, K22 and K21.
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Figure 3.1 on the title ,bage of this chapter. The potential yield of Spring Wheat as a function of the
start day of the simulation. The results for a number of years are combined in a single graph. The

temperature and radiation differences seem to be more important than the start day (for potential
yield!). The crop growth model was taken from Goudriaan & van Laar (1994).




19

3 Description of FST programs

In this chapter, the program sections and FST statements are introduced in greater detail. The
calculations, the control statements and the model input and output are described from a practical
point of view. For a formal description of statement types and variable types, the FST Reference
Manual (Chapter 8) is more suitable.

Not much is said on variable arrays and the use of Fortran subroutines since these topics are
separately discussed in the Chapters 4 and 5.

3.1 Program structure

3.1.1 Program sections

In Listing 3.1 the skeleton of an FST program is given. This skeleton consists of the section
statements at the beginning of the program sections. A full FST program starts with a
DECLARATIONS section, which may only be preceded by TITLE statements. In the
DECLARATIONS section array variables and subroutines are declared.

The MODEL section describes the actual model by means of calculation statements, input
statements, output statements and simulation control statements. In the previous chapter a few
examples have been extensively discussed. The calculations in the MODEL: section are usually
subdivided in INITIAL, DYNAMIC and TERMINAL ones. If this subdivision lacks, all calculations are
assumed to be dynamic. The input, output and control statements may occur anywhere in the
MODEL section, also in between or following the calculations.

Listing 3.1  The skeleton of an FST program

TITLE Skeleton <- one or more TITLE statements may be anywhere before the first END
DECLARATIONS

ce <- declaration statements

MODEL

<- input & output statements and simulation control statements may occur here
.. and throughout the INITIAL, DYNAMIC and TERMINAL section in arbitrary order.
INITIAL
cen <- initial calculations in arbitrary order
DYNAMIC
R <- dynamic calculations in arbitrary order
TERMINAL
<- terminal calculations in arbitrary order
END
e <- reruns section(s), each ending with END
END
STOP
S <- Fortran subprograms.
ENDJOB

Following the END of the MODEL section, reruns can be specified by means of statements which
redefine one or more of the input or control variables. Each rerun section is terminated by another
END statement. The list of reruns is terminated by STOP. Behind STOP one or more Fortran
subprograms may be included in the FST file. The Fortran section is terminated by the ENDJOB
statement, the last statement of the file.
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Not all section statements are necessary in each FST program. If the first statement of an FST
 program is a PARAMETER statement, for instance, the FST translator “knows” that there are no
declaration statements and that the MODEL section begins. In general, a section statement is
required only if the rest of the program cannot be properly classified without it.

This implies that the section statements DECLARATIONS, MODEL and ENDJOB can always be
omitted. INITIAL and TERMINAL are required only if there are any initial or terminal calculations. And
END and STOP are required only if there is anything following them.

Hence, an FST program with a MODEL section and dynamic calculations only, does not require
section statements (e.g. Listing 2.1 on page 10). Large FST programs become more readable,
however, by including the section statements, even if some of them are not necessary.

3.1.2 The smallest FST program

The program in Listing 3.2 consists of a TIMER and a PRINT statement only. The TIMER statement
defines the timer variables STTIME, FINTIM and DELT. These three timer variables control the start
time, the finish time and the time step of the simulation (in case of a variable time step method,
DELT is the initial time step). The second statement is an output statement. An FST program should
produce at least some output.

Listing 3.2  The smallest FST program

TIMER STTIME=0.0; FINTIM=10.0; DELT=0.1
PRINT STTIME

The program in Listing 3.2 works, although no process is simulated. Only time itself is simulated
between 0.0 and 10.0 but nothing else happens. Listing 3.3 gives the same, empty model written
now as a complete FST program.

Listing 3.3  The program from Listing 3.2 with all section statements added and with a translation statement.

DECLARATIONS
MODEL

TIMER STTIME=0.0; FINTIM=10.0; DELT=0.1
INITIAL

DYNAMIC

TERMINAL

PRINT STTIME 4
TRANSLATION_GENERAL DRIVER='RKDRIV'

END

STOP

ENDJOB

The TRANSLATION_GENERAL statement in Listing 3.3 represents the default choice for translation
mode and driver. In Section 3.2.4.1 the TRANSLATION_GENERAL statement is described in more

detail.

3.1.3 Classification of FST statements

The FST statements can be classified according to their function in the program. The types of
statements are:
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Comment statements. Comment statements begin with an asterisk "*" and contain a description in
words or any other comments on the program. Comment statements may occur anywhere in an
FST program. Useful comments are literature references, units and dimensions, names of well
known equations etc.

Comment statements preceding a calculation statement are transferred to the generated
Fortran. Comment statements above other statements are neglected.

Section statements. The FST sections have been introduced already in Section 3.1.1. The section
statements are DECLARATIONS, MODEL, INITIAL, DYNAMIC, TERMINAL, END, STOP and
ENDJOB. For details see Section 3.1.1 and Section 8.4.

Declaration statements. These statements may only occur in the declaration section of the FST
program. The FST declaration statements are ARRAY and DEFINE_CALL. For details see
Section 3.2.2.

Input statements. These statements define input variables of the model. They should be part of the
MODEL section of the program. Some of them also may occur in rerun sections where they
redefine model input. The FST input statements are PARAMETER, INCON, CONSTANT,
FUNCTION and ARRAY_SIZE. For details see Section 3.2.3.

Simulation control statements. These statements control the simulation by means of giving values
to simulation control variables or otherwise. They should be part of the MODEL section of the
program. Some of them also may occur in rerun sections where they redefine control variables.
The simulation control statements are TRANSLATION_GENERAL, TRANSLATION_FSE,
TIMER, WEATHER and FINISH. For details see Section 3.2.4.

Output statements. These statements control the model output. The output statements are PRINT,
OUTPUT and TITLE. PRINT and OUTPUT statements should be part of the MODEL section of
the program. TITLE statements may be anywhere before the rerun sections. For details see
Section 3.2.5.

Calculation statements. These statements describe relations between variables. There are two
types of calculation statements: assignments and subroutine calls. The calculations are part of
the MODEL section and can be subdivided in initial, dynamic and terminal calculations by
means of the section statements INITIAL, DYNAMIC and TERMINAL (see Section 3.1.1). The
calculation statements are sorted by the FST translator in order to find a computational order
(see Section 3.5). For details see Section 3.2.6

In some FST error messages on statements or statement order the term "keyword" is used. All FST
statements contain a keyword, except comments and calculations. The keyword of a statement is
simply the first complete word of the statement. The keyword of a TIMER statement is "TIMER" and
the keyword of a PRINT statement is "PRINT". Hence, all statements are named after their keyword.
Functional descriptions of all statement types are given in Section 3.2. More formal statement
structures can be found in Chapter 8.

3.1.4 Classification of FST variables

An important principle of FST is that each variable can be defined only once. The definition ofa
variable means that a value is assigned to it or that it is calculated with a calculation statement. Most
statement types directly correspond to certain variable types, e.g. timer variables are defined by
means-of TIMER statements, parameters are defined by means of PARAMETER statements. This

HVH=d

logic leads to a total of 12 variable types. Together with 3 types of functions and subroutines, the
number of FST symbol types amounts 15.

If the translator is instructed to make a symbol listing (see Section 7.3 and Section 7.4.1), all
symbols in the program (variable names, functions and subroutines) are listed in alphabetical order
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with their type and other information. A formal description of all symbol types can be found in Section
8.3. The 15 symbol types can be classified in four main groups:

User-defined variables. All variables defined by means of input statements and calculation
statements have names given to them by the user. Some restrictions apply to the choice of
variable names (see Section 3.1.5 and Section 8.2). The use of an illegal or reserved name
always leads to an error message, however (see Section 3.1.5 for an example). It is therefore
not necessary to know all reserved names by heart.

The variable types in this group are

e FST Parameter, defined by a PARAMETER statement (Section 3.2.3.1).

e |nitial constant, defined by an INCON statement (Section 3.2.3.2).

e Constant, defined by a CONSTANT statement (Section 3.2.3.3).

e Interpolation function, defined by a FUNCTION statement (Section 3.2.3.4).

e Array Size Variable, defined by an ARRAY_SIZE statement (Section 3.2.3.5).

e Calculated variable, defined by an assignment or subroutine call (Section 3.2.6).

Variables with prescribed names. All variables defined by means of simulation control

statements have prescribed names. Many of these variables have default values and need not
to be defined in each FST program.

The variable types in this group are

e TIMER variable, defined by a TIMER statement (Section 3.2.4.3).

o  WEATHER control variable, defined by a WEATHER statement (Section
3.2.4.4).

e TRANSLATION_FSE variable, defined by a TRANSLATION_FSE statement
(Section 3.2.4.2).

e TRANSLATION_GENERAL variable, defined by a TRANSLATION_GENERAL
statement (Section 3.2.4.1).

The sections mentioned introduce and explain the use of various control variables. In Section
8.3.2 a complete list of variable names is given per variable type.

Use-only variables. There are two types of variables that can be used in an FST program without
being defined. These two variable types are

e  Variables supplied by the driver. (Section 8.3.2.7).

e Weather and calendar data. These variables are made available by using a WEATHER
statement (Section 3.2.4.4 and Section 8.3.2.8).

Subroutines and functions. Subroutines called from FST have user-defined names. The
input/output structure of these subroutines is declared with a DEFINE_CALL statement. This
statement is regarded by FST as the definition of a subroutine. Function names, however,
cannot be defined by the user. In expressions one can use, however, all Fortran intrinsic
functions and a number of FST intrinsic functions.

Hence, the symbol types in this group are

e Called SUBROUTINE, . declared by a DEFINE_CALL statement, see
Section 3.2.2.2 and Chapter 5.

e Fortran Intrinsic function, see Section 8.6 for an overview.

e FST Intrinsic function, see Section 3.4 on interpolation functions,

Sections 4.3.3 and 4.3.4 on array functions and
Table 8.2 on page 136 for an overview.
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3.1.5 Variable names in FST

Variable names in FST follow the conventions of Fortran 77. They have a maximum length of 6
characters, start with a letter and may further contain digits and underscores. Hence A1, B_3,
DNA123 and XX_444 are valid variable names. The names 1AB, _BAT, ABCD123 are invalid. The
same rules apply to the names of called subroutines. In future versions the maximum length of the
variable names will probably be extended to 31 characters. The other rules will remain unchanged.

The choice of user-defined variable names is further restricted by a list of forbidden names. The
most important forbidden names are simply the FST control variables. Their names cannot be used
for other purposes. Other names are forbidden because they would lead to errors in the generated
Fortran. Appendix B lists some more groups of forbidden names.

The use of a forbidden variable name always leads to an error message, however. Hence, there is
no need to memorize them. For instance, if the variable name DELT is used as a calculated variable,
the FST translator reports an error since DELT is a timer variable, which can only be defined by
means of a TIMER statement. The name DELT has to be replaced then by another, non-reserved
variable name.

3.2 Description of the FST statements

Using the classification of statements of Section 3.1.3, the statement types are briefly described.
Formal details can be found in Chapter 8. Comment statements are not mentioned anymore. They
may occur anywhere in and FST program and begin with an asterisk "*".

3.2.1 Section statements

The section statements DECLARATIONS, MODEL, INITIAL, DYNAMIC, TERMINAL, END, STOP
and ENDJOB have been described already in Section 3.1.1 on the program structure. Each section
statement consists of its keyword only. Section statements may occur only once. They are most
useful in somewhat larger FST programs. In very small programs they can largely be omitted. The
precise rules are given in Section 8.4

3.2.2 Declaration statements

Declaration statements are needed only when the program makes use of array variables or when
Fortran subroutines are called. The declaration statements form the DECLARATIONS section at the
beginning of the FST program, which may only be preceded by one or moreé TITLE statements.
There are two types of declaration statements: ARRAY statements and DEF INE_CALL statements.

3.2.21 ARRAY
ARRAY statements declare one or more variables as an array. Array variables may later be defined
and used as parameters, initial constants or calculated variables. Each array declaration sets the

lower and upper'bO"u‘ndof'the‘array’ssubscript range. The upper bound is set relative to aso-called

array size variable, which is defined later by means of an ARRAY_SIZE statement. For example:

DECLARATIONS

ARRAY A(1:N), B(1:N+1), C(2:N+1)
MODEL

* setting the actual array sizes
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“ARRAY SIZE N=10

* a parameter array
PARAMETER A=0.0

* an initial constant array
INCON B(1)=0.0 ; B(2:N+1)=3.4
* a calculated array

C(2:N+1) = AP(1:N)

The three subscript ranges all depend on the value of the same array size variable N. This means
that the arrays A, B and C belong to the same array family. Complete understanding of the above
example requires reading Chapter 4, which is entirely devoted to the use of array variables.

3.2.2.2 DEFINE_CALL
A DEFINE_CALL statement declares the input/output structure of a called subroutine. The name of a
called subroutine can be chosen by the user. For example

DECLARATIONS
* the input/output structure is declared
DEFINE_CALL MYSUB (INPUT,QUTPUT)

MODEL
* the subroutine is called with parameter A as input and B as output

CALL MYSUB (A,B)
PARAMETER A=3.4

Note that "INPUT" and "OUTPUT" are reserved words which can only occur in a DEFINE_CALL
statement. The subroutine MYSUB in the above example has one input and one output argument.
The argument description "INPUT" means a real input variable. The argument description "OUTPUT"
means a real output variable which is calculated by the subroutine.

In the MODEL section the subroutine is called with actual arguments A and B. With help of the
DEFINE_CALL statement, the FST translator concludes that A, as an input argument, is just used
and should be defined elsewhere in the program and that B, as output argument, cannot be defined
a second time. )

In connectioh with the use of array variables, FST recognizes a few other argument types. The
complete list is given in Section 8.5.2.7. Many other details and examples are given in Chapter 5,
which fully describes the use of Fortran subroutines in FST.

3.2.3 Input statements

Various types of model input can be specified by means of the input statements PARAMETER,
INCON, CONSTANT, FUNCTION and ARRAY_SIZE. These statements begin with the FST
keyword which gives the statement its name. The keyword is followed by one or more
substatements in the form of assignments. An example is the PARAMETER statement

PARAMETER A=0.0; B=13.1; WIDTH=1.0

 After the keyword PARAMETER , three variables are defined by means of three substatements. The
substatements are separated with a semicolon ";". The PARAMETER statement above is equivalent
to the following three PARAMETER statements:

PARAMETER A= 0.0
PARAMETER B =13.1
PARAMETER WIDTH = 1.0
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Hence, the various substatements can be given also in separate statements of the same type. All
input statements take the same form as PARAMETER statements. An overview:

* input statements with user-defined variable names

PARAMETER A=0.0; B=13.1; WIDTH=1.0 <- three parameters

INCON IS=6.7 ; ZERO=0.0 < two INitial CONstants
CONSTANT PI=3.14159265

ARRAY SIZE N=6 ; M=5 <- must be integer numbers !!
FUNCTION FUNTB=1.0, 3.4, 2.0, 3.4, ... <- statement continues on next line

5.0, 4.0, 10.0, 4.0

PARAMETER and INCON statements may be used in combination with FST array variables. Some
example statements below illustrate that possibility. Of course, the example statements are meant to
be imitated. If things become more difficult, however, the precise rules can be found in the
referenced sections of Chapter 4 and Chapter 8.

3.2.3.1 PARAMETER

Model parameters are defined by means of one or more PARAMETER statements. Model
parameters are numerical values in the equations of a model. Examples are a relative growth rate, a
diffusion coefficient, the gravitation constant, the solubility of a gas etc. Model parameters can be
used in all calculation statements and in FINISH conditions. One or more PARAMETER statements
can be anywhere in the MODEL section. A few examples are

DECLARATIONS
* array variable to be defined later as a parameter array
ARRAY AP (1:N)
MODEL
* gscalar parameters are defined
PARAMETER G=9.81 ; MASS=12.1
PARAMETER WIDTH=10.0
PARAMETER HEIGHT=20.0
* a parameter is used in a finish condition:
FINISH X>HEIGHT
* two parameters are used in this dynamic calculation
DYNAMIC
ENERGY = MASS * G * X
* a parameter array is defined (see Section 8.5.2.17 for precise rules)
PARAMETER AP(1:4)=1.,2.,3.,4. ; AP(5:8)=0.0 ; AP(9:N)=1.0

Note that the parameter array AP is defined in a single statement. The definition is broken up into a
three substatements with subscript ranges (1:4), (5:8) and (9:N). (In Section 8.5.2.17 the precise
rules can be found). Section 4.3 describes calculations with array variables.

3.2.3.2 INCON
The initial value of a state variable may be defined by means of an INCON statement. One or more
INCON statements can be anywhere in the MODEL section. A typical construction is

MODEL

* the initial constant BI is defined

INCON BI=20.0

INITIAL

DYNAMIC

* state variable B with initial value BI and rate of change BR

B = INTGRL(BI,BR)
BR =
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END

The state variable B is calculated by means of an INTGRL function call. The initial value Bl is the first
argument of the INTGRL statement. The second argument is the rate of change, calculated
somewhere in the program. The INCON variable may be used in several INTGRL statements in
order to initialize several state variables at the same value.

Note that the initial value of a state (the first argument of an INTGRL statement) may also be a
calculated variable. It should then be calculated in the INITIAL section (e.g. Listing 2.2 on page 12).

Except as initial value, INCON variables may be used throughout the FST program in the same way
as model parameters. INCON variables may also be arrays. They are used then in combination with
a state variable array. The definition of an INCON array is similar to the definition of a parameter
array. An example is

DECLARATIONS
ARRAY A(1:N), AI(1:N), AR(1:N)

MODEL

* the initial constant array AI is defined

* see Section 8.5.2.17 for precise rules

INCON AI(1:4)=1.,2.,3.,4. ; AI(5:8)=0.0 ; AI(9:N)=1.0

INITIAL

DYNAMIC

* state array A with initial value AI and rate of change AR
A = INTGRL (AI,AR)

END

Note that the structure of this array example is similar to the structure of the non-array example
above. The precise rules for INTGRL statements with state arrays are given in Section 8.7.3.

3.2.3.3 CONSTANT

For defining one or more mathematical of physical constants, the CONSTANT statement can be
used somewhere in the MODEL section. Constants can be used throughout the program in
calculations and finish conditions. An example is

* two physical constants and a mathematical one.
CONSTANT PLANCK=6.62608E-34 ; PI=3.14159265 ; AVOGAD=6.0221367E+23

At first sight there is little difference between a constant and a parameter. The two types of variables
are treated by FST in different ways, however. Contrary to a parameter, a constant cannot be
redefined in a rerun section and arrays of constants do not exist. Therefore, the CONSTANT
statement is most suitable for mathematical constants like , for basic physical constants as the
speed of light and for conversion constants between different units.

3:2:.3:4 FUNCTION e =
A function can be specified in FST as a series of (x,y) points. The series of points gets a name and
is specified with a FUNCTION statement anywhere in the MODEL section. Functions in this way are
also called “interpolation functions” in this manual. For instance,

<- statement continuation is used

FUNCTION FUNTB = 0.0, 3.9,
1.0, 4.9, ... to get a neat list of (x,y) pairs
0.0, 7:8
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Intermediate function values can be estimated by means of two FST intrinsic functions. The FST
intrinsic function AFGEN (Arbitrary Function GENerator) uses linear interpolation. The FST intrinsic
function CSPLIN uses Cubic SPLINe interpolation (Press et al., 1986). The following example
statements show that interpolated function values can be used in expressions.

3.0*AFGEN (FUNTB,5.6) + 4.5*AFGEN (FUNTB, SIN (A**2) +1.0)
3,0%CSPLIN (FUNTB,5.6) + 4 .5*CSPLIN (FUNTB, SIN (A**2)+1.0)

B
c

The first argument of AFGEN and CSPLIN is the name of the interpolation FUNCTION. The second
argument is the value of the “x” variable for which the function value has to be estimated. The
second argument may also be an expression itself (€.9. SIN (A**2) +1. 0).

Note that a function is not an FST array, although it contains a series of values. Interpolation
FUNCTIONS can only be used as the first argument of AFGEN and CSPLIN calls. Interpolation
FUNCTIONS can be redefined in a rerun section, simply by means of another FUNCTION statement.
In Section 3.4 the interpolation of FUNCTIONSs is discussed in greater detail.

3.2.3.5 ARRAY_SIZE

Array size variables determine the actual length of arrays in FST (see the ARRAY statement). All
array size variables have to be given a value by means of one or more ARRAY_SIZE statements
somewhere in the MODEL section. An example is

DECLARATIONS

ARRAY A(1:N) <- the array size variable N is used
MODEL

ARRAY SIZE N=60 <- and here N is defined

Note that array size variables are integer variables.

3.24 Simulation control statements

Everything which needs to be controlled and which is not input to the model itself, is regarded as
simulation control. The simulation control statements are TRANSLATION_GENERAL,
TRANSLATION_FSE, TIMER, WEATHER and FINISH. With the exception of FINISH, all these
statements use the same form as the input statements described in the previous Section 3.2.3.
Some examples are

* gimulation control statements (prescribed variable names)
TIMER STTIME=0.0; FINTIM=10.0; DELT=0.1; PRDEL=1.0
WEATHER ISTN=2 ; WTRDIR:’C:\SYS\WEATHER\'
TRANSLATION_GENERAL DRIVER='RKDRIV' ; TRACE=2 ; EPS=1.E-5
TRANSLATION FSE IOBSD=1965,12

e The similarity to input statements refers to the form only, however. A few formal differences are:

¢ Only prescribed variable names can be used. For each type of control statement there is a list of

variable names which may be defined with that statement type. The complete lists of control
variables can be found in Section 8.3.2. In the sections below the most widely used variables are
introduced.

e Arrays of control variables do not exist.

e TRANSLATION_FSE and TRANSLATION_GENERAL statements exclude each other.
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Finally, the FINISH statement can take two forms:

FINISH expression < expression
or
FINISH expression > expression

3.2.4.1 TRANSLATION_GENERAL

The presence of a TRANSLATION_GENERAL statement causes the generation of a so-called
GENERAL Fortran module which can be used in combination with a "general driver" from the
DRIVERS library. There are two general drivers available, EUDRIV (EUler DRIVer) and RKDRIV
(Runge-Kutta DRIVer). They are called “general” because they can handle a broader class of
models than the more specialized FSE driver (see Section 3.2.4.2).

After the TRANSLATION_GENERAL keyword the variables DRIVER, TRACE, DELMAX and EPS
may be defined. These variables represent settings for the integration procedure. For example:

TRANSLATION_ GENERAL DRIVER='RKDRIV';TRACE=2; DELMAX=1.0; EPS=1.0E-4

By the value of DRIVER a driver is selected, either EUDRIV or RKDRIV. RKDRIV is the preferred
driver for continuous equations. It uses the fourth order Runge-Kutta integration procedure with
accuracy control which is described in Press et al. (1986). The method works by comparing the
result of two half time steps with the result of a single full step. If the accuracy is not satisfactory (see
the description of EPS below), the time step is reduced. The timer variable DELT (Section 3.2.4.3) is
used as a first guess of the integration step at the start of the simulation.

EUDRIV uses Euler or rectangular integration with a fixed time step. Usually that fixed time step is
equal to DELT, but if DELT does not fit an integer number of times in the output interval PRDEL
(Section 3.2.4.3), the time step is reduced. In case of blocky interpolation functions or otherwise
discontinuous models, EUDRIV may be preferred above RKDRIV (see Section 2.2 for an example).
The behaviour of the two drivers can be compared by means of a rerun on driver choice (write a
rerun section with a TRANSLATION_GENERAL statement). In Chapter 9 the generated Fortran
program and the function of the driver are further discussed.

With the integer variable TRACE one can set the level of logfile output (the default value is 0).
Setting TRACE=2 is very useful for testing a model with RKDRIV debugging. It gives on screen (and
on logfile) the number of time steps taken between successive output times. The meaning of other
settings of TRACE can be found in Section 7.5.5.

DELMAX sets an upper limit to the time step (with default value FINTIM-STTIME). EPS is the
accuracy parameter of the integration (with default value 1.0E-4). The control variables DELMAX
and EPS are significant only in combination with the driver RKDRIV. If they are left undefined the
default values are used. DELMAX and EPS may be printed (with PRINT) or used in calculations.
Reruns on the value of EPS give the possibility of finding a suitable accuracy setting (see Chapter 9
for details on the use of EPS by RKDRIV). 4

3.2.4.2 TRANSLATION_FSE
The presence of a TRANSLATION_FSE statement causes the generation of a Fortran module which:

can be called by the FSE driver from the DRIVERS library. Such a Fortran module is also called
“FSE module”. FSE stands for "Fortran Simulation Environment". Hence, the FST translator
generates an FSE module if the following statement is present somewhere in the MODEL section

TRANSLATION FSE
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The FSE driver and the structure of an FSE model have been developed by van Kraalingen (1995).
The ESE driver uses Euler integration, like the general driver EUDRIV. FSE was originally developed
for crop growth models and is especially useful for the simulation of processes on a daily basis
(although time steps smalller than a day can also be used). The use of year numbers and day
numbers and weather data is fully integrated in the FSE driver. This is illustrated by the only
TRANSLATION_FSE control variable, I0BSD, which is defined in the following example

TRANSLATION_FSE IOBSD=1985,12, 1995,13, 1996,14

The combinations of year and day number are used by the FSE driver for producing additional
output for the specified days. The variable name comes from "OBServation Days". The additional
model output at these days can be compared with values measured on these days. The variable
IOBSD cannot be used in calculations.

The difference between the GENERAL and FSE translation modes is discussed in Section 3.3.

3.2.4.3 TIMER

One or more TIMER statements are used in the first place to control simulation time. In the examples
of Chapter 2 this has been shown already. The TIMER statement occurring in most FST models
looks like

TIMER STTIME=0.0 ; FINTIM=45.0 ; DELT=0.5 ; PRDEL=3.0

This TIMER statement defines STTIME (the start time), FINTIM (the finish time), DELT (the time
step of integration) and PRDEL (the output or PRint interval). The timer variables STTIME, FINTIM
and DELT have to be defined in all FST models. The definition of other timer variables, like PRDEL,
is optional. If PRDEL is left undefined, the model will produce initial and terminal output only.

The TIMER statement is also used to set some control variables which, strictly speaking, have
nothing to do with time control. The timer variable IPFORM (Integer Print FORMat) controls the form
of the output file RES.DAT. IPFORM is an integer variable which can take the values 4,5 or 6:

4 = spaces between columns.

5 = TAB's between columns (good as spreadsheet input).

6 = two column output. ,
The default value for IPFORM is 4. An example of a TIMER statement defining IPFORM among
others is

* gsome timer variables which are used less often
TIMER IPFORM=5 ; COPINF=‘Y’ ; RGINIT='Y’ ; RGSEED=123

The timer variable COPINF (COPy INput Files) is a character variable with values Y or ‘N’. With
COPINF='Y' the generated Fortran input files are copied to the output file RES.DAT after completing
all reruns. The default value of COPINF is 'N'.

The timer variables RGINIT and RGSEED are used to control the generation of random numbers, a
topic which is separately discussed in Section 3.7.

3.2.4.4 WEATHER

One or more WEATHER statements are used to control the weather data used by the translated
simulation model. There are four weather control variables. WTRDIR is a character variable which
selects the weather data directory. CNTR is a character variable which selects the country. ISTN is
the integer station number and IYEAR is the integer year. An example is:
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WEATHER WTRDIR = 'C:\SYS\WEATHER\'
WEATHER CNTR='NLD' ; ISTN=2 ; IYEAR=1988

These two WEATHER statements instruct FST to look for a weather data file with the name
'C:\SYS\WEATHER\NLD2 . 988 '. After selecting weather data in this way, the following weather
and calendar data become available for use in model calculations:

Variable name Meaning Unit
RDD Total daily global short-wave radiation Jm2 g1
TMMN Minimum air temperature °Celcius
TMMX Maximum air temperature °Celcius
VP Vapor pressure at 9 a.m. ‘ kPa
WN Average wind speed ms
RAIN Total daily rainfall mm d-1
LAT Latitude of the site degrees
LONG Longitude of the site degrees
ELEV Elevation of the site above see level m

DOY Day Of Year in the form of a real number ' d

YEAR Current year number as 1988.0 y

Section 2.2 gives an example of the use of the daily minimum air temperature TMMN and the daily
maximum air temperature TMMX in an FST model. All weather and calendar data are real variables
which may be used in expressions and as arguments of function and subroutine calls. They cannot
be (re)defined, however, and the variable names cannot be used for other purposes, even if no
weather data are selected.

The use of weather data implies that the unit of time is day. The weather control variable IYEAR is
the start year of the simulation and the timer variable STTIME is the start time between 1.0 (January
1, 00:00:00) and 365.999... (December, 31, 23:59:59.99...). During the simulation, TIME may exceed
365.9999... (or 366.999.. in a leap year), which leads to an increase of the current year number
YEAR and the use of the next year of weather data (see also the remarks in Section 6.1.4).

The calendar variable DOY jumps back to 1.0 at the beginning of a new year. DOY is the day
number ranging from 1.0 to 365.0 (366.0 in a leap year, changing in steps of 1.0) and may be used
in combination with interpolation FUNCTIONs which describe seasonal data.

3.2.4.5 FINISH

The FINISH statement does not define control variables, as do the other simulation control
statements. The FINISH statement defines a finish condition. Valid FINISH statements are, for
instance,

FINISH A < 3.4 <- any user defined variable

FINISH TMMX > 40.0 <- maximum daily temperature
FINISH A*B < SQRT(PP)+1.0 <- arelation between two expressions
FINISH NINT(T) > 56 <- an integer condition

~If during-simulation; one or more of the finish conditions becomes valid, the simulation-stops;-even-if -
FINTIM is not yet reached. The simulation is halted in an orderly way, however. At the reached finish
time dynamic output is produced (see Section 3.2.5), then a possibly present TERMINAL section is
executed. ‘

A FINISH condition often represents the regular end of the simulated process. In such a case the
value of FINTIM is set very high and just acts as a safeguard against an infinite simulation.
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3.2.5 Output statements

The most important output statement is the PRINT statement which is used to specify the output
variables. The OUTPUT statement leads to printplots (plots in the form of a text file) and is almost
obsolete. The TITLE statement specifies the text which is included in the header of the output tables
in RES.DAT. The structure of the output statements is most easily described by means of the
following example

TITLE Example Model <- Text describing the model and appearing in output file
PRINT STTIME, A, B <- Comma-separated items

OUTPUT A, C <- Comma-separated items

3.2.5.1 PRINT

The PRINT statements in the MODEL section specify the output variables of the model. All variables
from the model and many simulation control variables can act as output variable. Valid PRINT
statements are for instance

PRINT X, Y1, Y2 <- user variables
PRINT STTIME, TMMX <- a timer variable and weather data

Array variables can be printed as a whole or certain subscript ranges can be mentioned. For
instance,

DECLARATIONS
ARRAY A(1:N), B(1:N)

MODEL
PRINT A(3:5), B, N <- arange of A, the complete array B and the array size N

The variables listed in the PRINT statements appear in two output files. The first one is an ordinary,
readable text file named RES.DAT which contains tables with output values. The other output file is a
machine readable file RES.BIN (a so-called unformatted file). For details on these output files see
also Section 7.4.

The FST translator distinguishes between initial, dynamic and terminal output. The initial output
consists of all output variables which get their values in the initial phase of the model run. This
includes model parameters, simulation control variables or variables calculated in the INITIAL
section. Such variables form the initial output, independent of the position of the PRINT statements
in which they are listed.

The dynamic output consists of the output variables which are defined in the DYNAMIC section of
the program. This includes state variables, rates of change, all other dynamic variables and also the
weather and calendar data. Finally, the terminal output consists of variables calculated in the
TERMINAL section of the model.

Note that a single PRINT statement can contain variables from all three groups and, once more, that
the position of the PRINT statement(s) in the MODEL section does affect the output files. It is good
programming practice, however, to list different types of output variables in different PRINT
statements, like in the following growth model

MODEL
INITIAL
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IX = 2.0
PRINT IX <-initial output
DYNAMIC
X = INTGRL(IX,RX)
RX = A * X
PARAMETER A=0.1
PRINT A <-initial output, because A is known from the beginning
PRINT X, RX <- dynamic output ’
TIMER STTIME=0.0 ; FINTIM=10.0 ; DELT=0.1
TIMER PRDEL=0.5
TRANSLATION GENERAL
END

All values appearing in the output file are associated with a certain value of the simulation TIME.
Initial and terminal output are generated only once and are associated with the start and finish time
of the simulation. The dynamic output variables are sent to output many times, for increasing values
of TIME.

If you are only interested in the final result of a simulation run, the size of the output tables can be
reduced by not defining the timer variable PRDEL. The dynamic output is then generated only two
times, at the start and at the end of the simulation run.

A more elegant way is the use of terminal output variables. For instance, from reruns with the above
growth model, we want a graph of the final value of X as a function of parameter A. The following
TERMINAL section and rerun sections can be added then to the model

TERMINAL

* the terminal variable Al is a copy of parameter A
Al = A

* the terminal variable XFINAL is the final value of X
XFINAL = X

PRINT Al, XFINAL <- terminal output

END

PARAMETER A=0.2 <-rerun on parameter A

END .

PARAMETER A=0.3

After deleting the other PRINT statements, the model produces only terminal output consisting of A1
(a copy of A) and XFINAL. The advantage of printing a copy of A is that both A1 and XFINAL are
then printed with the same value of TIME (PRINT A always leads to initial output). In Section 6.6
terminal output is used to compare the analytical and numerical solution of a model.

3.2.5.2 OUTPUT

This statement is almost obsolete. For variables listed in one or more OUTPUT statements printplots
are produced. A printplot is a graph in the form of an ordinary text file which does not require a
graphical printer. Each OUTPUT statement leads to a separate printplot. Array variables cannot
occur in OUTPUT statements.

The use of OUTPUT is superfluous in case there is any other possibility of producing graphs. The
tables of the output file RES.DAT (containing all “PRINT” variables) can be imported in any
spreadsheet program, for instance, which is used then to produce graphs. You may need to set the
timer variable IPFORM to 5 (see Section 3.2.4.3). An easy way of inspecting results is the use of the
graphical output utility TTSELECT which is mentioned briefly in Section 7.2. Graphs can be made
then for all variables listed in the PRINT statements.
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3.25.3 TITLE

The text behind the word TITLE appears in the header of each table in the output file RES.DAT.
TITLE statements usually contain a brief description of the model. They may occur anywhere before
the END statement at the end of the MODEL section. An example is ’

TITLE ======= Competition Model =======
TITLE == based on light interception ==

Note that the FST program file itself can also be documented by means of comment statements
which begin with an asterisk "+".

3.2.6 Calculation statements

In calculation statements model variables are calculated. There are two types of calculation
statements. The first type is the ordinary assignment like A=B+SIN(C). The second type of
calculation statement is a Fortran subroutine call. With both types of statements, model variables are
calculated from other model variables and from model input variables, weather data etc.

3.2.6.1 Assignment

An assignment defines a calculated variable in terms of other variables. The statement A=B+SIN(C)
defines the variable A, which apparently depends on B and C. The right part of the assignment is a

Fortran style expression which may contain calls to Fortran intrinsic functions (like the sine function
SIN, see Table 8.1 on page 134) and FST intrinsic functions (see Table 8.2 on page 136 in Section

8.7) Examples of valid assignments are:

2.0
3.0 * (B + C)

A
A
A 2.4 % INSW (B, 1.0+SIN(C), 1.0-SIN(C)) + MAX (D**2, AFGEN (RTB,RAIN))

wonon

The third assignment shows that function calls may be nested: the arguments of the FST intrinsic
function INSW contain calls to SIN, a Fortran intrinsic function. The evaluation of the right hand side
takes place in the usual way: subexpressions in parentheses and function calls have priority, then
exponentiation, multiplication/division and finally addition/subtraction.

Although assignments in FST look very much like Fortran statements, there are minor differences:

o In FST, the use of integer constants in a real expression is impossible in FST except as
exponents. Writing 2*A, for instance, leads to an error message. One has to add a decimal point
in such situations. Integer variables like array size variables can be used in expressions after
converting them with the Fortran intrinsic function REAL.

o In Fortran there are a few intrinsic functions which accept more than one argument type. In FST
these functions accept only real arguments, except the modulo function MOD, which is limited to
integer arguments in FST (cf. Section 4.3.4.4). The modulo function for real arguments in FST is
AMOD, which exists in Fortran as well.

If the calculated variable is an array, its elements are calculated by means of a consecutive list of
- substatements separated by a semicolon ";". These compound-assignments are introduced.in.___
Section 4.3 and the precise rules are given in Section 8.5.2.1.

3.2.6.2 Call to Fortran Subroutine

The second type of calculation statement is a call to a Fortran subroutine. Subroutine calls are
extensively described in Chapter 5. Here only a few remarks are made. The form of a subroutine call
is the same as in Fortran. Within a subroutine complicated calculations may be carried out, but from
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the point of view of the FST translator a subroutine call is just a single calculation statement. The
only difference with an assignment is that several variables may be calculated simultaneously.

The FST translator has to know the difference between input and output variables of the subroutine
call. This information is essential because the computational order of the calculation statements
depends on it. Therefore, the input/output structure of each subroutine has to be declared in the
DECLARATIONS section by means of a DEFINE_CALL statement. See Chapter 5.

3.3 State variables and integration method

In FST, state variables are calculated by means of the INTGRL function. Unlike other functions, the
INTGRL function cannot be used in expressions. A state variable S is defined as

S = INTGRL (SI, SR)

where Sl is the initial value of S and SR the rate of change. The initial value is often defined be
defined by means of an INCON statement but may also be a variable calculated in the INITIAL
section.

The rate of change is usually calculated in the DYNAMIC section of the MODEL. Also weather data
can be integrated and, mainly for testing purposes, model parameters can act as rate of change. The
use of the INTGRL function for arrays is described in Section 8.7.3.

The INTGRL function call above corresponds to the formula

TIME
S =S5+ f Srdt
STTIME

For integrating the rate(s) of change over time, two different numerical methods can be used. In
TRANSLATION_GENERAL mode, Euler integration and a fourth order Runge-Kutta method are
available (see Section 3.2.4.1). In TRANSLATION_FSE mode, only Euler integration is available.

Running an FST model, the difference between the FSE translation mode and the GENERAL mode
with driver EUDRIV is negligible. The minor numerical difference is that the FSE driver adapts the
specified DELT in order to fit an integer number of times in one day, and EUDRIV adapts the
specified DELT in order to fit an integer number of times in output interval PRDEL (see Section
3.2.4.3 for these timer variables).

The GENERAL and FSE translation modes, however, strongly differ with respect to the generated
Fortran modules. This implies that the selected mode becomes important if the generated Fortran is
extended "by hand" or has to be combined with existing programs.

The structure of FSE has been documented by van Kraalingen (1995). FSE has originally been
developed for crop growth simulation (van Kraalingen, 1995). The unit of time used is day and it
requires the specification of weather data by means of WEATHER statements. An FSE module has
a simple internal structure, which is more easily adapted “by hand” than a GENERAL module. ltcan

also be combined with other (FST-generated) FSE modules. The disadvantage of FSE is that the
Euler integration method is build into the simulation modules.

Theﬁ GENERAL translation mode is completely independent of the calendar and the unit of time is
arbitrary (unless WEATHER is used). A (generated) GENERAL module can be combined with an
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external integration procedure like the two available in EUDRIV and RKDRIV. The price for that
flexibility is a more complicated internal structure which is documented in Chapter 9.

3.4 Interpolation FUNCTIONs

An interpolation function is defined by means of a FUNCTION statement (Section 3.2.3.4). In this
section the actual interpolation, with help of AFGEN or CSPLIN, is discussed further.

As an example the function ATB is used, defined with 6 function points:

<- statement continuation is used
to get a neat list of (x,y) pairs

FUNCTION ATB = 0.0,
2.0,
4.0,
6.0,
8.0,
0

.0,

NNNNBE O
SN0 W o

1

In Figure 3.2 the function points are plotted. The points can be measured values, guessed values or
they may be calculated values of a complicated function. In any case, the use of an interpolation
function requires a way to find intermediate function values. Two methods have been built into FST:
linear interpolation and cubic spline interpolation.

3.0
Y I
2.5
2.0r
1.5
1.01

@ FUNCTION ATB

0.5 ) -==-linear
cubic splines
| n 1 I i 1 ] " 1

o 2 4 6 8 10

Figure 3.2  Linear and cubic spline interpolation of FUNCTION ATB.

3.4.1 Linear interpolation with AFGEN

Function values of the function ATB are calculated as AFGEN(ATB,X) in which the second argument

X may be also a real number or an expression. The dashed line in Figure 3.2 shows that straight————
lines are drawn between the function points given in the FUNCTION statement. If the value of the
second argument lies outside the X-range of the function ATB, a warning is given during execution of
the program.

An advantage of linear interpolation is that it is a very robust method. The numerical algorithm does
exactly what one expects it to do: it "draws” straight lines between function points. In many situations
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this is fully appropriate. For instance, if little is known about the precise shape of an empirical
function it may be roughly described as a few connected straight lines. If many points of a function
are known with sufficient accuracy, however, one will be tempted to draw a neat curve through the
points. In such situations the use of CSPLIN may lead to better results.

3.4.2 Natural Cubic Spline interpolation with CSPLIN

Function values of an interpolation function, say ATB, are calculated as CSPLIN(ATB,X) in which the
second argument X may be also a real number or an expression. The graph in Figure 3.2 on page
35 shows that a neat curve is drawn through the function points given in the FUNCTION statement.
The use of natural cubic splines (Press et al. 1986) guarantees that the first and second order
derivatives of the function are also continuous. The second derivatives at the begin and at the end of
the curve, however, are assumed to be zero. This means there is no curvature at the first and at the
last point.

CSPLIN always draws neat curves through the function points. Nevertheless, the method may fail.
An example of failure is given in Figure 6.2 on page 69. Between the two last function points the
interpolated function behaves wildly. Hence, before CSPLIN is used in model calculations, one has
to verify its behaviour. This can be done, for instance, with the FST program for plotting interpolation
functions which is given in Section 6.1.1. Special care is required if the X values of the FUNCTION
are not equidistant or if the function is curved at the beginning or end of its range. In case of failure
one can sometimes repair the interpolation by leaving out slightly deviating function points (or by
adding new ones, if available). Otherwise one has to use the more robust linear interpolation.

3.5 Sorting calculations

The initial, dynamic and terminal calculations are automatically sorted by FST in order to find a
computational order of the statements. This sorting capability implies that the user may start to write
down the most important relations of the model and then work downward by specifying the yet
undefined variables with new expressions or by defining them as a model parameter. An example of
model equations written in such a way is

* position is the time integral of its rate of change

X = INTGRL (IX,RX)

* the rate of change of the position is the velocity, by definition

RX = V .

* the velocity itself is a state variable changing with the acceleration

V = INTGRL(IV,A) <- note that the use of V instead of RX in the first INTGRL statement would
lead to an error. For technical reasons it is impossible in FST to use a
state variable as a rate of change. Therefore RX is used, a copy of V.

* Newton's law: Force = Mass * Acceleration

A = FORCE/MASS

* the forces to describe: gravity and friction

FORCE = FDOWN - FRICT

* gravity and friction specified

FDOWN = G*MASS

FRICT = A*V

PARAMETER MASS = 10.0 ; A=0.1
CONSTANT G=9.81

INCON IX=0.0 ; IV=0.0
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The actual calculations are carried out in about the reverse order. FST is only able to sort the
calculations, however, if all variables are defined once and only once. If a variable is defined more
then once, FST cannot decide in which order the calculations have to be carried out. Therefore, an
error message is given.

A computational order requires that each variable is calculated before it is used. Sometimes,
although all variables are calculated only once, it is impossible to sort the calculations as a resultof a
loop in their interdependency. An example of such a loop is: A depends on B, B dependson Cand C
depends on A. The FST translator finds such loops and gives (in case of the dynamic calculations)
the following error message:

k¥ The DYNAMIC calculations cannot be brought in a
computational order since there is a loop in
their interdependence. The statements containing
the loop will be marked with "x" in the listing
file. Note that a variable depending on itself
also forms a loop. (%GLOBAL-SORLOOPD) .

The simplest type of dependency loop is a statement like "A=A+B". This statement implies that A
depends on A which is a loop. In Fortran, statements like this are often used, but A would have to be
defined earlier as well which is impossible in FST. Usually, the problem can be solved by defining a
help variable.

Note that subroutine calls, being calculation statements, are also sorted. |n order to find a proper
position of the calls among the other calculations, the FST translator has to know which variables are
calculated in the call and which ones are just used. Hence, statement sorting is the reason behind
the DEFINE_CALL declaration statements in which the Input/Output structure of each called
subroutine is declared. Therefore, a wrong DEFINE_CALL statement may lead to a sorting error.

3.6 Reruns

Reruns form a very useful feature of FST. After terminating the MODEL section of the program with
an END statement, one or more rerun sections may be added. In a rerun section simulation control
and/or input variables are redefined by means of another simulation control or input statement.
Hence, a timer variable should be redefined by means of another TIMER statement, a model
parameter by means of another PARAMETER statement etc. All simulation control statements can
be used except FINISH and all input statements can be used except CONSTANT and
ARRAY_SIZE. »

The program in Listing 2.3 on page 15 gives an example. The value of the initial constants 1X1 and
IX2 is redefined again and again in order to get a lot of model runs with the state variables starting at
different values. Another widely used application of reruns is the use of a series of different weather
stations by changing country code and/or station number with a WEATHER statement in each rerun
section. Note that the weather data directory WTRDIR cannot be redefined.

It is important to realize that a variable, after being changed in a certain rerun value, retains its new

~value in all subsequent-reruns,-until-it is-changed again. An example is

MODEL

PARAMETER A=1.0

INCON XI=34.0

END

* gecond run ; first rerun
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PARAMETER A=2.0

END

* third run ; second rerun
INCON XI=40.0

END

In the first rerun section only parameter A is redefined. The second rerun will be done with A=2.0
and X1=40.0. :

Variables defined by means of calculation statements cannot be redefined in a rerun section. The
reason is that the calculation statements form the structure of the model which is translated by FST
into a Fortran program. This generated Fortran program is the same for all reruns and only the
values of input and control variables may vary.

In Section 6.6, an example program shows how reruns can be combined with terminal output
variables in order to perform a sensitivity analysis of the model. Another interesting application is the
redefinition of the variable DRIVER in a TRANSLATION_GENERAL statement (see Section 3.2.4.1).
This leads to a model run with another integration method being used.

3.7 Random number generation

There are two FST intrinsic functions for the generation of a (pseudo) random numbers. The function
RGUNIF (Random Generator UNIForm) returns uniformly distributed random numbers. Each time it.
is called it returns a newly generated number. The function RGNORM (Random Generator NORMal)
returns random numbers with a normal distribution. Both functions have two arguments which are
described in Table 8.2 on page 136.

In the following example a rate of change is calculated as a random number, uniformly distributed
between the parameters RMIN and RMAX:

DYNAMIC
A = INTGRL (AI,AR) .

TRANSLATION GENERAL DRIVER='EUDRIV' <- the model is not continuous

AR = RGUNIF (RMIN, RMAX) <- arandom number between RMIN and RMAX

PARAMETER RMIN=2.3 ; RMAX=2.4
INCON AI=1.0

Each time the model runs, the same sequence of random numbers is generated by the function
RGUNIF. Hence, the model runs are exactly repeatable which, in general, is important for finding
errors. Also if reruns are specified, the behaviour of the random number generator does not change.
For instance, the impact of Al on the model results can be investigated by changing the value of Al in
reruns. The random number sequence remains the same.

Technically, this means that the random number generators are re-initialized at the beginning of
each rerun and that the same 'seed' is used again and again. This behaviour represents the default
behaviour of the random number generators in FST. Sometimes this default behaviour has to be
changed. One wishes to use different sequences of random numbers in reruns, for instance, in order

to include the random process in a sensitivity analysis. In such situations one has to define values
for the control variables RGSEED and/or RGINIT. :

The first control variable RGSEED (Random Generator SEED) is an integer timer variable which is
used as the "seed" of the generation process. If RGSEED is not defined, the seed takes its default
value 1. Each non-zero integer value results in a different and repeatable sequence of random
numbers. A special choice is
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TIMER RGSEED=0 <- the seed is derived from system clock at runtime
PRINT RGACTS <- the actual seed used is printed to be able to repeat specific runs

This leads to a seed being derived from the computer's system clock during model execution. The
actual seed used is stored in the integer variable RGACTS (ACTS from ACTual Seed). This variable
is supplied by FST and can be printed or used otherwise as an integer variable.

The use of a new seed for every new run means that a different random sequence is used for each
model run. Also for equal parameter settings the results of the model runs will not be identical. The
differences reflect the influence of the random process on the model results.

The second control variable is RGINIT. This timer variable controls whether or not the random
number generators are re-initialized at the beginning of each rerun. RGINIT can have the values Y’
or 'N' (Yes or No). The (default) value "Y' causes the re-initialization of the generators at the start of
each rerun using the current value of RGSEED. RGINIT='N' suppresses re-initialization.

Suppressing re-initialization means that the random sequence of the previous run is continued. This
has the disadvantage that an individual model run cannot be repeated since the random sequence
used cannot be reconstructed without repeating also the previous runs. Therefore, in most
situations, re-initialization with a new seed is the preferred method for including random effects in
rerun results.

Finally, it should be noted that RGUNIF and RGNORM are not fully independent of each other. The
function RGNORM internally calls RGUNIF and, in fact, only RGUNIF needs to be initialized. Hence,
a single pseudo random process underlies the returned values of both functions. This implies that
adding a call to RGNORM to a program calling already RGUNIF will influence the values returned by
RGUNIF.
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Array variables in FST
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Figure 4.1 on the title page of this chapter. The curves are concentration profiles at different values

of TIME calculated with the diffusion model in Listing 4.1 on page 44. The model describes diffusion

into a plane sheet which is initially at zero concentration. As time increases the concentration
approaches the constant outer concentration.
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4 Array variables in FST

4.1 Introduction

An array variable contains a number of values instead of just a single value. Each value is contained
in an array element. The values, and array elements, are numbered. If the numbers are just
1,2,3,..N, the array is one-dimensional. If the element numbers are (1,1), (2,1), (3,1), .. (N,M), the
array is two-dimensional, etc. Only one-dimensional array variables can be used in FST.

Array variables in FST are treated almost like ordinary, scalar variables. They are defined in one
statement and can be referenced in other statements. An array can be used as a calculated variable,
as a model parameter or as an initial constant. This abstraction enables the FST translator to verify
the completeness of the program, and to find a computational order for scalar and array variables
simultaneously. The use of array variables does not change the structure of an FST model.

The example program in Section 4.2 is meant to give an impression of the possibilities. Section 4.3
gives a more systematic treatment of array calculations in FST. Section 4.4 deals with PARAMETER
and INCON arrays. The entire chapter has an explanatory character. For a formal description of
-array variables in combination with the various FST statements Chapter 8 should be consulted.

4.2 Example of the use of array variables

Listing 4.1 gives a short FST program describing diffusion into a plane sheet. The model is similar to
diffusion models given in Leffelaar (1993). Initially, the concentration in the sheet is zero. From time
0.0 on, the sheet is exposed to a constant concentration CS at its two surfaces. Diffusive transport
takes place until the equilibrium concentration CS is reached everywhere. In this section, the
statements in Listing 4.1 are discussed with emphasis on array use. The reader is assumed to be
familiar with the principle of a diffusion process.

Figure 4.1 on the title page of this chapter shows how the concentration profile changes with time.
The figure has been constructed from the output of the FST program in Listing 41.

The diffusion problem is solved by distinguishing N layers. Then there is an array of N
concentrations C, there are N amounts H, N initial amounts IH, N rates of change NFLOW (net flow
into layer), and N+1 fluxes FLUX through the N+1 surfaces. Further, the centers of the N layers are
calculated as an array X.

On top of the program all array variables are declared with the ARRAY statements 3 and 4. Each
declaration consists of an array name followed by a subscript range in parentheses, e.g.
FLUX(1:N+1). The lower boundary has to be an integer constant, the upper boundary is a so called
array size variable, here N, to which an integer constant may be added. In Listing 4.1, all arrays
make use of the same array size variable N. This implies that the arrays form an "array family",
which expresses the fact that all arrays refer to properties of N layers.

All this is still indepéndent of the actual number of layers N, which is set with the ARRAY_SIZE
statement 8. Note that the value of N occurs only a single time in the entire program.

The constant concentration CS at the outer surface, the height of the plane sheet HEIGHT, its area
AREA and its diffusion coefficient is D are all parameters of the model (statement 7).



44 4 Array variables in FST

Listing 4.1 An example of using arrays. The graph on the title page of Chapter 4 shows output of this
program.

0001 TITLE Diffusion into a two-sided plane sheet
0002 DECLARATIONS

* all arrays are declared ; N layers and N+1 fluxes
0003 ARRAY FLUX(1:N+1), X(1:N), C(1:N) <-all arrays are declared in one or
0004  ARRAY H(1:N), IH(1:N), NFLOW(1:N) <-more array statements.
0005  MODEL
* % %k %k
0006  INCON IH=0.0 <-full range assignment in INCON

0007 PARAM HEIGHT=1.0 ; D=0.01 ; AREA=1.0 ; CS = 1.0
* the number of layers
0008  ARRAY SIZE N=60 <-sets the size of all arrays
0009 INITIAL
* height of compartment
0010 DEL = HEIGHT / REAL(N)
* volume of compartment
0011 VOL = DEL * AREA
* compartment centres
0012 X = (REAL(I) - 0.5) * DEL
0013  DYNAMIC '
0014 H = INTGRL(IH,NFLOW)
0015 C =H / VOL
* the fluxes through the boundaries

0016 FLUX (1) =D * (CS - C(1)) / (0.5*DEL) ; ... <-three substatements
FLUX(2:N) = D * (C(1:N-1) - C(2:N)) / DEL ;
FLUX(N+1) = D * (C(N) - CS) / (0.5*%*DEL)

* the nett flow into the compartments
0017 NFLOW(1:N) = FLUX(1:N)*AREA - FLUX(2:N+1) *AREA
* output and simulation control
0018 PRINT X, C
0019 TIMER STTIME = 0.0 ; FINTIM=20.0 ; DELT = 1.0 ; PRDEL=1.0 ; IPFORM=5
0020 TRANSLATION GENERAL DRIVER='RKDRIV' ; TRACE=2
0021 END
0022 STOP
0023 ENDJOB

In statement 6, the array of initial amounts is defined. Since the FST translator "knows" which
variables are arrays, statements like PARAM and INCON can be used to define array variables,
which become then parameter arrays or initial constant arrays. In statement 6 all array elements are
equal and the array IH is simply defined by IH=0.0.

In statement 10 and 11, the volume VOL and height DEL of the layers are calculated. The number of
layers N can be used in expressions, but has to be converted to a real value by the function REAL.

In statement 12, the array variable X is calculated. The declaration statement 3 shows that the
elements of X are numbered from 1 to N. Therefore, the integer variable | in the right hand part takes
the values 1...N in successive calculations. The first element of X is calculated as (REAL(1)—
0.5)*DEL, the second element as (REAL(2)-0.5)*DEL etc. The variable name | is reserved for this
purpose and cannot be defined or used in any other way (see also Section 4.3.2).

The first two assignments in the DYNAMIC section look like ordinary statements from an FST
program without arrays. The N initial amounts IH and the N rates of change NFLOW belong to the N
amounts H, and the INTGRL statement looks the same as for ordinary, non-array variables. In the
same way, statement 15 means C(1)=H(1)/VOL, C(2)=H(2)/VOL, ...... C(N)=H(N)/VOL. Since the
translator knows already that C and H are arrays, there is no need for describing the relation




4 Array variables in FST 45

between C and H for each layer separately. The concise form C=H/VOL is “expanded” by the
translator (see Section 4.3.1.4).

The assignment in statement 16 is more complicated. The calculation of the surface fluxes differs
from the calculation of the fluxes inside the sheet. Therefore the statement is divided into three
substatements, separated by a semi-colon ";". Each substatement defines a part of the array FLUX.
The fist part consists of the first element only, a surface flux. The second part of the array FLUX
consists of all N-1 fluxes "inside" the sheet. The second substatement is a concise form for

FLUX(2) = D*(C(1)-C(2))/DEL
FLUX (3) = D*(C(2)-C(3))/DEL
FLUX (N) = D*(C(N-1)-C(N))/DEL

The last substatement defines the last element of FLUX, again a surface flux.

In statement 17, the rate array NFLOW is calculated. Note that the array NFLOW has N elements
and that the two ranges of FLUX in the expression, (1:N) and (2:N+1), also have N elements. This
illustrates an important principle: all subscript ranges in a substatement need to be equally long.
Array calculations are further discussed in Section 4.3 and precise rules are given in Section 8.5.2.1.

The rest of the program in Listing 4.1 looks probably familiar. The PRINT statement sends the initial
array variable X and the dynamic array variable C to output. The value of the timer variable IPFORM
makes the output file readable for a spreadsheet.

A few general remarks on Listing 4.1 can be made. Like simple, scalar variables, calculated array
variables are defined with a single statement (possibly consisting of several substatements). This
allows the FST translator to find a computational order of the statements (see also Section 4.3.1.6).

By using a single family of arrays (there is only a single array size variable), the program reflects the
fact that all array variables refer to the same number of soil layers. In more complicated situations, it
may be necessary to use several array families, i.e. to use more than a single array size variable.
Calculations with arrays from different families are less easy, however. Strict rules apply, which are
explained in section 4.3.1.7.

4.3 Calculations with array variables

In this section examples of array use are discussed. The concept of statement expansion and
elementwise calculation is explained in Sections 4.3.1 and 4.3.2. In section 4.3.3, the FST array
functions are introduced. They work on entire arrays and return average, maximum value, minimum
value etc. In section 4.3.4 the function ELEMNT is introduced which is useful for models with a more
than a single array family. The use of Fortran subroutines in combination with arrays is discussed in
Chapter 5.

4.3.1 Terminology and Syntax rules

4.3.1.1 Array declarations and array families

Before the actual model begins, the FST translator has to know which variables are arrays. A
variable becomes an array by means of an ARRAY statement in the DECLARATIONS section of the
FST program. An ARRAY statement looks like:

ARRAY XVALUE (1:N), YVALUE (0:N+5)
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This statements declares the variable names XVALUE and YVALUE as arrays. Later, these array
names may become calculated variables, model parameters or initial constants. All non-array names
in the program are assumed to be ordinary, scalar variables.

To each array in the example above belong two subscript bounds. For XVALUE all subscripts lie
between 1 and a yet unspecified number N. For YVALUE the subscript bounds are 0 and N+5. This
implies that the actual array sizes depend on the yet unspecified value of the array size variable N.
Array size variables are given a value by means of an ARRAY_SIZE statement in the MODEL
section. For instance,

ARRAY SIZE N=36

Since the length of both arrays depend on the same array size N, the two arrays are said to belong
to the same array family. The arrays of an array family usually represent different properties of the
same thing, for instance a soil layer, or a biological population. Calculations with arrays from the
same family are much easier than with arrays from different families.

4.3.1.2 Two examples of a calculated array variable
The simplest example of a calculated array is

DECLARATIONS
ARRAY A(1:N)
MODEL

A =0.0

The assignment A=0.0 means that all elements of the array variable A are set equal to zero. A more
complicate calculation is shown in the next example

DECLARATIONS

ARRAY A(1:N), B(1:N) <- The two arrays form a single array family
MODEL

A(1:5) = 1.0 ; A(6:N) = 1.0 + B(6:N)**2

The last statement defines array variable A. The first five elements of A are set equal 1.0. The other
elements depend on elements of array B. A(6) is equalto 1.0+B (6) **2, A(7) is equal to
1.0+B(7) **2, etc. Before this type of statements can be fully explained, some more terminology
has to be introduced.

4.3.1.3 Array elements, subscripts, subscript ranges and substatements
Elements of an array variable can be used in expressions in the same way as ordinary variables. For
instance,

DECLARATIONS
ARRAY A(1:N)
MODEL

C=1.0 + A(5) - A(N-1)

The ordinary, non-array variable C is calculated from two elements of array A, A(5) and A(N-1). The
array subscript “5” in A(5) is called an absolute subscript. The array subscript “N-1" in A(N-1) is
called a relative subscript since it points to an element number relative to the value of N.
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Calculation statements may also refer to a series of array elements. A(1:5) means that the
calculation must be carried out for A(1), A(2), A(3), A(4) and A(5) separately. The subscript range
(1:5) is called an absolute-to-absolute subscript range absolute-to-absolute range, since both
subscripts are absolute. Similarly we have absolute-to-relative subscript ranges absolute-to-relative
range like in A(6:N-3) or relative-to-relative subscript rangesrelative-to-relative rangerelative-to-
relative range like in A(N-2:N). The fourth category, relative-to-absolute, is forbidden in FST.

An example of an array calculation with all possible subscripts and subscript ranges is.

DECLARATIONS

ARRAY A(2:N), B(1:N) <- Arrays A and B and their subscript bounds are declared,

R a declared range is always absolute-to-relative

MODEL

. array A is defined in a single statement:

A(2:4) = 0.0 ;... <- absolute-to-absolute subscript range

A(5) = B(1) ;- <- absolute subscripts of A and B

A(6:N-8) = B(6:N-8) ;. <- absolute-to-relative subscript ranges, defined and referenced
A(N-7:N-1) = 0.0 ;... <- relative-to-relative subscript range

A (N) = B(2) <- a relative subscript of A and an absolute subscript of B

The declared range of A is split up into 5 parts. Each part is defined in a separate substatement and
the substatements are separated by means of a semi-colon “;". Note that the use of statement
continuation with three points “..." leads to a neat list of defined array elements.

The EST translator compares each subscript with the declared subscript bounds. The ARRAY
statement in the above example declares for array A a lower bound 2 and an upper bound N. The
use of A(1) or A(N+1), either as an array element or as part of a subscript range, will therefore result
in an error message.

. The use of a certain array subscript or subscript range also implies a restriction on the value of an
array size variable. In the above example, the ARRAY statement itself implies already that N is at
least 2. The use of A(5) implies that N is at least 5. Further, the subscript range A(6:N-8) should not
be empty, which implies that N is 14 or larger. Finally, the calculations with all arrays of a certain
family result in a lower limit for the array size variable. The actual value of the array size variable is
tested against that lower limit. Moreover, the test is repeated during execution of the Fortran
program as a safeguard against a change of N in the generated Fortran source.

A subscript range which is equal to the declared range may be omitted. This leads to a so-called full-
range definition or a full-range array reference. Two examples:

DECLARATIONS

ARRAY A(2:N), B(1:N) <- The two arrays form a single array family

MODEL

A=0.0 <- Full-range definition of A, equivalent to A(2:N)=0.0
B(1)=1.0 ;

B(2:N)=A <- Full-range reference of A, equivalent to B(2:N)=A(2:N)

4.3.1.4 Statement expansion

As stated above, the use of a subscript range means that the calculations should be carried out
separately for all elements involved. This is realized by the FST translator by means of statement
expansion. The first example of Section 4.3.1.2 was

DECLARATIONS
ARRAY A(1:N)
MODEL
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A =20.0

which contains a full-range definition of array A. The FST translator expands this statement to a
Fortran DO-loop. The expansion of A=0.0 is

DO 10 I=1,N <- Counter | runs from 1 to N
A(I) = 0.0 <- The I-th element of A is set at 0.0
10 CONTINUE <- Go back for next |

which means: a counter "I" runs from 1 to N and for each of these values of | element A(l) is set at
0.0. Strictly speaking, statement expansion belongs to the Fortran translation of an FST program and
is not relevant to the user. Some understanding of statement expansion is helpful, however, in
working with array variables.

If an array definition involves several substatements, the expansion consists of several DO-loops.
For example, the calculation statement in

DECLARATIONS

ARRAY A(1:N), B(1l:N) . <- The two arrays form a single array family

MODEL

A(1:5) = B(1:5) PR <- Note the continuation which is used here in order to get
A(6:N-3) = B(7:N-2) ; ... the substatements on different lines

A(N-2:N-1) = 0.0 ;

A(N) = B(6)+1.0

is expanded by the FST translator into

DO 10 I=1,5 <- The range of the loop counter | is the range of A
A(I) = B(I)
10 CONTINUE
DO 20 I=6,N-3 <- The range of the loop counter | is the range of A
A(I) = B(I+1) <- Note the subscript of B
20 CONTINUE
DO 30 I=N-2,N-1 '~ <- The range of the loop counter | is the range of A
A(I) = 0.0

30 CONTINUE
A(N) = B(6)+1.0

Note that several elements of B are not used and this does NOT generate an error or warning. A
warning for an unreferenced array is only given if none of its elements is used. This is different,
however, for the left part of the assignment, the defined array A. If one or more elements of A are left
- undefined, an error message is given.

Finally a more complicated example of statement expansion with functions:

DECLARATIONS

ARRAY A(1:N), B(1:N+1), C(0:N-1)

MODEL

A = SIN(B(2:N+1)) - AFGEN(FTB, 0.1 + MIN(0.0,COS(C)))

The array A is defined in a single substatement. Hence, the definition is a full-range definition and
the subscript range of A, which is (1:N), can therefore be omitted. Array B contains more elements
than array A, however, and therefore the used range of B has to be specified. Array C is equally long
as array A and can be referenced without subscript bounds. The expansion by FST into a Fortran
DO-loop is
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DO 10 I=1,N
A(I) = SIN(B(I+l)) - AFGEN (FTB, 0.1 + MIN(0.0,COS(C(I-1))))
10 CONTINUE

Note that the interpolation function FTB, defined with a FUNCTION statement, is not an FST array
(although it is a series of function values).

4.31.5 The rules for calculating an array variable

With help of the terminology introduced above, the rules for calculation statements can be stated

more precisely now. A few important rules at statement level are:

e Only a single array variable is calculated in the statement.

o The calculation of the array variable must be complete, i.e. all declared elements must be
calculated. }

e The statement may consist of substatements, each defining a part of the declared range.

e There are no gaps or overlaps in the subscript ranges of the consecutive substatements.

o Only a single substatement occurs with absolute-to-relative ranges, the reverse thing is
impossible.

In each substatement, one or more array elements are calculated. The elements of an array may
depend on elements of other arrays. The most important rule at the substatement level is that all
subscript ranges in a substatement must be of the same type and must have the same length. The
following correct substatements contain absolute-to-absolute subscript ranges

.; A(1:5) = B(1:5)+3.4 ; ... <- Equal ranges, correct

.; A(2:9) = B(8:15)+13.6 ;... <- From both arrays 8 elements
.; A(3:13) = B(8:18)+C(102:112) ;... <- From three arrays 11 elements
; A(2:6) = B(8:12)+SIN(C(-1:3)) ;... <- From all arrays 5 elements

Note that the use of absolute-to-absolute subscript ranges does not require the arrays to be part of
the same family.

A substatement with absolute-to-relative subscript ranges requires that the arrays belong to the
same family (see also Section 4.3.1.7). Fora family of three arrays A, B and C, the following
substatements are correct:

.; A(3:N) = B(3:N)+3.4 ; ... <- Equal ranges, correct
.; A(4:N-5) = B(6:N-3)+13.6 ;... <- From both arrays N-8 elements
.; A(8:N+2) = B(2:N-4)+C(0:N-6) ;... <- From all arrays N-5 elements

A substatement like

.; A(3:N) = B(3:8)+3.4 ; ... <- ERROR, different types of subscript ranges

contains an absolute-to-relative and an absolute-to-absolute range and is therefore incorrect, even if
N has been set to the value 8.

Finally we have the relative-to-relative subscript ranges. Again, for A, B and C in the same array

family, the following substatements are correct

..; A(N+1:N+5) = B(N+1:N+5)+3.4 ; ... <- Equal ranges, correct
.; A(N+2:N+9) = B(N+8:N+15)+13.6 ;... <- From two arrays 8 elements
; A(N+3:N+13) = B(N+8:N+18) +C(N+102:N+112) ;... <- From all arrays 11 elements
; A(N+2:N+6) = B(N+8:N+12)+SIN(C (N-1:N+3)) ;... <- Fromallarrays5 elements

The translator verifies all these rules and produces messages in case of errors.
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Substatements may also define just a single array element. Such a single element has either an
absolute or a relative subscript. Note that single array elements, like B(5) or B(N-3), can be
referenced in all types of substatements as if they were ordinary, scalar variables. There are no
requirements then with respect to the array family of B.

The complete list of rules is given in Section 8.5.2.1. A final example is

DECLARATIONS
ARRAY A(1:N), B(1l:N+1)

MODEL :

A(1:5) = B(1:5) P <-The defined parts of array A are consecutive without gaps or
A(6:N-3) = B(7:N-2) ; ... overlaps. Array B is just used. It needs not to be completely
A(N-2:N-1)= 0.0 ;o used.

A(N) = B(6)+1.0

The following program lines contain errors:

DECLARATIONS

ARRAY A(1:N), B(0:N+10)

ARRAY C(-3:N+200) <- A, B and C form an array family
MODEL

ARRAY SIZE N=100

A(1:5)=1.0 ; A(7:N)=2.0 <- ERROR: A(6) undefined

B(1:4)=0.0 ; B(5:N+10)=A(5:N+10) <- ERRORs: B(0) undefined ; A(N+1:N+10) does not exist
C(-3:8)=0.0 ; C(9:N)=5.0 ;

C(N+1:130)=2.0 ; C(131:N+200)=1.0 <- ERROR: a relative-to-absolute range is illegal

4.3.1.6 Sorting of array calculations

Calculated array variables are defined with a single statement. This allows the FST translator to find
a computational order of all scalar and array calculations simultaneously. Sorting takes place,
however, at the level of statements and not at the level of substatements. This implies that the
following statement contains a dependency loop and leads to an error message.

A(l) = 2.3 ; A(2:N) = A(1)**2 + 3.0

FST reports a sorting loop: A depends on A because the array A depends on its own element A(1).
Clearly, in Fortran the above calculations would be no problem, but in FST the sorting is done at the
level of the entire array A, and not at the level of its individual elements. This is a limitation of FST,
which can usually be bypassed by defining help variables. The above illegal statement is then
replaced by

A(1)

= Al ; A(2:N) = Al**2 + 3.0
Al = 2.3

which can be sorted.

4.3.1.7 Arrays from different families

There are important restrictions on the use of arrays from different families in a single substatement.
As long as the two subscripts or subscript ranges used are absolute, as in A(5:8) and C(6:9) for
instance, there is no problem, even if A and C belong to different families. In case of absolute-to-
relative and relative subscript ranges, however, it is forbidden to use arrays from different families in
the same substatement.
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The following example illustrates this rule for two array families, one consisting of A and B and the
other of array C only. : :

ARRAY A(1:N), B(1:N), C(1:M) <- Array family with arrays A and B and a family with array C
A(1:2) = C(1:2) ; ... <~ Two absolute ranges, which is correct

A(3:N-4) = 2.0 * B(3:N-4) ; ... <- Correct since A and B both use N

A(N-3:N) = 1.0 - C(N-3:N) <- ERROR since C is from another family

Note that, even if N and M get the same values in an ARRAY_SIZE statement, the calculation of A is
still in error. The reason for this strict rule is that the use of C(N-3:N) implies a relation between N
and M, i.e. M should be equal to or larger than N. This type of relations is not verified by the FST
translator. Therefore, it is impossible to use array size variable N in subscripts of C.

Although this rule limits the possibilities of FST, it has the advantage that users are forced to declare
their arrays in meaningful families. Each array family describes properties of a series of simulated
things, soil layers or plant species, or whatever. Mixing arrays from different families is then indeed a
somewhat odd thing to do. Moreover, within each family one is free to declare arrays in slightly
different ways, like in ARRAY A(O:N), B(2:N+20).

In case arrays from different families have to be used in the same expression, the limitations
discussed here can be bypassed by using the ELEMNT function, which is explained in Section
4.3.4.

4.3.2 Array sizes and loop counter | in expressions

Sometimes it is useful to use the value of an array size variable in calculations. If a system with size
LENGTH, for instance, is divided in N compartments with equal size, then the compartment size
COMSIZ can be found as

ARRAY SIZE N=48
COMSIZ = LENGTH / REAL(N)

This illustrates that array size variables may be used in expressions as long as they are properly
converted into floating point numbers (with the REAL function). It is even possible to do calculations
with array size variables using the rules for integer arithmetic in Fortran. For instance,

ARRAY SIZE N=8 ; M=12
P = REAL((2*M-N)/6) <- Here P gets the value 2.000 !!!

Especially integer division easily leads to errors since the results are truncated. Therefore, FST
warns against integer division.

A related topic is the use of the array element number in calculations. If we want to calculate the
lower boundary of N compartments with size COMSIZ, then the answer for the 4-th layer is
3*COMSIZ, for the 9-th layer 8*COMSIZ etc. FST supports this type of calculations by allowing the
element counter | to be used in expressions. This is demonstrated in the following example

ARRAY LBOUND (1:N)

PARAMETER SIZE=200.0 <- the total system is 200 units large
ARRAY SIZE N=32 <- 32 compartments are used
COMSIZ = SIZE / REAL(N) <- compartment size

1BOUND = REAL(I-1) * COMSIZ <- find all lower bounds
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Itis essential to realize that the values of | are taken from the first subscript range of the statement,
i.e. the subscript range in the left-hand part of the expression. In case of A(4:N-7)=..., for instance, |
gets the values 4,5,6,...,N-7. As in case of array size variables, the loop counter | may be used in
expressions, as long as it is handled as a Fortran INTEGER variable. The use of | in expressions is
easier if statement expansion is fully understood (see Section 4.3.1.4). The variable | is nothing else
than the DO-loop counter.

4.3.3 FST array functions

The FST array functions have been added to FST in order to simplify the calculation of properties of
an entire array of values. For instance, the mean of the first 5 elements and the mean of all elements
of an array A are calculated in

DECLARATIONS
ARRAY A(1:N)
MODEL
MEANS5
MEANN

ARMEAN (A, 1,5)
ARMEAN (A, 1,N)

With similar functions other properties of the array can be calculated. The list of currently
implemented FST functions working on a single array variable is:

X = ARMAXI (Array Name, From, To), <- The maximum value in the subscript range
X = ARMINI (Array Name, From, To), ) <~ The minimum value in the subscript range
X = ARSUMM (Array Name, From, To), <- The sum of values in the subscript range
X = ARMEAN (Array Name, From, To), <- The mean of values in the subscript range
X = ARSTDV (Array Name, From, To), <- The standard deviation

X = ARLENG (Array_ Name, From, To), <- The length of the array seen as a vector

X = ARSMPS (Array Name, From, To, DELX) <- Integral if array contains function values

The precise mathematical definitions of these functions are given in Table 8.2 on page 136. There is
one function which works on two array variables. Function ARIMPR calculates the vector improduct
of two arrays.

X = ARIMPR (Array_ Name, Array Name, From, To), <-The vector improduct A*B

The arguments "From" and "To" are the lower and upper subscript bounds to be used by the
function. These arguments are integer constants, integer variables or integer expressions. Note that
the first argument is an entire array. The functions work on this entire array and not on individual
array elements. Therefore, no statement expansion takes place and the result of the function call is
an ordinary scalar value. A few more examples are

ARRAY A(1:N)

Bl = ARMAXI(A,1,100) <-Maximum of the first 100 elements of A
B2 = 2.*ARLENG(A,1,3) + ARMINI (A,1,NINT(X+Y)) <-A calculation with function calls
B3 =

ARSMPS (A,1,N,0.1) <-An estimated integral (See Section 8.7.1)

Clearly, there is a danger that the subscript range sent into ARMAXI, from 1 to 100, is not part of the
declared range of A (here 1..N). During translation of the FST program this is NOT verified. The
translator, however, adds the declared bounds, here 1 and N, as additional arguments to the
ARMAXI function call. During execution of the model, the ARMAXI function then compares the
requested subscript range with the declared range. If, in case of the above example, the value of N
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is less than 100, the function ARMAXI produces a fatal error message during execution of the
program.

As a more complex example, we consider an array A with 80 elements and calculate the mean of
the first 10 elements, the mean of the second 10 elements etc. The 8 average values are stored in
array B with 8 elements (another array family). Array B is calculated with a single statement:

DECLARATIONS

ARRAY A(1:N), B(1:M)
ARRAY SIZE N=80 ; M=8
MODEL

1'3'; ARMEAN (A,10%I-9,10%I)
The calculation of array B is expanded by the FST transiator to

DO 10 I=1,M ‘
B(I) = ARMEAN (A,1,N,10%I-9,10%I) <- Declared range of A is added !!
10 CONTINUE

and we see how the DO-loop counter | is used in EST to calculate the appropriate subscript range of
A For element | of array B the subscript range is (10*I-9: 10+*1), which becomes (1:10), (1 1:20),
..(71:80). Note that the ARMEAN function call in Fortran includes the declared bounds of A. These
are added by the translator to support the runtime existence check on the elements of A.

434 The function ELEMNT

The rules on array use in FST sometimes lead to error messages on constructions that look natural.
Especially the restrictions on the use of arrays from different families in the same expression causes
problems in relatively simple situations. An example is given in the first Section 4.3.4.1. The problem
is then bypassed in Section 4.3.4.2 with help of the ELEMNT function. In Section 4.3.4.3 the proper
use of the ELEMNT function is discussed.

4.3.4.1 Limitation of array use in FST
As a consequence of the rules explained in Section 4.3.1, the following simple calculation is illegal.

DECLARATIONS

ARRAY A(1:N), B(1:M)
MODEL

ARRAY_ SIZE N=5, M=100

B = REAL(I) <- assign values 1,2,3,....M (see Section 4.3.2)
A(1:N) = B(1:N) <- ERROR, Range of B contains N instead of M

In this example, a subscript or subscript range of array B, which was declared with ARRAY B(1:M),
contains the "foreign" array size variable N (cf. Section 4.3.1.7). Of course, the idea of the

statements above is that A contains the first N elements of B. Writing A(1:5)=B(1:5) does not solve
the problem, since it does not form a complete definition of A (the piece from 6 to N lacks). Wiriting

A(l:4) = B(1:4) ; A(5:N)=B(5)

works for N=5. For larger values of N this statement remains to be a valid statement in FST, but it
does not do what we want! For N= 6, for instance, both A(5) and A(6) become equal to B(5). In
general, all elements of A with numbers 5 and higher are made equal to B(5). Hence, if we want to



54 4 Array variables in FST

copy the first N elements of B, the above statement is essentially wrong since it does a different
thing for values of N exceeding 5. The solution of the problem is the use of the function ELEMNT.

4.3.4.2 The ELEMNT function as a solution
The only correct way of assigning the first N values of array B to array A'is

DECLARATIONS

ARRAY A(1:N), B(1:M)
MODEL

ARRAY SIZE N=5, M=100

B = REAL(I) <- Assign values 1,2,3,....
A(1:N) = ELEMNT(B,I) <- To A(l) is assigned the value of B(l), where I=1...N

The function ELEMNT ("the element function") simply returns the value of an array element and has
two arguments, an array name and an element number. Hence, ELEMNT(B,3) returns the value of
B(3) and ELEMNT(B,N) returns the value of B(N).

The difference between, say, B(N-1) and ELEMNT(B,N-1), is that B(N-1) is valid only if the array B is
declared using N as array size variable. The expression ELEMNT(B,N-1) is always valid. The
declared bounds of B, however, are added to the function call by the FST translator and the function
ELEMNT verifies the existence of the requested element during execution of the program. Hence,
the existence check on elements of B takes place during execution of the generated Fortran
program instead during translation.

In the above example, | is the DO-loop counter running from 1 to N (the left-hand subscript range is
(1:N)). The integer argument of the ELEMNT call can be replaced by any other integer expression,
by 1+2, for instance. Also 1.0 + SIN(0.1+ELEMNT(B,1+2)) is a valid construction. Even
ELEMNT(B,100+1) does not lead to an error message of the FST translator. It leads to a fatal error
during execution of the program, however.

4.3.4.3 Disadvantages of the ELEMNT function

In order to prevent error messages about illegal use of array size variables, one could use the
ELEMNT function in all expanded array expressions. We strongly advise, however, not to do so. The
first reason is that part of the translators' error checking capabilities would simply be ignored. Instead
of neat error messages one gets fatal execution errors of ELEMNT (execution stops without proper
termination of the model run and without output being generated). The second reason is that the
ELEMNT function slows down considerably the execution of the generated Fortran program.

Hence, instead of just plugging in ELEMNT function calls, it is a good idea to look a bit closer to the
ARRAY statements. Is it really necessary to use different array families for the problem at hand? If
array B is always 5 elements larger than array A, the statement ARRAY A(1:N), B(1:N+5) will solve
the problem. An example of such a construction is the array variable FLUX in Listing 4.1 on page 44.

4.3.44 A complicated example

Suppose we want to calculate all N2 distances between N objects, eachwithan Xanda Y
coordinate. The example below declares the arrays X and Y with N elements and an array DIST with
N2 elements (humerically set).

DECLARATIONS
ARRAY X(0:N-1), Y(0:N-1), DIST(0:NN-1) g
MODEL A

ARRAY SIZE N=10, NN=100

DIST = SQRT ((ELEMNT(X,MOD(I,N)) - ELEMNT (X, I/N))**2 + ...
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(ELEMNT (Y,MOD (I,N)) - ELEMNT(Y,I/N))**2))

Clearly, a second array size variable is needed here. The expression for DIST shows how the
distances can be calculated. The DO-loop counter | runs with the left-hand array DIST, from 0 to 99.
Then the integer argument MOD(I,N) takes the values 0,1,2,3...9, 0,1,2,3...9, ....... 0,1,2,3..9. The
integer argument I/N makes use of integer arithmetic in Fortran and takes the values 0,0,0...0,
1,101, 9,9,9....9. These two series together make up all combinations of the N objects (0,0),
(1,0), ..... (9,9). .

This example illustrates that practical use of the ELEMNT function may require subtle calculations on
array subscripts. Of course, the N2 distances between N objects form a matrix and the subscript
calculations result from the fact that FST does not allow two-dimensional arrays. An alternative
solution to the problem of N2 distances is the use of a Fortran subroutine in which DIST is declared
as a two-dimensional array.

Such a subroutine looks like

SUBROUTINE DISTAN (X,Y,N,DIST,NN)
INTEGER N,NN,I,J
REAL X(O:N—l),Y(O:N—l),DIST(O:N—l,O:N-l)
IF (NN.NE.N*N) CALL ERROR ('"DISTAN', 'illegal value of NN')
DO 20 J=0,N-1
DO 10 I=0,N-1
DIST(I,J) = SQRT ((X(I)-X(J))**2 + ((Y(I)-Y(J))**2)

10 CONTINUE
20 CONTINUE
RETURN
END

This subroutine returns exactly the same array DIST as the FST statement above. In this case, one
might consider the use of the ELEMNT function because the subscript calculations are not too
difficult. The use of a subroutine leads to much faster calculations, however, and forms the only
solution in more complicated cases.

Hence, the ELEMNT function is most appropriate in relatively simple situations. When models grow
larger, straightforward numerical work has to be left to subroutines. Complicated subscript
calculations in integer arithmetic have to be avoided. In Chapter 5 the use of Fortran subroutines in
FST is fully discussed.

4.4 PARAMETER and INCON arrays

Like calculated array variables, also PARAMETER and INCON arrays are defined in a single
statement. A simple example is -

DECLARATIONS
ARRAY A(1:N)
MODEL

PARAMETER A=0.0

The parameter statement contains a full-range definition of array A that looks exactly like a
calculation of A. In the same way as for calculated arrays, the array A can be defined in a series of
substatements like in

PARAMETER A(1:2)=0.0 ; A(3:6)=1.0,2.0,3.0,4.0 ; A(7:N-4)=5.0 ; A(N-3:N)=6.0
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Clearly, since we define a parameter array, the right part of the substatements cannot contain
expressions. The parameter array A is a series of constants. A second difference with a calculated
array is that the right part of a substatement may contain more than a single value. The above
example contains A(3:6)=1.0,2.0,3.0,4.0. This is equivalent to A(3)=1.0 ; A(4)=2.0 ; A(5)=3.0 ;
A(6)=4.0.

Note that several values can only be given if the number of defined elements is independent of N.
The range A(3:6) contains four elements. The range A(N-3:N) also contains four elements and might
be defined with A(N-3:N)=3.0,4.0,5.0,6.0. The number of elements in A(7:N-4), however, depends on
N and A(7:N-4) has to be defined with a single value.

INCON arrays are defined in a similar way. The precise rules for writihng PARAMETER (or INCON)
statements are given in Section 8.5.2.17 on page 127. The rules for INTGRL statements with array
variables acting as states, rates and initial values are given in Section 8.7.3 on page 141.
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Figure 5.1 on the title page of this chapter. The dynamics of the predator-prey system given in
Listing 6.5 on page 76. Every point of the (PREY,PRED) space represents a status of the system.

The curves are simulated trajectories in the predator-prey space. After a sufficient amount of time,
the simulated system ends up in a stable limit cycle. The oscillation of prey and predator populations
is independent of the initial conditions.
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The simplest way of using a Fortran subroutine is in combination with ordinary, scalar variables. The
subroutine may require some input and will calculate something which is returned as one or more
output variables. Basic subroutine use is described in section 5.1. Section 5.2 describes how to pass
entire arrays to a subroutine. Clearly, the subroutine should be prepared to receive an array instead
of a single variable.

In section 5.3 arrays are used in combination with a subroutine which expects ordinary, scalar
variables. In that case the subroutine call is expanded and the array elements are calculated in
separate calls.

5.1 Ordinary, scalar variables as input and output

As an example we use the following subroutine, which calculates A*X2 and A*X3 for any value of A
and X.

SUBROUTINE EXAMP1 (A,X,Y2,Y3)
REAL A,X,Y2,Y3

Y2 = A * X*x*2

Y3 = A * X**3

RETURN

END

The first two arguments, A and X, are input arguments. The last two arguments are output
arguments. The following FST program section makes use of this subroutine:

PARAMETER MULT=3.4

SUM = S2 + S3

CALL EXAMP1 (MULT,X,S2,S3)
X =4.5

In these four lines we make use of the statement sorting capability of FST. At first, X has to be
calculated, then the subroutine can be called and finally S2 and S3 are added. In order to choose the
right statement order, the FST translator has to know that MULT and X are input variables, and that
S2 and S3 are output variables of the subroutine. That is achieved by the following statement which
should be on top of the FST program in the DECLARATIONS section.

DEFINE_CALL EXAMP1 (INPUT, INPUT, OUTPUT, OUTPUT)

This DEFINE_CALL statement is a formal description of the function of the subroutine in the model.
Each time the subroutine is used, its first two arguments are input and its last two arguments are
output. This shows that the use of a subroutine in FST requires nothing more than telling the
translator about the different types of subroutine arguments. in Fortran an input argument can be
overwritten and becomes an output argument as well. Subroutines which do that cannot be directly

called from FST.
Input arguments may also be constants or expressions. Hence,

SUM = S2 + S3
CALL EXAMP1 (3.4, 1.0+SQRT(X), S2,S3)
X =4.5
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is a correct piece of program. An output argument, however, can never be an expression.

5.2 Entire arrays as input and output

Instead of calculating the sum of S2 and S3 we want to use an entire series of powers of X. In other
words, we want to calculate

N N
SUM=>)"S, = MULTx X'

i=2 i=2

and we also want to calculate the terms of the series in a subroutine. A subroutine calculating an
entire series is

SUBROUTINE EXAMP2 (A,X,Y,N)
INTEGER I,N
REAL A, X,Y(N)
DO 10 I=1,N
Y(I) = A * X**REAL(I)
10 CONTINUE
RETURN
END

Note that the first element of the array Y is Y(1) and the last element is Y(N). This is not necessary,
but it simplifies the program. The FST program lines become

DECLARATIONS
ARRAY S(1:N) . <- The series S declared from 1 to N !l
DEFINE_CALL EXAMP2 ... <- Declare the new subroutine
(INPUT, INPUT, ... <- The same as for EXAMP1 above
OUTPUT_ARRAY, ... <- An entire array is calculated
INTEGER_INPUT) <- The integer array size is passed to the subroutine
MODEL

ARRAY SIZE N=5
PARAMETER MULT=3.4

SUM = ARSUMM(S,2,N) <- The sum of the series, starting at the 2-nd term
CALL EXAMP2 (MULT,X,S,N) <- Calculate the series S
X = 4.5

The declared subscript range of S is (1:N) instead of (2:N), which leads to a neater program and a
neater subroutine. In this FST program S(1) is not used, which is no problem at all.

The third argument of EXAMP2 is declared as OUTPUT_ARRAY, which enables the calculation of
array S in a single call to EXAMP2. If a subroutine requires an input array, the argument type is
INPUT_ARRAY. The size of an array argument can be passed to the subroutine as an
INTEGER_INPUT argument. The argument type INTEGER_OUTPUT does not exist.

After declaring the subroutine, the actual call looks again like Fortran. The required sum is calculated
with a call to the FST intrinsic function ARSUMM (See Table 8.2 on page 136). Note that FST sorts
~the statements and will calculate at first X, then the series S and finally SUM.~

In case of this simple series we could have calculated the terms directly in FST, for instance with

SUM = ARSUMM(S,2,N)
S = MULT * X**REAL(I) <- will be expanded by FST
X = 4.5
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Calculation of a series may require complicated iterative procedures, however, and in such cases a
subroutine is the only solution.

5.3 Expansion of a subroutine call

Suppose we have available an existing subroutine FLIB1 which uses ordinary, scalar arguments and
is declared as

DEFINE_CALL FLIB1 (INPUT,OUTPUT, OUTPUT)
As discussed in Section 5.1, a call to the subroutine could look like
CALL FLIB1 (1.0+X, Y, Z)

The input argument is an expression, 1.0+X, from which the variables Y and Z are calculated. Now,
suppose that X, Y and Z are declared as arrays with equal subscript bounds. The problem is then
the calculation of arrays Y and Z from array X without changing the subroutine. Changes in a well-
tested subroutine are undesirable. Making changes is even impossible if the subroutine is only
available in compiled form, as part of a library for instance. The first solution to this problem is
discussed in this section. A second solution is discussed in Section 5.4.

This first solution is easy. The variables X, Y and Z are declared as arrays and the subroutine is
called as if nothing has changed!

DECLARATIONS

DEFINE_ CALL FLIB1 (INPUT,OUTPUT, OUTPUT)
ARRAY X (1:N), Y(1:N), Z(1:N)

MODEL

CALL FLIBl1 (1.0+X,Y,Z) <-Expanded subroutine call

FST treats this call in the same way as a statement like Y=1.0+X, or Z=SQRT(1.0+X). Such
statements would be expanded and the calculations would be carried out elementwise in a Fortran
DO-loop in the way discussed in Section 4.3.1.4. The call to FLIB1 is expanded in a similar way:

DO 10 I=1,N
CALL FLIB1l (1.0+X(I),Y(I),Z(I)) <-For each | a separate call
10 CONTINUE

The values Y(l) and Z(l) are calculated by means of a series of calls to the subroutine. Together,
these calls define the entire arrays Y and Z. The expansion of a subroutine call is essentially nothing
else than the expansion of assignments in which arrays or array subscript ranges occur.

5.3.1 The rules for expansion of a subroutine call

The two basic -rules for expansion-of a subroutine call-are:

o A subroutine call is expanded if an array subscript range or a full-range array is used at the
position of a scalar INPUT or OUTPUT argument.
e A subroutine call does not allow substatements for different array ranges.

In addition to these basic rules, we have the rules for calculation discussed in Section 4.3. They
apply to subroutine calls as well. This implies:
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e If an array subscript range covers the entire declared range, the subscript range may be omitted.
The subroutine call above is an example. It is equivalent to
CALL FLIB1 (1.0+X(1:N),Y(1:N),Z(1:N)).

e The expanded array subscript ranges in the entire call need to be equally long and of the same
type (for subscript types see Section 4.3.1.3).

e In case of absolute-to-relative and relative-to-relative ranges all expanded arrays must belong to
the same family (for this concept see Section 4.3.1.1)

e The DO-loop counter | may be used in one or more of the arguments of an expanded call. The
following rule was given already in Section 4.3.2: The range of | is the range of the first expanded
array variable in the statement. An example is given below in Section 5.3.2.1.

Other rules are the consequence of the principles of variable calculation in FST:

e A calculated array variable has to be completely defined in a single statement. Since a subroutine
call cannot consist of substatements, a calculated array is necessarily full-range. Again, the
above subroutine call is an example. Both Y and Z are full-range.

¢ A variable can be calculated only once. This implies that a scalar OUTPUT argument is
incompatible with statement expansion. A scalar variable would be calculated again and again for
each subroutine call in the generated DO-loop.

e For the same reason OUTPUT_ARRAY arguments are incompatible with statement expansion.
An OUTPUT_ARRAY argument is an entire array, calculated by means of a single call to a
subroutine. It will not be calculated in an expanded call.

e The last three rules imply that all output arguments of an expanded call must be of type OUTPUT
with full-range arrays as actual arguments.

o And this implies that the subscript ranges in an expanded subroutine call are always absolute-to-
relative, unless the subroutine does not have output arguments.

Finally, an expanded subroutine call is still a subroutine call:

e An INPUT argument may also be an expression. An input expression containing array variables
is simply expanded. The example above has the expression 1.0+X(1:N) as input argument.

o INPUT_ARRAY arguments are entire arrays that are passed to the subroutine. This does not
interfere with expansion of the call. An INPUT_ARRAY argument is simply passed to the
subroutine each time it is called. An INPUT_ARRAY does not need to belong to the family of the
expanded arrays in the call. An example is given below in Section 5.3.2.

5.3.2 Examples of expanded subroutine calls

The first example once more shows that an INPUT argument may be an expression containing array
variables. The arrays Y and Z are calculated from the larger arrays A and B in

DECLARATIONS

DEFINE CALL FLIB2 (INPUT,INPUT,OUTPUT,OUTPUT)
ARRAY A(1:N+10), B(1:N+10), Y(1:N), Z(1:N)
MODEL

CALL FLIB1 (2.5*A(1:N)+SQRT(B(1:N)),Y,2z) <- Expanded call with input expression

The subroutine call is expanded to

DO 10 I=1,N
CALL FLIB1 (2.5*A(I)+SQRT(B(I)), Y(I), Z(I))
10 CONTINUE

Not all input arguments of an expanded subroutine call need to be arrays or array expressions. The
first argument in the call to subroutine FLIB2 below is a scalar input variable Q:
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DECLARATIONS

DEFINE_CALL FLIB2 (INPUT, INPUT, OUTPUT, OUTPUT)
ARRAY X (1:N), Y(1:N), Z(1:N)

MODEL

PARAMETER Q=2.0
CALL FLIB2 (Q,X,Y,Z) <- Expanded call with scalar Q as input

The expanded subroutine call is

DO 10 I=1,N
CALL FLIB2 (Q,X(I),¥(I),2(I)) <- For each | a separate call
10 CONTINUE

In case of a scalar OUTPUT argument, however, the translator reports an error. The same happens
for OUTPUT_ARRAY arguments. They cannot be combined with expansion. These errors are
illustrated by the following program lines,

DECLARATIONS

DEFINE_CALL FLIB3 (INPUT, OUTPUT)

DEFINE_CALL FLIB4 (INPUT, OUTPUT, OUTPUT_ARRAY)
ARRAY Y (1:N), T(1:N), U(1l:N)

MODEL

CALL FLIB3 (Y,C) <- ERROR: Array Y is used as INPUT which requires expansion
. scalar C is OUTPUT which does not allow expansion.

CALL FLIB4 (A,T,U) <- ERROR: Array T is used as OUTPUT which requires expansion

array U is OUTPUT_ARRAY which does not allow expansion.

INPUT_ARRAY arguments are no problem. In such a case, the subroutine requires an entire array
as input. If, in addition, an array is used at the position of a scalar OUTPUT argument, the call is
expanded. For example:

DECLARATIONS
DEFINE_CALL FLIB5 (INPUT_ARRAY, INTEGER_INPUT, INPUT, OUTPUT)
ARRAY Y (1:N), Z(1:N)

ARRAY X(1:M) <- Array X belongs to a different family
MODEL
CALL FLIB5 (X,M,Y,Z) <- Expanded: Z(l) is calculated from array X, integer M and Y(l)

The expansion of this call is

DO 10 I=1,N
CALL FLIB5 (X,M,Y(I),2(I))
10 CONTINUE

Indeed, the INPUT_ARRAY X is not expanded but passed to the subroutine. Note that the array X
not necessarily belongs to the family of Y and Z.

5.3.2.1 The counter | in an expanded subroutine call
Finally, an example with the DO-loop counter | used in the call. The range of the counter is the range
of the first expanded array in the statement. Hence, the declared range of an INPUT_ARRAY
argument is insignificant!

DECLARATIONS
DEFINE CALL FLIB6 (INTEGER_INPUT, INPUT ARRAY, INTEGER_INPUT, INPUT, OUTPUT)
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ARRAY X (1:M+10)
ARRAY Y (8:N+7), Z(1:N)
MODEL

CALL FLIB6 (I-7,X,M+10,1.0+Y,2)

This requires some more explanation. The subroutine FLIB6 has 5 arguments. The first argument is
an integer value used in the calculations. The second and third argument are an array with a certain
length, also used in the calculations. The fourth and fifth argument are scalar input and output
arguments. This subroutine is used to calculate the elements of array Z, declared with subscript
bounds 1 and N. The elements of Z depend, say, on their own element number, on array X and on
the elements of an equally long array Y declared with bounds 8 and N+7.

The DO-loop counter | runs over the declared range of Y because the array Y is the first expanded
array of the statement. The expansion then becomes:

DO 10 I=8,N+7
CALL FLIB6 (I-7,X,M+10,1.0+Y(I),2(I-7))
10 CONTINUE

Hence, if the elements of Z depend on their own element number, the call to FLIB6 should contain
the integer number 1-7. Of course, if Y would be declared as Y(1:N), the first argument could simply
be |. The example demonstrates, however, that the use of | may sometimes be tricky.

54 An interface subroutine

Sometimes, statement expansion cannot be used. In case arrays from different families have to be
used as arguments of the subroutine or in case one or more output arguments remain scalar, FST
produces an error message. In such a case, we suggest to hide the subroutine for FST by calling it
indirectly, via a small "interface subroutine”.

A second reason for hiding a subroutine from FST is an input argument which is overwritten. Such
an argument acts as input and output which is not possible for a subroutine directly called from FST.

The problem discussed below requires an interface subroutine. Suppose we have a subroutine
FLIB1 described by the following input/output structure:

DEFINE_CALL FLIB1 (INPUT,OUTPUT,OUTPUT)
This routine calculates two output variables from one input variable. Suppose we want to call it for an
array of input values X and produce two arrays of output values, Y and Z. Statement expansion does

not work, however, since the input array and the output arrays belong to different array families.

The only way to combine arrays of different families in a subroutine CALL is to write an interface
subroutine INTF1

SUBROUTINE INTF1 (X,N,Y,Z,M)

INTEGER N,M

REAL X (N), Y(M),2Z(M)

IF (N.LT.M) CALL ERROR ('INTF1','N < M')

DO 10 I=1,M

CALL FLIB1 (X(I),Y(I),Z(I) <- The original is left unchanged !

10 CONTINUE

RETURN

END
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The FST program using this interface then contains

DECLARATIONS
DEFINE CALL INTFl (INPUT_ARRAY, INTEGER INPUT,
OUTPUT ARRAY, OUTPUT_ARRAY, INTEGER_INPUT )
ARRAY X(1:N)
ARRAY Y(1:M), Z(1:M) <- Another family
MODEL
ARRAY SIZE N=100 ; M=10

CALL INTF1 (X,N,Y,Z,M) <. Subroutine FLIB1 is not called directly and is not
described anymore in FST

The subroutine FLIB1 is called indirectly and FST does not need to know its input and output
structure. The original subroutine can be left unchanged and its Fortran source code is not even
needed.

At first sight, interface subroutines for just calling another subroutine may seem undesirable
overhead. In general, however, they form a powerful tool in connecting subroutines with different
authors, origin and style, without changing the subroutines themselves and creating a maintenance
problem. Sometimes, calling a subroutine may require the use of a Fortran COMMON block, for
instance. Then, without changing the internal logic of that subroutine (and the thousands of program
lines it possibly contains), a small interface subroutine, which contains the COMMON declarations,
can be called from FST.
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Figure 6.1 on the title page of this chapter. The response of a damped, harmonic oscillator to a
periodic force. If the period of the force is close to the natural period of the oscillator, the amplitude

becomes large. The phenomenon is widely known as resonance. The model is given in Listing 6.7
on page 80.
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6 Examples

In the first section, Tips and Tricks, a few often returning tricks are briefly discussed. Then full
example programs are given. The material in these example programs comes from biology and
physics.

The material in this chapter is meant to be interesting for both beginning and experienced users.
Complete understanding of the example programs in Section 6.5 and Section 6.6 requires some
knowledge of mechanics. These programs have been written as test programs for the translator and
give therefore also an impression of the possibilities of FST.

6.1 Tips and Tricks

6.1.1 Plotting an AFGEN or CSPLIN function

The small program in Listing 6.1 on page 70 calculates interpolated values for the function TEST
given as seven (x,y) pairs. The program makes use of the range of TIME, between STTIME and
FINTIM, to set the X values for the interpolation. It uses then both interpolation techniques available,
linear interpolation and cubic spline interpolation (see Section 3.4). The value of PRDEL can be used
to determine the number of X points for which function values are calculated. .

Although Listing 6.1 represents a full FST program, it does not contain any state variables. It only
simulates TIME, starting at STTIME and ending at FINTIM.

The interpolation results can be inspected in Figure 6.2. During most of the X-range the cubic spline
algorithm leads to neat function values. The curve between 6 and 9, however, is fantasy of the cubic
spline algorithm which uses a third order polynomial between every two (x,y) pairs without sudden
changes in direction. One should be aware of this type of unexpected behaviour.

5
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1
- == linear.. :
cubic splines
; 1 A 1 L ) L .
0 2 4

X 6 8

Figure 8.2  Cubic spline interpolation fails between the two rightmost points.
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Listing 6.1  Inspecting FUNCTION interpolation

0001 TITLE Two Interpolation Methods
0002 MODEL .
0003 FUNCTION TEST = 0.0,
3.0,
5.0

’

I3 ’
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.0,
.0

’

oo s

’ R

, 9.0, 2.0

TN
o oo
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NN
o u o

’

* make use of TIME to get a range of X-values
0004 TIMER STTIME=0.0 ; FINTIM=9.0 ; DELT=0.1 ; PRDEL=0.1
0005 X = TIME

* linear interpolation
0006 Y1 = AFGEN (TEST,X)

* interpolation with natural cubic splines
0007 ¥3 = CSPLIN (TEST,X)

0008 PRINT X,Y1,Y3
0009 TRANSLATION_ GENERAL DRIVER='EUDRIV'
0010 END

6.1.2 Plotting an arbitrary function

An arbitrary function can be studied by using the same technique as in Section 6.1.1. The AFGEN or
CSPLIN function call is simply replaced by any other function of X. Listing 6.2 shows that the
dependent variable can even be calculated in a subroutine.

Listing 6.2  Inspecting the result of a subroutine which caiculates a function y(X)FST program structure

0001 TITLE Inspect subroutine result
0002 DECLARATIONS
0003 DEFINE_CALL MYSUB (INPUT,OUTPUT)

0004 MODEL

* make use of TIME to get a range of X-values
0005 TIMER STTIME=0.0 ; FINTIM=9.0 ; DELT=0.1 ; PRDEL=0.1
0006 X = TIME

* subroutine call
0007 CALL MYSUB (X,Y)

0008 PRINT X,Y
0009 TRANSLATION GENERAL DRIVER='EUDRIV'
o010 END

Again X is a copy of TIME. The X-range studied is then [STTIME,FINTIM] with a resolution of
PRDEL. There are no state variables and the driver EUDRIV can be used to control TIME.

6.1.3 TERMINAL output
Often, the final result of a simulation run is studied as function of the value of an input variable. In the
construction below, the variables of interest are model parameter A and the final value of state

variable X. By printing simply A and X, we get a single, INITIAL value of A and a list of X values, one
at each output interval. A better construction is the following one:
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MODEL
PARAMETER A=2.0

DYNAMIC
X = INTGRL (IX,RX)

TERMINAL

AT = A <-A copy of parameter A

XT = X <-The final value of state X

PRINT AT,XT <-Terminal output of these variables
TIMER PRDEL=0.1 <-For AT and XT this value is not relevant

TIMER STTIME=0.0 ; FINTIM=10.0 ; DELT=0.1
END

The final result of the simulation is the value of X at FINTIM. This value is available for calculations in
the TERMINAL section. Here, it is just copied into the terminal variable XT. This avoids a long list of
intermediate X values during the simulation. In order to study XT as function of A, also A is copied
into a terminal variable, AT. The table in the results file RES.DAT looks like

* Output table number : O (=first output table)
* Output table format : Table output
* Simulation results

TIME AT XT

10.0000 0.10000 2.4596

Hence, parameter A and the terminal value of X are printed on the same line. This simplifies the
making of graphs with help of spreadsheet programs (use IPFORM=5, see Section 3.2.4.3) or the
graphical utility program TTSELECT (see 7.2.1). Note that terminal output is independent of the
value of PRDEL, the dynamic output interval. Many of the example programs in this chapter make
use of terminal output.

6.1.4 The start year IYEAR and the current year YEAR

In case weather data are used, the start year of the simulation is the value of the WEATHER control
variable IYEAR. The value of IYEAR is not available in the FST program, however. Instead, the
variable YEAR has to be used, which belongs to the group of weather and calendar data (see
Section 3.2.4.4). The variable YEAR is the current year and is updated if the simulation reaches a
new year.

Often, simulation results will depend on the choice of the start year IYEAR. Printing YEAR, however,
leads to a value of YEAR for each output interval and not to a unique value of the start year. The
solution is to define an INITIAL variable which stores the value of YEAR at STTIME:

WEATHER IYEAR=1985,

INITIAL

* define and print start year
SYEAR = YEAR

PRINT SYEAR

DYNAMIC

END
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Since SYEAR is a variable calculated in INITIAL, it will be printed only once, at time STTIME.
Another interesting application of SYEAR is a FINISH condition which terminates the run at the
beginning of a new year '

FINISH YEAR > SYEAR
This simple construction does not require day counting and works also in leap years.

In addition, the start year can be copied in a terminal output variable (see Section 6.1.3). We have to
copy SYEAR in a calculated terminal variable. This leads to the following construction:

WEATHER IYEAR=1985,
INITIAL

* define start year
SYEAR = YEAR

DYNAMIC

TERMINAL

RESULT = ....

* start year, terminal copy of SYEAR

SY = SYEAR

* print start year and result, both at FINTIM

PRINT SY, RESULT
END

Note that just printing a terminal copy of YEAR will give the final year and not the start year in the

results. Section 6.2 gives a practical example of the entire construction.

6.1.5 Choosing between expressions

Sometimes there are two alternative expressions for a quantity, say Y. Which one is to be used
depends on the value of another expression. An example is

Y = 1.0 + INSW(X-2.3, SIN(A), COS(B))
The FST intrinsic function uses the first argument as a control variable. Depending on the sign of the
control variable, the function result is equal to either the second or the third argument. With the

above statement, Y is calculated as 1.0+SIN(A) for X<2.3 and as 1.0+COS(B) for X>=2.3. A precise
description of the arguments of INSW can be found in Table 8.2 on page 136.

A similar function is FCNSW which switches between three possible expressions, depending on the
value its first argument (see Table 8.2 on page 136).

6.1.6 Switching integration on and off

The function INSW can be used to switch on a rate of change during a certain time interval. The
following program lines give an example.

S = INTGRL (IS,RS) .
RS = (A*S) * INSW (TIME-TSTART, 0.0, 1.0) * INSW(TIME-TEND, 1.0, 0.0)
PARAMETER A=0.01 ; TSTART=10.0 ; TEND=20.0
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The rate of change is set equal to a constant A times S, which means that the amount S will grow
exponentially. The process works only for values of TIME larger than TSTART but smaller than
TEND. Outside that time interval, one of the INSW calls is zero. Of course, in this simple case, one
could simply use STTIME and FINTIM to control the simulation. If the process is part of a larger
model, however, this is not always possible.

The use of a function like INSW represents conditional calculations. In Fortran or any other general
programming language, one would use IF-THEN-ELSE control structures to write down all conditions
explicitly. The above example would look like

IF (TIME.GE.TSTART .AND. TIME.LT.TEND) THEN

RS = A*S
ELSE

RS = 0.0
END IF

In EST such conditions have to be written in the form of INSW function calls. In complicated cases
this tends to become very tricky, for instance in case of nested conditions. Then the use of a Fortran
subroutine will often be a better solution.

6.1.7 Subroutines requiring INTEGER input

The Fortran intrinsic functions INT and NINT (see Table 8.1 on page 134) can be used to convert the
result of calculations to an integer value. This can be done as part of the subroutine call. Say, we
have a subroutine which requires an INTEGER first argument. The following program lines give
examples of possible call statements

DECLARATIONS
DEFINE_CALL MYSUB (INTEGER_INPUT, ouTPUT) <- first argument is integer

MODEL
PARAMETER A=3.4
B = SQRT(A) + 10.0

CALL MYSUB (NINT(A), C) <- first argument becomes 3
CALL MYSUB (NINT(1.0+A*B), D) <- first argument calculated
CALL MYSUB (NINT(YEAR-1.0), E) <- first argument is previous year

Note that the use of INT is always a bit risky. If a the result of a calculation is 12.0, there is always
the possibility that the machine code for that number is something like 11.9998. Truncation with INT
then leads to the integer value 11. Therefore, the use of NINT (Nearest INTeger), is generally safer
than the use of INT.

Subroutines producing INTEGER output cannot be called directly from FST. They have to be
changed or called via an interface routine (cf. Section 5.4).

6.1.8  Using the loop counter |

A calculation or FINISH statement which is expanded is placed by the translator in a Fortran DO-
loop with the integer variable | as its counter. The range of | is the subscript range of the first
expanded array in the statement (see Section 4.3.2). In order to show some possibilities of the use
of I, some more examples are given in the following program lines.
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DECLARATIONS
ARRAY X (1:N), Y(1:M)
DEFINE CALL MYSUB (INTEGER_INPUT, OUTPUT)

MODEL

FINISH 2.0%*X < REAL(I) <- Expanded to N conditions 2.0*X(l) < REAL(l)
CALL MYSUB (I+1,X) <- Expanded to N calls CALL MYSUB (I+1,X(1))
Y = 1.0+REAL(I**2) <- Expanded to N calculations Y(l) = 1.0 + REAL(I**2)

With the first FINISH statement, N comparisons are made. For each array element, 2.0*X(l) is
compared with the value of | itself. The is called N times, for all elements of X separately and the
subscript number | is used in the input argument for the subroutine. The assignment calculates the
elements of array Y as the series 1, 5, 10, 17, 26, 37, 50, ..., 1+M*M.

6.2 Cumulative rainfall

The program in Listing 6.3 makes use of the easy access to weather data in FST for calculating the
yearly rainfall. This is done by using RAIN as a rate of change. The little tricks of Section 6.1.3 and
Section 6.1.4 are used to get the start year and the total rainfall as terminal output.

Listing 6.3  Monthly averages of weather data

0001 TITLE Cumulative rainfall
0002 MODEL
0003 WEATHER WTRDIR='C:\SYS\WEATHER\'
0004 WEATHER CNTR='NLD' ; IYEAR=1954 ; ISTN=1
0005 TIMER STTIME=1.0 ; FINTIM=370.0 ; DELT=1.0
0006 TRANSIATION_FSE
0007 INITIAL
* save start year as YEAR1 and stop at end of the (leap) year
0008 YEAR1=YEAR
0009 FINISH YEAR>YEAR1

0010 DYNAMIC

* integrate rainfall starting at 0.0
0011 CRAIN = INTGRL (ZERO,RAIN)
0012 INCON ZERO=0.0

0013 TERMINAL
* terminal help variables are copies from start year and total rain
0014 , CR = CRAIN
0015 YR = YEAR1
0016 PRINT YR,CR
0017 END

The start year selected in statement 4 is 1954. The FINISH condition in statement 9 will halt the
simulation at the first day of 1955 (see Section 6.1.3). The rainfall of the last day of 1954 has then
been added tot the total and CRAIN is at its final value. Copies of YEAR1 and CRAIN are used for
terminal output (see Section 6.1.4). By means of reruns over IYEAR, a graph can be made of the

total rainfall as function of the year number.

6.3 Monthly means of weather data

The example program in Listing 6.4 on page 74 also integrates weather data, but now per month, by
switching on and off an array of 12 rates of change using the technique described in Section 6.1.6.
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Listing 64  Monthly averages of weather data

0001 TITLE Monthly Averages of Weather data

0002 DECLARATIONS
* cumulative radiation, minimum & maximum temperature per month,
* rates of change and monthly averages

0003 ARRAY CRAD(1:M), RMRDD(1:M), MRADM (1:M)

0004 ARRAY CTMMX (1:M), RMTMMX(1:M), MTMMXM (1 :M)

0005 ARRAY CTMMN (1:M), RMTMMN (1:M), MTMMNM (1 :M)
* help variables

0006 ARRAY MDAYS (1:M) , XDAYS(0:M) , CDAYS (0:M)

0007 ARRAY PULSE(1:M)

0008 MODEL
0009 ARRAY SIZE M=12

0010 WEATHER WTRDIR='C:\SYS\WEATHER\'
0011 WEATHER CNTR='NLD' ; IYEAR=1954 ; ISTN=1
0012 INCON ZERO=0.0
0013 PARAMETER MDAYS(1:11)=31.,28.,31.,30.,31.,30.,...
31.,31.,30.,31.,30. ; MDAYS(12:M)=31.
0014 INITIAL
¥ variable leap is 1.0 at leap years ; otherwise 0.0
0015 LEAP = REAL ( (1+MOD (NINT (YEAR)-1,4))/4)

* make february longer when needed
001le XDAYS (0)=0.0 ; XDAYS(1)=MDAYS (1) ; XDAYS (2) =MDAYS (2) +LEAP ;
XDAYS (3 :M) =MDAYS (3 :M)

* calculate cumulative day numbers and start year
0017 CDAYS = ARSUMM (XDAYS,O0,I)
0018 SYEAR = YEAR

0019 DYNAMIC

* month pulse
0020 PULSE = INSW((DOY-CDAYS(0:M-1)-0.5), 0.0, 1.0) *

INSW ( (DOY-CDAYS (1:M) -0.5), 1.0, 0.0)

* cumulative radiation switched on for current month only
0021 CRAD = INTGRL (ZERO, RMRDD)
0022 RMRDD = PULSE * RDD

* cumulative maximum temperature switched on for current month only
0023 CTMMX = INTGRL (ZERO,RMTMMX)
0024 RMTMMX = PULSE * TMMX

* cumulative minimum temperature switched on for current month only
0025 CTMMN = INTGRL (ZERO,RMTMMN)
0026 RMTMMN = PULSE * TMMN

* gtop at first day of next year (see Section 6.1.4)
0027 FINISH YEAR > SYEAR

0028 TERMINAL

* monthly averages to terminal output (See Section 6.1.3)
0029 MRADM = CRAD / XDAYS(1:M)
0030 MTMMXM CTMMX / XDAYS (1:M)

[}

0031 ~ MTMMNM = CTMMN / XDAYS(1:M)

* get year to terminal output (see Section 6.1.4)
0032 Y = SYEAR

0033 PRINT Y, MRADM, MTMMXM, MTMMNM -
0034 TIMER STTIME=1.0 ; FINTIM=400.0 ; DELT=1.0
0035 TRANSLATION_FSE
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0036 END

In statement 16, the help array XDAYS is calculated as a copy of MDAYS, except for February which
may have 28 or 29 days. In statement 17, the cumulative number of days is calculated as an array
containing 0., 31., (31.+28.(or 29.)), (31.+28.(or 29.)+31.),...

During the simulation, the value of DOY (Day Of Year, see Section 3.2.4.4) proceeds from 1.0 to
365. (366.). For each day, statement 20 is evaluated. In expanded form, this statement is

DO I=1,M
PULSE (I) = INSW((DOY-CDAYS(I-1)-0.5), 0.0, 1.0) * ...
INSW( (DOY-CDAYS(I)-0.5), 1.0, 0.0)
10 CONTINUE

For a value of DOY in, say March, the first INSW call returns 1.0 for 1=3,4,...12. The second INSW
call returns 1.0 for 1=1,2,3. Hence, the product of the two INSW calls is 1.0 for | equal to 3 only,
which makes the 3-rd element of PULSE equal to 1.0 and all other elements equal to 0.0. This is
used in statements 22, 24 and 26 to switch on all integrals for March and to switch off all others. This
logic may be verified by printing the array PULSE.

Using the 12 switches, the radiation, minimum temperature and maximum temperature are
integrated in twelve parts. In the terminal section, the result is then divided by the lengths of the
months.

Note that FINTIM has been set to 400 and that the run is terminated at the end of the year by means
of the finish condition on SYEAR discussed in Section 6.1.4. The output variables are TERMINAL
variables sent to the output files after terminating the run, at the first day of the next year. In order to
have also the start year available at the same value of TIME, SYEAR is copied to the terminal
variable Y (see Section 6.1.4). Figure 8.1 on the title page of Chapter 8 shows some results for
January.

6.4 Plotting in state space

Usually, the result of a simulation model is one or more state variables that change with time. This
can be visualized by plotting state variables with TIME as independent variable. In some situations,
however, insight in the behaviour of a system can be gained by making a different kind of graph, by
plotting the status of the system in state space.

The status of a system is described by the values of its state variables. If a system has two state
variables X1 and X2, its status is completely described by a combination (X1,X2). Every value
combination (X1,X2), however, corresponds to a point in the state space spanned by an axis X1 and
an axis X2. The simulated changes in the system can be visualized then as a trajectory through the
state space. An example is the biological population model in Listing 6.5 on page 76.

Listing 6.5 A predator prey model leading to so-called stable limit cycles.

10001  TITLE Predator Prey Model with stable limit cycle

* This Predator prey system leads to a stable limit cycle

* if the environment carrying capacity for the prey is large.
* The model originates from Rosenzweig (1972) and is

* discussed also by May (1972).

* A stable limit cycle means that, after a sufficient amount
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* of time, the periodic behaviour of predator and prey populations
* becomes independent of the initial conditions. This can be
* demonstrated by drawing the populations in (PREY, PRED) space.

model parameters ; values taken from Roughgarden (1979)

*

* R - relative growth rate prey at low density

* K - carrying capacity of environment for prey

* A - consumption of preys per prey per predator at low prey density
* C - consumption of preys per predator at high prey density

* B - predator's increase per eaten prey

* D - relative death rate predator

0002 MODEL

0003 PARAM R = 0.5; A = 0.01; C
* start outside cycle

0004 INCON IPREY = 200.0; IPRED = 15.0

i

10.0; B = 0.02; D = 0.1; K = 3500.

0005 PRED INTGRL (IPRED,RPRED)
0006 PREY = INTGRL (IPREY,RPREY)

* the growth rate of the preys with self limitation
0007 RPREY = R * PREY * (1.0 - PREY/K) - FOUND * PRED

* the growth rate for the predators with efficiency factor B
0008 RPRED = (B * FOUND - D) * PRED

* the number of preys eaten per predator per unit of time ; the
* exponential function describes the saturation of predators
0009 FOUND = C * (1.0 - EXP (-1.0 * A * PREY / C))

0010 PRINT PREY, PREb
0011 TIMER STTIME=0.0; FINTIM=200.0; DELT=1.0
0012 TIMER PRDEL=0.5

0013 TRANSLATION_ GENERAL DRIVER='RKDRIV'
0014 END

* gtart inside cycle
0015 INCON IPREY = 700.0; IPRED = 50.0
0016 END

The biology of the model is explained in Listing 6.5. The status of the system is completely described
by a combination (PREY, PRED). Figure 5.1 on the title page of Chapter 5 shows the changing
system status in state space. Starting from different points in state space, the system slowly
approaches the same cycle, which is therefore called a stable limit cycle.

6.5 "Measuring" model properties

If the qualitative behaviour of a model is well understood, it becomes important to quantify this
“understanding”. For instance, a system appears to oscillate. If the FST program could determine the
size of the oscillation period T, the behaviour of T could be studied as function of model input

variables. It would be cumbersome to extract this information from plots of an oscillating state
variable as function of time. e

In the model of Listing 6.6 on page 78, the movement of a planet around its sun is described by
Newton's laws of mechanics and gravitation. Positions and velocities are the state variables of the
system. Their rates of change are velocities and accelerations as discussed briefly in Section 3.5.
Here, the calculations are done in the (X,Y) plane and positions, velocities and accelerations are
arrays with two components.



78

6 Examples

Statement 29 is the last statement of the actual mechanical model. The equations lead to the
movement of the planet around its sun in an ellipse. The other calculation statements “measure” the
length of the planets year.

Listing 6.6  Movement of a planet around a star according to Isaac Newton. A nice introduction into

0001
0002

0003

0004
0005

0006
0007

ooos

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021
0022

0023

0024
0025

0026
0027

mechanics can be found in Feynman et al. (1963, Chapters 7, 8 and 9).

TITLE Orbits of sun and planet
TITLE calculated with Newton's law

DECLARATIONS

* sun

ARRAY SUN(1:N), ISUN(1:N), RSUN(1:N)

ARRAY VSUN(1:N), IVSUN(1:N), ASUN(1:N)

* planet

ARRAY PLN(1:N), IPLN(1:N), RPLN(1:N)

ARRAY VPLN(1:N), IVPLN(1:N), APLN(1:N)

* unit length vector pointing from sun to planet
ARRAY E(1:N)

MODEL

* calculations are 2-dimensional
ARRAY SIZE N=2

CONSTANT PI=3.14159265

* initial position and velocity of planet relative to center of mass
INCON IPLN(1) = 100.0 ; IPLN(2:N)’ 0.0
INCON IVPLN(1l) = 0.0 ; IVPLN(2:N) = 1.0 ; ZERO = 0.0

]

* value of gravitation constant ; sun and planet mass
PARAMETER G=2.0 ; MSUN=100.0 ; MPLN=1.0

INITIAL

* Initial position and velocity of the sun are calculated in
* such a way that the center of mass (at 0,0) does not move
ISUN -MPLN * IPLN / MSUN

IVSUN = -MPLN * IVPLN / MSUN

1]

DYNAMIC
* equations of movement for the sun
SUN = INTGRL ( ISUN,RSUN)

VSUN = INTGRL (IVSUN,ASUN)

* equations of movement for the planet
PLN = INTGRL ( IPLN,RPLN)
VPLN = INTGRL (IVPLN,APLN)

* unit length vector pointing from sun to planet
E = (PLN-SUN) / DIST

* the acceleration of the sun and planet ; Newton's 2-nd law
ASUN = +FORCE / MSUN * E

APLN = -FORCE / MPLN * E

* size of force between planet and sun ; Newtonis gravitation law
* with dist as the distance between planet and sun

FORCE G * MSUN * MPLN / DIST**2

DIST = SQRT((SUN(1l)-PLN(1))**2 + (SUN(2) -PLN(2)) **2)

1]

* rates of change of position are velocities, by definition
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0028 RSUN = VSUN
0029 RPLN = VPLN

0030 TIMER STTIME = 0.0; DELT = 0.01; FINTIM=1.0E+5; PRDEL=100.0
0031 PRINT SUN, PLN, SURF, ANGLE
0032 TRANSLATION GENERAL DRIVER='RKDRIV' ; TRACE=2

* Observing model behaviour

* This model clearly has to obey Keppler's famous second law

* "The radius vector of the planet sweeps out equal areas

* in equal intervals of time"

* The swept area per unit of time is found as a vector cross product
0033 SURF = 0.5 * (PLN(1)*VPLN(2) - PLN (2) *VPLN (1))

* angular velocity of the planet seen from the center of mass
0034 OMEGA = 2.0 * SURF / (PLN(1)**2 + PLN (2) **2)
0035 ANGLE = INTGRL (ZERO,OMEGA)
* the variable BACK falls to zero if the planet is back
0036 BACK = INSW(ABS(ANGLE)—2.0*PI,1.0,0.0)
* back is integrated
0037 PERIOD = INTGRL (ZERO,BACK)

0038 FINISH BACK<1l.0
0039 TERMINAL

0040 T = PERIOD

0041 PRINT T

0042 END

The length of the planets year is found by calculating the angular velocity of the planet as seen from
the center of mass. This angular velocity OMEGA is nothing else than the rate of change of the
angle between the planet and some reference direction. OMEGA is calculated from the planet's
position and velocity by means of some vector calculus. As soon as the integral of OMEGA over
time reaches the value 2.0*Pl, the planet has returned to its initial position. At this moment, BACK
switches from 1.0 to 0.0. The state variable PERIOD is then equal to the simulated time so far and
will not increase further. This formulation has the advantage that the Runge-Kutta algorithm detects
the sudden change of BACK and will reduce its time step towards the end of the year in order to
preserve the accuracy of the integral.

Note that the values of the gravitation constant and the masses are not realistic. The parameter
values used in Listing 6.6 lead to a PERIOD of 246.73 time units reached in 35 integration steps.

Running the model shows that SURF is independent of time. This is the second of Kepler's laws on
planetary movement: "The radius vector of the planet sweeps out equal areas in equal intervals of
time". Kepler's incredible analysis was based on a lifetime of observations by Tycho Brahe in
Denmark. With Newton's laws it becomes a direct consequence of the conservation of angular
momentum.

The variables added for calculating the period are not part of the system description. They are used
only for observing the simulated system. This example illustrates that it may sometimes be difficult to
use a numerical simulation model for understanding a system. Just simulating system behaviour

may not be sufficient.
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6.6 Sensitivity analysis

This example demonstrates how a series of reruns in combination with terminal output can be used
to describe the response of a system on the value of an input parameter.

The model in Listing 6.7 on page 80 describes an damped oscillator on which a periodic force acts.
The period of the oscillation is equal to the period of the force, but the oscillation becomes large only
if the period of the force is close to the natural period of the oscillator. This phenomenon is called
resonance.

Listing 6.7  Forced damped oscillator

0001 TITLE Movement of Forced Damped Oscillator

* A harmonic oscillator is brought into movement by an

* external sinusoidal force with period PERIOD. If the

* external period is close to the oscillator time, the

* amplitude reaches large values. There is resonance.

* The oscillator is damped by means of a friction force

* proportional to velocity.

* The parameters of the model:

* MASS - mass of harmonic oscillator

* PERIOD - period of external sinusoidal force on oscillator
* K - ratio elastic force and displacement X

* B - friction constant: ratio between force and velocity
* FO - amplitude of driving force

0002 MODEL
0003 PARAMETER MASS=1.0 ; PERIOD=80.0 ; K=1.0 ; B=0.1 ; F0=1.0

* Stationary oscillation is reached for 20 times the period
0004 TIMER STTIME=0.0 ; FINTIM=1600.0 ; DELT = 0.01

* A constant
0005 CONSTANT PI=3.14159265

* Initial value used for all state variables
0006 INCON ZERO = 0.0

* Integration method with some extra accuracy
0007 TRANSLATION_GENERAL DRIVER='RKDRIV' ; EPS=1.0E-5

0008 INITIAL
* angular frequency related to period
0009  OMEGA = 2.0*PI / PERIOD

0010 DYNAMIC

* position and velocity are the state variables
0011 X = INTGRL (ZERO,RX)
0012 A% INTGRL (ZERO,RV)

* velocity changes as a result of acceleration

0013 RV = A
* position changes as a result of velocity
0014 RX =V

* acceleration is calculated from external force FORCE

* elastic force K*X and oscillator friction B*V, using Newton’s law F=M.A
0015 A = (FORCE - K * X - B * V) / MASS
0016 FORCE = FO0 * COS(OMEGA * TIME)
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* moved distance in last period of simulation is the
* integral of the absolute speed switched on a time
* DERIOD before TIME reaches FINTIM.

0017 S = INTGRL(ZERO,RS)

0018 RS = INSW(TIME—(FINTIM—PERIOD),0.0,1.0) * ABS (V)

0019 PRINT X
0020 TERMINAL

* terminal variable equal to angular frequency
0021 OMEG = OMEGA

* a quarter of S should be close to the amplitude
0022 SIML = S / 4.0

* analytical formula (not derived in this manual)

0023 ANAL = FO / ...
SQRT ( MASS**2 * (K/MASS-OMEGA**2) **2 + OMEGA**2 * B¥**2)

* terminal output
0024 PRINT OMEG, SIML, ANAL

0025 END

0026 PARAMETER PERIOD=40.
0027 TIMER FINTIM=800.0
0028 END

0029 PARAMETER PERIOD=20.
0030 TIMER FINTIM=400.0
0031 END

0098 PARAMETER PERIOD=1.4
0099 TIMER FINTIM=28.0
0100 END

0101 PARAMETER PERIOD=1.3
0102 TIMER FINTIM=26.0
0103 END

The state variables of the oscillator are its position X and its velocity V. The rates of change of the
velocity is equal to the acceleration (sum of forces divided by mass) and the rate of change of X is
equal to the velocity. The statements 11 to 16 represent this mechanical system.

The next step is to "measure" the amplitude of the oscillation. After a sufficient amount of time, the
amplitude of the oscillator approaches a constant. In Listing 6.7, FINTIM is set equal to 20 times the
period of the external force. The amplitude is measured during simulation of the last period. That is
done in statements 17 and 18. During the last period the absolute velocity is integrated. This leads to
an integral equal to four times the amplitude, independent of the phase of the oscillation. This is used
in the terminal section for the calculation of the simulated amplitude SIML in statement 22.

In the terminal section, also an analytical expression for the amplitude is evaluated and a copy

OMEG of the angular frequency OMEGA is made. The three variables OMEG, ANAL and SIML are

terminal output variables. By means of a series of reruns, a graph of the amplitude as function of the
 OMEGA can now be directly made. Figure 6.1 at the title page of this Chapter 6 shows the result.

The strategy for such a sensitivity analysis is to represent the system behaviour by one or a few
terminal output variables. By means of many reruns these output variables are studied as function of
certain input values. It is handy to make copies of these input values in the terminal section. Then
input and output variables appear in the result at the same value of TIME.
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6.7 The use of gridpoints in a diffusion model

The diffusion problem of Section 4.2 on page 43 is treated in a somewhat different way. Again, the
sheet size is divided in N layers, but in Listing 6.8 the N+1 concentrations at the layer interfaces are
used as state variables instead of the amounts presents in each layer. This simplifies the formulation
of the rates of change, but complicates the formulation of a mass balance and the role it plays in the
program.

In statement 4 the concentrations, their rates of change and their initial values are declared as arrays
with N+1 elements. In statement 13, the initial concentrations at the sheet surface (at grid pints 1 and
N+1) are set at the outer concentration CS. All interior gridpoints have a zero initial concentration.
The diffusion equation is very simple now: statement 16 keeps the concentration at the sheet's
surface at CS (rate 1 and rate N+1 are always zero) and for all interior gridpoints the rate of change
is equal to the second order spatial derivative. This is a direct implementation of the second order
partial differential equation describing diffusion:

So far the program looks attractive by its simplicity. The calculation of a mass balance, however,
makes things more complicated. We need an estimate for the surface flux into the sheet. This
surface flux is the diffusion coefficient times the concentration gradient at the surface. This gradient
cannot be directly estimated as a concentration difference since there is no gridpoint present outside
the sheet. Therefore, the gradient at point N+1, for instance, is calculated as the gradient at point N
plus the change in the gradient between N and N+1. This change is the second order spatial
derivative at point N times the layer size. Listing 6.8 contains comment statements in which this has
been worked out. The total surface flux consists then of the flux at point 1 and the flux at point N+1.

In statement 20 the surface flux is integrated in order to get the cumulative uptake of the sheet as
CFLUX. This uptake is also calculated as the contents of the sheet found by integrating the
concentration profile with Simpson’s method (statement 18). Finally, statement 22 evaluates the
mass balance.

Listing 6.8  The diffusion problem of Section 4.2 on page 43 is treated here in a different way. Instead of
layers with amounts as state variables, gridpoints are considered with concentrations as state
variables.

0001 TITLE Elementary description of diffusion
0002 TITLE Two-sided sheet, initially at zero concentration

0003 DECLARATIONS
* for N layers and N+1 gridpoints
0004 ARRAY C(1:N+1), RC(1:N+1), IC(1:N+1)

0005 MODEL
*kok ok k

0006 . PARAM HEIGHT=1.0 ; D=0.01 ; CS-=100.0

0007 TIMER STTIME = 0.0 ; FINTIM=40.0 ; DELT = 1.0 ; PRDEL=0.5
0008 PRINT CHECK, SFLUX, RELUPT, CFLUX

0009 TRANSLATION_GENERAL DRIVER='RKDRIV' ; TRACE=2

0010 ARRAY SIZE N=40

0011 INITIAL

* height of compartment
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0012 DEL = HEIGHT / REAL(N)

* get initial concentrations
0013 IC(1)=CS ; IC(2:N)=0.0 ; IC(N+1)=CS

0014 DYNAMIC
0015 C = INTGRL(IC,RC)

* second derivative for interior points ; zero at edge

0016 RC(1) = 0.0 ;
RC(2:N) = D * (C{1:N-1) - 2.0*%C(2:N) + C(3:N+1)) / DEL**2 ;
RC(N+1) = 0.0
* gurface flux at two sides added
* gecond order estimates
* de/dx (N) : (1.0*C(N+1) -1.0*C(N-1)) / (2.0*DEL)
* d2c/dx2 (N) * DEL: (2.0*C(N+1)—4.0*C(N)+2.0*C(N«l)) / (2.0*DEL)
o i b et +
* de/dx (N+1) : (3.0%C(N+1)-4.0%C(N) +1.0*C(N-1)) / (2.0*DEL)
*
* and the same for the other edge at point 1
*

(3.0*%C(1) -4.0%C(2) +1.0*C(3) ) / (2.0*DEL) +

0017 SFLUX = D *
D * (3.0*C(N+1) -4.0*C(N) +1.0*C(N-1)) / (2.0*DEL)

* contents of sheet
0018 UPTAKE = ARSMPS (C,1,N+1,DEL)
0019 RELUPT = UPTAKE / (HEIGHT*CS)

* cumulative surface flux
0020 CFLUX = INTGRL (ZERO, SFLUX)
0021 INCON ZERO=0.0

* balance check
0022 CHECK = (UPTAKE - CFLUX) / (HEIGHT*CS)

0023 END

The mass balance of the program in Section 4.2 (Listing 4.1 on page 44) is nonzero only in case of a
programming error. If the program is correct, the mass balance must be zero since mass transport
is described as amounts going from one layer into another layer. In Listing 6.8, a non-zero mass
balance also points towards an accuracy problem. Integration errors lead to a (small) deviation from
a zero mass balance, also in case of a correct model.

The use of gridpoints in this way is known as the method of lines. The calculation of first and second
order spatial derivatives is an art of its own and is preferably done from FST with subroutine calls
(e.g. Silebi & Schiesser, 1992). The use of gridpoints enables a straightforward implementation of
the diffusion equation. This is an advantage, especially in case of a cylindrical or spherical geometry
in combination with several source and sink terms. The use of the mass balance for finding an
optimal number of gridpoints is also an attractive aspect. The model gets a more mathematical and
less intuitive character, however, and will always have a nonzero mass balance, which may be a
disadvantage in certain applications and in teaching.
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Figure 7.1 on the title page of this chapter. The total kinetic and potential energy of a group of 10
stars in their own gravitational field. The orbits of the stars are chaotic and extremely dependent on
~ the initial conditions. The system is therefore no longer predictable. Statistical averages replace the

predictable elliptic orbits of a two body system. According to the virial theorem the average kinetic
energy is minus half the average potential energy. The FST program is available from the authors.
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7.1 The file structure of a model run

Figure 7.2 on page 88 gives a diagram of the computer operations during the execution of an FST
model. The FST program is on top of the diagram. It is usually written with help of a program editor.
If a translation command is given, the FST program is read by the FST translator. The translator may
produce a listing of the FST program. If there are no errors in the FST program, a Fortran program
MODEL.FOR is generated with a set of data files belonging to it.

The next step is to compile the Fortran program. The result is machine code stored in MODEL.OBJ.
The Fortran program makes use of the library DRIVERS (containing the simulation drivers), the
library TTUTIL (containing standardized procedures for input and output), and the library WEATHER
for access to the weather data files. The Linker takes the required code from the libraries and writes
an executable program MODEL.EXE.

During the execution of MODEL.EXE, the generated data files are read. The input subroutines
produce temporary files with extension . TMP which are not included in Figure 7.2. Sometimes you
may find them on the working directory. They can be deleted. Except these temporary files, there are
4 real output files. The file RES.DAT contains the simulation results requested by the PRINT and
OUTPUT statements of the FST program. The log files MODEL.LOG and WEATHER.LOG contain
remarks and messages. And finally, RES.BIN is a machine readable version of RES.DAT which is
used on some machines to produce graphical output.

This shows that the execution of an FST model requires 4 steps: translation, compilation, linking and
running. The first three steps are taken by the FST translator, the Fortran compiler and the Fortran
linker. The last step is the actual model execution. Some insight of this procedure makes it a lot
easier to understand the installation of FST and to understand the difference between translation
errors, compilation errors, linker errors and runtime errors. Below these various aspects are further
discussed.

7.2 Installation of FST

This text is meant to give some insight into the installation of FST. The actual installation instructions
come with floppy and on floppy disks.

The FST translator itself consists of a single executable file. All error messages and also the
generated Fortran code are contained in this executable file FST.EXE. This makes a raw installation
of FST a trivial thing to do: the file FST.EXE has to be copied to a disk. An FST model may then be
translated by just typing in a translation command which starts up the translator (see Section 7.3).
According to the scheme in Figure 7.2, this leads to a Fortran program with data files. The rest of the
procedure remains to be done "by hand".

" Clearly, on most computers an often repeated sequence like translation, compilation, linking and -
running can be automated. This has been done for PC and Macintosh, making use of a certain
compiler. '
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7.21 Automated model runs on PC

For use in combination with Microsoft Fortran 5.1, there is a small shell available which reduces the
entire procedure of running an FST model to "press R".

The shell is started by typing under DOS the command FSTS (FST Shell). After typing “E”, the shell
executes the program editor of your choice for editing an existing or new FST model. Quitting the
editor brings you back to the shell menu from which the execution sequence can be started. The
linker makes use of the Fortran object libraries DRIVERS, TTUTIL and WEATHER which have been
made with Microsoft Fortran 5.1.

After model execution also the graphical utility program TTSELECT can be used from the shell in
order to quickly produce graphs at screen resolution. This graphical utility is able to combine the
results of several reruns in a single graph.

If you use another Fortran compiler, the translator FST.EXE can still be used, but the source code of
the three linked libraries needs to recompiled.

7.2.2 Automated model runs on Macintosh

The FST translator is available in 4 forms.

Application for 68k Macintosh machines, running in about 1.2 Mb RAM
MPW tool for 68k Macintosh machines, running in MPW application memory
Native code application for Power Macintosh, running in about 1.7 Mb RAM
MPW native tool for Power Macintosh, running in MPW application memory

The compiler we use on Macintosh is Language Systems Fortran 3.3 running under MPW. On a
Powermac we use a PPC native code version of that compiler, also from Language Systems. For
both an 68k Mac and a Powermac, compiled libraries DRIVERS, TTUTIL and WEATHER are
available.

For this environment, MPW plus Language Systems Fortran 3.3, we wrote a few MPW script files for
automated model runs. Two Startup scripts are used to install additional Fortran, library and FST
commands under the MPW menu. FST program files can be edited with the MPW editor or with
another one. Selecting then the “Run FST” menu item leads to the following sequence:

e The current directory is searched for .FST files. If there is more than one, a choice has to be
made by means of an item selector. A single FST file is automatically selected.

e The selected .FST file is translated with the MPW tool FST (which may be the 68k or PPC
version). Error messages appear in the worksheet window.

e An MPW script LSF.INI is generated for compilation, linking and running with the selected
compiler options. The compiler options include processor choice (68k or PPC) and linker mode
(application or MPW-tool).

e The generated MPW script is executed. :

This procedure runs an FST model, but the results have to be visualized and analyzed by means of

other programs. Although the graphical utilities used on a PC are also available on the Macintosh,

they have not yet beenintegrated-in the MPW-scripts: s

If you have the model linked as an MPW-tool, also the model is executed in MPW memory and no
additional RAM memory is needed. If you link the translated model as application, the memory
required by the model is claimed separately.
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Once you have available the generated script LSF.INI, a quick method for redoing all this is
executing FST in the MPW worksheet without command line (which re-translates the same FST
model) and typing Command-0 (the 0 on the keypad), which re-starts the existing script file LSF.INL.

If you use another Fortran compiler, the translator application FST.EXE can still be used, but the
source code of the three linked libraries needs to recompiled.

7.2.3 Other platforms

As mentioned above, the translator itself is a single executable file which translates an FST model
into Fortran. In principle, the FST translator can be produced for all platforms for which a good
Fortran 77 compiler is available. The translator itself has also been written in Fortran 77 with use of a
few extensions like the INTEGER*2 variable type, the IMPLICIT NONE statement and the INCLUDE
statement. Most Fortran compilers accept these extensions.

For VAX/VMS an application FST.EXE is available. Translation, compilation and linking of an FST
model can be organized in an easy to write command file. We probably will also port the translator to
UNIX. On these machines the installation of FST remains to be a "raw translator installation" for the
generation of Fortran for FST. Integration with graphical utilities will not be available.

7.3 Translator commands

The FST translator works on the basis ‘of a command line. A command line consists of names of
FST files and options. The command lines are almost the same on the different computers. On a
DOS machine, the command for translating ORBIT.FST and producing an FST listing is

C:\> FST ORBIT /LIST

Note that the translator FST.EXE needs to be on the current directory or somewhere in the path. On
the Macintosh, options begin with a hyphen “-" instead of a slash “/”. The translator application
FST.EXE comes with a window and a prompt FST> after which the command line is typed in. We get
then:

FST> ORBIT -LIST

Using the MPW tool on a Macintosh, the command typed is

FST ORBIT -LIST

Note that several filenames may be given and that file names and options may be given in any order.
For instance, the command for producing a full listing of ORBIT.FST, NEW.FST, CROP.FST and
WEED.FST is, on a PC

C:\> FST /LIST /SYMLIST /STATLIST ORBIT NEW CROP WEED /NOGENERATE

~This.command produces the listing files ORBIT.LIS, NEW.LIS;, CROP LIS and WEED.LIS and does
not produce any Fortran files. The generation of Fortran would not make sense because the files
produced for ORBIT, NEW and CROP would be overwritten by the ones generated for WEED.FST.
Therefore, the Fortran generation is suppressed by means of the option /NOGENERATE. Note that
options need not to be separated by a space. One may write /LIST/STATLIST, for instance.

In the FST application window on the Macintosh, the above command looks like
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FST> -NOGENERATE -LIST -SYMLIST _STATLIST ORBIT NEW CROP WEED

and the equivalent MPW command using the tool FST is

FST -NOGENERATE -LIST -SYMLIST _STATLIST ORBIT NEW CROP WEED

The options in Macintosh command lines must be separated by a space.

7.31 The translator options

As shown above, options in the command line are preceded by a slash */" on PC and a hyphen “-" on
Macintosh. On other platforms at least one of these two possibilities will work. The available options

are
LIST NOLIST with default NOLIST
SYMLIST NOSYMLIST with default NOSYMLIST
STATLIST NOSTATLIST with default NOSTATLIST
BATCH NOBATCH with default BATCH on Macintosh and NOBATCH elsewhere
GENERATE NOGENERATE with default GENERATE

The option /LIST produces a statement listing of the FST program with error messages and
warnings. The option /SYMLIST produces a symbol list with variable names, their FST variable types
and the statement numbers in which they are defined and used. The option /STATLIST produces a
list of state variables, their rates of change and initial values. All three listings are written to the same
file with extension .LIS. Listing 7.1 on page 93 is an example of a full listing.

The /NOGENERATE option skips the generation of Fortran and datafiles. This is used if the
translator should only verify one or more FST programs. If different FST program names are
supplied, the /NOGENERATE option makes sense because the generated Fortran and data files
would be overwritten for each model. The /NOBATCH option holds the screen and asks for a
<Return> to continue in case there is much screen output from the translator (error messages). On a
Macintosh the output appears in a window which can be scrolled and the default there is /BATCH.

A special option is /HELP or -HELP. This produces a list of available options, together with the
defaults for the machine you work on. Also the commands “FST -?",“FST /?"oreven " FST ?”
will produce this list of options (except for the translator in the form of an MPW tool on Macintosh).
The /HELP option suppresses all further processing of FST files. Clearly, /INOHELP is the default on
all machines.

Without any options, the translator generates Fortran and does not produce a listing.
Options do not have to be typed in fully. There should be enough letters for an unambiguous

interpretation by the translator. Instead of /LIST, for instance, just /L can be given. Typing IS,
however, does not make clear what you want.

732  The file ABFORUTL.INI

The EST translator stores its last command line in a file named ABFORUTL.INI on the current
directory. Each time the translator is started on that same directory it reads and rewrites this file. If
the translator is started without any filenames or options, i.e. without a command line, the command
stored in the file ABFORUTL.INI is repeated. This “INI file” is an ordinary text file which can be
edited. It contains, for instance,
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LATEST_FST_COMMAND: ORBIT /LIST
USER_FST_DEFAULTS :

Behind "USER_FST_DEFAULTS: " one can type options to be used as a default (this overwrites the
built in defaults). For instance, if one always wants a listing and a state variable listing, (but no
symbol listing) the INI file should be

LATEST_FST COMMAND: ORBIT /LIST <- last command given
USER_FST DEFAULTS : /LIST /STATLIST

The user defaults can still be overwritten by commahd line options.

7.4 The output of FST

The diagram in Figure 7.2 on page 88 shows that the translator produces a listing and generates
Fortran (with data files). After compilation and linking, the model produces several output files.

7.41 The FST listing

In Listing 7.1 the full listing is given of the diffusion model in Listing 4.1 on page 44. Two errors have
been deliberately added to the model: A typing error in the value of HEIGHT and the calculated
variable VOL has been changed in VOLUM without adapting the references to VOL.

The first part is the statement listing produced with the option /LIST (or -LIST). A statement listing

consists of:

¢ Global errors and warnings. These errors and warnings do not belong to specific statements. In
Listing 7.1 there is a global warning on the use of the loop counter .

e Ifthere are any errors, there is a message telling you that no Fortran can be generated.

e The actual statement listing with numbered statements. The warnings and errors appear just
below the statements to which they belong. In Listing 7.1 there is one error below statement 7.

e The errors found during a consistency check. These are messages on undefined variables, a
lacking WEATHER statement, a lacking PRINT statement, variables used in INITIAL calculations
and calculated in DYNAMIC, a lacking definition of DELT, etc. In Listing 7.1, VOL is undefined
and VOLUM unreferenced.

e The number of errors and warnings found.

In listings warnings and errors can be found by searching for a percentage sign "%".

The second part is the state variable listing produced with the option /STATLIST (or -STATLIST).
This is a list of state variables, their initial values and rates of change. Variables marked with a star
"*" are array variables.

The third part is the symbol listing produced with the option /SYMLIST (or -SYMLIST). This symbol
listing consists of 3 parts:

e Symbol list 1. A list of variables with values defined by the user. For each variable the section and
statement of definition are given and the statements in which it is used. Variables marked with a
star "+" are array variables. Note that the symbol listing in Listing 7.1 also contains the used, but
undefined variable VOL. Its type is “??7?".

e Symbol list 2. A list of symbols which can be used only (weather variables, driver supplied
variables, Fortran and FST intrinsic functions).

e Symbol list 3. A list of declared and called subroutines (not present in Listing 7.1).
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If there are any array variables in the program, an overview over the declared bounds is given
behind the state variable listing and/or Symboil list 1. The listing file ends with a list of abbreviations
used for the various variable types.

Listing 7.1 This is the full listing of the diffusion model in Listing 4.1 on page 44 with two errors deliberately
added to the program. The listing has been produced by giving all listing options /LIST
/STATLIST and /SYMLIST (or -LIST -STATLIST and -SYMLIST). Errors and warnings appear in
the listing (and on screen).

ISR futndn e *
* General info about this file *
* *
* Contents : FST translator listing *
* Creator : FST translator version 2.0 *
* Creation date : 9-May-1996, 22:26:26 *
* Source file : LIST41.FST *
K e e e e e m e m e e mmmmmm e e mmmEmEm e mm e —— e —— S —m oo o T —o— S oSS moomsmETET *

The Fortran Simulation Translator (FST) translates an FST program
into a structured Fortran subroutine with data files containing timer
variables, model parameters and rerun specifications.

ek Warning: The loop counter I is used in an
expression or subroutine argument. The range of
values assigned to I is the range of the first
expanded subscript range in the substatement or
call, e.g. in "A(2:5)=0.3*REAL(I)*B(4:7)" the
counter I takes the values 2,3,4,5 and NOT 4,5,6
and 7. (%GLOBAL-RANGWARN) .

* ek Due to one or more errors in the program no
Fortran source and no data files are generated.
Also some checks on the values of some TIMER and
WEATHER variables could not be carried out.
($GLOBAL-FINALS2) .

0001 TITLE Diffusion into a two-sided plane sheet
0002 DECLARATIONS
* all arrays are declared ; N layers and N+l fluxes
0003 ARRAY FLUX(1:N+1), X(1:N), C(1:N)
0004 ARRAY H(1:N), IH(1:N), NFLOW(1:N)
0005 MODEL
4 %k ke k k
0006  INCON  IH=0.0
0007 PARAM HEIGHT=1..0 ; D=0.01 ; AREA=1.0 ; CS = 1.0

[GHT=1..0 ; D=], This point is illegal here. ($SYNTAX-REAL.PNT) .

A

* the number of layers
0008 ARRAY SIZE N=60
0009 INITIAL
% _height of compartment
0010 DEL = HEIGHT / REAL(N)
* yvolume of compartment
0011 VOLUM = DEL * AREA
* compartment centres
0012 X = (REAL(I) - 0.5) * DEL
0013 DYNAMIC
0014 H = INTGRL (IH,NFLOW)
0015 C =H / VOL
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* the fluxes through the boundaries
0016 FLUX (1) D * (CS - C(1)) / (0.5*DEL) ;

FLUX(2:N) = D * (C(1:N-1) - C(2:N)) / DEL ;
FLUX(N+1) =D * (C(N) - CS) / (0.5*DEL)
* the nett flow into the compartments

0017 NFLOW(1:N) = FLUX(1:N)*AREA - FLUX(2:N+1)*AREA

* output and simulation control
0018 PRINT X, C
0019 TIMER STTIME = 0.0 ; FINTIM=20.0 ; DELT = 1.0 ; PRDEL=1.0 ; IPFORM=5
0020 TRANSLATION_ GENERAL DRIVER='RKDRIV' ; TRACE=2
0021 END
0022 STOP
0023 ENDJOB

%¥ERROR: Undefined variable(s):
VOL first used in statement 15

$WARNING: Unreferenced variable(s):
VOLUM defined in statement 11 as Calculated variable

Translation completed with
2 errors
2 warnings

List of STATE variables, their INITIAL values and RATES of change

- State variables are variables calculated with the INTGRL function.

- The initial value of a state variable is either a calculated variable
or an initial constant set by means of an INCON statement.

- A rate of change may be a calculated variable or a variable made available
by the WEATHER statement (weather and calendar data). For testing purposes,
also a model PARAMETER is accepted as a rate of change.

Symbol list 1: USER DEFINED VARIABLES

Defined Referenced in
Name Type Stmt Sect Sect Out? Statements (including use in reruns)
AREA Param 7 I ID 11 17
C * Calcu 15 D D P 3 16 18
Ccs Param 7 I D 16
D Param 7 I .D. . 16
DEL Calcu 10 I ID. . 11 12 16
DELT Timer 19 I .
DRIVER TrGEN 20 I .
FINTIM Timer 19 I .
FLUX * Calcu 16 D .D. 3 17
H * Calcu 14 D .D. . 4 15
HEIGHT Param 7 I N . 10
IH * Incon 6 I .D. . 4 14
IPFORM Timer 19 I
N ArSiz 8 I ID . 3 4 10 16 17
NFLOW * Calcu 17 D .D. . 4 14
PRDEL Timer 19 I .
STTIME Timer 19 I
TRACE TrGEN 20 I Ce
VoL ??? - - .D. 15
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VOLUM Calcu 11 I - .
X * Calcu 12 I ... P 3 18

* = This is an FST array.
The declared ranges are given in the following table.
subscript bounds

Array name (Lower : Upper)
Cc (1 : N)
FLUX (1 : N+1)
H (1 : N)

IH (1 : N)
NFLOW (1 ¢ N)
X (1 : N)

Symbol list 2: USE-ONLY SYMBOLS

Name Type Sect Out? Statements
I DRsup I.. . 12
INTGRL FSFun .D. 14
REAL FFunc I.. 10 .12
Abbreviations:

??? = Undefined variable

Calcu = Calculated variable
Incon = Initial constant
Param = FST Parameter
Const = FST Constant = = e eee—e— oo o
ArSiz = Array Size Variable ! T = INITIAL section !
IntPL = Interpolation function ! D = DYNAMIC section !
UsSub = Called SUBROUTINE ! T = TERMINAL section !
Timer = TIMER variable ! P = PRINT or OUTPUT !
Weath = WEATHER control variable = = = —cceoocmmmmomm oo
TrFSE = TRANSLATION_FSE variable
TrGEN = TRANSLATION_ GENERAL variable

" FFunc = Fortran Intrinsic function
FSFun = FST Intrinsic function
DRsup = Variable supplied by the driver
WSsup = Weather and calendar data

7.4.2 The generated Fortran with datafiles

The generated Fortran is not just a "dump" of the model in Fortran form. A well-structured and
commented Fortran program is generated with a complete declaration section. All numerical values
of FST parameters, initial constants, interpolation functions and simulation control variables are
written to data files from which they are read back by the generated Fortran program. There are four
files: MODEL.FOR, MODEL.DAT, TIMER.DAT and RERUNS.DAT. In case of translation in FSE
mode there is a fifth file, CONTROL.DAT.

The technical structure of the generated Fortran is discussed in Chapter 9. Here, a brief description
is given indicating the contents of each file.
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7.4.2.1 MODEL.FOR

The first part of this file is the Fortran main program. The function of the main program is to call a
simulation driver, either directly (in FSE mode) or indirectly (via subroutine RERUNS in GENERAL
mode).

The Fortran main is followed by the actual model subroutine, which is used by the drivers. In FSE
mode there is an intermediate subroutine MODELS in between the driver and the actual user model.
This subroutine models may contain calls to various FSE modules. In case of an FST-generated
program, however, there is only a single FSE module and the intermediate subroutine MODELS just
passes the driver calls further down to the user MODEL.

The actual model subroutine, both in FSE and GENERAL mode, contains all calculations of the
model in computational order. The three sections INITIAL, DYNAMIC and TERMINAL can be found
back in the generated Fortran. Further, from each section, calls to output routines are made for
writing values of output variables to the output file RES.DAT.

Especially the Fortran initial section contains other things than calculations. The initial section reads
the values of model parameters, initial constants and interpolation functions from the data file
MODEL.DAT. The output procedure is initialized and finally the state variables of the model are set
at their initial values.

For the FSE translation mode, technical details can be found in van Kraalingen (1995). Chapter 9
gives details for GENERAL translation.

7.4.2.2 MODEL.DAT

This file contains the values of the model parameters, the initial constants and the interpolation
functions. The file is in TTUTIL format, which implies that values can be read into Fortran programs
by means of a few calls to subroutines from the TTUTIL library.

7.4.2.3 TIMER.DAT

This file contains the values of all simulation control variables. Also this file is in TTUTIL format.

The file is somewhat different for the two translation modes since the simulation control variables for
TRANSLATION_FSE and TRANSLATION_GENERAL differ from each other.

7.4.2.4 RERUNS.DAT

Values of input and simulation control variables in the rerun sections appear in the reruns file. This
file is an application of the TTUTIL rerun facility. There is one important difference, however,
between the rerun sections of the FST program and the so-called rerun sets of the generated rerun
file RERUNS.DAT. This difference can be best explained by means of an example. Two reruns are
defined:

MODEL
PARAMETER A=1.0
TIMER STIME=0.0

END

PARAMETER A=3.4 <- first rerun

- END ) .
TIMER STTIME=10.0 <- additional change for second rerun
END

The first rerun section redefines parameter A and the second section redefines also timer variable
STTIME. In FST, once a variable has been redefined, the new value is kept until it is changed again
in a rerun section further down. Hence, the second rerun has to be done for A=3.4 and
STTIME=10.0. In the file RERUNS.DAT, however, all reruns are defined relative to the standard run
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7.5 Debugging an FST model

As shown in Figure 7.2 on page 88, the execution of an FST model requires translation into Fortran
by the FST translator, compilation of the generated Fortran with a Fortran compiler, linking with
DRIVERS, TTUTIL and WEATHER, and finally the actual execution of the model. in case of errors,
the most important thing is to know during which part of the execution sequence things went wrong.
" The three sections below give some hints. In general however:

READ THE ERROR MESSAGES

7.5.1 Translation errors

Translation errors are the result of errors or inconsistencies in the FST program. Before starting the
translation, the FST translator presents itself on the screen with a version number. Then error
messages appear and finally the number of errors and warnings is given.

If there are more then one or two errors it is worthwhile to inspect the FST statement listing (see
Listing 7.1 for an example). In that listing errors and warnings can be found by searching for a
percentage sign %. If a large number if errors is reported, the first ones are usually the most
important ones. The other ones may be the side effects resulting from previous errors and disappear
if the first errors are corrected (See Chapter 8 for reference information about the FST syntax rules).

A special type of error is a sorting error. If statements cannot be brought in a computational order,
the unsortable statements are marked with a cross “x” and on top of the listing a sorting error is
reported for the INITIAL, DYNAMIC or TERMINAL section. Note that a sorting error may sometimes
be the result of a wrong DEFINE_CALL statement. Note that wrong information on the Input/Output
structure of a subroutine may lead to a sorting error. Hence, if a subroutine call is marked as
unsortable, also the DEFINE_CALL statement for that subroutine should be inspected.

The number of errors given for a single statement is limited. Hence, it is possible that new errors are
reported after correcting the first ones.

7.5.2 Compilation errors

The Fortran program generated by the FST translator should be free of Fortran errors. We have

done everything we could to prevent Fortran being generated for a wrong FST program, since such

a program is likely to lead to Fortran errors. Hence, in most cases, compilation errors will disappear if

appropriate compiler options are used. Note that the generated Fortran is not completely compatible

with standard Fortran 77. The exceptions are

e The IMPLICIT NONE statement in all generated subprograms, which forces the user to declare
all variables added to the program.

e The calls to the error subroutine FATALERR of TTUTIL.

This implies that the generated Fortran should be compiled without standard switch. We regard

remaining errors as bugs in the FST translator. If such errors occur, you are kindly requested to send
the generated Fortran, the translator's version number and the FST model producing the error to the
authors of this manual.
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of the MODEL section. In case of the example above, the two rerun sections in RERUNS.DAT both
contain values for A and STTIME. The first rerun is made for A=3.4 and STTIME=0.0 (the MODEL
value) and the second rerun is made for A=3.4 and STTIME=10.0.

7.4.2.5 CONTROL.DAT

In FSE mode this file contains the names of the model data file (MODEL.DAT), the simulation control
file (TIMER.DAT), the rerun file (RERUNS.DAT), the output file (RES.DAT) and the logfile
(MODEL.LOG). The FSE simulation driver reads these filenames from CONTROL.DAT. The
TRANSLATION_GENERAL drivers use the same, but built-in filenames and do not read them from a
control file.

7.4.3 Runtime output

The executed model typically creates three output files: RES.DAT, RES.BIN and MODEL.LOG. If
weather data are used there is a fourth file, WEATHER.LOG. In case of unexpected termination of
the model execution, there may be also files with extension TMP. These are temporary files created
by TTUTIL library routines.

74.3.1 RES.DAT

This file contains the output of the model with the output of reruns merged below each other in the
file. The internal format of the output file RES.DAT depends on the value of the TIMER variable
IPFORM written to the timer file TIMER.DAT. If printplots are made with OUTPUT, they appear
before the output tables. If the TIMER variable COPINF was set to 'Y", also copies of the input files
will be present at the end of the RES.DAT output file.

7.4.3.2 RES.BIN

This file is made during the simulation and contains in machine readable form all the values of the
variables in the PRINT and OUTPUT statements. In fact, the tables of RES.DAT are based on the
contents of RES.BIN. Some graphical utilities use RES.BIN instead of reading formatted values from
RES.DAT. If you do not use such graphical utilities, RES.BIN can be deleted.

The file RES.BIN is also useful in case of a system crash during model execution, for instance, as a
result of a divide by zero. No output file RES.DAT is available then since this file is produced during
the terminal phase of the simulation. From RES.BIN a part of the output may be recovered, however.
This may be useful for finding the reason of the crash.

7.4.3.3 MODEL.LOG

This file may contain error and warning messages from routines used during the simulation.
Messages about input variables whose values have been replaced by the rerun facility can be
particularly useful. In case of problems it is a good idea to inspect also this file. In :
TRANSLATION_GENERAL mode the log file may also contain a detailed integration report written
by the driver (see Section 7.5.5).

7.4.3.4 WEATHER.LOG
This file contains all the messages generated by the weather system. By default, all the comment
_headers of the data files, all warnings and all errors from the weather system are written to this log

file. If shortly before termination of the model a message is displayed about possible errors and
warnings from the weather system one has to look into this file and interpret the messages.
Messages may be as unimportant as rainfall not being available when it was not used by the model
but they can also be of a much more severe type.
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In case of problems one can begin with setting TRACE=2. This gives the number of steps between
the successive output times. If the model “hangs” somewhere, it becomes at least clear during which
time interval the problem occurs. A detailed report of the integration steps taken by the driver is
generated with TRACE=3. Listing 7.2 gives an example of a report written by RKDRIV. It shows how
the time step is adapted in order to maintain a certain integration accuracy.

The value TRACE=4, does not add anything if used from FST. If state events have been added to
the generated Fortran, however, the driver produces a detailed iteration report.

Listing 7.2  Example of a log file MODEL.LOG. The log file contains an initialization report and a dynamic
integration report. The latter contains a column with time steps, the reached TIME value and
(with RKDRIV) a proposal for a next step. This example comes from a run with the model in
Listing 6.6. It shows that the time steps taken by the driver vary with the position of the planet.

Run 0 <-basic run
======= <-first rerun is run 1
Data file TIMER.DAT with 11 variables parsed by RDINDX <-main program reads data
RKDRIV 2.0: Initialize model <-driver RKDRIV selected
Contents of TIMER.DAT recovered from TMP file <-RKDRIV reads data
Data file MODEL.DAT with 7 variables parsed by RDINDX <-MODEL.FOR reads data
Initialization of RKDRIV and user MODEL completed:
--------------------------------------- <-simulation control

Number of states: 10
Integration starts at: 0,00000
Output interval PRDEL: 100.00

Finish time FINTIM: 1.00000E+05
Relative accuracy: 1.00000E-04
State event accuracy: 1.00000E-05
Maximum step: 1.00000E+05

RKDRIV 2.0: DYNAMIC loop <-integration report
=========== by driver
time step time try as next step
Output flag set ===== 0.00000 <-dynamic output at
STTIME
+ 1.00000E-02 --> 1.00000E-02 ( 4.00000E-02)
+ 4.00000E-02 --> 5.00000E-02 ( 0.16000 )
+ 0.16000 --> 0.21000 ( 0.60515 )
+ 0.60515 --> 0.81515 ( 2.4206 ) <-proposed step is taken
+  2.4206 --> 3.2358 ( 7.2895 )
+ 7.2895 --> 10.525 ( 18.316 )
+ 18.316 --> 28.841 ( 24.002 ) '
+ 24.002 --> 52.843 ( 25.057 ) <-proposed step NOT
taken!
+ 15.423 --> 68.267 ( 16.516 )
+ 12.211 - 80.477 ( 12.682 )
+ 10.098 --> 90.575 ( 10.223 )
+  9.4251 --> 100.00 ( 10.223 )
Output. flag set =====__100.00 o <-at 1 x PRDEL
+  6.0044 --> 106.00 ( 6.0712 ) ‘
+ 6.0712 --> 112.08 ( 7.0388 )
+ 5.2448 --> 117.32 ( 5.5947 )
+  3.9047 --> 121.23 (  4.1512 )
+ 3.1824 --> 124.41 ( 3.2998 )
+ 2.8723 --> 127.28 ( 2.8849 )
+ 2.8849 --> 130.16 ( 4.0388 )
+ 4.0388 --> 134.20 ( 5.1377 )
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753 Linker errors

These errors are more likely to occur than compilation errors. Especially old versions of the linked
libraries DRIVERS, TTUTIL and WEATHER may lead to a linker error. It is also possible that the
FST model calls a Fortran subroutine which is neither present in the FST source, nor mentioned in
the linker command. The linker then reports an unresolved external symbol (it cannot find the called
subroutine).

Note that the automated execution procedures on PC and Macintosh, automatically link a library
USERSUBS.LIB (on PC) and USERSUBS.OLB (on Mac) with the generated Fortran. This "default
user library" may contain subroutines called from the FST model. If other libraries should be linked
with the model, the linking has to be done "by hand".

754 Runtime errors

A few categories of runtime errors can be distinguished:

» No weather data can be found. Usually the WEATHER variable WTRDIR has been set to a
wrong directory. This also leads to a translation warning.

e Datafiles are lacking, they may have been accidentally deleted.

Variables are lacking in the datafile MODEL.DAT or TIMER.DAT. The datafiles used will probably
belong to another model which has been translated but which is not the one being executed.

e Range error of an interpolation function. These are messages from the functions CSPLIN or
LINTZ2. You have to find out why the X variable is out of range.

e Array subscripts out of declared bounds. The array functions ELEMNT, ARMEAN, ARSUMM, etc.
verify the existence of the requested array elements and report an error in runtime.

e The Runge-Kutta driver RKDRIV sometimes reports an insignificant time step. The time step has
become so small that no progress is made. Increasing the value of TRANSLATION_GENERAL
variable EPS may help. The accuracy check of RKDRIV also involves the SCALE array in
MODEL.DAT which is set to default values by the translator (see Section 9.2.2.3 on page 152).
You may have to change these values in case of integration problems with RKDRIV.

e lllegal arguments of the SQRT or LOG function are usually the result of conceptual errors in the
model equations (which cannot be found by the translator). The same applies to "division by
zero". The FST translator only verifies the form of the expressions, not their numerical results.
Hence, errors resulting from zero or negative values appear in runtime.

7.5.5 The use of TRACE in TRANSLATION_GENERAL mode

In case of problems with a TRANSLATION_GENERAL model, the driver can be instructed to
produce a detailed integration report on the log file MODEL.LOG. This is achieved by means of the
TRANSLATION_GENERAL variable TRACE. The definition of this variable is simply added to the
TRANSLATION_GENERAL statement, for instance,

TRANSLATION_GENERAL .... ; TRACE=3

~The different values of TRACE may be regarded as levels of detail. Increasing TRACE gives a more
detailed report on log file. Here are the values with their meaning:

TRACE=0 -> message on Initial, Dynamic, Terminal

TRACE=1 -> also short initialization report

TRACE=2 -> also output times and number of steps to screen (‘follow simulation')
TRACE=3 -> also reports integration steps + output times to logfile

TRACE=4 -> also reports on state event iteration (events are not possible from FST)




+ 5.1377 -->
+ 5.6155 -—>
+ 6.2606 -->
+ 6.8276 -->
+ 7.7086 -->
+ 9.1083 -->
+ 10.893 -->
+ 13.215 -->
+ 1.0310 -—
Output flag set =====
+ 16.290 -—>
+ 20.247 -=>
+ 5.4848 -->
+ 2.0901 -—>
+ 2.3710 -->
+ 0.26769 -->
Output flag set =====
RKDRIV 2.0:

139.
144.
.22
158.
165.
174.
185.
198.
200.
200.
216.
236.
242.
244.

151

246

246.
246.
Terminate model

34
96

04
75
86
75
97
00
00
29
54
02
11

.48

75
75
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20.
24.
21.

7.
8.
0.2

Temporary file TIMER.TMP deleted by RDDTMP
Temporary file MODEL.TMP deleted by RDDTMP

.6155
.2606
.8276
.7086
.1083

.893
.215
.290
.290

247
429
939
9015
9665
4574

101

<-at 2 x PRDEL

<-last dynamic output

<-temporary files created
<-by TTUTIL are deleted
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Figure 8.1 on the title page of this chapter. The January average of the daily minimum and the daily
maximum temperature for Wageningen (The Netherlands) between 1954 and 1990. An FST

program calculating monthly means of weather data can be found in Listing 6.4 on page 75.
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This Chapter contains a more systematic treatment of the various aspects of FST. The text provides
a full reference in case of doubt.

A consequent distinction has been made between FST variable types and FST statement types
although, in practice, there is much overlap between the two. Without this distinction we could not
write down the exact rules of FST, however.

8.1 FST Programming conventions

8.1.1 Statements, program lines and continuation

An FST program consists of statements. Between the statements blank lines and comment lines
may occur. A statement may begin in the first column of the file and continue up to column 72. If it
ends with 3 dots ". . ." it is continued on the next line of the program.

8.1.2 Comme'nt lines

Comment lines begin with an asterisk in the first column. They are usually written in lowercase
characters above the statements they describe. In FST listings they appear unchanged without
statement number. Comment lines above calculations appear in the generated Fortran program.
Comment lines above input and control statements are not copied to any of the output files.

8.1.3 Upper case characters

FST statements are written in UPPERCASE characters. The use of lowercase characters leads to a

warning from the FST translator with the following exceptions:

e For comment lines there are no rules. It is advised, however, to write them in lowercase
characters.

o TITLE statements contain a description of the FST model in words, which may contain lower- and
uppercase characters.

e The value of character variables like CNTR (country code in WEATHER statement), or DRIVER
(the name of the driver in TRANSLATION_GENERAL) appears unchanged in the generated data
files and may contain lowercase characters.

8.1.4 File names in lowercase

All filenames are converted to lowercase characters before passing them to the operating system.
On DOS systems all filenames are converted to uppercase by the system. On Macintosh, new files
~.get the suggested names, here in lowercase, but existing files in uppercase are recognized. UNIX is
truly case sensitive. Hence, on UNIX systems, FST program files should have a name in lowercase
characters. The generated Fortran source and data files have lowercase names and the compiled
and linked Fortran program will also use lowercase filenames. :




106 8 Reference manual of FST

8.2 FST symbol names

Symbols are names of variables, functions or subroutines. Symbol names in FST follow the
conventions of Fortran 77. They have a maximum length of 6 characters, start with a letter and may
further contain digits and underscores. Hence A1, B_3, DNA123 and XX_444 are valid variable
names. The names 1AB, _BAT, ABCD123 are not valid. The same rules apply to the names of
called subroutines. In future versions the maximum length of the variable names in FST will probably
be extended to 15 or 31 characters.

8.2.1 Forbidden variable names

Although the user is generally free to invent his or her FST variable names, there are three

categories of forbidden names:

e The keywords of FST, Fortran and some keywords of old CSMP. It would be confusing to use
variable names like TIMER and INCON. The same applies to names like WRITE, COMMON,
READ and ENDIF.

e The variable names used in the standard framework of the generated Fortran programs.
Examples are OUTPUT, TERMNL, WSTAT, ITASK and IULOG. The full list contains almost 30
names. The use of these names for user-defined variables would lead to errors in the generated
Fortran.

o The subroutine names and the names of the common blocks in the libraries DRIVERS, TTUTIL
and WEATHER. Strictly speaking it would be possible to use these names as FST variable
names and, consequently, as local variable names in the generated Fortran program. To prevent
confusion, however, the use of names from the three linked libraries is forbidden.

The precise list of reserved variable names is given in Appendix B. It will be adapted from time to
time to reflect changes in the linked libraries, look on the floppy disk for the latest information. The
use of a forbidden variable name leads to an error message of the FST translator.

8.2.2 Reserved variable names

Except forbidden variable names there are also names reserved for special purposes. STTIME, for
instance, is the start time of the simulation and this variable name cannot be defined or used in any
other way. Other variables can be used only, for instance weather variables. There are eight groups
of reserved variable names:

e The names of the TIMER variables. See Section 8.3.2.1.

The WEATHER control variables. See Section 8.3.2.2.

The TRANSLATION_FSE variable IOBSD. See Section 8.3.2.3.

The TRANSLATION_GENERAL variables. See Section 8.3.2.4.

The variables supplied by the driver (the integration procedure). The most important of them is
TIME. It is impossible to use TIME as the name of a user-defined variable, but the variable TIME
can be used in expressions. The same holds for a few other variables. See Section 8.3.2.7.

e A number of weather variables and weather station data. See Section 3.2.4.4.

e The names of the Fortran intrinsic functions like SIN and TAN. The complete list is given in Table

8.1 on-page-134:
e The names of the FST intrinsic functions like INTGRL, AFGEN and ARMEAN. The complete list
is given in Table 8.2 on page 136.

Improper use of any of these special variable names leads to an FST error message.
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8.3 FST symbol types

Symbols are names of variables, functions or subroutines. The symbols in an FST program are
classified by the translator according to their function in the program. FST distinguishes between 15
different types. Seven symbol types have names supplied by the user and eight symbol types have
prescribed names. These prescribed names are reserved for that purpose. They were described in
Section 8.2.

8.3.1 Symbols with names supplied by the user

The description of each variable type below consists of the following parts: the variable type is
defined, an example is given, its place in the Fortran translation is described, the possibility or
impossibility of reruns is mentioned and array use is described. Names given to the model variables
have to comply with the conventions mentioned in Section 8.2.

8.3.1.1 Array Size Variable ,

An FST array size variable is defined by means of an ARRAY_SIZE statement. The variable may be
used as a integer variable in subroutine calls and expressions in the INITIAL, DYNAMIC and
TERMINAL section of the FST program, independent of the position of the CONSTANT statement.

Example:

ARRAY A(1:N+3), B(1:M)

ARRAY SIZE N=10 ; M=100

X = REAL(N) / REAL(M**2) <- Integer variables in expressions have to be converted to real variables

An array size variable appears in the generated Fortran program as an integer Fortran parameter
which is used in the Fortran declaration of the arrays. It cannot be redefined in a rerun section by
means of another ARRAY_SIZE statement. An array size variable cannot be an array.

See also: Chapter 4, Section 8.5.2.3

8.3.1.2 Calculated variable

An calculated variable is defined by means of an assignment or a subroutine call in the INITIAL,
DYNAMIC or TERMINAL section of the FST program. It can be used in expressions or as input
arguments for functions or subroutines in the section in which it is defined or in a later section. Note
that also state variables are classified as calculated variables. They are calculated by means of an
INTGRL function cail.

Example:
XX = SIN(A) + COS(B) <- Definition of XX
P = XX**2 4+ SQRT(A) <- Use of XX

The statement defining a calculated variable is written in the initial, dynamic or terminal section of the
generated Fortran program. Calculated variables cannot be redefined in a rerun section.

The name of a calculated variable can be declared as an array with an ARRAY statement in the

DECLARATIONS section. In such a case all array elements have to be defined in a single
statement, by means of one or more substatements, or by a subroutine call.

See also: Section 3.2.6, Section 4.3, Chapter 5, Section 8.5.2.1, Section 8.5.2.4.



108 8 Reference manual of FST

8.3.1.3 Called SUBROUTINE

The name of a called subroutine is also an FST symbol appearing in the symbol list of an FST
program. The I/O structure of a called subroutine has to be declared to the translator by means of a
DEFINE_CALL statement in the DECLARATIONS section. Actual subroutine calls then follow the
Fortran syntax. It is not necessary to include a called subroutine in the FST source file. It shouid then
be linked with the compiled MODEL.FOR. This implies that a called subroutine may be part of an
object library, possibly without source code available.

Example: ,
DEFINE_CALL MYSUB (INPUT, OUTPUT ARRAY, INTEGER_INPUT)
ARRAY A(1:N), B(1:M)

CALL MYSUB (X,A,N) <- Calculation of output array variable A
CALL MYSUB (X,B,M) <- Calculation of array variable B

A subroutine call is a calculation statement which appears in the initial, dynamic or terminal section
of the generated Fortran program together with the other calculations. The information in the
DEFINE_CALL statement does not appear in Fortran.

See also: Chapter 5, Section 8.5.2.4, Section 8.5.2.7.

8.3.1.4 Constant

An FST constant is defined by means of a CONSTANT statement. A constant can be used in the
INITIAL, DYNAMIC and TERMINAL section of the FST program, independent of the position of the
CONSTANT statement.

Example:
CONSTANT PI=3.14159265

A constant appears in the generated Fortran program as a Fortran parameter. It cannot be redefined
in a rerun section. An FST constant cannot be an array.

See also: Section 3.2.3.3, Section 8.5.2.5

8.3.1.5 Initial constant

An initial constant defined by means of an INCON statement somewhere in the MODEL section. An
initial constant can be used in the INITIAL, DYNAMIC and TERMINAL section of the FST program,

independent of the position of the INCON statement. An initial constant should act at least once as

the initial value of a state variable by being used as the first argument of an INTGRL function call.

Example:

DYNAMIC

X = INTGRL (IX,RX) <- |Xis used as initial constant

INCON IX = 4.5 <- IX is defined by means of an INCON statement

An initial constant is written to the file MODEL.DAT which is read by the initial part of the generated
Fortran program. An initial constant can be redefined in a rerun section by means of another INCON
statement.

The name of an initial constant can be declared as an array with an ARRAY statement in the
DECLARATIONS section. The subscript range used for an initial constant should be identical to the
range of the state array(s) for which it is used. Note that a state array can be combined either with
an initial constant array of the same length or with a scalar initial constant. For the definition of an
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array of initial values by means of an INCON statement the rules for parameter arrays apply (see
Section 8.5.2.17)

See also: Section 3.2.3.2, Section 3.3, Section 8.5.2.13

8.3.1.6 Interpolation function or AFGEN function

An interpolation function is defined by means of a FUNCTION statement in the MODEL section of
FST. The FUNCTION statements specifies a number of points of the function. Actual function values
are calculated by means of linear interpolation (with AFGEN) or cubic spline interpolation (with
CSPLINE) between the function points given. AFGEN or CSPLIN function calls may occur in
calculation statements or FINISH statements. '

Example:

RGR1 = AFGEN (RGRFUN, TEMP) <-The function value for TEMP is estimated

DIFF = CSPLIN (RGRFUN,TEMP) - AFGEN (RGRFUN,TEMP) <-The difference between the 2 methods

FUNCTION RGRFUN = 0.0, 0.1, 10.0, 0.2, ... <-Four data points specifying the function
20.0, 0.2, 30.0, 0.0

TERMINAL

RGRT = AFGEN (RGRFUN, TEMP) <-Terminal calculation

The data points of an interpolation function appear as array of real values in the file MODEL.DAT.
The array is read by means of a call to TTUTIL subroutine RDAREA in the initial part of the
generated Fortran program. An interpolation function can be redefined in a rerun section by means
of another FUNCTION statement. The numbers of function points in the various reruns do not need
to be the same. An interpolation function is not an FST array.

See also: Section 3.2.3.4, Section 3.4, Section 6.1.1, Section 8.5.2.12, Section 8.7.2

8.3.1.7 Parameter

An FST parameter is defined by means of a PARAMETER (or PARAM) statement. A parameter can
be used in calculation statements in the INITIAL, DYNAMIC and TERMINAL section, independent of
the position of the PARAMETER statement.

Examples:
PARAMETER A = 3.4 ; BOB=2.3

A parameter is written to the file MODEL.DAT which is read by the initial part of the generated
Fortran program. A parameter can be redefined in a rerun section by means of another
PARAMETER statement.

The name of a model parameter can be declared as an array with an ARRAY statement in the
DECLARATIONS section. The array of values should be fully specified in a single PARAMETER
statement by means of one or more consecutive substatements each covering part of the declared
subscript range.

See also: Section 3.2.3.1, Section 8.5.2.17

8.3.2 Symbols with names prescribed by FST

The symbol types below have prescribed names, which means that only specific names are
accepted by the translator as a symbol of that type. For each of the symbol types, the list of
prescribed names is given with a brief description of the function of each variable.
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8.3.2.1 TIMER variable

A timer variable can only be defined by means of a TIMER statement. The timer variables STTIME,
FINTIM and DELT have to be defined in each FST program. They can be used in INITIAL,
DYNAMIC or TERMINAL, independent of the position of the TIMER statement(s). The other timer
variables can only be defined and cannot be used. The following timer variables exist:

sTTIME The start time of the simulation, given as a real number. STTIME is often defined as 0.0
unless some special TIME dependent functions are used. If a WEATHER statement is used, the
unit of time is day and STTIME is the start time as a day number between 1.0 and 366.999....
The values between 366.0 and 367.0 are valid only in a leap year. The first day of the year
corresponds to TIME values between 1.0 and 2.0STTIME has always to be specified.

FINTIM The finish time of the simulation, given as a real number. Note that the duration of the
simulation is FINTIM-STTIME. In case a WEATHER statement is used, a FINTIM value of 366.0
means the beginning of the next year (except after a leap year), etc. FINTIM has always to be
specified. :

DELT  Time step used for the integration of the rates of state. In case of Runge-Kutta integration
DELT is just the first guess of the time step used. DELT has always to be specified.

coPINF A flag given as a character variable 'Y' or 'N'. When 'Y' is given the generated input files
CONTROL.DAT (FSE mode only) TIMER.DAT, MODEL.DAT and RERUNS.DAT are copied to
the output file after completing all reruns. The default value of COPINF is 'N'.

IPFORM A code for the form of the output tables, given as an integer number in the range [4,6].

4 = spaces between columns

5 = TAB's between columns (spreadsheet output)
6 = two column output

The default value for IPFORM is 4.

PRDEL The period between output times, given as a real number. The default value of PRDEL is
the simulated period FINTIM-STTIME.

RGINIT A flag given as a character variable 'Y' or 'N'. When 'Y' is given the random generators are
reset at the start of each rerun. The default value of RGINIT is 'Y'. See also Section 3.7.

RGSEED The integer seed used to reset the random generators (if a reset is done). A zero value
leads to a generated seed value derived from the system clock at runtime. The default value of
RGSEED is 1. See also Section 3.7.

All timer variables are written by FST to the generated data file TIMER.DAT.

All timer variables can be redefined in a rerun section by means of another TIMER statement. Timer
variables cannot be declared as an FST array.

See also: Section 3.2.4.3, Section 8.5.2.21

8.3.2.2 WEATHER control variable

A WEATHER control variable can only be defined by means of a WEATHER statement. A weather
control variable cannot be used in expressions or printed. The following WEATHER control variables
exist:

CNTR The country code as a string variable, e.g. 'NLD'

ISTN  The station number as an integer number

IYEAR The year as an integer number

WTRDIR The directory with weather data as a string variable. The form of this directory string
depends on the machine on which FST is used. On a DOS machine it will be something like
WTRDIR='C:\\SYS\WEATHER\' and on a Macintosh WTRDIR='"Macintosh HD:weather data:".
When WTRDIR is not specified or a space is given, the default directory is used.
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The FST translator makes use of the weather data files and the WEATHER subroutine library
described by van Kraalingen et al. (1991). All WEATHER control variables are written by FST to the
generated data file TIMER.DAT. In FSE mode the WEATHER control variables are read by the FSE
driver. In TRANSLATION_GENERAL mode they are read by the weather interface routine WTRINT,
called from the generated model subroutine.

The country code, station number, year and weather directory provide all information required for
access to the weather data files. These weather data files are formatted files which can be installed
on all computer types and which are read by the subroutines of the Fortran weather system which
has to be linked with the generated Fortran.

The WEATHER control variables CNTR, ISTN and IYEAR can be redefined in a rerun section by
means of WEATHER statement(s). WEATHER control variables cannot be declared as an FST
array.

See also: Section 3.2.4.4, Section 8.5.2.25

8.3.2.3 TRANSLATION_FSE variable
A TRANSLATION_FSE variable can only be defined by means of a TRANSLATION_FSE statement.
There is only one TRANSLATION_FSE variable:

10BSD One or more combinations of year and day given as integer numbers. At the specified
days the FSE driver produces (additional) output. The variable IOBSD is meant to get output at
days on which observations were made. The variable IOBSD cannot be used in expressions or
in PRINT or OUTPUT statements. See also van Kraalingen (1995, Section 7.3.4). Example:
IOBSD = 1984, 11, 1985, 117 <-(Additional) output days

The TRANSLATION_FSE variable can be redefined in a rerun section by means of another
TRANSLATION_FSE statement. A TRANSLATION_FSE variable cannot be an FST array.

See also: Section 3.2.4.2, Section 3.3, Section 8.5.2.23

8.3.2.4 TRANSLATION_GENERAL variable
A TRANSLATION_GENERAL variable can only be defined by means of a
TRANSLATION_GENERAL statement.

DRIVER The name of the subroutine which organizes the simulation, given as a string variable.
Subroutine RKDRIV uses Runge-Kutta integration with adaptive time step according to an error
criterion (EPS). Subroutine EUDRIV uses Euler integration. The default value is ‘RKDRIV'.
Example: '

TRANSLATION GENERAL DRIVER='RKDRIV'

DELMAX The maximum time step used by the Runge-Kutta integrator. A limitation of the time step is
useful when phenomena can be completely missed by large steps. The default value of
DELMAX is the simulated period FINTIM-STTIME which implies "no limitation".

EPS The accuracy variable of the Runge-Kutta integrator with a default value of 1.0E-4. See for the
meaning of this variable Section 9.2.2.

TRACE An integer value in the range [0,4] specifying the level of detail in the logfile output of the
drivers EUDRIV and RKDRIV. See Section 7.5.5 on page 99 for the meaning of the TRACE
values. The default value is 0.

The integer and real TRANSLATION_GENERAL variables DELMAX, EPS and TRACE can be used
in calculations and can be printed. All TRANSLATION_GENERAL variables can be redefined in a
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rerun section by means of another TRANSLATION_GENERAL statement.
TRANSLATION_GENERAL variables cannot be declared as an FST array.

See also: Section 3.2.4.1, Section 3.3, Section 7.5.5, Section 8.5.2.24

8.3.2.5 Fortran Intrinsic function
The intrinsic functions of Fortran 77 are available in FST. Number and type of arguments is verified
by the translator. The list of implemented functions is given in Table 8.1 on page 134.

There is a minor limitation: Some intrinsic functions in Fortran allow different argument types, for
instance ABS, which may have a real or integer argument. In such cases FST accepts only one of
the two types.

See also: Section 8.6

8.3.2.6 FST Intrinsic function
Examples of FST intrinsic functions are the important INTGRL function, the functions AFGEN and
CSPLIN for interpolation. In Table 8.2 on page 136 all FST intrinsic functions are described.

The FST intrinsic functions have been implemented via the libraries DRIVERS and TTUTIL which
are linked with the generated Fortran program. Note that the arguments of the Fortran subprograms
may differ from the arguments used in FST, since the translator adds additional arguments to
various function calls. The easiest way of learning the Fortran function calls is to inspect a Fortran
module generated by FST.

See also: Section 8.7

8.3.2.7 Variable supplied by the driver

These variables are build into the Fortran program which is generated by the FST translator. They

can be used but not defined.

1 Integer variable which cannot be defined. It may only be used in expanded assignments and
subroutine calls. The variable | is actually the counter of the DO-loop in the generated Fortran
program. The use of | is a bit tricky and the following warning is given by the translator:
Warning: The loop counter | is used in an expression or subroutine argument. The range of
values assigned to | is the range of the first expanded subscript range in the substatement, e.g.
in "A(2:5)=0.3*REAL(1)*B(4:7)" the counter | takes the values 2,3,4,5 and NOT 4,5,6 and 7. The
counter | cannot be printed. See also Section 4.3.2, Section 6.1.8.

TIME Real variable which cannot be defined by the user. It is the system time running from the
start time STTIME to the finish time FINTIM. It can be used in expressions in the INITIAL,
DYNAMIC or TERMINAL section of the FST program. TIME is printed always.

DELDID In TRANSLATION_GENERAL mode the variable DELDID is the size of the last completed
time step. It can be used in the DYNAMIC and TERMINAL section of the program. In FSE mode
this variable is not available. DELDID can be printed.

RGACTS The last seed used to initialize the random number generators RGUNIF and RGNORM.
RGACTS is an integer variable. Usually RGACTS is equal to the seed supplied as the TIMER
variable RGSEED. But if RGSEED is defined as 0.0, a seed is generated from system clock.
The generated seed is available then as RGACTS (See also Section 3.7)..

8.3.2.8 Weather and calendar data
By specifying the weather control statements, set of weather data become available for use in
expressions. The list of weather, station and calendar data is given in 3.2.4.4.
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The value of these variables corresponds always with the current value of TIME, measured in days.
At the start of a year , at 00:00:00, TIME is 1.000 and a normal year ends after 365 days at the value
365.999... (366.999... for a leap year). Larger values of time then correspond to the next year. The
value of DOY is 1.0 throughout the first day of the year and 365.0 throughout the last day of a normal
year. In the next year it then starts with 1.0 again. Hence, the real variable DOY can be used, for
instance, to interpolate an interpolation FUNCTION with measurements as function of day number.

See also: Section 22 Section 3.2.4.4, Section 8.5.2.25

8.4 FST program sections

An FST program may consist of several sections. The various sections may be separated from each
other by section statements. A section statement, however, is needed only if the program becomes
ambiguous without it. In Listing 8.1 the rules for FST sections are summarized. Then the function of
the various sections is briefly explained.

Listing 8.1  The structure of an FST program. Many section statements can be omitted. See the text for
further details.

DECLARATIONS <- On top of the declaration statements ; optional section statement
. <- ARRAY and DEFINE_CALL statements
MODEL <- Begin of model description ; optional section statement
INITIAL <- Begin of initial calculations, needed if there are initial calculations
ce <- |nitial calculations
DYNAMIC <- Begin of dynamic calculations ; needed with INITIAL
- <- Without INITIAL the first calculation is assumed to be DYNAMIC
TERMINAL <- A terminal section needed if there are terminal calculations
.. <- Terminal calculations
END <- End of MODEL section ; end of run 0, needed if there is more
... <- Changes for rerun 1 are specified here
END <- End of first rerun, needed if there is more
- <- Changes for rerun 2 are specified here
END e
. <- Additional changes for last rerun
END <- End of last rerun, needed if there is more
STOP <- End of model calculations, needed if there is more
SUBROUTINE ... <- Linked Fortran subroutines
END <- End of the last Fortran subroutine: a Fortran END statement
ENDJOB <- To the memory of punch cards ; optional
8.4.1 DECLARATIONS section

The DECLARATIONS section consists of just the ARRAY and the DEFINE_CALL statements. The
DECLARATIONS statement itself is optional. See also Section 3.1 and Section 3.2.2.

8.4.2 MODEL section

An FST program always contains a MODEL section. The MODEL section starts with the MODEL
statement or with any other statement which is not allowed in the DECLARATIONS section. The
MODEL section contains the actual FST model: the calculations, the output variables, the translation
mode, etc. The MODEL section ends with and END statement or at the end of the FST file.
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The calculations in the MODEL section are organized in three groups: initial, dynamic and terminal
calculations. These groups are separated from each other by the section statements INITIAL,
DYNAMIC and TERMINAL. Non-calculation statements as TIMER or PARAMETER are not affected
by these three sections. They can be written anywhere in the MODEL section. Timer variables and
model parameters are in fact always initial variables and their section of definition in the symbol
listing is the initial section, although their definitions may be among dynamic or terminal calculations.

8.4.2.1 INITIAL

Initial calculations have to be preceded by the section statement INITIAL. The initial assignments
and subroutine calls are brought in a computational order by the translator and are written to the
initial section of the generated Fortran program.

The initial calculations are carried out before the actual simulation starts. Initially calculated variables
may be used in the DYNAMIC and TERMINAL sections of the model.

8.4.2.2 DYNAMIC

The dynamic section of the calculations starts after a DYNAMIC statement. It also starts at the first
calculation when no INITIAL section is present. This implies that (short) FST programs without initial
calculations do not need the section statements INITIAL and DYNAMIC. The dynamic assignments
and subroutine calls are brought in a computational order by the translator and are written to the
dynamic section of the generated Fortran program.

In the dynamic section the state variables are defined with INTGRL function calls and the rates of
change are calculated from the state variables. The dynamic section is the core of the model. During
the simulation, the calculations in the dynamic section are carried out many times. After completion
of the simulation, usually at FINTIM, the dynamic calculations are carried out a last time, however, to
calculate the rates of change and all other dynamic variables for the final state values. These final
values are available in the terminal section.

8.4.2.3 TERMINAL

Terminal calculations have to be preceded by the section statement TERMINAL. The terminal
assignments and subroutine calls are brought in a computational order by the translator and are
written to the terminal section of the generated Fortran program.

Terminal calculations are useful for the evaluation of the simulation results. Both initial variables and
the final values of the dynamic variables are available in the terminal section.

84.3 Reruns section

One or more rerun sections may follow the MODEL section. Each rerun section is terminated by an
END statement. In a rerun section the following statements may occur: INCON, TIMER,
PARAMETER, TRANSLATION_FSE, TRANSLATION_GENERAL, FUNCTION and WEATHER.
Variables defined in the MODEL section with these statements can be (repeatedly) redefined in the
rerun sections. For each of the rerun sections a new model run is defined in the generated rerun file
RERUNS.DAT which-is read by-the simulation driver.-See also Section 3.6.

844 Fortran subroutines

After a STOP statement one or more Fortran subroutines may be added. The Fortran subroutines
should comply with the Fortran conventions for statement begin, statement continuation and
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statement labels. The Fortran code is not analyzed in any way by the FST translator, except for the
number of arguments of subroutines which are directly called from the model section of FST. The
Fortran section optionally ends with an ENDJOB statement.

The Fortran section is especially useful for subroutines written specifically for the FST program. If
the used subroutines have a more general character, we strongly advise to link them with the
compiled Fortran and NOT to include them in the FST file.

8.5 The FST statements

8.5.1 Classification of FST statements

The following types of statements can be distinguished:
e Declaration statements
ARRAY, DEFINE_CALL
e Section statements
DECLARATIONS, MODEL, INITIAL, DYNAMIC, TERMINAL,END, STOP, ENDJOB
e Calculation statements
Assignment, CALL to a subroutine
e Input statements
PARAMETER, INCON, CONSTANT, FUNCTION, ARRAY_SIZE
e Simulation control statements
TRANSLATION_GENERAL, TRANSLATION_FSE, TIMER, WEATHER, FINISH
e Output statements
PRINT, OUTPUT, TITLE

8.5.2 The FST statements in alphabetical order

8.5.2.1 Assignment

Syntax

defined_variable = {real_constant | real_variable | real_expression}
Example:

A =75.0

B=2C

C = 1.0 + SIN(AFGEN(RTB,X-1.0)) + ARSUMM(X,1,N-1)

D = INTGRL (ID,RD)

Type of statement and position in program
An assignment is a calculation statement. All calculation statements should be contained in
the MODEL section. They may be organized in three groups: INITIAL calculations,
DYNAMIC calculations and TERMINAL calculations. Without INITIAL statement the first.
assignment in the program is considered to be a dynamic one. Calculations cannot occur in
a rerun section.
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Description
Each assignment in FST uniquely defines an initial, a dynamic or a terminal variable.
Together with the subroutine calls, the three groups of assignments are separately sorted
in order to find a computational order for the calculations.

Assignments with an INTGRL function form an exception. The INTGRL function call cannot
be part of a larger expression and "INTGRL statements" are not sorted together with the
other dynamic calculations. In fact, INTGRL statements are somewhat related to
declarations since integration of rates of change is the function of the entire FST program.

Use in combination with array variables
’ Also calculated array variables have to be defined in a single statement. The statement
may then be subdivided into substatements. Each substatement consists of the
assignment for a part of the declared range. The rules for array assignments are:

e Only a single array variable can be calculated in the statement.

e The calculation of the array variable must be complete, i.e. all declared elements must
be calculated.

e The substatements are separated from each other by a semi-colon “;".

e Each substatement defines one or more array elements.

e There should be no gaps or overlaps in the subscripts and subscript ranges covered by
consecutive substatements. For types of subscripts and subscript ranges, see Section
4.3.1.3.

e There is only a single substatement defining an absolute-to-relative range.

The right hand part of each substatement consists of a real constant, a real (array)
variable or a real expression.

¢ In aright-hand expression, single elements of other arrays may be used as scalar
variables.

¢ In a right-hand expression, also subscript ranges of other arrays can be referenced.

e Subscript ranges in the left-hand side and in the right-hand side of a substatement must
have the same length. ‘

e Subscript ranges in the left-hand side and in the right-hand side of a substatement must
be of the same type. If case of absolute-to-relative or relative-to-relative ranges, the
various arrays must belong to the same family.

The FST sorting algorithm works on the basis of entire statements. This implies thatall
variables appearing in the right-hand side of the substatements should be known before
the array assignment can be evaluated. As a consequence, array elements may not
depend on other elements of the same array.

Example of use with array variable
ARRAY A(0:N+1), B(1:N)

A(0)=0.0 ; A(1:N)=2.0+SQRT(B) ; A(N+1l)=1.0
More examples are given in Section 4.3.

See also-

Section 3.2.6, Section 4.3.

8.5.2.2 ARRAY

Syntax
ARRAY array_declaration [, array_declaration] ...
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array_declaration = array_name (lowerbound : upperbound)
lowerbound = integer_constant [+ integer_constant]
upperbound = array_size_variable [+ integer_constant]

Example:
ARRAY AA(3:N-4), SPEED(-5:NUMBER+20), BB(1:M), CC(1+2:M)

Type of statement and position in program
The ARRAY statement is a declaration statement and may occur only in the declaration
section on top of the program. It cannot occur in a rerun section.

Description
The array statement declares one or more array names to the FST translator. Each array
also becomes associated with an array_size_variable. In the example the
array_size_variables used are N, NUMBER and M. These variables automatically become
integer variables in the program. Array_size_variables get a numerical value by means of
an ARRAY_SIZE statement. Different arrays may make use of the same
array_size_variable (e.g. the arrays BB and CC in the example). Such arrays are said to
belong to the same array family. ’

The ARRAY statement declares only the names of the arrays. Later in the program, the
array variables can be used as state variables, rate variables, initial constants, parameters
or auxiliary variables.

Use in combination with array variables
In the description of all statements, special attention is given to the use of array variables in
combination with each statement. Clearly, the array statement itself has no function when
no array variables are used.

See also
Section 3.2.2.1, Chapter 4, Section 8.5.2.3

8.5.2.3 ARRAY_SIZE

Syntax
'ARRAY_SIZE array_size_variable = integer_constant T[; o]

Example
ARRAY SIZE N=4 ; N2=16

Type of statement and position in program :
The ARRAY_SIZE statement is an input statement and it may occur in the MODEL section
of FST. It cannot occur in a rerun section.

Description
Defines the value of one or more array size variables. Each array size defines the size of
one or more arrays forming together an array family. An array size variable can be used as
an integer variable in expressions.

Use in combination with array variables
Array size variables belong to arrays. Without an ARRAY declaration in which it is used, an
array size variable is not accepted by the translator.
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See also
Section 3.2.3.5, Chapter 4, Section 8.3.1.1, Section 8.5.2.2

8.5.2.4 CALL subroutine

Syntax
CALL subroutine_name ({input_arg |output_arg} [{input_arg |output_arg}]...)
subroutine_name = name of a declared subroutine
input_arg = constant, variable or expression
output_arg = variable
Examples:

CALL MYSUBl (X, Y)
* here, only the last argument is output, the others input
CALL MYSUB2 (2.34, REAL(N), 1.0+X-ARMEAN(A,1,N), SIN(B), RESULT)

Type of statement and position in program
A subroutine CALL is a calculation statement. It needs to be in the MODEL section in one
of the subsections INITIAL, DYNAMIC or TERMINAL. Without an INITIAL statement, a
subroutine call causes a jump to the dynamic section. A subroutine call cannot occur in a
rerun section.

Description
A subroutine CALL makes use of a Fortran subroutine included in the FST file or linked
with the generated Fortran model. Subroutine CALL's are used exactly in the same way as
in Fortran, with the exception that a subroutine argument must be either input or output. In
order to sort a subroutine CALL together with the other calculations, the FST translator has
to know the I/O structure of the CALL. Therefore, each subroutine which is called directly
from the FST program has to be declared by means of a DEFINE_CALL statement in- the
DECLARATIONS section. Subroutines which are called indirectly, via other Fortran ‘
subprograms, need not to be declared. .

Use in combination with array variables
Also array variables may serve as arguments of a subroutine. Such arguments need to be
declared then as INPUT_ARRAY or OUTPUT_ARRAY (see the DEFINE_CALL
statement) INPUT_ARRAY arguments, however, cannot be constants or expressions.
They must be array variables.

If an array variable is used as an argument known to FST as a simple, scalar INPUT or
OUTPUT argument, the subroutine call is expanded to a Fortran DO-loop and the array
elements are used or calculated in a series of calls to the subroutine. This also happens in
case of array subscript ranges used in INPUT expressions. However, all expanded arrays
in the subroutine CALL need to be in the same array family and all subscript ranges need
to be of the same type and of equal length.

Expanded calls cannot have OUTPUT_ARRAY arguments or non-expanded OUTPUT
arguments, since these arguments would be calculated many times in the generated DO-
loop.

Example of use with array variable
DEFINE_CALL MYSUB1 (INPUT, OUTPUT)
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DEFINE CALL MYSUB2 (INPUT_ARRAY, OUTPUT_ARRAY, INTEGER INPUT)
DEFINE CALL MYSUB3 (INPUT_ARRAY, INTEGER_INPUT, INPUT, OUTPUT)
ARRAY XX (1:N), YY(1:N), ZZ(1:N) '

ARRAY KK(1:P)

CALL MYSUBLl (XX, 22) <- Expanded: ZZ(l) calculated from XX(l),
=1..N
CALL MYSUB2 (XX, YY, N) <- Array YY calculated from array XX,

CALL MYSUB3 (XX, N, REAL(I), KK) <- Expanded: KK(l) calculated from array
XX, integer N and REAL(I) with I=1...P
See also
Section 3.2.2.2, Section 8.5.2.7, Chapter 5.

8.5.2.5 CONSTANT

Syntax
CONSTANT FST_constant = real_constant [; ...]

Example
CONSTANT PI = 3.14159265

Type of statement and position in program
The CONSTANT statement is an input value statement and it may occur in the MODEL
section of FST. It cannot occur in a rerun section.

Description
The CONSTANT statement can be used for the definition of mathematical or natural
constants, which are used in the program. A constant is not written to a Fortran data file,
but it appears in the generated Fortran program. This is different from an FST parameter
which is written by the FST translator to the Fortran data file MODEL.DAT.

Use in combination with array variables
A CONSTANT cannot be an array variable.

See also
Section 3.2.3.3, Section 8.3.1.4

8.5.2.6 DECLARATIONS

Syntax
DECLARATIONS
Example
TITLE My FST program <- may be on top of the program
DECLARATIONS
ARRAY ..... <- declaration statement

Type of statement and position in program
The DECLARATIONS statement is a section statement, which may occur only once.
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Description
A DECLARATIONS statement is optional on top of the declarations section of an FST
program. The declaration section ends with the MODEL statement or with any non-
declaration statement, except TITLE which may occur in any section.

Use in combination with array variables
A section statement has no relation to arrays.

See also
An overview of the FST program structure in Section 8.4.

8.5.2.7 DEFINE_CALL

Syntax
DEFINE_CALL subroutine_name (argument_type [,argument_type] ...)

argument_type ={ INPUT | REAL_INPUT]|
INPUT_ARRAY | REAL_INPUT_ARRAY}
INTEGER_INPUT |
OUTPUT | REAL_OUTPUT |
OUTPUT_ARRAY | REAL_OUTPUT_ARRAY }

Examples
DEFINE CALL MYSUB1l (INPUT, OUTPUT)
DEFINE CALL MYSUB2 (INPUT ARRAY, OUTPUT_ARRAY, INTEGER_ INPUT)
DEFINE CALL MYSUB3 (INPUT ARRAY, INTEGER_INPUT, INPUT, OUTPUT)

Type of statement and position in program
The DEFINE_CALL statement is a declaration statement, which may occur in the
DECLARATIONS section only.

Description
The DEFINE_CALL statement declares the input/output structure of a Fortran subroutine
which is called from the FST program. The main function of the declaration is to enable the
FST translator to find a computational order for subroutine calls in combination with the
other calculations. Subroutine arguments are either input or output arguments. The prefix
"REAL_" in the argument type is an FST default and may be left out, e.g. the argument
types INPUT and REAL_INPUT are exactly the same.

There are three types of input arguments: ,

e INPUT or REAL_INPUT. An ordinary real input variable. In the actual subroutine call(s),
this argument may also be a real constant, like 2.3456, or a real expression, like
SIN(A)+1.0. If the expression contains an array variable, possibly with subscript range,
the translator wiill expand the subroutine call (see below).

e INPUT_ARRAY or REAL_INPUT_ARRAY. An entire array is sent to the subroutine.
Clearly, the subroutine argument has to be declared as an array in the subroutine. In
the actual subroutine call(s), this argument should be an array variable.

e INTEGER_INPUT. This argument type is primarily meant to communicate subscripts or
subscript bounds to Fortran subroutines, but it may be used for other purposes as well.
Except variables, also integer constants, like 34, or integer expressions, like
NINT(A+B), may be used as actual input arguments in a subroutine call.
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There are two types of output arguments:

e OUTPUT or REAL_OUTPUT. An ordinary real output variable. Also the actual
argument in a subroutine call has to be a variable. Constants or expressions are illegal.
If an array variable is used, the translator will expand the subroutine call (see below).

e OUTPUT_ARRAY or REAL_OUTPUT_ARRAY. An entire array is calculated by the
subroutine. ’

If an input argument of the subroutine is overwritten by the subroutine (i.e. becomes an
output argument as well), the subroutine cannot be called directly from FST. Instead, one
has to write an interface routine between FST and the desired subroutine. An example is
given in Section 5.4.

Use in combination with array variables
INPUT_ARRAY's and OUTPUT_ARRAY's are entire arrays, used or calculated by means
of a single call to the subroutine. The subroutine should be prepared to receive an entire
array which usually means that the array size should also be passed to the subroutine as
one or two INTEGER_INPUT arguments.

Array variables, however, can also be used as ordinary, scalar argument types INPUT and
OUTPUT. In case of INPUT, the array variable may even be contained in an input
expression. In that case, the call statement is expanded in a Fortran DO-loop and the array
elements are used or calculated elementwise. The range of the DO-loop counter | is the
range of the first expanded array in the subroutine call. Clearly, if more than a single array
is used in such a way, all subscript ranges should have the same size.

Note that the use of an INPUT_ARRAY does not interfere with statement expansion. In
such a case the array is passed to the subroutine as many times as the routine is called.
Both non-expanded OUTPUT and OUTPUT_ARRAY arguments are incompatible with an
expanded call, however.

Example of use with array variable
DEFINE_CALL MYSUB1l (INPUT,OUTPUT)
DEFINE CALL MYSUB2 (INPUT_ARRAY, OUTPUT_ARRAY, INTEGER INPUT)
DEFINE CALL MYSUB3 (INPUT_ARRAY, INTEGER_INPUT, INPUT, OUTPUT)
ARRAY XX (1:N), YY(1:N), ZZ(1:N)
ARRAY KK (1:P)

CALL MYSUBL (XX, 2ZZ) <- Expanded: ZZ(1) calculated from XX(l),
. I=1..N
CALL MYSUB2 (XX, YY, N) <- Array YY calculated from array XX,

CALL MYSUB3 (XX, N, REAL(I), KK) <- Expanded: KK(l) calculated from array
XX, integer N and REAL(l) with I=1...P
See also
Section 3.2.2.2, Chapter 5.

8.5.2.8 DYNAMIC

Syhtéx
DYNAMIC

Example
IX = SQRT (A**24B**2) <- initial calculation

DYNAMIC
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CALL MYSUB (IX,RX) <~ dynamic calculations
X = INTGRL (IX,RX)

Type of statement and position in program
The DYNAMIC statement is a section statement, which may occur only once.

Description
The DYNAMIC statement defines the beginning of the dynamic part of the calculations. If
there are no initial calculations, the DYNAMIC statement is optional. Dynamic calculations
after initial ones, however, have to be preceded by the section statement DYNAMIC. The
dynamic section ends with a TERMINAL statement, with an END statement or at the end of
the FST file.

Note that input statements, simulation control statements and output statements are not
affected by the distinction between initial, dynamic and terminal calculations.

Use in combination with array variables
A section statement has no relation to arrays.

See also
An overview of the FST program structure in Section 8.4.

8.5.2.9 END

Syntax
END

Example

END <- end of MODEL section
* rerun 1

PARAMETER A=2.0

END <- end of rerun 1

* rerun 2

PARAMETER A=3.0

END <- end of rerun 2

Type of statement and position in program
The END statement is a section statement at the end of the MODEL section and at the end
of each rerun section.

Description ’
The MODEL section contains the initial, dynamic and terminal calculations and all input,
output and simulation control statements of the FST program. It is terminated with an END
statement. An END statement is also at the end of each rerun section. The END statement
may be the last statement in the FST file. In that case it may also be omitted.

Use in combination with array variables
A section statement has no relation to arrays.

See also
An overview of the FST program structure in Section 8.4.
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8.5.2.10 ENDJOB

Syntax
ENDJOB
Example
Cok last lines of Fortran section
100 CONTINUE
RETURN
END <- No FST, but Fortran END Statement beginning in column 7.
ENDJOB <- FST ENDJOB statement

Type of statement and position in program
The ENDJOB statement is an optional section statement, at the end of the FST file.

Description
The ENDJOB statement may be used to terminate a Fortran section included in the FST
file between the STOP and the optional ENDJOB statement. Without any Fortran, the
ENDJOB statement may directly follow the STOP statement at the end of all reruns.

Use in combination with array variables
A section statement has no relation to arrays.

See also
An overview of the FST program structure in Section 8.4.

8.5.2.11 FINISH

Syntax
FINISH { constant | variable | expression} {<|>} {constant|variable | expression}

Example
FINISH B > 2.0
FINISH YEAR > 1887.
FINISH A+B < 1.0+SIN(X)
FINISH RAIN > 10.0

Type of statement and position in program
The FINISH statement is a simulation control statement. One or more FINISH statements
may occur in the MODEL section of FST. A FINISH statement cannot occur in a rerun
section.

Description
The FINISH statement describes a finish condition of the simulation. When the condition
becomes true, the simulation is halted. Almost all variables and functions can be used in
the expressions of a finish statement, except character variables like WTRDIR or DRIVER
and variables defined in the TERMINAL section of the program. From the functions the
INTGRL function cannot be used.

During the simulation, the finish conditions are evaluated after the calculation of all rates of
change. Then, the value of TIME, all states, the dynamic variables and all rates of change
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constitute a synchronous set of values. Since the FINISH conditions are evaluated after the
rate calculations, a FINISH condition cannot be used as a safeguard against runtime errors
as "divide by zero".

Use in combination with array variables
The use of one or more array variables in a FINISH statement leads to elementwise
expansion of the condition, i.e. the condition is separately evaluated for all array elements.
The array ranges used have to be of the same type and of equal length. If relative
subscripts are used, all arrays in the expression have to be part of the same family.

Example of use with array variable
ARRAY A(1:N), B(1:N), C(1:P)

FINISH A+1.0 < LOG(B) <- N conditions A(l)+1.0<LOG(B(l))
FINISH A{1:3) > C(1:3)*%*2 <- 3 conditions A(l) > C(l)**2

See also
Section 3.2.4.5, Section 6.2

8.5.2.12 FUNCTION

Syntax
FUNCTION function_name = Xvalue, Yvalue, Xvalue, Yvalue [, Xvalue, Yvalue...]
Example
FUNCTION REDUCT = 0.0, 0.0, 10.0, 0.9, 20.0, 0.9, 30.0, 0.0
FUNCTION EVAPTB = 1.0, 1.0, :
100.0, 2.0, <- Use of statement continuation to
200.0, 2.5 write a neat list of (x,y) pairs

Type of statement and position in program
The FUNCTION statement is an input statement, which may occur in the MODEL section
of the FST program. It defines an interpolation function by means of a number of (X,Y)
pairs. The defined function is available for interpolation by means of AFGEN or CSPLIN
calls in initial, dynamic or terminal calculations. An interpolation function can be redefined
in a rerun section by means of another FUNCTION statement.

Description
At least two (X,Y) pairs have to be provided in order to have a valid interpolation function.
The list of function points should be ordered according to an increasing X value. By means
of statement continuation, one can keep an overview over the function points.

The defined (empirical) functions can be used in AFGEN or CSPLIN calls only. The FST
function AFGEN calculates a value by means of linear interpolation. The FST function
CSPLIN uses natural cubic splines for interpolation between the provided (X,Y) points.

Use in combination with array variables .. . .

Functions defined by means of a FUNCTION statement cannot be FST arrays. The result
of an AFGEN or CSPLIN interpolation is an ordinary, scalar value.

See also
Section 3.2.3.4, Section 3.4, Section 6.1.1, Table 8.2 on page 136
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8.5.2.13 INCON

Syntax
INCON initial_constant_name = real_constant [; ...]

Example
INCON AI= 3.4 ; SPEED=5.0

Type of statement and position in program
The INCON statement is an input statement, which may be used in the MODEL section of
FST. Initial constants can be redefined in a rerun section by means of another INCON
statement.

Description
The INCON statement defines the initial value of a state variable. By FST, the initial value
is assigned to the state variable during the initial phase of the simulation. An initial constant
can also be used in initial, dynamic or terminal calculations.

Use in combination with array variables
An INCON statement can be used to define an array of initial constants belonging to a
state array. An initial constant array is defined by means of one or more substatements,
each covering a part of the declared subscript range. The rules for such substatements are
the same as for the PARAMETER statement in Section 8.5.2.17.

Example of use with array variable
ARRAY AI(0:N+1)

INCON AI(0:5)=0.0 ; AI(6:N-1)=1.0 ; AI(N:N+1)=2.0,3.0

See also
Section 3.2.3.2, Section 3.3, Section 8.3.1.5

8.5.2.14 INITIAL

Syntax
INITIAL

Example
INITIAL
IX = SQRT (A**24B**2) <~ initial assignment
CALL MYSUB (IX,IY) <- initial subroutine call
DYNAMIC

Type of statement and position in program
The INITIAL statement is a section statement, which may occur only once.

Description
The INITIAL statement marks the beginning of the initial calculations. If there are no initial
calculations, the INITIAL statement is optional. The initial section ends with a DYNAMIC
statement, with an END statement or at the end of the FST file.
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Note that input statements, simulation control statements and output statements are not
affected by the distinction between initial, dynamic and terminal calculations.

Use in combination with array variables
A section statement has no relation to arrays.

See also
An overview of the FST program structure in Section 8.4.

8.5.2.15 MODEL

Syntax
MODEL
Example
DEFINE CALL MYSUB (INPUT,OUTPUT) <- declaration statement
MODEL
PARAMETER A=1.0 ; ... <- input statement

Type of statement and position in program
The MODEL statement is a section statement, which may occur only once.

Description ,
The MODEL statement marks the beginning of the actual FST program. The MODEL
section contains all calculations and all input, output and simulation control statements,
except those which define reruns. The calculations are organized in three groups: initial,
dynamic and terminal calculations. The other statements are not affected by that
distinction. The MODEL section ends with an END statement or at the end of the FST file.

Use in combination with array variables
A section statement has no relation to arrays.

See also
An overview of the FST program structure in Section 8.4.

8.5.2.16 OUTPUT

Syntax
OUTPUT variable_name [ variable_name ...]

Example
OUTPUT A, B, PETER

Type of statement and position in program
The OUTPUT statement is an almost obsolete output statement. There should be at least
one PRINT or OUTPUT statement in the MODEL section of an FST file. OUTPUT
statements cannot occur.in rerun sections.

Description
The OUTPUT statements creates a printplot for a line printer. The printplot is written to the .
output file RES.DAT. Each OUTPUT statement leads to its own printplot. Hence, it may be
useful to use different OUTPUT statements for a few groups of variables.
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Variables listed in OUPUT statements are also included in the formatted output tables
written in RES.DAT by the PRINT statement.

The variable types accepted by OUTPUT are:

array_size variables

calculated variables

constants

initial constants

parameters

the driver supplied variables except |

Weather and calendar data

Translation_general variables as far as they are numbers
the TIMER variables STTIME, FINTIM and DELT

Variable values are always associated with a value of TIME. Therefore, variables
calculated in the INITIAL section are plotted at STTIME only. Variables calculated in
DYNAMIC are plotted as function of TIME (with a resolution controlled by the timer variable
PRDEL). And variables calculated in the TERMINAL section are plotted at the final value of
TIME, which is either FINTIM or a smaller value due to a finish condition. All this is
independent of the position of the OUTPUT statement in the FST program.

Use in combination with array variables
The OUTPUT statement does not accept array variables.

See also
Section 3.2.5, Section 8.5.2.18

8.5.2.17 PARAM, PARAMETER

Syntax
PARAMI[ETER] parameter_name = real_constant [;...]

Example
PARAMETER B=3.5 ; C=8.9

Type of statement and position in program
The PARAMETER statement is an input statement, which may be used in the MODEL
section of FST. Model parameters can be redefined in a rerun section by means of another
PARAMETER statement.

Description
The PARAMETER statement defines one or more model parameters. A model parameter
can be used in initial, dynamic or terminal calculations. The position of the PARAMETER
statement in the MODEL section of FST does not influence its function.

Use in combination with array variables (also applies to INCON)
The rules are , B o
e In a single PARAMETER statement one or more parameter arrays and scalar
parameters can be defined.
e The definition of a parameter array consists of a consecutive list of substatements.
e The substatements are separated from each other by a semi-colon *;" in the same way
as definitions of different scalar parameters.
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e The parameter array must be completely defined by the series of consecutive
substatements.

e There should not be gaps or overlaps in the subscript ranges covered by consecutive
substatements. '

e |f the elements of a defined range are the same, only a single value needs to be given.

e If several values are given, they should be separated by commas.

e |f several values are given, the number of values should be equal to the number of
array elements defined. For instance 'A(2:5)' refers to 4 array elements and 4 values
are given. and 'A(N-3:N-1)' refers to 3 elements.

e The array definition should be independent of the actual value of N. Hence, a
substatement like 'A(16:N-4)=..." may contain only a single value, since the number of
elements in A(16:N-4) depends on the value of N which is assumed to be variable.

e There is only a single absolute-to-relative range 'A(16:N-4)=0.0' in which the left bound
is a constant and the right bound refers to the array size variable.

Example of use with array variable
ARRAY A(-3:N+3)

PARAMETER A(-3:0)=0.0,1.0,2.0,3.0 ; A(1:5)=4.0 ;
A(6:N-1)=1.0 ; A(N:N+1)=2.0,3.0

See also
Section 3.2.3.1, Section 8.3.1.7.

8.5.2.18 PRINT

Syntax
PRINT variable_name [,variable_name ...]

Example
PRINT A, B, PETER

Type of statement and position in program
The PRINT statement is an output statement. There should be at least one PRINT or
OUTPUT statement in the MODEL section of an FST file. PRINT statements cannot occur
in rerun sections.

Description
The PRINT statements lists variables that should be included in the output tables produced
in file RES.DAT. Printed variables are also written to the machine readable file RES.BIN.
The variables types accepted by PRINT are:
array_size variables
calculated variables, arrays or scalar
constants
initial constants, arrays or scalar
parameters, arrays or scalar
the driver supplied variables except |
Weather and calendar data
Translation_general variables as far as they are numbers
the TIMER variables STTIME, FINTIM and DELT

Variable values are always associated with a value of TIME. Therefore, variables
calculated in the INITIAL section are printed at STTIME only. Variables calculated in
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DYNAMIC are printed during the simulation at increasing values of TIME (at a series of
output times controlled by the timer variable PRDEL). And variables calculated in the
TERMINAL section are printed at the final value of TIME, which is either FINTIM or a
smaller value due to a finish condition. This is independent of the position of the PRINT
statement in the FST program.

Input and control variables are initially known and they are printed at STTIME only, even if
the input and control statements are at the end of the MODEL section. If the value of a
model parameter A, for instance, has to be printed at the same time as a terminal variable,
one needs to make a copy of A in the TERMINAL section and print that copy.

Integer numbers like array size variables are printed by means of a utility which has been
written for the Fortran real data type. Hence, integer numbers are printed with a decimal
point behind them.

Use in combination with array variables
The PRINT statement accepts array variables with or without a subscript range. In the
latter case all elements are printed.

Example of use with array variables
PRINT X(1:5), Y(1), Y(N), Z(N-4:N)

See also
Section 3.2.5, Section 8.5.2.16

8.5.2.19 STOP

Syntax
STOP

Example
* rerun 12 <- rerun sections
PARAMETER A=8.0
END
* rerun 13’
PARAMETER A=9.0

END
STOP .
SUBROUTINE MYSUB (X,Y) <- Fortran subroutine(s)
END <- Fortran END statement
ENDJOB <- FST ENDJOB statement

Type of statement and position in program
The STOP statement is a section statement, which may occur only once.

Description
The STOP statement marks the end of all rerun sections of an FST program. Between the
STOP statement and the (optional) ENDJOB statement, Fortran subroutines may be
included in the FST file. The Fortran subroutines should comply with the Fortran
conventions for statement begin at column 7, statement continuation and statement labels.
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Without Fortran and without the ENDJOB statement, the STOP statement is optional and
the FST file ends with the last rerun section.

Use in combination with array variables
A section statement has no relation to arrays.

See also
An overview of the FST program structure in Section 8.4.

8.5.2.20 TERMINAL

Syntax
TERMINAL

Example
TERMINAL
RES1 = SQRT (X**2-IX**2) <- terminal assignment
CALL MYSUB (RES1,RES2) <- terminal subroutine call
END

Type of statement and position in program
The TERMINAL statement is a section statement, which may occur only once.

Description
The TERMINAL statement marks the beginning of the terminal calculations. If there are no
terminal calculations, the TERMINAL statement is optional. The terminal section ends with
an END statement or at the end of the FST file.

Note that input statements, simulation control statements and output statements are not
affected by the distinction between initial, dynamic and terminal calculations.

Use in combination with array variables
A section statement has no relation to arrays.

See also
An overview of the FST program structure in Section 8.4.

8.5.2.21 TIMER
Syntax
TIMER timer_variable = value [;...]
Examples
TIMER STTIME=0.0 ; FINTIM=100.0 ; DELT=0.1 <- these have to be there
TIMER COPINF='Y' <- default'N'
TIMER IPFORM=5 <- default 4
TIMER PRDEL=1.0 <- default (FINTIM-STTIME)

Type of statement and position in program
The TIMER statement is a simulation control statement, which must be present in the
MODEL section of FST. Timer variables can be redefined in a rerun section by means of
another TIMER statement.
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Description
A TIMER statement defines one or more timer variables. FST requires values for at least
STTIME, FINTIM and DELT (also in TRANSLATION_FSE mode). They have to be defined
with one or several TIMER statements. The other timer variables have defaults and their
definition is optional.

Use in combination with array variables
A timer variable cannot be an array.

See also
Section 3.2.4.3, Section 3.7
The list of TIMER variables in Section 8.3.2.1

8.5.2.22 TITLE

Syntax
TITLE any text without quotes

Example
TITLE Crop growth model <- may occur on top of the FST model
TITLE with prescribed crop development
MODEL
TITLE and without crop diseases <- or in the MODEL section

Type of statement and position in program
The TITLE statement is an output statement. TITLE statements may be present in the
DECLARATIONS or in the MODEL section and also on top of the program, before the
DECLARATIONS section. TITLE statements cannot occur in a rerun section.

Description
The text of all TITLE statements is used as a header in the output files. FST also writes the
TITLE texts in the header of the generated Fortran module. Besides comment lines, TITLE
statement are also used as a short description of the process described by the FST model.
Therefore TITLE statements may appear also in the DECLARATIONS section or even on
top of the DECLARATIONS section statement.

Use in combination with array variables
The TITLE has no relation to arrays.

See also
Section 3.2.5.3

8.5.2.23 TRANSLATION_FSE

Syntax
TRANSLATION_FSE [translation_fse_variable = value]

Examples
TRANSLATION FSE
TRANSLATION FSE IOBSD=1988,23, 1989,24
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Type of statement and position in program
The TRANSLATION_FSE statement is a simulation control statement, which may be used
in the MODEL section of FST. The TRANSLATION_FSE variable IOBSD can be redefined
in a rerun section by means of another TRANSLATION_FSE statement. The two
translation modes, TRANSLATION_GENERAL and TRANSLATION_FSE, exclude each
other.

Description

A TRANSLATION_FSE statement has the following consequences

e The FST translator generates an FSE simulation module in Fortran according to van
Kraalingen (1995). Also the data files belonging to an FSE program are generated.

o During execution of the model, the simulation is controlled by the FSE driver from the
DRIVERS library.

e The unit of time is a day. Hence, STTIME, FINTIM and DELT have to be specified in
days (DELT may be a fraction of a day).

e Weather data have to be specified by means of one or more WEATHER statements.

Use in combination with array variables
A TRANSLATION_FSE variable cannot be an array.

See also .
Section 3.2.4.2, Section 3.3
The list of TRANSLATION_FSE variables in Section 8.3.2.3

8.5.2.24 TRANSLATION_GENERAL

Syntax
TRANSLATION_GENERAL [trans_general_variable = value [; ...]]

Examples
TRANSLATION GENERAL <- the default driver RKDRIV will be used

TRANSLATION GENERAL DRIVER='EUDRIV' ; DELMAX=0.01

Type of statement and position in program
The TRANSLATION_GENERAL statement is a simulation control statement, which may be
used in the MODEL section of FST. Translation_general variables can be redefined in a
rerun section by means of another TRANSLATION_GENERAL statement. The two
translation modes, TRANSLATION_GENERAL and TRANSLATION_FSE, exclude each
other.

Description
A TRANSLATION_GENERAL statement has the following consequences
e The FST translator generates an "GENERAL" simulation module in Fortran. The
structure of these modules is described in-Section 9.2. Also the data files belonging to
the Fortran program are generated.
e During execution of the model, the simulation is controlled by a "GENERAL driver" from

the DRIVERS library. There are two such drivers: EUDRIV and RKDRIV.
o Weather data are optional.

The default general driver is RKDRIV which uses the fourth order Runge Kutta scheme
with step size control described in Press ef al. (1986). The second available driver is
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EUDRIV which uses Euler integration. Note that reruns can be made also on the driver
choice.

Use in combination with array variables
A TRANSLATION_GENERAL variable cannot be an array.

See also
Section 3.2.4.1, Section 3.3
The list of TRANSLATION_GENERAL variables in Section 8.3.2.4

8.5.2.25 WEATHER

Syntax

WEATHER weather_control_variable = value [; ...]
Example

WEATHER WTRDIR='C:\SYS\WEATHER)\'

WEATHER ISTN=2 ; CNTR='NLD' ; IYEAR=1990

Type of statement and position in program
The WEATHER statement is a simulation control statement, which may be present in the
MODEL section of FST. Weather_control_variables can be redefined in a rerun section by
means of another WEATHER statement.

Description
One or more WEATHER statements define the weather control variables. Together, the
weather control variables point to a weather data file. Only WTRDIR, the weather data
directory, has a default value (the directory of the executed model). The other three,
CNTR, ISTN and IYEAR have to be specified. Details on weather data files can be found in
van Kraalingen et al. (1991).

In TRANSLATION_GENERAL mode the use of weather data is optional.
In TRANSLATION_FSE mode weather data have to be selected.

Use in combination with array variables
A weather control variable cannot be an array.

See also
Section 3.2.4.4, Section 6.2, Section 6.3
The list of WEATHER control variables in Section 8.3.2.2
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8.6 Fortran intrinsic functions

In Table 8.1, a list is given of the Fortran intrinsic functions supported by FST. For readers familiar
with Fortran there is a minor difference in the use of generic function names. In Fortran, so-called
generic functions accept various types of arguments: integer, real or double precision real. In FST
most of these function accept real arguments only. The exception is the function MOD which, in FST,
accepts only integer arguments. For real arguments AMOD has to be used.

Table 8.1 List of Fortran intrinsic functions with explanation. The input arguments | and J denote an integer
. constant, variable or expression. The input arguments X, X1, X2,... are real constants, variables
or expressions.

Fortran function Explanation Mathematical notation Restrictions
ABS (X) absolute value of x Ixt
INT (X) the integer part of x, result is int(x)
integer
AINT (X) the integer part of x converted int(x)
to real
NINT (X) the nearest integer, result is int(x)
integer
ANINT (X) the nearest integer converted to int( x)
real
MAX (X1,X2,...,¥n) | maximum value among the real max(x, X, ,m,xn) n>2
arguments
AMAX1 (X1,X2, ..., Xn)| maximum value among the real max(xl , X, ,...,x") n>2
arguments
MIN (X1,X2,...,Xn) |minimum value among the real min(xl ,X, ,m,xn) n>2
arguments
AMIN1 (X1,X2, ..., Xn)| minimum value among the real min(x, , X, ,”_,xn) n>2
arguments
MOD (I, J) remainder of i/j with sign of i, imod j j#0
result is integer
AMOD (X, Y) remainder of x/y with sign of x, xmod y y#0
result is real
CoSs (X) cosine of x, x in radians cos(x)
COSH (X) hyperbolic cosine of x cosh(x)
ACOS (X) arc cosine of x in range [0,7] arccos(x) —1<x<1
EXP (X) exponential function pe
LOG (X) natural logarithm of x elogx x>0
ALOG (X) natural logarithm of x elogx x>0
LOG10 (X) base 10 logarithm of x 10logx x>0
ALOG10 (X) base 10 logarithm of x 10logx x>0
REAL(I) the real number nearest to
integer |
SORT (X) . square root of x Jx x>0
SIN (X) sine of X, x in radians sin(x)
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SINH (X) hyperbolic sine of x sinh(x)
ASIN (X) arc sine of x arcsin(x) —1<x<1
in range [-n/2, 7/2]
TAN (X) tangent of x, x in radians tan(x) xmod bt -
2
TANH (X) hyperbolic tangent of x tanh(x)
ATAN (X) arc tangent of x arctan(x)
in range [-n/2, /2]
ATAN2 (X,Y) arc tangent of x/y x
in range [-n/2, /2] arctan| —
. y
8.7 FST intrinsic functions

Table 8.2 on page 136 lists the FST intrinsic functions. Function calls can be included in
mathematical expressions with the exception of the INTGRL function. For a few functions more
information is given in separate subsections below.

The arguments are described in the table below as variables. Input arguments can also be constants

or expressions, however, possibly involving other function calls. There are three exceptions,

however:

e The arguments of the INTGRL function call have to be variables or array variables.

e The first argument of the functions AFGEN and CSPLIN has to be an interpolation function
defined with a FUNCTION statement.

e The input arrays of the array functions AR* and ELEMNT have to be FST arrays without
calculations or subscript range.

Ordinary real input arguments may also contain array variables with or without a subscript range
indicated. In that case the entire statement is elementwise evaluated. The use of array variables in
calculations is extensively discussed in Section 4.3.

8.7.1 Simpson integration by means of ARSMPS

If the elements of an array contain the value of a function at a series of N equidistant x values, the
integral can be estimated as a weighted sum of the N function values, multiplied by the interval
width. The weights are 1.0 for the function values "in the middle of the range". At the edges of the
interval, the weights differ from unity. The weights cannot be all unity since there are N points and N-
1 intervals (See Chapter 4.1 in Press et al. ,1989).
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Table 8.2 List of FST intrinsic functions with explanation. The input arguments K and L denote an integer
constant, variable or expression. Array arguments are written as A or B. The symbol F means an
FST interpolation function and all other input arguments are real constants, variabies or
expressions.

FST function Mathematical notation or Graph

Y = AFGEN(F,X)
Linear interpolation between (x,y) function points. Y
See Section 3.4.
Y - Result of interpolation, estimated F(X)
F - Table of (x,y) values specified
with FUNCTION statement
X - Value of independent variable

Y = ARIMPR(A,B,K,L) L
Returns the improduct of a vector A and a vector y= Z Ai Bi

B calculated over the subscript range K,...,L. See i=K
Section 4.3.3.

Y - Returned improduct

A - Array variable seen as vector

B - Array variable seen as vector

K- Start of subscript range

L - End of subscript range with LK
Y = ARLENG(A,K,L) ) L
Returns the length of the vector with elements y= Z A,.2
A(K),...., A(L) in (L-K+1)-dimensional space. See i=K

Section 4.3.3.

Y - Returned length

A - Array variable seen as vector

K- Start of subscript range

L - End of subscript range with L°K
Y = ARMAXI(A,K,L) L
Returns the maximum value among the array
elements A(K),...., A(L). See Section 4.3.3.

Y - Resulting number =K

A - Array variable

K- Start of subscript range

L - End of subscript range with LK

Y = ARMEAN(A,K,L) &

Returns the arithmetic mean of the array z Ai

elements A(K),...., A(L). See Section 4.3.3. y=—=k
L-K+1

Y - Maximum value

A - Array variable

K- Start of subscript range
L=~End of subscript range with L>K
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Y = ARMINI (A, K,L) L
Returns the minimum value amon'g the array y= min 4,
elements A(K),...., A(L). See Section 4.3.3.

Y - Resulting number i=K

A - Array variable

K- Start of subscript range

L - End of subscript range with LK
Y = ARSMPS (A,K,L,D) L
Simpson's integral of a function over L-K closed y=D Z w; 4,

i=K

intervals (XK. XK+1), (XK+1.XK+2),---(XL-1 XL)- At
the L-K+1 points the function takes the values
A(K),...., A(L). All intervals have equal width D.
See Section 4.3.3 and Section 8.7.1.

Y - Approximate integral

A - Array containing function values

K - Start of subscript range

L - End of subscript range with L>K

D - Interval width

in with the coefficients w; follow

- trapezoidal rule for n=2,3 (n=L~K+1)

- extended 1/n3 rule for n=4,5,6,7

- alternative extended Simpson's rule for n°8
See Chapter 4.1 in Press et al. (1989)

Y = ARSTDV(A,K,L)
Returns the standard deviation of the array
elements A(K),...., A(L) seen as a sample. See
Section 4.3.3.

Y - Returned standard deviation

A - Array variable

K- Start of subscript range

L- End of subscript range with L>K

Y = ARSUMM(A,K,L)
Returns the sum of the array elements A(K),....,
A(L). See Section 4.3.3.

Y - Resulting sum

A - Array variable

K- Start of subscript range

L - End of subscript range with L3K

Y = CSPLIN(F,X)
Natural cubic splines interpolation between (x,y)
function points according to Press et al. (1989).
See Section 3.4 and Section 8.7.2.

Y - Result of interpolation, estimated F(X)

F - Table of (x,y) values specified

with FUNCTION statement
X - Value of independent variable

Y = ELEMNT (A, K)
Returns value of the K-th element of array A after
verifying its existence by comparing K with the
declared array bounds. See Section 4.3.4.
Y - Returned element value
-A-—Array-variable-

K- Subscript

137
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Y = FCNSW(X,Y1l,Y2,Y3)

Input switch. Y is set equal to Y1, Y2 or Y3 Iy =y1, x<0

depending on the value of X. y=vy2, x=0
Y - Returned as either Y1, Y2 or Y3 \y —y3, X> 0

X - Control variable

Y1 - Returned value of Y if X<0
Y2 - Returned value of Y if X=0
Y3 - Returned value of Y if X>0

Y = INTGRL(YI,YR)
Integration command in the form of a function B t d y (t')
call. The algorithm of the numerical integration y (t) = y (0) + _d_t_ dt
depends on the selected translation mode and
driver. See Section 3.3 and 8.7.3.
Y - State variable
Yl - Initial value of Y, must be a variable
YR- Rate of change, must be a variable

Y = INSW(X,Y1,Y2)
Input switch. Y is set equal to Y1 or Y2 /y =¥1, X< 0
depending on the value of X. \y =y2, X2 0

Y - Returned as either Y1 or Y2
X - Control variable

Y1 - Returned value of Y if X<0
Y2 - Returned value of Y if X0

Y = LIMIT(XL,XH,X)

Y is equal to X but limited between XL and XH /y =X , X|=X<Xp
Y - Returned as X bounded on [XL,XH] y=X, X<X|
XL - Lower bound of X
XH- Upper bound of X \y =Xh, X>Xp

Y = NOTNUL (X)

Y is equal to X but 1.0 in case of X=0.0. Note that /y =x, x#0

X is evaluated without any tolerance interval. \y =1, x=0

Y - Returned result
X - Checked for being zero

Y = REAAND (X1, X2)
Returns 1.0 if both input values are positive,
otherwise Y=0.0.

, X1,X2>0

<
Il

x1<0 or x2<0

Y = REANOR (X1, X2)
Returns 1.0 if both input values are less than or
equal to zero, otherwise Y=0.0.

, X1X2<0

<
Il

<
Il
O -

<
Il
O -

x1>0 or xo>0

Y = RGNORM (M, SD)
Random number Generator which returns
numbers with an univariate normal distribution.
See Section 3.7 and 8.7 4.
Y - Returned random number
M'-""Mean of the normal distribution

SD- Standard deviation of the distribution
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The function ARSMPS combines three different formulas for the integral. For 2 or 3 points there is
nothing better than the trapezoidal rule. Up to 7 points the extended 1/n3 rule is used and for N°8,
the alternative extended Simpson's rule is used (Chapter 4.1 in Press et al. ,1989). This is

ARSMPS(A,1,N,D)=D<;—A1+A2+...+AN_1+;—AN> ,N=23
ARSMPS(A,1,N,D)=D{-1%A1+1—2—A2+A3+...+AN—2+%AN_1+%AN}, N=4586,7
ARSMPS(A,1,N, D) =D<-11A1 +59A,+43 A3+ 4904+ Ag ...

48 48 48 48

o+ A +49 +43a +99A +17 > , N>8
N-4 28 N-3 28 N-2 28 N—1’ 48 N
Note that for N=2, N=4 and N=8, the array elements with weight 1.0 (in the middle) are absent.

The following FST program uses function ARSMPS to calculate the integral of SIN(X) over the
interval [0,n]. There are only INITIAL calculations and the time integration is dummy. In statement 5
the interval width is calculated. In statement 7 all x values and in statement 9 the integral over the x-
interval [0,n] is estimated. The array size variable N is the number of points used.

0001 TITLE Test Simpson FST program structure
0002 ARRAY X (1:N), Y(1:N)

0003 INITIAL

0004 CONSTANT PI=3.14159265

0005 DELX = PI/REAL(N-1)

0006 ARRAY SIZE N=20

0007 X = REAL(I-1) * DELX

0008 Y = SIN(X)

0009 SURF = ARSMPS (Y, 1,N,DELX)

0010 PRINT SURF

0011 TIMER STTIME=0.0; FINTIM=1.0; DELT=1.0
0012 TRANSLATION_GENERAL DRIVER='EUDRIV'
0013 END

The result of this program, depends on the value of N. The following table gives an idea of the
accuracy for the function SIN(X). The analytical result is 2.0.

SURF

N

4 1.9649
5 1.9887
6 1.9953
7

8

9

1.9977
2.0007
2.0004
0 2.0002

—

Note that for the integration of known functions more efficient methods are available (various forms
of Gaussian integration). If the function values are simulated values on a regular grid, however, the
use of ARSMPS is an easy way of estimating the total amount present.

8.7.2 Cubic spline interpolation with CSPLIN

The FST intrinsic function CSPLIN is based on Chapter 3.3 of Press et al. (1986). For each two
points the coefficients of a third order polynomial are calculated in such a way that the first and
second order derivative are also continuous in the given (x,y) points. The word "natural" refers to the
assumption that the second order derivative is zero at the first and last point. This implies that a
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graph of the function is not curved at the first and last of the (x,y) points of the interpolation
FUNCTION.

Note that there is no smoothing of data points and a warning is given on extrapolation outside the X-
range of the defined function. Examples are given in Section 3.4 and Section 6.1.1.

8.7.3 The INTGRL function (and array variables)

A state variable S is formally calculated as
S = INTGRL (SI,SR)

in which Sl is the initial value and SR the rate of change for the state variable. Unlike other functions,
the INTGRL function cannot be part of a larger expression. The rules for the first argument of an
INTGRL call are ‘

e It has to be a variable, it cannot be a constant (like 0.0) or an expression.

‘e A variable calculated in the INITIAL section may act as initial value

e An INCON variable may act as initial value

The rules for the second argument of an INTGRL call are

o It has to be a variable, it cannot be a constant (like 0.0) or an expression like 2.0*SR
e A variable calculated in the DYNAMIC section may act as rate of change

o WEATHER and calendar data variables may act as rate of change

e A model PARAMETER may act as rate of change

The INTGRL function call can also be used to define a state array. An array S becomes a state
array by writing

S = INTGRL (SI,SR)

which is exactly the same statement as for a scalar, non-array state. The rules for a state array are

e A state array is defined by means of an INTGRL function call in a single substatement ; unlike
other array calculations, the declared range cannot be split up among a different substatements.

e The INTGRL function call cannot be part of a larger expression.

e The first argument is a variable and cannot be a constant or expression.

e The first argument is either a scalar variable or an array variable belonging to the same array
family as the state variable and with exactly the same declared bounds.

e The first argument must be either a calculated (array) variable or an INCON (array) variable.

e If the first argument is a calculated variable, it must be calculated in the INITIAL section.

o The second argument is a variable and cannot be a constant or expression.

e The second argument is either a scalar variable or an array variable belonging to the same array
family as the state variable and with exactly the same declared bounds.

e The second argument must be a calculated (array) variable, a weather variable or a parameter

(array).
e If the second argument is a calculated variable, it must be calculated in the DYNAMIC section.

A often needed structure is
ARRAY S(1:N), SI(1:N), SR(1:N)

DYNAMIC
S = INTGRL (SI,SR)
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This makes S a state array, Sl an initial value array and SR a rate array.

It also happens often that all elements of a state array have to be initialized at a single value. Then
there is no need for declaring and defining an entire array of initial values. The following structure is
in accordance with the above rules

ARRAY S(1:N), SR(1:N)

INCON ZERO=0.0
DYNAMIC
S = INTGRL (ZERO, SR)

The first argument of the INTGRL function is scalar.

Although an INTGRL function call has the form of a calculation statement (and has to be in the
DYNAMIC section), it is not sorted with the other calculations. An INTGRL function call acts as a
declaration of the relation between a state variable, its initial value and its rate of change. See also
Section 3.3.

8.7.4 ~ The random number generators RGUNIF and RGNORM

The algorithm for generating random numbers with a uniform distribution (RGUNIF) originates from
L'Ecuyer (1988). It is implemented in Bratley et al., 1983, (UNIFL), and in Press et al., 1992 (RAN2).
Note that the value 1.0 is never returned.

The algorithm used in RGNORM is known as the Box-Muller method for generating random normal

deviates (Box & Muller, 1958). Two random normal deviates are derived from two uniform deviates

using the inverse of the bivariate normal distribution. The method is also well explained in Bratley et
al. (1983).

We have adapted the procedures for seed generation to the FST rules for random number
generation as explained in Section 3.7. In the linked DRIVERS library there is a seed generating
function RGRSET which is called during the initial phase of model execution. The arguments of this
function are the TIMER variables RGINIT and RGSEED. The communication between RGRSET and
RGUNIF takes place by means of a small common block.
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Figure 9.1 on the title page of this chapter. Two exponentially growing populations with relative
growth rates depending on daily average temperature in the same way. From the FST program in
Listing 9.1 on page 146 the Fortran program in Listing 9.3 was generated by the FST translator. To
the Fortran program a state event has been added “by hand” according to the description in Section
9.2.4. The event occurs when the sum of the two population sizes reaches 100.0. The slow-growing
population is then reduced by 20% and the fast-growing one is cut down to its initial value 1.0. The
state events are a form of interaction between the two species. The slow- growing one suffers little
from each event and is able to overgrow the fast-growing population in about 5 years.
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9 The generated Fortran sources

This chapter is especially meant for those readers who want to use the generated Fortran as a
starting point for further modeling work. Some introductory remarks on the generated Fortran have
been made in Section 7.4.2. Here we assume a serious interest and we give some background on
the structure of the drivers and the model routine.

The scheme in Figure 7.2 on page 88 showed already that the generated Fortran code needs to be
linked with the libraries DRIVERS, TTUTIL and WEATHER. Subroutines called from the FST
program need to be included in its Fortran section or need to be linked with the translated program.

The TTUTIL library is primarily a library of input and output subroutines and has been documented in
Rappoldt & van Kraalingen (1990) and van Kraalingen & Rappoldt (1996). The /O subroutines are
called from the driver and from the generated Fortran module itself for reading values from the
generated data files and for writing the output files. The WEATHER library has been documented by
van Kraalingen et al. (1991).

The DRIVERS library contains the simulation drivers for both translation modes. The DRIVERS
library also contains most of the FST intrinsic functions. The intrinsic functions LIMIT, INSW,
REANOR, REAAND and AFGEN are part of TTUTIL for historical reasons (AFGEN is renamed by
the translator in LINT2).

The Fortran generated in FSE mode has been documented in van Kraalingen (1995) and is
discussed briefly in Section 9.1. The GENERAL drivers are discussed in greater detail in Section 9.2.
Section 9.2.4 describes how time and state events can be added to a generated Fortran model.

9.1 FSE module

The FST translator generates a standard FSE program. The structure of FSE simulation models has
been fully documented in van Kraalingen (1995). Here, we just explain the function of the various
Fortran subroutines and give an example which can be compared in Section 9.2 with the Fortran

program generated in GENERAL mode.

9.1.1 - Overview of the FSE mode Fortran structure

The hierarchy and function of the Fortran subroutines in FSE translation mode is

e The generated main program MAIN which calls the FSE driver.

e Subroutine FSE from the DRIVERS library. This subroutine organizes the simulation.
Initialization, calculation of rates of change, integration and termination of each model run are
realized by calls to the subroutine MODELS, which in turn calls all FSE modules under it. The
FSE driver calls the WEATHER library to get weather data and supplies these to the models. The
driver takes care of the timing and the calendar variables and also contains the loop over all
reruns. This rerun loop is based on calls to subroutines from 1/O library TTUTIL.

e The generated subroutine MODELS. In case of FST-generated Fortran, the subroutine MODELS
is a trivial one. It contains little more than a call to the actual FSE module MODEL. The real
function of MODELS, however, is to call several FSE modules, which may interact. The different
hand-written, or generated FSE modules are not called directly from the driver, via the
intermediate subroutine MODELS, which represents the integrated model from the drivers point
of view. The interaction between the various FSE modules may be organized via parameter
exchange or common blocks added to the modules.
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e The generated subroutine MODEL is an FSE module and represents the actual model.
e Below the model subroutine, there are the subroutines called from the model, the intrinsic
functions, and the utilities for output and for reading data from MODEL.DAT.

9.1.2 Example of a generated FSE module

The example program in Listing 9.1 is an adapted version of the FST model in Listing 2.2 on page
12. Here, the weather dependent exponential growth is simulated for two populations, making use of
arrays for population size, initial value, rate of change and maximum relative growth rate. The two
populations are independent. The FINISH condition will stop the simulation as soon as one of the
populations reaches 200.0 times its initial value.

Listing 9.1  Model of two populations growing exponentially. It is an extension of the model in Listing 2.2 for
a single population. Note that the temperature dependent interpolation function REDUCE is used
to reduce the maximum relative growth rate RGRMAX of both populations. Between 20°C and
30°C the function is 1.0 and there is no reduction. Outside that range the function is below 1.0.

TITLE Temperature Dependent Growth
TITLE for N independent populations
DECLARATIONS
ARRAY X (1:N), IX(1:N), RX(1:N) <-Program suitable for N populations
ARRAY RGRMAX (1:N)
MODEL
ARRAY SIZE N=2 <-Number of populations
INITIAL
IX = ABS(B)
PARAMETER B=1.0 ; RGRMAX(1)=0.01 ; RGRMAX(2:N)=0.1 <-RGRMAX values
DYNAMIC
X = INTGRL (IX,RX)
. RX = RGRMAX * AFGEN (REDUCE, TDMEAN) * X <-Calculation of growth rate

* sum of populations
XSUM = ARSUMM (X,1,N) <-The sum of all populations

* empirical function reducing the relative
* growth for extreme daily average temperatures

FUNCTION REDUCE = -20.0, 0.0, 0.0, 0.0, 15.0, 0.9, 20.0, 1.0,

30.0, 1.0, 40.0, 0.8, 42.0, 0.0, 50.0, 0.0

* estimate the average daily temperature

TDMEAN = (TMMN + TMMX) / 2.0

WEATHER CNTR='NLD' ; ISTN=1 ; IYEAR=1985

WEATHER WTRDIR='C:\SYS\WEATHER\'

* integration of average temperature
TCUM = INTGRL (ZERO, TDMEAN) <-The average temperature is integrated
INCON ZERO=0.0

TERMINAL
* average temperature in simulation period
e PMEAN - =”'TCUM'“/~ . ‘(TIME'—'S‘TTIME) e e ,,,<_Mean temperature over*simulated period' -

FINISH X > 200.0*%IX

TIMER STTIME=1.0 ; FINTIM=3000.0 ; DELT=1.0

TIMER PRDEL=1.0

PRINT X,XSUM, TDMEAN, TMEAN

TRANSLATION_ FSE <-FSE translation selected
END
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The FSE module MODEL generated by the FST translator for this simple growth model is given in
Listing 9.2. It is part of the file MODEL.FOR which also contains the generated MAIN program and
the generated subroutine MODELS. A few remarks on the Fortran code:

The TIMER variables STTIME, FINTIM and DELT, the weather and calendar data and the driver
supplied variable TIME are made available to the Fortran model as input parameters.

The IMPLICIT NONE statement in line 55 is a non-standard Fortran statement. It forces the user
to declare all variables.

The IF statement in line 122 and 123 is a safeguard against values of N too low for the subscript
ranges used (see Section 4.3.1.3). Array size variables are Fortran PARAMETERS (line 70),
which can be changed by the user corresponding changes are made in the file MODEL.DAT.
The error routine FATALERR represents a non-standard subroutine name.

There are several groups of declarations (line 57-96). All variables of the model are
systematically declared. The SAVE statement in line 97 guarantees that the values of all
variables retain their values between successive calls to MODEL.

The string WUSED in line 101 is a code for the use of weather variables in the model. It contains
6 characters, one character for each weather variable, which are either “.” for a non-used
variable and “U’ for a used one. The lines 103-114 compare WUSED with the weather status
string WSTAT supplied by the FSE driver.

The rest of the program is organized in 4 sections: INITIAL, RATES of change, INTEGRATION
and TERMINAL. They contain the calculation statements from the FST program ina
computational order.

The output section (line 179-184) is at the end of the rate of change section. At that point a
consistent set of values is available for TIME, all states, rates of change and other calculated
variables.

Calls to the FST intrinsic functions may differ from the FST source code. Examples are in line 164
and line 169. The FST translator has added arguments for improved runtime error messages or
for runtime checks on array subscript ranges.

The program does not contain any write or read statements. All Input/Output operations make
use of the library TTUTIL. This improves the readability program and greatly simplifies writing it.

Listing 9.2 A Fortran compiler listing of subroutine MODEL in FSE format. This subroutine was generated

by the FST translator from the program in Listing 9.1 on page 146.

0001 e et *
0002 * SUBROUTINE MODEL *
0003 * Authors: FST translator *
0004 * Date *
0005 * purpose: This subroutine is the translated FST file *
0006 * *
0007 * FORMAL PARAMETERS: (I=input,o=output,C=control,IN:init,T:time) *
0008 * name type meaning units class *
0009 ¥ e mmmm mmmmm== T m T *
0010 * ITASK I4 Task that subroutine should perform - I *
0011 * IUNITD I4 Unit of input file with model data - I *
0012 * TUNITO I4 Unit of output file - I *
0013 * TUNITL I4 Unit number for log file messages - I
0014 * FILEIT C* Name of timer input file - I *
0015 * FILEIN C* Name of file with input model data I *
0016 * QUTPUT L4 Flag to indicate if output should be done - I
0017 * TERMNL L4 Flag to indicate if simulation is to stop - I/0 *
0018 * DOY R4 Day number within year of simulation (REAL) d I *
0019 * IDOY I4 Day number within year of simulation (INTEGER) d I =
0020 * YEAR R4 Year of simulation (REAL) vy I *
0021 * IYEAR I4 Year of simulation (INTEGER) v I *
0022 *+ STTIME R4 Start time of simulation (=day number) d I =
0023 * FINTIM R4 Finish time of simulation (=day number) d I =
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i

0024 * DELT R4 Time step of integration d I
0025 * LAT R4 Latitude of site dec.degr. I
0026 * LONG R4 Longitude of site dec.degr. I
0027 * ELEV R4 Elevation of site m I
0028 * WSTAT C6 Status code from weather system - I
0029 * WITRTER L4 Flag whether weather can be used by model - 0
0030 * RDD R4 Daily shortwave radiation J/m2/4d I
0031 * TMMN R4 Daily minimum temperature degrees C I
0032 * TMMX R4 Daily maximum temperature degrees C I
0033 * VP R4 Early morning vapour pressure kPa I
0034 * WN R4 Daily average windspeed m/s I
0035 * RAIN R4 Daily amount of rainfall mm/d I
0036 ¥

0037 * Fatal error checks: if one of the characters of WSTAT = '4',

0038 * indicates missing weather

0039 * Warnings : none

0040 * Subprograms called: models as specified by the user

0041 * File usage : IUNITD, IUNITD+1, IUNITO, IUNITO+1, IUNITL

0042 R e e R e et b i
0043

0044 SUBROUTINE MODEL (ITASK , IUNITD, IUNITO, IUNITL,

0045 & FILEIT, FILEIN,

0046 & OUTPUT, TERMNL,

0047 & DOY , IDOY , YEAR , IYEAR,

0048 & TIME , STTIME, FINTIM, DELT ,

0049 & LAT , LONG , ELEV , WSTAT, WTRTER,

0050 & RDD , TMMN , TMMX , VP , WN, RAIN)

0051

0052 * Title of the program

0053 * <fill in your title here>

0054

0055 IMPLICIT NONE

0056

0057 * Formal parameters

0058 INTEGER ITASK , IUNITD, IUNITO, IUNITL, IDOY, IYEAR

0059 LOGICAL OUTPUT, TERMNL, WTRTER

0060 CHARACTER* (*) FILEIT, FILEIN, WSTAT

0061 REAL DOY, YEAR, TIME, STTIME, FINTIM, DELT

0062 REAL LAT, LONG, ELEV, RDD, TMMN, TMMX, VP, WN, RAIN

0063

0064 * Standard local variables

0065 ) INTEGER IWVAR

0066 CHARACTER WUSED*6

0067

0068 * Array size variables

0069 INTEGER N

0070 PARAMETER (N=2)

0071

0072 * State variables, initial values and rates

0073 REAL TCUM, ZERO, TDMEAN

0074 REAL X(1:N), IX(1:N), RX(1:N)

0075

0076 * Model parameters

0077 REAL B

0078 REAL- RGRMAX (1:N)

0079

0080 * Other calculated variables

0081 REAL TMEAN, XSUM

0082

0083 * Interpolation functions used in AFGEN en CSPLIN functions

0084 INTEGER IMREDU, ILREDU

0085 PARAMETER (IMREDU=40)

0086 REAL REDUCE (IMREDU)

* % % ok %k ok X % ¥ % % X F F X ¥ ¥ %
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Declarations and values of constants
none

Used functions
REAL LINT2, ARSUMM, INTGRL

DO loop counter for array integrals
INTEGER I
SAVE

Code for the use of RDD, TMMN, TMMX, VP, WN, RAIN (in that order)
a letter 'U' indicates that the variable is Used in calculations
DATA WUSED/'-UU——-'/

Check weather data availability
IF (ITASK.EQ.1.0R.ITASK.EQ.2.0R.ITASK.EQ.4) THEN
DO 10 IWVAR=1,6
is there an error in the IWVAR-th weather variable ?
IF (WUSED (IWVAR:IWVAR) .EQ.'U' .AND.

& WSTAT (IWVAR: IWVAR) .EQ.'4"') THEN
WIRTER = .TRUE.
TERMNL = .TRUE.
RETURN
END IF
CONTINUE
END IF

IF (ITASK.EQ.1l) THEN

Initial section

Check values of array size variables
IF (N.LT.2) CALL FATALERR

& ('MODEL', 'Array size symbol N is too small’)

Open input file
CALL RDINIT (IUNITD, IUNITL, FILEIN)

Read initial states
CALL RDSREA ('ZERO', ZERO)

Read model parameters
CALL RDSREA ('B', B)
CALL RDFREA ('RGRMAX', RGRMAX, N, N)

Read LINT functions
CALIL RDAREA ('REDUCE', REDUCE, IMREDU, ILREDU)

CLOSE (IUNITD)

Initial calculations
DO 20 I=1,N

IX(I) = ABS(B)
CONTINUE

Initially known variables to output
none

Send titles to OUTCOM
CALL OUTCOM (' Temperature Dependent Growth')
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CALL OUTCOM ('for N independent populations’')

* Initialize state variables
TCUM = ZERO
DO 30 I=1,N
X(I) = IX(I)
30 CONTINUE

ELSE IF (ITASK.EQ.2) THEN

Rates of change section

* sum of populations
XSUM = ARSUMM ('X',X,1,N,1,N)

* estimate the average daily temperature
TDMEAN = (TMMN + TMMX) / 2.0
DO 40 I=1,N
RX(I) = RGRMAX(I) * LINT2('REDUCE',REDUCE, ILREDU, TDMEAN) *

3 X(I)
40 CONTINUE
* Finish conditions

DO 50 I=1,N
IF (X(I).GT.200.0*IX(I)) TERMNL = .TRUE.
50 CONTINUE

* Output
IF (OUTPUT) THEN
CALL OUTDAT (2, 0, 'XSUM', XSUM)
CALL OUTDAT (2, 0, 'TDMEAN', TDMEAN)
CALL OUTAR2 ('X',X,1,N,1,N)
END IF

ELSE IF (ITASK.EQ.3) THEN

Integration section

* integration of average temperature
TCUM = INTGRL (TCUM, TDMEAN, DELT)
DO 60 I=1,N
X(I) = INTGRL (X(I), RX(I), DELT)
60 CONTINUE

ELSE IF (ITASK.EQ.4) THEN

* Terminal section

Terminal calculations
average temperature in simulation period
TMEAN = TCUM / (TIME-STTIME)

* Terminal output
CALL OUTDAT (2, 0, 'TMEAN', TMEAN)

Printplot output
none
END IF
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0213 RETURN
0214 END
92 General module

After an overview of the Fortran subroutine structure, the internal structure of the drivers EUDRIV
and RKDRIV is explained in Section 9.2.2. Section 9.2.3 deals with the structure of the generated
model subroutine MODEL. In Section 9.2.4 we show how time and state events can be added to
generated Fortran.

A somewhat older version of both drivers has been extensively discussed by Leffelaar et al. (1993).
Appendix 10.1 of that book contains the Fortran source code of the drivers. The changes made
during the subsequent development of FST are small. The older drivers do not work, however, in
combination with an FST-generated MODEL routine.

9.2.1 Overview of the GENERAL mode Fortran structure

The hierarchy and function of the Fortran subroutines in GENERAL translation mode is

e Main program MAIN which opens a logfile, opens the formatted output file RES.DAT, selects a
block of free unit numbers for file I/O, calls the RERUNS routine and finally deletes all temporary
files. This main program is easily changed into a subroutine called by other Fortran programs.
MAIN is independent of the actual model, but it is generated by FST since a main program cannot
be included in a linked library.

e Subroutine RERUNS from the DRIVERS library. This subroutine sets I/0 unit numbers in more
detail, reads the rerun file RERUNS.DAT and contains the loop over the model runs. For each
run it calls either EUDRIV or RKDRIV.

e The simulation driver EUDRIV or RKDRIV from the DRIVERS library. The driver organizes the
simulation run. It initializes the MODEL routine, takes care of the integration and terminates the
run. It uses the simulation control variables to set the TIME variable and to determine output
times. The driver terminates the model run if MODEL reports a valid terminal condition.

o The generated model subroutine MODEL is called by the drivers, both directly and, in case of
RKDRIV, also via the Runge-Kutta integration routines.

o Below the actual model subroutine, there are the Fortran subroutines belonging to the model, the
intrinsic functions, and the utilities for reading data from MODEL.DAT.

Hence, only two of these units are generated by FST, the main program MAIN and the actual model

subroutine MODEL. Both are contained in the file MODEL.FOR created by the translator.

9.2.2 The driver subroutines EUDRIV and RKDRIV

9.2.2.1 Arguments of the drivers

These two drivers carry out a single model run. The driver EUDRIV uses Euler integration with a

fixed time step. The driver RKDRIV calls the subroutines RKQCA and RK4A for Runge- -Kutta

integration. These integration routines are adapted versions of the subroutines RKQC and RK4 from

Press et al. (1986). The arguments of the two drivers EUDRIV and RKDRIV are the same.

IUL An integer input argument. It is the unit number of an open log file.

IUR An integer input argument. The unit number of open results file. If the flag OUTDFL is
TRUE., the TTUTIL output routine OUTDAT will open a file RES.DAT if unit lUR is not
found to be open already. Note that OUTDAT also IUR+1.

iuT An integer input argument. First of 2 free unit numbers used by the driver to read data
from the timer file TIMER.DAT.
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IUM An integer input argument. First of at least 4 free unit numbers for use by the external
model subroutine.

ITRACE An integer input argument. The level of output to log file. The variable ITRACE
corresponds with the TRANSLATION_GENERAL variable TRACE (see Section 7.5.5).

OUTDFL A logical input argument. If . TRUE., the driver initial and terminal calls to the TTUTIL
subroutine OUTDAT, a facility used in driver use by FST. If the model subroutine does
not use OUTDAT for ouput, the flag can be .FALSE.

MODEL Name of EXTERNAL model subroutine.

9.2.2.2 Interface with the EXTERNAL subroutine MODEL

There are three ways in which the drivers communicate with the user supplied (or FST-generated)
subroutine MODEL. The first way consists of the arguments in the call to MODEL. The drivers
themselves and the numerical subroutines used by RKDRIV, use the same calls to the external
model routine. All these calls look like

CALL MODEL (ITASK,OUTPUT,TIME,STATE,RATE,SCALE,NDEC,NEQ)

The INTEGER argument ITASK has the value 1 for initialization, 2 for rate calculation and 4 for run
termination. OUTPUT is a flag turned on by the driver at output times. TIME is the simulated time.

The array STATE contains the system status variables. The external model sets them at their initial
values during the ITASK=1 call. The rates of change in the RATE array are calculated by the
external model for ITASK=2. NDEC is the declared size of the arrays STATE and RATE. The integer
NEQ (Number of EQuations) is the actual size of these arrays and is set by MODEL at initialization.

Also the SCALE array has declared length NDEC and actual length NEQ. Its elements are given a
value in the external MODEL during initialization and should later not be changed by MODEL. The
SCALE array is used by RKDRIV for the evaluation of the integration accuracy (see Section 9.2.2.3).
EUDRIV does not use SCALE.

The second way of communication is via the common block /DRVCOM/. The declarations of the
common variables are

INTEGER IULOG, 1IUMOD, IURES, KEEP, TRACE

REAL STTIME, FINTIM, DELT, DELMAX, EPS, DELDID
LOGICAL TERMNL

COMMON /DRVCOM/ IULOG, IUMOD, IURES, KEEP, TRACE, TERMNL,
S STTIME, FINTIM, DELT, DELMAX, EPS, DELDID

This common /DRVCOM/ communicates unit numbers (copies of driver input arguments IUL, IUM
and IUR), the TIMER variables STTIME, FINTIM and DELT, the TRANSLATION_GENERAL
variables TRACE, DELMAX and EPS and the size of the last time step DELDID supplied by the
driver. There are two more variables. The integer variable KEEP is equal to 1 at precisely one rate
call (ITASK=2) at the beginning of each time step. Otherwise KEEP is 0. The logical flag TERMNL
can be set .TRUE. by the user model. If that happens, the driver will terminate the simulation run in
an orderly way. ’

The third way of communication is via the common block /DRVEVT/ for time and state events. Time
and state events are not possible in FST. If events are added to the generated Fortran, however, this
common block is also included in MODEL (see Section 9.2.4.1).

9.2.2.3 The array SCALE ; accuracy control by RKDRIV
The elements of array SCALE must get a value during the INITIAL call to MODEL and should later
not be changed by MODEL. A generated MODEL routine reads the SCALE array from the input file
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MODEL.DAT. The translator has written values for the SCALE array in that file: NEQ times the value
zero.

A zero value of a certain element SCALE(I) means that the estimated integration error in STATE(l) is
taken relative, i.e. is divided by the value of STATE(l). The relative error is then compared with the
value of the TRANSLATION_GENERAL variable EPS or its default. For small values of STATE(l),
however, this would lead to unrealistic accuracy requirements or even to division by zero. Therefore,
if the absolute value of STATE(]) is less then 1.0, the estimated integration error is taken as an
absolute value. Hence, for small values of STATE(I), the absolute integration error is compared with
EPS, which leads to a weak accuracy criterion for low STATE(l) values.

If the INITIAL value of STATE(I) is larger than zero, the estimated integration error in STATE(l) is
always taken relative to the value of SCALE(l). Hence, in that case the value of SCALE(l) is used to
indicate an order of magnitude for the various STATE variables. This explains the name SCALE.

The integration error is estimated by integration routine RKQCA (called by RKDRIV) for each time
step by comparing the result of a full step with two half ones (See for details Press et al., 1986).

In case of integration problems with an FST-generated MODEL, it may be necessary to set certain
SCALE array elements to non-zero values. This requires a proper understanding of the order in
which the STATE, RATE and SCALE array elements are related to the user variable names in
MODEL (see Section 9.2.3 below).

9.2.3 The structure of a GENERAL module MODEL

The arguments of the user subroutine MODEL have been discussed already in Section 9.2.2.2. The
main difference with an FSE module is that there is no integration call (with ITASK=3) and that the
user supplied state and rate variables are copied to and from the overall STATE and RATE array
used by the GENERAL drivers. How this works can be best explained by means of the example
MODEL in Listing 9.3 on page 154. That generated Fortran is based on the same FST model as the
FSE module in Listing 9.2 on page 147 (except of course the FST translation mode).

The line numbers in the following remarks refer to Listing 9.3 on page 154.

e The IMPLICIT NONE statement in line 25 is a non-standard Fortran statement. It forces the user
to declare all variables.

e The TIMER variables STTIME, FINTIM and DELT are part of the common block /DRVCOM/ (line
32-51). See Section 9.2.2.2 for some more remarks on this common.

e Again, there are several groups of declarations (line 53-91). All variables of the model are
systematically declared. The SAVE statement in line 92 guarantees that the values of all
variables retain their values between successive calls to the model.

e The string WUSED has the same function as in the FSE module. The GENERAL drivers,
however, do not supply weather and calendar variables. They come out subroutine WTRINT
(WeaTher INTerface) called in line 99. This subroutine from the DRIVERS library also takes care
of the check on WUSED and sets the WTRTER flag in case of error.

o The rest of the program is organized in 3 sections: INITIAL, RATES of change and TERMINAL.
They contain the calculation statements from the FST program in a computational order.

o The IF statement in line 117 and 118 is a safeguard against values of N too low for the subscript
ranges used (see Section 4.3.1.3). Array size variables are Fortran PARAMETERS (line 59),
which can be changed by the user corresponding changes are made in the file MODEL.DAT.

e The error routine FATALERR represents a non-standard subroutine name.

o At the end of INITIAL, in lines line 167-173, all local state variables (with user supplied names)
are copied into the overall STATE array. At the beginning of the RATES of change section, in line
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177-185, the values of the STATE array calculated by the driver are copied into the local
variables.

e The sections for copying to and from the STATE array give information on the order in which FST
has placed the local state variables in the overall state array. If non-zero SCALE values are
needed (see Section 9.2.2.3), this order is essential. The SCALE array is read in the INITIAL
section from input file MODEL.DAT (line 143).

e The output section (line 208-214) is at the end of the rate of change section. At that point a
consistent set of values is available for TIME, all states, rates of change and other calculated
variables.

e At the end of the RATES of change section, in lines 216-222, the calculated rates of change are
copied into the overall RATE array. '

e Terminal calculation may require both state variables and rates of change. Therefore, the STATE
and the RATE array are copied to the local variables at the beginning of the TERMINAL section
(line 228-240). '

e Calls to the FST intrinsic functions may differ from the FST source code. Examples are in line 190
and line 195. The FST translator has added arguments for improved runtime error messages or
for runtime checks on the subscript range of arrays.

e The program does not contain any write or read statements. All Input/Output operations make
use of the library TTUTIL. This improves the readability program and greatly simplifies writing it.

Listing 9.3

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
oo1s
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036

A Fortran compiler listing of subroutine MODEL in GENERAL format. This subroutine was
generated from the program in Listing 9.1 on page 146 using TRANSLATION_GENERAL.

Fdkkkkkd ok d ko h ko hk ko k ok ke hkkk ke ke kb bk ke kk kb kkkk kb hhdkhhkhhkk
* TRANSLATED SIMULATION MODEL *

khkhkhkkhkdhhkhkhkhhkhkdkhbhhkhkhhkdhkhhkrhhdhhkhhhdhdbhdbhhdhdrrhddhkrhkhrdhhrhddhhhhdohhbhhhrrhrdk

SUBROUTINE MODEL (ITASK,OUTPUT,TIME, STATE,RATE,SCALE,NDEC, NEQ)

* Model subroutine for use with driver EUDRIV or RKDRIV
*
* ================ TITLE of the FST model =========z========
* Temperature Dependent Growth i
* for N independent populations |
* |
* The STANDARD (!!) parameter list of this model subroutine:
*
* ITASK - task of model routine I
* OUTPUT = .TRUE. output request I
* TIME - time I
* STATE - state array of model I/0
* RATE - rates of change belonging to STATE I/0
* SCALE - size scale of state variables I/0
* NDEC - declared size of arrays I
* NEQ - Number of state variables, for ITASK=1 o}
* otherwise I
* all variables have to be declared !
IMPLICIT NONE
* Formal parameters
INTEGER - ITASK, NDEC, NEQ
REAL TIME, STATE (NDEC) , RATE (NDEC) , SCALE (NDEC)
LOGICAL OUTPUT
* Declarations of the variables in common /DRVCOM/
* IULOG - logfile unit number
* IUMOD - first of a free block of unit numbers used by MODEL
* IURES - unit number used for OUTDAT when OUTDFL is up
* KEEP = 1: rate call (ITASK=2) at begin of new time step



0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099

* A X ¥ Ok X ¥ A ¥ *

9 The generated Fortran sources 155

0: rate calls during numerical integration by driver
TRACE - integration logging level of driver

TERMNL - terminal flag, may be set by model

STTIME - start of simulation

FINTIM - end of simulation

DELT - The time step on file TIMER.DAT
DELMAX - The maximum time step on file TIMER.DAT
EPS - Accuracy level on file TIMER.DAT

DELDID - size of last completed time step

INTEGER IULOG, IUMOD, IURES, KEEP, TRACE
REAL STTIME, FINTIM, DELT, DELMAX, EPS, DELDID
LOGICAL TERMNL

COMMON /DRVCOM/ IULOG, IUMOD, IURES, KEEP, TRACE, TERMNL,
STTIME, FINTIM, DELT, DELMAX, EPS, DELDID

Number of state variables NSV
INTEGER NSV
PARAMETER (NSV=3)

Array size variables
INTEGER N
PARAMETER (N=2)

State variables, initial values and rates
REAL TCUM, ZERO, TDMEAN
REAL X(1:N), IX(1:N), RX(1:N)

Model parameters
REAL B
REAL RGRMAX (1:N)

Other calculated variables
REAL TMEAN, XSUM

Interpolation functions used in AFGEN en CSPLIN functions
INTEGER IMREDU, ILREDU

PARAMETER (IMREDU=40)

REAL REDUCE (IMREDU)

Declarations and values of constants
none

Variables supplied by the weather system

REAL LAT, LONG, ELEV, YEAR, DOY, RDD, TMMN, TMMX, VP, WN, RAIN
Variables for check on weather data

CHARACTER*6 WUSED

LOGICAL WTRTER

Used functions
REAL LINT2, ARSUMM

DO loop counter and STATE/RATE array subscript
INTEGER I,IARELN
SAVE

Code for the use of RDD, TMMN, TMMX, VP, WN, RAIN (in that order)
a letter 'U' indicates that the variable is Used in calculations
DATA WUSED/'-UU---'/

Get weather and calendar data
IF (ITASK.EQ.1.0R.ITASK.EQ.2.0R.ITASK.EQ.4) THEN
CALL WTRINT (ITASK, IUMOD+2, IULOG, IURES, WUSED, WTRTER,
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0100 S TIME, LAT, LONG, ELEV, YEAR, DOY,

0101 S RDD, TMMN, TMMX, VP, WN, RAIN)

0102 IF (WTRTER) THEN

0103 * weather data error; prevent initial error on NEQ
0104 NEQ = NSV '

0105 TERMNL = .TRUE.

0106 RETURN

0107 END IF

0108 END IF

0109

0110

0111 IF (ITASK.EQ.1) THEN

0112

0113 * Initial section

0114 * e e

0115

0116 * Check values of array size variables

0117 IF (N.LT.2) CALL FATALERR

0118 & ('MODEL', 'Array size symbol N is too small')
0119

0120 * Check size of NDEC against number of states NSV
0121 IF (NDEC.LT.NSV) THEN

0122 * driver capacity too low ; stop program
0123 WRITE (*,'(A,I4,/,A,I4)")

0124 S ' The number of state variables is', NSV,
0125 S ' and the capacity of the driver is',K NDEC
0126 CALL FATALERR ('MODEL', 'Driver capacity too low')
0127 END IF

0128

0129 * Open input file

0130 CALL RDINIT (IUMOD, IULOG, 'MODEL.DAT')

0131

0132 * Read initial states

0133 CALL RDSREA ('ZERO', ZERO)

0134

0135 * Read model parameters

0136 CALL RDSREA ('B', B)

0137 CALL RDFREA ('RGRMAX', RGRMAX, N, N)

0138 :

0139 * Read LINT/CSPLIN interpolation functions
0140 CALL RDAREA ('REDUCE', REDUCE, IMREDU, ILREDU)
0141

0142 * Read SCALE array and close datafile

0143 CALL RDFREA ('SCALE',SCALE,NDEC,NSV)

0144 CLOSE (IUMOD)

0145

0146 * Set number of state variables

0147 NEQ = NSV

0148

0149 * Initial calculations

0150 DO 20 I=1,N

0151 IX(I) = ABS(B)

0152 20 CONTINUE

0153

0154 * Initially known variables to . output

0155 * none

0156

0157 * Send title(s) to OUTCOM

0158 CALL OUTCOM (' Temperature Dependent Growth')
0159 CALL OUTCOM ('for N independent populations')
0160

0161 * Initidlize state variables

0162 TCUM = ZERO



0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0180
0191
0192
0183
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
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DO 30 I=1,N

X(I) = IX(I)
30 CONTINUE
* Assign local variable names to state array
STATE (1) = TCUM
IARELN = 1

DO 40 I=1,N
IARELN = IARELN + 1
STATE (IARELN) = X(I)
40 CONTINUE

ELSE IF (ITASK.EQ.2) THEN

Rates of change section

Assign state array to local variable names
TCUM = STATE(1)
IARELN = 1
DO 50 I=1,N
IARELN = IARELN + 1

X(I) = STATE (IARELN)
50 CONTINUE
* Dynamic calculations

* sum of populations
XSUM = ARSUMM ('X',X,1,N,1,N)

* estimate the average daily temperature
TDMEAN = (TMMN + TMMX) / 2.0
DO 60 I=1,N

RX(I) = RGRMAX(I) * LINT2('REDUCE',REDUCE,ILREDU,TDMEAN) *
s X(I)
60 CONTINUE
* Finish conditions

IF (KEEP.EQ.1) THEN

DO 70 I=1,N
IF (X(I).GT.200.0*IX(I)) TERMNL = .TRUE.

70 CONTINUE
END IF
* Output

IF (OUTPUT) THEN
CALL OUTDAT (2, 0, 'TIME ', TIME )
CALL OUTDAT (2, 0, 'XSUM', XSUM)
CALL OUTDAT (2, 0, 'TDMEAN', TDMEAN)
CALL OUTAR2 ('X',X,1,N,1,N)

END IF

* Assign calculated rates to rate array
RATE (1) = TDMEAN
IARELN = 1

DO 80 I=1,N
IARELN = IARELN + 1
RATE (IARELN) = RX(I)
80 CONTINUE

ELSE IF (ITASK.EQ.4) THEN
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0226 * Terminal section

0227 * SEEEE=E=E=SE==EREEESE

0228 * Assign terminal states and rates to local variable names
0229 TCUM = STATE(1)

0230 IARELN = 1

0231 DO 90 I=1,N

0232 IARELN = IARELN + 1

0233 X(I) = STATE (IARELN)

0234 S0 CONTINUE

0235 TDMEAN = RATE (1)

0236 IARELN = 1

0237 DO 100 I=1,N

0238 IARELN = IARELN + 1

0239 RX(I) = RATE(IARELN)

0240 100 CONTINUE

0241 :

0242 * Terminal calculations

0243 * average temperature in simulation period
0244 TMEAN = TCUM / (TIME-STTIME)

0245

0246 * Terminal output

0247 CALL OUTDAT (2, 0, 'TIME ', TIME )
0248 CALL OUTDAT (2, 0, 'TMEAN', TMEAN)
0249

0250 * Printplot output

0251 * none

0252 END IF

0253

0254 RETURN

0255 END

924 Adding events to an FST-generated module

State events are certain system states which cause a sudden change of the system. A state event is
assumed to be momentarily. The problem of handling such an event in a continuous simulation
model is that the system should "exactly” reaches the moment in time at which the state event
occurs. Then the appropriate changes are made to the state variables and the simulation continues.
Time events are just certain moments in time at which the system status suddenly changes.

In FST, state and time events cannot take place. The drivers EUDRIV and RKDRIV, however, are
prepared to handle such events. In some cases it may be worthwhile to change the generated
MODEL in order to have events taking place. This is not difficult but requires great care since the
Fortran compiler only verifies the Fortran code and not the consistency of the model.

Note that a simple check like TIME.EQ.EVENT_TIME in the user MODEL would not work since the
integration procedure calls the user MODEL at a lot of times during a time step. A valid time event
can only take place at the beginning of a new time step (when KEEP=1, see Section 9.2.2.2). During
the calls of a numerical integration step no events may happen.

A proper implementation of state and time events requires additional communication between the

driver and the user MODEL, which is realized by means of the “driver event” common /DRVEVT/. In
Section 9.2.4 an example is given, but at first the variables in common /DRVEVT/ are introduced.

9.2.4.1 The event common /DRVEVT/
The declaration of the variables in common /DRVEVT/ are
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* declarations of the variables in common /DRVEVT/
INTEGER NSEV
PARAMETER (NSEV=20)
LOGICAL TEVREQ, SEVREQ (NSEV), SECROS(NSEV), STEVNT, TEVENT
REAL TEVTIM, SEVFUN (NSEV)
COMMON /DRVEVT/ TEVREQ, TEVTIM, TEVENT,
$ SEVREQ, SEVFUN, STEVNT, SECROS

The meaning and function of these variables is

TEVREQ Request time event ; flag which may be set . TRUE. by MODEL in order to generate a
time event at time TEVTIM. The flag is initialized by the driver at .FALSE. At the
beginning of each time step (just after each KEEP=1 call), the driver checks the value of
the request flag.

TEVTIM Time of next event set by MODEL ; initialized by driver at zero.

TEVENT = .TRUE. time event signaled by driver. This means that TIME has reached the value
TEVTIM and the system is at the beginning of a new step.
= .FALSE. no time event.

NSEV The maximum number of different state event conditions.

SEVREQ Request state event. This is an array of NSEV flags which may be set by MODEL to
request a future state event for one or more of the NSEV event functions SEVFUN. The
flags are usually set during the INITIAL call but may be changed at the beginning of
each new time step (during each call for which KEEP=1). Before initializing MODEL, all
NSEYV flags are set at .FALSE. by the driver and, by default, no events occur.

SEVFUN  Array of NSEV state event functions. Each of these values is a function of one or more
variables, calculated in initial or dynamic. Also input variables read from MODEL.DAT
may be used. When the flag SEVREQ(J) is set for a value of J, zero- crossings of
SEVFUN(J) are detected by the driver. The precise time of the crossing is then found
by means of iteration. Then ,at the moment of the state event, the event flag
SECROS(J) is set by the driver. The values of SEVFUN have to be calculated in a
special call to the user MODEL with ITASK=3.

STEVNT =.TRUE. a state event occurs ; which state event can be seen by checking the
SECROS flag array.
= FALSE. no state event.

SECROS array of state event flags ; for each of the NSEV state events a flag can be set by the
driver. Event flags are set only during rate call's for which also KEEP=1.

9.2.4.2 Example of an added state event

A state event is added to the FST model in Listing 9.1 on page 146 which has been translated into

the Fortran subroutine MODEL in Listing 9.3 on page 154. The model describes two populations

growing exponentially. The state event added is the following:

e If the sum of the two population sizes XSUM reaches 100.0, the slowly growing population X(1) is
reduced by 20% and the fast growing population is initialized at its start value 1.0.

This state event is included in the user MODEL of Listing 9.3 by means of the following five steps:

Step 1. The above declarations of common /DRVEVT/ are inserted in the user MODEL, preferably at
line 52 of Listing 9.3, after the declarations of common /DRVCOM/.

Step 2. At the end of the INITIAL section, an event request flag is set by means of

30 CONTINUE <-existing statement (line 165)

* request state event 1
SEVREQ (1) = .TRUE. <-event function 1 will be monitored by driver
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This change will instruct the driver to flag a state event as soon as the function SEVFUN(1) crosses
zero (see step 5 below). If different events may take place, different flags are set. To each flag
corresponds an element of SEVFUN.

Step 3. The Rates of change section (ITASK=2) begins with copying the contents of the STATE
array into local variable names. After that, the state event is handled by means of

50 CONTINUE <-existing statement (line 185)
* state event handling
IF (STEVNT) THEN <-a state event happens ?
IF (SECROS(1)) THEN <-handling event 1
* event 1 .
X(1) = 0.8 * X(1) <-the event takes place here
X(2) = 1.0
END IF
END IF
* Dynamic calculations <-existing.comment (line 187)

Within the IF (STEVNT) THEN - END IF structure different state events may be distinguished by just
adding sections for other SECROS flags. Here, only event 1 was requested and no others can take
place. The Fortran code added in this step is the actual “event handling section”.

Step 4. Since a state event implies that changes in the system status are made, the STATE array
has to be updated before leaving the MODEL subroutine. The Fortran code for doing that is copied
from the end of the INITIAL section:

END IF <-existing statement (line 214)
* Assign local variable names to state array <-copy of line 167
STATE (1) = TCUM <-copy of line 168
IARELN = 1 , <-copy of line 169
DO 75 I=1,N <-copy of line 170 with label number changed
IARELN = IARELN + 1 <-copy of line 171
STATE (IARELN) = X(I) <-copy of line 172
75 CONTINUE <-copy of line 173 with label number changed
* Assign calculated rates to rate array <-existing statement (line 216)
RATE (1) = TDMEAN <-existing statement (line 217)

Note that each state array requires its own DO-loop and that the an exact copy has to be made of
the similar section in INITIAL. Otherwise the STATE array becomes a mess. Clearly, the copying
has only to be done in case of an event. Hence, the entire new section may be placed into an

IF (STEVNT.OR.TEVENT) THEN...ENDIF control structure. It is not necessary, however, as long
as state variables are never changed outside event handling sections.

Step 5. The last step is the caiculation of the state event functions. This is done by means of a new
“ITASK section” in the large control structure around INITIAL, DYNAMIC and TERMINAL:

5 contmnoe <dast statement of DYNAMIC (ine 222)
ELSE IF (ITASK.EQ.3) THEN <-this value of ITASK is used by the drivers

* calculate state event functions <-for calculating the event functions
SEVFUN (1) = (100.0-XSUM)/100.0  <-this event function is 0.0 for XSUM=100.0

ELSE IF (ITASK.EQ.4) THEN <-start of the TERMINAL section (line 226)
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Preferably, the state event functions are dimensionless numbers in the range [-1.0,+1.0]. The reason
is that their zero-crossing is detected by the driver with a certain tolerance, specified by variable
SEVTOL in the file TIMER.DAT. The default value of this control variable is 1.0E-5. The tolerance is
an absolute number and proper scaling should be done by means of the event functions SEVFUN.

After completing the five steps, the resulting Fortran program can be compiled and linked with the
libraries DRIVERS, TTUTIL and WEATHER. The result of the program can be found as Figure 9.1
on the title page of this chapter. The state events are a form of interaction between the two formerly
independent species. The slowly growing one suffers little from each event and is able to overgrow
the fast growing population in about 5 years.

9.2.4.3 Time events

The inclusion of a time event proceeds along the first 4 steps of Section 9.2.4.2. Only the variables
involved are different. In the INITIAL section, a time event is requested by setting TEVREQ. Also the
event time TEVTIM needs to be set. If TEVTIM is reached the driver sets TEVENT and the event is
handled in an event handling section similar to the section for a state event. Note that a new event
time must be set, otherwise there will never be a time event again! Step 5 of Section 9.2.4.2 is not
needed. Leffelaar et al. (1993) give an example of a time event involving harvest of a crop.

9.2.4.4 What does the driver do ?

The driver checks the event request flags at the beginning of each time step. Hence, also during the
simulation, event request flags may be set or reset. You may for instance use a time event to
request a state event, or the other way, at a state event you may request a future time event.

A time event is a relatively simple thing. Approaching TEVTIM, the final integration step is reduced
by the driver in order to reach precisely TEVTIM. If a state event is requested the driver keeps track
of the corresponding event function. At the beginning of each timer step an ITASK=3 call is done to
the MODEL in order to calculate the event functions. Then an integration step is made and the driver
verifies if one or more of the event functions crossed zero as a result of the integration. This requires
a rate call (ITASK=2) and an event function call (ITASK=3).

If a zero-crossing is detected, the precise time of the state event is iteratively found by the driver
through bisection of the time interval. Hence, the integration step taken is rejected, and somewhere
between the old and the new TIME, the precise moment of zero-crossing is looked for. By setting
TRACE=4, a detailed report of the iteration is written to MODEL.LOG. An exactly zero value is not
looked for, however. The deviation from zero which is accepted by the driver is SEVTOL, which can
be changed in the file TIMER.DAT.

After finding the moment of the state event, the driver accepts the corresponding STATE as a valid
status of the system, it sets the output flag, does a rate call to the model (ITASK=2), then sets also
the appropriate state event flag(s) and starts the new time step with the event handling rate call. The
reason for the intermediate rate call will be explained below.

In the event handling section (see step 3 above), and in calculating event functions, all variables of
the model can be used except the variables calculated in the terminal section. This means that all
dynamic variables are at their proper values, although the event handling section is placed at the
beginning of the Rates of change section. This freedom is the result of an additional rate call carried
out by the driver just before an event takes place or just before event functions are calculated. These
intermediate rate calls are done with the same values of TIME and STATE and therefore update all
dynamic variables which are retained in MODEL as a result of the SAVE statement in Fortran.

The additional rate call to MODEL, just before a state (or time) event, also has the output flag set
(but not yet the event flags). This produces additional output values at the time of the discontinuity,
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just before the event takes place. Also during the subsequent event call the output flag is set by the
driver, which leads to a second set of output values for the same value of TIME, but now after the
event has taken place. This is necessary to make good graphs of the a possible discontinuity in
values caused by the event.

Note that state events can take place only during an integration step, i.e. during continuous system
behaviour. Zero-crossing of an event function as a result of another state event or a time event is not
detected by the driver. It is also important to realize that crossing zero implies a non-zero value at
the beginning. An event function must be at least SEVTOL away from zero, before it can cross zero
(again).
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Appendix A: Glossary

array variable The name of a row of numbered elements, which each may contain a value. In FST
only one-dimensional arrays variables can be used.

array element One of the parts of an array. The array A may have 5 elements, for instance, with
values 1.0, 2.0, 4.0, 12.0 and 3.3.

array family One or more arrays with a subscript range defined relative to the same array size
variable form an array family. Calculations with arrays from within an array family are much
easier than with arrays from different families.

array subscript An array subscript is the number of the array element. It may be an integer

‘ constant, like in A(3) or B(100), or a subscript variable like A(N).

assignment A statement of the form "A=expression" is an assignment. The value of the expression

is assigned to the variable A. An expression may consist of just a single constant like 2.45 (a
real constant), 'New York' (a character constant) or a complicated mathematical expression
containing various function calls.

compiler A computer program which translates a program written in Fortran, Pascal, C or in any
other programming language into machine code, so called object code.

constant A value like 2.45 is a real constant, a string like 'New York' is a character constant and an
integer like 345 is an integer constant. Constants are the actual values which are contained in
variables or arrays of variables. The FST keyword

CONSTANT An FST keyword used for the definition of mathematical constants used in the model.
For instance CONSTANT PI=3.14159265.

CSMP Continuous System Modeling Program. A simulation language developed by IBM (1975).
Part of the FST statement structure originates from CSMP.

cubic spline interpolation Between each two points a third order polynomial is used for
interpolation. The coefficients are calculated in such a way that first and second order
derivatives are continuous in the function points.

declaration A statement which tells a translator or compiler something about a variable or program
name which is used further down in the program.

driver A program which translates an abstract command into a lot of instructions for another
program or for a piece of hardware. The integration drivers of FST translate the simulation
command into a series of call's to the simulation module. Hence, they drive the simulated
process forward.

DYNAMIC An FST statement at the begin of the dynamic calculations, the calculations which
specify the equations of change.

expansion See statement expansion.

expression The combination of one or more variables with mathematical operations on them.

FSE The Fortran Simulation Environment for crop growth simulation.

FST The Fortran Simulation Translator, which generates either FSE modules or so called
GENERAL modules suitable for an Euler or Runge-Kutta integration driver.

FUNCTION An FST statement used for specifying a function by means of a series of (x,y) points.

INITIAL An FST statement at the begin of the initial calculations, the calculations which are carried
out before the driver starts the actual dynamic calculations.

initial constant In FST a variable which is defined by means of an INCON statement.

initial value The start value of a state variable (the first argument of an INTGRL function call). It can
‘be an INCON variable or a variable calculated in the INITIAL section.

integration method A numerical method for calculating the integral of a function by means of a
finite number of function calls.

interface routine A program or procedure which forms the connection between two other
programs.

interpolation The calculation of intermediate function values

keyword FST keywords are TIMER, WEATHER, INCON, PARAMETER etc.
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library In this manual a collection of one or more compiled Fortran subprograms contained in one
file, the library file.

linker A computer program which combines the machine code from different subprograms with
machine code from user libraries and standard machine code libraries in order to form a
program which can be executed by the computer. An FST model is first translated into Fortran,
then compiled into machine code, then linked with libraries and finally executed by the
computer.

model A simplified description of the reality. It can be a physically constructed model or a
mathematical description. For the numerical evaluation of a mathematical model, a computer
program is often necessary. Such computer programs are sometimes called models, although
this is confusing. A model can be represented by many different computer programs and all
these programs should in fact not be called different models.

natural cubic splines A method for interpolating between points of a smooth function. For each two
points the coefficients of a third order polynomial are calculated in such a way that the first and
second order derivative are also continuous. The word "natural" refers to the assumption that
the second order derivative is zero at the first and last point. '

object library See library.

parameter A variable in a model on which the model behaviour depends. The value of this variable
is not part of the model.

rate of change The change per unit of time of a status variable.

rerun Another run of the program, usually for (slightly) different input values.

section An FST program consists of different sections: a DECLARATIONS section, a MODEL
section, consisting of INITIAL, DYNAMIC and TERMINAL, and a RERUN section. Sometimes
one of the three MODEL calculation sections (INITIAL, DYNAMIC or TERMINAL) is meant.

simulation Following the changes of a model system in time, often by means of a computer
program.

sorting FST sorts the calculations in the INITIAL, DYNAMIC and TERMINAL section of the program
in order to bring them in a computational order. Writing an FST program one may work "top-
down": at first the main equations are written in the form of FST statements, then the variables
in them are specified in terms of other variables etc. The actual calculations have to be carried
out in the reverse order. FST takes care of that and verifies the completeness of the description.

statement expansion A statement containing one or more (equally long) array subscript ranges is
expanded in order to perform the calculations element wise.

subroutine A subprogram in Fortran. A subprogram is a program unit which can be called by other
program units (subroutines). A subroutine call requires a list of input and output arguments, with
which the subroutine works. The internal structure of the called subroutine is fully independent
of the program from which it is called.

symbol In this manual usually a variable name in a computer program. The symbol list of a program
is just the list of names which occur in it.

TERMINAL The last part of the MODEL section of an FST program is the TERMINAL section. It
contains the calculations to be carried out after finishing the simulation.

translator In this manual it is the FST program itself, which translates an "FST" model description in
into a Fortran program with associated data files.

TTUTIL A library of utility subprograms, most of them for input and output. The name TTUTIL
originates from the department of "Theoretische Teeltkunde", now called Theoretische
Productie Ecologie of the Agricultural University in Wageningen.

utility A subroutine or function which takes care of a scientifically trivial part of the calculations, for
instance input from file, or linear interpolation between two function points.

variable A symbol in a mathematical expression corresponding to a name in a computer program.

weather system A subroutine library which may be called from a Fortran program in order to read
data from a large set of data files containing weather data for different countries, stations and
years. (van Kraalingen et al. 1991). '
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Appendix B: Reserved variable names

This Appendix lists the names that cannot be freely used as user-defined names. Note that it is not
necessary to know all these names. Improper names always lead to an error message of the FST
translator. There are a few categories of reserved names:

Names reserved for special purposes in FST

These names have a meaning in FST programs. The names in this category are FST control
'variables, FST driver supplied variables and FST weather and calendar data, FST intrinsic functions
or Fortran intrinsic functions. The list is

ABS fortran intrinsic DELMAX trans_GEN. NOTNUL fst intrinsic
ACOS fortran intrinsic DELT timer PRDEL timer

AFGEN fstintrinsic DOY weather, calendar RAIN weather, calendar
AINT fortran intrinsic DRIVER trans_GEN. RDD weather, calendar
ALOG fortran intrinsic ELEMNT fst intrinsic REAAND fstintrinsic
ALOG10 fortran intrinsic ELEV weather, calendar REAL fortran intrinsic
AMAX1  fortran intrinsic EPS trans_GEN. REANOR fst intrinsic
AMIN1 fortran intrinsic EXP fortran intrinsic RGACTS driver supplied
AMOD fortran intrinsic FCNSW fst intrinsic RGINIT  timer

ANINT fortran intrinsic FINTIM  timer RGNORM fst intrinsic
ARIMPR  fst intrinsic | driver supplied RGSEED timer

ARLENG fst intrinsic INSW fst intrinsic RGUNIF fstintrinsic
ARMAXI fst intrinsic INT fortran intrinsic SIN fortran intrinsic
ARMEAN fst intrinsic INTGRL fstintrinsic SINH fortran intrinsic
ARMINI  fst intrinsic IOBSD translation_FSE SQRT fortran intrinsic
ARSMPS fstintrinsic IPFORM timer STTIME  timer

ARSTDV fst intrinsic ISTN weather control TAN fortran intrinsic
ARSUMM fst intrinsic IYEAR weather control TANH fortran intrinsic
ASIN fortran intrinsic LAT weather, calendar  TIME driver supplied
ATAN fortran intrinsic LIMIT fst intrinsic TMMN weather, calendar
ATAN2  fortran intrinsic LOG fortran intrinsic TMMX weather, calendar
CNTR weather control LOG10  fortran intrinsic TRACE trans_GEN.
COPINF timer LONG weather, calendar VP weather, calendar
cos fortran intrinsic MAX fortran intrinsic WN weather, calendar
COSH fortran intrinsic MIN fortran intrinsic WTRDIR weather control
CSPLIN fst intrinsic MOD fortran intrinsic YEAR weather, calendar
DELDID driver supplied NINT fortran intrinsic

Names used in the generated Fortran

These are program names, subroutine names, variable names and common block names used in
the generated Fortran code. The use of these names in FST would lead to Fortran errors. The list of
names in this category is

DRVCOM IULOG LINT2 OUTCOM RDSINT STEVNT
DRVEVT IlUMOD MAIN- - OQUTDAT RDSREA. TERMNL
FILEIN IUNITD MODELS OUTPLT RGRSET TEVENT
FILEP IUNITL NDEC RATE SCALE TEVREQ
IARELN IUNITO NEQ RDAREA SECROS TEVTIM
IDOY IURES NSEV RDFREA SEVFUN WSTAT -
ITASK IWWVAR NSV RDINIT SEVREQ WTRINT

ITOLD KEEP OUTAR2 RDSCHA STATE WTRTER
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WUSED

FST and Fortran keywords

These are a number of names which, strictly speaking, need not to be forbidden. Their use would be
confusing, however since they are also FST and Fortran keywords. An example is the use of a
variable name PRINT. In order to preserve clarity, the use of keywords as variable names has also
been forbidden in FST.

ACCESS fortran ENDJOB fst LE fortran RETURN fortran
AND fortran ENDPRO fst LEN fortran REWIND fortran
ARRAY fst ENTRY fortran LGE fortran SAVE fortran
BLOCK fortran EQ fortran LGT fortran SORT fst
BYTE fortran EQV fortran LLE fortran STATUS fortran
CALL fortran ERR fortran LLT fortran STOP fst
CHAR fortran EXIST fortran LT fortran TABLE fst
CLOSE fortran FILE fortran MACRO fst THEN fortran
COMMON fortran FINISH  fst MODEL fst TIMER fst
DATA fortran FIXED fst NE fortran TITLE fst
DECODE fortran FMT fortran NEQV fortran TYPE fortran
DELETE fortran FORM fortran NOSORT fst UNIT fortran
DIRECT fortran FORMAT fortran NOT fortran UNTIL fortran
DO fortran GE fortran OPEN fortran WHILE fortran
DOUBLE fortran GOTO fortran OR fortran WRITE fortran
ELSE fortran GT fortran OUTPUT fst XOR fortran
ELSEIF fortran ICHAR fortran PAGE fst FALSE fortran
ENCODE fortran IF fortran PARAM fst TRUE fortran
END fst INCON  fst PRINT fst

ENDDO fortran INDEX fortran RAN fortran

ENDIF fortran IOSTAT fortran READ fortran

Symbols in linked libraries

For user-defined subroutines there is an additional restriction. The name of a user-defined
subroutine (declared with a DEFINE_CALL statement) cannot be equal to the name of a subroutine,
function or common block in one of the linked object libraries DRIVERS, TTUTIL or WEATHER. The
list of these names is build into the FST translator and is updated from time to time. Hence, the
following list may be incomplete

ADDINT DELFIL FLNAME LOWERC RDDECD RDFTIM

ADDREA DTARDP FOPENG MOFILP RDDECI RDINDT
ADDREF DTDPAR FOPENS OUTARR RDDECL RDINDX
ADDSTF DTDPST FOPERR OUTSEL RDDECT RDINLV
ADDSTR DTLEAP FSE PLTFUN RDDTMP RDINNE
AFINVS DTNOW FSECM1 PLTHIS RDERR RDINQR
AMBUSY DTSYS GETCH POS RDFCHA RDLEX
ARBCHK ENTCHA GETREC RDACHA RDFDOR RDMCHA
CHKTSK ENTDCH GETUN RDADOR RDFDOU RDMDEF
CLS , ENTDIN GETUN2 ~  RDADOU RDFIL1 RDMDOU
COPFIL ENTDRE IFINDC RDAINR RDFIL2  RDMINT
COPFL2 ENTINT IFINDI RDAINT RDFINR RDMLOG
DECCHK ENTREA ILEN RDALOG RDFINT RDMREA
DECINT ERROR ISTART RDARER RDFLOG RDMTIM
DECREA EUDRIV IUNIFL RDATIM RDFRER RDPARS

DECREC EXTENS LINT RDDATA RDFROM RDREC1



RDREC2
RDSCTB
RDSDOR
RDSDOU
RDSETS
RDSINR
RDSLOG
RDSRER
RDSTA
RDSTIM
RDTBL1
RDTBL2
RDTMP1
RDTMP2
RDTOK1
RDTOK2
REMOVE
RERUNS
RG

RK4A
RKDRIV
RKQCA
SFINDG
SORTCH
SPLINE
SPLINT
STINFO
STRIP
SWP14
TIMER2
TTUDD1
TTUDD2
TTURR1
TTURR2
TTUVER
UNIFL
UPPERC
USEDUN
WEATHR
WORDS
WRACHA
WRAINT
WRALOG
- WRAREA
WRINIT
WRSCHA
WRSINT

WSFLGS
WSFUN
WSGREC
WSILEN
WSITOA
WSMESS
WSNBUF
WSNFIL
WSOPEN
WSRDDA
WSSTAR

Appendix A: Glossary

WRSLOG
WRSREA
WSATTR
WSCFIL
WSCONI
WSDAOP
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Appendix C: Converting CSMP into FST

For users familiar with CSMP we have listed a few differences from a practical point of view. Simple
programs are easily converted to FST. Programs involving PROCEDURE's or array variables are
more difficult to convert but serious problems did not show up so far.

The METHOD statement of CSMP is replaced by a TRANSLATION_FSE or a
TRANSLATION_GENERAL statement (See Section 3.2.4.1 and Section 3.2.4.2)

CSMP allows constants or expressions as arguments of the INTGRL function. In FST the two
arguments have to be variables or array variables. This problem can be solved with help of a few
additional variables for the initial value and/or the rate of change.

The FIXED statement of CSMP for declaring integer variables does not exist in FST. The use of
arbitrary integer variables is impossible in FST. In FST, a loop counter | can be used in array
calculations (see Section 4.3.2) and array size variables are also integer by default (see Section
4.3.1, Section 8.3.1.1 and Section 8.5.2.3). They do not have to be declared separately.

The TABLE statement of CSMP for filling an array with data can be easily replaced by an FST
PARAMETER or statement.

The STORAGE statement of CSMP for declaring an array is replaced by the ARRAY statement
of FST. The upper bound of an FST array is declared relative to an array size variable. This
means that actual array sizes are set at precisely one place in the FST program, by means of an
ARRAY_SIZE statement. Errors with array calculations are therefore less likely in FST than in
CSMP.

The NOSORT sections of CSMP do not exist in FST. As far as NOSORT sections are used for
array calculations (with Fortran DO-loops), they can be easily replaced by FST statements. In
FST, array variables can be used in expressions as if they were scalar variables. The translator
then creates the appropriate loops in the generated Fortran (see Section 4.3). If the CSMP
program contains complicated control structures (with nested IF-THEN-ELSE blocks, for
instance), it will usually be necessary to write a Fortran subroutine called by FST.

The PROCEDURE's in a CSMP program have to be converted into Fortran subroutines with an
I/0 structure declared in a DEFINE_CALL statement.

The use of MACRO's in FST is impossible. The macro has to be expanded for the different cases
in which it is used, or, if it is used many times, array variables may be used.
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Appendix D: Bug report form

Name

Software product
Version

Date

E-mail

Do you consider the bug (choose one): minor / annoyance / serious / catastrophic
Is the bug reproducible ? Y /N

Description of the problem:

Sequence of events that will recreate the bug:

Please send with your bug report form:
1) printscreen where bug is visible,
2) a floppy disk with all the relevant files (including source code).

Return this bug report form to one of the suppliers.







Appendix E: FST Capacity settings

The capacity settings for the FST translator are given in the table below. We had to find a
reasonable compromise between the maximum capacity and the amount of RAM memory the
translator uses.

Table E.1. Capacity settings of the FST translator

Capacity Description

3000 Maximum number of cross references
10 Maximum number of finish conditions
22 Maximum number of called subroutines
218 Maximum total number of argument descriptions in DEFINE_CALL statements
5000 Maximum statement length in characters (source or generated)
60 Maximum number of variables to be sent to OUTDAT
70 Maximum number of variables in PRINT statements
30 Maximum number of variables in OUTPUT statements
200 Maximum number of redefinitions in the rerun sections
1000 Maximum number of calculation statements (except INTGRL statements)
100 Maximum number of state variables
100 Maximum number of lines in statement (source or generated)
1000 Maximum number of symbols
10 Maximum number of titles
160 Maximum number of substatements in program
100 Maximum number of (X,Y) pairs for CSPLIN interpolation
500 Maximum number of state variables+state array elements
50 Maximum number of observation days
100 Maximum number of interpolation functions
12 Maximum nesting depth of expressions
500 Maximum number of sorted statements per section
200 Maximum number of array declarations
500 Maximum number of array ranges
500 Maximum number of values in an assignment or FUNCTION statement
1000 Maximum number of statements
1000 Maximum number of value assignments

Note that some of the capacity settings refer to the DRIVERS library rather than to the FST translator
itself. These are the number of state variables / state array elements, which is limited by the
EUDRIV/RKDRIV integration capacity, the number of observation days IOBSD in FSE mode and the
number of data pairs allowed in cubic spline interpolation of a FUNCTION with CSPLIN.
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ABFORUTL.INI, 91

absolute subscript. See subscript
absolute-to-absolute range. See subscript
absolute-to-relative range. See subscript

accuracy of integration. See EPS and SCALE

AFGEN, 27, 35, 136

ARIMPR, 136

ARLENG, 136

ARMAXI, 136

ARMEAN, 136

ARMINI, 137

array family, 46, 50

array function, 52

ARRAY statement, 23, 45, 116

array variable, 43, 141

ARRAY_SIZE
statement, 27, 117
variable, 22, 46, 47, 51, 107

ARSMPS, 137, 140

ARSTDV, 137

ARSUMM, 137

assignment, 33, 115
expansion of, 47, 49

—_—B—
BATCH option, 91

—C—

calculated variable, 22, 49, 107

calculation statement, 19, 21, 33. See also
assignment and CALL

calendar data, 30, 112

CALL statement, 33, 59, 118
expansion of, 61

Called SUBROUTINE, 22, 108

CNTR, 29, 110

command line, 90

comment statement, 21, 105

compilation errors, 98

CONSTANT

statement, 22, 26,119

variable, 22, 26, 108
CONTROL.DAT, 97
COPINF, 29, 110
counter |, 51, 63, 73, 112
CSPLIN, 27, 35, 36, 69, 137, 140
cubic splines. See CSPLIN

—D—

debugging, 98

declaration statement, 21, 23
DECLARATIONS, 19, 113, 119
DEFINE_CALL, 24, 37, 59, 120
DELDID, 112

DELMAX, 28, 111

DELT, 10, 29, 110
dependency loop, 37

DO-loop, 48

DOY, 30, 76

DRIVER, 28, 111, 161
DRIVERS library, 87, 145, 175
DRVCOM, 152

DYNAMIC, 9, 11, 19, 114, 121
dynamic output, 31

—FE—
ELEMNT, 53, 54, 55, 137
END, 11, 122
ENDJOB, 19, 123
EPS, 28, 111

error message, 98
EUDRIV, 10, 13, 28, 35, 111, 151, 158
event, 158
example model
crop growth, 18
diffusion, 44, 82
FST program structure, 19, 20, 70, 140
mechanics, 78, 80, 86
population dynamics, 10, 12, 15, 76, 146
translation of, 147, 154
use of weather data, 12, 74, 75, 146
expansion. See assignment or CALL

—F—

FCNSW, 72, 138
FINISH, 13, 30, 74, 123
expansion of, 124
FINTIM, 10, 29, 110

Fortran

compiler;-89,-90
generated, 145
intrinsic function, 22, 112, 134
FSE
module, 28, 145, 147
translation. See TRANSLATION_FSE
FSE module, 146
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FST intrinsic function, 22, 112, 135, 136
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GENERAL

module, 28, 152, 153, 154

translation. See TRANSLATION_GENERAL
GENERATE option, 91
graphical output, 89

] —
HELP option, 91
—_—

IF-THEN-ELSE, 73
IMPLICIT NONE, 90, 1563
INCON
array, 55, 127, 141
statement, 9, 16, 22, 25, 125
variable, 22, 34
INITIAL, 9, 11, 19, 114, 125
initial output, 31
initial value. See INTGRL
INPUT, 24, 59, 120
input statement, 19, 21, 24
INPUT_ARRAY, 60, 120
installation, 87
INSW, 72, 76, 138
INT, 73
INTEGER_INPUT, 60, 73, 120
integration, 34, 151. See also INTGRL
interface subroutine, 64
interpolation. See AFGEN or CSPLIN
interpolation function. See FUNCTION
INTGRL, 9, 15, 26, 34, 138, 141

I0BSD, 29, 111
IPFORM, 29, 110
ISTN, 29, 110
IYEAR, 29, 71, 110
—_——
Language Systems Fortran, 89

LIMIT, 138
Linear interpolation, 35
linker error, 99
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Macintosh, 89

MODEL, 11, 19, 126
MODEL section, 113
MODEL.DAT, 96
MODEL.FOR, 96
MODEL.LOG, 97, 99, 161

MPW, 89

—N—
natural cubic splines. See CSPLIN
NINT, 73

NOBATCH option, 91
NOGENERATE option, 91-
NOHELP option, 91
NOLIST option, 91
NOSTATLIST option, 91
NOSYMLIST option, 91
NOTNUL, 138

—0—

OUTPUT, 24, 120
output statement, 19, 21, 31, 32, 59, 126
OUTPUT_ARRAY, 60, 120

—P—

PARAMETER
array, 55, 127
statement, 9, 16, 25, 109, 127
variable, 9, 22, 25, 109
PC, 89, 90
Power Macintosh, 89
PRDEL, 10, 29, 32, 110
prediction, 86
PRINT, 20, 128
PRINT statement, 31
program sections, 19

—R—

rainfall, 74

random numbers, 38, 142
rate array, 141

rate of change. See INTGRL
REAAND, 138 :
REAL_INPUT. See INPUT

tg gzﬁon o1 REAL_INPUT_ARRAY. See INPUT_ARRAY
-1 ophion, REAL_OUTPUT. See OUTPUT
listing, 92

loop counter |I. See counter |

REAL_OUTPUT_ARRAY. See OUTPUT_ARRAY
REANOR, 138

relative subscript. See subscript
relative-to-relative range. See subscript
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rerun section, 14, 37, 114
RERUNS.DAT, 96
RES.BIN, 97

RES.DAT, 31, 97

reserved name, 22, 106
reserved names, 106
RGACTS, 39, 112 _
RGINIT, 29, 38, 110, 142
RGNORM, 138, 142
RGSEED, 29, 38, 110, 142
RGUNIF, 139, 142
RKDRIV, 9, 13, 28, 35, 79, 111, 151, 158
Runge-Kutta. See RKDRIV
runtime error, 99

—S—

SCALE, 99, 152
section statements, 19, 21, 23
sensitivity analysis, 80
simulation control statement, 19, 21, 27
skeleton of FST program, 19, 113
Sorting calculations, 36, 50
state event, 144, 1568, 159
state space, 76
state variables, 34
statement expansion. See assignment or CALL
Statement sorting. See Sorting calculations
statement types, 20
STATLIST, 92
STATLIST option, 91
STOP, 19, 129
STTIME, 10, 29, 30, 110
subroutine. See cailed subroutine
subroutine expansion. See CALL statement
subscript
absolute, 46
absolute-to-absolute range, 47
absolute-to-relative range, 47
array (subscript), 46
bounds, 46
declared bounds, 46, 116
range, 116, 124, 127, 129
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substatement, 49, 116, 127
SYMLIST option, 91, 92

T

TERMINAL, 19, 114, 130

terminal output, 31, 32, 70, 72, 74, 81

TIME, 112

time event, 161

TIMER
statement, 20, 29, 130
variable, 22, 29, 110

TIMER.DAT, 96

TITLE, 11, 19, 33, 131

TRACE, 28, 99, 111, 161

TRANSLATION_FSE
statement, 28, 131
variable, 22, 111

TRANSLATION_GENERAL
statement, 9, 20, 28, 132
variable, 9, 22, 28, 111

TTSELECT, 89

TTUTIL library, 87, 145

—V—

variable name, 23, 106
variable supplied by driver, 112

—W—

Weather, 10, 12, 29, 133, 145
WEATHER control variable, 22, 110
Weather data, 30, 74, 112
WEATHER library, 87
WEATHER.LOG, 97

WTRDIR, 29, 110

—_Y—
YEAR, 30, 71




