## Genomics for cryo-collections

Jack Windig
CRB-Anim
Paris 2017











- Different breeds harbour unique genetic variation
- May be useful, not only within old/low input breeds
- Conservation in gene banks



## Genetic diversity within breeds

- Changes constantly
- Rare breeds (e.g. low input, some companion animals)
  - Small (effective) population size
  - High levels of genetic drift
  - Depletes genetic variation
- Large breeds (e.g. global production breeds)
  - Selection
    - Changes specific traits
    - Can reduce genetic variation on specific regions of the genome
    - Can reduce effective population size



### Gene banks

- Long term storage
- Genetic variation in collections is fixed to level at time of sampling
- Use for
  - Backup
  - Support life population
  - Research
- DNA typing provides detailed information



## Genomics and gene banks

- Provides more detailed inventory
- Back up
  - What genetic diversity in the life population is in the gene bank and what not?
  - Which animals to add?
- Support life population
  - What genetic diversity is in the gene bank and absent in the life population? And how useful is it?
  - Source for introgression
- Research
  - Identify changes in genetic diversity over time





#### Two initiatives

- Dutch gene bank
  - All cattle in gene bank (to be) typed with 50K SNP chip
  - 7 breeds
  - 1985 till 2017
- Image
  - EU Horizon 2020 project
  - Considers all aspects of animal genetic resources
  - WP4 Genomic characterization
    - DNA typing: SNPs and sequencing
  - WP6 use of genetic collections
    - Use in life population







## Back up

Which animals to store in gene bank, to maximise diversity conserved?



### Holstein Friesian





- The main dairy cattle breed
- Used and bred globally
- Superior production, fertility less well
- Diversity under threat due to limited number of sires being used



## Maximise diversity in gene bank

- Method of choice: Optimal contributions
- Find combination of parents/animals with minimum average kinship
  - Mathematical solution
  - Selection from all animals with varying contribution
  - Or selection of fixed number of animals with equal contribution
- Two variants:
  - Gene bank: n animals with lowest average kinship
  - Breeding programme: maximise genetic merit (EBV) while constraining average kinship to fixed value



## Pedigree vs. SNP chips

Data: 566 Holstein cows 50K SNP chip

Selection: 10 animals equal contribution

| Diversity    | before<br>selection | random | Gencont pedigree | Gencont<br>Markers |
|--------------|---------------------|--------|------------------|--------------------|
| f (pedigree) | 0.081               | 0.176  | 0.103            | 0.129              |
| f (SNP)      | 0.163               | 0.254  | 0.212            | 0.174              |
| % fixed      | 6.5%                | 16.3%  | 14.1%            | 13.6%              |
|              |                     |        |                  |                    |

- Optimal contributions work
- SNP-chips slightly better than pedigree
  - Includes kinship from before founders



## SNP vs. Sequence (WGS)

- 1000 Bull genome, 277 Holstein bulls
  - 50K SNP
    - 44 367 segregating loci
    - 7.5% rare (MAF <5%)
  - WGS
    - 15 864 157 loci
    - 27.8% rare





## Extra gain with sequence?

- Selection: 10 animals equal contribution
- % Fixed alleles in selection relative to total population

| Kinship based on | SNP (prev.) | total | common | rare  |
|------------------|-------------|-------|--------|-------|
| Pedigree         | 14.1%       | 21.6% | 8.7%   | 55.1% |
| SNP              | 13.6%       | 20.0% | 6.7%   | 54.4% |
| WGS              |             | 19.4% | 6.5%   | 52.8% |
|                  |             |       |        |       |

- More than 50% of rare alleles are lost
- Use of sequence information conserves slightly more
  - Especially rare alleles



## Need to type everything?

- For identifying candidates to be stored in the gene bank benefit of typing over pedigree is limited
  - But if no reliable pedigree available...
- Benefit of sequencing over SNP chips is even more limited,
   but provides information on rare alleles
- When the interest is in genetic diversity on specific regions animals need to be typed
- Strategy
  - Sequence limited number of animals
  - Type some animals with HD SNP chip
  - Type rest with LD SNP chip
  - Missing DNA information of relatives can be imputed



# Use of gene bank material in life population

Is genetic diversity in gene bank useful for the life population?



## Maas-Rijn-IJssel vee (MRIJ) PhD Sonia Eynard (2018)





## Maas-Rijn-IJssel (MRIJ) cattle

- Red-and-white cattle
- 2<sup>nd</sup> breed in numbers in NL (1<sup>st</sup> = Holstein)
- Dual purpose (milk & meat)
- High milk protein percentage
- Robust, strong & self-reliant
  - Good fertility & longevity

About 7500 purebred animals left (3% of population size in 1970s)

- Still an active breeding program
- Bulls from 1986 onwards in gene bank



## Use gene bank bulls in life population?

#### Population:

Conserved: 294 bulls born before 2000

Current: 119 bulls born in or after 2000

50k SNP genotypes on all bulls

=> Is there any added benefit of considering MRIJ bulls from the gene bank in the current (breeding) population?



### Two scenarios

#### Compute optimal contributions from perspective of:

- Breeding program
  - Maximize genetic gain while restricting inbreeding
- Gene bank
  - Minimize inbreeding rate
- Using:
  - Current bulls
  - Current + conserved bulls
- Evaluation:
  - Genetic diversity and Total Genetic Merit (includes production, health and fertility)



# MRIJ: impact of using conserved animals



IVESTOCK RESEARCH

WAGENINGENUR

#### MRIJ Results

Using conserved in addition to current bulls

#### Breeding program perspective:

- At same genetic diversity
- Slightly increased realized genetic merit
- The higher the genetic diversity constraint the stronger the increase in genetic merit because of using conserved bulls

#### Gene bank perspective:

Considerably higher genetic diversity



## Research on diversity stored in gene bank

Identify changes in genetic diversity over time

## Holstein bulls in gene bank

PhD Harmen Doekes(2018)

- Data
  - Genotypes (50K SNP) of all bulls used in Dutch breeding program between 1986 and 2015
- Measurement Genetic diversity
  - Pedigree inbreeding (Fped) = since founders
  - Marker homozygosity (HOMsnp)= since mutation
  - Rows of homozygosity (Froh) = recent generations
- Over whole genome
- Region specific







## Genome wide inbreeding



- 1986 2000 Steady increase
- 2000 2009Rather constant
- Since 2009 Sharp increase especially for homozygosity

- 2000: fertility, health and longevity were included in the breeding goal + use of optimal contributions
- 2009: start of genomic selection



# Positional inbreeding $(F_{ROH})$



- Substantial heterogeneity across genome over time
- Peaks emphasized in 2011-2015



# Results: correlation allele frequency changes

| Correlations between $\Delta p$ in 5-year periods |       |       |       |       |       |  |  |  |
|---------------------------------------------------|-------|-------|-------|-------|-------|--|--|--|
| Period                                            | 86-90 | 91-95 | 96-00 | 01-05 | 06-10 |  |  |  |
| 91-95                                             | 0.09  |       |       |       |       |  |  |  |
| 96-00                                             | 0.09  | 0.08  |       |       |       |  |  |  |
| 01-05                                             | -0.06 | -0.13 | -0.09 |       |       |  |  |  |
| 06-10                                             | -0.03 | -0.11 | -0.09 | 0.09  |       |  |  |  |
| 11-15                                             | 0.04  | -0.04 | 0.00  | -0.07 | 0.26  |  |  |  |

- $\Delta p$  in consecutive periods generally same direction
- Negative after shift selection goal (2000)
- Strong positive after introduction GS (2010)



## Conclusions

Changes in breeding program have affected diversity trends



- Substantial differences across the genome
- Gene banks can provide valuable information on evolution of genetic diversity in life stock populations



## Sequence information

- Provides detailed picture of all diversity present
- Loci can be characterized
  - Within regions coding for genes
  - Silent mutations
  - With effect predicted
  - Etc.
- Ratio of heterozygous sites with a predicted effect over heterozygous silent mutations



In highly selected populations more deleterious mutations



### Conclusions

- Genomics offers additional opportunities for conservation
- Gene banks fix genetic diversity to level at time of sampling
- This diversity can be used in life population
- DNA typing provides insight in the evolution of genetic diversity in livestock



