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Optimising Realism of Synthetic Agricultural Images using Cycle

Generative Adversarial Networks.

Ruud Barth1, Joris IJsselmuiden2, Jochen Hemming1 and Eldert J. van Henten2

Abstract— A bottleneck of state-of-the-art machine learning
methods, e.g. deep learning, for plant part image segmentation
in agricultural robotics is the requirement of large manually
annotated datasets. As a solution, large synthetic datasets
including ground truth can be rendered that realistically reflect
the empirical situation. However, a dissimilarity gap can remain
between synthetic and empirical data by incomplete manual
modelling. This paper contributes to closing this gap by optimis-
ing the realism of synthetic agricultural images using unsuper-
vised cycle generative adversarial networks, enabling unpaired
image-to-image translation from the synthetic to empirical
domain and vice versa. For this purpose, the Capsicum annuum
(sweet- or bell pepper) dataset was used, containing 10,500
synthetic and 50 empirical annotated images. Additionally, 225
unlabelled empirical images were used. We hypothesised that
the similarity of the synthetic images with the empirical images
increases qualitatively and quantitively when translated to the
empirical domain and investigated the effect of the translation
on the factors color, local texture and morphology. Results
showed an increased mean class color distribution correlation
with the empirical dataset from 0.62 prior and 0.90 post
translation of the synthetic dataset. Qualitatively, synthetic
images translate very well in local features such as color,
illumination scattering and texture. However, global features
like plant morphology appeared not to be translatable.

I. INTRODUCTION

A key success factor of agricultural robotics performance
is a robust underlying perception methodology that can
distinguish and localise object parts [1], [2], [3]. In order
to train state-of-the-art machine learning methods that can
achieve this feat, large empirical annotated datasets are
required. Synthetic data can help bootstrapping such methods
in order to reduce the required amount of empirical data [4].
However, a gap in realism remains between the modelled
synthetic data and the empirical images, plausibly restraining
synthetic bootstrapping performance.

In this paper we report on optimising the realism of
synthetic images modelled from empirical data [5]. The long
term goal of this research is to improve plant part seg-
mentation performance by synthetically bootstrapped deep
convolutional neural networks (CNN) [4]. For the interme-
diate goal presented here, we hypothesise the dissimilarity
between corresponding synthetic and empirical images can

1Ruud Barth and Jochen Hemming are with Wageningen Uni-
versity & Research, Greenhouse Horticulture, P.O. Box 644, 6700
AP, Wageningen, The Netherlands. ruud.barth@wur.nl and

jochen.hemming@wur.nl

2Joris IJsselmuiden and Eldert J. van Henten are with
Wageningen University & Research, Farm Technology
Group, Droevendaalsesteeg 1, 6708 PB, Wageningen, The
Netherlands. joris.ijsselmuiden@wur.nl and

eldert.vanhenten@wur.nl

be qualitatively and quantitatively reduced using unpaired
image-to-image translation by cycle-consistent adversarial
networks (cGAN) [6].

Convolutional neural networks currently show state-of-the-
art performance on image segmentation tasks [7], [8], [9].
However, CNNs require large annotated datasets on a per-
pixel level in order to successfully train the deep network.
Moreover, in agriculture the high amount of image variety
due to a wide range of species, illumination conditions and
morphological seasonal growth differences, leads to an in-
creased dataset size dependency. Satisfying this requirement
can quickly become a bottleneck for learning.

One solution is to bootstrap CNNs with synthetically
generated images including automatically computed ground
truth [10], [11]. Consequently the bootstrapped network can
be fine-tuned with and applied to empirical images, resulting
in increased performance over methods without synthetic
bootstrapping [4].

Previously we have shown methods to create such a dataset
by realistically rendering 3D modelled plants [5]. Despite in-
tensive manual optimisation for geometry, color and textures,
we have shown that a discrepancy remains between synthetic
and empirical data. Although this dataset can be used for
successful synthetic bootstrapping and learning empirical
images, there remains a gap between achieved performance
and theoretical optimal performance [4].

Recently, the advent of generative adversarial networks
(GAN) introduced another method of image data generation
[12]. In GANs two models are trained simultaneously and
adversarially: a generative model G and a discriminative
model D. The generative model’s goal is to capture the
feature distribution of a dataset by learning to generate
images thereof from latent variables (e.g. random noise
vectors). The discriminative model in turn evaluates to what
extent the generated image is a true member of the dataset. In
other words, model G is optimised to trick model D while
model D is optimising to not get fooled by model G. As
both models can be implemented as CNNs, the error of both
models can be back-propagated to minimise the loss of both
models simultaneously. The result after training is a model
G that can generate new random images highly similar to
the learned dataset.

In later approaches, GANs were also conditioned by
additional input images; both the generator and discriminator
observe an input image [13]. The discriminator’s goal is
to compare such pairs on coherency of their co-occurrence
whereas the generator aims to create an image-to-image
translation from the conditional image to an image adhering
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to the same coherency of the other pairs in the dataset. The
result is a generator G that can translate images from one
domain X (e.g. summer photographs) to images in another
Y (e.g. winter photographs), formally notated as G : X!Y.

A requirement for conditional GANs is the availability
of geometrically paired images, but for many tasks these
will not be available. For example in agriculture, obtaining a
geometrically paired synthetic image of an empirical scene
would defeat the purpose of circumventing manual annota-
tion time. Instead, only unpaired synthetic images can be
generated without additional manual efforts.

A recent approach aimed to dissolve this requirement by
investigating unpaired image-to-image translation. In cycle-
consistent adversarial networks (Cycle-GAN) [6], a mapping
G : X!Y is learned whilst also an inverse mapping F : Y!X.
Both domains X and Y have corresponding discriminators
DX and DY . Hence, DX ensures G to translate X similar
to Y whilst DY safeguards a indistinguishable conversion of
Y to X.

However since the domains are unpaired, the translation at
this point does not guarantee that an individual image x 2 X

is mapped to an geometrically similar image in domain Y (or
y 2 Y to X). This because there are boundless mappings from
x that result in the same target distribution of Y. Therefore
the mapping needs to be constrained in a way the original
geometry is maintained.

To achieve that, a cycle consistency loss was added to
further regularise the learning. Given a sample x 2 X and y

2 Y, a loss was added to the optimisation such that F(G(x))

⇡ x and G(F(y)) ⇡ y. Hence the learning was therefore
constrained by the intuition that if an image is translated
from one domain to the other and back again, an equal
image should be retrieved. This forces the generators G and F

to achieve unpaired geometrically consistent image-to-image
translation from one domain to the other and vice versa.

The key contribution of our research presented here is
that we show that Cycle-GAN can translate agricultural
images in the synthetic domain to images in the empirical
domain, to improve the realism of the synthetic data and
close the dissimilarity gap further. Hence, this will increase
the amount of realistic training data for machine learning
computer vision methods. This can be seen as an important
step towards improved sensing for agricultural robotics by
minimising the dependency on manual annotated datasets.

The scope of this paper was limited to results of the trans-
lation and a similarity comparison, whereas future research
will investigate the impact of translated synthetic images on
learning.

II. MATERIALS
A. Image dataset

The unpaired image dataset of Capsicum annuum (sweet-
or bell pepper) was used [5] that consists of 50 empirical
images of a crop in a commercial high-tech greenhouse
and 10,500 corresponding synthetic images, modelled to
approximate the empirical set visually and geometrically.
In both sets 8 classes were annotated on a per-pixel level,

Fig. 1: Uncropped examples of empirical and synthetic color
images (2nd and 3rd image respectively) and their correspond-
ing ground truth labels. Class labels: background, leafs,

peppers, peduncles, stems, shoots and leaf stems,
wires and cuts where pepper where harvested.
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either manually for the empirical dataset or automatically
for the synthetic dataset. In Figure 1 examples of images in
the dataset are shown. The dataset was publicly released at:
http://dx.doi.org/10.4121/uuid:

884958f5-b868-46e1-b3d8-a0b5d91b02c0

Both synthetic and empirical images were cropped to
424x424 pixels to exclude the robot end-effector’s suction
cup in the image, because initial image-to-image translation
experiments showed that this hardware was replicated un-
desirably in other parts of the image. This is in line with
comments of the methodology of the Cycle-GAN authors;
color and texture translation often succeeds though large
geometric changes are translated with less success.

From the Capsicum annuum dataset, the synthetic images
1-1,000 were used for training and the remainder for testing.
For the empirical images, an unreleased and unlabelled
dataset consisting of 225 images was used, of which a
random subset was previously labelled and included in the
Capsicum annuum dataset. 175 Images of this set were used
for training and 50 for testing.

B. Software

The Berkeley AI Research (BAIR) laboratory implemen-
tation of unpaired image-to-image translation using cycle-
consistent adversarial networks was used [6].

III. METHODS
A. Image-to-Image Translation

Hyper-parameters of the Cycle-GAN were manually opti-
mised. The full resolution of the cropped images was used.

The number of generative and discriminative filters were set
to 50 and the learning rate was set to 0.0002 with an ADAM
[14] momentum term of 0.5. The basic discriminator model
was used, whereas for the generative model the RESNET
[15] 6 blocks model. Weights for the cycle loss were set to
10 for each direction.

B. Quantitative Translation Comparision

Although the success of the translation will already be
quantitatively captured by the adversarial loss, this measure
is biased and mathematically obfuscated. It is interesting to
look more specifically at key image features like color.

For this purpose, we compared for each class the synthetic
color distribution prior and post translation with those of
the empirical distribution. We hypothesise the color differ-
ence post translation will be reduced. To determine this
quantitatively, the correlation between color distributions was
obtained.

The color spectrum of each class was obtained by first
transforming the color images to HSI colorspace. The hue
channel in the transformed image represented for each pixel
which color was present, irregardless of illumination and
saturation intensity. The histogram of this channel was then
taken to count the relative color occurrence per class.

IV. RESULTS
In Figure 3 the results of the image-to-image translations

are shown. The second column is of most interest to our
research, as it shows synthetic images which are translated
to the empirical domain. However, as reference also the

Fig. 2: Color distributions (discretized to 256 values in the hue channel) per class of the synthetic, empirical and synthetic
translated to empirical images. Integral per distribution amounts to 1.

http://dx.doi.org/10.4121/uuid:884958f5-b868-46e1-b3d8-a0b5d91b02c0
http://dx.doi.org/10.4121/uuid:884958f5-b868-46e1-b3d8-a0b5d91b02c0
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  backgr. leafs peppers peduncles stems shoots wires cuts avg.

correlation(synthetic, empirical) 0.25 0.78 0.42 0.93 0.76 0.83 0.45 0.48 0.62
correlation(synthetic!empirical, empirical) 0.86 0.94 0.93 0.93 0.92 0.98 0.81 0.79 0.90

TABLE I: Color distribution correlation per class between the synthetic and synthetic translated to empirical
with the empirical image dataset.

Synthetic Synthetic→Empirical Empirical→Synthetic Empirical

Fig. 3: Image-to-image translation examples using Cycle-GAN. Source images prior translation are shown in the outer
columns; synthetic images (left) and empirical images (right). The second column shows translated synthetic images to
empirical ones and the third column shows empirical images translated to synthetic ones.
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translation from empirical to the synthetic domain is shown
in the third column.

The color distributions for each class for the synthetic,
empirical and synthetic!empirical translation are shown
in Figure 2. The corresponding correlations between the
empirical images and the synthetic or synthetic!empirical
images are shown in Table I.

V. DISCUSSION
Qualitative evaluation of the results subjectively showed a

remarkable feat of translated synthetic images to empirical
looking images and vice versa. Notably the scattering of
illumination and color of each plant part were converted real-
istically. It appears the model learns to distinguish plant parts
without any supervised information, as often the (partially)
ripe and unripe fruit are translated to the other domain with
altered maturity levels. A difference in camera focus seemed
translated properly, indicating that local features (e.g. edge
blur and texture) can be mapped.

Artifacts do arise however, especially the translation to
overexposed area’s like sunshine or fruit reflections. The ex-
planation might be that the model cannot generate this infor-
mation correctly because information beyond the maximum
range of the image was previously collapsed into a single
the maximum value (e.g. 255) of the image. Furthermore, a
faint checker-like texture seems to have been added to the
translated local textures.

Larger morphological features (e.g. plant part shape and
their geometry) were not translated, indicating a limitation
of the Cycle-GAN approach. This suggests that the source
synthetic data should be geometrically highly similar to the
empirical situation, for a realistic translation to succeed.

If the translated images are later to be used for supervised
learning, the morphological structure should be retained
however. This because the underlying ground truth cannot
be translated correspondingly, as no supervision is used in
Cylce-GAN.

The method is not suited when one image set contains
additional parts absent in the other set, e.g. the inclusion of
a suction cup in our earlier experiments.

In Figure 2 the translation effect on color distribution can
be seen for each plant part and background. Quantitatively,
the mean correlation of the color distributions increased of
the synthetic data with the empirical data prior (0.62) and
post translation (0.90), confirming our hypothesis that color
difference post translation with the empirical data is reduced.

VI. CONCLUSION
This work contributed to the field of agricultural robotics

by providing a method for optimising realism in synthetic
training data to improve state-of-the-art machine learning
methods that semantically segment plant parts.

Our hypothesis that dissimilarity between synthetic and
empirical images can be reduced by using adversarial gener-
ative networks (e.g. Cycle-GAN) has been confirmed qualita-
tively and quantitatively by increasing the color distribution

correlation with empirical images prior and post translation
of synthetic images.

Future research will investigate the impact on learning
with empirically translated synthetic images. Due to the
improved realism, it might become feasible to circumvent
the need of any manual annotation of empirical data by
solely bootstrapping on translated synthetic data, without the
requiring empirical fine-tuning.
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