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Summary

Stricter legislation on nutrient removal in wastewater treatment requires improved performance
of activated sludge processes. The aim of this thesis is to study possible performance
improvements of activated sludge plants for nitrogen removal through application of advanced
modelling and control techniques and to develop methodologies to achieve improved operation.
The emphasis is on continuously operated carrousel systems and pre-denitrification plants,
which are the most important systems in The Netherlands. Different topics are addressed along
successive steps in control system design, namely definition of the control goal, plant modelling
and identification and controller design.

An inventory of the literature reveals that insufficient insight exists in the relationship between
legislation and control goals. Artificial, indirect and vague control goals are applied that lead to
time-consuming trial-and-error design procedures and that complicate judgement of particular
controller designs. The availability of advanced modelling and control techniques argues to
develop straightforward, optimisation-based controller design procedures to close the gap
between legislation and controller specifications. Such a so-called analytic design procedure is
characterised by mathematical modelling of goals, disturbances and plant and application of
mathematical optimisation, where qualitative goals for activated sludge process operation are
translated into formulation as (multi-criteria) optimisation problems. Trade-offs and selection of
system boundaries must be carefully selected for an adequate goal definition.

Application of an analytic procedure for control system design requires reliable dynamic plant
models, amongst others for control system evaluation. Modelling and identification of activated
sludge plants is studied, focusing on Activated Sludge Model No.1 (ASM1) that describes the
biological reactions in the plant. For accurate prediction of plant behaviour, calibration of
ASM1 model parameters is required. However, still no clear, standard procedures for this task
exist. An identifiability analysis is therefore carried out to reveal if sufficient ASM1 parameters
can be uniquely estimated from a typical, realistic set of full-scale input/output measurements.
A combined criterion for practical identifiability based on the determinant and the condition
number of the so-called Fisher Information Matrix proves effective to detect identifiable
parameters. Local and global identifiability analysis is carried out on a particular plant assuming
perfect knowledge of the transport model. The results show that input/output measurements do
not allow unique estimation of all required ASM1 parameters and that additional information is
required. One such test to obtain additional information, namely for determination of
biodegradable COD, an important quantity in ASM1 modelling, is refined and experimentally
tested.

For identification in model-based control and for controller design, direct application of the full
ASM1 is less suited, due to its size, identifiability problems and stiffness. Model order
reduction by timescale separation with singular perturbation theory is therefore studied. Three
procedures to test whether timescale separation through singular perturbation is possible are
proposed, namely timescale estimation, direct scaling and analytical scaling. They are tested on
a relatively simple model system. The timescale estimation procedure proves a very helpful tool
in model reduction. It is more straightforward to apply than eigenvalue analysis, because it
avoids an ambiguous state-to-eigenvalue association and it provides an error analysis. The
analytical scaling procedure provides insight into the cause of time scale multiplicity. It is
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successful only in a limited number of cases, however and is less generally applicable. The
direct scaling procedure is not generally applicable.
For the test to determine biodegradable COD mentioned above, a reduced first-order model is
derived by applying a quasi-steady-state assumption. The reduced model provides valuable
insight, as well as quantitative relationships required for interpretation of this test.

The next step in control system design is control structure selection and the actual controller
design. Control structure selection includes input/output selection (the selection of sensors and
actuators) and controller configuration (their interconnections).

For input/output selection in activated sludge process control, a basic model analysis
probably suffices once a correct selection of controlled variables has been made. Selection of
controlled variables is more difficult. A possible methodology for their selection employs the
minimum singular value of the plant transfer matrix, using a model such as ASM1. With
respect to control configuration selection, several interactions occur in the activated sludge
process. The need for non-interacting control from the perspective of the final control
objectives remains to be established, however.

The actual controller design, especially the control law selection, is studied with Model
Predictive Control as a prototype control technology. MPC performs model-based optimisation
on-line, including feedback, and is best suited to deal with realistic optimisation problems
under constraints. Linear MPC with constraints is applied to a pre-denitrification plant model
and a carrousel model, which both are continuously operated systems. In both systems, stability
problems occurred, caused by model mismatch. The results show that MPC with a nonlinear
internal model is better suited for economic operation as the internal model can cope with a
larger operational range. Moreover, the time-varying characteristics of the activated sludge
process argue to include adaptation. To study the need for nonlinear and adaptive control, MPC
robustness against state vs. parameter uncertainty is investigated on a simple model using a
structured uncertainty description. The results show that state uncertainty has a larger effect
than parameter uncertainty. Consequently, nonlinear control development should be given
priority over parameter adaptation. However, these conclusions are drawn with caution, because
the robustness analysis results are conservative.

At the current state-of-art in activated sludge modelling, one should avoid absolute quantitative
conclusions when employing models tuned with existing calibration strategies. These do not
yield unique parameters, so the physical interpretation of parameters is unclear and
consequently prediction accuracy is limited. ASM1 calibration needs further development, as
do transport models development and their calibration, especially for distributed systems such
as carrousels.

Despite of this, models such as ASM1 are most helpful tools in developing
straightforward controller design procedures. In combination with mathematical optimisation
techniques, they provide a reference point for achievable performance and allow unambiguous
evaluation of the effect of all design steps and of model uncertainty on overall process
performance. Thus, modelling and optimisation are invaluable for improving process
performance and for deciding on suitable control strategies.
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Chapter 1  Introduction

‘What is your opinion? What modifications should we make to let our largest treatment plant comply
with the new standards on effluent nitrogen? Should we extend the plant volume or can we save money
by installing only an ammonia sensor that are claimed to be reliable now? Or should we apply these
advanced, multivariable model based control schemes this control engineer presented today?’ asked
the manager of the Water Board Central Research office on returning from the workshop on
Monitoring and Control for Nutrient removal from Wastewater. The chief process engineer replied:
‘We have not yet studied all the alternatives, but the simulations up till now with the calibrated plant
model show that DO control based on ammonia does quite a good job in several cases. However,
effluent nitrate incidentally becomes very high, so we are still working on the values for the ammonium
setpoints for the different influent scenarios. We are not sure however how certain the predictions with
the calibrated model are under the extreme weather scenarios’.

This fictive dialogue illustrates several problems typical to present practice of wastewater
engineering, which are the subject of this thesis. The thesis deals with mathematical modelling
and process control of activated sludge plants for domestic wastewater treatment, with
emphasis on nitrogen removal. This introductory chapter sketches the impact of the more
stringent legislation on wastewater treatment technology, identifies the need for modelling and
control and indicates some important scientific and technical developments that stimulate
progress in both areas (Section 1.1). Then, the problem statement and the scope of the thesis are
formulated (Section 1.2), followed by the research methodology (Section 1.3) and the research
delineation (Section 1.4). The problem statement will be specified according to the major steps
in control system design. The structure of the thesis is outlined in Section 1.5.

1.1 Need for dynamic modelling and control of activated sludge plants

1.1.1 History of and introduction to wastewater treatment
In the industrialised, western society, wastewater treatment has become a prerequisite to
maintain satisfactory surface water quality. This is largely a consequence of the historical
development through which sewers have become the predominant sanitation system,
transporting waste to surface water. In the 19th century, industrialisation and urbanisation gave
rise to a dramatic increase in population density and lack of proper sanitation led to several
epidemics in different countries. After the Great Plague in London in 1857, the British
government decided to use water to transport the pathogen containing waste from the cities to
the sea, with the introduction of water closets and sewers (‘seawards’). In the decades after the
introduction of the London sewer system, in many western cities sewer systems were
constructed and became favoured over other competing sanitation systems, such as the Liernur
vacuum system in several Dutch and German cities, and barrel collection systems e.g. in
Sweden, Germany and The Netherlands (Oremus 1990, Lange and Otterpohl, 1997).

The increased pollution load to surface water after the introduction of sewers led to a severe
deterioration of water quality in many surface waters. In Table 1.1, the most important groups
of pollutants in domestic sewage are indicated (Metcalf & Eddy, 1991), together with effects on
surface water quality, and an indication of the associated time scale of the effects (Lijklema et
al., 1993, Schilling et al., 1997). It should be noted that this table applies to domestic
wastewater. Significant industrial discharges into the sewer may have a strong influence on
wastewater composition, while the nature of the pollutants is very industry specific. For
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industrial wastewater, source control is the preferred solution, and industrial wastewater is not
considered further in this thesis.

       Table 1.1: Pollutants in domestic wastewater and effects
Pollutant group Time scale Effect on surface water
Solids Acute/ Aesthetic
Organic material Delayed Oxygen depletion through microbial oxidation
Ammonia Toxic

Oxygen depletion through microbial oxidation
Pathogens Hygienic
Nutrients (N, P) Accumulating Eutrophication leading to algal blooms
Organic micropollutants Ecotoxic
Heavy metals Ecotoxic
Chlorides Ecotoxic

In the first half of the 20th century, many rivers, streams and other surface waters were so
heavily polluted that they could be qualified as stinking open sewers (Dirkzwager and Kiestra,
1995). Mainly acute problems from solids and organic material became manifest. The naturally
occurring ecosystems had been seriously distorted and in many cases normal aquatic life had
almost disappeared as a result of oxygen depletion due to biological oxidation of organic
compounds. In addition, stench resulting from anaerobic conditions was frequently a problem.

It took until the second half of the 20th century before legislation on wastewater
treatment became effective in most western countries. The focus was initially on reduction of
acute problems, especially the reduction of oxygen depletion problems through removal of
biodegradable organic compounds, and, to a lesser extent, ammonia. In The Netherlands, the
Law on Surface Water Pollution (WVO) became effective in 1970.
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Figure 1.1: Installed sewage treatment capacity in The Netherlands. In 1970, the WVO became
effective (Dirkzwager and Kiestra, 1995). Biological treatment is applied most frequently.

(Capacity is expressed as M p.e., millions of person equivalents)

Because of legislation, over the past few decades wastewater treatment has been introduced on
a large scale. In terms of treated raw material, wastewater treatment can now be considered the
largest process industry, with an average flow of approximately 40⋅106 m3 being treated daily in
Western Europe (Vanrolleghem, 1994). Sewage treatment is accomplished most economically
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by biological oxidation, and the activated sludge process with its variants is the most commonly
used process. Figure 1.1 illustrates the progress of different treatment technologies in The
Netherlands over the past decades, which shows the predominance of biological treatment.
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Figure 1.2: Archetypal flow scheme of conventional activated sludge plant

Figure 1.2 shows an archetypal flow scheme of an activated sludge plant. In the aeration tank,
air is mechanically imparted, and different types of micro-organisms in the so-called activated
sludge oxidise pollutants to less harmful compounds whilst producing new biomass. So-called
heterotrophic bacteria oxidise carbonaceous organic compounds to carbon dioxide and
autotrophic bacteria partially oxidise ammonia to nitrate, a process referred to as nitrification.
After biological treatment, the activated sludge is separated from the wastewater in the final
clarifier. The treated wastewater is disposed into the surface water and the sludge is partly
recirculated to the activated sludge tank and partly wasted as excess sludge.

The process scheme depicted in Figure 1.2 shows only the biological treatment of a
typical wastewater treatment plant. In general, wastewater treatment also includes mechanical
treatment to remove floating and settleable solids as a first step and other operations such as
sludge treatment and chemical treatment. Several modifications of the conventional activated
sludge system are described in Chapter 2.

1.1.2 Legislation with respect to nutrients and biological nitrogen removal
Over the past decades, also long term effects resulting from eutrofication of surface water as a
result of nutrient discharges became manifest. Occurrence of elevated levels of nitrogen and
phosphorus in various chemical forms gives rise to algal blooms, which cause oxygen
depletion, odour problems, aesthetic problems (green water), excretion of toxins and serious
disturbance of aquatic ecosystems.

Legislation with respect to nutrients on a European level became effective in the late eighties.
Initially, the Northsea Action Plan and the Rhine Action Plan in 1987 aimed at an emission
reduction of 50 % in 1995 compared to 1985. The EC Guideline ‘Urban Wastewater’ in 1991
imposed a further reduction of N and P by 75% at the end of 1998. In some countries, nutrient
removal had been started earlier; e.g. in Sweden, where P removal started in the early seventies
(Olsson et al., 1998).

Phosphorus removal can be accomplished relatively simply in existing wastewater
treatment plants by adding a chemical precipitation step1. Consequently, in The Netherlands the
75 % removal demand with respect to phosphorus was met in 1995 (Hofstra and Leentvaar,
1995, Gaastra at al., 1996).

                                                
1 Chemical precipitation has the disadvantages of introducing chemicals into the environment and increasing sludge
production, whilst P removal can also be achieved biologically. Eventually, biological P removal may become the
preferred option as it is already at some Danish plants (Olsson et al., 1998).
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Upgrading plants for nitrogen removal on the contrary is more difficult to accomplish. Like
conventional treatment, economical nitrogen removal is achieved biologically, and proceeds in
two steps. The first step is nitrification (Eq. 1.2). This process requires an aerobic environment,
that is, presence of abundant molecular oxygen. Under aerobic conditions, also organic
carbonaceous material is biologically oxidised (Eq. 1.1). A commonly used total measure for
organic compounds in wastewater is the Chemical Oxygen Demand, COD, which is a
standardised method for wastewater characterisation. The second step is reduction of nitrate to
molecular nitrogen, referred to as denitrification, requiring abundant COD (Eq. 1.3). Here, the
environment is anoxic, that is, without oxygen, with nitrate. The biological processes can be
written as follows.

Step 1: Aerobic environment:

   COD removal: ++→+ OHCOOCOD 222 activated sludge  (1.1)

   Nitrification: +−+ +→+ H2NOONH 324  (1.2)

Step 2: Anoxic environment: (denitrification includes COD removal)

   Denitrification: +↑→+ +−
23 NHNO+COD  activated sludge  (1.3)

As an example, Figure 1.3 shows a scheme of a predenitrification system, a frequently applied
system for biological nitrogen removal. The influent enters the anoxic reactor for maximal
COD utilisation for denitrification, and a high recirculation ratio is required to provide
sufficient nitrate for denitrification. Other systems for nitrogen removal are discussed in Section
2.2.
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Figure 1.3: Scheme of predenitrification plant

1.1.3 Need for control
In comparison with conventional activated sludge plants, nitrogen removal plants are more
complicated. More process steps are present, and several additional conditions have to be met
for successful N removal. The interdependent, interacting process steps must be mutually tuned,
while the steps proceed under different rates. Nitrification is the slower step due to the low
growth rate of nitrifying organisms and exhibits a stronger temperature dependency. Moreover,
the COD/N ratio must be sufficiently high (>7) and sufficient nitrate must be available for
successful denitrification.

Consequence of this increased process complexity is that the process is much more vulnerable
to disturbances. The disturbances in sewage treatment are in general so large, that the activated
sludge process must be regarded to be in unsteady operation. The main disturbances are due to
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large variations in flow, load and temperature. Several factors contribute to these variations.
Flow and load typically exhibit a diurnal pattern, because of variations in water consumption in
the households. In addition, many sewers are of the mixed type, where urban drainage and
urban sanitation are combined in one system. For example, in The Netherlands, approximately
90 % of the sewers is of the mixed type (Oremus, 1990). Consequently, enormous flow and
load variations may occur during rain events, occasionally giving rise to plant overloading with
possibly serious plant malfunction. In addition, seasonal temperature variations occur, because
of seasonal influence on influent temperature and ambient temperature. As the rates of the
various biological processes exhibit a very different temperature dependency, and especially
nitrification decelerates at low temperatures, temperature variations constitute a significant
disturbance factor to the nitrogen removal process.

Because of increased process complexity and vulnerability, upgrading for nitrogen removal is
much more involved than for phosphorus removal, both economically and technically.
Upgrading existing plants requires significantly higher investments. For complying with the
new standards in The Netherlands, a required investment between 1.5 and 2 Billion Dutch
Guilders has been estimated, partly for building new plants, but mainly for upgrading existing
plants, with operation costs amounting up to approximately 300 Million Dutch Guilders yearly
(Gaastra et al., 1996).

Wastewater treatment plant design has become more difficult. In the past, wastewater
treatment plants were designed as continuous processes in steady-state operation. For nitrogen
removal processes, dynamics and operation require much more consideration in the design
stage. In general, process control is considered a prerequisite for reliable operation. Moreover,
because of the enormous investment costs involved, extensive plant optimisation through
process analysis and improved process control is a very interesting option, because of possible
savings when compared to costly extension of the plant volume (Gaastra et al. 1996).

Summarising, stricter demands on effluent nutrients require a more complex treatment process,
which is more vulnerable to the large variations that are typical in sewage systems. Process
dynamics require both dynamic modelling to provide insight in process performance under
dynamic conditions and process control to achieve reliable and improved process operation.

1.1.4 Stimulation of control
Thus, Instrumentation, Control and Automation (ICA) of wastewater treatment plants are
becoming increasingly more important.

    Table 1.2: Identified bottlenecks, and stimulating developments for increased ICA
Bottleneck Stimulating development
- insufficiently strict requirements stricter regulations
- insufficient economic motivation for wwtp discharge levies, high investment costs
           automation (non-profit process)       for upgrading
- expensive sensors (investment and/or maintenance) stronger economic incentive for ICA
- inadequate instrumentation:  lack of reliable sensors new, robust sensor types
- plant constraints: actuators not sufficiently suited for more emphasis on control in
          control       design phase
- lack of process understanding increased understanding through

      modelling
- education/training of operators decision support systems and telemetry
- communication modelling, computer visualisation
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Table 1.2 summarises identified bottlenecks for applying enhanced ICA in wastewater
treatment, which has been observed to lag behind the chemical process industry (Olsson, 1993;
Vanrolleghem, 1994; Jeppsson, 1996). In the table, factors that currently stimulate increased
ICA are also indicated.

Stricter regulations and stronger economic incentive through forced investments and discharge
levies form a major motivation for enhanced ICA, as indicated above. Maybe equally important
have been several scientific and technical developments stimulating ICA in wastewater
treatment:

•  Mathematical modelling of activated sludge processes. 
A milestone in this area has been the publication of the so-called IAWQ Activated Sludge
Model No. 1 (ASM1) in 1987 (Henze et al., 1987). This model has now become accepted
internationally and has significantly stimulated the use of mathematical modelling and
dynamic simulation, which are now becoming routinely used by wastewater engineers and
consultants since commercial software for dynamic simulation with the model has become
available. In The Netherlands (STOWA 95-01), standardisation has also stimulated
application of modelling. Likewise, several clarifier models describing the sludge
sedimentation behaviour (Ekama et al., 1997) are becoming commonly used.

•  Sensor development. 
While until recently lack of sensors was a major obstacle for process control in wastewater
treatment, nowadays sensors are available for many important process variables. Examples
are sensors based on flow injection analysis for ammonia, nitrate and phosphate, which
have become sufficiently robust and reliable for use in practice. This is recognised both
internationally (Wacheux et al., 1993; Vanrolleghem, 1994; Lynggaard-Jensen and
Harremoës, 1996) and in The Netherlands after several field tests (Mulder, 1993; van
Dalen, 1993). Another example are sensors based on respirometry, which monitor the
biological activity in the plant (Spanjers, 1993; Vanrolleghem, 1994; Spanjers et al. 1998).
Several other interesting sensor types are available or under development.

•  Systems Engineering, Control Engineering and related scientific fields. 
Several promising control methods have been developed over the past decades. As an
incomplete list, we mention digital control, optimal control, adaptive control, nonlinear
control, Model Predictive Control, robust control, expert system control and fuzzy control,
and combinations of these methods. In addition, there has been important progress in
several other related fields relevant for modelling and simulation, such as systems theory
providing several methods for analysis of dynamical systems, linear and nonlinear system
identification for extracting model parameters from experimental data (Eykhoff, 1974;
Ljung and Söderström, 1983; Ljung, 1987), experimental design methods for efficient
experimentation (Himmelblau, 1970; Zarrop, 1979), methods for model structure selection
and model discrimination, identifiability theory, singular perturbation theory (Kokotovic et
al., 1986) for model order reduction and several other order reduction methods.

•  Computer hardware and software and Numerical Mathematics. 
Computing hardware has shown an amazing progress with the tremendous miniaturisation
in microelectronics. This in turn motivated development of numerical methods, amongst
others for optimisation (Gill et al., 1981; Fletcher, 1987), integration (e.g. Shampine, 1994)
and linear algebra (Dongarra et al., 1979; Golub and Van Loan, 1983). The availability of



SECTION 1.2  PROBLEM STATEMENT AND SCOPE OF THE THESIS 7

cheap computing power and availability of powerful numerical methods in high level
languages and general-purpose modelling and simulation environments have greatly
influenced engineering science including wastewater engineering. Nowadays, application
of mathematical models and controllers of considerable complexity to real-life problems is
possible.

Summarising, both an economic pull through legislation and a technology push by availability
of several tools are stimulating increased instrumentation, control and automation in wastewater
treatment.

1.2 Problem statement and scope of the thesis
The developments described above stimulated the scientific and professional community to put
significant efforts into the area of modelling and control of activated sludge plants over the past
few years. This thesis also aims at contributing to improvement of wastewater treatment in
nitrogen removal plants, which is formulated in the following problem statement.

Problem statement:
Study possible performance improvements of operation of activated sludge processes for
nitrogen removal through application of advanced modelling and control techniques and
develop methodologies to achieve improved operation.

The problem statement relates to several relevant aspects in modelling and control system
design. These aspects are systematically discussed by considering the different steps or stages
that can be distinguished in control system design, which are shown in Figure 1.5. In the
discussion, the general closed loop system set-up, which is shown and explained in Figure 1.4,
is used.

Figure 1.4: General closed loop control system set-up (Boyd and Barratt, 1991)
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This set-up is now commonly used in modern control. The exogenous inputs w include all
external inputs, including reference trajectories and setpoints, disturbances, but excluding
manipulated variables. In w also constraints are included. The actuator inputs u coincide
with the manipulated variables of the plant, and are exactly the signals leaving the
controller. The measured outputs y are the process variables which are actually measured
by sensors and input into the controller. The regulated outputs z include all variables
considered important, which can be the measured outputs, but also the actuator inputs or
other variables of interest.



CHAPTER 1  INTRODUCTION8

Stage Action Refers to

1 Definition of the goal w, z
2 Modelling of the plant G
3 Input/output selection u, y
4 Control configuration K
5 Controller design K
6 Controller evaluation Closed loop system with plant model
7 Implementation, testing and commissioning Closed loop system with plant

Figure 1.5: Control system design scheme

The different aspects of the problem statement will now be discussed along the successive steps
of the control system design scheme and selected issues for research will be indicated2.

1. Goal definition
As the starting point in control system design, usually there is the important and nontrivial task
to translate qualitative, often poorly defined goals into quantitative, clearly defined control
system specifications. This step is most important as it determines subsequent steps, including
the evaluation of the designed system where achieved performance is evaluated against required
performance (see below).

In wastewater treatment, legislation has to be translated into operational goals, which in
turn must be translated to control system specifications. Several causes complicate
straightforward control goal specification. For example, a given legislative framework can be
interpreted into different operational goals. Moreover, the choice of controlled variables is
relatively complicated, as several sensor types are available and the selection of type, number
and location is nontrivial.

Because of the importance and difficulties of control goal formulation, this thesis aims
to contribute to a more straightforward control system design approach by analysing and
systemising goal formulation.

2. Modelling of the plant
Modelling of the plant is the second important task in control system design. In this thesis,
‘model’ is restricted to ‘mathematical model’. This is considered a logical choice in view of the
currently available knowledge in mathematical form, while we realise that also linguistic and
other models can be of value for control.

The goals to be achieved in the respective stages of control system design require
models of different complexity. Consequently, modelling does not completely precede but
rather is part of (several of) the other stages.

In the controller evaluation stage, physical (or mechanistic) nonlinear models of high
order are usually applied. ASM1 is the state-of-art model for activated sludge processes. To
reliably simulate the real plant, the model must be accurately calibrated. This also holds true for
other important applications such as process analysis, for example to decide whether operation
must be improved. Considerable research activities have been devoted to ASM1 calibration,

                                                
2 Control system design is not a straightforward procedure but rather an iterative learning process. Results at any of
the stages may give rise to redefinition of preceding stages. Especially, modelling and process analysis will help to
find clear opportunities for process improvement and to state well-defined control system specifications, whereas
controller design and evaluation may indicate process and model limitations and lead to control system
respecification or model improvement.
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and it has become clear that good calibration is a difficult task, amongst others due to the
identifiability properties of the model, and needs further study. For these reasons, modelling
and identification of wastewater treatment plants has been chosen as a research topic in
this thesis.

For controller design, the full ASM1 model is too complicated and models of lower
complexity are required. The degree of complexity including the model structure and order of
these simpler models depend largely upon the particular methods selected for these stages. In
several cases, models applied at later stages are derived from rigorous models used at preceding
stages. For this reason, and because of the identifiability problems with the full model,
development of reduced models for the purposes of control and observer-based process
monitoring is an important task. Therefore, model reduction has been selected as another
topic in this thesis.

3. Input/output selection
Control structure design consists of control configuration and input/output selection. In the
control literature, much more attention has been paid to controller design than to control
structure design. Nevertheless, a wrong control structure may put fundamental limitations on
performance, which advanced control cannot overcome.

In input/output selection, one decides upon the number, place and kind of manipulated
variables u and measured variables y.  In addition, decisions with respect to the control scheme
can be part of this step, such as for example selection of the number of degrees of freedom (1-
DOF or 2-DOF) (van de Wal, 1998). The possible set of choices grows combinatorial with the
number of candidates for u and y. Therefore, in theory the set is huge if the number of
candidates is large. In practice, heuristic guidelines may significantly reduce the number of
candidate choices, but typically, a large number remains. For large sets, it is impossible to
design and test all possible combinations, and methods to select good candidate choices are
required.

Recently, several new types of sensors have become available improving the ability of
directly measuring wastewater quality. This increased the number of candidates for measured
variables y for control. At the same time, the possible types of manipulated variable increased
in wastewater treatment systems for nitrogen removal. In principle, the number of possible
candidate IO sets is therefore very large. Therefore, the need for IO selection methods in
wastewater treatment is studied.

4. Control Configuration
At this stage, one decides upon the structural interconnections between y and u. A MAMS
(Multiple Actuator, Multiple Sensors) system does not necessarily lead to a MIMO (Multiple
Input, Multiple Output), completely centralised design. Decentralised control is easier to design,
implement and maintain than fully centralised control. A trade-off must be made between costs
of fully centralised control against performance loss when using fully decentralised control.
Partially decentralised control often offers an attractive alternative. An example of a partially
decentralised controller (one SISO loop and one 2x2 MIMO loop) is the following system.
Here y1 is controlled by u1, and y2 and y3 are controlled by u2 and u3 (x means interconnection, 0
means no interconnection).
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In wastewater treatment plants for biological nitrogen removal, several interactions occur.
Nevertheless, relatively little attention has been paid to application of multivariable control.
Therefore, we will explore the need for centralised control.

5. Controller design
This stage includes control law selection, modelling for control, and controller tuning. With
respect to the control law selection, it has been indicated above that many control methods are
available. Few of them, however, are being applied to the activated sludge process. The
activated sludge process is nonlinear, time variant (because of changing parameters),
multivariable, stiff, uncertain and ill-defined, subject to large disturbances and relatively slow.
Therefore, one might expect that application of advanced control techniques developed for one
or more of these characteristics might lead to advantages over classical control. Thorough
comparative studies addressing this question yet have to be done. Therefore, obtaining more
insight into possible improvement by advanced control techniques is an aim of this thesis
work3.

Controller tuning often requires several iterations before a satisfactory tuning is
achieved. This should be avoided through a straightforward design procedure. It is a goal to
contribute to a systematic design methodology, especially through clear goal definition and
application of model based and optimisation-based type of controllers.

It must be assessed how reliable control is compared to expensive concrete hardware. In
view of the listed process characteristics, control system robustness under uncertainty is an
important requirement. Therefore, control system robustness is studied.

6. Controller evaluation
The closed-loop performance of the designed controller is evaluated on a simulated plant before
implementation on the real plant. Typically, different input sequences are applied, and
robustness tests are carried out. Especially the evaluation stage may lead to re-iteration through
one or more preceding design stages. In wastewater treatment, typically ASM1 and related
models are used for simulation of the activated sludge part, eventually combined with other
mechanistic models for other process units, such as the clarifier or sludge treatment.

This thesis contributes to control system evaluation by studying control goal
formulation, to provide a clear performance measure for evaluation. Moreover, calibration of
ASM1 to obtain reliable mechanistic models for the evaluation stage is studied.

7. Implementation, testing and commissioning
Finally, the designed controller is implemented on the real plant, together with related
hardware, like sensors, actuators, cabling and processors. Often, retuning is required, depending
upon the accuracy of the plant models applied at the various design stages. After successful
testing against various criteria, such as reliable and robust operation, the designed controller can
be commissioned for daily operation. It can then be evaluated for improved performance against
the defined goal in the real plant. The implementation stage is not addressed in this thesis
however.

1.3  Research methodology
The problem statement is approached by investigating the different stages of control system
design discussed above. For each design stage, a state-of-art assessment is carried out. The aim
                                                
3 The ultimate goal of the research in this thesis is improved plant operation; to achieve this goal efficiently,
increased insight is an important prerequisite and thus constitutes a valuable product in itself.
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is to obtain insight in a broad sense, rather than focussing on one particular technique or design
aspect. For the modelling and controller design stages, a more extensive study is carried out as
summarised below, together with a brief description of the methodologies applied.

Modelling
Modelling methodology of biotechnological processes is summarised to put into perspective
modelling of activated sludge plants with Activated Sludge Model No. 1. For identification of
ASM1 to describe existing plants, strategies in the literature are critically assessed.
Identification of kinetic and stoichiometric parameters are studied in more detail in order to
determine what parameters can be estimated from input/output data and which have to be
determined separately. This is done by testing different criteria for parameter identifiability of
the model, all based on the Fisher Information Matrix. Numerical studies and full-scale
experiments are used to test the results obtained.

Model reduction focuses on order reduction through timescale separation. Singular
perturbation theory is studied on a simple model system to obtain better understanding of
timescale properties of ASM1 and to develop a systematic reduction procedure. A quasi-steady-
state assumption is applied to obtain a specific ASM1 reduction for interpretation of a batch
test.

Control
Studies with respect to control are based on ASM1, assuming that this model reflects typical
activated sludge process behaviour, at least in a qualitative sense. Linear MPC with input
constraints is applied to study possibilities and limitations of advanced, model-based control,
starting with linear control.

Controller robustness is tested by simulating the nonlinear plant models for different
influent scenarios. In addition, stability robustness of MPC controlled plants is analysed with a
simple model system, using the structured singular value. For this purpose, a structured
uncertainty model is developed.

1.4 Research delineation
The focus of this thesis is on nitrogen removal. Phosphorus removal is not considered for
reasons discussed in Sections 1.1.2 and 1.1.3. The emphasis is on continuously operated
carrousel systems and pre-denitrification plants, which are the most frequently applied systems
in The Netherlands.

With respect to modelling, emphasis is put on the application of ASM1, including
model tuning and model reduction. Only the standard ASM1 is used; dialects of ASM1 or more
recently developed models such as ASM2 (Henze et al., 1994) and ASM3 (Gujer et al., 1999)
are not, with the exception of the dialect of the Simba implementation (Ifak, 1995). This dialect
is used in the simulations in Section 5.4. In the study on model reduction, a procedure for
reduction is developed. The procedure was not applied to ASM1 reduction.

The study is restricted to the biological process. It does not cover sedimentation or plant
wide-control. Consequently, no sedimentation model calibration is considered.

With respect to control, model-based control is chosen as the preferred method. This choice is
motivated by the current state-of-art of mathematical models and control techniques.
Consequently, no rule-based systems such as expert systems or fuzzy control are studied. The
study is restricted further to application and analysis of linear MPC with constraints. This
provides a good starting point for control, which can be extended to nonlinear MPC.
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Focus is on control of the nitrogen concentrations. This requires good control of the
dissolved oxygen (DO) concentration. In this thesis, however, DO control will not be
considered in detail, as many studies have already been carried out on this topic. Instead, it will
be assumed that the local DO controller is perfect, e.g. when applied in a cascade control
configuration.

 The control goal formulation and model calibration that are studied are also relevant for
control system evaluation. Other aspects of control system evaluation, such as deciding on
suitable scenarios for testing the designed controller, which is not a trivial task, are not studied.

Controller implementation, testing and commissioning are not part of this study. Control
studies carried out here are restricted to simulation studies.

The focus of this thesis is on operation. The design phase is very important, as a poorly
designed plant will exhibit intrinsic limitations that cannot be compensated for by advanced
control. Dynamics and control must become an intrinsic part of process design of wastewater
treatment plants to avoid such performance limitations by poor design. Although design is not
the focus here, dynamic models and structured control design will also be helpful in plant
design.

1.5 Structure and main contributions of the thesis
The thesis structure follows largely the stages of control system design described in Section 1.3
and is outlined in Table 1.3.

             Table 1.3: Thesis structure
Step Chapter
1. Goal 2: Control goal formulation
2. Modelling 3. Modelling , model calibration and

    identifiability
4. Model reduction

3. IO selection
4. Control configuration
5. Controller design

5. Controller design

6. Controller evaluation 2: Control goal formulation
3: Model calibration
5: Controller design

7. Controller implementation, testing
    and commissioning

Not studied

All chapters contain an introduction, state-of-art assessment of the literature, discussion and
conclusions. Chapter 3, 4 and 5 are more elaborate and cover the research issues described in
Section 1.3. Most new contributions of this thesis are within these chapters. Besides these new
contributions, the integrated coverage of different aspects through the control design scheme is
believed to be a valuable contribution in itself, as is the link between modelling and control
through analysis of model (parametric) uncertainty.

The main topics and contributions of this thesis are as follows:

Control goal formulation is discussed in Chapter 2. It is analysed why goal formulation for
control of wwtp’s is nontrivial. Formulation as optimisation problem is presented as a
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framework for control system specifications. A proposal for cost minimisation is given as well
as directions to develop an integrated approach for the complete wastewater system.

Chapter 3 deals with mechanistic modelling for controller system evaluation. Modelling of
wwtp’s and calibration of Activated Sludge Model No. 1 (ASM1) are discussed. A procedure
for detecting identifiable parameters is developed. It is applied to determine how many and
which parameters of ASM1 can be obtained from full-scale plants under normal operation. A
procedure using batch tests for determination of biodegradable COD, required in ASM1
calibration, is proposed and experimentally tested.

Chapter 4 focuses on model reduction to obtain reduced models for controller design and as
internal model for model based control. Three procedures to detect timescale multiplicity,
required for reduction by singular perturbation, are studied on a simple model system.

For the batch test to determine biodegradable COD, a specific reduced model of ASM1
is derived. This reduced model provides an analytical relationship as a function of ASM1
parameters for a conversion factor that is required for interpretation of this test.

Control structure design and controller design and evaluation are the topic of Chapter 5. With
respect to control structure selection, a procedure to for input/output selection is suggested.
With respect to controller design, applicability of linear MPC with constraints is studied for two
important types of wastewater treatment plants, a predenitrification system and a carrousel
system. A robustness analysis is carried out on a simple model to distinguish between the
influence of model mismatch due to model parametric uncertainty and due to linearization
errors.

Finally, conclusions with respect to the various aspects of the problem statement are given in
Chapter 6.
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Chapter 2  Control goal formulation for wastewater treatment

‘MPC allows you to operate the process at its quality constraints, which enables more
economical process operation. That is why it is so successful in petrochemical industries, and
that’s why it is interesting to apply to wastewater treatment also’, the control engineer claimed
in his lecture at the meeting of wastewater engineers. During the lunch, a vivid discussion took
place. ‘We should save money by operating exactly at the discharge permits’, the head of the
process department of the Eastern Water Board said, ‘and the law does not demand us to do
more than that’. His colleague of the South-eastern Water Board opposed: ‘I disagree. It is not
our task to make profit. The law only gives an upper limit on discharges, and we must do the
best we can to ensure that this is never exceeded. Quality, not cost, should be our prime
concern and the law demands us to apply the Best Available Technology.’ The head of the
research department of the Eastern Board said: ‘I think that focussing too much on quality
leads to excessive costs. We are currently looking more closely at our discharge goals for
nitrogen and are convinced that we can save considerable energy while achieving even better
total N removal if we put less emphasis on effluent ammonia than we do now.’ ‘That’s
interesting, can you tell me more about the expectations and implications’, asked another
person at the table and the discussion continued for the remainder of the lunch.

Goal formulation for control of wwtp’s is nontrivial and deserves considerable attention of the
scientific and professional community, and therefore this issue is analysed in this chapter. In the
introduction, a framework for systematic control system specification that should facilitate
straightforward control system design is presented. Wastewater treatment systems that are
relevant for this thesis are presented in Section 2.2. Section 2.3 discusses the translation of
legislation on an international level to plant-specific control specifications. An assessment of
the state-of-art of control goals for wastewater treatment in Section 2.4 shows that in current
practice goal definition is rather heuristic, leading to indirect design procedures and suboptimal
solutions. Section 2.5 illustrates the crucial role of trade-offs in operation with several
examples. Section 2.6 proposes possible approaches for rational goal definition as a multi-
criterion problem that enables a transparent trade-off between different objectives, including
costs. Section 2.7 formulates conclusions.

2.1 Introduction
The goal definition is the most important issue in control system design as it determines all
subsequent steps in the design process. In many application areas, qualitative, vaguely defined
goals must be translated into quantitative, clearly defined control design specifications.
Consequently, for successful control system design specification, a good interaction between
engineers from the specific application area and control engineers is required. This also holds
true for wastewater treatment. In wastewater treatment, legislation has to be translated into plant
goals. These in turn must be translated to control system specifications, such as reference
signals, criteria and constraints. Section 2.3 discusses the different steps in the translation
process, which can be viewed as a multi-level water pollution control problem.

Section 2.4 discusses the state-of-art of goals applied in current practice and research of
wastewater treatment plant control. This reveals the following problems in the formulation of
control goals and associated design procedures:
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1. Insufficient insight in relationship between plant goals and control goals: a large variety of
control goals are applied for similar plant goals. For example, for respirometry based
control alone, Spanjers et al. (1998) report a list of 18 controlled variables in 77 references,
most of which for comparable plant goals, namely reliable effluent quality despite
disturbances against reasonable cost.

2. Trial-and-error design procedures: most reported control designs are done by trial-and-error
with typically much iteration leading to time-consuming designs. Even worse, these design
procedures are unable to recognise inconsistent specifications.

3. Insufficiently detailed specification of plant goals: there is a lack of standard, consistent
criteria for evaluating plant performance. Consequently, it is difficult to objectively assess
performance improvement and thus to judge on the success of selected control goals or
particular designs.

Apparently, while a vague, qualitative plant goal is verbally easily defined, its translation into
practically useful specifications is more difficult. As an example of such a verbal goal we cite
(Dirkzwager and Kiestra, 1995): “Maximise treatment efficiency against minimal cost”. If we
analyse this goal formally, it appears to be a contradiction in terms, as it expresses two goals
that cannot be achieved simultaneously: treatment is maximised at infinite costs and costs are
minimised if there is no treatment at all. Imposing constraints on treatment and costs leads to
two extreme possibilities, namely to maximise treatment with given budget on one hand or
minimise cost at given permits on the other hand. Intermediate solutions between these
extremes represent different acceptable trade-offs between cost and quality. Besides this trade-
off between cost and quality, also important trade-offs between other objectives must be made.
Thus, a good trade-off between the different conflicting demands is essential in the translation
of plant goals to control goals and characterises a good control system design.

Concluding, there is a need both for objective criteria for performance evaluation and for
straightforward, systematic design procedures that enable transparent trade-off between
objectives.

The point of view in this thesis is that possible improvements in operation can be assessed
unambiguously through a rational, quantitative design procedure by formulating the design
problem as a mathematical, multi-criterion optimisation problem. In this approach, all plant
objectives and constraints are explicitly formulated in quantitative way. The trade-offs between
different objectives in control system design can then be analysed through mathematical
optimisation. Moreover, formulating all desired system performance objectives as well-defined
design specifications will avoid trial-and-error in the design procedure, will enable a more
straightforward assessment of limits of performance and allow to unambiguously conclude
whether a desired performance can be achieved through (improved) control or not4.

Besides performance specifications, design specifications may include robustness
specifications (against model uncertainty) and control system specifications.

The concept of such a so-called analytic design procedure, discussed in the textbook of Boyd
and Barratt (1991) provides a methodological framework for such systematic design. The
analysis in this thesis is inspired by their work, while the concept is extended to nonlinear
systems on one hand and limited to the application of wastewater treatment on the other hand.

                                                
4 Applying such an optimisation-based approach does not mean that only one optimum or one such formulation
exists. Rather, the approach helps to make decisions more straightforward and transparent.
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Figure 2.1: General closed loop control system set-up (Boyd and Barratt, 1991)

Required for such an analytic procedure are reliable mathematical models of (See Figure 2.1):

1. Design specifications z and references w. These are discussed in this chapter.
2. Disturbance and noise signals w. The influent characteristics must be well

known (amongst others);
3. Plant model G. This is the topic of Chapters 3 and 4.

The availability of well-accepted mathematical models such as ASM1 strongly argues for
abandoning trial-and-error design procedures and applying straightforward analytic design
procedures.

After the analyses and reviews in Sections 2.2 - 2.5, Section 2.6 presents possible approaches to
formulate the control system goal as a cost optimisation problem or as a multi-criterion
optimisation problem.

The emphasis in this chapter is on which goals are to be achieved rather than on how the goals
can be achieved. Different aspects of the ‘how’ are topic of the subsequent chapters5, where
Chapters 3 and 4 will focus on modelling, whereas Chapter 5 will concentrate on how to deal
with optimisation in practice, under model uncertainty and unknown disturbances and with the
optimisation and controller design methods currently available. The aim is to stimulate the
application of a structured design approach rather than providing an exhaustive inventory of
detailed specifications for control of sewage treatment plants.

2.2 Biological wastewater treatment systems
The activated sludge process is by far the most predominant process for sewage treatment.
Several process configurations exist. Those configurations that are relevant for the state-of-art
assessment are discussed here. Biological phosphorus removal is not treated. More details can
be found in Metcalf & Eddy (1991),  Henze et al. (1995) and Jeppsson (1996).

                                                
5 In general, realistic optimisation problems are nonlinear and non-convex, for which the global optimum cannot be
found efficiently nor guaranteed. Frequently, randomised approaches (Vidyasagar, 1997) are applied.  These
methods are also of interest for identification problems and robustness analysis. In Chapters 3, a type of
randomised approach will be applied for global identifiability analysis. The large computational requirements of
nonlinear optimisation put restrictions on problem size. To develop solution strategies for realistic engineering
problems through mathematical optimisation, model reduction is a possible path. Model reduction will be treated
further in Chapter 4.
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2.2.1 Conventional activated sludge systems
In conventional activated sludge plants, the reduction of oxygen consuming compounds COD
and, often partly, ammonia is the main objective. The involved biological processes are written
in  Eqs. (1.1) and (1.2). An archetypal process scheme is given in Figure 1.2.

The process scheme depicted in Figure 1.2 only gives the most essential part of a typical
wastewater treatment plant. Normally, the wastewater is first fed through a grit chamber to
remove crude solids. Then in many cases the medium sized particles sediment in a primary
clarifier. Also important is the waste sludge treatment. In many cases, the sludge is thickened in
a thickener and stabilised in a digestion tank by anaerobic digestion, in which process methane
is produced. Supernatant of the digestion process often is fed back to the aeration tank. This
gives an internal load that cannot be neglected, because the concentrations in this supernatant,
especially of ammonia, are very high.

Several variants and modifications of the conventional activated sludge system exist. In some
cases, the aeration basin is designed as a mixed reactor. More often, however, one tries to
realise plug-flow-like behaviour by making the reactor relatively long or by using several tanks
in series. In some cases the wastewater is introduced at several points in the aeration tank; this
configuration is called step aeration or stepped feed (Metcalf & Eddy, 1991).
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Figure 2.2: Oxidation ditch (top view)

Another variant is the oxidation ditch, developed especially for small wastewater streams by
Pasveer in The Netherlands during the 1950s (Figure 2.2) (Pasveer, 1971). This system was
originally designed for cyclic operation, including a sedimentation phase, so without the need
for a separate sedimentation tank. The oxidation ditch has been applied frequently in the
Netherlands, in most cases however operated continuously with a separate sedimentation tank.

2.2.2 Nitrogen removal
Biological nitrogen removal has been discussed in Section 1.1.2, and a scheme of
predenitrification has been presented in Figure 1.3. Another important system, which is being
applied in many places in the Netherlands, is the carrousel, an example of which is shown in
Figure 2.3.

The carrousel is a modification by a Dutch consulting company (DHV) of the oxidation ditch.
Instead of brush aerators, turbine aerators are being used, which allow using deeper reactors (up
to 4 m) with a large internal recirculation flow (Koot and Zeper, 1972). In the oxidation ditch
and in carrousel systems, oxygen is depleted after some distance from the aeration point,
resulting in part of the reactor being available for denitrification. Therefore, these systems can
be used for nitrogen removal.
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Figure 2.3: Carrousel

The pre-denitrification system and the carrousel system described above are operated
continuously. Several other variants exist were the alternation of aerobic and anoxic conditions
is created not in space but in time. The most important systems are the following. In
intermittent aeration, the aeration is switched on and off intermittently with some interval in the
range of at most a few hours. This way of operation is possible because the hydraulic residence
times are relatively long. In alternating systems, several parallel reactors are operated
alternating in a discontinuous fashion. Examples are the oxidenitro system, a modification of
the oxidation ditch to achieve nitrogen removal, and the biodenitro system, a Danish
modification (Christensen,1975; van den Oever, 1991).

Recently, Lukasse et al. (1998a) compared continuous and intermittent aeration. It would be
interesting to also compare continuous operation (pre-denitrification and carrousels) with
alternating operation (biodenitro systems); this is however not further pursued here.

2.2.3 Inputs and outputs for activated sludge process control
This section lists possible process inputs and outputs for control of wastewater treatment plants.
Table 2.1 summarises possible inputs or manipulated variables for different wastewater
treatment systems.

Table 2.1: Manipulated variables in wastewater treatment
Manipulated variable Conventional N-removal
Influent flow rate Qin (storage) ∃ ∃
Return sludge flow rate Qr ∀ ∀
Internal recycle flow rate Qic pdn
Excess sludge flow rate Qw ∀ ∀
Flow rate to clarifier ∃ ∃
Aeration intensity kLa ∀ ∀
Volume fraction aerobic ∃ pdn
Distribution of aeration ∃ ∃
Phase lengths cari, bdn
Distribution of influent flow α ∃ ∃
Distribution of return sludge β ∃ ∃
External carbon addition ∃
Precipitants to improve sludge sedimentation ∃ ∃

       Legend: ∃ : at some plants, ∀ : at all plants, pdn: in predenitrification systems, bdn: in
       biodenitro systems, cari: in oxidation ditches and carrousels with intermittent aeration

Several indicators exist of wastewater quality and process condition. This paragraph lists the
most important indicators together with methods for their measurement, while Section 5.2 gives
an overview of the quantities that can be measured on-line. Chemical Oxygen Demand (COD)
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is a measure of total organic pollution and is analysed by chemical oxidation. Biodegradable
COD, CODBD, is the biodegradable part. No standardised method exists for its measurement.
One method is to use prolonged BOD tests, which is investigated in Chapter 3.5. The
Biological Oxygen Demand (BOD) is a measure of biodegradable pollution, and is measured by

oxygen consumption in closed bottle tests. Most frequently used is 20
5BOD , which is the BOD

determined after 5 days of incubation at 20°C. For control, short term BOD, BODst, measured
with respirometry, is a better measure of available BOD. Other quantities measured with
respirometry are the maximal, actual and endogenous respiration rate (Spanjers et al., 1998) and
the Total Area Under Curve (STOWA 97-w02). Another measure of pollution is the (volatile)
suspended solids concentration, (V)SS. The sludge concentration is often expressed as Mixed
Liquor Suspended Solids (MLSS). For this quantity, also sensors exist. The ammonia and
nitrate concentration can be measured with sensors besides wet-chemical analysis in the
laboratory. As a cheap alternative for nitrate sensors, sometimes the Oxidation-Reduction
Potential (ORP) is used. Its application relies upon the detection of an inflection point (‘nitrate-
knee’) in a curve of ORP vs. time that indicates exhaustion of nitrate (Charpentier et al., 1991,
1998). Total organic nitrogen including ammonia is measured with the so-called Kjeldahl
analysis, and expressed as Total Kjeldahl Nitrogen, TKN (or NKJ). Sludge sedimentation is
usually measured as the sludge volume index (SVI) in a standardised sedimentation test.

2.3 Legislation and translation to plant goals and control  goals
Water pollution control can be viewed as a hierarchical, multi-level control problem (Figure
2.4), comparable with plant-wide control schemes applied in the (petro-) chemical industries
(e.g. Backx, 1987, Prett and García, 1988, Rijnsdorp, 1991). In this scheme, the different
control levels are associated with different geographic scales (from broad (Europe) to narrow
(via nation to area)) and with different approaches in legislation and goal definition, as well as
with different time scales.

On the highest level, level 6, legislation on a supra national, e.g. European level is formulated.
In Europe, for nitrogen removal a requirement of 75 % removal has been defined. This is
implemented into national legislation, level 5. In this implementation step, political forces and
administrative and economical feasibility considerations play an important role besides
scientific and technical arguments. Consequently, legislation is implemented differently in
different countries6.

In the Netherlands, legislation with respect to nutrients was implemented through two
AMvB’s (Abbreviation of Algemene Maatregel van Bestuur, translated as General Enactment
of Administration). The AMvB N-removal, published in 1992, imposes a maximal effluent total
nitrogen concentration of 10 mg/l as a yearly average of weekly grab samples (15 mg/l for
plants smaller than 20,000 p.e.) as from the beginning of 1998 for existing plants (immediate
for new plants). Alternatively, a total N-removal efficiency of 75 % over each water
management area is demanded. The AMvB P-removal, published in 1990, is comparable,
imposing an effluent concentration of 1 mg/l  (typically, moving average over 10 weekly grab
samples) as from the beginning of 1995 (2 mg/l for plants smaller than 100,000 p.e.).

                                                
6 On the supra national as well as on the national levels, an evolution of objectives takes place over time.
Objectives are adapted to the state of knowledge, insight, technology and social priorities. From this observation,
legislation itself can be regarded as an adaptive control system.
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Figure 2.4: Water pollution control as a multi-level hierarchical control system

A given national legislative framework is translated to the level of responsible administrative
bodies in the respective countries, level 4. The administrative organisation varies considerably
over different countries. In some countries, administrative bodies are responsible for the
complete wastewater management of a catchment area or river system, whilst in other countries
the responsibilities are much more scattered, often due to historical reasons. In The
Netherlands, most responsibilities for the water quality management have been concentrated
into all-in Waterboards, where the areas roughly correspond with provinces (Ijff, 1995). Within
each of these areas, a nitrogen removal efficiency of 75 % is required over the total area,
however not for individual plants.

Consequently, in The Netherlands in the different administrative areas, the legislation
can be interpreted into different plant goals, level 3, for individual plants thus incidentally
leading to a more-or-less site-specific implementation of permits. At many plants, one aims at
achieving low effluent ammonia concentrations in addition to fulfilling total N permits. A
variety of desired or maximal values for effluent ammonium and nitrate corresponding to
different trade-offs between these components are consequently applied.

Goals for plants in turn are translated into goals for operation of unit processes, level 2.
Alternatively, if interactions between unit operations are taken into account and decomposition
into unit processes is not applied, plant goals are translated into operational goals and
constraints for the plant as a whole (this is used by Spanjers et al., 1998). On the lowest level,
we finally have the local control loops, which may be SISO or MIMO, and the actually
manipulated and controlled variables. The next section reviews plant goals and control goals.

2.4 Goals, criteria and constraints for wwtp’s: practice and possibilities
Control goal definition includes the selection of relevant controlled variables and the
specifications for these variables, including setpoints or reference trajectories w. Specifications
can refer to for example the setpoint, average value or peak deviation of a signal. In addition,
other possibilities exist.

In this section, goal formulations applied in control of wastewater treatment plants are
reviewed, which shows that control goal formulation is indirect and ambiguous. For similar
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plants with similar goals, different variable(s) to be controlled are chosen as well as different
selections of setpoints or ranges for the selected controlled variable.

After treating conventional treatment (2.4.1) and nitrogen removal with emphasis on
pre-denitrification and carrousel systems (2.4.2), Section 2.3 gives a summarising discussion of
these sections.  The importance to consider the whole plant and the system boundaries is
discussed in Section 2.4.4. Section 2.4.5 summarises recent research efforts aimed at integrated
management of the complete wastewater system.

2.4.1 Conventional activated sludge
Cases where the goal is directly related to effluent quality have been few. Busby and Andrews
(1974) used a performance index with the BOD load from the sewage treatment plant (STP)
integrated over 1 day in a simulation study. Effluent quality expressed as BOD or COD
however is difficult to measure on-line, and reliable sensors have become available only
recently. Therefore, control has been done mostly by imposing operational constraints as
discussed in Section 2.6.2. In this approach, in fact one tries to achieve quality via reliability as
a goal.

The best known example of using reliability as a goal by imposing operational
constraints is DO control, which has been used by far the most frequently for control of
conventional activated sludge plants. Early reports are Maier (1974), Woodruff (1974), Lewin
(1974). Evaluation of 413 test findings on 38 municipal wastewater treatment plants in Western
Germany showed the need for automatic DO control to ensure sufficient nitrification (Eisele,
1987).

Other authors have emphasised the importance of control of the sludge concentration,
e.g. via control of MLSS. For example, von Sperling and Lumbers (1989) denoted MLSS as the
most important variable to be controlled in oxidation ditches, as did Bernard (1974).

MLSS and DO control were studied in a pilot plant by Ruider and Schopper (1974).
Control of MLSS and sludge height in the clarifier was studied by Vawser et al. (1974), and
more recently by Van Impe et al. (1991) and Vanrolleghem (1994).

Sludge loading has been indicated as a key parameter for control, e.g. the F/M (Food to
Mass) ratio was suggested by Armiger et al. (1991). Another suggested key parameter is
activity or specific activity of biomass: Marsili-Libelli (1989) denoted SCOUR (Specific
Oxygen Uptake Rate) as the most important process variable (it is noted that for this variable
two measurements required, namely OUR and MLSS). Vitasovic and Andrews (1989)
controlled the SCOUR profile in a step-feed configuration, together with control of DO and
MLSS. Andrews (1974) and Busby and Andrews (1974) suggested step-feed control to improve
sludge settling.

Van Straten et al. (1993) showed in a steady-state analysis that it is better to aim at effluent
quality control than to use DO control and thus apply reliability control. With the absence of
reliable sensors for effluent quality (BOD or COD), efforts have been undertaken to estimate
substrate and/or biomass concentration from DO measurements. An early effort was to apply
state estimation in LQG (Hamalainen, 1974). Recently, Ryckaert (1998) investigated
observability and identifiability for relatively simple activated sludge models for different
sensor combinations. If such a state and/or parameter estimation approach is adapted, several
associated problems must be accounted for. Some of such problems are discussed in Chapter 3.

A robust alternative to state estimation of substrate (BOD) is application of respirometry, which
is increasingly being used as a substrate sensor in control. For example, regulation of short-term
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BOD measured by respirometry has been suggested as a control goal (Spanjers and Klapwijk,
1990; Spanjers et al. 1993). Klapwijk et al. (1993) suggested control based on actual respiration
rate (by influent flow rate), maximal respiration rate (by sludge waste flowrate) and
instantaneous respiration rate. The report on respirometry (Spanjers et al., 1998) clearly
indicated ambiguity in translating plant goals to control goals as discussed in Section 2.1.

Most examples above were limited to the bioreactor or to SISO control loops. An early study
towards plant-wide control of activated sludge plants was the optimisation study by Bowden
and Wright (1974). Von Sperling and Lumbers (1991) performed an integrated control study on
a carrousel with overall system objectives. The objective could be set to either maximise
treatment with given either budget or minimise cost at given permits. This approach contained
many elements of an analytic design procedure advocated in this thesis, namely 1. Overall,
quantitative objective, 2. Mathematical models of process and disturbances; 3. Plant-wide
control (all manipulated variables were optimised simultaneously, thus considering
interactions); 4. Mathematical optimisation; 5: Time-scale separation to reduce the
computational complexity; 6. Randomised approach to assess system robustness under different
influent scenarios. The optimal control approach7 aiming at minimal costs was compared with
five classical, decentralised control structures for sludge inventory control with the sludge
recycle rate and the sludge wastage rate. Monte-Carlo simulation was used to enable a statistical
analysis of the results. The optimal control gave in general a significantly better effluent quality,
although in some cases at higher operating cost.

2.4.2 Nitrogen removal
This section focuses on recent studies, including practical evaluations on full-scale plants. For
pre-denitrification and carrousel systems, control based on ammonia, nitrate, ammonia and
nitrate and other controlled variables are discussed respectively.

Predenitrification
Ammonia: In several cases, focus is placed on ammonia. Control of effluent ammonia (by
aeration with cascaded DO control) was suggested by Kayser (1990) for small plants (<100,000
p.e.), besides effluent turbidity as a measure of BOD. Both and Neef (1991) aimed at control
(by aeration with cascaded DO control) of the ammonia concentration after the bioreactor
below 2 mg N/l of one street of a 160,000 p.e. plant. In evaluation of fuzzy control in
simulation studies (STOWA 97-32), an ammonia setpoint of 2 mg N/l was applied. The goal
Brouwer et al. (1998) used in a pilot plant was to have no violation of ammonia effluent
permits. For control of a 60,000 p.e. treatment plant of the Lippeverband, a target range for
effluent ammonia between 0.8 – 1.2 mg N/l was the primary goal, with minimisation of effluent
nitrate as a secondary goal (Husmann et al. , 1998). Nielsen and Önnerth (1996) achieved much
improvement in overall N-removal after changing trade-off in a recirculating plant. Increase of
ammonia from below 0.1 to 0.3 resulted in a decrease of nitrate from 8 to 4 mg N/l, with no
longer need for chemical dosage and with less energy consumption.

Nitrate: The second stage of the two-stage (AB) Utrecht STP was adjusted to operate like a
predenitrification reactor (STOWA 97-W05). Control of nitrate in the denitrification zone was
done with the internal recirculation (as in Figure 1.3). Tuning in practice appeared difficult. A

                                                
7 From the details given, it is not clear whether the optimisation was done in a receding horizon fashion, as is done
in Model Predictive Control. Rather, it seems that open-loop control has been applied. Influence of model
mismatch was not studied.
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calibrated simulation model (based on ASM1) was used to support controller tuning. The
dynamics of the model were different from practice however8. Several tests had to be performed
on the plants for adequate tuning. As the internal recirculation had an adverse effect on SVI, the
internal recirculation had to be minimised by control. In addition, the SVI was decreased by
substrate dosage in the form of waste sludge from the first stage. Increased nitrogen removal
(11 %) was observed after modifications and with nitrate control.

Ammonia and nitrate: Kayser (1990) suggested control of effluent ammonia between 1 and 3
mg N/l (by aeration with cascaded DO control) and nitrate in the denitrification zone close to
zero (by internal recirculation), for large plants. Lukasse et al. (1997a) minimised the time
averaged weighted sum of deviations of effluent ammonia and nitrate from zero, both in
simulations and on a pilot plant. In a pilot plant study, Lukasse (1999) minimised the l1-norm
(integrated absolute sum) of deviations from the setpoints 2 and 0 mg N/l for ammonia and
nitrate respectively. The weights in the optimisation criterion were tuned such that ammonia
was controlled to its setpoint. Lindberg (1997) used in simulation studies the objective to
control effluent ammonia at setpoint 0.5, and effluent nitrate setpoint of 6 mg N/l. Hoen et al.
(1996) used an effluent ammonia setpoint of 5, and effluent nitrate setpoint of 16 mg N/l.

On a 405,000 p.e. plant, combined ammonia control (on-off with a range of 1-3 mg N/l)
and nitrate control with a nitrate setpoint of 2 mg N/l in the denitrification zone (STOWA 97-
w04) was tested (using cascade control on internal recirculation). Total N decreased from 23
mg/l to 14 mg/l. No influence on sludge sedimentation properties was observed.

Other controlled variables: The oxidation-reduction potential (ORP) was not a satisfactory to
control the second stage of the two-stage Utrecht STP configured as predenitrification plant
(STOWA 97-W05).

Carrousels
Ammonia: For the 25,000 p.e. carrousel Reeuwijk-Randenburg, the plant goal was to achieve
effluent total N below 10 mg N/l. Aeration was adjusted based on ammonia in the reactor (one
aerator continuously) and DO measurements (other aerator on-off). During a first test period,
aeration was adjusted with switching values for ammonia of 1.0 and 2.7 mg N/l (Mulder, 1993).
The resulting average ammonia and nitrate effluent concentrations were 2.7 and 1.7 mg /l (80%
of design load) and 2.2 and 4.5 mg/l respectively (>100% of design load). Peaks in ammonia
concentration during peak loads could not be avoided. Compared to DO control, comparable
effluent total N was achieved, with higher effluent ammonia and lower nitrate, and with more
constant effluent quality (DO control resulted in high nitrate concentrations during winter,
which  were compensated by lower concentrations in summer).

In a later test period, the control configuration was slightly changed to on-off control on
ammonia and continuous DO control with the other aerator (De Vente, 1993). This led to a
trade-off between ammonia and nitrate with slightly higher effluent ammonia with lower total-
N when compared to DO control. To solve problems with the sludge volume index (SVI),
another adjustment of the control configuration was applied using a weighted NH4 and DO
signal for both aerators, with weight factors as tuning parameters. The trade-off was changed to
higher nitrate (incidentally in winter 10 mg N/l).

                                                
8 This is likely to be caused by the fact that (ASM1) calibration focused on fitting correct effluent concentrations
and did not focus on the input/output process dynamics for the specific control loop (effect of internal recirculation
on the nitrate concentration in denitrification zone)Apparently, calibrating ASM1 to an overall (influent/effluent)
process behaviour does not automatically describe correctly dynamics of internal processes.
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Goals at the 300,000 p.e. Kralingseveer STP (STOWA97-W01) were to have effluent total N
below 10 mg N/l (on a yearly basis), with good sludge sedimentation, Kjeldahl-N < 8 and
ammonia < 6 mg N/l. This was implemented with control of ammonia and DO with 4 aerators,
using logic (rule-based) control with 6 ammonia setpoints, 2 DO setpoints and 2 switching-time
lengths as tuning parameters. Re-tuning by increasing ammonia setpoints was required to avoid
initial problems with high SVI values. Improved effluent quality was obtained when compared
to the situation with only DO control. Kjeldahl-N decreased from 7.8 to 4.6 mg N/l while
nitrate increased from 6.8 to 7.2 mg N/l, leading to a decrease in total N from 14.6 to 12.2 mg
N/l. It was concluded that still better N removal could only be achieved through decrease of the
sludge load.

Spies and Seyfried (1988) aimed at not exceeding effluent ammonia 5 mg N/l at 15 ºC despite
very large load variations through ammonia measurement inside the aeration tank and cascade
DO control at a 110,000 p.e. plant. This control gave good effluent quality with respect to
ammonia, as its concentration never exceeded 4 mg/l, even at low temperatures of 3.5 ºC. This
was partly due to the lower load during winter. To achieve sufficient (simultaneous)
denitrification, retuning was required.

Nitrate: To achieve an effluent total N of maximally 10 mg N/l on the 90,000 p.e.Hattem STP,
a half intermittent aeration (one aerator on, one aerator on-off) based on nitrate was applied,
switching aeration on at nitrate below 3 and off at nitrate above 5 mg N/l (van Dalen, 1993).
The resulting effluent total N concentration was 7.8 mg N/l, with much smaller variation in
effluent nitrate than in the reference situation with only DO control (1.5-5.3 vs. 0.3-34). Total
energy consumption increased by 18%, but energy consumption per kg N removed decreased by
10%.

Ammonia/nitrate: At the 38,000 p.e. Gennep STP, combined NH4/NO3 control (with the
aeration valve using two PD controllers) was compared with DO control (one PD controller)
(de Man, 1995, STOWA 97-33). Several setpoints for NH4 and NO3 in the mixed liquor were
applied (both 5, 3 and 2 mg/l) and several setpoints and locations for DO (0.5, 1.2 and 0.8-1.2
mg/l). The average N removal with DO control was 80%, with NH4/NO3 control 84% (this
difference was not significant). No adverse effect on sludge sedimentation was observed.

At the 96,000 p.e. Beemster STP, the plant goal was to achieve total N  < 8 mg/l (STOWA 97-
w03). Different control goals to achieve this were tested: 1) DO control (PI); 2) ammonia/DO
control (cascade, setpoint DO control (PI) determined by NH4 controller (PI)) and 3)
nitrate/ammonia/DO control (cascade, setpoint DO controller (PI) determined by NH4 controller
(PI), setpoint NH4 controller determined by nitrate controller (P)). With these different control
goals, comparable, good effluent qualities were achieved (between 2 and 7 mg N/l). Tuning was
done using a (calibrated) simulation model; however, application of the tuned controller
settings to the real plant was not straightforward and manual retuning was required in most
cases. No adverse effects on sludge sedimentation, sludge production or sludge composition
were observed.

At the Hildesheim plant, mixed liquor ammonia and nitrate were controlled with aeration with a
type of split-level control. Control was based on nitrate at ammonia concentrations below 8
mg/l to achieve a high level of denitrification and was based on ammonia when ammonia
superseded 8 mg/l, until again ammonia < 3 mg N/l (reference by Kayser, 1990).
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Other controlled variables: For the Beemster STP, also control based on respirometry was
tested (STOWA 97-w02). The area of the respirogram (TAUC, Total Area Under Curve)
measured in the carrousel was used as controlled variable, as a substitute for ammonia
measurements. Logic control using a lookup-table with switching values for the 4 aerators as a
function of measured TAUC was applied. The tuning was supported by simulation. Good
effluent quality was achieved (between 6 and 8 mg/l) with slightly lower energy consumption
(3%) than with DO control. No effect on sludge sedimentation was observed.

To improve nitrogen removal, simulation studies using multivariable control based on LQG
were performed in comparison with DO control, NH4/DO cascade control and NO3/NH4/DO
cascade control (van Schagen et al., 1995; Meinema et al., 1995). Here, in the controller
criterion an explicit trade-off was made between effluent qualities and control effort. To enable
comparison with the other studies, an ammonia setpoint of 3 mg/l was selected. Simulation
studies indicated that improved effluent quality might be achieved with less energy
consumption.

In the full-scale cases discussed in this section, control of sludge recycle flow rate and control
of sludge waste flow rate were not explicitly considered, and used in separate control loops.

2.4.3 Discussion and conclusions on control goals
For conventional plants, the overview shows that few control goals directly aim at effluent
quality. Instead, most goals are indirect and focus on control of a process variable (or indicator)
that is (supposed to be) related to process reliability. There is no agreement on which indicator
to select. Only one study aimed at optimal operation considering cost and effluent quality of the
plant as a whole and showed superior performance to classical control in terms of effluent
quality. No robustness to model mismatch was investigated in that study.

In plants for nitrogen removal, often a more direct control of effluent quality is applied,
especially through application of ammonia or nitrate sensors. Here, however, in most cases an
(implicit) trade-off is made between ammonia and nitrate. This occurs for example if only a
sensor for ammonia is installed and ammonia is used as controlled variable. In that case,
ammonia is given priority over nitrate. The same holds mutatis mutandis if only a nitrate sensor
is installed. Lack of directness of goals is also observed from the fact that in some cases a
setpoint for a selected controlled variable (e.g. ammonia) is used, while in other cases an upper
limit is applied, and in still other cases a range is used. Moreover, the setpoints and ranges are
sometimes used as tuning parameters, which is not a transparent way to trade-off between
different variables.

From the cases described, it is clear that goal definition is not straightforward and rather
ambiguous. For similar plants and plant goals, many different approaches are applied with
respect to sensor selection and selection of setpoints or ranges for the selected controlled
variable. In several cases, not only controller settings but also setpoints are used for tuning,
which illustrates the lack of relationship between plant goal and the selected control goals. In
some cases, the selection of the control goal is determined by preferences for specific (or cheap)
sensors that have no well-defined relationship with the plant goals.

2.4.4 Choice of system boundaries
In most of the studies in Sections 2.4.1 and 2.4.2, emphasis has been on bioreactor
performance. However, the bioreactor is only one, be it important, part of the treatment plant.
Consideration of other unit operations and the interactions between them is very important for
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the operation for the plant as a whole, as has been emphasised already by Bernard (1974). The
whole plant was considered in the optimisation study of von Sperling and Lumbers (1991).
More recently, Olsson and Jeppsson (1994) made a qualitative inventory of interactions and
cause-effect relationships. Especially, interactions between bioreactor and clarifier are
important, but also sludge treatment and other internal recycle streams cannot be neglected.

Besides considering system boundaries within the plant, definition of adequate, realistic
objectives for operation requires adequate choice of the system boundaries of the plant as a
whole. While it is not so common to use overall financial costs as an indicator of process
performance in municipal wastewater treatment, still, to come to a quantitative design
procedure, it is necessary to express operating costs realistically. It is insufficient to consider
only influent and effluent quantities and qualities to evaluate plant performance. Instead, the
complete interaction of the plant with its environment must be considered. In Figure 2.5, an
overview of the inputs and outputs in operation of a treatment plant is shown. It is noted that
maintenance costs and materials are not considered in this scheme.

WWTP

influent effluent

chemicals

energy sludge

gaseous emissions

Figure 2.5: Inputs and outputs of a wastewater treatment plant

Inputs to the system include, besides influent, energy for aeration and pumping, chemicals e.g.
for sedimentation, precipitation and chemical analyses; outputs are, besides effluent, gaseous
emissions and sludge. All these interface variables should be considered. Contributions to total
operating costs are shown in Figure 2.6.
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Figure 2.6: Operating costs of wastewater treatment (see text).

The costs in Figure 2.6.a are averages of activated sludge plants for different types of industrial
wastewater (Vanderhagen et al., 1994). Figure 2.6.b is based on results of simulation studies of
a municipal wastewater treatment plant (Debuscher et al. 1999). The plant is defined in the
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benchmark that is discussed in Section 2.6; the benchmark does not include investment costs,
maintenance, manpower and chemicals. An overview of the costs for municipal wastewater
treatment made in 1989 (Vanderhagen et al., 1994) showed a much larger portion of the
investment cost than for industrial wastewater treatment.

For both types of plants, sludge treatment has a relatively large contribution to total cost,
several times larger than energy. It is remarkable that levies are much more significant in
municipal treatment than in industrial treatment, where they have a minor contribution only.
This is probably the case because for the levies for municipal treatment recent legislation was
used. It is noted that investment costs for sludge treatment also form a significant part of the
investment cost of the treatment plant, so sludge treatment is a large contribution to total costs.
Objective functions for operation that consider different costs are discussed further in Section
2.6.

Finally, it is important to note that the wastewater treatment plant is only one part of the
complete wastewater system, which consists of sewer, treatment plant and receiving water.
Currently, legislation for sewers and legislation for WWTPs have been developed and
implemented separately. The permits are mainly emission based and technology oriented, and
do not consider total emissions or impacts on receiving water quality (e.g. Rauch et al., 1998).

Considerable improvement is expected when sewer, treatment plant and receiving water are
jointly considered, with objectives for the overall system aiming at total emissions or even
receiving water quality (Lijklema and Tyson, 1993; Lijklema et al. 1993; Capodaglio, 1994;
Otterpohl, 1994; Harremoës et al., 1994). Here, a trade-off between the different subsystem
objectives or final water quality objectives can be made through multi-criterion optimisation.
Thus, an integrated approach can lead to optimal utilisation of wastewater infrastructure; this is
further discussed in Section 2.4.5.

2.4.5 Integrated approach to wastewater management
Recently, several studies of the urban wastewater system have aimed towards more integration.
Models, tools and approaches have recently been discussed extensively by Schuetze (1998),
which is referred to for more information. As different conceptions of integration exist, it is
useful to distinguish between:

1. Integration of objectives: subsystem’s objectives include objectives of another
subsystem;

2. Integration of information: (control) decisions in one subsystem are based on state
information from another subsystem9.

Many of the reported integrated studies have been design oriented rather than control oriented.
These studies typically involve only integration of objectives and one can speak of an
integrated approach. Some examples are the following (these examples focus more on system
design than on control but are helpful to illustrate the importance of an integrated approach).
Hansen and Pedersen (1994) did an integrated assessment for a catchment in western Greater
Copenhagen, where different modifications on sewer and/or STP were evaluated on total
pollution discharge of phosphorus.

                                                
9 This is a slightly modified definition of Schuetze (1998).
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Bauwens et al. (1996) studied effects of different design and control measures (storm tank
installation, step feed, ratio control of recirculation flowrate) on emissions and river quality. A
statistical approach based on historical rain series was applied. The acute effect of (short) CSO
events on DO was demonstrated. Control measures against CSO’s through installation of
storage basins was beneficial even though emissions from the STP increased by 50%.

Rauch and Harremoës (1995) studied the impact of rain events on total nitrogen loading
and on the DO concentration at three locations in the receiving water, using statistical
evaluation. For accumulative pollution of nitrogen, sewer overflows played a minor role;
detention basins had a limited effect on acute pollution. Oxygen depletion and ammonia peak
concentration in the river were statistically assessed as measures of acute pollution by Rauch
and Harremoës (1996). Positive effect of detention basins was compensated by prolonged high
hydraulic loading of the treatment plant. This study confirmed the need for integrated analysis
of the system.

Integrated control in urban wastewater management is characterised by integration of
information in addition to integration of objectives (Schuetze, 1998). Application of integrated
control thus creates integrated systems (Weijers, 1996). Some recent studies are discussed here.

Nielsen et al. (1996) used flow predictions from the sewer and a new control concept in
the treatment plant, aeration tank settling, to increase hydraulic peak capacity of the plant and
successfully tested this concept on full scale.

CSO reduction through real time control in the sewer was investigated by Rauch and
Harremoës (1998). Nonlinear MPC using genetic algorithms with a perfect model were
employed to achieve optimal control. Hardly any influence on water quality measured as DO
concentration level was observed. In (Rauch and Harremoës, 1999), the control objective was to
maximise the minimum DO concentration in the river. The resulting optimal strategy was
suboptimal with respect to CSO reduction. These results show that currently applied, artificial
performance criteria (control goals) for individual subsystems such as CSO’s are not
appropriate.

Schuetze (1998) considered control of both sewer and STP, aiming at optimising a
combined criterion with respect to the DO concentration in the receiving water (maximise
minimal DO and minimise duration of DO below a given level). An integrated control approach
was compared with a base case. This base case consisted of optimal, fixed settings for local
control loops in the sewer system and the treatment plant. The integrated case consisted of a
simple rule-based override control during extreme events. The optimisation of all settings was
performed off-line. A Controlled Random Search proved the most appropriate optimisation
algorithm. In the cases studied, the DO in the receiving water was improved, be it at the
expense of higher ammonia concentrations. Results of simulations on individual events strongly
suggest applying on-line, dynamic optimisation of setpoints instead of off-line, fixed setpoints.
Future improvement suggestions were to apply a multi-objective criterion, and to put more
effort into selection of the control structure and the control law10.

Within the COST-682 action on integrated wastewater management, one working group has
concentrated on developing an integrated, water quality objective oriented approach. The main
points are summarised here. Schilling et al. (1997) indicated that only a few impacts typically
dominate the ecological status of the particular receiving water and outlined a procedure to
define such water quality oriented objectives. These would then be the objectives to focus on.
Moreover, the impacts can be classified into acute, delayed and accumulating, and system

                                                
10 In Schuetze (1998), the term Control framework denotes Control structure and Control law.
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decomposition in timescales can be applied, thus possibly leading to large simplifications in
modelling. A procedure for such goal oriented modelling and some examples were described in
Rauch et al. (1998). Vanrolleghem et al. (1999b) described a procedure for setting-up
measurement campaigns for calibration and validation of integrated models of wastewater
systems. While the last three mentioned papers aim at integrated approaches for system design,
the approach and procedures constitute a good starting point for developing a rational,
integrated approach in control, which will be outlined in Section 2.6.

2.5 Trade-offs in translation of legislation to control goals
Trading-off between different objectives is crucial in translation of legislation to wastewater
treatment plant operation. This is illustrated here with different types of trade-off examples.

The first example deals with trade-off between effluent ammonia and nitrate, which is a trade-
off between different quality objectives. Trading-off between these components is crucial for
nitrogen removal. To illustrate this, the effect of trade-off between these components on
removal efficiency is considered here in a qualitative sense. Figure 2.7 shows effluent
ammonia, nitrate and total nitrogen as a function of the DO setpoint for two temperatures. The
case has been inspired by Veersma et al. (1995), who studied the influence of (only) the DO
setpoint on effluent nitrogen in a carrousel system under static operation. More details of the
system are given in Appendix B11.

At many plants, one aims at achieving low effluent ammonia concentrations besides fulfilling N
total permits. Consequently, a higher priority is typically placed on effluent ammonia than on
effluent nitrate. Two possibilities to implement this are depicted in Figure 2.7: 1) A weighted
sum of effluent ammonia and nitrate, where the weight factor on ammonia is four times that on
nitrate, and 2) Selection of a low setpoint for ammonia to guarantee sufficient nitrification.

     a:  T=12 °C            b: T=8.4 °C
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Figure 2.7: Dependency of optimum in N-removal on weight factors and disturbances

                                                
11 Figures 2.7a and b were produced applying equal sludge ages at both temperatures. The sludge concentration at
lower temperature is slightly higher (see Appendix B). Therefore, the difference in performance would probably be
more pronounced when using equal sludge concentrations.
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In Figure 2.7.a, it can be seen that at T=12 °C, the selection of the goal has a minor effect on
total N-removal. The optimum N-removal corresponding to effluent total nitrogen Ntot of 6 mg
N/l is achieved at a DO setpoint of approximately 0.9 mg DO/l. The ammonia setpoint of 2
mg/l is achieved at 1 mg DO/l with higher Ntot of 6.2 mg N/l while the weighted sum is
optimal at 1.1 mg DO/l with a higher Ntot of 6.5 mg N/l, so at the cost of slightly higher nitrate.

If we now consider Figure 2.7.b, with a lower temperature of 8 °C, which approximately
corresponds to winter conditions, the selection of the goal has a significant effect on total N-
removal. It is possible to achieve the permit on total N of 10 mg-N/l at an optimum DO setpoint
of approximately 1.1 mg DO/l. The ammonia setpoint of 2 mg/l is achieved at 1.25 mg DO/l
with higher Ntot of  12.5 mg N/l while the weighted sum is optimal at 1.3 mg DO/l with a
higher Ntot of 13 mg N/l. Now, a small improvement in ammonia (from 5 to 2) is achieved at
the cost of large increase in nitrate (from 5 to 11) and of total N. Thus, the process operates very
suboptimal from the point of view of total N removal. This phenomenon would be even more
pronounced for higher loaded plants.

Moreover, if the DO setpoint for optimal total N-removal at 12 °C would be applied at 8
°C, this would lead to a very high effluent ammonia of approximately 18 mg-N/l and almost no
denitrification. A fixed DO setpoint can thus lead to poor process performance.

Additional simulations showed that, besides temperature changes, other changes in
process conditions like load changes and parameter changes lead to similar observations.

This shows that different process conditions require different trade-offs that cannot be
achieved through fixed weight factors for ammonia and nitrate or fixed setpoints on DO or
ammonia. The optimal trade-off has to be established in a more flexible manner. A logical
approach is to implement a higher level of optimising control, with optimisation objectives that
more directly reflect the actual plant objectives and that are not restricted to fixed trade-offs.
This was the motivation for the scheme in Figure 2.4 and the proposal to adopt the integrated
view discussed later in this chapter.

The second example is trade-off between economy and quality. There is considerable design
freedom to trade-off between cost and quality between two extremes: one can maximise
treatment under budget constraints or minimise cost with permit constraints. For example, von
Sperling and Lumbers (1991) developed an optimisation system for oxidation ditches that could
be set to optimise either operational costs or process performance. Between these two extremes,
there is a continuous set of acceptable solutions that may well represent a more satisfactory
solution than either of the extremes. This set can be found through formulation as a multi-
objective problem and investigating the so-called trade-off surface (consisting of so-called
Pareto optimal solutions) using the objective weights as design parameters.

A third trade-off example is between reliability and quality. As an illustration, the sludge
concentration is considered. A high sludge concentration is advantageous for treatment
performance. In addition, investment costs might be kept low if a high sludge concentration
could be maintained. However, the sludge concentration is restricted by the clarification
process, as this is hampered by too high concentrations. In practice therefore, operational
constraints are placed onto the sludge concentration to ensure reliable operation. In this trade-
off, system boundaries within the plant become important and there is a trade-off between
different unit processes.

A final trade-off example, which addresses the choice of the system boundaries of the system
with its environment, is the trade-off between sewer and wastewater treatment plant. In many
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mixed sewer systems, during storm flow it is possible to trade-off between wastewater
treatment plant loading and Combined Sewer Overflows. The maximum plant load is here
mainly limited by clarifier capacity and too high loading may cause sludge loss leading to a
deterioration of effluent quality. On the other hand, receiving water quality may be dramatically
affected by CSO’s. A transparent decision can only be made by trading-off between the two
systems considering interactions.

2.6 An approach for goal formulation
This section presents a possible approach for goal formulation. Section 2.6.1 describes a
rational goal formulation based on operating costs. Section 2.6.2 argues to approach the control
system design problem as a mathematical optimisation problem. This makes design trade-offs
transparent. Moreover, a possible methodology for an integrated approach oriented directly at
water quality objectives is indicated.

2.6.1 Benchmark for control system performance evaluation
An objective goal formulation is required for control system evaluation and testing. To enable a
more objective comparison of control system designs, both the Task Group on Respirometry of
the IAWQ and the European COST Actions 682 and 624 developed a platform independent
simulation benchmark (Vanrolleghem et al. 1996; Spanjers et al., 1997, 1998). The benchmark
definition includes a plant layout, realistic influent patterns and a test protocol with an objective
performance assessment through a concise goal formulation. These are briefly described here; a
concise description is given in Alex et al. (1999a).

The performance assessment is done by considering two sets of criteria:
1. The set refers directly to plant performance in terms of financial costs, namely:

� Costs of effluent quality, computed with load-averaged costs and constraints as follows:
- Criterion function:
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with: te   : end of influent pattern (see below)
w---: costs or weight on effluent quality parameters
SS: suspended solids, TKN: Total Kjeldahl nitrogen
Qe : effluent flow rate.

- Constraints on effluent quality, which are set to the flow-weighted average
      concentrations over three influent patterns:

COD < 100 mg/l, BOD5 < 10 mg/l, suspended solids < 30 mg/l,
ammonia < 4 mg N/l, Total N < 18 mg N/l.

� Costs of operation12

- Sludge production (kg d-1)
- Controller output variations (peak loads and variation indicative of mechanical weir)
- Aeration energy (AE) and pumping energy (PE) (kWh d-1).

No other operational constraints are given.
                                                
12 No chemical addition including external carbon dosage for denitrification is considered in the benchmark and
therefore costs of chemicals are not included in the performance assessment.
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2. The second set of criteria refers to the local control loops, for which the IAE (Integral of
Absolute Error) and ISE (Integral of Squared Error) are computed.

Three two-week influent patterns are applied (disturbance signals), with typical diurnal
variations and a load decrease during weekend. The second file has a sustained rain event in the
second week, the third file has two storm events, which are shorter but more intense than the
rain event. The temperature is 15 ºC. It is noted that no test on temperature variation is
included.

The plant configuration consists of a predenitrification plant with 5 ideally mixed
compartments, and a clarifier modelled with 10 layers. The models used are ASM1 for the
biological processes and Takács double-exponential model (Takács, 1991) for the clarifier.

The test protocol includes open-loop and closed-loop simulations. In the basic configurations,
two local control loops are defined: setpoint control on DO in last compartment and nitrate
setpoint control in second (anoxic) compartment.

Thus the benchmark goal is a combination of cost optimisation and quality optimisation, where
the levies are used as weight factors on quality parameters.

Recently, the benchmark was used to test two biomass loading control strategies (Debusscher et
al., 1999). This test showed that when all relevant effluent quality parameters and overall costs
are considered, none of the proposed strategies led to an improvement. This result confirmed
the importance of overall performance assessment. Interestingly, also the lack of proper
controller tuning procedures was indicated.

In addition to the criteria described above, other evaluation tools are considered within COST
Action 624, such as (microbial) risk assessment and LCA (Life-Cycle Assessment). One can
argue if this is important for control or rather for Decision Support in treatment system design.

Effluent costs are relatively ad-hoc and are politically determined weight factors as described in
Section 2.1. They can be used in micro-economic approach (plant operation), but for planning
on a larger national, macro-economic scale, a more rational approach is required. A rational
alternative for using costs to weight different objectives would be to apply an integrated
approach as discussed in the next subsection.

2.6.2 Defining goals and constraints and trade-offs
This section departs from the following working definition of the qualitative plant goal for
wastewater treatment plant operation to show that goals can best be expressed as a multi-
criterion optimisation problem:

‘Maintain reliable effluent quality despite disturbances against reasonable costs’.

This definition reflects the plant goal definitions employed by Olsson and Jeppsson (1994)
(‘Satisfy effluent requirements consistently and minimise costs while maintaining water
quality’) and Spanjers et al. (1998) (‘Keep the plant running, while meeting the effluent
standards and minimising costs’), with the adjustment that in this definition ‘reasonable cost’
replaces ‘minimal costs’, for reasons that will become clear below.
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The definition encompasses three aspects of plant operation, which are:

1. Reliability - the plant must be kept running, and process upsets such as sludge washout or
loss of biological activity must be avoided;

2. Quality – the legal permits and eventually plant-specific effluent quality objectives must be
met;

3. Economy - the costs to achieve reliability and quality should be kept low.

These aspects can be assigned a priority ranking with in the order of decreasing importance:
reliability, quality, and economy. This is because aiming at quality makes sense only if the plant
is running properly and economic optimisation only makes sense if the quality specs are met.

In the definition however, it is not obvious what is the goal, and what are constraints. To
arrive at an analytic design procedure based on mathematical optimisation, several optimisation
problems might be formulated to quantify or specify the qualitative plant goals into quantitative
operational goals and constraints, for example the following:

  P.1: min cost  
subject to constraints on reliability and quality

  P.2: max quality
subject to constraints on reliability and cost
 

  P.3: max reliability13

subject to constraints on quality and cost

This ambiguity in problem specification illustrates that it is rather artificial here to distinguish
between goals and constraints. Consequently, one might as well formulate the problem as a
multi-criterion optimisation problem, for example with a weighted-sum objective P.4.

   P.4: min  {wrel ⋅ -reliability + wquality ⋅ -quality + wcost ⋅ cost}
subject to hard constraints

with the weight factors w… to account for relative importance of the different aspects, and the
minus-signs on reliability and quality to define maximisation14.

Several factors complicate translation of operational objectives into quantitative design
specifications formulated as a mathematical optimisation problem.

A first difficulty is that selection of weights w… is not straightforward. One main cause is that it
is not so easy to use overall financial cost as an indicator of process performance in municipal
wastewater treatment. This is more logical for production processes in profit organisations,
where it is rational to express objectives in term of financial cost and aim at profit maximisation
(although also here many indirect costs may be difficult to express accurately). In wastewater
treatment, this is less straightforward. This is partly caused by the fact that regularly plant goals
are kept lower than legal permits to ensure reliable operation (which is an implicit trade-off),
                                                
13 Reliability is more difficult to quantify. Often it is expressed qualitatively, e.g. ‘prevent sludge bulking’ or
‘prevent sludge loss from the clarifier’. It is argued below that, typically, operational constraints are introduced to
ensure reliability. These can then be used to quantify reliability. Of course, this is somewhat artificial.
14 min -a = max a
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partly by the fact that (in The Netherlands) municipal wastewater treatment is (still) a non-profit
operation.

The weights can therefore be used in control system design as design parameters to trade-off
between different performance specifications.

A second problem is that limited knowledge and model complexity necessitate a pragmatic
approach through the introduction of artificial operational constraints. In principle, P.1 – P.4
might be formulated as overall optimisation problems expressing the actual operational goals
(including reliability), without unnecessary artificial constraints on the system states and with
only hard constraints on the decision variables (especially the manipulated variables). Optimal
state trajectories (corresponding to optimal process conditions) might then be computed via
dynamic optimisation using mathematical models of all phenomena relevant for reliability,
quality and economy. This might be implemented either on-line or off-line, in the latter case
with on-line feedback control to ensure realisation of the optimal trajectories. However, current
knowledge is too limited for such an approach, because not all cause-effect relationships and
interactions are sufficiently well-known, such as, for example, the relationship between aeration
intensity and sludge sedimentation behaviour. On the other hand, several existing models are
too complex for dynamic optimisation and control. To circumvent these problems, the
operational problem is in general drastically simplified by putting operational constraints on
several process variables. It has been observed that often such constraints are mixed up with the
actual operational objectives (Olsson and Jeppsson, 1994).

A third problem is that not all variables that correspond to the actual plant objectives can be
measured on-line, and consequently a selection of suitable measured variables must be made.
This is treated in more depth in Chapter 5.

Finally, an issue of a more technical nature is that it is sometimes necessary to circumvent hard
constraints, especially with respect to state variables. This so-called constraint softening is
usually achieved through adding terms to the sum-weighted objective with appropriate
weighting factors.

Thus, control system design for wastewater treatment plants can be approached as a multi-
criterion optimisation problem. Weights of the different objectives and eventually constraints
can be used as design parameters to trade-off between different objectives.

It is noted that multi-criterion optimisation requires user interaction. Therefore, it
typically is performed off-line, where it allows a transparent trade-off in the controller design to
choose weights in a criterion function to be applied in on-line control.

Summarising, minimisation of total operating costs of the plant can be used as a starting point
in control goal definition, where the trade-offs with reliability and quality can be transparently
assessed by multi-criteria optimisation.

In the benchmark and in the discussion until now, the system boundaries have been drawn
around the treatment plant. However, while minimisation of treatment plant operating costs
may be rational from a micro-economic viewpoint, from a macro-economic viewpoint it is less
attractive. This is because current legislation is technology oriented, segmented and neglects
total impacts from the wastewater system and consequently leads to suboptimal usage of the
wastewater system (sewer-treatment plant- receiving water), as was argued in Sections 2.4.4
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and 2.4.5. The suggested procedures for integrated modelling can mutatis mutandis be
translated to integrated control as follows. For receiving waters, generally a limited set of
objectives can be selected. Such a limited set of water quality objectives constitutes a good
starting point for a multi-criterion objective function for integrated control. For implementation
of this integrated control, on-line optimisation using nonlinear Model Predictive Control is a
conceptually appealing method. Application of artificial, fixed setpoints or weight factors can
then be abandoned. Application of simple, goal oriented models and decomposition into
timescales may further reduce required model and computational complexity. However, it
remains to be investigated how large the performance improvements of such a model-based
control approach would be when compared to heuristic approaches, such as rule based control.
Especially important in implementation will be the impact of model uncertainty on control
system stability and performance, which has until now been hardly addressed at in the studies in
integrated control.

2.7 Conclusions
An inventory of control goals in the literature reveals that insufficient insight exists in the
relationship between legislation and control goals for wastewater treatment plants. A heuristic
controller design approach is typically adopted, employing indirect and vague control goals that
lead to time-consuming trial-and-error design procedures and that complicate judgement of
particular controller designs.

The availability of advanced modelling and control techniques argues to develop a
straightforward, optimisation-based controller design procedure to close the gap between
legislation and controller specifications, instead of a heuristic approach. In such a so-called
analytic design procedure, the control system design problem is formulated as a mathematical
optimisation problem, where all plant objectives and constraints are explicitly formulated in a
quantitative way. Trade-offs can then be made explicit during design through mathematical
optimisation and cumbersome trial-and-error and artificial objectives can be avoided. Such an
analytic design procedure requires reliable mathematical models of goals, disturbances and the
plant and their uncertainties.

This chapter dealt with modelling of goals, thus focusing on which goals are to be achieved
rather than on how the goals can be achieved. One possibility was discussed, namely to define
the control goal as a minimisation problem of operating costs for the plant as a whole, treating
quality and reliability as constraints. The operating costs should include costs of effluent
disposal as imposed by national legislation, costs of energy consumption, costs of consumption
of chemicals and sludge disposal costs.

A multi-criterion optimisation formulation that includes cost, quality and reliability as
objectives is a more suitable paradigm for realistic definition of control goals than cost
minimisation. Trade-off between different conflicting objectives is crucial, which can be done
more transparently via multi-criterion optimisation than with single-criterion optimisation.

Considering the treatment plant alone may lead to suboptimal solutions. This can be
avoided in an integrated approach that aims directly at water quality objectives for the receiving
water and considers joint operation of sewer system and treatment plant. A possible
methodology for such an integrated control approach was indicated

Different aspects of the ‘how’ to achieve the formulated goals are topic of the subsequent
chapters that contribute to developing an analytic design procedure for control of activated
sludge plants. The results in Chapter 5 show that aiming at economic operation and abandoning
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setpoint control results in operation over a larger range, and consequently requires nonlinear
control. While the analytic design procedure is relatively well developed for linear controller
design, for nonlinear control this is not the case. Consequently, an analytic procedure cannot
directly be applied and both control methods and models need development.

Chapter 5 will investigate development of control methods and will concentrate on how
to deal with optimisation under model uncertainty and with the controller design methods
currently available. Model Predictive Control is studied as a model-based control method to
carry out on-line optimisation of activated sludge plants. The cost function approach that was
suggested in this chapter is however not applied yet, as this needs further development. Instead,
linear MPC employing different control goals is applied to study applicability of the method to
activated sludge plants. Robustness against model uncertainty is also studied.

Chapter 3 treats physical, mechanistic modelling of activated sludge plants. Mechanistic
models are important especially for control system evaluation, where the control system is
typically tested under several conditions. For control system design for specific plants, the
model must reliably reflect real plant behaviour. The larger operational range due to economic
operation imposes stronger requirements with respect to model validity than operating with
fixed setpoints. Model identification therefore deserves considerable attention and this topic is
studied in Chapter 3.
Chapter 4 deals with models for controller design or as internal model in model based control,
focusing on nonlinear models for application in nonlinear control. The mechanistic models
based on Activated Sludge Model No. 1 studied in Chapter 3 are not directly suited for control.
If these mechanistic models accurately describe the process dynamics, however, reduced
models can be extracted for controller design thus re-using the knowledge in the mechanistic
models. Chapter 4 especially studies nonlinear model reduction through separation into
different timescales with the technique of singular perturbation. For application of this
technique, the model must be in the so-called standard form, which means that it can be
separated into slow and fast states. A methodology to make this separation is developed,
because existing methods are insufficiently straightforward. A relatively simple model is used
to test this methodology. Application of the technique to ASM1, however, was beyond the
scope of this thesis.
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Chapter 3  Modelling, model calibration and identifiability

Once more, he looked at his monitor with simulation results, which were obtained with another set of
parameter values. The consultant had now already been working several days on calibration of the
main activated sludge plant of the Southern Wastewater Board. Different combinations of parameter
values gave similar results in the effluent concentrations. Which parameters should he use for
calibration? He still was not certain how much confidence he could place on the calibrated values for
the rate constants and the affinity constants. Moreover, he asked himself ‘How reliable are the
simulations with the calibrated model with the different test scenarios?’

This chapter concentrates on mechanistic modelling of activated sludge plants for control
system evaluation. Section 3.1 introduces reactor model-building, model calibration and the
issue of model identifiability. Section 3.2 gives a state-of-art assessment in model-building,
model calibration and model identifiability of activated sludge plants and ASM1. This provides
the motivation for the research described in the Sections 3.3 - 3.5. These sections consider
different aspects of model calibration including identifiability and influent characterisation.

3.1 Introduction
The availability of activated sludge models has greatly stimulated research in dynamics and
control of the activated sludge process. The availability of these mathematical models argues to
apply an analytic design procedure for control system design, as was discussed in Chapter 2.
The different design stages of the procedure, e.g. the controller design stage and the control
system evaluation stage, require plant models of different complexity. This chapter focuses on
modelling of activated sludge plants for control system evaluation.

In control system evaluation, mechanistic nonlinear models of high order are usually applied to
test the control system under several conditions. The mechanistic model should reliably reflect
real plant behaviour under these conditions. Achieving this takes two steps. First, a model must
be built that adequately captures the relevant process characteristics for the intended purpose,
which is here to simulate plant behaviour under the different test conditions15. Secondly, the
model must be accurately calibrated to the real plant. While the emphasis in this chapter is on
calibration, and, more specifically, of ASM1 parameters, both steps are discussed in this
chapter. This is done to provide, through an overview of modelling methodology, a correct
perspective of the role of ASM1 in plant modelling, which is desired for adequate plant model
calibration and subsequent application of the model.

The focus is on the bioreactor part of activated sludge plants. Modelling methodology of
bioreactors is summarised as far as relevant for activated sludge modelling. Figure 3.1 gives an
overview of modelling of bioreactors and outlines where the different issues are discussed.

The basis for reactor modelling is constituted by conservation laws and transport phenomena on
one hand and chemical thermodynamics and reaction kinetics on the other hand (Figure 3.1).  A
reactor model is a mathematical, macroscopic model describing the overall behaviour of the
reactor, the so-called macro-kinetics. Central in modelling is the use of balance equations.

                                                
15 In fact, this is the reason that usually mechanistic models are preferred over black-box models, as they are better
suited for extrapolation.
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Balances can be written for extensive variables. In homogeneous systems, no concentration
gradients occur. In that case, in mathematical form the balance equation for an extensive
property E with intensive quantity e over a reactor can be written as follows:

VrFF
dt

deV
EE,outE,in +−= (3.1)

In (3.1), rE is the volumetric reaction rate, the so-called micro-kinetics, V the reactor volume,
Fin,E and Fout,E are the transport terms into respectively out of the reactor.

� � � � � � � � � � � � � � � � � � � � � � � � � � 	 � � � �
� � � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � � � � � � � � � � �

� � � � � � � � � � 	 � 
� � � � � � 	 � � �  � �

� � � �  � � � � � 	 � � � � � �
� � � � � � 	 � � � � � � � � � �  � �

� � � � �  � � � � 	 � � � � �  � �

� � � � � � � � � � � � � � � � � 	 � � �
� � � � � � � � � � � � � � � � � � � � � � ! �
� � � � � � � � � � ! � � " # � � �

$ % & � � ' ( ) * + � , � - � ' .
, � � & / & � - , � 0 & � 1 � ' � & - - & -

 � 2 � � � � � � � " �  �
� � 	 � � � � � � � 	 �  # � � � � � �

 � � � � � � � � � 	 � � � � � �
� � � � 	 	 � � ! � � � � � � # ! �
� � � � � � � 	 � �

 � - 	 � � � � � � � � 	 � # � � � �
� � � � � � � � � 	 � � � �
� � 3 � � � � � � � � 	 � � � � � � �
� � � � � � � � � 	 � 4

� � � � � � � � � 	 � #
� � � � � � � � � � � #
� � � � � � 	 � # �1 � # � � � � �

 � & � � � � � � � � � � �
� � 	 � � � � �  # � � � � � �

& � � � � � � � �
	 � � � � � � � 	 �  # � � � � � �

� � � � � � � � � + � � � � � � 	 � � � � 5
� � � � � � � � � � � � � � � � � � # � � �
� � � 	 � � � � � # � 	 � � � � � � � � � 	 � � � �

� �  � � �  � � �  � �
� � � � � � � � � � � 	 � � �

� � � � � � � � � � 	 
 � � �

� � � � � � � � 	 � � � � � � �  � � � � � ! �
� � � �  � � � � � � �  � � � � 	 � � � �

� � 	 � � � � 	 � � � �
� � � � � �  � � � � � �
� � � � �  � � � � 	 � � �

� � � � � � � � � 	 
 � 
 � 

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � 	 
 � 
 � 

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � �� � � � � � � � � 	 
 � 
 � � �

� 	 
 � 
 	 � � � � � �  � � � � � �

� � � � � � 	  � � � �  
 � � �

� � � � � � � � � � � � � �

� 3 1 � � � 	 � � �  � � 4

Figure 3.1: Bioreactor modelling consists of model-building (Roels, 1983) and model
identification or calibration.

In non-homogeneous systems, transport within the reactor and place-dependency of the reaction
rate rE must be taken into account, which is expressed in the following balance equation:

∫∫ +−=
V

EE,outE,in
V

dVrFFedV
dt

d
(3.2)

In practice, systems are often non-homogeneous, because of gradients through non-perfect
mixing and existence of multiple phases. Consequently, for reactor modelling both micro-
kinetic models (rE in Eq. 3.2) as well as models for internal transport (describing place
dependency) are important. In the sequel, the latter will be referred to as transport-physical
models. Section 3.2.1 will describe modelling of the micro-kinetics and transport-physical
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modelling for activated sludge plants. The discussion of micro-kinetics will focus on Activated
Sludge Model No. 1 (ASM1) that is the state-of-art model for the micro-(bio)kinetics of
activated sludge processes.

The plant model thus built must be accurately calibrated to the real plant if the model is used for
control system evaluation for a particular plant. Accurate calibration is important also for other
model applications such as process analysis, to decide whether and how operation must be
improved. Moreover, if the mechanistic model accurately describes the real process dynamics,
reduced models can be extracted for controller design thus re-using the knowledge in the
mechanistic models (see Figure 3.1; model reduction for control is treated in Chapter 4).

From the introduction on reactor modelling above, it is clear that plant model
calibration16 must include calibration of transport-physical models as well as calibration of
ASM1 model parameters. Calibration is a nontrivial task, in which one has to decide on the
selection of parameters to be used in calibration and on the design of experiments required for
their determination. Section 3.2.2 discusses state-of-art of model calibration of activated sludge
plants, which shows that, while considerable efforts have been put into calibration of ASM1
parameters, calibration still needs further development.

An important issue in model tuning is identifiability of the model parameters. A correct
calibration should enable physical interpretation of the calibrated parameters and allow
prediction with the model beyond the experimental conditions of calibration. This is only
possible if the model parameters can be uniquely determined from the available data, that is, if
the model is identifiable. Thus, the identifiability properties of applied models determine the
success or failure of calibration. Consequently, understanding of the model’s identifiability is
essential for analysing and developing calibration procedures. Section 3.2.3 discusses
identifiability in model calibration of activated sludge plants. In the subsequent sections,
identifiability is investigated further, to increase insight in the identifiability of plant models
that are based on ASM1 to guide development of calibration strategies.

The chapter is set up as follows. Section 3.2 describes state-of-art in modelling, calibration and
identifiability of activated sludge plants with emphasis on ASM1. Section 3.3 investigates local
identifiability of the model’s biological parameters from input/output data. Section 3.4 applies a
randomised approach to study its global identifiability properties. The studies show that
additional information is required to input/output data, e.g. in the form of lab-scale
experiments. Therefore, one such lab-scale test is studied in Section 3.5. Section 3.6
summarises the main results in the form of concluding remarks.

3.2 State-of-art

3.2.1 Model-building of activated sludge plants

ASM1 Biokinetics
In 1986, the Task Group on Mathematical modelling of Activated Sludge Processes published
Activated Sludge Model No. 1. This model represented a consensus concerning the simplest
model with the capability of realistic predictions of single sludge systems carrying out oxidation

                                                
16 The plant model consists of a micro-kinetic model (ASM1) and a transport physical model. Both the transport-
model and ASM1 parameters need calibration to calibrate the plant model. In the literature and in this thesis, the
term ‘ASM1 model calibration’ is used not only to refer to calibration of the ASM1 biokinetic model, but also to
calibration of plant models based on ASM1 by calibrating ASM1 parameters in these models.
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of carbonaceous material, nitrification and denitrification. In the development of the model,
primary consideration was given to prediction of activated sludge concentrations during
selection of process stoichiometry and to estimation of electron acceptor requirements during
development of process rate expressions.

This model defines components, stoichiometry and kinetics of activated sludge processes,
which are briefly described in this section. The equations are given in Appendix A. For more
details is referred to (Henze et al., 1987 and 1987a; Dold and Marais, 1986).

In ASM1, 13 components are defined, which are given in Table 3.1. Some of these components
(SNH, SNO, SO and SALK) correspond to existing chemical species that can be measured directly.
The other components are conceptual and cannot be measured directly. Most important is the
COD fractionation. A distinction is made between biodegradable COD and inert COD. Inert
COD consists of soluble (SI) and suspended inert COD (XI), including inert products from
biomass decay (XP) (see below). Biodegradable COD consists of the other four COD fractions.
Rapidly biodegradable COD, SS, is supposed to be the substrate for growth of heterotrophic
biomass XBH; this biomass carries out carbon oxidation (Eq.1.1) and denitrification (Eq. 1.3).
Slowly biodegradable COD cannot be directly consumed. The autotrophic biomass XBA carries
out nitrification (Eq. 1.2).

    Table 3.1: Overview of components in ASM1 (S…: soluble, X…: suspended components)
Organic (COD) Nitrogen (N) Other
soluble inert SI ammonia SNH oxygen SO

suspended inert XI nitrate SNO alkalinity SALK

suspended inert products XP soluble organic nitrogen SND

readily biodegradable substrate SS suspended organic nitrogen XND

slowly biodegradable substrate XS

heterotrophic biomass XBH

autotrophic biomass XBA

The model distinguishes 8 processes. These are 1) aerobic growth, 2) anoxic growth and 3)
decay of heterotrophic biomass, 4) growth and 5) decay of autotrophic biomass, 6) hydrolysis of
XS to SS, 7) hydrolysis of XND to SND and 8) ammonification of SND to SNH.

The model includes a so-called death-regeneration concept, which supposes that biomass decay
produces slowly biodegradable XS (and inert products XP), which is subsequently regenerated
through hydrolysis to SS, which can serve for new biomass growth. While decay is a well-
accepted concept in biotechnology, regeneration is not. Consequently, the decay rate in ASM1
has a physical interpretation different from the traditional decay rate.

Stoichiometric model parameters are the heterotrophic yield YH, autotrophic yield YA, N-
content of biomass iXB and inert products iXP and the fraction of biomass yielding inert
products, fp. For most processes, Monod kinetics are applied. Appendix A and the symbols list
contain a complete list of the parameters. Here we mention the following. Heterotrophic
parameters are the maximal growth rate µH, decay rate bH, affinity constants for SS KS, for SO

KOH, for SNH KNHH, for SALK KALKH and a correction factor for anoxic growth ηg. Autotrophic
parameters are the maximal growth rate µA, decay rate bA, affinity constants for SO KOA, for SNH

KNHA, for SNO KNO, for SALK KALKA. Hydrolysis parameters are the hydrolysis rate kh and
affinity constant Kx and a correction factor for anoxic hydrolysis ηh. Ammonification
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parameters are the rate ka. For several parameters, usually also a temperature dependency is
included (Gujer, 1985).

The model contains some serious simplifications of reality. Important simplifications are the
following: 1) The influent consists of thousands of chemical components, which are lumped
into only a few hypothetical groups. 2) Rapidly biodegradable COD is supposed to be soluble,
which is not necessarily the case. 3) Many micro-organism species are present that degrade
COD and that constitute an ecological system of enormous complexity. These are lumped into
one biomass species XBH. 4) The heterotrophic biomass is modelled as unstructured biomass. It
is known that such unstructured models may exhibit bad predictions in highly dynamic
environments as they do not take into account changes in biomass composition (Roels, 1983).
This is probably partly compensated for with the death-regeneration concept)17. 5) The biomass
grows in flocs with concentration gradients because of diffusion limitation; this may cause
simultaneous denitrification in the flocs while the solution is aerobic.

Because of the underlying simplifications, the model parameters are macroscopic parameters
into which many processes are lumped, which has to be kept in mind in the physical
interpretation of model parameters. Thus, the model can be regarded as a mechanistic, white
model when compared to completely black-box models such as artificial neural nets. When
compared to the complexity of reality of the biological and biochemical processes, however,
one would rather still call it a black-box model.

Transport models
If the mixing timescale in a reactor is not much smaller than the reaction timescales, mixing is
not perfect and gradients occur, which affect the macro-kinetics. In large-scale reactors, it is
generally difficult to obtain perfect mixing. While in aerobic bioprocesses and in activated
sludge systems reactions are relatively slow, still, however, typically gradients occur in the
dissolved oxygen concentration. Moreover, in many activated sludge plants one intentionally
aims at creating a plug-flow like behaviour to obtain higher reactor efficiency. Consequently,
gradients must often be accounted for in activated sludge modelling.

One might try to solve Eq. (3.2) through integration of microscopic balances, including micro-
impulse balances. However, this would be a tedious task on one hand while the level of detail is
not required for macroscopic modelling on the other hand. Common practice to model mixing
instead is to build so-called combined models (Himmelblau and Bischoff, 1968) with idealised
model reactors as building blocks with flow streams between one another. The most frequently
used building blocks are the Continuous Stirred Tank Reactor (CSTR), the plug-flow reactor,
the tanks (CTRSs) in series and plug-flow with diffusion (Himmelblau and Bischoff, 1968;
Levenspiel, 1972).

In activated sludge modelling, mostly CSTR or CSTR in series are applied as building blocks.
In models for control design, often only one CSTR is used. Carrousel systems are usually
modelled as CSTRs in series (e.g. van Rooij et al., 1993, van der Kuij et al., 1993), although
also plug-flow, or plug-flow with dispersion (Stamou et al., 1999) or other combined models
are used occasionally. For example, Cook (1984) applied a CSTR combined with plug-flow.
More complicated flow patterns such as shortcuts and backflow occur in practice, that can have
                                                
17 In the successor of ASM1, ASM3 (Gujer et al., 1998), the death-regeneration concept has been abandoned.
Instead, storage products in the cell are now modelled thus constituting a structured biomass model.
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a large influence on reactor performance, as was illustrated already by Ottengraf (1971) for a
full-scale plant.

Transfer between phases such as oxygen transfer modelling is not considered here and we refer
to standard textbooks (Metcalf & Eddy, 1991) and papers (van ‘t Riet, 1983; Kissel, 1986).

3.2.2 Calibration of activated sludge plants

Introduction
For simulation of activated sludge plants with ASM1 based models, data are needed of the
micro-kinetic model and the transport-physical model. The following data are required:

Micro-kinetic model:
•  Model components: influent characterisation of the COD and nitrogen fractions

distinguished in the model (in this thesis, component fractions are viewed as parameters);
•  Model (biological) parameters: kinetic and stoichiometric parameters;
•  Initial conditions (for dynamic simulation).

Transport-physical model:
•  Reactor design data, such as reactor volumes and pump capacities;
•  Operational data (averaged for static simulation, as a function of time for dynamic

simulation): influent flow and concentrations, other (internal) flows and loads, temperature
and aeration intensity;

•  Mixing model.

In calibration of models that are based on ASM1, values for these data are chosen or determined
from experiments for the plant to be modelled. This is not a trivial task. In the first place,
several important ASM1 model components are conceptual quantities that cannot be directly
measured. Consequently, COD characterisation is difficult and not all the initial conditions can
be directly measured. Secondly, the number of biological parameters is large (approximately
20) and one has to decide which parameters must be determined and one must design
experiments that provide information to identify these parameters. Thirdly, it takes effort to
obtain accurately all operational data such as flows. Finally, an adequate mixing model must be
developed. Many research efforts have therefore been put into developing calibration strategies
for calibrating ASM1 based models, which are discussed below.

ASM1 biokinetics calibration
After the publication of ASM1, in the literature initially much emphasis has been placed on
determination of biological parameters and of influent COD fractions. Some of the ASM1
model parameters appeared to be relatively constant for different system configurations and
wastewaters and can be assumed known and constant. Other parameters however show a
stronger dependency upon the plant and wastewater and their values must be fit to the plant and
the conditions in the plant.

Several strategies to determine ASM1 parameters have been proposed, which differ in
selection of experiments, of measurements and of parameters to be determined. The most
important are the Task Group proposal, calibration based on full-scale input/output data and
calibration using respirometry and dedicated experiments. These strategies are discussed here.
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Finally, some remarks with respect to determination of initial conditions and estimation
algorithms are made.

Summary Task Group proposal
In its report, the Task Group proposed a provisory procedure for calibration of the model COD
fractions and biological parameters. This procedure included 6 CSTR experiments (for SS, XI,
µA, µH, KS, kh, KX and ka), 5 batch tests (for SI, YH, bH, ηg and ηh) and 1 fed-batch test (KNH).
For application to full-scale plants, this procedure is too laborious and expensive. Moreover, no
fit is made to the full-scale plant input/output behaviour, so accurate simulation of full-scale
behaviour is not guaranteed.

Full scale input/output data
Several strategies have been used to calibrate the model to input/output behaviour of full-scale
plants. In view of the macroscopic meaning of the model parameters, it is necessary to use at
least some model parameters as lump parameters of the macroscopic behaviour of the process.
This can be done by fitting the model to the observed overall plant behaviour. It can not be
expected that correct predictions of the full-scale behaviour can be extrapolated from
parameters determined on laboratory or pilot scale alone, unless the transport-physical model is
perfect. Even with perfect transport-physical models, the transfer of parameters determined on
lab-scale to full-scale can be problematic. This will be discussed below, under respirometry.

In this full-scale calibration, decisions have to be made with regard to experiment
duration, sampling frequency, choice of measurements, outputs to be fitted, parameters to be
determined and fitting procedure to be used. One approach is steady-state calibration. In steady-
state calibration, data obtained from the plant are averaged under the assumption that this
average represents a steady-state. This approach is regularly applied, for example, two full-scale
plants were calibrated this way (Lesouef et al., 1992). Shortcomings of steady-state calibration
are the following. If the input variations are faster than the process dynamics, which is usually
the case, then the process does not operate in steady-state. When fitting with averaged data one
attempts to fit a steady-state of the model to an unsteady plant, this may result in biased
parameter estimates. Because the system is nonlinear, averaging can also introduce bias.
Another disadvantage of steady-state calibration is that the number of parameters that can be
estimated is equal to or smaller than the number of outputs.

Better results can be obtained by fitting the dynamic behaviour of the process. Dynamic data
contain more information than static data and in principle, the number of parameters that can be
determined is larger than the number of outputs. For many plants, routinely collected data is
available. It is therefore tempting to use historical data for dynamic calibration. The achievable
accuracy is limited however, due to low sampling frequency, which is typically once per week.
Because of the resulting uncertainty in the influent load and the limited number and frequency
of outputs to be fitted, calibration in this way was reported to be unsatisfactory (Witteborg et
al., 1994, Weijers et al., 1994).

Special monitoring exercises are required for accurate modelling. The experiment duration and
sampling frequency must be chosen in relation to the time constants of the process and the
frequency spectrum of influent variations. An important time constant of the process is the
hydraulic residence time, which is typically several hours to half a day. Experiment duration
must therefore be at least in the order of days. Several calibrations of the IAWQ Model on full-
scale plants have been reported. The experiment duration and the sampling frequency chosen
range from 6 h to 10 days and 0.3 to 3 per hour respectively.
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A crucial decision is which outputs are to be fitted and which parameters are to be determined.
Table 3.2 summarises different choices for parameters and outputs.

If the recommendations of the Task Group (Henze et al. (1987)) are combined with the
parameters used in full scale calibration experiments in Table 3.2, the following set of
parameters is obtained: µH, KS, KOH, µA, bA, KNHA, KOA, ηg, kh and (SS+XS). Jeppsson (1993)
reported the following parameters to be important: µH, bH, µA, kh, KX, ηh.

       Table 3.2: Calibration based on input/output measurements at full-scale plants: selection
of parameters and outputs reported in the literature (parameters tuned manually)

Parameters tuned from Outputs Reference
µH, kh/KX, KS

µA, KNHA

SI

OUR profile
effluent NH4 and NO3

effluent COD (0.9)

Siegrist and Tschui (1992)
(Three plants)

µA, KS and ηg effluent NH4 and NO3 Pedersen and Sinkjær
 (1992)

µH, KS, µA, SS+XS

kh

effluent NH4 and NO3

effluent NO3

Pedersen and Sinkjær
 (1992)

Aerated volume, KOH, KOA

COD fractions
effluent NH4 and NO3

influent COD and BOD
Weijers et al. (1994)
(Two carrousels)

µH, KS, µA not described Stokes et al. (1993)
KS

µA

bA

ηg

not described
batch test
earlier experience
not described

Dupont and Sinkjær (1994)

Between these lists, there is a discrepancy. One possible reason for this discrepancy is that for
different plants and experiments different parameters are important. Another reason is that the
model is not (well) identifiable, so that different combinations of parameter values give
(almost) identical model behaviour. One solution might be to estimate all the parameters from
these sets or even all the model parameters. The data must however contain enough information
to make all the parameters identifiable, which is often not the case. As an alternative, a subset
of parameters can be selected. The number of possible parameter subsets is huge however,
which motivates application of systematic methods for the selection. In Sections 3.3 and 3.4, a
procedure for such a selection is described.

An example of a study where a subset of parameters was fitted, with a parameter
estimation procedure, is Kabouris and Georgakakos (1996a, b), who developed an extended
Kalman filter for parameter and state estimation of ASM1. No denitrification was considered in
this study. Moreover, a small sampling time (of 5 minutes) and availability of relatively many
on-line measurements were supposed (total and soluble COD, total and soluble NKJ, ammonia
and nitrate and OUR). In a case study, it was tried to estimate nine of the ASM1 parameters,
assuming constant influent flowrate. This was unsuccessful because of identifiability problems,
especially of hydrolysis parameters kh and KX and of nitrification parameters µa and KNH. To
circumvent these problems, it was suggested to apply a sequential estimation procedure, by first
estimating a subset of only seven parameters (fixing KX and KNH) and then estimating only two
parameters KX and KNH, while fixing the other parameters. While such a sequential estimation
approach circumvents convergence problems in the parameter estimation, it does of course not
solve the identifiability problems that result from poor identifiability and consequently will
likely yield biased parameter values. This study again motivates the need for methods to select
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subsets of identifiable paramters. Parameters that are not estimated from full-scale data can be
determined from additional experiments, such as respirometry, which is discussed below.

Respirometry and other dedicated experiments
Measurements on full-scale plants are relatively time-consuming and expensive, and do not
provide sufficient information to estimate all relevant parameters due to insufficient excitation.
As an alternative, special experiments can be used in addition to full-scale measurements. Very
valuable in this respect is respirometry. In respirometry, the oxygen uptake rate (OUR) is
measured, often as a function of time, in a sludge-wastewater mixture. Experimental conditions
can be chosen such that measured OUR profiles are informative for determination of specific
parameters. The measured OUR can be used directly or fitted by parameter estimation to
(reduced models of) ASM1. The last approach is to be preferred because parameter values thus
obtained have a direct significance for use in the model. When estimating parameters from
measured respirograms, however, identifiability problems become manifest as will be discussed
in Section 3.2.3.

Several respirometric batch experiments for determination of COD fractions and some of the
biological parameters were proposed by Kappeler and Gujer (1992), one with wastewater
sludge in a ratio of approximately 2:1 (test A), one with wastewater alone (test B). At present,
automated respirometers are available (Vanrolleghem, 1994; Spanjers, 1993). These have been
employed to identify ASM1 COD fractions and/or biological parameters using several
experiments (e.g. Spanjers and Vanrolleghem, 1995; Witteborg et al., 1996). A concise
overview by Vanrolleghem et al. (1999a) is referred to for more details on respirometry in
ASM1 calibration.

Batch experiments based on the ammonia uptake rate have been used to determine
autotrophic growth and decay rate (Kristensen et al., 1992).

Besides respiration experiments, batch experiments based on determination of filtered
and degradable COD fractions by COD balances have been proposed (Lesouef et al., 1992).
This kind of tests has a less direct relationship with the model, however (Spanjers and
Vanrolleghem, 1995) and was found to be sensitive to measurement errors and insufficiently
reproducible (Weijers et al., 1994).

While application of lab-scale experiments is invaluable, the transfer of lab-scale experiments
to a model for a full-scale plant must be done with care. Two main reasons for possible
problems are differences in experimental conditions between lab-scale and full-scale on one
hand and differences in the models used on the other hand (Vanrolleghem et al, 1999a).

A list of possibly disturbing factors in experimental conditions in respirometry is the
following: addition of ATU, transport limitation in the flocs, DO probe dynamics, difference in
feed patterns and concentration profiles, difference in sludge history and differences in
environmental conditions such as pH, temperature and mixing (Vanrolleghem et al., 1999a).
Some of these are now briefly discussed.

Addition of allylthiourea (ATU) to inhibit nitrification is reported to disturb
heterotrophic growth. However, Spanjers and Vanrolleghem (1995) demonstrated that
avoidance of ATU addition through a model-based elimination of nitrification led to similar
results, so the effect is probably limited.

Vanrolleghem et al. (1998) studied the cause of observed lags in respirograms. The
observed lag could not be explained by poor mixing, diffusion limitation of dissolved oxygen or
substrate in the floc or sensor dynamics. The sludge history seemed to be the cause of the lag,
which disappeared after several acetate pulses. These pulses thus seemed to induce acetate
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metabolism, which had decreased after a period of endogenous respiration. In addition, a long-
term batch experiment was carried out. This showed that sludge characteristics change if the
conditions in the test differ from normal full-scale operation.

One of the most important factors in the design of lab-scale batch tests is the ratio of
initial substrate and initial biomass, S/X. At too low S/X, the response may be too short or too
low; at too high S/X, the experiment may take too long. More importantly, the ratio may affect
the sludge characteristics (Vanrolleghem et al, 1999a).

Another cause of possible errors in interpretation of batch tests is that the biomass in the
test is not (necessarily) the same as the sludge from the plant. Therefore, one has to be careful
to transfer model parameters based on wastewater only to the plant. An example is given by the
tests proposed by Kappeler and Gujer (1992), that are discussed in Section 3.2.3.

Differences in model between full-scale and lab-scale occur if simple models are used
for direct interpretation of respirograms. Here, the obtained parameter values must be carefully
translated to the correct ASM1 parameters value. Another cause of possibly erroneous results,
reported by van Niekerk et al. (1987), is if first order kinetics is used to describe a sum of zero
order decays. Translation of a first order decay rate to full-scale then leads to overdesign. This
is not likely to occur in ASM1 calibration, as this utilises Monod-kinetics with relatively low
affinity constants, and thus corresponds mostly to zero order kinetics.

Concluding, translation of parameters obtained from lab-scale experiments has to be
done with care. Differences are especially due to the complexity of sludge behaviour. Research
and development of adequate lab-scale experiments is therefore highly desirable.

Influent characterisation: STOWA guidelines and biodegradable COD
In The Netherlands, a provisional procedure for influent characterisation has been suggested to
cope with the lack of standard procedures (STOWA 96-08). This procedure is described in
Section 3.5. It consists of physical-chemical characterisation in combination with BOD tests,
the latter for determination of biodegradable COD that was indicated as the most important
quantity for characterisation. Section 3.5 focuses on these BOD tests for determination of
biodegradable COD.

Initial conditions
When calibrating (or validating) with dynamic simulation, initial conditions have to be known
or estimated. Most important are the initial conditions of suspended components, because the
dynamics of these states are the slowest. Therefore, wrong estimates have a pronounced effect
on the simulation results and consequently cause bias in estimates of biological parameters. The
solute components are less problematic as most of these components can be measured directly
and exhibit much faster dynamics so that wrong estimates have a minor effect on parameter
estimates. For the suspended components, only the total sludge concentration can be measured.
In many cases, initial conditions are determined through prolonged simulations applying diurnal
influent patterns and measured influent COD fractionation. Alternatively, Vanrolleghem et al.
(1999) described methods to determine XBH, XBA and XP based on steady-state mass balances.
These methods require the yield and decay parameters for heterotrophic and autotrophic
biomass to determine XBH and XBA respectively and the heterotrophic decay parameter and
fraction inert products to determine XP. Yet another approach is to estimate the initial state, but
this increases possible identifiability problems. The problem of initial conditions is not
discussed further here. This issue nevertheless will need further attention in ASM1 calibration.



SECTION 3.2 STATE-OF-ART 49

Estimation algorithms
A comparison of parameter estimation methods for activated sludge parameter identification
has been carried out by Vanrolleghem and Keesman (1996) (see also Fehnker, 1996) and is not
discussed in this thesis.

Transport models
In calibration, development of adequate mixing models has received relatively little attention.
No standard procedures are applied. Typically, for predenitrification reactors each compartment
is modelled as a (series of) CSTR(s). Plug-flow type and carrousels are usually modelled by
CSTRs in series, where the number is determined by trial-and–error or, less frequently, by
empirical relationships. In some cases, additional information is used, for example the DO
profile (Weijers et al., 1994).

A more systematic way to develop mixing models is by measuring Residence Time
Distributions (RTDs, analogous to impulse responses) with tracer experiments. Parameters in
combined models can then be determined with nonlinear estimation techniques. This approach
has been applied by e.g. Siegrist and Tschui (1992), Coen et al. (1998) and De Clercq et al.
(1999) to determine the number of CSTRs in the tanks-in-series model. In this model, radial
gradients are neglected and more complicated flow patterns such as backflow are not
considered. More complicated flow models than tanks-in-series were required to fit the RTD of
a full-scale plant by Ottengraf (1971); here, the tanks-in-series model was extended with
backflow. Newell et al. (1998) made a fit with bypass and dead zone to a pilot-plant reactor.

Especially in plants with surface aeration, vertical gradients in the DO concentration have been
observed (Maier and Krauth, 1988; Barnard and Meiring, 1988). Recently, Alex et al. (1999b)
were not able to calibrate a carrousel type plant with a tank-in-series model. Using flow patterns
from a 3D numerical hydraulic model, a mixing model with 2-layers of tanks-in-series was
derived. Parameters of this mixing model were used for tuning instead of biological parameters.

The examples indicate that calibration of mixing models is relevant for activated sludge
calibration. Adequate mixing models will possibly become more complicated than those
typically used now. It was decided however to first obtain a better understanding of ASM1
calibration. Calibration of mixing models will not be studied further in this thesis.

3.2.3 Identifiability of activated sludge plant models

Introduction
The overview of calibration strategies in Section 3.2.2 shows that, while considerable efforts
have been put into calibration of ASM1 parameters, calibration needs further development.

As a starting point for development of strategies for calibration of full-scale plants, a useful
question is whether input/output measurements of the process under normal operation provide
sufficient information to uniquely estimate all parameters of the model. If this is the case, then
the model can be calibrated from input/output data under normal operation alone.

If this is not the case, the next question could be if only a limited set of parameters is
important for calibration and if this limited set can be uniquely estimated. If this is the case,
then again the model can be calibrated from input/output data alone.

If this is not the case, then as an alternative, a subset can be selected of parameters that
are estimated from the plant input/output data. For the (important) parameters that are not
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estimated from input/output data, additional experiments should be developed. The number of
possible parameter subsets is huge however, which motivates application of systematic methods
for the selection.

This line of reasoning underlies the research described in this and the next sections. Model
identifiability is used to investigate the questions stated above. Identifiability is the ability to
determine a unique set of parameters when tuning the model to a given set of (output) data. In a
correct calibration, the parameters have a unique value that has a physical interpretation. This is
only possible if the model is identifiable.

A distinction can be made between structural and practical identifiability. Structural
identifiability, also called deterministic, theoretic or a priori identifiability, is a property of the
model structure. It relates to the question whether it is at all possible to obtain unique parameter
values for a given model structure from selected outputs, in the case of perfect, noisefree
measurements (Bellman and Åström, 1970). Structural identifiability is a minimum
requirement.

For determining structural identifiability, several methods exist for linear models. The
situation is more difficult for non-linear systems. In principle, Taylor expansion can be used,
but the size and complexity of the resulting expressions renders the method suited only for
relatively simple models. Linearization is another method, but gives only sufficient conditions;
while the non-linear system may be identifiable, the linearized system may be not (Godfrey and
DiStefano, 1985). Several other methods exist, but they are beyond the scope of this thesis.

Practical or a posteriori identifiability refers to the ability to obtain accurate parameter
estimates from data, which are always imperfect. A structurally identifiable model may be
practically unidentifiable if the measurements are insufficiently informative. Practical
identifiability depends upon experimental conditions, including experimental design as well as
quality and quantity of measurements. Practical identifiability will be used in the studies in
Section 3.3 and 3.4. A definition and the methodology employed to study practical
identifiability are given in Section 3.2.4. First, however, identifiability studies in the literature
are reviewed.

Biokinetics: ASM1 identifiability
Biokinetic parameters from full-scale input/output data
From the structure and applied kinetic equations in ASM1, it is known that identifiability
problems are to be expected. This is discussed in more detail in Appendix C. Therefore, for
model identification, identifiability measures are needed to reveal how many and which
parameters can be obtained from a particular experiment.
 Sensitivity functions were proposed as an indication for identifiability problems in
parameter estimation by Reichert et al. (1995), who used visual inspection of linear dependence
of sensitivity functions to investigate identifiability for a denitrification model. A steady-state
sensitivity analysis was used by Yuan et al. (1993) to investigate identifiability in a reduced
version of the IAWQ Model for a high purity oxygen process. The DO concentrations in two
reactors, oxygen purity and sludge concentration were chosen as outputs. It was concluded that
heterotrophic yield and growth rate can be estimated from these outputs whereas nitrogen
fractions iXP and iXB cannot.

While parametric sensitivity and sensitivity functions can provide a first indication of
importance of parameters, for models with many parameters and many outputs it is difficult to
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reveal possible dependencies amongst the parameters. Therefore, other identifiability measures
such as the observability matrix and the Fisher information matrix (Section 3.2.4) are required.

The condition number of the observability matrix was proposed as a measure for
(practical) state observability and parameter identifiability18 and investigated for well-designed
pilot plant experiments with intensive measurements (Ayesa et al., 1991, Larrea et al., 1992),
which make these studies less representative for full-scale plants under normal operation. This
measure was also used to compare alternative sensor locations (Ayesa et al., 1994, 1995); here
a reduced model was applied, however. Moreover, the condition number alone is misleading as
an indicator of practical identifiability. Julien et al. (1998) investigated theoretical
identifiability from input/output measurements of an alternating plant. Here also a reduced
model was applied, however.

Identifiability in respirometric experiments
Respirometric experiments are the most important class of experiments to yield additional
information. Therefore, identifiability properties of these tests are discussed in some detail here.
Structural identifiability in short respiration experiments was investigated by Dochain et al.
(1995). This revealed that it is possible to estimate several parameter groups but not all the
individual parameters. The study included nitrification. A slightly modified ASM1 was used
however. More recently, Petersen et al. (2000) studied theoretical identifiability of a two-step
nitrification model when using combined respirometric–titrimetric measurements. Combination
with titrimetric measurements improved theoretic identifiability.

Vanrolleghem et al. (1995) optimised practical identifiability and experimental design of
respiration experiments for a Monod model using the Fisher information matrix (see Section
3.2.4), resulting in significant improvement of parameter accuracy. Vanrolleghem and Spanjers
(1995) studied structural and practical identifiability in the tests they suggested, but also
employed a modified ASM1 model.

  Table 3.3: Identifiable parameter groups from batch tests A and B (See text)
Wastewater characteristics Sludge characteristics (biokinetics)

(1-YHA) SSA (A) µHA XBHA (1-YHA)/YHA (A)

µHB XBHB (1-YHB)/YHB (B) (1-YHA) KSA (A)

(1-YHA) khA XBHA (A)

µHB - bHB (B)

k (See Chapter 4, Eq. 4.5.11) (B)
Note: Parameter subscripts A and B refer to batch tests A and B respectively.

Parameter estimation from measurements of two batch tests (A and B, wastewater with and
without sludge, see Section 3.2.2 under respirometry) suggested by Kappeler and Gujer (1992)
indeed suffered from identifiability problems (Linssen, 1994). Sijbers (1996) investigated
theoretical identifiability of ASM1 in these batch tests with a reduced model with the original
ASM1 kinetics. This led to the 7 identifiable groups in Table 3.3. In this study, nitrification was
not considered. If the heterotrophic yield, YH, is known, then from these groups, at least in
theory, SS and XBH in the influent can be determined, and XBH of the sludge, µH, KS, kh and bh, if
the parameters in both tests are equal. Whether this is possible from actual respirograms is still
an open question, which might be investigated by practical identifiability studies.

                                                
18 The approach adopted was to estimate the unknown parameters and initial states with an extended Kalman filter.
The observability matrix has close connections to the Fisher information matrix.
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Witteborg et al. (1996) suggested a respirometric test to determine SS in wastewater (see
also STOWA 97-23). The value for YH is required and was determined with acetate respiration.
The values for the yield thus determined however were significantly higher than otherwise
reported values (0.80-0.82 vs. 0.65-0.67). This leads to erroneous values for SS with errors up to
50% if acetate is not representative for influent SS, which is doubtful indeed.

Summarising, respirometric experiments can yield additional information, but at least some of
the stoichiometric and/or kinetic parameters, especially the heterotrophic yield, have to be
known to compute individual model parameters from identifiable groups. As these are typically
determined from other experiments, a complicating factor in interpretation of respirometric
experiments is that the respective parameters values must be the same. For example, in tests A
and B above, the parameters in test B apply to wastewater, while in test A they apply to sludge
from the plant. The parameter values are not necessarily equal however, which has to be kept in
mind when selecting and designing respirometric experiments for ASM1 calibration, as was
discussed in the previous section.

Transport models identifiability
With respect to transport models, it is noted that RTDs are external descriptions, which contain
no information on internal mixing. This is analogous to transfer functions, which correspond to
an infinite number of state-space realisations. For first order kinetics, it is not relevant for the
reactor performance how the internal mixing takes place and the external description provides
sufficient information. With Monod kinetics, however, conversion based on RTDs may be
overestimated. Consequently, additional information may be required for calibration of
combined mixing models, for example from mechanistic flow models or from more detailed
measurements. For identifiability analysis of composite models, many results from the study of
identifiability of compartmental models can be applied (e.g. Delforge, 1981; Godfrey and
DiStefano, III, 1985; van den Hof, 1995).

3.2.4 Methodology, overview of studies and description of test plant
Identifiability can be used to answer the question if (typical) input/output measurements of the
process under normal operation provide sufficient information to uniquely estimate all
parameters of the model. While in the literature several studies have been reported on
identifiability of ASM1 or reduced models, they do not provide the answer to this question.
Therefore, in Sections 3,3 and 3.4, identifiability of biological parameters from full-scale plant
data is studied further to answer this question.

These identifiability studies reveal that not all ASM1 parameters are identifiable from
input/output measurements (under normal operation). Identifiability is therefore also used as a
systematic way to select identifiable subsets of parameters in a systematic way.

The focus will be on identifiability of the biokinetics (ASM1 parameters), rather than
transport model parameters. This was done because it was considered important to first
understand identifiability of the ASM1 parameters. Moreover, the focus is on continuously
operated plants, especially carrousels, in contrast to alternating or intermittently operated plants.
Data from continuously operated plants are less informative.

A well-known measure for practical identifiability is the Fisher information matrix (Mehra,
1974). This matrix is employed in the studies below. Let the criterion function be defined as the
weighted sum of squared errors between model output vector y(k,θ) and measured output vector
yp(k) with weights Rk:
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For any unbiased estimator, the inverse of this matrix provides the Cramér-Rao lower bound on
the covariance matrix of the parameter estimates. If M is singular, the experiment is said to be
non-informative. If M has full rank, the model is locally identifiable. The rank and condition
number of M are tests on identifiability, because M is an approximation of the Hessian of the
objective function (Söderström and Stoica, 1989).

The Fisher information matrix, and thus the practical identifiability, depends on the model
structure, the outputs selected, the number and distribution of data points, the measurement
noise and on the model input signals as these affect the model output. Therefore, the practical
identifiability of a model is determined by how these factors are chosen in a particular
experiment.

Several functions of M can be defined as a measure of the uncertainty on the estimate of
θ (Walter and Pronzato, 1990). These can be used as criteria to select or design experimental
conditions with an optimal information content (in some respect). This is applied for example
in design of respirometric experiments (see the previous section). The most important criteria
are listed in Table 3.4 together with an interpretation.

    Table 3.4: Experimental design optimality criteria (Munack and Posten, 1989)
Optimality Objective Interpretation
A min tr(M-1) Minimise mean variance
simplified
A

max tr(M) Minimise mean variance

C min tr(H M-1), H=diag(θi
-1,

i=1,...,p)
Minimise relative (mean) variance

D min det(M)-1 (≡max det(M)) Minimise volume of ellipsoids
E max λmin (M) Minimise largest error (maximal axis)
modified E min cond(M) = 

M

M

min

max

λ
λ Optimise condition number (achieve as

spherical shape of the confidence region as
possible)

In this thesis, these criteria are not used to optimise experimental conditions by manipulating
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process inputs. Instead, the criteria are used as measures of practical identifiability to test how
many and which parameters can be (sufficiently) accurately estimated from full-scale input-
output data, under normal operation. The experimental conditions are assumed given. The
model (structure) is (partly) determined by the selection of ASM1 to describe the biokinetics
(besides selection of a transport-physical model). As outputs, those outputs are selected that are
typically measured at full-scale plants. The noise is determined by the measurement method.
Especially, the process input is assumed as given, namely as the naturally occurring influent
variations. This was done, as it was the aim to reveal if normal operation is sufficiently
informative to obtain all (important) parameters19.

Of course, the criteria can also be applied to select for example optimal sensor locations,
or the types of outputs. This was not done in this study. It is noted here that the practical
identifiability criteria are also very suited as a straightforward, systematic tool to subsequently
select additional experiments to input/output data. These can be selected (or designed) in such a
way that the joint identifiability of full-scale data and additional experiments is optimised.

The D as well as the modified E criterion are selected to study identifiability in Sections 3.3 and
3.4. The following considerations motivate this choice. The simplified A criterion was rejected,
because it can lead to uninformative designs, as it does not guarantee full rank of the Fisher
information matrix (Munack and Posten, 1989). This matrix has to be full rank if the model is
to be (locally) identifiable. The A and C criteria were rejected, because for these criteria it is
necessary to compute the inverse of the Fisher information matrix, which can give numerical
problems. The condition number is a good indication of identifiability, so this was chosen. It
was observed however, that parameter subsets with low condition number often were associated
with low traces (Weijers et al., 1996a) and low determinants (Weijers et al., 1996b). This
means that, although parameter estimates may be independent, they may be (very) inaccurate.
For this reason, a combined criterion that considers both the condition number and the
determinant was applied.

Section 3.3 investigates local identifiability of the model’s biological parameters. For local
identifiability analysis, an a priori assumption on the parameter values must be made. This
assumed value might be incorrect; moreover, the results of a local analysis may depend upon
the particular parameter point chosen. Therefore, the sensitivity of the local analysis to the
parameter values was studied in Section 3.4, by applying a randomised approach as a kind of
global identifiability analysis. Section 3.3 has overlap with Section 3.4 in that partly the same
results are given. Section 3.3 is included however as it contains results with selection of
parameters based on the determinant alone as well as results based on the combined criterion.

Because the analysis reveals that not all parameters can be estimated and therefore
additional experiments are required, one such experiment is investigated. In Section 3.5, a test
for determination of biodegradable COD is developed and analysed. A reduced model that
describes this test in ASM1 parameters is derived in Chapter 4.

In Sections 3.3 and 3.4, the identifiability properties of ASM1 are tested against field data from
full-scale wastewater treatment plants. A wastewater treatment plant of the carrousel type
(18.750 m3) was used for this study. A layout of the plant is given in Figure 3.2.a.

                                                
19 Moreover, it would be difficult to excite the biological part of a full-scale plant significantly. It would be
interesting though to study if significant excitation is possible. For transport models, excitation is well possible by
measuring pulse responses after addition of specific salt solutions.
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Figure 3.2.a: Plant lay-out  Figure 3.2.b: Model flowsheet

A special monitoring exercise was performed. Dynamic data were collected during 2 days for
calibration and two days for validation with grab samples every two hours. The following
outputs were measured:

- oxidation circuit: DO profile, MLSS, actual OUR (oxygen uptake rate), maximal OUR,
sludge production;

- effluent: COD, Nkj, NH4, NO3, suspended solids.

The carrousels have been modelled by alternating aerated and non-aerated compartments. The
aerated and aerobic parts in the circuit were modelled as aerated compartments R1, R3 and R5
in Figure 3.2.b. The other compartments R2, R4 and R6 represent the anoxic parts in the circuit.
The aerobic volumes were determined by means of the measured DO profiles. The two final
clarifiers were modelled as an ideal, static splitter.
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3.3 Parameter estimation of ASM1 from full scale plant input/output data

Abstract†

The Activated Sludge Model No. 1 developed by the International Association on Water
Quality is well accepted for dynamic simulation of removal of carbonaceous and nitrous
compounds from wastewater in activated sludge plants. In several important applications of the
model, it is essential to obtain meaningful parameters to describe full scale plant behaviour
accurately, which is referred to as model calibration. Several procedures for model calibration
have been proposed and applied in the literature, ranging from obtaining parameters directly
from observed input/output behaviour of plants to using - sometimes many - additional,
dedicated experiments. We investigated the possibilities and limitations of using only typical
input/output data of plants by establishing how many and which parameters can be estimated
from these data, in order to determine which additional experiments are really needed. For this
aim, important and identifiable parameter subsets were selected by sensitivity and identifiability
analyses. Two different identifiability criteria were used, the determinant of the Fisher
Information matrix and a combined criterion including both determinant and condition number.
These criteria led to almost identical sets of parameters. The results of the analyses were tested
by parameter estimation using simulated data without and with noise, as well as measured data
from a full scale carrousel type treatment system. The simulated data allowed more parameters
to  be estimated accurately from the output set used than the measured data, which is most
probably caused by model mismatch with the plant. With both simulated and real data, the
parameter sets selected could be uniquely estimated from the data, indicating the usefulness of
selecting identifiable parameter subsets.

3.3.1 Introduction
As more strict demands are being put onto wastewater treatment, many activated sludge plants
originally designed for removal of carbonaceous compounds (expressed as COD) have to be
upgraded to include nitrogen removal as well. Enhanced nitrogen removal plants are sensitive
towards disturbances in load and temperature that inevitably occur, and therefore dynamic
simulation has become an indispensable aid in plant design and operation. The Activated
Sludge Model No. 1 (ASM1) developed by the International Association on Water Quality
(IAWQ) is considered state of the art and is now becoming routinely applied in many western
countries. This model defines the biological processes taking place and their stoichiometry and
kinetics. In some important applications of the IAWQ Model No. 1 (as a tool for upgrading
existing plants, or as an aid in operation, e.g. for process analysis or model-based control), the
model parameters must be fit to the plant and the conditions in the plant, because some of the
parameters show a strong dependency upon plant operation and wastewater composition. This
is referred to as model calibration, which usually consists of a combination of input/output
measurements on the full-scale plant and additional, lab- or pilot-scale experiments, dedicated
to specific parameters.
      In the model, several components are distinguished such as readily and slowly
biodegradable COD. These COD fractions and stoichiometric and kinetic parameters cannot be
measured directly, however, and therefore have to be obtained indirectly. In this study the focus
will be on the COD fractions and kinetic and stoichiometric parameters, as these are generally
                                                
† This section has been published as: Parameter estimation of the IAWQ Model No.1 from full-scale plant
input/output data by S.R. Weijers, H.A. Preisig, A. Buunen, T.W.M. Wouda (1997) Proceedings European Control
Conference, Brussels, July 1-4, 1997.
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considered most problematic. Other parameters, such as parameters defining the plant
flowsheet, and initial conditions are not considered and are assumed to be either directly
measurable or obtainable from separate measurements or experiments.
      Despite research efforts spent by several research groups during the past years, still no
established procedure is agreed upon for this task. As a result, several approaches are being
used, which differ in selection of outputs measured and parameters. Also in the procedure used
for parameter estimation choices are made by the user (simultaneous or sequential estimation,
sequence of estimation). This may result in difficulties in comparing results of different
calibration exercises. The parameter values obtained from a calibration exercise may be biased
and depend upon the procedure adopted as a consequence of identifiability properties of the
model, and thus not have the physical meaning they are intended to have. Besides complicating
comparisons of calibration results, application of the calibrated model may also be affected if
the parameters obtained are not carefully interpreted. Consequently, we believe it is important
to understand the identifiability properties of the model and to develop calibration procedures
which reckon with these properties as much as possible.
     The focus of this section is on calibration on the basis of full scale input/output plant data. It
is important to know what information is contained in typical output measurements, in order to
decide whether and which additional, dedicated experiments are really needed. Earlier research
efforts did not address this question for the full model with data obtained during normal
operation, although efforts have been put into obtaining parameters from well designed pilot
tests [1] and from full scale plants [2]; in this last study a reduced order model was applied,
however.
      The theory section presents two criteria for selecting identifiable parameter subsets. Then it
is described how these criteria and parameter estimation were used to establish how many and
which parameters can be estimated from an assumed, typical set of input/output data. After this,
the selected identifiable parameter subsets thus obtained are shown, followed by estimation
results with these parameter subsets. These estimations were done by estimating parameters
simultaneously from the total set of outputs available, using simulated data without and with
noise as well as measured data.

3.3.2 Identifiability theory
Criteria for selecting identifiable parameter subsets from data available are described in this
section. If least squares parameter estimation is used, the weighted sum J (Eq. 1) of squared
errors between model outputs y(k,θ) and measured outputs yp(k) with weights Rk is minimized:
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with Y tθ ( ) being the output sensitivity functions. Sensitivity functions can be used as an
indication for selecting parameters [5], as they indicate the importance of parameters. For
models with many parameters and many outputs however, it is difficult to reveal all possible
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dependencies amongst the parameters. This information is contained in the Fisher information
matrix  [4], which can be written as Eq. (3),
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with Qk the covariance matrix of the measurement noise. Under certain assumptions, the
inverse of the Fisher matrix provides the lower bound of the parameter covariance matrix [6]
From (3) it can be seen that the Fisher matrix relates measurement accuracy, contained in Qk,
and model output parametric sensitivities )t(Yθ  to parameter estimate accuracy. Several

functions of M can be defined as a measure of the uncertainty on the estimate of θ [8], of which
two criteria have been applied here. The D criterion maximizes the determinant of M, thus
minimizing the volume of confidence regions (which, by linearization, are assumed to be
ellipsoids). The modified E criterion minimizes the condition number, defined as the ratio of
the largest to the smallest eigenvalue of M, and thus achieves an as spherical shape as possible.
      An important limitation of applying the Fisher matrix is the fact that it is a local property,
computed in one, optimal point, of parameter space. As the optimum is not known a priori, an a
priori assumption has to be made, which may not well represent the properties in the optimum.
Therefore, additional testing was done by parameter estimation, as explained in the next
section.

3.3.3 Method and case description
For the study, a wastewater treatment plant of the carrousel type in the Netherlands (18.750 m3)
was selected. At this plant, a monitoring campaign has been performed earlier (Weijers et al.
1994). The carrousel was modelled by alternating aerated and non-aerated compartments. The
two final clarifiers of the plant were modelled as one ideal, static splitter.
      For the analysis of identifiability, firstly a representative set of measured outputs was
chosen, A set consisting of COD, Kjeldahl-N, NH4 and NO3 in the effluent and the sludge
production was considered representative for typical, classical measurements. The sludge
concentration was not included, as the model applied did not include a clarifier model and
therefore could not describe observed dynamics in the sludge concentration.
       For this output set, identifiable parameter subsets were selected by a procedure which
consisted of the following steps (described in more detail in [10]). Firstly, an a priori parameter
set was chosen for the analysis. This set consisted of default values for most of the parameters,
and fSS, fSI,, fXS, fXI, KOA,and KOH from an earlier, manual calibration on the same dataset [9].
      Then a reduced set of most sensitive parameters was selected from the set of ASM1 kinetic
and stoichiometric parameters and COD fractions, on the basis of this a priori  assumption on
the parameter values. Output parametric sensitivities were computed, and the parameters
showing an average sensitivity larger than 0.2 (scaled by the highest sensitivity obtained for that
paarticular output) were selected. The set thus found included YH, µH, bH, YA, µA, KS, KOA, ηg,
SI, XI and XBH. In this particular case, the aerated volume fraction also appeared to be very
important, which is a result of the flowsheet used. However, in the sequel this parameter will
not be considered for estimation. With this reduced set, the following steps were carried out:

1.  Select parameter subsets from the reduced set which show best identifiability.
For all parameter subset combinations containing 2 up to 8 parameters, the Fisher matrix was
computed and the subsets were ranked according to the determinant (D criterion) and condition
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number (Modified E criterion). The subsets yielding the highest determinant, respectively the
lowest condition number was selected.

2.  Test with estimation on simulated data
The thus selected subsets were estimated from simulated data without and with measurement
noise added to the outputs. These estimations aimed at 1) discriminating between the influence
of structural properties and measurement noise and 2) testing whether the identifiability
properties from the locally computed Fisher information matrix are sufficiently representative
to serve as a base for selecting identifiable parameter subsets.

3.  Test with estimation on measured data
Finally, the subsets were estimated from measured data, which enables one to appreciate
difficulties encountered in practice, as these data are not as ideal as simulated data, because
model mismatch can occur.

3.3.4 Results and discussion
1.  Identifiable parameter subsets selection
For the reduced parameter set, the Fisher information matrix was computed for increasing
subset size. Parameters were scaled by typical parameter values to obtain equal relative
weighting for the parameters. (If this scaling is not applied, high parameters are weighted more
heavily than low parameters which leads to different relative parameter accuracy.) Then
parameter subsets were ranked according to the determinant (Table 1) and the condition number
(results not shown).

      Table 1: Highest determinants of Fisher matrix for increasing number of parameters
Subset size  Determinant Cond. Number Parameter subset

2         8.79 104           32.5 YH, µA20
3       84.8   104         262 YH, µA20, fXI

4     615      104         290 YH, µA20, fSI, fXI

5   1451      104         932 YH, µA20, bH20, fSI, fXI

6   1003      104       3415 YH, µA20, bH20, fSI, fXBH, fXI

7     448      104       5599 YH, µA20, bH20, fSI, fXBH, fXI, µH20
8     145.0   104       9754 YH, µA20, bH20, fSI, fXBH, fXI, µH20, YA

The determinants given in Table 1 are the highest found among the determinants for all
parameter subsets of the corresponding subset size n. The corresponding condition number is
given as well. Apparently, the maximally attainable determinant decreases for the larger
parameter subsets.

In the results obtained with the condition number as a criterion (data not shown), it was
observed that the determinants associated with the lowest conditions numbers were much lower
than the highest determinants (typically a factor of 50-500 lower). This means that, although the
model is identifiable for the parameter subset combinations as far as the condition number is
concerned, the parameter accuracy is not the highest achievable.

Therefore, as an alternative to the condition number, a combined criterion was used
instead. From the parameter subsets, ranked according to the condition number, those subsets
were chosen which had a low condition number and at the same time, a significantly higher
determinant than surrounding sets. Following this heuristic procedure, Table 2 was produced.



SECTION 3.3 PARAMETER ESTIMATION OF ASM1 FROM FULL SCALE PLANT INPUT/OUTPUT DATA 61

      Table 2: Combined criterion
Subset size     Determinant Cond. Number Parameter subset

2           1.44 104           4.795 XI, µA20
3         11.0   104         35.1 XI, SI, µA20
4         50.2   104       110 bH20, fXI, fSI, µA20
5       104.1   104       295 bH20, fXI, fSI, µA20, ηg

6         61.5   104       634 bH20, fXBH, fXI, fSI, µA20, ηg

7         24.8   104     1356 bH20, fXBH, fXI, fSI, µA20, µH20, ηg

8         10.5   104     2400 bH20, fXBH, fXI, fSI, µA20, µH20,YA, ηg

Some remarks are to be made here. Firstly, it is noted that the analysis reveals that the COD
fractions fXI  and fSI, can be estimated from output measurements together with other
parameters.  This differs from many procedures applied, where often fSI  is estimated separately
from effluent COD alone.

Secondly, comparison of Tables 1 and 2 shows that similar subsets are obtained, except
for YH. This parameter causes high condition numbers and at the same time high determinants.

More careful analysis revealed that for almost all outputs of the output set used, the sensitivity
for YH was high. This causes the main diagonal element of the Fisher matrix YH to be higher
than for other parameters. This leads to a relatively large eigenvalue associated with this
parameter, which in turn leads to high condition numbers and large determinants. Thus the high
sensitivity towards YH leads to accurate estimates of this parameter. From this consideration it is
concluded that it may be advisable to include YH in the set of parameters to be estimated, as
even small errors introduced by assuming this parameter known might lead to large errors in
other parameters. However, including this parameter into the set may lead to larger numerical
problems during estimation, because of probably worse conditioning.

2.  Simulated data
Subsequently, the parameter subsets in Tables 1 and 2 were estimated from simulated data
without noise. Up to the set of seven parameters, the estimation was within the specified
parameter accuracy of 0.1%. This was achieved both with the Simplex (or Nelder-Mead)
method and Levenberg-Marquardt method and reliability was checked by initialising the
algorithm with two different starting points. With the 8 parameter subset, small deviations
started to occur.
      Then parameters were estimated from simulated data with noise levels of 2.5% and 5% of
the mean output values (Gaussian white noise). The results for different parameter subset sizes
are shown in Table 3 and 4. Here, also different starting algorithms and starting points were
used.  For both tables, the relative accuracy of the estimates is within 2.5 resp. 5% for sizes up
to 5 parameters. For larger size of 6 up to 8 parameters, deviations of approximately 10%
started to occur in the least sensitive parameters.

For noise levels of 5%, the inaccuracy in the estimates was approximately twice the inaccuracy
with noise levels of 2.5%, as was to be expected. It can also be observed that, with increasing
noise level, more iterations were needed when the number of parameters increased above 5.
With 6 parameters, the requested accuracy was not obtained within the maximum number of
iterations. The reason of this is not clear.

3.  Measured data
Finally, the parameter subsets were estimated from measured data. Results are shown in Table 5
for set sizes up to 5 parameter for the sets selected with the combined criterion. For each
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parameter subset for set sizes up to 5 parameters, almost the same optimal parameter set was
found with different starting points and estimation methods. The uniqueness of the parameter
values obtained despite large variation in starting points for the estimation confirms that these
subsets were indeed identifiable, as was also concluded from the criterion used. Moreover, this
result is obtained despite the local validity of the Fisher information matrix.

   Table 3: Results of estimation of parameter subsets selected with combined criterion,
                 simulated data with noise

N Starting noise Parameters itera-
point† %‡ fXI µA20 fSI bH ηg fXBH µH20 YA tions

2 1, 2 2.5 0.399 0.999 34
1, 2 5 0.399 0.998 34

3 1, 2 2.5 0.399 1.000 0.0596 56
1, 2 5 4.000 0.999 0.0588 56

4 1, 2 2.5 0.400 1.0007 0.0596 0.622 64
1, 2 5 0.402 1.0014 0.0587 0.625 57

5 1, 2 2.5 0.401 0.999 0.0598 0.620 0.808 46
1, 2 5 0.405 0.998 0.0591 0.620 0.816 57

6 1, 2 2.5 0.394 0.992 0.0599 0.635 0.797 0.657 82
2 5 0.393 0.986 0.0595 0.641 0.800 0.633 598

7 1, 2 2.5 0.390 0.994 0.0609 0.637 0.785 0.661 4.18 92
1 5 0.385 0.987 0.0613 0.650 0.775 0.629 4.35 1037
2 5 0.385 0.987 0.0612 0.649 0.776 0.629 4.33 359

8 1, 2 2.5 0.388 1.005 0.0610 0.635 0.782 0.661 4.20 0.244 113
1 5 0.380 1.007 0.0615 0.647 0.768 0.628 4.39 0.248 369

True point 0.398 1.000 0.0604 0.620 0.800 0.700 4.00 0.240
†  Starting point 1 0.358 0.900 0.0544 0.558 0.720 0.630 3.60 0.216
   Starting point 2 0.239 0.600 0.0400 0.372 0.600 0.700 2.40 0.144

   Table 4: Results of estimation of parameter subsets selected with determinant,
                  simulated data with noise

N Starting noise Parameters itera-
point† %‡ YH fXI µA20 fSI bH fXBH µH20 YA tions

2 1, 2 2.5 0.6702 0.999 29
1, 2 5 0.6704 0.998 29

3 1, 2 2.5 0.669 0.400 1.0016 50
1, 2 5 0.668 0.402 1.0033 50

4 1, 2 2.5 0.670 0.400 1.0005 0.0596 72
1, 2 5 0.669 0.401 1.001 0.0589 72

5 1, 2 2.5 0.670 0.400 1.001 0.0596 0.622 91
1, 2 5 0.670 0.402 1.001 0.0587 0.624 100

6 1, 2 2.5 0.670 0.394 0.991 0.0599 0.635 0.658 100
1 5 0.671 0.393 0.986 0.0593 0.646 0.633 1216
2 0.671 0.392 0.985 0.0594 0.643 0.633 1208

7 1, 2 2.5 0.673 0.393 0.989 0.0609 0.637 0.666 4.16 122
1, 2 5 0.675 0.389 0.977 0.0614 0.653 0.631 4.35 121

8 1, 2 2.5 0.674 0.391 1.005 0.0697 0.634 0.668 4.18 0.247 145
2 5 0.679 0.383 1.010 0.0616 0.647 0.636 4.40 0.253 156

True point 0.670 0.398 1.000 0.0604 0.620 0.700 4.00 0.240
†  Starting point 1 0.603 0.358 0.900 0.0544 0.558 0.630 3.60 0.216
   Starting point 2 0.600 0.239 0.600 0.0400 0.372 0.420 2.40 0.144

What can also be observed, is the fact that the values obtained for a particular parameter is
dependent on the total number of estimated parameters. This can be explained as follows. When
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estimating a set of parameters, the other, non-estimated parameter values have to be assumed. If
such parameters are also estimated by increasing the subset size, not only the value of these
extra parameter changes, but also of the other parameters estimated. This is a result of the
identifiability properties of the model, and clearly shows that parameter values are not mutually
independent and errors in assumed parameters are compensated for by errors in estimated
parameters. This shows that one has to be careful in assigning a physical meaning to parameter
values obtained.

  Table 5: Results of estimation of parameter subsets selected with combined
                criterion, measured data

N Starting Method‡ Parameters
point† fXI µA20 fSI bH ηg

2 1, 2 S, LM 0.450 1.195
3 1, 2 S, LM 0.440 1.192 0.0746
4 1 S, LM 0.274 0.878 0.0841 0.173

2 LM 0.274 0.878 0.0841 0.173
5 1 S, LM 0.351 0.863 0.0871 0.155 1.158

2 LM 0.351 0.863 0.0871 0.156 1.152
†  Starting point 1 0.398 1.000 0.0604 0.620 0.600
   Starting point 2 0.239 0.600 0.0400 0.372 0.600

   ‡ S: Simplex, LM: Levenberg-Marquardt

If 6 or more parameters were estimated, non-realistic parameter values were obtained. This was
not expected from estimation results with simulated data and is most probably caused by model
mismatch, which was significant here due to the simplicity of the flowsheet used, neglect of
clarifier dynamics and uncertainty in the influent due to grab sampling. Results of estimation of
subsets selected with the determinant are given in Table 6.

  Table 6: Results of estimation of parameter subsets selected with determinant, measured data
N Starting Method‡ Parameters

point† Yh fXI µA20 fSI bH XBH

2 1,2 LM 0.709 1.105
3 1,2 LM 0.700 0.412 1.126
4 1,2 LM 0.689 0.417 1.148 0.0736
5 1 LM 0.103 0.450 1.350 0.0964 -0.0288
6 1 LM 0.307 0.756 1.925 0.0923 -0.266 3.82

2 LM 0.168 0.336 1.081 0.0966 -0.0375 0.445
†  Starting point 1 0.67 0.398 1.000 0,0604  0.620 0.630
   Starting point 2 0.60 0.239 0.600 0.0400  0.372 0.420

   ‡ S: Simplex, LM: Levenberg-Marquardt

Here, only up to 4 parameters could be estimated from the output set chosen. This was to be
expected, because the condition numbers are worse and hence the identifiability is less good. In
some cases, no convergence was achieved within the required number of iterations, which was
set at 200 times the number of parameters to be estimated. For set sizes of 5 and 6 parameters,
meaningless values were found (fractions larger than 1 or negative parameters). This could have
been avoided by using constrained estimation, which was not done in this study in order to find
limitations of identifiability. Also, problems with high condition numbers were observed during
estimation, probably indicating occurrence of local minima.
      Comparison of Table 5 and Table 6 indicates that the influence of estimating YH is smaller
than was expected from the results obtained by identifiability criteria and estimation from
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simulated data. It will be interesting to find out whether estimating YH will decrease bias of
estimates of other parameters, which was expected from the preceding analysis.

3.3.5 Conclusions
Using identifiability analysis and parameter estimation series, we tried to establish how many
and which parameters can be obtained from typical input/output data. For a carrousel system,
sludge production and effluent COD, ammonia, Kjeldahl nitrogen and nitrate were chosen as a
representative output set. Identifiability analysis with the Fisher matrix indicated that up to 8
parameters can be estimated from this set. This was confirmed by estimation with simulated
data. This set included YH, µA20, bH20, fSI, fXBH, fXI, µH20 and  YA, parameters that are generally
considered important for calibration. From the results with simulated data, it is concluded that,
in order to obtain more than 7 to 8 parameters, additional experiments are required. From the
measured data used in this study, only up to 5 parameters could be estimated. This is very
probably due to model mismatch, which was considerable. To be more conclusive for
estimating with measured data, more elaborate flowsheet models will have to be applied to the
same dataset, including modelling the final clarifier.

3.3.6 List of symbols
Stoichiometric parameters:
YH :: Heterotrophic yield (-)
YA :: Autotrophic yield (-)
fp :: Fraction biomass yielding inert products (-)
ixb :: Fraction N in biomass (kg N/kg COD)
ixp :: Fraction N in inert products (kg N/kg COD)

Kinetic parameters:
µH :: Heterotrophic growth rate constant (s-1)
bH :: Heterotrophic decay rate constant (s-1)
KS :: Affinity constant for SS (kg m-3)
KOH :: Heterotrophic affinity constant for SO (kg m-3)
KNHH :: Heterotrophic affinity constant for SNH (kg m-3)
KALKH :: Heterotrophic affinity constant for SALK (Mol m-3)
ηg :: Correction factor for anoxic growth (-)
µA :: Autotrophic growth rate constant (s-1)
bA :: Autotrophic decay rate constant (s-1)
KOA :: Autotrophic affinity constant for SO (kg m-3)
KNHA :: Autotrophic affinity constant for SNH (kg m-3)
KNO :: Affinity constant for SNO (kg m-3)
KALKA :: Autotrophic affinity constant for SALK (Mol m-3)
kh :: Hydrolysis rate (s-1)
Kx :: Hydrolysis affinity constant (kg m-3)
ka :: Ammonification rate (s-1)
ηh :: Correction factor for anoxic hydrolysis (-)

Components:
SS :: Readily biodegradable COD (kg m-3)
SI :: Soluble inert COD (kg m-3)
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SNH :: Ammonia and ammonium (kg N m-3)
SNO :: Nitrite and nitrate (kg N m-3)
SND :: Soluble biodegradable organic N (kg N m-3)
SALK :: Alkalinity (Mol m-3)
SO :: Dissoved oxygen (kg m-3)

XBH :: Active heterotrophic biomass (kg m-3)
XBA :: Active autotrophic biomass (kg m-3)
XS :: Readily biodegradable COD (kg m-3)
XI :: Particulate inert COD (kg m-3)
XND :: Particulate biodegradable org. N (kg N m-3)
XP :: Particulate COD from decay (kg m-3)
fSI :: fraction SI in influent (-)
fXBH :: fraction XBH in influent (-)
fXS :: fraction Xs in influent (-)
fXI :: fraction XI in influent (-)

Other:
DO :: Dissolved Oxygen (kg m-3)
COD :: Chemical Oxygen Demand (kg O2 m

-3)
BOD :: Biological Oxygen Demand (kg O2 m

-3)
Kjehldahl-N:: Kjeldal nitrogen concentration (kg N m-3)
Qk :: measurement error covariance matrix
Rk :: weighting matrix
y :: output (column vector)
θ :: parameter vector
p20 :: value of parameter p at 20 °C
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3.4 A procedure for selecting best identifiable ASM1 parameters

Abstract†

A systematic procedure for selecting identifiable parameter subsets for a given set of measured
outputs is proposed. The aim is to only select those parameters that can be estimated uniquely
from the dataset used. The proposed procedure consists of first selecting a reduced set of most
sensitive parameters by sensitivity analysis and subsequently selecting identifiable parameter
subsets using the Fisher information matrix.

For a particular set of outputs obtained from a typical calibration exercise at a carrousel type
nitrogen removal plant, parameter subsets ranging from two to eight parameters were selected
by this procedure. The procedure proved successful as the parameter subsets thus selected could
be estimated accurately from simulated data without and with noise as well as from real data.
However, the procedure is based on a property which is local in parameter space. Consequently,
as an a priori assumption on the parameter vales has to be made at the start of the procedure,
the selection results might be different from the results which would have been obtained by
using the a posteriori parameter values. Hence, the sensitivity towards this a priori assumption
was tested explicitly. For this purpose, the parameter space was sampled according to a Latin
hypercube sampling scheme and the selection procedure was applied in all sampling points as if
these were a priori estimates. From this extensive study it could be concluded that the results of
the procedure were not too severely influenced by the a priori assumption on the parameter
values. Therefore, the proposed procedure appears a powerful and practical tool for efficient
and reliable model calibration.

Keywords
Activated Sludge, Identifiability, Mathematical Modelling, Optimal Experimental Design,
Parameter Estimation

3.4.1 Introduction
In some important applications of the IAWQ Activated Sludge Model No. 1 (as a tool for
upgrading existing plants, or as an aid in operation, e.g. for process analysis or model-based
control), the model parameters, influent and sludge characteristics must be fit to the plant and
the conditions in the plant, because some of these show a strong dependency upon plant
operation and wastewater composition. This task is referred to as model calibration and it
usually requires to perform a combination of input/output measurements on the full-scale plant
and additional, lab-scale or pilot-scale experiments, dedicated to assess specific parameters.

In ASM1, several components are distinguished which cannot be measured directly, e.g. readily
and slowly biodegradable COD, biomass fractions, etc. The same holds true for the
stoichiometric and kinetic parameters. Consequently, these have to be obtained indirectly. In
this study the focus will be on the COD fractions and kinetic and stoichiometric parameters, as
these are generally considered most problematic. Other parameters, such as parameters defining

                                                
† This section has been published as: A procedure for selecting best identifiable parameters in calibrating
Activated Sludge Model No.1 to full-scale plant data by S.R. Weijers and P. A. Vanrolleghem (1997) Wat. Sci.
Tech. 36 (5) pp. 69-78.
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the plant flowsheet, and initial conditions for the state variables are not considered in this study
and are assumed to be either directly measurable or obtainable from separate measurements or
experiments.

Despite research efforts spent by several research groups during the past years, still no
established procedure is agreed upon for this model calibration task. As a result, several
approaches are being used, which differ in selection of outputs measured and parameters
selected for calibration (Weijers et al., 1996). Also in the procedure used for parameter
estimation, choices are made by the user (simultaneous or sequential estimation, sequence of
estimation). The parameter values obtained may be biased and depend upon the procedure
adopted, and thus not have the physical meaning they are thought to have. Besides complicating
comparisons of calibration results, application of the calibrated model may also be affected if
the parameters obtained are not carefully interpreted. Consequently, it is important to
understand the identifiability properties of the model and to develop calibration procedures
which reckon with these properties as much as possible.

The focus of this section is on calibration on the basis of full scale input/output plant data. It
must be known what information is contained in typical output measurements, in order to
decide whether and which additional, dedicated experiments are really needed. While efforts
have been put into obtaining parameters from well designed pilot tests (Ayesa et al., 1994) this
question was not addressed for data obtained during normal operation in full scale plants,
except for Ayesa et al. (1995) who applied a reduced order model, however.

The theory section presents two criteria for selecting identifiable parameter subsets and
describes the Latin hypercube sampling (LHS) procedure. Then, the proposed procedure for
selecting parameter subsets based on this identifiability theory is described, as well as the steps
that were taken for testing this procedure by parameter estimations and the LHS-approach. To
make this testing realistic, it was performed with a full-scale case study, for which a typical set
of output data was available. The results section shows the identifiable parameter subsets
obtained by applying the procedure, followed by the estimation results for these selected
parameter subsets. These estimations were done by simultaneous estimation of the selected
parameters, first using noise-free and noise-corrupted simulated data and then using real data,
all for the same set of outputs available. Then the dependency of the parameter subset
composition on the a priori parameter values is shown on the basis of a Latin hypercube
sampling test. Finally, conclusions are drawn.

3.4.2 Identifiability theory and Latin hypercube sampling
Criteria for selecting identifiable parameter subsets from data available are described in this
section. If least squares parameter estimation is used, the weighted sum J (Eq. 1) of squared
errors between model outputs y(k,θ) and measured outputs yp(k) with weights Rk is minimised:

))(),(())(),((
1

kykyRkykyJ pk

N

k

T
p −−= ∑

=
θθ .              (1)

Output sensitivity functions are obtained by linearisation of this functional in the optimal
parameter point θ o :
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with )(tYθ being the output sensitivity functions. Sensitivity functions can be used for selecting

parameters (Reichert et al., 1995), as they indicate the relative importance of parameters. For
models with many parameters and many outputs however, it is difficult to reveal all possible
dependencies amongst the parameters. This information is summarised in the Fisher
information matrix  (Mehra, 1974), which can be written as
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with Qk the covariance matrix of the measurement noise. Under certain assumptions (no model
mismatch, white measurement noise), the inverse of the Fisher matrix provides the lower bound
of the parameter error covariance matrix (Söderström and Stoica, 1989):

1−≥ M)cov( oθ    (4)

The above shows that the Fisher matrix relates measurement accuracy, contained in Qk, and
model output parametric sensitivities )t(Yθ  to parameter estimate accuracy.

Several functions of M can be defined as a measure of the uncertainty on the estimate of θ
(Walter and Pronzato, 1990). Two criteria have been applied here, the modified E criterion and
the D criterion. The modified E criterion is identical to the condition number, defined as the
ratio of the largest to the smallest eigenvalue of M, and thus compares the confidence region’s
shape with that of a sphere. Although the condition number provides a good indication of
identifiability, it was observed that parameter subsets with low condition number often were
associated with low traces and determinants, which means that, although parameter estimates
may be independent, they may be (very) inaccurate. For this reason, it was decided that the D
criterion was to be considered as well. The D criterion is equal to the determinant of M, thus
corresponding to the volume of confidence regions (which, by linearisation, become ellipsoids).

For given outputs with measurement error (Qk) and given number of samples (N), it is the
model parametric sensitivities )t(Yθ  which map the measurement errors onto the parameter

error. )t(Yθ  depends upon the excitation in the input signal, model structure (which are

known) and on the (optimal) parameter vector oθ  (which is not known a priori and which is

determined by the real output data). Thus with known input signal, model structure,
measurement error and number of samples, the identifiability properties depend upon the real
output data via the optimal parameter point oθ .

From the above it is clear that an important limitation of applying the Fisher matrix is that it is a
local property, computed in one, optimal, point of parameter space. As the optimal parameter
point oθ  is not known a priori, an assumption has to be made, which in general will not

coincide with the optimum and thus not well represent the properties in the optimum. For this
reason, the sensitivity towards the a priori assumption was investigated by sampling the
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parameter space according to a Latin hypercube sampling scheme and apply the parameter
selection in each of the resulting parameter points, as if these were the a priori estimates. Thus,
also the sensitivity towards the real output data set is tested. This can be seen as follows. As the
optimal parameter point depends upon the output data, a small sensitivity towards the a priori
assumption implies a small sensitivity towards the real output data set measured.

Latin hypercube sampling includes a stratified sampling of the parameter space which is
preferable over random sampling. The scheme is an extension of Latin square sampling and was
originally developed by Iman and Conover (1980) to enable sensitivity analysis for time-
consuming computer codes through a limited number of simulation runs. For uniform
probability distributions on the parameters, the sampling proceeds as follows. A number of
samples NLHS is defined. Then the range for each parameter is divided into the same number of
NLHS (equally sized) intervals and one observation is made in each interval using random
sampling. One observation for the first parameter is then randomly selected, matched with a
randomly selected observation on the second parameter and so on for all the parameters. These
constitute sample (parameter point) 1. This procedure is repeated for the remaining parameter
observations which exhausts all of the observations and results in a Latin hypercube sample.

3.4.3 Proposed procedure for selecting identifiable parameters
The procedure summarised in Figure 1 is proposed for selecting parameter subsets. The steps of
the procedure are described in more detail here.

Determine reduced set

Compute sensitivities

Determine best identifiable 
parameter subsets

Estimate best identifiable parameters

Calibrated model

Assume parameters

Define plant model

Step 3:

Step 0:

Step 1:

Step 2:

Step 4:

Figure 1: Procedure for selecting best identifiable parameter subsets

0. Define plant model, input data and initial conditions
It is assumed that other steps necessary in model calibration have already been taken. These
include: (i) Obtaining design data such as plant layout and volumes; (ii) Obtaining plant input
data and operational data as a function of time such as influent flow and concentrations of total
COD and Kjeldahl-N, other (internal) flows and loads, temperature, aeration and control loops;
also the fractions of soluble Kjeldahl-N and ammonia-N of the total Kjeldahl-N and the COD
and Kjeldahl-N concentration of the sludge are assumed to be measured separately; (iii) Initial
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conditions are assumed to be known and obtained either through measurements or through
steady-state computation; (iv) A set of output measurements such as sludge production, effluent
COD, effluent ammonia-N and nitrate-N is available; (v) The model and data are available in
computer code. Thus, the next step to be taken is selection of parameters to be estimated and
their estimation.

1. Define the set of outputs and an a priori parameter set
First, the set of outputs available for estimation is defined. For the analysis, an a priori
assumption on parameter values has to be made. For example, default values taken from the
literature can be applied.

2. Select a reduced set of most sensitive parameters.
This step is included to reduce the number of parameters with which the subsequent detailed
analysis is done from approx. 25 to a number between 10 and 15 in order to reduce computation

time in subsequent steps.  Sensitivity coefficients S
i

jy

θ were computed from the mean of the

output sensitivity functions Y tθ ( ) :
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The reduced set was selected according to either of the two following methods: (i) Scale the
sensitivity coefficients for each output by the maximal sensitivity coefficient for that output.
Select those parameters which show a scaled mean output sensitivity coefficient larger than 0.2
in at least one of the outputs. The idea behind this is to ascertain that at least one parameter will
be selected for each output available. (ii) Rank the parameters according to averaged sensitivity
coefficients, obtained by averaging over the outputs available:
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3. Select those parameter subsets from the reduced set which show highest identifiability.
In this step, the Fisher information matrix is computed for all possible subsets of the parameters
selected on step 2. This is done for subsets of sizes increasing from 2 to n parameters, yielding
the largest possible n (here, n was limited to 8 for reasons indicated at the results section). A
ranking is then made of all parameter subsets according to the D as well as to the modified E
criterion. For each subset size, the best subset is selected. The listing of best subsets for
increasing n provides information on the maximum number of identifiable parameters from the
output set. As the number of computations required in this step increases dramatically with the
total number of parameters to be evaluated because of combinatorial explosion, the preceding
step (obtaining a reduced set) is essential.

4. Estimate selected parameters from real data
If the procedure is successful, then for the parameter subset thus selected unique parameter
values are obtained from the real dataset by nonlinear parameter estimation. Other, non-
estimated parameters are maintained at their initially assumed values.



CHAPTER 3 MODELLING, MODEL CALIBRATION AND IDENTIFIABILITY72

3.4.4 Testing the suggested procedure
To evaluate whether the procedure actually leads to identifiable parameter subsets, the
following tests were performed:

1. Estimation from simulated data (i.e. with known ‘true’ parameter values)
The subsets selected with the above procedure were estimated from simulated data without and
with measurement noise added to the outputs. These estimations aimed at i) discriminating
between the influence of structural properties and measurement noise and ii) testing whether the
identifiability properties from a locally computed Fisher information matrix are sufficiently
representative to serve as a basis for selecting identifiable parameter subsets.

2. Estimation from real data
After this, the subsets were estimated from real data, which enables one to i) check whether
unique parameter values are obtained despite possibly erroneous a priori parameter values and
ii) appreciate difficulties encountered in practice, as these data are not as ideal as simulated
data, because model mismatch can occur.

3. Assess sensitivity to a priori assumption on the parameter values
Finally, the Latin hypercube sampling was applied as an explicit test for the range of validity of
the conclusions with respect to identifiability drawn on the basis of the a priori assumed
parameter values.

3.4.5 Case description
For the study, a wastewater treatment plant of the carrousel type (18.750 m3) was selected. At
this plant, a monitoring campaign has been performed earlier (Weijers et al., 1994). The
carrousel was modelled by alternating aerated and non-aerated compartments to achieve
nitrogen removal. The two final clarifiers of the plant were modelled as one static splitter with
ideal solids separation. In a measurement campaign of two days the influent and effluent were
sampled every two hours.

3.4.6 Results and discussion

Procedure results

1. Definition of the set of outputs and a priori parameter set.
For the analysis of identifiability, a representative set of measured outputs was chosen first. A
set consisting of COD, Kjeldahl-N, NH4 and NO3 in the effluent and the sludge production was
considered representative for typical, standard measurements. Then an a priori parameter set
was chosen for the analysis. This set consisted of default values for most of the parameters from
Henze et al. (1987), and the influent COD fractions fSS, fSI,, fXS, fXI and affinity constants KOA,
and KOH from an earlier, manual calibration on the same dataset (Weijers et al., 1994). The N
fractions were also determined by manual calibration.

2. Selection of a reduced set of most sensitive parameters.
A reduced set of most sensitive parameters among the ASM1 kinetic and stoichiometric
parameters and COD fractions was selected on the basis of the a priori  assumption on the
parameter values. Output parametric sensitivities were computed, and the selection was done by
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method (i) described in the procedure section, that is by  selecting those parameters which show
a time-averaged, scaled sensitivity coefficient larger than 0.2 in at least one of the outputs. The
set thus found included YH, µH, bH, YA, µA, KS, KOA, ηg, fSI, fXI and fXBH. In this particular case,
the aerated volume fraction also appeared to be very important, which is an artefact introduced
by the flowsheet used. For this reason in the sequel this parameter will not be considered for
estimation. With this reduced set, the following step could be carried out.

3. Identifiable parameter subsets selection
For the reduced parameter set, for all parameter subset combinations containing 2 up to 8
parameters, the Fisher matrix was computed. For this computation, the output error covariance
matrix Qk was assumed diagonal and constant over the samples, and for each output the error
was assumed to be proportional with the mean value over the samples for that output. An
additional scaling of the sensitivity functions by the a priori parameter values was applied. The
subsets were subsequently ranked according to the determinant (D criterion) and condition
number (Modified E criterion) (results not shown). The subsets yielding the highest
determinant, respectively the lowest condition number were selected. These results indicated
that it was best to use a combined criterion, and from the parameter subsets with the best
determinants that subset was chosen which had a significantly lower condition number than
surrounding sets. Following this heuristic procedure, Table 1 was produced.

Table 1: Parameter subsets selected with combined criterion
Subset size Determinant Cond. Number Parameter subset

2           1.44 104           4.795 fXI, µA20
3         11.0   104         35.1 fXI, fSI, µA20
4         50.2   104       110 bH20, fXI, fSI, µA20
5       104.1   104       295 bH20, fXI, fSI, µA20, ηg

6         61.5   104       634 bH20, fXBH, fXI, fSI, µA20, ηg

7         24.8   104     1356 bH20, fXBH, fXI, fSI, µA20, µH20, ηg

8         10.5   104     2400 bH20, fXBH, fXI, fSI, µA20, µH20,YA, ηg

Some remarks are to be made here. First, it is noted that the analysis reveals that the influent
COD fractions fXI  and fSI can be estimated from output measurements together with other
parameters. This differs from many procedures applied, where often SI is estimated separately
from effluent COD alone, which may consequently introduce bias.

Second, with the determinant as sole criterion, very similar subsets are obtained, with the
notable exception of YH. This parameter causes high condition numbers and at the same time
high determinants. More careful analysis revealed that for almost all outputs of the output set
used, the sensitivity for YH was high. This causes the main diagonal element of the Fisher
matrix corresponding to YH to be higher than for other parameters. This leads to a relatively
large eigenvalue, which in turn leads to high condition numbers and large determinants. Thus
the high sensitivity towards YH leads to accurate estimates of this parameter. From this
consideration it must be concluded that it is advisable to include YH in the set of parameters to
be estimated, as even small errors introduced by assuming this parameter known might lead to
large errors in other parameters. However, including this parameter into the set may lead to
larger numerical problems during estimation, because of worse conditioning.

Results of testing the selection procedure

1. Test by estimating from simulated data with known ‘true’ parameter values
The parameter subsets of Table 1 were estimated from simulated data without noise. In the
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estimation, a parameter scaling was applied, in order to improve numerical properties and
reduce differences in relative accuracy for the parameters. The values assumed in the starting
point were used for scaling. Up to the set containing seven parameters, the estimation was
within the specified relative accuracy of 0.1%. Reliability was checked by using different search
algorithms and initialising them with different starting points. With the 8 parameter subset,
small deviations started to occur, in the order of magnitude of 1% (results not shown).

Subsequently, parameters were estimated from simulated data with noise levels of 5% of the
mean output values (Gaussian white noise). The results for different parameter subset sizes are
shown in Table 2, expressed as relative deviation from the known ‘true’ values in percents
which is possible because the true values are known. Here also two different starting points
were used for most set sizes. For both tables, the relative accuracy of the estimates is within 5%
for sizes up to 5 parameters. For larger size of 6 up to 8 parameters, deviations of
approximately 10% started to occur in the least sensitive parameters. From this result and from
the result without noise, it was decided to set the maximum subset size at 8 parameters.

   Table 2: Results of estimation of parameter subsets selected with combined criterion from simulated
    data with noise, presented as relative deviation (%) from known ‘true’ value

N Starting Parameters
point† fXI µA20 fSI bH ηg fXBH µH20 YA

2 1, 2  0.30 -0.18
3 1, 2  0.53 -0.10  2.64
4 1, 2  0.91 -0.14  2.79  0.73
5 1, 2  1.89 -0.24 -2.10 -0.15  1.96
6 2 -1.33 -1.42 -1.48  3.40  0.025   -9.60
7 1 -3.34 -1.27  1.50  4.82 -3.19 -10.11 8.70

2 -3.29 -1.27  1.33  4.74 -3.02 -10.09 8.20
8 1 -4.50  0.70  1.81  4.34 -4.04 -10.36 9.63 3.29
‘True’ point  0.398  1.000  0.0604  0.620 0.800 0.700 4.00 0.240
†  Starting point 1  0.358  0.900  0.0544  0.558 0.720 0.630 3.60 0.216
   Starting point 2  0.239  0.600  0.0400  0.372 0.600 0.700 2.40 0.144

2. Test by estimating from real data
The selected parameter subsets for set sizes up to 5 parameters were estimated from real data
(Table 3). The results are given as estimated parameter values, because no relative deviations
can be computed as the true values are not known. From the results per subset size, it can be
seen that almost the same optimal parameter set was found with different starting points and
estimation methods. As unique parameter values were obtained, this confirms that these subsets
were indeed identifiable, as was concluded from the selection criterion used. Remarkable is that
this result is obtained despite the fact that the Fisher information matrix has only local validity
and differences up to 100% of the a priori assumed values occur.

    Table 3: Results of estimation of parameter subsets selected with
      combined criterion from real data

N Starting Method‡ Parameters
point† fXI µA20 fSI bH ηg

2 1, 2 S, LM 0.450 1.195
3 1, 2 S, LM 0.440 1.192 0.0746
4 1 S, LM 0.274 0.878 0.0841 0.173

2 LM 0.274 0.878 0.0841 0.173
5 1 S, LM 0.351 0.863 0.0871 0.155 1.158

2 LM 0.351 0.863 0.0871 0.156 1.152
†  Starting point 1 0.398 1.000 0.0604 0.620 0.600
   Starting point 2 0.239 0.600 0.0400 0.372 0.600

   ‡ S: Simplex, LM: Levenberg-Marquardt
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On the other hand, the results of Table 3 also show that the values obtained for a particular
parameter are dependent on the total number of estimated parameters. This can be explained as
follows. When estimating a set of parameters, the other, non-estimated parameter values have to
be assumed. Errors in the assumed parameters are compensated for by the errors in the
estimated parameters. If the parameter subset increases in size, less parameter values are
assumed and the distribution of the errors over the parameters changes, resulting in a change of
all parameter estimates.

This shows that estimated parameter values are not mutually independent even though by the
selection criterion used they were selected on minimal interdependency, so one has to be careful
in assigning a physical meaning to parameter values obtained. Increasing the subset size to 6 or
more parameters resulted in non-realistic parameter estimates. This was not predicted by the
test results with the simulated data and is most probably caused by model mismatch, which was
significant in this case due to different causes. This model mismatch may lead to unrealistic
parameter values, as wrong model structure is (partly) compensated for by erroneous parameter
estimates. For more definite conclusions on the number of practically identifiable parameters,
more detailed study is required in this case.

Another exercise reported in more detail in Weijers et al. (1996) consisted of evaluating subsets
selected with the determinant as ranking criterion. With this ranking only up to 4 parameters
could be estimated from the output set chosen. This was to be expected, because the condition
numbers are worse and hence the identifiability properties are less good. It is too early however
to conclude that the combined criterion is to be preferred as it is advisable to estimate YH for
reasons indicated above.

3. Test sensitivity to a priori assumption by applying Latin hypercube sampling
The selection of reduced parameter sets and of best identifiable parameter subset, step 2 and 3
in the procedure given above, were repeated with the 23 parameters considered relevant. From
the literature and experience, ranges considered realistic were defined for all of these
parameters. The ranges defined are given between square brackets: Yh[0.55 - 0.67], fp[0.08 -
0.2], Ya[0.1 - 0.25], µh20[2 - 10], Ks[2.5 - 20], Koh[0.1 - 1], Knhh[0.02 - 0.2], bh20[0.1 - 1.5],
ηg[0.6 - 1.0], ηh[0.35 - 0.4], Kno[0.1 - 0.5], kh20[2 - 4], Kx20[0.03 - 0.15], ka20[0.016 - 0.8],
µa20[0.2 - 1.2], Knha20[0.8 - 10], Koa[0.1 - 1]; ba20[0.04 - 0.15], fSi[0.04 - 0.2], fSs[0.05 - 0.25],
fXs[0.4 - 0.6], fXi[0.05 - 0.4], fXbh[0.01 - 0.2], fXba[0.001 - 0.01].

115 Parameter points were sampled, each of these representing a particular point in 23-
dimensional parameter space and thanks to the LHS sampling design guaranteed to cover the
whole space. For all 115 parameter points, sensitivity functions of the five outputs with respect
to all 23 parameters were computed. Then reduced sets were determined by applying method (i)
described in the procedure section (compute time-averaged output sensitivities, scale by the
maximum output sensitivity, select reduced sets consisting of all parameters with at least one
scaled output sensitivity value larger than 0.2). The occurrences within the reduced sets thus
obtained for the 115 different LHS parameter sets were as follows (ranked according to the
number of occurrences): fSi 115, µa20 115, Ya 115, Yh 115, ηg 111, Knha20 95, Koa 88, bh20 85,
kh20 79, Koh 62, fXi 39, µh20 29, Kx20 18, Kno 16, Ks 16, ηh 10, fSs 5, ka20 1, fXba 0, fXbh 0, ba20 0,
Knhh 0, fp 0. Although these results indicate an order of importance, it was observed that with
the selection criterion used (value > 0.2), the size of the reduced set varied too severely, namely
from 4 to 15 parameters depending on the LHS parameter set considered. It thus appears that
this criterion is not effective for reducing the set to a consistent set of important parameters that
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would hold independent of the a priori assumption of the parameter values. To accommodate
for this, method (ii) for step 2 of the procedure was chosen, which also agrees better with the
behaviour of the least squares criterion used within estimation as it does not artificially change
the sensitivity of an output by scaling with the maximal sensitivity of that output. This
alternative consists of omitting the scaling by the maximal sensitivity for each output and
instead, ranking the parameters according to the sensitivity coefficients, averaged over the 5
outputs. In Figure 2, the rankings thus obtained within the individual LHS samples are plotted
as a function of the sampling number for the 6 most sensitive parameters.
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Figure 2: Parameter ranking over the LHS sample if ranked
according to mean sensitivity over the outputs

These plots have been organised from left to right ordered by a second ranking, which consists
of averaging the output-averaged sensitivity coefficients over the 115 LHS samples and rank
the parameters and corresponding plots in descending order of this LHS-sample-averaged
sensitivity.

In Figure 3, the results are summarised as histograms of the rankings for all of the parameters.
Also these histograms have been organised from top left to bottom right in descending order of
LHS-sample-averaged sensitivity. It can be observed that if about 14 parameters are selected,
the most important are consistently present. This means that the set can indeed be reduced, and
a size of 14 appears adequate. What can also be observed is that some parameters show a much
larger variation in their relative sensitivity than other parameters. This especially holds true for
kh, Knha, fXi and to a lesser extent for Kx20 and µh20. Hence, with respect to the latter parameters
the composition of the reduced set seems to depend on the a priori assumed values. Some of
the other parameters such as fp, ηh, fXbh and fXba show a large variation in sensitivity, but are
always in the range of least sensitive parameters and consequently can be omitted consistently.

Finally, parameter subset compositions were determined over the LHS sample, after first
reducing the set to 14 parameters. A subset size of 8 parameters was chosen, and the
determinant of the Fisher information matrix was used as the selection criterion. This choice
was made, because the heuristic procedure used with the combined criterion considering both
the condition number and the determinant does not lend itself for straightforward ranking,
which was required to analyse the large sample used. The occurrences of parameters in the
subsets obtained was as follows: Yh 115, kh20 115, fSi 115, µa20 114, bh20 100, Kno 88, ηg 82, fXi

61, Ya 38, Koh 37, Kx20 32, Knha20 23, Koa 0, ηh 0. This shows that the same 5 parameters Yh, kh20,
fSi, µa20 and bh20 in the subsets obtained in almost all of the samples, and Kno, ηg and fXi in most
of the subsets, indicating that the subset size composition does not change severely by the a
priori assumption on the parameter values.

The results obtained with LHS sampling indicate that the procedure can be applied to obtain
identifiable parameter subsets. The number of identifiable parameters was limited (to 8),
however, which means that not all important parameters can be estimated with the output set
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defined. Errors in non-estimated, fixed parameters may then lead to errors in estimated
parameters, especially because non-selected parameters can have a strong interaction with
selected parameters; in fact, this is the reason they are rejected in the identifiable subset
selection step. To get around this problem, more outputs and/or dedicated experiments yielding
information on these parameters have to be looked for. The selection procedure proposed can
be utilised for this task as well.
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Figure 3: Histograms of occurrences of ranking positions of parameters

3.4.7 Conclusions
A procedure was suggested for selecting important and identifiable parameter subsets for
calibrating ASM1. This procedure utilises sensitivity functions and the Fisher information
matrix. However, these are local properties in parameter space and consequently may depend
upon an a priori assumption on parameter values which has to be made. Therefore, the
procedure was tested by estimation on simulated as well as measured data, which indicated that
the procedure was successful in selecting identifiable subsets. In addition, a Latin hypercube
sampling procedure covering the whole parameter space showed that the results obtained by the
procedure are not too severely influenced by the a priori assumption. This means that a tool has
been developed which is helpful in selecting parameters that can be uniquely estimated from the
data available. The next challenge is now to use this approach to find optimal experimental
designs which optimally combine full scale plant input/output data with dedicated experiments,
especially respirometry, in order to obtain all relevant parameters.
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3.5 BOD tests to determine biodegradable COD

Abstract†

Application of Activated Sludge Model No. 1 requires an influent characterisation of COD over
the different model COD components. Total biodegradable COD (CODBD) is the most
important quantity in this characterisation. The use and interpretation of BOD tests for the
determination of biodegradable COD were investigated. Of four grab samples, the BOD
evolution in time was measured up to fifteen days, with addition of nitrification inhibitor. From
the BOD curves, total BOD (BOD∞, or BOD infinite) was estimated with first and second-order
models. Parameters were fitted with one (or two, for the second-order models) kinetic
parameter per individual sample as well as one (two) for all samples together. The BOD curves
were adequately described by first-order kinetics. The estimated kinetic parameters showed
considerable variation over the samples from the same wastewater. As a consequence, the ratio
BOD∞/BOD5 was not constant for a given wastewater. The ratio BOD∞/CODtot on the contrary
proved much more constant. Therefore, the total COD instead of BOD5 is suggested as a basis
for determination of biodegradable COD. The BOD∞ estimated has to be converted to CODBD.
The conversion factor was computed by simulating the BOD tests using ASM1, reduced for
aerobic conditions. This approach provides a quantitative basis for this conversion factor.  The
sensitivity of this conversion factor to model parameter values and COD fractionation was
determined, which showed that the conversion has to be adjusted for non-default values of the
heterotrophic yield.

Keywords
Modelling; model calibration; influent characterisation; total BOD; activated sludge;
wastewater treatment.

3.5.1 Introduction
Development of easy-to-use methods for influent characterisation suitable for practical
application is very important in the modelling of activated sludge processes, and has therefore
received considerable attention over the last years. The Activated Sludge Model No. 1 (ASM1,
Henze et al., 1987) has become a standard model to describe the dynamics of wastewater
treatment plants. An influent characterisation is required for most applications of the model.
Examples of such applications are: checking of design under dynamic operating conditions (in
designing new or upgrading existing plants), process analysis, design of control systems for
process optimisation or as an aid in operation. Different approaches for the COD
characterisation task have been proposed, ranging from physical/chemical methods (e.g.
Lesouef et al., 1992) via respirometric experiments (e.g. Spanjers and Vanrolleghem, 1995) to
dedicated pilot plant tests (e.g. Dold et al. 1986; Henze et al., 1987). Recently, a project has
been carried out on influent characterisation (STOWA, 1996), consisting of a literature review,
an inventory of methods applied in practice by the waterboards and universities and a sensitivity
analysis. It was concluded that, still, no method is available which is standard, reliable,
reproducible, and easy-to-use.

                                                
† This section has been published as: On BOD tests for the determination of biodegradable COD for calibrating
Activated Sludge Model No. 1 by S.R. Weijers (1999) Wat. Sci. Tech. 39 (4) pp.177-184.
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In the same report, biodegradable COD was indicated as the most important quantity for
characterisation. Guidelines for influent characterisation are given, which consists of physical-
chemical characterisation in combination with BOD tests, where the BOD tests are used to
determine total biodegradable COD. Two conversion factors are required, one to convert BOD5

to BOD∞, based on a first-order assumption on BOD kinetics (Eq. 1), and one to convert BOD∞

to CODBD (Eq. 2):

BOD∞ = BOD5/(1-e-5 k) (1)

CODBD =  BOD∞/(1-YH,BOD)   (2)

With suggested values of k = 0.23 and YH,BOD = 0.2, this would give CODBD/BOD5 =1.463 ·
1.25 = 1.83. With this approach, however, two problems exist: 1) k varies with the wastewater;
values between 0.1 and 0.7 have been reported (Metcalf & Eddy, 1979), which give BOD∞

/BOD5 conversion factors of 1.03 up to 2.54; Henze et al. (1995) report values for BOD∞/BOD5

approximately between 1.43 and 1.67; 2) The value of YH,BOD is not quantitatively motivated.
As a result, there is uncertainty in the conversion of BOD5 to CODBD. A suggested approach to
solve the first problem is to measure BOD20 and use this as BOD∞; however, the BOD20 test is
not reproducible (Kuipers, 1996). Therefore, as an alternative to BOD20 tests, it has been
suggested to estimate BOD∞ by fitting first-order models to BOD curves. As another approach
to circumvent these problems, van Loosdrecht (1996) suggested a CODBD/BOD5 conversion
factor of 2 instead of 1.83, based on typical yields that are observed in microbiological studies.
However, this approach also lacks quantitative foundation and would therefore introduce
considerable uncertainty.

The importance of developing methods for determining biodegradable COD, the lack of
experience with BOD tests for this purpose and problems with its interpretation indicated above
motivated the work described in this section. One particularly interesting question is whether it
is possible to have one conversion factor for a specific wastewater to convert BOD5 to CODBD

or whether conversion factors based on other quantities must be used.. The set-up of BOD tests,
estimation of BOD∞ from the measured data, the precision of the estimation results and
determination of BOD∞/BOD5 and CODBD/BOD∞ conversion factors are successively studied
below.

3.5.2 Methods and theory
In two measurement campaigns, series of BOD tests lasting up to 15 days were carried out in
the framework of a modelling campaign of the Venlo WWTP. In the first campaign, duplo
BOD tests were taken for 4 grab samples and one composite sample. BOD was measured at t=2
or 3, 5 and 9 or 10 days, without nitrification inhibitor. Results from the first measurement
campaign were used to improve the set-up of the BOD test series. In the second campaign, for
each of four grab samples, two triplo BOD tests were carried out, one with and one without
nitrification inhibitor, measuring BOD at t=2,5,7,9,12 and 14 days (or 1,4,6,8,11 and 13 days).
At the first and last time instant, an additional triplo test was done. From the curves with
nitrification inhibitor thus obtained the BOD∞ was estimated in four ways: 1) one rate constant
per individual sample (separate estimation); 2) one rate constant over all samples (joint
estimation); 3) two rate constants per individual sample (separate estimation); 4) two rate
constants over all samples (joint estimation). First-order kinetics are normally used to describe
BOD curves. Here, also second-order kinetics were applied to investigate whether this would
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better describe BOD curves, thus checking for sluggish start-up due to possibly low initial
biomass concentration. First-order kinetics are decribed by Eq. 3:

BODp(t) = BOD∞ (1 – e-k t)  (3)

and second-order kinetics by Eq. 4:

BODp(t) = BOD∞ ( tktk e
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The Nelder-Mead (or Simplex) method was used for parameter estimation. Least squares
parameter estimation minimises the weighted sum J (Eq. 1) of squared errors between model
outputs y(k,θ) and measured plant outputs ym(k) with weights Rk:
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with )ˆ,( θkY being the output sensitivity functions. From the output sensitivities and the

variance of the measurement noise 2
kσ  the Fisher information matrix was computed (Walter,

1997):
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where the noise variance was estimated from the reduced sum of squares, applying unweighted
least squares:
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with p being the number of estimated parameters. Under certain assumptions (no model
mismatch, white measurement noise and some more, see Walter 1997), the inverse of the Fisher
matrix provides the lower bound of the parameter error covariance matrix:

)ˆ()ˆcov( 1 θθ −≥ F .      (9)

The above shows that the Fisher matrix relates measurement accuracy, contained in 2
kσ , via

model output parametric sensitivities ),ˆ( tY θ  with parameter estimate accuracy. The standard

deviation of the ith estimated parameter iθ̂  was obtained from the square root ρi of the ith

diagonal element of the inverse Fisher matrix. Under the normality assumption, an approximate
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95% confidence interval is then given by [ iθ̂  - 1.96ρi , iθ̂  - 1.96ρi ] (Rosenbrock and Storey,

1966, Walter, 1997). Also under the normality assumption, an approximate, ellipsoidal 95%
confidence contour was computed from:

96.1)ˆ()ˆ( =−− θθθθ FT
. (10)

Exact confidence contours were computed with the according Fα(p,N-p) levels as approximate
confidence levels (Draper and Smith, 1981):
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As an additional judgement on the quality of fit, the condition number of the Fisher matrix F
was computed, the condition number being defined as the ratio of the largest and smallest

eigenvalue, CN = )(/)( FF σσ .

The BOD∞ to CODBD conversion factor was computed by simulating the BOD tests using
ASM1, reduced for aerobic conditions. This reduction consisted of: 1) setting all Monod terms
with dissolved oxygen (DO) limitation to 1; 2) setting all terms with DO inhibition to 0, thus
neglecting denitrification and anoxic hydrolysis; 3) not considering inert components originally
present in the wastewater (ASM1 component XI), however including loss of biodegradable
COD in the death-regeneration cycle due to inert product formation from biomass decay (XP);
4) omitting alkalinity; 5) omitting nitrification (by setting XBA=0). The experimentally
determined BOD∞ was used to compute initial conditions on COD fractions in the simulation
following the STOWA guidelines. Default ASM1 model parameters were used in the
simulation. The STOWA guidelines for influent characterisation are briefly summarised below.

Measure: Influent: Total CODtot, membrane filtrated (0.45 µ) CODmf, BOD5, NH4-N
Effluent: CODeff,mf

Compute: SI = 0.9 CODeff,mf ; SS = CODmf - SI ; XBH = 0 ; XS = CODBD – SS ;
CODsusp = CODtot - CODmf ; XI = CODsusp – XS .
SNH = NH4-N ; SND = 0.03 CODmf ; XND = 0.04 CODsusp .

The conversion factor CODBD/BOD∞ was then computed from the ratio of the initially present
CODBD (Ss(0)+XS(0)+XBH(0)) and the BOD at infinite time (computed from integration of
simulated OUR), CODBD(t=0)/BOD(te) (here, te was chosen 40 days, guaranteeing a relative
precision of less than 0.001). In addition, the sensitivity of the conversion factor to model
parameter values as well as to COD fractionation was computed.

3.5.3 Results and discussion
In the first series, 4 of the tests did not follow a first-order response. The BOD at t=9 or 10 was
higher than expected from the points at t=2 or 3 and t=5 (results not shown). It was suspected
that this effect was due to nitrification. Simulation of the BOD test with (a reduced) ASM1
without and with nitrification using default model parameters and a preliminary influent
characterisation supported this idea. Therefore, it was concluded that in this series only data up
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to t=5 days could be used. Because too little data points were available to estimate rate
constants for individual samples, in this series kinetic rate constant(s) could only be estimated
for all samples together. In the second series, more points were measured to allow estimation of
kinetic constants for each individual sample. In the second series, the influence of nitrification
was confirmed: BOD without nitrification inhibitor was approximately 50% higher at the end
than BOD with inhibitor. In Figure 1, the estimation results are shown for the tests with
nitrification inhibitor added.
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Figure 1: Estimated BOD curves, separate estimation
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Confidence contours are shown in Figure 2 and in Table 1, the results are summarised. The
estimated rate constants and BOD∞ values are given together with their standard deviations.

It can be observed that different k values are found for the samples, which would result in
different BOD∞/BOD5 conversion factors. The ratio BOD∞/CODtot is fairly constant, however.
The ratio of BOD5 (computed from estimated parameters) to CODtot shows a much larger
spread. Using one rate constant for all samples, indicated as joint estimation, results in an
expected decrease in the spread of BOD5/CODtot, at the expense of an associated increase in the
spread in BOD∞/CODtot.

      Table 1: Estimated rate constants and BOD∞ for first-order fits, separate and joint estimation
Sample 1 Sample 2 Sample 3 Sample 4 Average (sd) sd

(%)
Separate k (sd) 0.228 (0.020) 0.313 (0.024) 0.474 (0.050) 0.352 (0.034) 0.342 (0.102)

BOD∞ (sd) 201 (6) 203 (4) 270 (6) 205 (5)
BOD∞ /CODtot 0.400 0.394 0.438 0.424 0.414 (0.021) 5
BOD5 /CODtot 0.2704 0.311 0.397 0.352 0.333 (0.054) 16

CN(F) 12 6.8 7.1 8.3
J (N) 3,028 (24) 1,911 (24) 10,232 (18) 4,390 (24)

Joint k 0.353 (0.021)
BOD∞ 181 (5) 198 (5) 282 (5) 205 (5)

BOD∞ /CODtot 0.360 0.385 0.457 0.424 0.406 (0.043) 11
BOD5 /CODtot 0.298 0.318 0.379 0.352 0.337 (0.036) 11

CN(F) 6.1
J (N) 27,610 (90)

The results of simultaneous estimation are given in Figure 3. In Sample 1, it can be seen that the
early BOD values are overestimated (too high k), while in Sample 3 they are underestimated
(too low k). Also an F-test on the parameter estimates was carried out, which failed for a 95%
confidence level. (The F-test did not fail however with higher confidence levels). From the
results, it appears that the k value may vary over different samples of the same wastewater,
which is most probably due to differences in the amount and the kinetics of the influent
(heterotrophic) biomass. Influent characterisation based on separate estimation therefore shows
more consistent results, as will become clear in the sequel (see also Table 5). It is concluded
that 1) it may be dangerous to base CODBD/BOD5 conversion factors on only one tested BOD
sample; and 2) that it may be dangerous to use BOD5 as a basis of biodegradable COD
estimation from k values identified in earlier experiments, even if obtained from several,
different samples.

Estimation of two rate constants was not useful, and led to over-parameterisation in all cases as
judged from the high condition numbers of the Fisher Information matrix. All values of the
condition number were higher than 5000, and in some cases much higher. It is consequently
concluded that the BOD curves can be adequately described by first-order kinetics.

Subsequently, the BOD tests were simulated using the reduced ASM1 (Figure 4). A COD
characterisation was carried out following the STOWA guidelines, from the measurements
listed in Table 4 and using the estimated BOD∞. Also measurement results without nitrification
inhibitor are shown. In the simulation also XBH is required. Here, XBH was assumed to 25% of
biodegradable suspended COD, XBD. It is emphasised that the plotted BOD curve is not an
estimated curve, but a curve obtained using ASM1 default parameters. The simulated BOD
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overestimates the BOD, especially at the beginning of the curve. Adjustment of some of the
ASM1 parameters and influent characterisation, especially the amount of biomass, might be
used to fit the curve to the measurements, but this was not the subject of this study.
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Figure 3: Estimated BOD curves, joint estimation

The simulated BOD curve can be typically divided into 3 areas: 1) High respiration rate
determined by µH at high SS; 2) lower respiration rate determined by kh due to hydrolysis of XS,
both during day 1; and 3) lower respiration rate determined by decay of XBH (most of the time).
The initial steep increase in BOD in Figure 4 (t<1d.) corresponds to area 1 and 2. The period
thereafter (t>1d.) corresponds to area 3.
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Figure 4: Measured and simulated batch test (Sample 2) without (*, --) and
with (o, -.-.) nitrification

The conversion factor was computed for different influent characterisations. For XBH fraction
smaller than 25% of CODBD, the conversion factor was between 1.17 and 1.19. The ratio of
SS/XS had negligible influence. For practical situations, the uncertainty in the conversion factor
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due to uncertainty in COD characterization will thus be limited to approximately 1%. The larger
conversion factor at higher XBH values in ASM1 can be understood as follows. If XBH(0) is low
and the sum of SS(0) and XS(0) are high, respiration of SS(0) and XS(0) causes a significant
contribution BOD, without associated inert product formation.

       Table 2: Conversion factor CODBD/BOD∞ with different COD characterisations
SS(0) XS(0) XBH(0) CODBD/BOD∞

224 22.5 7.5 1.172
0 246.5 7.5 1.172

224 29 1 1.169
224 22.5 7.5 1.172
224 5 25 1.178
224 1 29 1.180
164 30 60 1.191
100 30 124 1.217

0 30 224 1.258

Sensitivity coefficients of the factor to model parameters are given in Table 3. Only the
stoichiometric coefficients YH and fP have a significant influence on the conversion factor. It is
concluded that for practical situations, only YH is of relevance.

      Table 3: Sensitivity coefficients of conversion factor CODBD/BOD∞ to parameter variations
YH fp µH KS bH kh KX

0.431 0.156 -0.007 0.00656 0.00651 -0.00003 0.00002

Finally, the effect of the value of YH was determined by calculating the conversion factor for
different values of this parameter. The result is plotted in Figure 5. This figure can be used to
determine the conversion factor for calibrated values of YH. Influent characterisation results
(YH=0.67) are given in Table 5.
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Figure 5: Conversion factor CODBD/BOD∞ as a function of YH.

         Table 4: Measured and computed quantities for influent characterisation
CODtot CODmf CODeff,mf NH4-N CODsusp

Sample 1 503 241 26 40 262
Sample 2 515 248 30 33 267
Sample 3 617 282 31 39 335
Sample 4 483 227 35 35 256

The spread of the influent characterisation obtained when using results from separate estimation
is much smaller than when using results from joint estimation. For this particular influent, with
joint estimation even invalid results were obtained for the amount of suspended biodegradable
COD (XS+XBH). It can also be seen that the fraction of biodegradable COD is fairly constant for
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the different samples of the same wastewater. It is concluded that total COD is a better basis for
determining the biodegradable COD fraction than BOD5. A CODBD/CODtot ratio can be used to
obtain CODBD for samples of which CODtot has been measured, this ratio being determined
through separate estimation from preferably several, different samples.

     Table 5: COD fractionations with separate and joint estimation (CODBD/BOD∞=1.18)
Separate Joint

fSI fSS fCODBD fXBD fXI fCODBD fXBD fXI

Sample 1 0.04 0.43 0.47 0.04 0.48 0.42 -0.01 0.53
Sample 2 0.05 0.43 0.47 0.03 0.49 0.45 0.02 0.50
Sample 3 0.04 0.41 0.52 0.10 0.44 0.52 0.10 0.44
Sample 4 0.06 0.41 0.50 0.09 0.44 0.50 0.09 0.44
 Mean 0.49 0.07 0.46 0.47 0.05 0.48
 sd 0.02 0.04 0.03 0.04 0.06 0.05

   Note: fXBD = fXBH + fXS; sd : standard deviation

3.5.4 Conclusions

Total BOD (BOD∞) for a given wastewater can be obtained through estimation from measured
BOD curves, preferably from different samples. Addition of nitrification inhibitor is required.
Separate estimation of a rate constant for each individual sample is advised, as the BOD
kinetics may vary from sample to sample. For the same reason, the BOD5 is not a good basis for
determination of biodegradable COD using an (one) identified rate constant, even if this is
obtained from several samples. The estimated total BOD can be converted to biodegradable
COD using a CODBD/BOD∞ conversion factor, which can be computed on the basis of ASM1.
This approach provides a quantitative motivation for this conversion factor, interpreting BOD
tests in correspondence with the intended use in ASM1. With default ASM1 parameters, the
CODBD/BOD∞ conversion factor can be assumed 1.18 ± 0.01. For non-default values of YH, the
conversion factor must be adjusted. Total COD is suggested as a basis for computation of
biodegradable COD for other (e.g. historical) samples instead of BOD5, because the ratio of
biodegradable COD and total COD is much more constant for a given wastewater than the ratio
of CODBD and BOD5.
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3.6 Discussion and conclusions
In this chapter, modelling of activated sludge plants was studied, focusing on the bioreactor.
Both biokinetics and transport physics are important in reactor modelling. Biokinetics are
typically modelled with ASM1, while transport in the reactor is usually modelled with
combined models from ideal model reactors. For accurate prediction of real activated sludge
plant behaviour therefore, both ASM1 parameters and transport models need to be calibrated.

Most emphasis has been put on calibration of ASM1 model parameters. An assessment
of calibration strategies in the literature shows that no clear procedures for ASM1 calibration
exist. This is partly due to the identifiability properties of the model, which were therefore
further studied.

First, an analysis of local identifiability of biological parameters from full-scale wastewater
treatment plants was carried out (Section 3.3). The results of this analysis indicated that from
realistic input/output measurements approximately eight parameters could be estimated. This
was confirmed by additional tests estimating parameters from artificial data. Using real plant
data, only five to six parameters could be uniquely estimated. This lower number obtained
when using real data was most probably due to model mismatch of the transport model.

Subsequently, a procedure was suggested for global analysis of practical identifiability in
Section 3.4, to investigate the dependency of the results of the local analysis towards the
parameters values that must be assumed a priori. This procedure includes an efficient
randomised approach employing Latin Hypercube Sampling. A parameter identifiability
ranking was made to reveal dependency of results on the a priori selection of the parameter
values in the local analysis. This ranking showed that approximately twelve to fourteen
parameters can be considered important and should be considered in calibration. Other
parameters may be fixed and taken from the literature. While the exact results obtained may
differ from plant to plant, we expect the same trends will be observed for other continuously
operated systems.

The results of this global analysis further led to conclude that additional experiments are
required, because not all parameters can be estimated from full-scale input/output data.
Respirometric tests are promising to provide additional information. Especially, they can be
applied for separate influent characterisation. For this purpose, a BOD test for determination of
biodegradable COD was studied. Analysis of the results showed that instead of the suggested
use of BOD5 as a basis to determine biodegradable COD, total COD should be used. This is
because different kinetics may occur in BOD tests for a given wastewater. Interpretation of
results of respirometry however is complicated by the fact that biologic parameters may differ
from those in the plant.

A special note is made with respect to the heterotrophic yield, YH. This parameter is required
for interpretation of respirometric experiments. It appears to be the best identifiable parameter
from full-scale input/output data. While several authors have suggested using default values for
this parameter, it thus seems preferable to estimate this parameter from full-scale data.

Practical identifiability analysis based on the FIM, especially using the determinant or a
combined criterion based on the determinant and the condition number, proved a very powerful
tool for design of experiments in ASM1 calibration. This tool can be used in a second step after
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selection of identifiable parameters, namely for selection of additional experiments. For
example, using the condition number, one might select to determine those parameters that have
the strongest interaction with the parameters identified from full-scale plants.

While the identifiability results obtained and procedures proposed in this chapter provide
important insight and tools for improved ASM1 calibration, the state-of-art assessment also
indicated that the role of mixing in ASM1 calibration needs further attention.
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Chapter 4  Model reduction

Sitting back, he yawned. The optimisation took so long. He knew the system was stiff, and to accelerate
the simulations he had already selected the special solvers for stiff differential equations. Moreover, he
had used several options for speeding up the computations like employing the sparse structure of the
system and analytic computation of the Jacobian matrix. Indeed, the simulations were now much faster.
However, he realised that for the optimisation he had in mind, this was not sufficient. He had to look
for a more fundamental solution. Would it be possible to break down the problem into smaller pieces?
He suddenly realised there might be a connection with a related problem he once read about and he
immediately set out to look for it.

This chapter treats model reduction and consists of two parts. The first part, Sections 4.1 - 4.4,
develops a method for model reduction to obtain (nonlinear) reduced models for controller
design or as internal model in model based control†. Section 4.1 motivates the need for model
reduction and gives an overview of reduction approaches in the literature. Section 4.2 reviews
model reduction of activated sludge models, especially ASM1. Activated sludge models are
stiff, which means that the processes have timescales that differ over one or more orders of
magnitude. Therefore, separation into models for different timescales is a logical approach for
reduction. The review shows that such reduction is often performed quite heuristically and more
insight in the timescale properties of ASM1 is desired. Singular perturbation is a systematic
technique for such reduction with some nice properties and is studied into more depth in
Sections 4.3 and 4.4. Section 4.3 reviews application of singular perturbation to bioprocess
systems to reveal if methods exist to obtain or detect the so-called standard form, which is the
difficult part of reduction by singular perturbation. The model is in standard form if it can be
separated into slow and fast states, which is required for order reduction with singular
perturbation. Because existing methods appear insufficiently straightforward, Section 4.4
develops a method for this task. Three procedures are proposed, namely a direct scaling
procedure, a procedure based on timescale estimation and an analytic scaling procedure. The
procedures are tested on a simple continuous general bioprocess model. The timescale
estimation procedure is successful in all cases studied and appears a helpful tool in model
reduction through timescale separation. Application of the technique to reduce ASM1 is beyond
the scope of this thesis, however. The analytical scaling leads to the standard form in some
cases and provides valuable insight into conditions for model reduction in bioprocess systems.
However, the procedure is not successful in all the cases studied. The direct scaling procedure
is not suited as a general method.
The second part‡, Section 4.5, focuses on model reduction of ASM1 in a batch test for a
specific purpose, namely for interpretation of the BOD test to determine biodegradable COD
that was studied in Section 3.5. A quasi-steady-state assumption is applied to obtain a reduced
first-order model of ASM1. This reduced model is useful to support quantitative interpretation
of batch tests for the important task to determine biodegradable COD in ASM1 calibration.

                                                
† This part has been submitted for publication in Focus in Biotechnology.
‡ This part has been published as Model reduction of ASM1 for interpretation of BOD tests for determination of
biodegradable COD by S.R. Weijers (1999) Proc. ECB9 (9th European Conference on Biotechnology).
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4.1 Introduction

4.1.1 Need for reduction of rigorous, mechanistic models
Dynamic simulation based on rigorous, physics-based mechanistic modelling has become a
standard tool in many engineering fields. Examples are finite element models in structural
dynamics, computational fluid dynamics, the SPICE program for circuit analysis in electrical
engineering and dynamic flowsheeting in chemical engineering. In biotechnology, process
modelling is well established (Roels, 1983).

Rigorous models are applied for a variety of tasks. They are useful in system design, especially
to check system behaviour under extreme dynamic loading conditions. They are very helpful in
understanding system behaviour in science and engineering. As they typically contain much
prior knowledge from the relevant application domain, their prediction accuracy and range of
validity can be high in principle, if the model building and model tuning tasks are designed to
achieve this accuracy. However, the costs of rigorous models are generally high because of the
effort required to construct them.

For engineering tasks described above, typically high-dimensional models result. Despite the
usefulness of rigorous, large models for the tasks described above, for the following important
tasks simple models are better suited:
Process control: Many control theory concepts are only applicable to low-order models. The
high dimensionality of large models result in enormous computational requirements, ill-
conditioned problems and often stiff numerical problems due to interaction of slow and fast
dynamics (Kokotovic et al., 1986). Relatively low-order reduced models are therefore required
for controller design and as internal models in model-based control,.
Model identification: Rigorous mechanistic models typically require high investments in model
tuning and validation. Moreover, problems that are more fundamental exist because large
models typically exhibit lack of parameter identifiability. In addition, mechanistic models
contain internal states whose behaviour is difficult to verify (or falsify), which is referred to as
verifiability (Jeppsson, 1996). The need for simple, well-identifiable models holds true for off-
line identification and even stronger for on-line identification for process monitoring and
adaptive control.
Understanding of model behaviour: Although rigorous models may be helpful in system
understanding, at the same time this understanding is hampered by their complexity. Much
understanding can be acquired from reduced models describing only the most important
phenomena.
System design through rigorous optimisation: many design problems might be solved more
straightforwardly by applying an analytic design procedure, using (mathematical) multi-criteria
optimisation, as discussed in Chapter 2. Due to their size, however, rigorous models are not
suited for direct system design using optimisation; rather, they are most often used to check
designs. Straightforward, systematic system design employing rigorous multi-objective
optimisation would be facilitated if simple models containing the most important phenomena
would be available.
Concluding, one may state that model reduction is required for several important tasks.

In wastewater engineering, rigorous modelling and dynamic simulation have become well
accepted during the past decade since the publication of Activated Sludge Model No.1 (ASM1,
Henze et al., 1987). This model is now becoming routinely used in wastewater engineering.
Model tuning of ASM1 has become an important task for process analysis, process optimisation
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and process control and was studied in Chapter 3. Furthermore, advanced, model based control
of wastewater treatment plants is expected to be important in meeting more stringent treatment
requirements in an economical way. The mechanistic models based on ASM1 studied in
Chapter 3 are not directly suited for control. If these mechanistic models accurately describe the
process dynamics, however, reduced models can be extracted for controller design thus re-using
the knowledge in the mechanistic models. Consequently, model reduction of ASM1 has
received considerable attention in the literature.

In bioprocess engineering, reduced models may be fruitfully applied in process
optimisation and process control, for example for dynamic optimisation of individual (fed-
)batch processes, batch process scheduling and model based process monitoring.

4.1.2 Problem statement and methodology
This chapter wants to contribute to advancing the field of model reduction of ASM1 and
bioprocess models, with emphasis on application in (model based) control and identification.
The ultimate goal is to provide a methodology to derive nonlinear reduced models for different
time-scales in a straightforward, systematic manner. In this chapter, the goal is to develop a
method that can provide the starting point for such a straightforward nonlinear reduction
procedure. This section outlines the methodology that is followed in Sections 4.1 - 4.4 to
develope such a method.

To select a suitable reduction method, it is useful to first list desired properties of a candidate
reduction method. The following properties are considered as desired in this thesis.

Nonlinear reduction methods are preferred, because nonlinear models can have a larger
validity range than linear models.

The stiffness of activated sludge process argues to develop models that are suited for
different timescales. For example, control of dissolved oxygen (DO) requires a different
timescale than control of ammonia (and nitrate) or control of sludge. Models on these different
timescales are therefore required for each of these control tasks, either for controller design or
as internal model. Moreover, this fits well in a hierarchical control approach. Therefore,
especially model reduction based on timescale separation is a logical approach.

Moreover, it is desired that the reduction method is systematic and straightforward to
avoid time-consuming trial-and-error and iterations, and to be independent of (too much)
application-domain dependent knowledge. Ideally, the reduction method would also supply an
estimate of the error induced by the reduction.

Another desired property of reduction methods is that the states of the model retain their
physical interpretation after reduction. This will enable a more direct interpretation of the
controller design results and control actions. Moreover, if adaptive control is applied, identified
parameters have a direct physical interpretation.

Finally, as this thesis focuses on the pre-denitrification plants and carrousels, the method
should be applicable to derive reduced methods for these systems. Several reduced models have
been derived for pre-denitrification plants, or, more exactly, for aerobic and anoxic conditions.
However, reduced models for systems where simultaneous denitrification takes place, such as
typically is the case in carrousels, are lacking. Methods that are helpful in reduction for these
systems are therefore desired.

The need for reduced models in wastewater engineering has resulted in a variety of reduction
approaches and reduced order models of ASM1. Section 4.1.3 discusses the most important
reduction approaches in the literature. Section 4.2 gives a state-of-art overview of ASM1 model
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reductions that are classified along the discussed reduction approaches. Aim of this overview is
to obtain clarity into the limitations and possibilities of different reduced models and reduction
methods. This should support selection of a suitable reduced model or reduction method.

The review in Section 4.2 shows that reduction through timescale separation is applied
by several authors, but often in a heuristic fashion. Moreover, the timescale properties of ASM1
are not very well understood.

The technique of singular perturbation is therefore studied into more depth to better
understand the timescale properties of ASM1 and thus provide a basis for developing a
reduction methodology. The technique has the desirable properties of a candidate reduction
technique listed above. It provides the mathematical basis for reduction by timescale separation,
provides an error estimate, it is a systematic technique, and may therefore lead to a more
straightforward reduction procedure. Moreover, it is applicable to nonlinear systems and, under
certain conditions, the physical interpretation of states is retained.

In Section 4.3.1, the theory of singular perturbations (as used by Kokotovic et al., 1986) is
summarised. For application of the singular perturbation technique for order reduction, the
model must be in the so-called standard form. This means that the states of the model can be
partitioned into ‘fast’ and ‘slow’ scales. (Also partitioning into more timescales is possible, e.g.,
fast, medium and slow). In that case, the reduction boils down to either eliminating the fast
states to obtain the slow model or to eliminating the slow states to obtain the fast model. Upon
reduction, the physical interpretation of states is then preserved.

If the model is not in standard form, a state transformation may be applied to bring it
into standard form. In that case, the physical interpretation of the states is not retained. In fact,
the fast and slow modes cannot be assigned to disjunct sets of states. This is not studied here.

It also happens that the model can be partitioned into slow and fast states, but that it is
not easy to recognise this from the model equations. In that case, writing the model equations in
a different way, e.g. by scaling, may show immediately from the scaled equations that the
partitioning is possible indeed. Finding such a scaling is difficult however. In fact, recognising
whether the model is in standard form and detection of the fast and slow timescales is the
difficult part of the reduction technique.

Therefore, the study in this chapter focuses on recognising the state partitioning into fast and
slow states and on recognising or obtaining the standard form.

One application of singular perturbation theory to an activated sludge plant model has been
reported, which is discussed in Section 4.2.3. The authors applied a method that is based on
eigenvalues for the state partitioning. The reduction was only partly successful. Section 4.3.2
reviews application of singular perturbation to reduction of  – more general and closely related -
bioprocess systems into more detail to obtain a more fundamental insight into timescale
properties of bioprocess models in general and of ASM1 in particular. The review shows that
singular perturbation of bioprocess models is not sufficiently well understood and it does not
yield a method or rule for the state partitioning. Therefore, a method for this task is developed.
A scaling procedure summarised in Section 4.3.3 provides the starting point for this method.

Three procedures are proposed in Section 4.4 as candidates for the state-partitioning task. They
are tested on a simple bioprocess model in different operating conditions.
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4.1.3 Reduction approaches for process engineering systems
Starting point in model reduction is the definition of the goal for which the model is intended. It
can be argued that, for biological systems even stronger than in other basic sciences, the goal of
the model determines its formulation (Vansteenkiste and Spriet, 1982). The goal determines
selection of model inputs, including possible reference trajectories and disturbances, selection
of model outputs and determines which model accuracy is required over which time horizon.

For the actual model reduction in this review, several approaches are distinguished and briefly
explained below. The models obtained with these approaches differ in their degree of
‘greyness’. Models that are obtained via systematic reduction of a white model whilst
preserving the physical interpretation of the system states can be considered light grey. Simple,
mechanistic input-output models are considered grey (Carstensen et al., 1995). The last
category are black box models, such as polynomial models or artificial neural networks. It is
noted that also mixed forms can be applied, e.g. models contain a mechanistic part and an
artificial neural network (e.g. van Can, 1997). Alternatively, artificial neural networks can be
configured to contain prior knowledge, e.g. of model structure.

The models are expected to allow further extrapolation beyond the experimental domain
with increasing ‘lightness’.

1. New model building from ‘scratch’
One way to construct simple models is to disregard existing rigorous models and to build
simple models from scratch. Of course, strictly speaking this is no model reduction.
Nevertheless, the prior knowledge contained in rigorous models is often either implicitly or
explicitly used in this approach.

2. Simplifying assumptions
Application of simplifying assumptions is a very frequently applied approach in model
reduction. Here, we distinguish simplifying assumptions with respect to:
- Components; e.g. aggregation of variables (for example COD and BOD as total measures of

pollutant concentrations);
- Processes; e.g. aggregation of reactions (for example modelling nitrification as a one-step

process whilst it is a two step process);
- Lumping of space distribution: neglect  or simplification of gradients in one or more

directions;
- Kinetics, e.g. simplification of complicated kinetic schemes;
- Dynamics; these are treated in the next paragraph.
Often, simplifying assumptions are applied in a rather heuristic fashion, especially with respect
to components. Several systematic methods can be applied for reduction of distributed systems,
which are outside the scope of this chapter.

3. Neglect of dynamics by quasi-steady-state assumptions and singular perturbation
The neglect of dynamics that are fast or slow compared to the time scale of interest is discussed
in its own right here as it is a central reduction approach. For example, it provides the basis for
application of hierarchical control. In hierarchical control, a layered control approach is applied
to control large, composite systems, for example in plant wide control. The control problem is
decomposed into a hierarchical set of several levels of smaller sub-problems. On each level,
dynamics of lower levels are assumed very fast and considered to be in (pseudo)-steady-state
and dynamics of higher levels are assumed very slow and considered as constant.
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In many cases, neglect of dynamics is performed heuristically. From field specific, physical
understanding and process knowledge, fast states are omitted or slow states considered
constant, without firm motivation. Although heuristically reduced models may (seem to)
perform satisfactory, there is a need for a more thorough understanding of criteria for
performing this reduction, preferably supported by formal proof or error analysis.

A well-known heuristic reduction approach is the quasi-steady-state approximation (QSSA) for
reactive intermediate species. This approach, first introduced by Bodenstein and Lutkemeyer
(1924) (Bowen et al., 1962), has been extensively used in kinetic modelling. Criteria for its
application were originally that concentration and time scale of the intermediate species are
small. Later, the nature and consequence of the QSSA have been studied more thoroughly.

Singular perturbation is a mathematical technique to analyse timescale multiplicity and to
perform a systematic order reduction and error analysis. It is the appropriate tool to provide the
mathematical basis for quasi-steady-state assumptions. Its application to the QSSA in
Michaelis-Menten kinetics is well studied, as will be summarised in Section 4.3.3.

4. Order reduction methods
In modern control engineering, order reduction of linear models is a very important task in
control system design. Models for control are often obtained from linearization of high-
dimensional rigorous models, resulting in very high dimensional models. Modern controller
design methods, especially robust control design methods, yield even higher dimensional
controllers. Order reduction of model or controller has become a necessity if they are to be
implemented, as high-order controllers are usually not accepted in industry. Moreover, they
may exhibit extremely poor robustness against controller parameter errors.

Consequently, order reduction has rapidly progressed and since the milestone publication by
Moore (1981), a variety of reduction methods have been developed and are relatively well
understood. Examples of reduction methods are Hankel norm reduction, balanced reduction and
modal reduction. More recently, closed loop model reduction has received attention; see for
example Wortelboer (1994), who also gives a thorough discussion on linear reduction methods.

For nonlinear system, balanced reduction methods have been developed (see Scherpen, 1994).
With these methods, however, it may be more difficult to preserve the physical interpretation of
states, as a state transformation is typically involved. Moreover, these methods do not provide a
time-scale separation. Instead, they eliminate states that are poorly jointly observable and
controllable and thus contribute least to input-output behaviour. Because we want to preserve
the physical interpretation of states and focus on timescale separation, these methods are not
considered further.

5. Black–box identification
Reduction through black box identification is an approach that requires little prior knowledge.
Linear black box identification can be applied for weakly nonlinear systems within a limited
domain. To construct reduced models of nonlinear systems with validity over a larger domain,
nonlinear black box modelling techniques may be applied, especially artificial neural networks
(ann’s). The design of test signals in reduction through identification is very important. By
selecting appropriate frequency ranges for the excitation signals, black box models may be
obtained for different time scales.
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4.2 Reduction approaches for ASM1
This section reviews approaches applied to reduce ASM120. The emphasis is put on systems
with enhanced nitrogen removal. In most of the cases presented, the purpose of model reduction
is application for identification or control. The subsections follow the arrangement of reduction
approaches as presented in Section 4.1.2. For each case discussed, the treatment system, goal
for model reduction, motivation for selected approach will be indicated together with the
reduced models. The ASM1 model has been described in Chapter 3 and Appendix A. For more
information is referred to Henze et al. (1987) and other sources (e.g. Dold and Marais, 1986).

4.2.1 New model building from ‘scratch’
Marsili-Libelli (1989) developed a low-order model for conventional activated sludge systems
with BOD removal and nitrification. Motivation was that literature models are not suited for
control, due to their complexity and poor identifiability. The model was developed to describe
a) biodegradation carbonaceous COD b) nitrification c) DO utilisation d) sludge sedimentation.
As a growth model a predator/prey modified Volterra-Leslie logistic equation was used instead
of the usually applied, poorly identifiable Monod model. Theoretical and practical
identifiability of the model were investigated and an observer was constructed based on this
model.

Isaacs (1996) formulated several simple models for control of the Biodenipho system, which is
an alternating, sequential semi-batch type system with nitrogen (and phosphorus) removal. Four
(or six) phases are applied in each cycle. The control and model horizon is one phase, with a
time scale in the order of several minutes. Three model-based control strategies were tested,
external carbon addition control (ECAC), dissolved oxygen setpoint control (DOSPC) and
cycle length control (CLC). All controllers employ a relational model and a predictive model.
The predictive model is used to compute required denitrification rate, nitrification rate or cycle
length during one phase. The predictive model was roughly the same in all control strategies,
assuming zero-order kinetics both in nitrification and denitrification phase. Changes in biomass
amount and composition need not be predicted, as actually measured denitrification and
denitrification rates from the last preceding cycle are used. Different relational models were
applied in the different strategies, as explained below. The relational model in CLC is trivial.

In ECAC, the prediction model computed the required denitrification rate rd; the required
external carbon addition rate qCOD to achieve this rd is computed from the following relational
model with the constants rd, b and rd, max:

CODCOD

COD
max,db,dd qK

q
rrr

+
⋅+= (4.2.1)

In the model, the half-rate constant KCOD was fixed, thus the model is linear in parameters. The
model parameters were estimated on-line from measured carbon addition and denitrification
rates in preceding cycles using recursive least squares.

In DOSPC, the required nitrification rate rn is computed with the prediction model. The
required DO setpoint to achieve this nitrification rate is computed from the relational model and
is held constant during one phase (using DO control).

                                                
20 With ‘model reduction’, we will also denote ‘model order reduction’.
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This relational model is estimated from measured DO and nitrification rates in preceding cycles
using recursive least squares.

4.2.2 Simplifying assumptions
Several simplifying assumptions are applied in ASM1 reduction, which can be classified as
follows (for an explanation of the symbols, see Chapter 3, Appendix A or the symbols list):

Simplification with respect to components
COD components:
1. No hydrolysis, no distinction between soluble and suspended biodegradable COD
2. Do not consider inert products as a separate component (XI includes XP)
3. Do not consider inert components at all (no SI,XI, XP)
N components:
4. No suspended organic bound entrapped N (No XND)
5. No ammonia production from organic bound nitrogen (No SND)
Alkalinity:
6. Do not consider alkalinity
Simplification due to separation of aerobic and anoxic conditions
7. No denitrification under aerobic conditions
8. No nitrification under anoxic conditions
Simplifying assumptions with respect to kinetics
9. Replace terms with Monod kinetics by first-order or zero-order kinetics (the last

corresponds to neglect of dependency on one or more limiting substrates)
Simplification with respect to dynamics
10. Neglect DO dynamics
11. Neglect dynamics of solute components
12. Neglect dynamics of suspended components

If one considers the huge number of possible combinations of simplifying assumptions, it is
clear that a large number of reduced order models can be formulated. Up till now, a limited
number of reduced order models have been published, which are presented in this section.

van Impe et al. (1991) and Vanrolleghem (1994) formulated a reduced  and modified ASM1
model to be used in adaptive control. This is not discussed further, as it was developed for
conventional activated sludge systems.

Carstensen et al. (1995) formulated grey models to have operational dynamic models capable of
giving on-line information on the present state of the wastewater treatment plant. The system
was the Biodenipho process, which has an alternating, sequential semi-batch type of operation,
where nitrification and denitrification are separated in time. Different models are applied for
both conditions. No biomass growth is modelled.

Nitrification: 1) The rate equation for ammonia removal contains both the maximal autotrophic
growth rate and yield, which are not identifiable if the rate equation is not coupled to growth
model for autotrophic biomass. Therefore, one overall maximal nitrification rate parameter is
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used 2) No method for measuring the concentration of the autotrophic biomass exists, so the
measured total solids concentration is used. This gives the following rate expressions during
one batch phase.

SS
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O

NHNH

NH
max,nit

NH X
SK

S

SK

S
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dt
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⋅−= (4.2.3)
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Denitrification: 1) One overall maximal denitrification rate is used. 2) No method for
measuring the concentration of heterotrophic biomass exists, so the measured total solids
concentration is used. 3) The ammonium load to the plant is used as this proved a correlated
measure of the readily biodegradable substrate concentration, similar to Isaacs (1996) (eq.
4.2.1).
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Lukasse et al. (1997a,b, 1998a,b, 1999) developed reduced models for control of nitrogen
removal in an activated sludge process consisting of one CSTR; clarifier dynamics were
neglected. Two levels of model reduction were applied:

1) For nonlinear (open-loop) optimisation (optimisation horizon 1 day, Lukasse et al., 1998a).
To investigate optimal aeration strategies, a nonlinear model was developed. Dynamics of all
suspended components, including biomass, were neglected. With respect to solute components,
inert COD and alkalinity were not considered; DO dynamics were neglected by considering DO
as an input instead of a state variable (assuming tight control). Ammonia production due to
hydrolysis and ammonification was simplified by using a (constant) influent ammonia
correction factor (in fact, this last simplification implies a quasi-steady-state assumption on
hydrolysis and ammonification). These assumptions result in a reduction of ASM1 to a reduced
third-order nonlinear model with the state variables  SS, SNH, SNO.

2) In receding horizon optimal control (Lukasse et al., 1997a,b, 1998a,b,1999).
To circumvent the disadvantages associated with the open-loop strategy, especially associated
with uncertainty, feedback was introduced by applying RHOC (Receding Horizon Optimal
Control), a Model Predictive Control law. Here, the requirement was to obtain an identifiable
model, suited for on-line optimisation of an alternating process, with a timescale interest of
hours. Assumptions were stated in Lukasse et al. (1997a and 1998a,b) (slightly different models
were used, however): the system was forced to be either aerobic or anoxic by restricting SO ∈
{0, 3}, transients between aerobic and anoxic phase were neglected, Monod kinetics was
simplified to Blackman kinetics, arguing that the corresponding affinity constants were small
and the substrate dependency only serves as a switching function. Additional assumptions were
1) If SNH=0 and the system is aerobic, then the nitrification rate is such that all ammonia
entering the reactor is nitrified. 2) ammonia and nitrate concentrations in the sludge recycle are
equal to the concentrations in the reactor. This leads to the following equations:
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with u∈ {0,1}. (1 for aerobic, 0 for anoxic). For use in adaptive RHOC,  SNH,in, rNH,max and
rNO,max were estimated based on measurement of SNH, SNO and SO.

Jeppsson (1996) developed a reduced model for ASM 1 for application in control including
adaptive control and requiring identifiability and ‘verifiability’ of the parameters and states.
This last property expresses the specification that the states of the model are verifiable with
information obtained from measurements. Reactors are assumed to be either aerobic or anoxic
(separated) and ideally mixed (pre-denitrification system). The model has been used in studies
by other authors (Ayesa et al, 1995) and is presented here into more detail.

The following assumptions and simplifications were made:
1. Do not consider alkalinity
2. Do not consider inert components (biologically not relevant, XI is slow)
3. No ammonia production from organic bound nitrogen (No XND, SND)
4. No hydrolysis, no distinction between soluble and suspended biodegradable COD

(hydrolysis is not well understood; difficult to measure SS and XS; neglect fast dynamics of
SS).

5. Neglect DO dynamics: assumed to be controlled
6. Approximate Monod expressions by Blackman kinetics (it is assumed that substrate

concentration is low).

Under these assumptions, five model components remain, namely XBH, XBA, SNH, SNO and
XCOD. Two models were derived, one for anoxic and one for aerobic conditions.

Under anoxic conditions, there is no nitrification. Three processes take place: growth of
heterotrophs, decay of heterotrophs and decay of autotrophs. The resulting model contains four
parameters: rH, YH, bH and bA.
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Under aerobic conditions, there is no denitrification. Four processes take place: growth of
heterotrophs, decay of heterotrophs, growth of autotrophs and decay of autotrophs. The model
contains six parameters: rH, YH, bH,  rA, YA and bA.

BHHBHCODHX XbXXrr
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−⋅= (4.2.13)
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Further reduction can be achieved by assuming all decay constants equal. Motivations for this
reduction are that mainly the net growth rate is important and that the decay parameter is
difficult to estimate.

Julien et al. (1998) developed reduced-order models for identification and control for aerobic
and anoxic conditions, with ammnnia, nitrate and DO as state variables.

DO dynamics are often decoupled from the other ASM 1 equations, for use in (adaptive)
control of DO. An example is the following (Lindberg, 1997). The decoupled balance equation
for DO over a CSTR by assuming quasi-steady-state for the other components is written as

OSO
*
OLOin,O

O r)SS(ak)SS(D
dt

dS
−−+−= . (4.2.18)

The conversion term, rSo, (which is the Oxygen Uptake Rate, OUR), is a time-varying
parameter into which other states and parameters are lumped. It is modelled with a simple,
discrete-time black-box model21:

)k(e
)q1)(fq1(

1
)k(OUR)k(r

11SO −− −−
== (4.2.19)

4.2.3 Dynamics of variables
It is generally known that activated sludge systems exhibit stiff dynamics, with time scales
ranging from seconds to weeks.  This also holds true for activated sludge models based on
ASM1. This section first summarises published material on time scale properties of ASM1 and
subsequently summarises reductions based on simplifying assumptions with respect to
dynamics.

                                                
21 There may however be a danger in doing so, as the OUR is also affected by SO itself and by SS, which can both
vary relatively quickly.
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IAWQ Report No. 1 (Henze et al., 1987) distinguishes three groups of variables: dissolved
oxygen SO, dissolved components and particulate components. This was concluded from a
timescale estimation employing only the output (no input) transport terms and consumption (no
production) terms of the balance equations. This yielded a time constant for SO in the order of 1
s., for SS,  SND SNH SALK in the order of 1 min, for XBH, XBA, XS, XP, and XND in the order of 10
min. These were estimates for time steps in Euler integration, and then this poses no problems
because the resulting estimate is rather conservative. This analysis however may give
misleading results as it may grossly overestimate the rate.

Weijers et al. (1995) carried out an analysis based on the Jacobian matrix of a pre-
denitrification system, consisting of one anoxic and one aerobic reactor. The time constants,
computed in a steady-state under typical operating conditions, ranged form 30 s., associated to a
very low DO concentration (0.0114 mg/l) in the anoxic reactor, up to 13 days, associated to
inert particulate COD. It is noted that the fastest time constant of 30 s. is much larger than 1 s.,
reported in (Henze et al., 1987). It was observed that at elevated DO concentrations, DO
dynamics were much slower (approximately 10 times as slow) than at the very low
concentration of 0.0014 mg/l. This was observed both in the aerobic reactor (SO =1.2 mg/l) and
in the anoxic reactor (if for computation of the Jacobian matrix SO was artificially elevated to 2
mg/l to be in the same order of magnitude as the other solute components). These results
indicate that stiffness of DO dynamics is introduced if the DO concentration is much lower than
the concentrations of other components that are involved in the same reactions.

Based on qualitative reasoning, Olsson and Jeppsson (1994) classified cause-effect
relationships between available manipulated variables and measurable variables into different
time scales. The motivation for classification was to achieve decomposition based on time
scales for plant-wide control. Jeppsson (1996) summarised these in an incidence matrix,
distinguishing fast (minutes), medium (hours), and slow (> days) dynamic influence. The
matrix displayed that most outputs are effected by several inputs, where different variables may
act on different time scales, which is caused by the strong internal couplings in the system.
Interactions occur also within a timescale. Consequently, the authors expect that control of the
activated sludge process requires a multivariable approach.

In a quantitative study of dynamics of ASM 1, Steffens et al. (1997) used a procedure
developed by Robertson and Cameron (1997; see Section 4.3.4), to make a state partitioning.
This required association of states to eigenvalues. They classified as fast SS, XS, SNH, SND and
XND, as medium SI, SALK and SNO and as slow XBA, XBH, XI and XP.   

Subsequently, they applied singular perturbation to obtain a systematic reduction of
ASM1 by removing fast and slow states. In addition to the eigenvalues, to select reducible
states, they applied additional criteria on the relative error introduced (Robertson and Cameron
(1997), Section 4.3.4). For fast mode reduction, SS, SNH, SND and XND were obtained using a
relative error of 5% and with a lower bound on the time scale of interest of 12 h. The fast mode
reduced model without these state variables showed a large error (100%) in SNH however as a
result of nonlinearity. For slow mode reduction, only XBA was obtained as reducible state using
a (large) relative error of 10% and with an upper bound on the time scale of interest of 20
minutes. The slow mode reduced model (constant XBA) however showed a large error of 40% in
SNH after one day. Consequently, slow mode reduction with XBA in this case was possible only
for relatively short time horizons of approximately 6 h.

It is remarkable that the error if assuming constant XBA was so large, and this confirms
the disadvantages of heuristic reductions and the need to better understand timescale properties.
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4.2.4 Order reduction methods
Van Schagen et al. (1995) applied algebraic reduction techniques to reduce a linearized ASM1
model of a carrousel system for application in LQG control of ammonia and nitrate with
aeration in a carrousel system. No details on the method applied are given however.

4.2.5 Black–box identification
Lindberg (1997) applied subspace state space identification to identify a fourth-order linear
model from a nonlinear model including 5 reactors based on ASM 1 and a settler model. The
linear model was used in multivariable setpoint control of ammonia and nitrate in a
predenitrification plant, with external carbon dosage, internal recirculation flow rate and the DO
setpoint as manipulated variables. The study was to illustrate application of black-box
identification, the nonlinear model being used to generate artificial data, rather than to perform
model reduction. Nevertheless, it also illustrates how identification may be used to reduce a
calibrated ASM1 model when this is available.

Some case studies of neural network application to model activated sludge systems have been
reported (Su et al., 1992; Côte et al., 1995). Neural networks may also be used to obtain
nonlinear reduced models. By incorporating prior knowledge into the structure of neural net, a
larger validity range may be obtained. Identification of ann’s for modelling of a phosphorous
removal activated sludge plant model was unsuccessful, even for interpolation only
(Vanrolleghem, personal communication). No other cases for wastewater treatment plant
modelling however are known to the author.

4.2.6 Discussion and conclusions
The literature review shows that several approaches are applied in ASM1 model reduction. In
almost all reported cases, the reduction was applied to lumped systems without concentration
gradients, assuming the system to be either aerobic or anoxic. Thus, the reduction concentrated
on reduction of the reaction kinetics, rather than reduction of transport and mixing in the
reactor.

Of the approaches applied to model reduction of ASM1, simplifying assumptions have been
applied most frequently. These assumptions lead to a variety of reduced models, depending
upon the goals and system for which the model is intended. Proposed models range from simple
black-box zero-order kinetic models via grey-box models with different Monod terms both
neglecting biomass dynamics, to the more complicated model of Jeppsson, which includes
biomass growth and decay. The first category is only valid over a short time horizon and within
the domain of experimental conditions. The latter category may be used for process
optimisation over a longer time horizon, and might be to some extent valid beyond the domain
of experimental conditions.

The selection of simplifying assumptions is generally guided by the type of the
treatment system, the input/output relations to be modelled and the time horizon of the model
prediction, in a heuristic fashion. In several cases, the accuracy of the reduced models is not
tested. From the set of reduced models, no single best reduced model can be selected. A more
systematic investigation of the validity and implications of the various simplifying assumptions
under different conditions (system, goals, input/outputs) would facilitate a more straightforward
selection of simplifying assumptions and resulting reduced models.
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Assumptions with respect to dynamics are usually applied to dynamically decouple (some of)
the system equations, especially for application in hierarchical control. A thorough
understanding of the time scale properties of the model is required to value validity and
implications of reduced models based on these assumptions. Still however, little systematic
efforts have been done to analyse and understand these properties. The biokinetic model itself is
complicated, describing several biological and chemical processes that are strongly coupled.
Furthermore, it is used to describe relatively complicated process configurations. Consequently,
the dynamics of the model are not fully understood.

A disadvantage of the order reduction techniques and linear identification is that the validity of
the linear model thus obtained is limited.

It is concluded that there is a need for more systematic order reduction methodology for
activated sludge models. Moreover, more insight in dynamics of ASM1 is desired. In Section
4.3, for these reasons, singular perturbation is studied into further detail.

4.3 Singular perturbation of bioprocess systems: theory and review
Singular perturbation application to bioprocess systems is reviewed in this section. This method
is a promising candidate to be part of a systematic methodology to derive reduced nonlinear
models for different time scales, e.g. for application in hierarchical control, as was discussed in
Section 4.1.2.

In 4.3.1, that part of the theory is presented that is required to understand the material in
Sections 4.3 and 4.4. Section 4.3.2 reviews application of singular perturbation to bioprocess
models. Section 4.3.3 presents a procedure to obtain the standard form that is required for
application of singular perturbation for timescale separation. This procedure provides the basis
for developing two procedures for state partitioning in Section 4.4. Section 4.3.4 discusses
some methods that can be considered complementary to scaling in detecting fast and slow
states.

4.3.1 Singular  perturbation theory
Let the system be described by n+m equations in state-space notation (Kokotovic et al., 1986)

 ),t,u,z,x(fx ε=� , n
00 Rx,x)t(x ∈= , pRu ∈       (4.3.1)

),t,u,z,x(gz ε=ε� , m
00 Rz,z)t(z ∈= .     (4.3.2)

with ε>0 a small scalar. Then for ε→0 the order reduces to n, because substituting a root
)t,u,x(z ii φ=  of the equation )0,t,u,z,x(g0 =  in (4.3.2) yields a reduced model:

 )t,u,x(f)0,t,u),t,u,x(,x(fx i ≡φ=� , ,x)t(x 00 =     (4.3.3)

which describes the slow dynamics of the system, also referred to as the outer system or outer
layer, or quasi-steady-state ( x  refers to the quasi-steady-state). Model (4.3.1), (4.3.2) is said to
be in the so-called standard form if and only if the following crucial condition is satisfied.

Condition 3.1:
In a domain of interest, the equation )0,t,u,z,x(g0 =  has k≥1 distinct real roots

.k,..,2,1i),t,u,x(z ii =φ=
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The quasi-steady-state )t(x can be prescribed to start from x0 and thus be a uniform

approximation of x(t), that is, )t(x =x(t) + O(ε) holds for all t∈ [t0, te], including to. The quasi-
steady-state )t(z however is not free to start from a prescribed initial condition, and the

approximation )t(z =z(t) + O(ε) can be expected to hold only on an interval excluding to, that is,

for t∈ [δ, te], with δ>t0. During an initial interval [t0,δ] (the so-called boundary layer), the
original variable z approaches z . The substitution ε= /tt f  (“stretching” the initial time)
converts (4.3.1), (4.3.2) to a set of equations describing the fast dynamics of the system, the so-
called boundary layer or inner system or inner layer (4.3.4).

)t(zz)0(ẑ)),t,0),t(zt(ẑ,x(g
dt

ẑd
0000f0

f
−=+= (4.3.4)

The solution to this problem provides a boundary layer correction term zzẑ −=  which is used
in a possible approximation z= )t(z + )t(ẑ f +O(ε), valid for t∈ [t0, te],  The important Tikhonov’s
theorem with respect to the boundary layer system states that (4.3.3) is a valid approximation of
(4.3.1), (4.3.2) for all t∈  [t0, te] if the following two strong stability conditions on the boundary
layer system are satisfied.

Condition 3.2:
The equilibrium 0)t(ẑ f = of the boundary system (4.3.4) is asymptotically stable uniformly in

x0 and t0, and )t(zz)0(ẑ 00 −= belongs to its domain of attraction, so )t(ẑ f exists for tf≥0.

Condition 3.3:
The eigenvalues of z/g ∂∂ evaluated, for ε = 0, along )t(z),t(x , have strictly negative real

parts, i.e. Re λ{∂g/∂z}≤ c <0.

Thus, singular perturbation theory allows us to treat slow and fast dynamics separately.
Equations (4.3.3), (4.3.4) provide a zero-order approximation of the system behaviour in the
slow and fast time scales respectively, which is exact for ε=0. Higher order approximations are
required to perform a formal error analysis and to obtain more accurate reduced models as ε>0.
They are obtained through series expansion of the state variables in powers of the perturbation
parameter. Two possible procedures are to apply the matching procedure (Kokotovic et al.,
1986) or the boundary function method (Vasil’eva et al., 1995). A further treatment of
approximations is beyond the scope of this chapter.

4.3.2 Review of model reduction of (bio)process systems by singular perturbation
In this section, first a rule proposed by Bastin and Dochain (1990) is discussed. It is shown that
this rule is not generally valid. Other references are therefore investigated to find a general rule
for reduction of bioprocess systems through singular perturbation.

Bastin and Dochain (1990) propose a simple, general rule for order reduction in their book on
estimation and control of bioreactors. Given the balance for component ξi:

∑
≠

+−ξ−ϕ±=
ξ

ij
iiijij

i FQDk)(
dt

d
, (4.3.5)
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(with kij the stoichiometric coefficients, ϕj the reaction rates, D the dilution rate, Fi the inflow
and Qi the gaseous outflow (if applicable) of component i) for a continuous, ideally mixed
bioreactor, the simplification is achieved by setting ξi and dξi/dt to zero which yields the
algebraic equation:

∑
≠

−=ϕ±
ij

iijij FQk)( . (4.3.6)

This rule is not general however for several reasons. Firstly, it is not indicated in a general sense
in which cases the dynamics of a component can be neglected, that is, which component i can
�����������	��
������������������i can be assumed zero. The general rule is motivated with
two specific situations only, which are briefly discussed below, namely 1. neglect of product
dynamics for volatile products with low solubility, and 2. neglect of substrate dynamics in a
model with biomass and substrate. These examples do however not cover nor explain all
possible situations where multiple timescales allow reduction.

1. Singular perturbation technique for products.
This case considers product formation in the following reaction scheme involving one substrate
and one product:

S P 

When the product is volatile and has low solubility, its concentration remains relatively low. In
this case, the saturation constant can be chosen as the perturbation parameter. Writing the
product concentration P as ΠPsat, 0≤Π≤1, with Psat the saturation constant, with ε=Psat , gives
the standard form:

  =
dt

dS
    ϕ      − D S + D Sin  (4.3.7)

=Πε
dt

d
    kϕ      − εD Π  − Q (4.3.8)

with Q the rate of mass removal in gaseous form. For ε→0, a reduced model is obtained by
substituting the resulting algebraic equation , kϕ=Q into (4.3.7):

   =
dt

dS
    k-1Q   − D S + D Sin (4.3.9)

In this case, the rule holds (for Psat sufficiently small).

2. Singular perturbation technique for substrate.
For the following simple microbial growth process (See also Section 4.4.2):

S X 

the component balance equations write:

=
dt

dX
    Xµ       − D  X (4.3.10)
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=
dt

dS
 − k1 Xµ     − D S  + D Sin (4.3.11)

Multiplying by V and using V as a perturbation parameter gives (with VD Sin= inSF and

XT=VX):

=
dt

dXT     TXµ       − D  XT (4.3.12)

ε =
dt

dS
 − k1 TXµ     − εD S  + 

inSF (4.3.13)

which, for ε→0, with k1 TXµ = 
inSF , reduces to:

=
dt

dXT      − D  XT + 
inS

1
F

k

1
. (4.3.14)

In this derivation, the authors state that it should be understood that the volume is not assumed
to be zero, but small enough to neglect ε(dS/dt) and εDS. Therefore, it is considered legitimate
to divide the reduced equation by V again to obtain:

=
dt

dX
     − D  X + in

1

DS
k

1
. (4.3.15)

However, it can be argued the volume is not the adequate perturbation parameter in this case
because. 1. It is not the volume that makes the term εDS go to zero; in fact, the dilution rate
D=Fv/V (with Fv the volumetric flow rate) becomes very large for small ε and the term reads
FvS. 2. Without any additional information, there is no reason to select the substrate as the fast
state; in fact, the same argumentation can be applied to neglect the biomass dynamics. 3. The
physical reasoning is not sound, as smallness of the volume is not the cause of multiple time
scales. 4. Consequently, the derivation is mathematically not consistent. In Section 4.4, it will
be shown that in some cases the ratio of the biomass and substrate concentration can be used as
a perturbation parameter; procedures that are more systematic are developed there.

Secondly, the rule is defined for a single, isolated equation. In the more general case however,
several equations are coupled, e.g. via the reaction network, in which case the proposed general
rule cannot be applied in its simple form. In those cases, the reduction procedure is much more
involved, as will be discussed after discussing the two specific examples mentioned.

Van Breusegem and Bastin (1991) investigated model reduction of reaction systems with more
general reaction networks, in the case of one (ideally mixed) reactor. The reduction problem
was addressed under the assumption that some reactions are faster than others. As a
perturbation parameter, the average of the fast rate constants was used. In natural coordinates,
the problem is not always in standard form however, as Condition 3.1, existence of distinct
roots, is not guaranteed. A change of coordinates was suggested to bring the problem into
standard form. As the state transformation is non-singular, the reduced model can be
transformed back into natural coordinates. In natural coordinates, however, there is generally no
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direct partition in fast and slow variables and the singular perturbation can not be applied to the
original, untransformed system, which we however like to preserve the interpretation of states.
The procedure was successfully tested on a two-step enzyme reaction (Van Breusegem and
Bastin, 1991) and on a two-step model of a methanogenesis process (Van Breusegem and
Bastin, 1992)

Vasil’eva et al. (1995) discern as the critical case that class of applied problems in which the
condition of isolated, distinct roots of the reduced equation )0,t,u,z,x(g0 = is not satisfied. In
fact, in many problems in chemical kinetics the condition is not satisfied. A procedure is
presented using the boundary function method for constructing approximate solutions based on
asymptotic expansions for the standard form. A modification of this procedure is presented to
deal with this critical case and applied to chemical reaction networks (in batch reaction), where
small and fast reactions are involved. As a perturbation parameter, the smallest of the large rate
constants was selected. It is interesting to note that this modified procedure does not start from
nor produces the standard form. It is noted that this case again shows that a separation in fast
and slow reactions does not correspond to a clear partitioning in slow and fast variables.
Instead, it leads to a set of simplified systems for the fast and slow timescales.

Weiss and Preisig (1997) studied simplifying assumptions in the process of modelling
composite process systems. Very large transfer coefficients between subsystems or very small
capacities of subsystems for example can lead to lumping of the transferred intensive variables
in the concerning subsystems. The difficulties and accuracy in this type of simplifications were
studied on a relatively simple yet generic example of n tanks with various levels and
temperatures, assuming that some of the transfers are very quick. The modified procedure of
Vasil’eva et al. was applied (in fact, the systems studied are very similar, with fast and slow
transfers instead of fast and slow reactions) to reduce the system and estimate the resulting
error. Reduction of heat balances to describe the temperatures in the tanks was much more
involved and less accurate than reduction of total mass balances to describe the heights. The
singular perturbation parameter in this case is the inverse magnitude of the fast transfers relative
to the slow transfers.

The references reviewed above all apply to lumped systems. Dochain (1994) applied singular
perturbation to reduce an (infinite-dimensional) distributed parameter bioprocess system model
to a (finite-dimensional) lumped parameter model. The general distributed parameter system
studied is a plug flow reactor with dispersion. For the reduction, the system was rewritten using
dimensionless numbers, employing as perturbation parameter the mass Peclet number, which
expresses the ratio of the residence time and characteristic time for dispersion. A first-order
approximation using a series expansion of the solution and using matching to determine initial
conditions of inner and outer solutions yielded a lumped reduced model.

To apply singular perturbation for order reduction into fast or slow states of a given model, the
model must be in standard form and a state partitioning must be made.

A general rule for reduction of continuous bioprocess systems was given by Bastin and
Dochain (1990). However, this rule is not generally valid, and is not helpful in general in
deciding which parameters can be considered fast (only products with very low solubility).

Other procedures have been derived for reduction of models in non-standard form. For
reduction of models in natural (original) coordinates, a procedure exists for the so-called critical
case (no distinct roots of the quasi-steady-state). However, the discussed references do not help
to recognise or obtain the standard form. A procedure that does this is summarised below.
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4.3.3 Scaling in model reduction

4.3.3.1  A method for state partitioning based on scaling
Aim of this section is to illustrate the usefulness of a systematic scaling procedure for state
partitioning, to recognise or obtain the standard form. Frequently, the model to be reduced using
is in non-standard form and must be brought into the standard form. One way to do so is to
select or find a suitable, small perturbation parameter. This is often nontrivial and requires
considerable physical knowledge; smallness of a parameter alone is not a sufficient condition.
Selection of a perturbation parameter is associated with the issue of scaling, as smallness is a
relative notion, and scaling is helpful to bring the model in the standard form and to select a
suitable perturbation parameter. Kokotovic et al. (1986) presents several approaches in scaling,
including the use of dimensionless parameters, parameter scaling and state scaling. However,
no systematic, straightforward procedure for scaling is given.

Heineken et al.  (1967) applied singular perturbation theory to provide a mathematically sound
analysis of the quasi-steady-state assumption (QSSA) in derivation of Michaelis-Menten
enzyme kinetics. Segel and Slemrod (1989) used a systematic approach based on scaling to
obtain nondimensionalised equations in which it is easier to reveal the relative magnitude of
parameters. With the applied scaling procedure, they were able to refine the conditions for
application of the QSSA. The procedure they applied is outlined as follows and how they
applied it to Michaelis-Menten kinetics is summarised in Section 3.3.2:

1. Estimate slow and fast time scales τf and τs.
2. Test on the necessary condition for the QSSA on the time scales.
3. Test on the necessary condition on the smallness of the error in the slow state during the

pre-steady-state.
4. For both timescales, choose state scaling and subsequently derive scaled equations; this step

should yield the perturbation parameter.
5. Reduce the model
6. Test the reduced model, e.g. through numerical simulations

The tests on the necessary conditions may also provide perturbation parameter candidates. In
their chapter, in addition to these steps a formal analysis was performed using approximate
solutions of the scaled equations. Both the derivations of the approximate solutions and a
formal error analysis are beyond the scope of this chapter.

4.3.3.2 Application of an analytic scaling procedure to Michaelis-Menten kinetics
In the reaction model employed in derivation of Michaelis-Menten kinetics, an enzyme E
combines with substrate to form an ES complex, which dissociates to either E and S or to E and
product P:

C E + S E + P 
k
1

k
-1

k
2

With the initial conditions E(0)=E0, S(0)=S0, C(0)=0, P(0)=0, and using the fact that
E(t)+C(t)=E0, the following basic mathematical problem results:
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( ) CkSCEk
dt

dS
101 −+−−= , S(0)=S0,   (4.3.16)

 ( ) C)kk(SCEk
dt

dC
2101 +−−= − ,  C(0)=0.         (4.3.17)

Application of the QSSA to simplify this system is standard and can be found in any elementary
textbook on biochemistry. The QSSA implies that after a short pre-steady-state, the complex
concentration C is approximately constant and the decrease of the concentration S due to
complex formation can be neglected as C0 is small. The derivation is not repeated here. Only
the main points are indicated.

We now focus on the procedure of Segel and Slemrod (1989). The steps for Michaelis-Menten
kinetics were as follows.

1. Estimation of timescales:
The fast time scale is associated with the complex formation. To estimate the fast time scale τf,
the approximate analytical solution of (4.3.17) for the fast timescale is used by supposing S is
slow and can be approximated by S0:

[ ])ktexp(1C)t(C −−= , (4.3.18)
with:
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and we obtain
1

f k−=τ . (4.3.20)

The slow timescale is associated with the substrate after the pre-steady-state and is estimated
using the following characterisation of a timescale (Here, Segel and Slemrod (1989) refer to
Segel (1984), p.56):

( )
max

minmaxs dt

dS
/SS −=τ .

Here, the maximum and minimum concentration of S are Smax=S0 and Smin=0. The maximum
rate after the pre-steady-state is estimated by substituting S=S0 and (4.3.19) into (4.3.16):

02

0m
s Ek

SK +
τ = . (4.3.21)

2. Test on the necessary condition for the QSSA on the time scales.
The necessary condition for the QSSA to hold is that the duration of the pre-steady-state is
much shorter than the characteristic time for substrate change, sf τ<<τ , which gives:

2)1)(1( σ+κ+<<η , (4.3.22)

with the dimensionless parameters
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1

k

k−≡κ . (4.3.23)

3. Test on the necessary condition on the smallness of the error in the slow state during the
pre-steady-state.

For the change in the substrate concentration to be negligible, the relative concentration change

0S/S∆ must be very small during the pre-steady-state, which is estimated by:

f
max00 dt

dS

S

1

S

S τ⋅≈∆
(4.3.24)

Using (4.3.16) with C=0 to determine 
max

dt/dS yields the following additional condition in

dimensional variables, which is stronger than (4.3.22):

)1( σ+<<η . (4.3.25)

The result also indicates a perturbation parameter candidate, namely )1/( σ+η .

4. For both time scales, derive scaled equations.
In the pre-steady-state, the time is scaled by τf . The substrate concentration is scaled by S0 and
the complex concentration C by the maximal complex concentration .C With the introduction
of the following dimensionless variables into (4.3.16) and (4.3.17),

0S

S
s ≡ , 

C

C
c ≡ ,

f
f

t
t

τ
≡   (4.3.26)

the scaled equations are obtained for the fast  time scale:
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After the pre-steady-state, the time is scaled by τs. The same state scaling then yields:
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. (4.3.30)

Thus, we now have the problem in standard form, and have obtained a perturbation parameter:
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This result is more accurate than the traditional perturbation parameter, E0/Km. Segel and
Slemrod (1989) obtained this more accurate result through applying this systematic physical
scaling procedure. Besides physical scaling, Segel (1972) also applied mathematical scaling
procedures with the aim to test whether this result can also be obtained with less prior
knowledge. Through one such method, minimal simplification, the same results were obtained;
it is not clear however whether this method will always work.

5. and  6. Reduce model and test the reduced model
From the standard form, the model was reduced. In numerical simulations, the conditions on the
time scales and errors were verified and confirmed to be correct.

4.3.3.3 Relationship of scaling with regime analysis and dimensional analysis
In (bio)process engineering, regime-analysis is a tool to detect rate-limiting mechanisms by
comparing the timescales for different transport and reaction processes. For example,
Oosterhuis (1983) applied regime analysis to the scale-up of bioreactors. Evidently, there is a
relationship with the detection of occurrence of multiple time scales as described above. An
important difference is that regime analysis compares the relative size of the individual terms in
the balance equations, while the timescale estimation, as applied by Segel and Slemrod above,
considers the total rate expression of extensive variables. Both methods can be used in a
complementary fashion. Dimensionless groups, obtained by the ratios of characteristic scales of
different phenomena, also provide insight into the system. The insight obtained by using scaled
equations is a strong argument for the use of scaling to convert the equations to dimensionless
form, as advocated by Segel (1972), even if this scaling requires some physical reasoning.

4.3.4 Other methods for time-scale analysis
In Section 3.3, a procedure was described for detection of multiple time scales in models and
transformation of the problem to the standard reducible form. Robertson and Cameron (1997)
presented another approach to detect timescale multiplicity and for state partitioning for use
with singular perturbation reduction. Their procedure might be suited for large systems if the
scaling procedure described above is too laborious, or could be used as a complementary
technique. The essential issues of the procedure are briefly summarised here.

Starting from the definition of a timescale of interest, slow and fast modes are detected using a
linearized model. The timescale of interest is determined by the intended application, e.g.
control of ammonia and nitrate in activated sludge plants or control of the sludge concentration,
which require different timescales. The first require medium timescales, the latter slow
timescales. Fast mode reduction is performed based on an eigenvalue-to-state association. This
is done using a homotopy parameter. The procedure starts with a system in which the
eigenvalue-to-state association is known (in their study, a matrix with only the diagonal of the
Jacobian matrix was used). The eigenvalues are traced when going from this system to the
system for which the eigenvalue-to-state association must be determined (the full Jacobian
matrix). A so-called homotopy parameter as used to gradually change from the known system
(homotopy parameter is zero) to the unknown system (homotopy parameter equal to one).
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If a group of fast time constants exists, then the states associated with these time
constants are candidates for reduction. Slow mode reduction proceeds via Taylor expansion of
the free response. From linear systems, randomly generated by Monte-Carlo sampling,
empirical relationships for the maximum relative error both for fast and slow mode reducibility
were derived. After detection of slow and fast states, these are removed from the nonlinear
model. The procedure provides no guarantee that the system is in the standard form and no
formal error analysis is given. Tests on an evaporator system and compressor start-up yielded
good results; results on ASM1 were less successful as discussed in Section 4.2.3.

We indicate two disadvantages of the slow mode detection method. Error estimation can be too
optimistic if in reality a forced response is dominant, because only the free response is
considered in the selection criterion. Furthermore, relatively small changes of a slow mode
variable can be associated with relatively large changes in other variables, especially if these
have small absolute value (such as dissolved oxygen or ammonia in the case of ASM1).
Consequently, on the other hand, the method can be too conservative.

Wasynczuk and Decarlo (1981) suggested an approach for reduction of composite models. This
method is useful for order reduction of large-scale systems such as in plant-wide control, and is
therefore briefly described in here. The procedure indicates whether model reduction on a
component level is possible or not. This must be checked, because interaction may introduce
dynamics in the timescale of subsystem dynamics. It this is the case, then the model reduction
can not be performed simply by reduction of the individual subsystems only.

In the analysis, the so-called component connection model is employed, which
separately defines the subsystem equations and the interconnection matrix. The procedure
consists of eigenvalue tracking applying a homotopy parameter, which is multiplied by the
interconnection matrix, and is used to vary from completely decoupled subsystems to the fully
interconnected system. This indicates if reduction on a subsystem level is sufficient to reduce
the complete system.

4.3.5 Conclusions
Application of singular perturbation for reduction of (bio)process models was reviewed. Bastin
and Dochain (1990) suggested a simple rule for order reduction, which is not generally
applicable, however. In reduction of a system with biomass and substrate, the suggested
selection of the perturbation parameter was not satisfactory. Segel and Slemrod (1989) applied
a methodology based on scaling to formally derive Michaelis-Menten kinetics. The
methodology can support detection of multiple timescales, which are necessary for applying
quasi-steady-state assumptions and order reduction with singular perturbation. Furthermore, it
may help to bring the model in the standard form and to select a suitable perturbation parameter
that is required for application of the singular perturbation method. The methodology forms the
basis to develop a method to recognise or obtain the standard form and for state partitioning.
This is applied to a simple yet basic and important bioprocess with biomass and substrate,
which is similar to the model studied by Bastin and Dochain (1990), in the next section.

4.4 Scaling for singular perturbation in a simple bioprocess system

4.4.1 Introduction and methodology
This section investigates application of singular perturbation to reduction of bioprocess models.
The following observations motivate this further investigation. Section 4.2 made clear that
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more insight into the timescale properties of ASM1 is required. Section 4.3 showed that only a
few occasions have been described in which there is a clear perturbation parameter and
associated timescale separation, namely the case of low solubility of volatile products and the
occurrence of fast and slow reactions. In ASM1 however, these are not the predominating
causes of multiple timescales, as no volatile products are applied in the model and the reaction
rates, although different, do not differ orders of magnitude. Therefore, we want to find
additional causes of multiple timescales and associated perturbation parameters. Moreover,
these findings are also of relevance for bioprocess systems in general.

The following strategy is adopted. Three procedures for state partitioning are proposed. They
are applied to a very simple but basic and important model system, closely resembling the
system used by Bastin and Dochain (1990), Section 4.3.2). This should reveal to reveal time
scale multiplicity and the physical conditions that cause multiple timescales. These conditions
are related to a singular perturbation parameter, if possible, and it is checked whether the model
can be brought into standard form.

The three procedures to obtain or recognise the standard form are evaluated with respect to
straightforwardness and required prior knowledge. The following procedures are applied:

1. Direct scaling;
2. Timescale estimation for variables;
3. Analytical scaling procedure.

These procedures are now described and are applied to the model system described in Section
4.4.2.

4.4.1.1 Procedure 1: Direct scaling
This procedure attempts to bring the model into standard form directly, without a thorough
scaling procedure and without introducing dimensionless parameters. The background to apply
this procedure here is the conjecture that stiffness is associated with large concentration ratios.
For example, in analysis of DO dynamics, it appeared that a fast timescale occurred only if the
DO concentration was very low. Moreover, in wastewater treatment systems the suspended
components are usually regarded as slow, and (most of) these variables have a much larger
concentration than the suspended components. From these observations, it was hoped that a
simple yet physically meaningful rule for order reduction could be derived.

4.4.1.2 Procedure 2: Time scale estimation for variables
Procedure 2 is a systematic procedure for detection of timescale multiplicity through estimation
of timescales of variables. This procedure is proposed as an alternative and complementary
procedure where procedure 3 fails.

In the example in Section 4.3.3, it was already known that multiple time scales occurred, and to
which variables the fast respectively the slow time scales were associated. Generally, this is not
the case; in fact, the eigenvalue-to-state association procedure presented in Section 4.3.4 was
developed for this purpose.

Here we will propose a different procedure to estimate timescales of variables. This procedure
is a modification and extension of the procedure of Segel and Slemrod (1989) in Section 4.3.3,
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and does not require analytical timescale or error estimates. Instead, a mixed numerical /
analytic approach is applied to detect timescale multiplicity and to estimate the error in slow
states during the initial layer, thus checking whether the quasi-steady-state approximation
applies.

We start with the system

  ),t,u,C(fC ε=� , mn
00 RC,C)t(C +∈= , pRu ∈       (4.4.1)

and try to find a partitioning into fast and slow variables ]CC[C T
s

T
f

T = so that we can write
(4.4.1) in standard form as

   ),t,u,C,C(fC fsss ε=� , n
0s0s RC,C)t(C ∈= , pRu ∈  ,     (4.4.2)

            ε ),t,u,C,C(fC fsff ε=� , m
0f0f RC,C)t(C ∈= .     (4.4.3)

The procedure consists of the following steps that are subsequently discussed below:

Step 1. Estimate initial timescales of all variables and select the fast variables.
Step 2. Estimate timescales of slow variables in the outer layer (in quasi-steady-state).
Step 3. Check the multiplicity of time scales.
Step 4. Estimate the error of the slow variables.
Step 5. Reduce model if preceding steps indicate that the QSSA applies.

Step1: The initial timescale ifτ for variable i in Step 1. is estimated with:

inmax,

i

0
i0i

if

dt

dC

CC −
=τ (4.4.4)

with  0
iC  the quasi-steady-state value of variable i with the other variables Cj, j≠i at their initial

values Cj0 and |dCi/dt|max,in the maximal rate during the inner layer, which in this chapter is
evaluated with all state variables at their initial conditions.

We would like to avoid the need to compute 0
iC . Therefore, one can try to rewrite (4.4.3) to

eliminate |C)0(C| 0
ii −  as follows. In the quasi-steady-state for 0

iC we have:

  ),t,u,C,C(f0 0
iij,0ji ε= ≠  .  (4.4.5)

Subtracting equation (4.4.5) from the rate equation for Ci (this is allowed, because the quasi-
steady-state equation is zero) gives (4.4.6) (Note: |.| denotes the absolute value).

),t,u,C,C(f),t,u,C,C(f
dt

dC 0
iij,0ji0iij,0ji

inmax,

i ε−ε= ≠≠ (4.4.6)

We can try to write this as a product with a term )CC( 0
i0i − :
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)CC(),t,u,C,C,C(g
dt

dC 0
i0i

0
i0iij,0ji
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i −⋅ε= ≠

to obtain:
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0
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−⋅ε

−
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≠

     |),t,u,C,C,C(g| 0
i0iij,0ji ε= ≠ (4.4.7)

In some cases, it is thus possible to eliminate 0
iC completely and to obtain an expression for the

time constant as a function of the parameters and initial conditions only.

The variables that have a (much) faster associated timescale than other variables are selected as
the fast variables, and thus the partitioning is made.

Step 2. The slow timescale isτ for the slow variables i can be estimated with:

outmax,

i

i0i
is

dt

dC

CC −
=τ (4.4.8)

with 0iC  the initial value of variable i, iC  its steady-state value and |dCi/dt|max,out the maximal
rate during the outer layer. To avoid the necessity of computing iC , it is assumed that the
difference between initial value and steady-state are in the same order of magnitude as the
initial value and (4.4.8) can be approximated by (4.4.9).

outmax,

i

0i
is

dt

dC

C
=τ (4.4.9)

The maximal rate during the outer layer is evaluated with the slow state variables at their initial
values Cj0 and the fast states at their quasi-steady-state values.

Step 3. is straightforward, unless the difference between fast and slow timescales is not very
large. Here, we will pragmatically consider a factor of about 10 between largest fast timescale
and smallest slow timescale sufficient for timescale separation.

Step 4. The error in the slow variables during the initial, inner layer is estimated to check
whether the error is small enough to qualify the slow variables as slow. If this is not the case,
this does not mean that there are no multiple timescales, but rather that they cannot be assigned
to disjunct fast and slow variables, i.e. the problem is not in standard form. A first, conservative
approximation employs the maximal rate during the inner layer, with the advantage of
computational simplicity as all required quantities are known already. The condition then is:
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       f
inmax,00 dt

dC

C
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C

C τ⋅≈∆
   << 1 (4.4.10)

with fτ the largest of the small time constants and |dC/dt|max,in the maximal  rate during the inner
layer. The estimation is more accurate and less conservative if an average rate is applied:

f
in,av00 dt

dC

C

1

C

C τ⋅≈∆
(4.4.11)

In the sequel, the average rate computed as the mean of the initial rate and the rate after the
inner layer at t= fτ will be used to compute the error, unless stated otherwise.

Step 5. Reduce model if preceding steps indicate that the QSSA applies.
If the conditions checked in steps 3. and 4. are satisfied, then this indicates that the quasi-
steady-state approximation applies and the model may be reduced. One can try to formulate
scaled equations and select a perturbation parameter and thus bring the problem into standard
form. If this is not successful, then we can proceed as follows. From the partitioning into slow
and fast variables, it can be simply concluded that the rate for the fast variable is much higher
than the rate for the slow variable and therefore can be written as:

),,t,u,C,C(h
1

f fsff ε
ε

=

where ),t,u,C,C(h fsf ε  is in the same order of magnitude as ),t,u,C,C(f fss ε , because

),t,u,C,C(f fsf ε  is much higher than ),t,u,C,C(f fss ε . Therefore, (4.4.1) can be written as

(4.4.2), (4.4.12):

),t,u,C,C(fC fsss ε=� , n
0s0s RC,C)t(C ∈= , pRu ∈  ,     (4.4.2)

            ),t,u,C,C(g
1

C fsff ε
ε

=� , m
0f0f RC,C)t(C ∈= ,   (4.4.12)

and it is seen that the system is almost in standard form. Although we do not have ε in analytic
form, we know it is small enough (through the preceding steps) and we may apply the QSSA to
obtain the quasi-steady-state value for Cf by equation (4.4.5). An error estimate is also provided
through step 4.

4.4.1.3 Procedure 3: Analytical scaling procedure
In procedure 3, the methodology proposed by Segel and Slemrod (1989) (Section 4.3.3) is
applied. This procedure proceeds via scaling and selection of a perturbation parameter. For a
complete scaling procedure, analytic timescale estimates are required for scaling the fast and
slow timescale and analytic error estimates are derived.
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4.4.2 Model system: chemostat with biomass and substrate

4.4.2.1 Model system definitions and analysis
A simple chemostat with one biomass and one substrate will be used to test the proposed
procedure. In this subsection, the system is described, some analytical relationships are
presented and the cases that are discussed in the next subsections are indicated.

In a completely stirred tank reactor, biomass X grows on a single substrate S (the arrow in the
formula denotes an autocatalytic reaction). Motivation for choosing this system is that this is a
very simple yet basic and important continuous biotechnological process that can exhibit
multiple time scales. This simple system is well understood and is a good study object as better
understanding its timescale behaviour is helpful to understand systems that are more
complicated as well.

S X 

The reactor is schematically shown in Figure 4.1.

V, S, X

F, Sin

Figure 4.1: Chemostat with biomass growth on one substrate

For this system, assuming Monod kinetics, model equations (4.4.13), (4.4.14) can be written.

=X�     X
SK

S

+
µ       − D  X (4.4.13)

=S�  − k1 X
SK

S

+
µ     − D S  + D Sin (4.4.14)

The dimensionless parameters defined for this system are the dimensionless residence time and
the Monod number:

D
* µ=τ (4.4.15) ; 

inS

K
Mo =  (4.4.16)

For the system to be viable, no washout must occur so there is a lower limit to the
dimensionless residence time:

Mo1
Dmax

*
min +=µ=τ (4.4.17)

The steady-state concentrations are given by (4.4.18) and (4.4.19).
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Upon linearization in a state x={X, S}with u=D, the following linearized system is obtained:
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from which the eigenvalues are computed:

,D2,1 −=λ
2
1

)KS(

XKk)KS(S
D

+

−+
µ+− (4.4.21)

Starting point in the subsequent timescale analysis is the conjecture that occurrence of multiple
timescales is associated with a large concentration difference between the states. The ratio S/X
in steady-state is written as a function of the dimensionless parameters τ* and Mo:

}
Mo1*

Mo
{

k

1

X

S

1 −−τ
=

∞

∞ (4.4.22)

and six cases are distinguished as indicated in Table 4.1 and briefly explained below.

                Table 4.1: Cases distinguished in timescale analysis; for explanation, see text
Case Ratio S∞/X∞ Condition for τ* Other condition Section

1 S << X τ* >>1 Mo << 1 4.4.2.2
2 S<< X τ* >>1 Mo § � “
3 S << X τ* > O(2)1 Mo << 1 4.4.2.3
4 S § ; τ*  > O(3)1 Mo § � 4.4.2.4
5 S § ; τ* =1+Mo+τε τε § 0R� 0R ��� 4.4.2.5
6 S >> X τ* =1+Mo+τε τε << Mo 4.4.2.6

1: Big O stands for “order of magnitude”. The eigenvalues are computed in the
  steady-state.

From (4.4.22), we see that S/X is low when Mo is very small or τ* very large.
Case 1 and 2: When τ*

 is very large (high residence time), substrate conversion is almost
complete and biomass produced is only slowly withdrawn. At high feed substrate concentration
Sin (small Monod, Case 1), the concentration difference is larger at a given residence time than
at lower Sin (Monod �� ���� �������� 
��� �������� ������
��
���� ��� ������� ����
� 
��� ����
��
�

concentration remains unchanged (Case 2). This is easily seen from (4.4.19).
Case 3: At moderate dilution rate, but far from washout, which is expressed by the

condition τ* > O(2), the ratio S/X can still be small when the feed concentration is very high
(this is the case when the Monod number is very small).

Case 4: If Sin is moderate at moderate dilution rate, then the ratio S/X will be O(1).
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Case 5: At high dilution rate, relatively close to washout, we write τ* as τ* =1+Mo+τε.
This is an interesting situation, as biomass productivity is optimal close to washout, namely for

τε= 2MoMo + .
Case 6: At still higher dilution rates, when τε << Mo, the situation is so close to washout

that substrate conversion is almost zero and high ratio S/X results.

For typical values representing the different cases, the ratio S∞/X∞ and the ratio of the
eigenvalues are given in Table 4.2. Equations (4.4.18), (4.4.19) and (4.4.21) were used, with the
following parameter values as default parameters: µ=4, K=20, k1=1.5.

Table 4.2: Ratio S∞/X∞ and ratio of eigenvalues for different cases
Case τ* Mo S∞/X∞ λ1/λ2 λ1 λ2

1  20     0.04     0.0032     0.0022    0.2    90
2  20     0.4     0.0323     0.0226    0.2 8.8
3    3     0.04     0.0306     0.0306    1.33    43.5
4    3     0.4     0.375     0.375    1.33      3.56
5    1.24     0.04     0.294     1    3.21      3.21
6    1.044     0.04   15 236    3.83      0.016

The results indicate that the supposed relationship between the ratio S∞/X∞ and the ratio of
eigenvalues holds indeed. In the subsequent subsections, the cases are analysed more
thoroughly according to Table 4.1.

4.4.2.2 Cases 1 and 2: Ratio S/X very low, τ*  very large

4.4.2.2.1 Direct

With the direct approach, we introduce scaled variables directly. In this case, from the supposed
association of multiple timescales with a large concentration difference between the states, both
states are scaled with their steady-state, assuming that S∞/X∞ is very small.

∞X/X�  =        ∞
∞∞

∞
+

µ X/X
S/SS/K

S/S
    − ∞X/DX (4.4.23)

∞S/S�     = − k1 X
S

1

S/SS/K

S/S

∞∞∞

∞
+

µ − ∞S/DS  + ∞S/DSin (4.4.24)

In dimensionless variables we obtain with k=K/ ∞S :

=x� x
sk
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+
µ  −D x (4.4.25)

=s�  − k1 
∞

∞

∞+
µ

S

X

X

X

sk

s
 − D s  + D Sin/ ∞S   (4.4.26)

With ε = S∞/X∞ (4.4.26) becomes:

       ε =s�  − k1 x
sk

s

+
µ  − ε D s   +  D 

∞

∞
X

S
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Sin ε
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        =   − k1 x
sk

s

+
µ  − ε D s   +  fin (4.4.27)

Now the problem is in standard form, and (4.4.25), (4.4.27) are the equations for the slow
timescale. With the substitution tf = εt the fast time equations are obtained:

=
fdt

dx ε{ x
sk

s

+
µ  −D x} (4.4.28)

=
fdt

ds
 − k1 x

sk

s

+
µ  − ε D s   +  fin (4.4.29)

Note: To be able to arrive at (4.4.27), it must be shown that fin is not very small, O(ε), but of the
same order of magnitude as the other non-negligible terms, and cannot be neglected. The result
is given here as is without proof.

With the direct approach, we arrived at the equations in standard form. If the ratio S∞/X∞ is very
small, this ratio can be used as a perturbation parameter to obtain the problem in standard form.
In that case, biomass is the slow variable, substrate the fast variable.

The required physical knowledge to obtain the standard form in this case is the association of
low S∞/X∞ with timescale multiplicity. However, the standard form obtained presupposes that
S∞/X∞ be very small, but does not indicate whether this assumption indeed is valid. In the next
two subsections, an alternative formulation of the standard form will be derived, which states
the condition for timescale multiplicity directly in terms of (dimensionless) system parameters.

4.4.2.2.2 Timescale estimation for variables

The procedure described in Section 4.2 is applied to system (4.4.13), (4.4.14).

Step 1. Estimate initial timescales and select fast variables.
For estimation of the initial timescale for biomass X, the quasi-steady-state equation (4.4.30)
for X with S=S0

               =0     0

0

0 X
SK

S

+
µ       −   0XD (4.4.30)

and the estimate (4.4.4) are used to obtain an approximation in the form of (4.4.7):

  D
SK

S1

0
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fX
−

+
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τ
. (4.4.31)

For substrate S, we similarly obtain the estimate for the initial timescale:

DX
)SK)(SK(

K
k

1
00

0
1

fS
+

++
µ=

τ
(4.4.32)

with 0S the positive root of the quadratic quasi-steady-state equation of S:
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   0 =     − k1 in
0

00
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DSSDX
SK

S +−
+

µ (4.4.33)

It is noted that in this form the timescales depend upon the initial state and thus have to be
evaluated considering the initial condition. Consequently, here the timescales will be estimated
numerically. This is a result of the nonlinearity of the model.

Results of fast time scale estimation for representative cases are given in Table 4.3. The default
parameters given in Section 4.4.2.1 were used. As initial states, a value of half the steady-state
value was chosen for both states

    Table 4.3: Fast time scales for Case 1 and 2 (x(0)=0.5⋅x(∞)
Case τ* Mo λ1/λ2 τfS/τfX τfX τfS

1  20     0.04     0.0022 0.0022    10.3    0.023
2  20     0.4     0.0226 0.0213    10.3    0.22

Table 4.3 shows that the timescale estimation indicates multiplicity of timescales. S is selected
as the fast state. The results obtained with the timescale estimation correspond well with the
eigenvalue results. The advantage with time scales estimation is that the timescales are directly
associated with variables.

Step 2. Estimate timescales of slow variables in the outer layer (quasi-steady-state).
As S is selected as the fast variable, X is the slow variable. Applying (4.4.9), the slow timescale

for X is estimated with by substituting 0S  obtained from (4.4.33).

   D
SK

S1
0

0

sX
−

+
µ=

τ
(4.4.34)

Table 4.4 shows the results of the slow timescale estimates for Case 1 and 2.

 Table 4.4: Slow time scales and error for Case 1 and 2 (x(0)=0.5⋅x(∞)
Case τ* Mo τfS/τsX τsX τfS ∆X0/X0

1  20     0.04 0.0042      5.0    0.021 0.0012
2  20     0.4 0.038      5.2    0.20 0.010

Step 3. Check the multiplicity of time scales.
From Table 4.4, it is seen that for both Case 1 and Case 2 the condition τfS/τsX<<1 holds.

Step 4. Estimate the error of the slow variables.
Applying (4.4.11), the error in the slow state X during the initial layer is estimated by (4.4.35)
(X0 can be eliminated).
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(4.4.35)

The errors are given in Table 4.4 and indeed the condition ∆X0/X0<<1 holds. In Case 2, the
error is approximately 1 %. It is concluded that time scale separation can be applied.
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Step 5. Reduce model if preceding steps indicate that the QSSA applies.
From the preceding steps, we know that the QSSA applies because timescale multiplicity
occurs and there is a separation into fast and slow states (see Step 5 in Section 4.4.1.2).
Therefore, the system can be slow-mode reduced straightforwardly to:

           =X�    X
SK

S
0

0

+
µ       − D  X (4.4.36)

with 0S the positive root of the quadratic quasi-steady-state equation for S (4.4.33). This
describes the slow dynamics of the system that can be used for control of the biomass
concentration. In this case, S reacts instantaneously to changes in e.g. Sin. For control of SS, the
fast mode reduction gives the fast dynamics, where the biomass concentration is considered
constant.

4.4.2.2.3 Analytical scaling procedure

In this subsection, scaling is performed employing estimates based on the analytical solutions of
the eigenvalues of the system, which leads to the standard form.

1. Estimate  time scales
In Case 1 and 2, the large eigenvalue of (4.4.21) can be approximated as follows, because
X>>S, S<<K, µ>>D (because τ*>>1) and X≈Sin/k1:
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As the time constant is reciprocal to the real part of the eigenvalue, the fast time and slow time
scales can be scaled as (4.4.38) and (4.4.39) respectively.

tf=t⋅µ/Mo (4.4.38) ; ts=t⋅D (4.4.39)

2. Test for QSSA necessary conditions
For the QSSA to be valid, τf<<τs must hold

Mo/µ   <<  1/D, or τ*/Mo >> 1 (4.4.40)

which is the same condition as was found before and which holds under the assumptions made.

3. Perform error analysis on initial condition for slow state.
For the fast time scale we have τf=Mo/µ. Assuming that S0 and X0 are in the same order of
magnitude as S∞ and X∞ respectively and applying the (conservative) estimate (4.4.10) this is
���������
������
�����
���
��������������������������������

)(O
Mo

S

SMo
D

K

SMo
D

SK

S

X

X

in

00

0

0

0
ε=

τ
−=

µ
⋅−µ≈

µ
⋅−

+
µ≈∆

        (4.4.41)

4. For time scales, choose state scaling and subsequently derive scaled equations and (try to)
find perturbation parameter.
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The states are scaled with their steady-state values, but instead of symbols S∞ and X∞, now
expressions (4.4.18) and (4.4.19) are used to find the approximate steady-state values X∞≈Sin/k1

and S∞≈K/τ*. Substitution of scaled variables x=X⋅k1/Sin and s=S⋅τ*/K and for the slow time
scale ts= t⋅D yields:
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Dividing (4.4.42) and (4.4.43) by D, multiplying numerator and denominator of the Monod
term by K, using Mo=K/Sin and introducing 1/τ* as a perturbation parameter yield the standard
form with the outer equations (4.4.44) and (4.4.45).
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The substitution tf= t⋅µ/Mo gives the inner equations (4.4.46) and (4.4.47).
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Thus the timescale estimation and knowledge of scaling of the variables enables a scaling of the
variables which in turn has led to successful selection of a perturbation parameter 1/τ*. This
selection is in accordance with the cases studies, as here it is assumed that τ*>>1, so that indeed
ε<<1. Compared to the dimensionless equations obtained with the direct approach, equations
(4.4.44)-(4.4.47) have the advantage of directly showing the physical prerequisite under which
the model reduction with singular perturbation is allowed.

4.4.2.3 Case 3: τ* intermediate, Mo<<1

4.4.2.3.1 Direct

The result obtained in 4.4.2.2.1 applies.
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4.4.2.3.2 Timescale estimation for variables

Step 1. Estimate initial timescales and select fast variables.
The timescale estimation results (Table 4.5) indicate multiplicity of timescales. S is selected as
the fast state.

     Table 4.5: Fast time scales for Case 3 (x(0)=0.5⋅x(∞)
Case τ* Mo λ1/λ2 τfS/τfX τfX τfS

3   3     0.04     0.036   0.034    1.88    0.063

Step 2. Estimate timescales of slow variables in the outer layer (quasi-steady-state).
X is the slow variable; its timescale is estimated with (4.4.33). Table 4.6 shows the results of
the slow timescale estimates.

    Table 4.6: Slow time scales and error for Case 3 (x(0)=0.5⋅x(∞)
Case τ* Mo τfS/τsX τsX τfS ∆X0/X0

3   3     0.04   0.076     0.83   0.063  0.021

Step 3. Check the multiplicity of time scales.
From Table 4.6, it is seen that for both Case 1 and Case 2 the condition τfS/τsX<<1 holds.

Step 4. Estimate the error of the slow variables.
The condition ∆X0/X0<<1 holds as the error is approximately 2 % (Table 4.6). It is concluded
that time scale separation can be applied.

Step 5. Reduce model if preceding steps indicate that the QSSA applies.
The preceding results indicate that the QSSA is valid. The same comments as in Section
4.3.2.2.2 apply.

4.4.2.3.3 Analytical scaling procedure

In this subsection, scaling is performed employing estimates based on the analytical solutions of
the eigenvalues of the system, which leads to the standard form.

1. Estimate  time scales
In Case 3, S<<K no longer holds, because S= O(K). The approximation proceeds as follows. S
is in the order of magnitude as S∞, and with S=K/(τ*-1), the term (S+K) is written as a⋅K, with
a=τ* /(τ*-1). Then, with X>>S and X≈Sin/k1 we obtain (4.4.48).
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which is in the same order of magnitude as the estimate (4.4.38) for τ* moderate (τ*>2).

2. Test for QSSA necessary conditions
3. Perform error analysis on initial condition for slow state
The same results as in Section 4.4.2.2.3 apply.
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4. For time scales, choose state scaling and subsequently derive scaled equations and (try to)
find perturbation parameter.

For S, now another scaling is used as S in O(K). Substitution of scaled variables x=X⋅k1/Sin and
s=S/K and for the slow time scale ts= t⋅D yields transformed equations. Dividing the
transformed equations by D, multiplying numerator and denominator of the Monod term by K,
using Mo=K/Sin yield the standard form with the outer equations (4.4.49 and (4.4.50).
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with Mo* as a perturbation parameter. The substitution tf= t⋅µ/Mo gives the inner equations
(4.4.51) and (4.4.52).
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Again, scaling has led to straightforward, successful selection of a perturbation parameter and
reformulation of the problem in standard form. This selection is in accordance with the case
studies, as here it is assumed that Mo<<1, so that indeed ε<<1.

4.4.2.4 Case 4: S and X comparable, τ* moderate, Mo ≈ 1
In the subsequent cases, only the relevant steps of the respective procedures will be discussed.
In Case 4, both the timescales estimated by the eigenvalues and the estimated timescales
according to Procedure 2 indicate that the timescales are relatively close and no timescale
multiplicity occurs (Table 4.7 and 4.8). This was also confirmed in simulation. Thus, the
conjecture that timescale multiplicity is associated with large concentration differences is
confirmed.

4.4.2.5 Case 5: τ* close to critical, Mo << 1, τε ≈ Mo
Case 5 is very interesting, as this is the situation of optimal biomass productivity in a
chemostat. The eigenvalue ratio (evaluated in steady-state) indicates no difference in time
scales (Table 4.7). Also the eigenvalue ratio in the initial state was computed, which was also
close to 1 (1.56). This seems to be in agreement with the conjecture, because the ratio S∞/X∞ is
close to 1 (Table 4.2).

               Table 4.7: Fast time scales for Case 4, 5 and 6 (x(0)=0.5⋅x(∞)
Case τ* Mo λ1/λ2 τfS/τfX τfX τfS

4    3     0.4     0.375 0.182    1.88    0.34
5  1.244     0.04     1.00 0.123    1.90    0.24
6  1.044     0.04     0.0042 0.040    6.45    0.26
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      Table 4.8: Slow time scales and error for Case 4, 5 and 6 (x(0)=0.5⋅x(∞)
Case τ* Mo τfS/τsX τsX τfS ∆X0/X0

4    3     0.4 0.227      1.50    0.34 0.022
5  1.244     0.04 0.118      2.01    0.024 0.0036
6  1.044     0.04 0.0020  129    0.26 0.019

However, the fast timescale estimates obtained with Procedure 2 indicate occurrence of
timescale multiplicity, S being the faster variable (Table 4.7). This is confirmed by the ratio
τfS/τsX in Table 4.8, which is much smaller than 1.

Figure 4.2 shows a simulation of Case 5, which shows that indeed a boundary layer in S occurs.
Apparently, the eigenvalues in the steady-state and in the initial state do not reveal this
timescale multiplicity, whereas the timescale estimation by Procedure 2 correctly indicated
timescale multiplicity in this case.

The eigenvalues evaluated in the steady-state do not correctly reflect the timescale behaviour of
the nonlinear model. The eigenvalue ratio in the quasi-steady-state was in better agreement with
the timescale estimation (λ1/λ2=0.088; computation not shown) than the eigenvalue ratio in
steady-state (λ1/λ2=1). An eigenvalue trace might better reveal the timescale properties of the
model, as was observed by Steffens et al. (1997). However, this is less straightforward than the
timescale estimation procedure and it is concluded that the proposed timescale estimation
procedure is to be preferred.

The conjecture that stiffness is associated with large concentration differences is falsified in this
case, as timescale multiplicity occurs when the ratio S∞/X∞ is close to 1 (see Figure 4.2).
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Figure 4.2: Timescale multiplicity at optimal τ*

From the results the timescale and error estimates by Procedure 2, it is concluded that the
QSSA applies in this case and S is the fast state. The model can thus be reduced. In the next
subsection, for the situation that τ* is close to critical, scaling will be applied to check whether
this case can also be written in standard form and whether a perturbation parameter can be
found.
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4.4.2.6 Case 6: τ* close to critical, Mo << 1, τε << Mo

4.4.2.6.1 Direct

From the conjecture that a low ratio X∞/S∞ is associated with time scale multiplicity, both states
are scaled with their steady-state, assuming that ε=X∞/S∞ is very small. With the scaled
variables x=X/X∞ and s=S/S∞, the scaled equations (4.4.53) and (4.4.54) are obtained.
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with Sin= Sin/ ∞S . This system is not in standard form however, so the direct scaling is not
successful in this case.

4.4.2.6.2 Timescale estimation for variables

From Table 4.7 and Table 4.8, it is seen that the fast timescale for S (0.26) is much smaller than
the fast timescale for X (6.45). The ratio of the fast timescale for S and the slow timescale for X
(129) is even much lower (0.002). Also the ratio of the eigenvalues is very low. Clearly,
multiple timescales are present. This is confirmed by numerical simulation, which shows a very
short boundary layer for S (result not shown). Thus the QSSA holds and the system is in the
form (4.4.2), (4.4.12) with ε very small and can be reduced.

4.4.2.6.3 Analytical scaling procedure

Finally, the analytical scaling procedure will be employed.
1. Estimate  time scales
In Case 6, the nontrivial eigenvalue of (4.4.21) is approximated as follows. We have, with
τ*=1+Mo+τε and τε<<1,
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which expresses the fact that conversion is very low and consequently the substrate
concentration is close to the feed concentration Sin. With X<<S, and τε<<Mo, after some
manipulation and approximation we obtain (the result is given without proof):
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The fast time and slow time scales can be scaled as (4.4.58) and (4.4.59) respectively.

tf=t⋅D (4.4.58) ; ts=t⋅D⋅τε (4.4.59)
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2. Test for QSSA necessary conditions
For the QSSA to be valid, τf<<τs must hold

1/D   <<  1/D⋅τε, or ⋅τε << 1 (4.4.60)

which holds in the case studied.

3. Perform error analysis on initial condition for slow state: this is omitted here.

4. For time scales, choose state scaling and subsequently derive scaled equations and (try to)
find perturbation parameter.

Substitution of scaled variables x=X⋅k1⋅Mo/Sinτε and s=S/Sin and for the slow time scale ts=
t⋅D⋅τε after some manipulation yields: (4.4.61), (4.4.62), which is not in standard form.
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From this result and the scaling result in Section 4.4.2.6.1, it is concluded that for low ratio
X∞/S∞ no simple perturbation parameter can be found. The results obtained with Procedure 2
clearly indicated timescale multiplicity for low ratio X∞/S∞, the fast timescale being associated
with the substrate concentration S. From the conjecture, however, it was expected that for low
ratio X∞/S∞,the fast timescale would be associated with the lower concentration, namely the
biomass concentration X. Consequently, for low ratio X∞/S∞, the conjecture is falsified.

4.4.3 Other results
In Sections 4.4.2.2.1 and 4.4.2.3.1, direct scaling was applied to the system with Monod
kinetics, which showed that the (small) ratio S∞/X∞ can be applied as perturbation parameter. It
can be shown that is also possible for zero-order and first-order kinetics.

In addition to the simple system presented in Section 4.4.2, the same system but now extended
with biomass retention was investigated, as biomass retention is the usually applied in activated
sludge systems. Under typical operating conditions, the ratio S∞/X∞ is very small, which causes
and even more pronounced timescale multiplicity between substrate and biomass in these
systems (results not shown).

In addition to the simple system studied above, a slightly more complicated system was studied
which included dissolved oxygen as an additional state variable. Here too occurrence of
timescale multiplicity depends upon the operating conditions, especially the dilution rate and
the oxygen mass transfer rate. The timescale estimation procedure was successfully tested to
this system under operating conditions causing two timescales (Weijers and Weiss, 1999).
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4.4.4 Conclusions
A simple bioreactor model of a chemostat with one biomass species and one substrate species
was studied to obtain insight into timescale properties of bioprocess models and to test different
procedures for model reduction. Starting point in the analysis was the conjecture that
occurrence of multiple timescales is associated with a large concentration difference between
the states. Three procedures to bring the problem into standard form were tested, namely a
direct scaling procedure, a systematic, analytical scaling procedure and a procedure based on
timescale estimation of variables.

At low substrate/biomass ratios, which occur at low dilution rate, the conjecture was valid. The
direct scaling procedure showed that the problem can be brought into standard form and that the
ratio substrate/biomass can be used as perturbation parameter in this case. The analytical
scaling procedure enabled a more detailed analysis and showed that, depending upon the
operating conditions, the Monod number or the reciprocal of the dimensionless residence time
are suitable perturbation parameters. The substrate concentration was the fast variable in this
case. The timescale estimation procedure correctly indicated the validity of the quasi-steady-
state assumption for substrate.

For intermediate substrate/biomass ratios, the conjecture was falsified. At dilution rates with
optimal biomass productivity, the ratio of eigenvalues evaluated in steady-state did not reveal
timescale multiplicity, whereas the timescale estimation procedure correctly indicated timescale
multiplicity in this case. The substrate concentration was the fast variable in this case, while the
substrate concentration and biomass concentration were in the same order of magnitude. The
timescale estimation procedure correctly indicated the validity of the quasi-steady-state
assumption for substrate.

For high substrate/biomass ratios, the conjecture was also falsified. At high dilution rates close
to washout, the ratio of eigenvalues evaluated in steady-state and the timescale estimation
procedure correctly indicated timescale multiplicity. The substrate concentration was the fast
variable in this case, while from the conjecture it was expected the biomass concentration
would be the fast variable. Neither the direct scaling procedure, nor the analytical scaling
procedure led to the standard form. The timescale estimation procedure correctly indicated the
validity of the quasi-steady-state assumption for substrate, as confirmed by the clear boundary
layer for this variable observed in simulations.

With respect to the procedures tested, it is concluded that the timescale estimation procedure is
a helpful tool to detect timescale multiplicity and check validity of the quasi-steady-state
approximation. The use of eigenvalues evaluated in steady-state or in the initial state can be
misleading in nonlinear systems for this purpose. The analytical scaling procedure can be
helpful to bring the problem into standard form and to obtain a perturbation parameter, thus
providing insight into the cause of time scale multiplicity. Direct scaling is not a generally
applicable procedure.

An important motivation to derive reduced nonlinear models is to obtain models that have a
larger validity range than linear models. It is observed, however, that also nonlinear models
obtained by reduction based on timescale separation have a limited validity range, namely for
that operational range in state space or parameter space in which the assumptions for reduction
are valid. A change of operating point may require a different reduced model, as states that were
partitioned as slow may become fast or vice versa. This is probably the cause of the large error
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induced in the reduction of ASM1 studied by Steffens and Lant (1997), discussed in Section
4.2.3. Thus, together with the reduced models, also a validity range should be indicated.

4.5 ASM1 Model reduction for interpretation of batch tests

4.5.1 Introduction
Development of easy-to-use methods for influent characterisation suitable for practical
application is very important in the modelling of activated sludge processes, and has therefore
received considerable attention over the last years. The Activated Sludge Model No. 1 (ASM1,
Henze et al., 1987) has become a standard model to describe the dynamics of wastewater
treatment plants. An influent characterisation over different COD fractions that are
distinguished in the model is required for most applications of the model. Examples of such
applications are: checking of design under dynamic operating conditions (in designing new or
upgrading existing plants), process analysis, design of control systems for process optimisation
or as an aid in operation.

Different approaches for the COD characterisation task have been proposed in the literature.
Frequently, batch tests are used in determining one or more of the biodegradable COD fractions
XBH, XS and SS. Typically, from the respiration rate (OUR) measured as a function of time,
COD is estimated with a reduced model by curve fitting, with concomitant determination of one
or more model parameters. Two relatively short batch tests were proposed by Kappeler and
Gujer (1992) as discussed in Section 3.2.2. The simplifying assumptions and the reduced model
used in these batch tests described below are given in Section 4.5.2, whereas below additional
simplifying assumptions that have been made for the short batch tests are described.

Batch test A: wastewater/sludge. In this batch test, wastewater and sludge are added in a ratio of
approximately 2:1. The test is relatively short and consequently biomass growth can be
neglected. Dochain et al. (1995) employed a model different from ASM1 with the modification
by Sollfrank and Gujer (1991), applying two hydrolysis processes that are first order in slowly
biodegradable substrate XS instead of one Monod type hydrolysis process. Kappeler and Gujer
(1992) applied a similar approach, simplifying Monod type kinetics to first-order kinetics in XS.
If this reduced model is applied for identification, it can be shown that the identified hydrolysis
parameter kh’ has another interpretation than the ASM1 hydrolysis parameter kh, namely kh’ =
kh/KX. Keesman et al. (1998) applied singular perturbation to analyse the endogenous
respiration of this model, which corresponds to the slow timescale. In fact, the applied
simplification of Monod kinetics can be applied only if KX>> XS/XBH, a condition which is
typically not satisfied. In fact, typically KX<< XS/XBH, which would allow simplification to
first-order kinetics in XBH. However, with this simplification, the resulting reduced model
yields less identifiable parameter groups and no information on initial XS is obtained.

Batch test B: wastewater only. In this type of experiments, biomass growth can not be
neglected. In most cases, SS is large, SS>> KS, and at the beginning of the batch test, the Monod
kinetics can be simplified to first-order kinetics. This simplified model allows a straightforward
identifiability analysis of the initial part of this batch test, the results of which are given in
Section 3.2.3.

In a recent project (STOWA 96-08), biodegradable COD (CODBD) was indicated the most
important quantity for characterisation. BOD tests were suggested to determine this quantity.
Measured BOD curves are well described by first-order kinetics (Metcalf & Eddy, 1991) and
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total BOD (BOD∞) is well estimated from measured BOD curves (Weijers, 1999; See Figure
4.3). In the experiment shown, BOD∞ was estimated as 203 mg/l (the experiment corresponds
to Sample 2 in Section 3.5).

BOD(t) = BOD∞ (1 – exp(-k t))      (4.5.1)

From the estimated BOD∞, CODBD is computed. Due to formation of inert products XP

assumed in ASM1, BOD∞ observed in batch tests is lower than the initially present CODBD. In
Figure 4.4, a BOD curve is computed using ASM1 (Eqs.(4.5.3)-(4.5.5)). The parameter values
and the initially present biodegradable COD (240 mg/l, straight line in Figure 4.4), were chosen
such that the ASM1 curve describes the observed BOD in time, and especially its steady-state
value, reasonably well. that The figure shows the initially present biodegradable COD is
considerably higher than measure total BOD. This is due to formation of inert products, which
are not respired. Therefore, a conversion factor between BOD∞ and CODBD is required (Eq.5.2).
It is evident that an accurate conversion factor is required for accurate determination of CODBD.
However, the value of this parameter depends on the interpretation of BOD tests and is not
unambiguous (Weijers, 1999a). Removing this ambiguity of the conversion factor fC was an
important motivation of the work in this section.

CODBD =  BOD∞/(1-YH,BOD) = fC BOD∞        (4.5.2)
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Figure 4.3: Measured BOD curves are well        Figure 4.4: BOD curve simulated with ASM1;
            described by first-order kinetics.                   observed BOD∞ is lower than CODBD

          (straight line)

4.5.2 Theory and methods
ASM1 is reduced for aerobic conditions and without nitrification as a starting point for further
model reduction. This initial reduction consisted of: 1) setting all Monod terms with dissolved
oxygen (DO) limitation to 1; 2) setting all terms with DO inhibition to 0, thus neglecting
denitrification and anoxic hydrolysis; 3) not considering inert components originally present in
the wastewater (ASM1 component XI), however including loss of biodegradable COD in the
death-regeneration cycle due to inert product formation from biomass decay (XP); 4) omitting
alkalinity and 5) omitting nitrification (by setting XBA=0). These assumptions lead to equations
(4.5.3)-(4.5.5) (Note: XP directly follows from a COD balance):
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with:
YH : Heterotrophic yield 0.67 [-]
fp : Fraction biomass yielding inert products 0.08 [-]
µH : Heterotrophic growth rate constant 6 [d-1]
bH : Heterotrophic decay rate constant 0.62 [d-1]
KS : Affinity constant for SS 20 [mg l-1]
kh : Hydrolysis rate 3 [d-1]
Kx : Hydrolysis affinity constant 0.03 [mg l-1]
SS : Readily biodegradable COD [mg l-1]
XBH : Active heterotrophic biomass [mg l-1]
XS : Readily biodegradable COD [mg l-1]
XP : Particulate COD from decay [mg l-1]

The relationship between ASM1 and BOD tests is given by the oxygen consumption, expressed
as OUR (Oxygen Uptake Rate, in mg O2  l

-1 d-1), which upon integration gives BOD:
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  ∫= t
0

OUR(t)dt BOD(t)  (4.5.7)

4.5.3 Results and discussion
A further model reduction is obtained through applying a pseudo-steady-state assumption with
respect to rapidly biodegradable COD. Central in ASM1 is the so-called death-regeneration
concept, visualised in Figure 4.5. For typical parameter values used in ASM1 application, decay
is rate limiting in the death-regeneration cycle. As a consequence, initially present SS and XS are
(relatively quickly) degraded until a pseudo-steady-state is achieved (after a boundary layer δ),
where SS is constant (Figure 4.6). This is the case for many (realistic) ASM1 parameter values,
as confirmed by extensive simulations.
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Figure 4.5: Death-regeneration concept in ASM1.
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4.5.3.1 Pseudo-steady-state part
For the model reduction the following assumptions are postulated:
A.1: µH>kh>>bH

A.2: SS is constant ( SS� =0) after t=δ (pseudo-steady-state assumption)
A.3: XS/XBH is constant =c (follows from A.2 and Eq. (4.5.3)).
A.4: XBH(t)=XBH(δ) exp(-k t)
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Figure 4.6.a: OUR and state trajectories in batch           Figure 4.6.b: as 4.6.a, later time
      test, initial time (during boundary layer)          (after boundary layer)

Substituting A.3 and A.4 into (4.5.4) and (4.5.5), dividing left and right parts of the resulting
equations by XBH(δ)exp(-k t) leads to a set of two algebraic equations (4.5.8) and (4.5.9).
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Solving (4.5.8) and (4.5.9) for c and k gives two roots for c and k. Selecting the positive root
gives:

        c=[bH(fp + KX –1)-kh + √{ 2
Hb ((fp+KX)2-2(fp-KX)+1)+bH(2kh(fp-KX-1)+

                4YHkhKX(1-fp))+ 2
hk }]/2(YHkh – bH)    (4.5.10)

1cY

b))f1(Y1(
k

H

HpH

+
−−

=    (4.5.11)

The pseudo-steady-state value for SS can be obtained by setting the derivative of SS in (4.5.3) to
zero which gives (4.5.12).
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Thus, an analytical relationship is derived between ASM1 parameters and the first-order rate
constant of the pseudo-steady-state part of batch BOD tests. Substitution of the default ASM1
parameter values into this expression gives k=0.23, which is the same as the typical value for
the first-order rate constant in BOD bottle tests reported by Metcalf & Eddy (1991).

4.5.3.2 Complete BOD curve
Now the next step is to describe the complete BOD curve in ASM1 terms, including the initial
part preceding the pseudo-steady-state. To compute the initial part of the BOD curve from
(4.5.6) and (4.5.7), the initial state trajectories SS(t) and XBH(t) need to be known. In principle,
it is possible to develop simplified expressions for these initial state trajectories. However, here
we will make a stronger simplification, which is motivated by the fact that the pseudo-steady-
state part is by far the largest part of the BOD curve and is attained relatively fast. Therefore,
growth and hydrolysis are assumed to proceed so fast, that the pseudo-state is validly assumed
to be attained (almost) instantaneously, within a very short boundary layer δ. During this
(infinitesimally) small boundary layer δ, initially present SS and XS are converted to XBH:

                           ))0(X)0(S(Y)0(X)(X SSHBHBH ++=δ     (4.5.13)

The initial BOD is then given by (it is emphasised that we are not concerned how this
proceeds):

))0(X)0(S)(Y1()(BOD)0(BOD SSH +−=δ=+    (4.5.14)

Finally, besides the rate constant and the initial value, we need the final value of the BOD
curve, given by BOD∞. Due to formation of inert products XP assumed in ASM1, the total BOD
observed in batch tests is lower than the initially present biodegradable CODBD:

  )(XCODBOD PBD ∞−=∞    (4.5.15)
with 

CODBD = SS(0) + XS(0) + XBH(0)  (4.5.16)

Using ASM1, the rate of inert product formation is given by:

     )t(XbfX BHHpP =�    (4.5.17)

The production of inerts is approximated using the fact that during the complete BOD curve
biomass approximately decays exponentially from its value after the boundary layer and we
write:

    )(X
k

bf
dte)(Xbfdt)t(Xbf)(X BH

Hpkt
BHHpBHHpP δ=δ==∞ ∫ ∫∞

δ
∞
δ

−      (4.5.18)

The complete BOD curve is now described by

       ))ktexp(1))(0(BODBOD()0(BOD)t(BOD −−+−++= ∞    for  t ≥ δ       (4.5.19)
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4.5.3.3 BOD∞ to CODbd conversion factor

To determine biodegradable COD from estimated BOD∞, the conversion factor fC is required.
This conversion factor depends upon ASM1 parameters and influent COD fractionation and can
be computed from (4.5.15), (4.5.16) and (4.5.18). However, a small correction is required,
because a small amount of SS (Eq. 4.5.13) is not respired. The conversion factor is therefore
computed as:

)pss(S)(XCOD

COD

BOD

COD
f

SpBD

BDBD
C −∞−

==
∞

   (4.5.20)

This analytic expression for fC was tested against values obtained with ASM1 model
simulations (Eqs. (4.5.3)-(4.5.5)). This was done for several values of ASM1 model parameters
and different influent characterisations. Good correspondence was found for conversion factors
with different values of ASM1 parameters, as all factors were within 1% from the exact values
computed with ASM1. For default ASM1 parameter values and for low XBH, it can be assumed
that fC=1.18 ± 0.01 (Weijers, 1999).

Of the ASM1 parameters, YH and fp have the largest influence on the value of fC. For non-
default values of these parameters, fC can be computed from (4.5.12), (4.5.13), (4.5.16),
(4.5.18) and (4.5.20). The fraction XBH of the initially present COD influences the value of fC as
well as the shape of the BOD curve during the boundary layer. If all initial COD is present as
XBH, a perfect first-order curve described by (4.5.1) without a boundary layer is obtained (Fig.
4.7.a). The value for fC is then significantly higher than 1.18 (fP=1.27).
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     Figure 4.7.a: BOD curve,          Figure 4.7.b: SS(0) high,              Figure 4.7.c: SS(0) high,
            Only XBH(0)                           XBH(0) low (5)                        XBH(0) very low (0.001)

For lower values of the XBH fraction, but larger than approximately 10-3, a boundary layer is
obtained (Eq. 4.5.19) and an offset is present at t=δ (Fig. 4.7..b) , which does not correspond
with experimentally observed curves (Eq. 4.5.1). However, for very low values of XBH (lower
than 10-5), a lag in the BOD curve results and the boundary layer becomes larger, in the order of
1-3 days (Fig. 4.7.c). The BOD curve then has approximately the experimentally observed
shape after the boundary layer, supporting the assumption of very low XBH fraction as done in
(STOWA 96-08).

4.5.4 Conclusions
Applying a pseudo-steady-state assumption, ASM1 has been reduced. Analytic expressions
have been derived which provide straightforward interpretation of BOD curves in terms of
ASM1 parameters as well as a quantitative basis to compute biodegradable COD from total
BOD.
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4.6 Conclusions and future perspectives
Rigorous models often must be reduced to low-order models as these are better suited for
control, identification and are helpful to obtain a better understanding. The aim in this chapter
was to develop a systematic reduction procedure to obtain nonlinear reduced models for
controller design. First, reported reduction approaches and reduced models of ASM1 were
reviewed. Several approaches are applied in ASM1 model reduction. Simplifying assumptions
have been applied most frequently. Proposed models range from simple black-box zero-order
kinetic models neglecting biomass dynamics, to the more complicated model of Jeppsson
(1996), which includes biomass growth and decay and consequently has a larger validity range.
Assumptions with respect to dynamics are also frequently usually applied for model order
reduction. This is logical, as the stiffness of activated sludge process argues to develop models
that are suited for different timescales. It appears that the reduction often is done heuristically.
Relatively little systematic efforts have been done to analyse and understand timescale
properties of ASM1.

It was concluded that singular perturbation is a promising candidate as a method to develop a
systematic reduction procedure. It is a systematic reduction procedure and it can give more
insight in dynamics of ASM1. Moreover, under certain condition, it retains the physical
interpretation of the states in the order reduction, it provides an error estimate and it is suited
for nonlinear model reduction, which is desired as it is an aim to obtain reduced models.

To apply the method, the model must be in the so-called standard form, which means
that the states can be partitioned into fast and slow states. Obtaining this form or recognising
that the model is in this form is the difficult part in the method. Therefore, it was decided to
concentrate on this task.

First, methods the literature were reviewed. Bastin and Dochain (1990) suggested a simple rule
for order reduction of (bio)process models through singular perturbation. This simple rule is not
generally applicable, however, and can be applied in specific cases only, e.g. in the case of very
low product solubility. Moreover, it does not yield the state partitioning or tell when the
reduction can be made. Segel and Slemrod (1989) applied a methodology based on scaling to
formally derive Michaelis-Menten kinetics via singular perturbation. This methodology was
successful in detection of multiple timescales, to bring the model in the standard form and
provided a suitable perturbation parameter that gave insight in the physical conditions that lead
to timescale multiplicity. This procedure was therefore used as a starting point for the state
partitioning (or detection of timescale multiplicity).

Three procedures were proposed, namely a direct scaling procedure, a procedure based on a
mixed numerical / analytic timescale estimation and the analytical scaling procedure of Segel
and Slemrod. The procedures were tested on a simple bioreactor model of a chemostat with one
biomass species and one substrate species. Starting point in the analysis was the conjecture that
occurrence of multiple timescales is associated with a large concentration difference between
the states.

At low substrate/biomass ratios, occurring at low dilution rates, the conjecture is valid. The
ratio substrate/biomass, the Monod number and the reciprocal of the dimensionless residence
time are suitable perturbation parameters. For intermediate substrate/biomass ratios, the
conjecture was falsified. The substrate concentration was the fast variable in this case, while the
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substrate concentration and biomass concentration were in the same order of magnitude. For
high substrate/biomass ratios at high dilution rates close to washout, the conjecture was also
falsified. The substrate concentration was the fast variable in this case, while from the
conjecture it was expected the biomass concentration would be the fast variable.

With respect to the procedures tested, the timescale estimation procedure is a helpful tool in
model reduction, which is concluded from the fact that it in all cases correctly indicated
whether the quasi-steady-state assumption was valid. The use of eigenvalues evaluated in the
steady-state for timescale multiplicity however can be misleading in nonlinear systems. The
analytical scaling procedure is helpful to bring the problem into standard form and to obtain a
perturbation parameter in some cases, thus providing insight into the cause of time scale
multiplicity. The direct procedure is not generally applicable.

In Section 4.5, a specific model reduction for interpretation of the batch test of Section 3.5 to
determine biodegradable COD was  carried out. Application of the QSSA to prolonged batch
tests enabled reduction of ASM1 to a first-order model. This reduced model directly relates
experimentally observed parameters to ASM1 parameters, and provides a quantitative basis to
convert observed BOD to biodegradable COD. Moreover, the reduced model provides valuable
insight into interpretation of BOD tests and the influence of influent COD fractionation.

It is expected that model reduction will remain an active research area in the next years, for
application in control, identification and process optimisation. Singular perturbation provides
the formal basis for quasi-steady-state assumptions and time scale separation and can be
expected to play an important role. The procedure for timescale estimation of variables is a
helpful tool for model reduction, as it provides a timescale to state association as well as an
error estimate of the reduction. Scaling can provide additional insight into causes of timescale
multiplicity.

In almost all reported cases of ASM1 reduction, the reduction was applied to lumped systems
without concentration gradients, assuming the system to be either aerobic or anoxic. Thus
reduction concentrated on reduction of the reaction kinetics, rather than reduction of transport
and mixing in the reactor. However, many activated sludge systems are of the plug-flow type
and exhibit gradients especially with respect to dissolved oxygen. This also holds true for full-
scale bioreactors. Therefore, reduction of distributed systems may become an important topic in
reduction of ASM1 and bioprocess models.
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Chapter 5 Controller Design

They had well advanced in the project to look for possible benefits of an analytic design procedure.
Together with project partners from the water boards, they had listed systematically all the
performance specs they could think of, identified the disturbances and developed a plant model and an
uncertainty description. Would possible performance improvement be high? The control engineer now
had been working on implementation of the next design stage, which was to design the controller. He
had expected this would be a straightforward step, because often modelling had proven to be the most
time-consuming task in control system design.  Now, however, he realised that this may be true to
achieve some performance improvement but that guaranteeing optimality is much more involved. The
available control theory and tools still were not able to deal with realistic objective functions and
problem size. To finish the project within the time available, he had to decide either to apply well
established methods that can only approximate the original performance specs or to apply brute force
approaches that can not guarantee optimality. He set out to think for the best compromise.

This chapter focuses on controller design. Section 5.1 discusses possibilities and limitations of
available control theory and tools in tackling practical controller design problems and motivates
selection of Model Predictive Control (MPC) as a research tool in this chapter. Section 5.2
discusses state-of-art of control structure selection and control law selection in control of
wastewater treatment plants, and introduces the case studies presented in Sections 5.3-5.5.
Section 5.3 describes MPC application to a pre-denitrification plant. In Section 5.4, MPC
application to a carrousel system is described. Section 5.5 investigates robustness of MPC
controlled plants, using a structured uncertainty description. Section 5.6 gives conclusions.

5.1 Introduction
After definition of the control goal and modelling the plant, the actual control system is
designed. If we apply an analytic design procedure for control system design as discussed in
Chapter 2, we first list all design specifications as objectives and constraints of a multi-criterion
optimisation problem and develop the required models of plant, disturbances and their
uncertainties.

Stage Action

1 Definition of the goal
2 Modelling of the plant
3 Input Output selection
4 Control Configuration
5 Controller design
6 Controller evaluation
7 Implementation, testing and commissioning

Figure 5.1: Control system design scheme. The focus in this chapter is on controller design.
Control structure design (Stages 3 and 4) is only briefly addressed at.

It is assumed now that the uncontrolled system does not satisfy the specifications and that the
task is to satisfy these through manipulating the system dynamics through control. The actual
control system design then includes selecting the control structure, selecting the control
algorithm(s) and tuning the controller(s).
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In the idealised case of perfect knowledge of system and disturbances, an open-loop control
approach could be applied for the control system design. In an analytic design procedure, a
possible approach to solve the design problem would be to apply (off-line) dynamic
optimisation to search for satisfactory system performance, employing trajectories of
manipulated variables as decision variables. While such an open-loop approach provides useful
insight in achievable performance and system behaviour, it is unsuccessful however to actually
control systems due to uncertainty with respect to plant and disturbances.

Instead of open-loop control, feedback control is usually applied to reduce sensitivity to
parametric uncertainty and to disturbances. The discussion below therefore starts from a general
feedback scheme, comprised in the standard plant shown in Figure 5.2, which specifies the
generalised plant G in Figure 2.1. The standard plant, originating from robust control theory,
provides a powerful framework to systematically specify control system design problems.

K

P

∆

Wd Wp
w z

yu

Figure 5.2: Standard plant, with controller K, uncertainty block ∆ and
the generalised plant that consists of the nominal plant P,

disturbance weights Wd and performance weights Wp,

The standard plant includes performance specifications on the controlled variables signals z that
are modelled in design filters Wp, models of reference signals w and disturbance and noise
signals w that are included in Wd, a nominal plant model P and an uncertainty description ∆. To
characterise performance in control system design, norms (“amplification measures”) of the
corresponding closed-loop (transfer) function matrix of w to z are used throughout the (modern)
control literature.

While selection of inputs u and outputs y and their interconnections is an important part of
design, this section will further concentrate on design of the controller K with given control
structure22. Thus, the controller design problem is (Boyd and Barratt, 1991):

Given a model of the system to be controlled (including its sensors and
actuators) and a set of design goals, find a suitable controller, or determine that
none exists.

A whole range of methods for controller design is available (see later in this section), where
two extremes can be depicted. These two extremes are exact solution of an approximated
design problem on one hand and approximate solution of the exact problem on the other hand.
The first category consists of linear control methods, for which a well-established theory is
                                                
22 Discussion of IO selection in feedback control system design is postponed until Section 5.2.1 to facilitate the
discussion in this introduction.
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available. In linear (robust) controller design, the specifications are translated into norms on
transfer functions (system norms) and into design filters Wd and WP, and model uncertainty into
the (unstructured) uncertainty block ∆. Many design problems thus stated are convex and the
corresponding optimisation can be solved guaranteed and with great efficiency (Boyd and
Barratt, 1991). A fixed, linear, robustly stable controller K results. However, the original
optimisation problem is only approximately solved because the controller design objective
functions (norms) and models are only approximates of the actual problem.

In the second category, solving the actual optimisation problem approximately, several
approaches are applied. One approach is parameter optimisation of fixed structure controllers,
which can for example be linear controllers, rule-based controllers23 and nonlinear controllers.
A second approach is to apply dynamic optimisation of the actual optimisation problem and try
to extract from the results sub-optimal, but easily implementable, control objectives24. A third
approach is on-line optimisation, including feedback to reduce uncertainty25. Realistic problems
that involve nonlinear models and/or objective functions can be dealt with in principle.
However, as limited computation time is available on-line, approximations are required to
reduce computational requirements of nonlinear optimisation methods, such as Sequential
Quadratic Programming (SQP, Gill et al. 1981) or randomised approaches26. Several
approximations are possible, e.g of the model (e.g. through model reduction), of the objective
function or of the decision variables. While model reduction was treated in Chapter 4, here we
concentrate on the controller.

Let us now return to wastewater treatment. Characteristics of chemical processes are
interactions, stiffness, time delays and relative slowness, model uncertainty, time varying
parameters (because of changing parameters), constraints and nonlinearity. Most of these
characteristics also apply to bioprocess systems and wastewater treatment systems.

Many methods and approaches to control have been developed during the last few decades. An
overview of methods is given in Table 5.1, in relation to the characteristics of the activated
sludge process mentioned. Digital control was developed with the emergence of digital
computing (Ragazzini and Franklin, 1958). Optimal control was developed as a rational,
mathematically well-based design method, both for deterministic systems and for stochastic
systems (Kwakernaak and Sivan, 1972; Sage and White, 1977), adaptive control for systems
with varying parameters (Åström and Wittenmark, 1988; Wellstead and Zarrop, 1991),
nonlinear control (Isidori, 1989; Slotine and Li, 1991), Model Predictive Control for optimal
control of systems with constraints, large dead-times, non-minimum-phase behaviour and other
inherent difficulties (Richalet et al. 1978, Morari et al., 1991, Bitmead et al., 1990), robust
control theory to better understand and account for model uncertainty (Zhou et al., 1996),
expert system control for crisp rule-based control and fuzzy control for fuzzy rules.

                                                
23 For example, Kreisselmeier and Steinhauser (1983) determined optimal settings for a linear controller of an
aircraft to operate in different operating points, thus incorporating robustness, whereas Schuetze (1998) optimised
settings for rule-based controllers for integrated wastewater systems.
24 For example, Ryckaert adopted this approach for optimal cyclic operation; see Section 5.2.2, Table 5.8.
25 This is referred to as open-loop-optimal-feedback, see Section 5.2.3.
26 A suitable approach for nonlinear optimisation is the application of randomised approaches. However, it cannot
be guaranteed in general that the optimum found is indeed the global optimum; at most, an acceptance level can be
indicated (Vidyasagar, 1997).
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It was recognised in 1973 by Foss (Foss, 1973) that the important problems in chemical process
control could not be coped with by one single all-embracing theory, while he indicated that it
would be the theoretician to close the gap between actual problems and available theory. Still,
no such single theory is available. With all the theoretical developments described above,
several methods have well advanced, but it is still much of an art requiring significant
application specific knowledge to select those pertinent for the application.

Table 5.1: System characteristics vs. control methods
System characteristics Control methods
Interactions 1. Static/dynamic decoupling

2. Multivariable modern control
      LQG, IMC, MPC, H∞

Stiffness Hierarchical control
Singular perturbation

Uncertainty Robust control (design) methods, e.g.
H∞, Internal Model Control,
Adaptive control

Time varying parameters Adaptive control, Robust control
Lack of mathematical models Rule-based control: Expert systems, Fuzzy control
Constraints MPC
Nonlinearity Several methods

1. Linearization
2. Piecewise linearization
3. Feedback linearization
4. Optimal control theory (dynamic programming)
5. Rigorous nonlinear optimisation (MPC)

In the line of the analytic design procedure discussed in Chapters 1 and 2, application of model-
based on-line optimisation is a promising approach for control of wastewater treatment plants.
Model Predictive Control is selected as a suitable framework, which we will further motivate in
Sections 5.2.2 and 5.2.3. The characteristics of wastewater treatment processes may require
MPC extension to adaptive and/or nonlinear MPC and possibly to include some way of dealing
with stiffness. This chapter will investigate a few such aspects for MPC development for
wastewater treatment. After discussing state-of-art in control structure selection (Section 5.2.1)
and control law selection (Section 5.2.2) in wastewater treatment plant control, some aspects of
MPC will be discussed into more detail in Section 5.2.3 and studied in the Sections thereafter.

5.2 State-of-art

5.2.1 Control structure design
This section treats control structure design. In the past, this stage has received relatively little
attention in the control literature, while it has been indicated as very important already by Foss
(1973). The situation is now improving and several scientists have been working on this topic
(Morari and Stephanopoulos, 1980a,b; Morari, 1983; Hovd, 1992; Lee et al., 1995; van de Wal,
1998). The task of control structure design is to (Skogestadt and Postlethwaite, 1996)

achieve satisfactory performance with minimal controller complexity.
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Minimal controller complexity is required both for reliability reasons – design and maintenance
are more prone to errors when the system is complicated27 – and for economical reasons – a
system with fewer sensors and actuators is cheaper to design and build28.

Control structure design is especially difficult in large-scale systems, such as in control system
design for chemical plants. This section will investigate whether control structure design is
difficult also in wastewater treatment and if systematic methods for control structure selection
are desirable. First, we will discuss IO selection and control configuration selection in
wastewater treatment and then methods for these tasks and their applicability to wastewater
treatment.

In the Input/Output selection step, one decides upon the number, place and kind of manipulated
variables u and measured variables y. If the number of candidates for u and y is large, a large
number of candidate IO sets typically remains. For large sets it is therefore impossible to design
and test all candidate sets and systematic and quantitative pre-screening methods to reduce the
number of candidate choices to feasible candidates are required to replace (or complement)
engineering heuristics. A very desirable property of methods for IO selection is independence of
the controller design method for two reasons. These are 1) to avoid computational effort of
simultaneous control structure design and controller design and 2) to base the selection directly
on the limits of performance imposed by the plant and the IO selection itself. Other desirable
properties of IO selection methods have been listed and extensively discussed against existing
methods in van de Wal (1998).

   Table 5.2: Possible and suggested choices for u, y and z in control of WWTP’s
Manipulated variables or
actuator inputs u

Measured outputs or
measured variables y

Regulated outputs or
controlled variables z

aeration (oxygen transfer Dissolved Oxygen DO any of y
         kLa or DO setpoint) ammonia NH4 soluble COD

recycle rate Qr nitrate NO3 total COD

waste flow rate Qw redox potential ORP BOD

internal recirculation Qic actual respiration rate ract MLSS
volume fraction aerobic maximal resp. rate rmax total amount of sludge
influent distribution endogenous resp. rate rend biomass concentration XB

influent buffering StBOD total biomass X
flow to clarifier‡ Total Organic Carbon TOC sludge age SA
external carbon source TAUC¶, 2 dynamic sludge age DSA1

precipitants turbidity in mixed liquor specific oxygen uptake rate SCOUR2

Sludge level in clarifier hsb food to mass ratio F/M2

NAD(H)
sludge settleability SVI†

   †Not necessarily with a sensor, although also settlometers are also relatively well-developed (Grijspeerdt, 1996).
   ‡Only at very few plants. ¶ Total Area Under Curve. 1 Vaccari and Chritodoulatos (1989). 2 See Section 2.2.3.

Let us now consider the situation in wastewater treatment. Table 5.2 summarises possible
choices for the manipulated variables u, measured variables y and controlled variables z. The
table shows that many sensor types are available. Note that only the type of variables is listed,

                                                
27 Addition of redundancy by extra actuators and sensors of course can improve system reliability.
28 Thus control structure design itself is a multi-criterion problem, where performance is traded-off against
reliability and cost.
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not their location; moreover, only sensors that are relatively well developed have been
included29. Section 2.2.3 summarises possible measurements including wet-analytical methods.

Before the actual IO selection is carried out, however, the controlled variables z should be
selected and specifications defined. As discussed in Chapter 2, the choice of controlled
variables in wastewater treatment is complicated, which is also seen from the list in Table 5.2.
In fact, the conditions pertinent for reliable and optimal control are still insufficiently well
known. Consequently, different choices for controlled variables are used or suggested in the
literature as well as in practical applications.

Remark: In N-removal plants it is usually assumed that COD removal proceeds well if N-
removal is well controlled30.

After selection of the controlled variables, the IO selection can be carried out31. The typical
approach adopted currently in WWTP design is to do static design and try out several
sensor/actuator configurations by dynamic simulation. However, to guarantee successful
selection this is not a feasible approach, and it is argued below why IO selection methods are
desired.

Let us first consider input selection. In Section 2.3, it was shown that in plants for
nitrogen removal there are more ways to act on the process than in conventional plants.
Nevertheless, the abilities to act on the process are relatively limited when compared to the
possibilities to measure. In Table 5.3, possible input selections are summarised for the types of
N-removal systems considered in this thesis, for the most important classes of manipulated
variables. For each manipulated variable, a list of measured variables is given as a summary of
the literature. It is noted that the table is not an exhaustive overview of all possible selections.

    Table 5.3: Some IO selections applied in wastewater treatment plant control
System u y
1,2,3 aeration (kLa or DO) DO, NH4, NO3, ORP, ract, TAUC, StBOD, TOC, R[at],

NAD(H), SVI
2 Qic NO3, NH4, ORP, Qin

1,2,3 Qr MLSS, hsb, XB[at], R[at], R[profile], F/M, DO[ras], rdiv
†

1,2,3 Qw MLSS, hsb, XB[at], XB[total], SA, R[ras], F/M, rdiv
1

1: Alternating systems, 1 tank (also includes carrousels with intermittent aeration);
2: Pre-denitrification systems, both with 2 CSTR’s and plug-flow-like;
3: Carrousel systems (no intermittent aeration).
† rdiv: different respiration rates can be measured. Several rates and combinations of rates are applied (Spanjers
  et al., 1998). R = SCOUR, Specific respiration rate, r  = respiration rate, F/M = Food to Mass ratio,

     [at]: in aeration tank, [ras]: in return activated sludge.

                                                
29 Especially useful in control of WWTPs are sensors that employ cross-flow ultra-filtration in combination with
automated laboratory wet chemistry methods. Reliable sensors for ammonia, nitrate and phosphorus based on this
technology are now commercially available (Thomson and Kisbye, 1996; Longdong and Wachtl, 1996; Wacheux
et al., 1996). Also very useful are sensors based on respirometry. Several commercial respirometers exist; see
Spanjers et al. (1998).
30 This is a form of partial control. In partial control, only a subset of the controlled variables is actually controlled
(Stephanopoulos, 1985).
31 The tasks performed in Control Structure Design as defined in this thesis exclude the selection of controlled
variables – this was supposed to be part of the control goal definition (See Chapter 2 and Section 2.4) – and the
selection of the control law. This is different from Skogestad and Postlethwaite (1996) who include these tasks in
Control Structure Design.
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The table shows that output selection is more involved than input selection as the selection of
the sensor type is nontrivial due to the large number of alternatives. Moreover, for many
variables, different locations are possible, hereby significantly extending the number of
candidates. In addition to insufficient understanding of the activated sludge process, it is often
economically attractive to apply sensors for quantities closely related to the controlled variable
(y≠z) instead of measuring the controlled variables themselves32.

Thus, on one hand, output selection has become more complicated as more sensor types
must be chosen from, on the other hand, it has become more straightforward as several new
sensor types have a closer relationship with the controlled variables. The overall result is that
IO selection cannot be done by a candidate-by-candidate approach33. This is seen from the
number of possible IO sets that can be derived from Table 5.3. This number amounts to several
thousands, which, although it is much smaller than the numbers typical in large-scale problems
such as in chemical plants, still is so high that a pre-screening is highly desirable.

In the control configuration stage, the structural interconnections between y and u are chosen.
As discussed in Chapter 1, especially the trade-off between plant performance and controller
complexity is made. Whether decentralised control can be applied, depends upon the
occurrence of unwanted interactions. Such interactions do occur in activated sludge plants,
which is discussed below. First, interactions in the bioreactor are considered, focussing on N-
removal systems, then interactions are considered with the clarifier.

The following systems are distinguished here.
1. Alternating system (e.g. studied by Lukasse, 1999). Usually there is only one manipulated

variable, namely the aeration intensity, and the system is not functionally controllable34:
effluent ammonia and nitrate cannot be controlled independently

2. Predenitrification system. Often, two manipulated variables are applied, namely the aeration
intensity and the internal recirculation flowrate Qic. Here, both ammonia and nitrate may be
controlled. For example., Kayser (1990) suggested 2 SISO loops for control of ammonia by
aeration and nitrate by Qic. Interaction may occur however, as was shown in a 2-reactor
system (Weijers et al. 1995b; See Section 5.3).

3. Carrousel system. Usually aeration is used as a manipulated variable. If more than one
aerator is present, there may be (limited) possibilities for independent control of ammonia
and nitrate. However, interactions typically occur which was a reason to study application of
multivariable control for these systems (van Schagen et al., 1995, Weijers et al., 1997c).

Interactions also occur in the system bioreactor plus clarifier. For example, control of the
amount of the sludge concentration or of the sludge age will influence the concentrations of
soluble components and vice versa. Sludge concentration control may interfere with sludge
blanket level control in the clarifier. Unwanted interactions occurred between three SISO
controllers for SCOUR profile, mean cell residence time and DO in an integrated control
system for a step-feed activated sludge system (Vitasovic and Andrews, 1989).

                                                
32 This is referred to as inferential control (Stephanopoulos, 1985).
33 In plants with N-removal, sensors for the pollutants of concern, NH4 and NO3, are available. One could argue
that here output selection is much more straightforward than in conventional plants. However, in control of N-
removal plants also inferential control is considered, e.g. for economical reasons (for example by using ORP as a
cheap alternative for nitrate sensors) or to combine several objectives (as is the case in control of the Total Area
Under Curve in respirometry). Consequently, the number of candidate choices is high also
34 An m-input l-output system G(s) is functionally controllable if G(s) has full row rank. This is required to control
all outputs independently (Skogestad and Postlethwaite, 1996).



CHAPTER 5  CONTROLLER DESIGN146

From this brief discussion on interactions in activated sludge systems, it follows that in control
system design for N-removal plants interactions must be taken into account. As interactions in
activated sludge treatment systems have been hardly studied systematically, this topic requires
further research. Depending on the wastewater treatment system of concern, the system
specifications and the selected control inputs and outputs, multivariable control may be
required. However, it is noted that while in mechanical systems and electrical systems
functional control is required in most cases, in process control interaction may be acceptable in
some cases (Foss, 1973), and the influence of interactions on the systems performance remains
to be established.

From the discussion above, we conclude that selection of controlled variables has higher
priority than IO selection. Improved insight in suitable controlled variables can well be obtained
through dynamic optimisation studies. Optimal input, state and output trajectories and observed
relations between different variables can provide valuable insight into the system and for
deciding on suitable controlled variables.

An interesting option to include a control objective oriented approach would be to apply
the procedure for selection of controlled variables described by Skogestad and Postlethwaite
(1996, Section 10.3) to (dynamic) optimisation results. This procedure is based on selecting
those controlled outputs that correspond to a plant transfer matrix with a minimum singular
value that is as large as possible. The aim is to select the controlled outputs such that the inputs
have a large effect on the outputs, the influence of disturbances on the optimum value is low
and the control error is kept small. This procedure includes a scaling of inputs as well as of
outputs.

We expect that IO selection will be more straightforward once a good selection of controlled
variables has been made. For the IO selection and for the control configuration selection
therefore, probably a basic analysis combined with engineering heuristics will suffice. Such a
basic analysis for conventional activated sludge plants by studying step and frequency responses
was carried out by van Straten (1993). Olsson and Jeppsson (1994) carried out a qualitative
analysis of cause-effect relationships. These analyses can be extended towards a quantitative
analysis of N-removal systems. Appropriate tools to start with are step and frequency responses.
In addition, (dynamic) RGA (Relative Gain Array) as discussed in Skogestad and Postlethwaite
(1996) may be helpful.

In this way, a limited number of promising IO candidates may be selected. Before the
actual controller design, an analysis of Input/Output controllability on these IO candidates can
indicate fundamental limitations imposed by the respective IO selections. A procedure for such
an IO controllability analysis is given in Skogestad and Postlethwaite (1996, Section 6.11.1).

Should such a basic analysis be insufficient, more advanced methods can be applied. A
combination of existing methods for IO selection may be required, as existing methods are still
insufficiently powerful if applied individually35. Alternatively, better methods for control
structure selection may be developed. An interesting option for this development would be to

                                                
35 Methods for IO selection have been recently reviewed by van der Wal (1998). Existing methods were all judged
unsatisfactory against the criteria defined. Especially promising were considered those based on robust
performance, based on modern robust control theory. Both methods relying on sufficient conditions that employ
unstructured uncertainty and on necessary conditions that employ structured uncertainty were studied.  However,
also these methods appeared to be still insufficiently suited for rigorous IO selection. The same conclusion was
drawn with respect to control configuration selection methods.
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use controllability analysis more rigorously for control structure design integrated with the
controller design, instead of using it as a check afterwards. Possible methods for such an
approach are mixed integer programming or combinatorial optimisation (e.g. de Jager et al.,
1999). The feasibility of such an approach remains to be established.

5.2.2 Control law selection
This section discusses state-of-art of control law selection in activated sludge plant control. An
overview is presented of the literature in the form of summarising tables. Table 5.4 gives
symbols used to present information on treatment systems and the type of studies in these
tables.

Table 5.4: Abbreviations to indicate systems and studies in this section
Symbol System Symbol Study (status)

0 Conventional activated sludge o proposal only
1 Alternating system d under development
2 Pre-denitrification r developed, but not tested
3 Carrousel s simulation
- Unspecified p pilot plant
s Step-feed f full-scale plant
p Plug-flow
n with Nitrification

Classical control
This category includes so-called classical control methods developed until the late 50’s such as
PID control, cascade control, ratio control etc. In addition, digital implementation of these
methods is included. A large impulse to application of control in sewage treatment was given in
the sixties with the progress of digital computers. Application of (PID) control of DO has
become standard routine at many plants. Some examples are given in Table 5.5.

  Table 5.5: Classical control examples
Reference System Study Control Remarks
Ruider and Schopper, 1974 0 o/p SISO several suggestions for DO and MLSS
Busby and Andrews, 1974 0s s SISO P-control of hsb with Qw or Qr

Feed distribution (feedforward)
Stepner and Petersack, 1974 0 f SISO PID (velocity form, tuning with pole-

placement)
Vitasovic and Andrews, 1989 0s s SISO PI control of DO
Marsilli-Libelli, 1989 0 s SISO PID control of biomass by Qr, 2 observers: for

OUR and for substrate and biomass
STOWA 97-w05 2 f SISO PID control of NO3 with Qr (tuning with

stepresponse; on-line retuning required)
STOWA 97-w03 3 f SISO

MISO cascade
MISO cascade

PI on DO
PI on NH4 as master for DO slave
PI on NO3 as master for cascade NH4

Rule-based (logic, expert system, and fuzzy control
While the selection of the control structure in classical control applications often is based on
process engineering heuristics, for design, tuning and implementation of classical controllers,
considerable control engineering knowledge and basic understanding of process dynamics is
required. In rule-based control, process engineering heuristics can be directly applied. This can
be particularly advantageous if considerable process knowledge in qualitative form, e.g.
operator experience, is available and no or only poor mathematical models are available.
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In its most simple form, rules are directly implemented in control logic, e.g. in PLC’s.
This approach is regularly applied in activated sludge control. If the number of rules is large,
application of expert systems is more appropriate. Here, the knowledge and the logic are
separated into a knowledge base and an inference engine respectively. This largely facilitates
implementation and maintenance of the system.
In the late eighties expert systems were expected to become valuable operational tools in
activated sludge plant control (Olsson et al., 1989; Barnett and Andrews, 1990) and several
systems were proposed in the early nineties (see table 5.6). However, in the late nineties they
were reported not successful (Olsson et al., 1998), at least in the Scandinavian countries.
Reported causes of this are their complexity and the inability to capture available knowledge
sufficiently well. Another cause is that construction of knowledge bases is a plant-specific task,
requiring not only definition of rules but also of values for several parameters, which requires
considerable tuning and thus is a costly task. It is noted that in most reported cases, expert
systems were used for diagnostic (failure detection) and advisory tasks. No examples of direct
expert control, which would also be a good possibility, are known to the author.

  Table 5.6: Rule-based control examples
Reference System Study Control† Remarks
Vitasovic and Andrews, 1989 0s s SISO RB rule based control of SCOUR profile

on-off control of MCRT
STOWA 97-w01 3 u MIMO RB aerators switching based on NH4 and DO
STOWA 97-w02 3 s/u SIMO RB aerators  switching based on respirometry
Barnett and Andrews, 1990 - o ES discussion of requirements for successful

application (e.g. learning capability)
Koskinen and Viitisaari, 1990 - p ES detect off-normal conditions
Maeda et al., 1990 - f ES diagnosis and advise
Ladiges and Kayser, 1993 3 f

o
ES on-line system for failure detection

off-line system as operational advisor (uses
deterministic model predictions)

Ozgur, 1991 0n o ES
(with ‘fuzzy’

terms)

refinery wastewater; diagnosis and advise
(337 rules, 56 parameters)
(uses deterministic model predictions)

Tong et al., 1980, Beck, 1984 0n s MIMO FLC control of DO, Qr and Qw, 20 rules
Couillard and Zhu, 1992 0n s MIMO FLC fuzzy supervisor for 2 PID loops for

control of shock loading (16 rules)
Jager, 1995 0 s/f FLC industrial wastewater
STOWA97-32, Kalker et al.,
1999

2p s MISO FLC
SISO FLC

high-level (>6 rules) aeration control
low-level (> 5 rules) aeration control

 †RB: Rule-based; ES: Expert system; FLC: Fuzzy Logic Control; MCRT: Mean Cell Residence Time (=SA)

Fuzzy logic control (FLC) offers the possibility to implement vague linguistic rules. Its
application to activated sludge control is under development. Rule bases for fuzzy control are
often smaller than for expert systems36. Despite its attractiveness to engineers not familiar with
control engineering theory and tools for its conceptual simplicity, successful implementation is
hampered by time-consuming tuning of the fuzzy rule base, where, just as for expert system
application, rules and parameter values must be defined. To achieve straightforward tuning,
Kalker et al. (1999) determined fuzzy rules and sets for direct FLC based on an optimised PI-
controller, according to a method described in Jager (1995). Such an optimal PI-like FLC can
easily be combined with linguistic rules, which possibly improves performance. Besides its use

                                                
36 The objectives and tasks of fuzzy control systems are correspondingly less ambitious, namely control of one or
more outputs based on several inputs, for which a few rules usually suffice. In contrast to expert systems, fuzzy
control often aims at direct control.
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for direct (Table 5.6) and supervisory (see below, Table 5.10) control, other FLC possibilities
are discussed in STOWA 97-32.

Improvement of application of artificial intelligence (AI) to control is expected from hybrid or
integrated use of different techniques, referred to as multi-AI paradigms. Integrated use of
different types of information and knowledge (deterministic models, physics-based or ‘deep’
knowledge, visual information, empirical (expert and fuzzy), ‘shallow’ knowledge, historical
data, artificial neural nets) in a single environment is still under research. One approach would
be to convert different types of knowledge and information into one another, in analogy to
transformation between different model representations in linear systems. Examples are the
translation of historical data via identification (‘learning’) to artificial neural nets (ANNs) and
from trained ANNs via knowledge extraction to (fuzzy) rules.

  Table 5.7: Hybrid or Integrated Artificial Intelligence techniques examples
Reference System Study Control Remarks
Baba et al., 1990, Enbutsu et
al., 1993

¶ s MISO ANN2 learning from historical data using
ANN’s and knowledge (fuzzy rules)
extraction from ANN’s

Ohtsuki, T. et al., 1998 01 f MIMO Agent-based AI system, including fuzzy
expert, fuzzy control and model ASM1

¶ :Coagulant injection system; 1High-loaded activated sludge with ultra-filtration; 2ANN: Artificial neural network.

Another interesting - be it still rather crude - attempt to such an approach is the ‘blackboard
technique’ (Krijgsman, 1993), applied to the activated sludge process by Ohtsuki et al. (1998).
Here, different agents (‘expert modules’) consisting of different AI techniques consult each
other via a common database (‘blackboard’) with a simple data type, without a central, co-
ordinating system. The number of required transformations can be much more limited in this
approach. Moreover, in such an agent-based type of approach, the complexity and related
problems of expert systems can probably be avoided. It is noted however, that in such an agent-
based or rule-based approach, optimality cannot be guaranteed as with model-based control.

Model based control
The availability of mathematical models for activated sludge processes has steadily increased
and motivates application of model based control. Mathematical models are well suited for
application of optimal control, which is defined here as mathematical optimisation of a
performance index. Several studies of optimal control in ASP control have been reported and
some examples are given in Table 5.8. For reviews on optimal control studies see Marsilli-
Libelli (1984) and Kabouris and Georgakakos (1990).

Optimal control
In several studies, application of LQG has been investigated. This linear, time-invariant control
technique is applied typically for regulation of a reference behaviour (a steady-state, a single
operating point or a reference trajectory) where a linearized model is locally valid. In LQG, the
output variance is minimised for Gaussian noise on the system inputs. The noise characteristics
are often unknown, however, and are usually used as tuning parameters to achieve acceptable
performance. Because usually not all states are measured, a state observer is applied. The
robustness of the resulting LQG controller can be arbitrarily poor, in contrast to the full-state
information controller (LQR) (Doyle, 1978).
To obtain the required reference behaviour, (off-line) dynamic optimisation can be applied. The
resulting open-loop optimal reference behaviour is model dependent and cannot be
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implemented as such. An alternative is to implement such dynamic optimisation on-line and
include feedback, which is a form of MPC as discussed in Section 5.1. Another possibility
would be to extract properties from the dynamic optimisation results that are not or little model
dependent and are practically implementable. This approach was applied by Ryckaert (1998) for
a cyclically operated process. The applicability of such an approach to other activated sludge
systems remains to be established.

 Table 5.8: Optimal control examples
Reference System Study Control Remarks
Hamalainen et al., 1975 0 s MISO LQG control S, X and Xr by Qr

1 (+FF)
Marsilli-Libelli, 1984 1 s SISO LQG2 control of DO by kLa
van Schagen et al., 1995 3 s MIMO LQG control NH4 and NO3 by kLa (2 aerators)
Lindberg, 1997 2 s MIMO LQG control NH4 and NO3 with DO setpoint,

Qic and external carbon dosage; model by
subspace identification (from ASM1)

Lukasse et al., 1998a 1 s/p MISO RHOC4 control NH4 and NO3 by kLa (L1-norm)
Lukasse, 1999 1 s/p MISO state

feedback (L1)
L1-norm optimal state feedback law
(only for LTI systems with 1 input, 2
states and diagonal A)

Kabouris and Georgakakos.,
1990, 1991

0 s Open loop
optimal

optimal control trajectories for Qr and Qw

to suppress diurnal variations5

Kabouris et al., 1992 0 s “ effect of sludge storage on performance
Ryckaert, 1998 cyclic3 s Open loop dynamic optimisation to derive

 implementable reference behaviour
1 S: substrate, X: biomass, Xr: biomass in recycle. 2

 Including integral action and converted to a transfer function
representation; 3 Cyclic operation in the so-called Unitank system; 4 RHOC: Receding Horizon Optimal Control, a
form of model predictive control; 5 In the 1991 study, output uncertainty resulting from input uncertainty was
investigated as a means to estimate applicability of this open-loop approach.

Lukasse et al. (1998a) applied linear MPC for setpoint control (RHOC, Receding horizon
Optimal Control) employing a L1-norm37, which was claimed more realistic than the usually
applied H2-norm38. In this specific case (alternating process), the global optimum could be
found through enumeration. Moreover, the optimal RHOC could be approximated well by a
state feedback controller (Lukasse, 1999). The solutions in these studies are specific for the L1-
norm and for alternating operation and can not be generalised to other criteria and other types of
operation. It is noted that the performance in the pilot plant was not completely according to
what was expected from simulation results, most probably due to model mismatch.

Robust, adaptive and nonlinear model-based control
Linear time-invariant control methods in fixed operating points have limited applicability to the
activated sludge process for two reasons, namely nonlinearity and parameter variability. Due to
the large disturbances, the system cannot be kept in a fixed operating point, and in fact, steady-
state regulation cannot be expected to correspond to optimal performance and the nonlinearity
of the system must be taken into account. Moreover, parameters of the activated sludge process
change in time, for example due to temperature variations and to load and influent composition
variations with corresponding changes in biomass composition and characteristics.

                                                
37 For a description of signal and system norms, see e.g. Zhou et al. (1997) or Boyd and Barratt (1991).
38Deviations of effluent concentrations of NH4 and NO3 from setpoints were considered as a measure of
performance. It was suggested to select setpoints equal to zero and use disposal costs as weight factors. This
corresponds to an approximation of the actual costs. Actual costs relate to loads rather than concentrations.
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Consequently, control systems that are robust against state and parameter variations are
required in control of the activated sludge process. Possible approaches to achieve robust
systems are to develop robust, adaptive and nonlinear control systems, which have been studied
for activated sludge process control. Examples are given in Table 5.9.

For (low-level) DO control, SISO adaptive control will probably suffice. An alternative
may be robust Model Predictive Control (Haarsma and Keesman, 1993).

For control of substrate and biomass, several combinations of techniques have been
applied. Bastin and Dochain (1990) propose the application of nonlinear observers in
combination with feedback linearization for bioprocesses. This approach was also adopted by
Vanrolleghem (1994) for control of the sludge inventory. However, this feedback linearization
alone is not an optimal control technique, it requires a reference behaviour and its linearizing
effect is lost under hard constraints on the manipulated variables. MPC does not have these
limitations. MPC has been investigated for DO control in conventional activated sludge plants
(Haarsma and Keesman, 1993) and adaptive MPC for N-removal in alternating systems
(Lukasse et al., 1997a). A very simple (reduced) model was used (see Chapter 4). An Extended
Kalman Filter was applied for the adaptive part, and RHOC as described above for the MPC
part. The methodology applied, including the controller criterion (L1-norm), the model used and
the solution method (through enumeration) are specific for alternating plants and cannot be
applied to continuous plants such as predenitrification plants and carrousels.

Table 5.9: Robust, adaptive and nonlinear model-based control examples
Reference System Study Control Remarks
Marsilli-Libelli, 1989 0 s implicit STC1 PID control of DO by (unknown) kLa
Holmberg, 1987 0 s SISO adaptive DO control by kLa with fb linearization
Lindberg, 1997 2 s

p4
SISO (in)direct

adaptive
control of external carbon by indirect
(model based) adaptive PI and direct
and indirect adaptive MV2 control

Lindberg, 1997 2 p SISO adaptive nonlinear PI control of DO by kLa
Bastin and Dochain, 1990 0 s SISO adaptive

nonlinear
nonlinear observers and fbl3

Dochain, 1990 0 s MIMO adaptive
nonlinear

nonlinear observer and fbl3, regulation
of BOD and DO by kla and Qr

Dochain and Perrier, 1993 0 s MIMO adaptive
nonlinear

nonlinear observer and fbl3, regulation
of BOD and DO by kla and Qr

Vanrolleghem, 1994 0 s MIMO adaptive
nonlinear

nonlinear observer and fbl3; regulation
of X and hsb by Qr and Qw

Haarsma and Keesman, 1993 0 s/p SISO robust
MPC

Robust MPC with structured uncertain-
ty; DO control by kLa and feedforward
of OUR

Lukasse et al. 1997a 1 s/p MISO adaptive
MPC

Adaptive RHOC of NH4 and NO3  with
aeration intensity (L1-norm)

 1 STC: Self-tuning controller; 2: MV: Minimum variance; 3 fbl: feedback linearization; 4only direct adaptive
control was evaluated on the pilot plant.

Plant-wide and supervisory control
Finally, supervisory or plant-wide control of the bioreactor in connection to the clarifier or other
units of the wastewater treatment plant have been studied (Table 5.10). It is noted that in fact
the expert system examples in Table 5.6 are to be considered as supervisory control, but they
have been discussed under rule-based systems for ease of discussion. It is noted that several
software tools for expert supervision are available, e.g. IC2S from Hydromantis Inc. (Patry and
Takács, 1995) that includes a decision support system (DSS), deterministic models and
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parameter estimators. However, many questions on the conceptual level with respect to their
application and implementation remain to be studied.

A recent supervisory control study refers to application of fuzzy control (Müller et al.,
1995). Application of an on-line optimisation based approach to control the conventional
activated sludge process was suggested already in 1973 and later studied by Sperling and
Lumbers in 1991 (see also Chapter 2). However, still no such studies have been carried out for
control of N-removal plants.

  Table 5.10: Plant-wide and supervisory control examples
Reference System Study Control Remarks
Patry and Takács, 1995 - d expert system modular system with expert supervisor
Müller et al., 1995 01 s/p fuzzy control fuzzy supervisor for COD overloads
Bowden and Wright, 1973 1 o optimisation ideas about on-line optimisation
von Sperling and
       Lumbers, 1991

32 s on-line
optimisation

model-based; optimal cost or optimal
performance by DO, Qr and Qw

 1: four stages: anaerobic, aerobic, nitrification and denitrification; the study concerned the first two stages only;
 2: oxidation ditch without N-removal, including clarifier

The overview shows that advanced control techniques are hardly applied on full scale. Only on-
line applications of expert systems for diagnosis have been reported. In most of the recent full-
scale examples given in Chapter 2, on-off control or PI control was applied. Still, pilot plant
studies showed promising results, especially with adaptive predictive control.

A major motivation for application of advanced control is that expected performance is higher.
A few comparative studies between rule-based and model-based control have been carried out,
which we briefly summarise.

Rule-based control and model-based predictive control were compared by Isaacs and
Thornberg (1998) for cycle length control in the Biodenitro process. In simulation studies,
performance was comparable. If the results from the optimal controller were used for tuning of
the rules of the rule-based controller almost similar performance could be obtained. The rule-
based controller was more robust against different inlet wastewater and temperature scenarios
than the model-based controller. This is not the case in general. Here it was most probably
caused by the simplicity of the model-based controller at its stage of development at the time of
study. For tuning the rule-based controller, four functions had to be defined. Although this
offers a lot of freedom, it also leads to less straightforward and possibly even to conflicting
tuning. The authors planned to study on adequate choice of these functions.

Lukasse et al. (1999) compared four controllers for switching aeration in a simulated
alternating activated sludge process, namely 1) timer based; 2) switching at depletion of
ammonia and nitrate; 3) switching when ammonia crosses predefined levels and 4) Adaptive
MPC. The parameters of these controllers were tuned such that the time-average and weighted
effluent quality with respect to ammonia and nitrate was optimised. Controllers 1, 3 and 4 had
similar nominal performance. The sensitivity to suboptimal tuning was also investigated and
was significantly less for the MPC controller. In addition, its tuning was more straightforward.

van Schagen et al. (1995) compared performance of an LQG controller with cascade
PID control for regulation of the ammonia concentration in a carrousel system. In this study,
simulations with different influent scenarios indicated that with LQG a better effluent quality
could be achieved with lower energy consumption.

These studies show that optimisation based control does not necessarily lead to improved
nominal performance. However, it generally leads to more straightforward tuning and provides
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a guarantee that performance is good indeed. Moreover, advanced control may lead to better
control system robustness, if designed to account for model uncertainty.

5.2.3 MPC, motivation of MPC evaluation  and overview of case studies
In Sections 5.3-5.5, Model Predictive Control application to pre-denitrification plants and
carrousels will be investigated. In this section, we motivate the selection of MPC. First, MPC
technology is described. The selection of the studied MPC control algorithm is then motivated,
followed by an outline of the cases studied.

Standard MPC technology
MPC is an ambiguous term. In a general sense, it refers to the (digital) control philosophy of
Open-Loop-Optimal-Feedback, already suggested by Propoi (1963). The idea is to apply
dynamic optimisation on-line, optimising an objective function that reflects desired process
behaviour. The process behaviour is predicted using an explicit dynamic process model that
describes the effect of future manipulated variable adjustments on the process outputs.
Feedback is used to update the state of model. Only the first of the computed control moves is
actually applied, after which the procedure is repeated at the next sampling instant. This idea is
also referred to as receding horizon or moving horizon control.

In a more restricted sense, the term refers to linear MPC with a quadratic objective
function and with constraints. In this class, we find several algorithms that have been very
successful in the process industry, in particular algorithms based on impulse response models
(Model Predictive Heuristic Control, MPHC, the software being known as IDCOM, Richalet et
al., 1978) and step response models (Dynamic Matrix Control, DMC, Cutler and Ramaker,
1979, and Quadratic DMC QDMC, Cutler et al., 1983; Garcia and Morshedi, 1986). Over 2200
implementations of MPC have been reported (Qin and Badgwell, 1996). Several reasons for
this success have been given:

- the philosophy has an intuitive attractiveness to industrial process control engineers;
- the use of impulse and time responses obtained via identification requires less modelling

effort than physics-based models typically used in early LQG applications (Qin and
Badgwell, 1996);

- the technique provides one general framework for complicated processes with time-delays,
inverse-responses and interactions;

- the on-line optimisation  allows economic operation;
- most importantly, it is the only methodology to handle constraints in a systematic way,

which is required as economic operation is known to be on the intersection of process
constraints (Garcia et al., 1989; Rawlings et al., 1994).

In its general form, MPC is not restricted in terms of model, objective function and/or
constraints and consequently, several MPC algorithms exist.

In linear MPC, different model representations are applied, including several
input/output descriptions as well as state space descriptions (Garcia et al, 1989; Lee et al,
1994), with correspondingly different identification methodologies. The optimisation problem
is generally cast as a standard Quadratic Program (QP).

MPC extensions
Several MPC extensions have been developed. These include robust MPC, adaptive MPC and
nonlinear MPC and other extensions. From academia, considerable efforts have been spent in
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the last decade on robust MPC, attempting to apply results from modern robust control theory
to understand MPC robustness properties. While some important results have been achieved,
still many questions remain open, especially for the practically most relevant finite horizon
MPC with constraints. Examples of results are the Linear Fundamental Control Problem as a
design framework for linear MPC (Prett and Garcia, 1988), the Internal Model Control concept
(Morari and Zafiriou, 1989) as a framework to analyse MPC robustness, robustness under hard
(output) constraints (Zafiriou, 1990; Zaifiriou and Marchal, 1991), robust design via observer
tuning (Lee and Yu, 1994), robust design via LMI’s (Kothare et al, 1996) and several
theoretical results concerning MPC robustness applying infinite horizon formulations
(Rawlings and Muske, 1993), and more recently, finite prediction horizon with Lyapunov
function arguments (Nevestic and Primbs, 1997).

Less numerous studies are reported on adaptive MPC. Most results have been obtained
in an independent MPC branch from the adaptive control community, which mainly employs
SISO black-box models and does not include constraints. Probably best known is Generalised
Predictive Control (GPC) (Clarke et al, 1987a,b). Bitmead et al. (1990) revealed its links to
Adaptive LQG. Their analyses within the state-space framework provide valuable insights.
Unfortunately, the results are restricted to the unconstrained case.

In nonlinear MPC, a nonlinear internal model is applied. Reviews are (Bequette, 1991;
Biegler and Rawlings, 1991; Rawlings et al., 1994; Schei and Johansen, 1997). An aerly
example is Garcia (1984). In most cases, some form of repeated linearization is applied for
computational efficiency (van Essen, 1998). Generally, a quadratic criterion is applied. More
general objective functions are possible, but the resulting optimisation problems may be much
harder to solve. Nonlinear MPC can be applied, but while several results on nonlinear MPC
stability have been obtained (e.g. Rawlings et al., 1994; Zheng and Allgöwer, 1998), a lot of
theoretical work remains to be done.

In third generation39 MPC, a multi-objective formulation is applied as well as a
primitive form of reconfiguration control. This is achieved by a controllability supervisor for
on-line selection of controlled variables based on the condition number

While extensions to adaptive and nonlinear MPC exist, their application and analysis is
less straightforward. Many technicalities remain to be resolved for each particular application.
This holds especially for nonlinear adaptive MPC, which while attractive from the point of
view of performance, includes many technical problems. Model selection and implementation,
choice, implementation and tuning of suitable adaptive schemes and robustness analysis or, at
least, thorough testing of the controller will require considerable efforts. Adaptive MPC should
therefore be applied only if the application requires it.

Motivation of MPC application to activated sludge systems
From the above discussion, we see that linear MPC is a proven on-line optimising control
technology in industrial process control, especially due to the ability to systematically handle
constraints and to cope with time-delays, inverse responses and interactions. Moreover,
industrially proven implementations in commercial software are available. This significantly
facilitates implementation in practice, as much development and testing can be avoided.

From the activated sludge process characteristics, application of robust, adaptive and/or
nonlinear MPC would seem desirable. While construction of adaptive and nonlinear systems is
possible, in particular the state-of-art of adaptive and/or nonlinear MPC is such that a thorough

                                                
39 First generation MPC was developed in the late seventies. (IDCOM, DMC). Second generation MPC included
systematic constraint handling by applying a QP formulation (QDMC).
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understanding of their stability and performance properties is not possible yet. Moreover,
several design issues, especially model selection, are nontrivial and need thorough
consideration. In fact, in the preceding chapters we have seen that while several models are
available, suitable model selection for specific control goals remains a topic of further research.
This also holds true for identifiability properties and suitable identification schemes for
nonlinear models. In addition, implementation into software would be less straightforward than
application of standard MPC techniques.

Rather than starting with developing adaptive and nonlinear MPC, we therefore decide
to first study linear MPC with constraints as a first step towards developing a suitable type of
on-line optimising control. This type of control is between the two extreme approaches to tackle
realistic problems depicted in Section 5.1. Like linear controllers such as LQR and LQG, it
employs linear models and quadratic criteria, but it constitutes a first step to include
nonlinearity by dealing with constraints. Robust control theory enables us to perform an
(approximating) analysis of robustness of the linear MPC controlled plant, at least in the
unconstrained case. The studies should provide insight in linear MPC application to activated
sludge process control and provide guidelines to define priorities for further MPC development.

Outline of case studies
In the case studies, MPC based on step responses (Section 5.3) and state-space methods
(Sections 5.3-5.5) is applied as described by Morari et al. (1991) and Morari and Ricker (1994).
Details of the algorithms and models are given in the corresponding sections.

In Section 5.3, MPC application to setpoint regulation of ammonia and nitrate concentrations in
a predenitrification plant will be studied. In Section 5.4, different control objectives will be
applied, corresponding to increasing operational freedom. The aim of this study is to investigate
applicability of linear MPC to carrousel systems and to study objectives that are closer to the
actual economic objectives than setpoint regulation. In both systems, instability occurred as a
result of model mismatch. Rather than applying ad-hoc fix-ups of the MPC controllers, a more
fruitful approach was felt to aim at a fuller understanding of robustness issues. These will be
studied using robustness analysis tools in Section 5.5.

Of course, the linear MPC law and the corresponding quadratic criteria applied constitute an
approximation only of the real problem. Industrial MPC is applied mostly on that level of the
control hierarchy pyramid (Prett and Garcia, 1988) that corresponds to setpoint regulation or
tracking, which are provided by a higher, plant optimisation layer. More interesting for
activated sludge plants would be to apply MPC on this plant optimisation level, employing
nonlinear MPC (Biegler and Rawlings, 1991), as was discussed in Chapter 2. In that case, other
than quadratic criteria must be applied, with the problems as discussed in Section 5.1.

It is noted that the MPC control studied in Sections 5.3-5.5 is focused on control of the
bioreactor, especially on ammonia and nitrate concentration. Control of the sludge inventory
using MPC is not considered. Instead, this will be accomplished by separate control loops.

A note is also made with respect to the goals for the pre-denitrification plant in Section 5.3. It is
stated in this section that, in priniple, the setpoints for effluent NH4 and NO3 concentrations
would ideally be chosen equal to zero. Of course, this is not possible in the pre-denitrification
plant studied, which is a poor design in the sense that 2 CSTRs are not suited to achieve NH4

and NO3 concentrations of (very close to) zero. In fact, a gradient is much more efficient if the
concentrations must be (much) lower than the respective affinity constants (assuming Monod



CHAPTER 5  CONTROLLER DESIGN156

kinetics). (In fact, setpoints of zero can under first order kinetics only be achieved by
infinitesimally large plants, or achieved within measurement accuracy by very large plants).
Thus the plant is not suggested as a good design, but, as this type of transport model is
sometimes used to describe pre-denitrification systems, the system is used for a first analysis. It
appears to show some typical difficulties for control (inverse response, additional inverse
response and gain sign inversion at increased internal recycle flowrate).

A final note concerns the models applied in the studies. The state-space models are obtained
through linearization of the nonlinear model in a steady-state. No order reduction is applied in
these studies, as this is considered worthwhile only if the linear MPC appears successful,
justifying the effort in finding good reductions. For actual implementation, reduction of the
high-order state-space models of course would be desirable.
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5.3 MPC applied to a pre-denitrification plant

Abstract†

The current situation in measuring and control of enhanced nitrogen removal wastewater
treatment plants is briefly sketched, indicating a need for better control strategies. Control
strategy is meant here to imply the main decisions or steps in control system design. The steps
we believe are most important are discussed. Methods that might be helpful in selecting
suitable control structures, that is the selection and pairing of sensors and actuators, are
indicated. The second part will describe an application of linear Model Based Predictive
Control, with a pre-denitrification plant as a model system, using the IAWQ Model No. 1 for
modelling the plant. Application of a fixed, linear model in the controller on the nonlinear
IAWQ Model is shown to have limitations, most probably as a result of model mismatch.

5.3.1 Control strategies for nitrogen removal activated sludge plants
As demands for nitrogen removal are becoming more stringent, process control is becoming
more important. Recently, new types of sensors have become available, which creates more
possibilities for control. Some important types of sensors that can be mentioned are FIA (flow
injection analysis) based methods for ammonia and nitrate and respiration rate monitors,
enabling measurement of active biomass or available organic substrate20. At the same time,
control system design becomes more complex. The selection of sensors and actuators and their
location is a difficult decision at the moment, because there is not enough knowledge and
experience to indicate good choices. In the literature, several choices and suggestions for
sensors and actuators and controlled variables can be found. An incomplete summary, which is
however believed to include the most important options, is given in Table 1. For the discussion,
a discrimination is made between measured and controlled outputs, and also between
exogenous inputs and actuator inputs, according to the representation of closed loop systems4

shown in Figure 1.
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Figure 1: Closed loop system according to Boyd and Barratt (1991)

The exogenous inputs w include all inputs to the system, including disturbances and reference
signals (setpoints). Although the scheme has been presented for linear control system design, in
w also constraints might be included, e.g. on sludge age, plant loading, settler loading, return or
internal recycle flows. The actuator inputs u coincide with the manipulated variables of the
plant, and are exactly the signals leaving the controller. The measured outputs y are the process
variables which are actually measured by sensors and input into the controller. The regulated

                                                
† This section has been published as: Control strategies for nitrogen removal plants and MPC applied to a pre-
denitrification plant by S.R. Weijers, J.J. Kok and H.A. Preisig (1995b) Proc. 9th Forum for Applied
Biotechnology, Med. Fac. Landbouww. Univ. Gent, 60 (4B) pp. 2435-2443.
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outputs z include all variables which are important to us, which can be the measured outputs,
but also the actuator inputs or other variables of interest which cannot be directly measured but
are believed to be important. As an example, SCOUR control can be mentioned, where OUR
and biomass are measured and SCOUR controlled12.

   Table 1: Possible and suggested choices for u, y and z
Manipulated variables or
actuator inputs u

Measured outputs or
measured variables y

Regulated outputs or
controlled variables z

oxygen transfer kLa or Dissolved Oxygen DO any of y

    DO setpoint ammonia NH4 MLSS
recycle rate Qr nitrate NO3 sludge height

waste flow rate Qw redox potential  ORP soluble COD, total COD, BOD

internal recirculation Qic actual respiration rate ract 
10 biomass concentration XB

volume fraction aerobic maximal resp. rate rmax specific oxygen uptake rate SCOUR
influent distribution endogenous rep. rate rend suspended solids MLSS
influent buffering StBOD food to mass ratio F/M
flow to clarifier turbidity in mixed liquor sludge age SA
external carbon source sludge height in clarifier sludge settleability SVI
precipitants

This also has been represented in Table 1: the regulated outputs can be measured outputs, but
can also be different from y. Looking at Table 1, a large number of possible combinations of
choices for u, y and z can be made. These choices are related to definition of the goal (z) and the
control structure selection, which comprises IO and control configuration selection.

Another development, the increasing use of dynamic modelling of wastewater treatment plants,
together with developments in control theory, raises the question whether advanced, model
based control can contribute to better plant performance. This point is related to control law
selection and modelling the plant. The complete Control System Design scheme is depicted in
Figure 2.

1. Definition of the goal
2. Modelling of the plant
3. Input Output selection
4. Control Configuration selection
5. Control law selection
6. Controller tuning and evaluation
7. Implementation and testing

        Figure 2: Control System Design scheme

Steps 1-6 in the control system design will now be discussed, with emphasis on continuous
systems for nitrogen removal, which are the main type of systems in The Netherlands.

1 Definition of the goal
Although at first sight the goal for a wastewater treatment plant might be stated quite simply,
for example 'maximal treatment of wastewater against minimal costs', translating this to
controller goals is not so straightforward. This is, amongst others, due to the fact that several
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constraints are imposed onto the system. In the first place, constraints can be put upon safety
and reliability, giving rise to a ranking in decreasing priority of goals as follows: safety,
reliability, quality, economic optimization. An example: if aeration costs are included in a
controller criterion function, this may lead to economic optimization as seen from the model in
the controller, but may lead to impaired sludge sedimentation behaviour, which is not included
in the model. This kind of effects might be eliminated by imposing constraints. The same
applies to constraints on recirculation and internal recirculation flows and other variables18. If
situations can occur where not all constraints can be met, a priority ranking can be used to
ensure that the most important are dealt with first.

In the second place, it is not well known which choices have to be made for the
controlled variables. This was especially true for conventional activated sludge systems, when
no sensors for substrate were available. However, also in the case of nitrogen removal,  where
sensors are available for the outputs of interest (NH4 and NO3) and which are obvious
candidates, one also has to control in some way or another the amount of sludge in the system
and the distribution of sludge over  biological unit and clarifier. It is however not clear which
controlled output is the 'best' choice, although several suggestions have been put forward,
including sludge age, MLSS, sludge height, SCOUR12, SCOUR profile22, maximum respiration
rate10 and others.

In the third place, the biological unit is not a stand-alone system, but interacts with the
clarifier in the first place, and also with other process units within the plant, such as sludge
treatment through internal recycles. To optimize plant operation, all units should be considered,
giving rise to optimization problems that are more difficult to state.

In the last place, the plant receives its water from the sewer system and discharges its
effluent on the receiving water. In addition, these interactions can in principle be taken into
account, amongst which especially prediction of influent patterns from the sewer system may be
of interest. The resulting optimization problems are more complex and more difficult to state
and solve than those for the biological unit alone. Here, hierarchical optimization techniques
might be used.

2 Modelling
A step which is always present in control system design is modelling. If no mathematical model
is used, but heuristic rules concerning behaviour of the plant, we have a linguistic model. Here
we will assume that the model is a mathematical model, linear or nonlinear. What kind of
model we need, depends upon the step in the control system design and will be discussed in the
appropriate sections.

3 Input Output selection
In this step, the number, place and kind of manipulated variables u and measured variables y are
selected. Given the candidates for u and y in Table 1, in theory the possible number of choices
is huge. In practice, heuristic guidelines significantly reduce the number of candidate choices,
but still a large number remains. It is practically impossible to design and test all possible
combinations, so methods to select good candidate choices are needed. Recently, a systematic
inventory of cause-effect relationships has been established18, based on qualitative knowledge
of interactions in the system and an estimation of time constants involved. If models are
available, more quantitative methods might be used. Several methods have been used. Steady-
state performance for four different choices of controlled variables have been compared19 for
the conventional activated sludge system (to be more precise, this could better be classified as a
method of choosing a goal). Steady-state computations were used in selecting sensor locations
for DO control in a carrousel21. A dynamic measure based on observability has been used to
select suitable sensor locations1.
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Together with the control configuration, the IO selection comprises control structure
design. In control literature, more attention has been paid to control design than to control
structure design. Nevertheless, a wrong control structure may put fundamental limitations on
performance, which cannot be overcome by advanced control design. Recently, a survey has
been given on this topic23. Some methods for IO selection are mentioned here: selection based
on 1: control power and speed, 2: avoidance of Right Half Plane poles and zeros, 3: Cause and
effect graphs, 4: Singular value decomposition, 5: Robust stability. Methods based on robust
performance using µ-synthesis were reported to be especially promising23.

4 Control Configuration selection
In this stage, the structural interconnections between y and u are chosen. This is often useful
because a MAMS (Multiple Actuator, Multiple Sensors) system4 does not necessarily have to
lead to a MIMO (Multiple Input, Multiple Output) design, especially if there is no interaction
between certain input and output combinations. In that case, decentralized control can be used,
which is easier to design and implement than a fully centralized control. An example of a
decentralized controller (three SISO loops) is the following system, where y1 is controlled by
u1, y2 by u3 and y3 by u2.
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If interaction is not accounted for in the design  phase, unwanted interactions may occur, as
could be observed in a 3x3 MAMS system 22. The most widespread method for interaction
analysis and controller configuration for fully decentralized systems is the Relative Gain Array.
In its basic formulation it gives a static interaction measure, which is a major limitation of the
method. More powerful methods exist, of which those based on  performance degradation and
robust performance seem most promising23.

Although the number of possible control structures is huge, up till now only a limited number
of them have been reported or suggested. Kayser suggested the following control structure to
control a pre-denitrification plant: the internal recirculation is used as to control the nitrate
concentration, the nitrification volume is used to control ammonia, and the air supply (kLa) is
used to control DO, with an override control or cascade on ammonia9. The first aerator was
used to control DO and the second to control ammonia in a full-scale carrousel15 with two
turbine aerators. Aeration was used to control nitrate in a full-scale carrousel6. In the same
proceedings, aeration was reported to be used to control ORP in a full-scale carrousel and an
oxidation ditch. Conventional DO (PI) control was compared with control of ammonia with
aeration, and with controlling the ratio of the sum of ammonia and nitrate to ammonia by a (PI)
master controller in cascade with a (PI) slave DO controller13.

5 Control law selection
Many methods and approaches to control have been developed during the last few decades. Few
of them are being applied, however. In most of the examples listed above, on-off control,
eventually with a time delay, was applied. In the last example classical control, including PI(D)
and cascade control, was applied. In the view of the characteristics of the process, which is
nonlinear, time variant (as a result of changing parameters), multivariable and relatively slow,
one might expect that application of more advanced control might give advantages over
classical control. At the moment, thorough comparative studies have not been undertaken to
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address this question. A possible approach to obtain an impression of possible benefits would
be to compare what is optimally achievable theoretically to performance of currently applied
controllers. For this approach, reliable models are required.
The model which has to be built in the model building step, is determined by the control law to
be used (or vice versa). In general, models used for tuning and in model based controllers have
to be relatively simple.

6 and 7 Controller tuning and evaluation and Implementation and testing
After tuning the controller, which is most often based on linear or simple models, before
implementation it can be evaluated  using more elaborate models. Here the IAWQ Models and
relatively complicated sedimentation models can be used.

5.3.2 Model Predictive Control of  a pre-denitrification plant
Model Predictive Control is a model based control method or philosophy which is becoming
relatively well accepted in the process industries. One of the reasons for this success is that
constraints can be incorporated in the control system in a systematic way. For reasons indicated
above, this may also be an important issue in wastewater treatment. Here, the method is applied
to obtain a first impression of possible benefits and limitations of application of model based
control in nitrogen removal. It is being used to investigate what treatment performance can
theoretically be achieved with a chosen control structure. In principle, this can also be done by
dynamic optimization, but that approach supposes a priori knowledge of future disturbances,
which is normally not available on-line. Although as a consequence a sub-optimal solution is
obtained, this solution is representative for what can be achieved in on-line application. In this
study, linear MPC is applied to control a prototype pre-denitrification plant, shown in Figure 3.
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  Figure 3: Scheme of pre-denitrification plant

Q : influent flow [m3 d-1]
 Qr  : recirculation [m3 d-1]
 Qic : internal recirculation [m3 d-1]
 Qw : waste sludge flow [m3 d-1]
 Vi   : Volume reactor i [m3]
 Vs  : Volume clarifier [m3]
D Q Vin in= / 1 ;
D Q Q Q VTi r ic i= + +( ) / ;  D Q Vri r i= /
D SASA =1 / , with SA: sludge age 

The plant is modelled by using the IAWQ Model No. 1. In addition to the assumptions of the
IAWQ Model, it is assumed that reactions in the clarifier can be neglected, and that sludge
storage in the clarifier can also be neglected. In that case, the model equations become:
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 K: stoichiometric matrix according to IAWQ Model No. 1;
 ϕ: reaction rates according to Aqua-System (1991);
 X: suspended components, XT=[XI XBH XBA XP XS XND];
 S: solute components, ST=[SS SNH SNO SAlk SI SND SO];
 D: dilution matrix, containing all internal flows;
 Ix and Is: identity matrices of appropriate size (6 resp. 7);
 0:  zero matrices of appropriate size.

1 Goal
The goal of the control is to achieve minimal effluent NH4 and NO3 concentrations despite
disturbances in the influent, with more emphasis being put on NH4 than on NO3. In principle
the reference or setpoint could then be chosen to be zero. The controller is linear, however, and
the internal model is obtained by linearization around a steady-state. Therefore, as a first
approach, the setpoints are set to the steady-state values. No constraints are defined. Sludge
distribution in the clarifier is not studied here, and clarifier dynamics is neglected. This issue
will be addressed in a later study.

2 Model
As controller, MPC based upon step response models is chosen. The internal step response
model for the controller is obtained by doing simulations with the nonlinear plant model from
an initial (steady) state, by applying steps to the manipulated variables.

3 Input Output and 4 Control Structure selection
The control structure is a modification of the control structure suggested by Kayser9. The
manipulated variables are the DO setpoint in the aerobic reactor, which is assumed to be
realized neglegibly fast by a cascaded control loop on DO, and the internal recirculation rate.
The measured variables are the ammonia and nitrate concentration leaving the second reactor.
As the system is expected to exhibit interaction, a MIMO configuration has been chosen. In
addition, the sludge age is assumed to be kept constant by changing the waste flow rate. The
control structure is as follows:
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5 Control law selection
Unconstrained linear MPC based on step response models is used. MPC uses a receding
horizon strategy.  At each sampling instant k, a prediction is made of the estimated future
outputs over a prediction horizon P. The future outputs are computed from the free response,
which is determined by the state of the system at instant k, plus the forced response, which is
determined by the future control increments or moves which are varied over a control horizon
M, which is equal to or smaller than the prediction horizon. After computing the optimal
sequence of control moves, only the first move is implemented. The model prediction is
corrected with the innovation signal and at the next time instant, the whole procedure is
repeated.
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Figure 4: Prediction and control horizon

The following optimization problem is solved in MPC:
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The first term, the predicted error, is weighted with a diagonal matrix Γy; the control moves are
weighted by a diagonal matrix Γu. In the unconstrained linear case, the solution can be written
explicitly as the product of a constant gain matrix and the predicted error. The most important
tuning parameters are the prediction horizon P, the control horizon M,  the weight matrices Γy

and Γu and the observer gain. An important difference with LQG is the fact that the horizon is
finite. A result of this is that stability with the computed controller gain matrix is not
guaranteed. Another difference is that control increments themselves are weighted instead of
control actions; in the case of perfect models, the steady-state error will be reduced to zero. In
Figure 5,  the step responses in the steady-state are shown.

The step length is chosen one day, which
seems to be long enough. The large
difference in magnitude of the responses to
DO and Qic is caused by the fact that the unit
of the step on the setpoint for DO is 1 mg/l,
which is rather large, and that for the internal
recycle rate Qic is 1 m3 d-1, which is very
small. An important observation that can be
made, is that there is much interaction: both
DO and Qic affect both the NH4 and the NO3

concentration. The RGA can be computed to
be about 0.41, which indicates much
interaction. Static decoupling is possible
however. It can also be seen that the response
of NH4 to a step in Qic shows an inverse
response. This is caused by the fact that first
more ammonia from the first reactor enters

the second reactor, giving rise to an increase; after this initial increase, the concentration drops
because more ammonia is converted to nitrate. The control structure chosen thus introduces a
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Figure 5: Stepresponses in steady-state
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right half plane zero, which puts a fundamental limitation on performance, and this possibly
indicates that the internal recirculation may not be the best choice as manipulated variable.

6 Controller Tuning and Evaluation
The goal is disturbance rejection; for this initial study a change of the reference signal has been
used instead. A small step was applied first, because the system is nonlinear and it was expected
that too large steps would lead to instability. First, the system has been tuned and simulated
with a linear plant model, equal to the internal stepresponse model. Some tuning guidelines can
be indicated: Decreasing P, increasing M and decreasing the control weight makes the response
faster. The prediction horizon has to be chosen sufficiently large, particularly with inverse
responses. Here 1 d was chosen, which with a sampling time of 0.5 h, gives a prediction
horizon P=48. Setting M equal to P gave rise to unstable behavior for many combinations of the
weighting factors. In the MPC implementation of Morari (1994), input blocking can be used.
Here, a blocking was used, which keeps ∆u constant over the first block of 5 samples, then over
the second block of 5 samples and then constant. This choice gave good results. For the
weighting factors there are three degrees of freedom, as one weight can be set to one. The
weightings for the outputs ammonia and nitrate were chosen 4 resp. 1; this was done to reflect
the greater importance attributed to the ammonia concentration and to obtain a sufficiently fast
response for ammonia. The control moves have been weighted by the ratio of the steady-state
gains, which gave 1 for DO and 5 10-7 for Qi respectively. The results of this tuning with the
linear plant are shown in Figure 6, with a requested change in setpoint of 1% (small for
comparison with nonlinear plant). The response is rather slow; it takes two days before the
concentrations reach their setpoints. This is probably a result of the right half plane zero, which
impairs achievable performance. The same settings were applied to the nonlinear plant, with the
same change in setpoint  (1%). A stable response is obtained (Figure 7), which is somewhat
slower than the response of the linear plant. With a requested change in setpoint of 2%
however, the nonlinear plant became unstable after 8 days (results not shown). This appeared to
be a result of model mismatch between the internal model and the controller. This was revealed
by computing stepresponses at t=10 d, where the system was unstable. This linear model at
t=10 also resulted in an unstable system, with responses which closely resembled those of the
nonlinear system.
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The stepresponses of the model at t=0 (the internal model) and the plant at t=10d are compared
in Figure 8, over a period of 1 and 10 days. It can be seen that the gains of plant and model are
different, that an additional inverse response is introduced for nitrate, and that the steady-state
gain of the response of nitrate to Qic changes sign! At the high internal recirculation too much
oxygen enters the first reactor, impairing denitrification; by setting constraints, this might be
prevented. It can also be seen that the responses are not at their steady-state values at t=1; this
was checked not to be a cause of instability. In the controller tuning, the estimator gain matrix
has not been used for tuning; this is however an important factor in achieving robustness3,11.
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Figure 8: Step responses showing model mismatch and length of response

5.3.3 Conclusions and further research
In the definition of goals for wastewater treatment plants, objectives, constraints and interaction
variables can be distinguished. Selecting appropriate control strategies may be facilitated and
made more systematic by applying methods for control structure selection. Modern, model
based control looks promising, but the benefits still have to be shown. Model Predictive Control
may enable a systematic handling of constraints and off-normal conditions. Constant linear
MPC seems to be limited in the case studied. Putting constraints on the manipulated variables
possibly gives improvement in this case. MPC tuning is maybe more straightforward if criteria
are used that ensure stability16. Tuning for robustness and applying nonlinear MPC will be
investigated.
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5.4 MPC control of nitrogen removal in a carrousel system

Abstract†

More stringent demands with respect to nitrogen removal in wastewater treatment plants have
created a need for improved process control. This has motivated significant research efforts to
come up with better control strategies. In this section, the definition of the control goal and the
selection of control laws or algorithms are addressed. Different control goals and corresponding
controller criteria were defined, all aiming at disturbance rejection of ammonia and/or nitrate.
With respect to the control law, linear Model Predictive Control was selected to investigate
what advanced, model based control can contribute to improved nitrogen removal. For the
evaluation, a model of a hypothetical carrousel type wastewater treatment plant was used,
which was modelled using ASM1. The system performances obtained with MPC applying the
different controller criteria are evaluated; subsequently MPC is compared with LQG control
and classical controllers. The results indicate that advanced, model based control can contribute
to better operation. It appeared difficult however to define goals and criteria that lead to better
performance under all conditions studied. One criterion aimed at covering a wider range of
conditions by imposing a setpoint for the sum of ammonia and nitrate; however, the validity
range of the linear model appeared too limited for this criterion. It is concluded that it is
necessary to formulate goals which rightly trade-off between ammonia and nitrate under various
conditions. It remains to be established whether linear (MPC) controllers can be used for this
purpose.

Keywords
Activated Sludge; nitrogen removal; control; Model Predictive Control; Optimal Control.

5.4.1 Introduction
With more stringent demands being put onto nitrogen removal from wastewater, process
control is becoming increasingly important in operation of wastewater treatment plants.
Conventional control based on DO control alone is often considered no longer sufficient and it
is recognised that there is a need for improved control strategies. As the term control strategies
is rather broad, it is more precisely defined here to include the main steps or aspects in control
system design: 1) Definition of control system goal and specification; 2) Modelling the plant; 3)
Selection of number, type and location of sensors and actuators and their interconnections; 4)
Control law selection; 5) Controller tuning and, before implementing, 6) Control system
evaluation. It is remarked that these steps are not necessarily taken in this order or in one go; in
addition several steps are  interrelated (e.g., the model to be used in design is dependent on the
control law chosen).

Although over the last years considerable research efforts have been spent on control system
design for nitrogen removal plants, still many questions remain to be answered. As an example,
the selection of the control law or control algorithm can be mentioned: many control

                                                
† This section has been published as: Evaluation of Model Predictive Control of nitrogen removal with a carrousel
type wastewater treatment plant model using different control goals by S.R. Weijers, G.L. Engelen, H.A. Preisig
and K. van Schagen (1997) Proc. 7th IAWQ Workshop on Instrumentation Control and Automation of Water &
Wastewater Treatment & Transport Systems, Brighton, July 6-9, 1997, pp. 401-408.
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approaches have been developed over the last decades and for the wastewater engineer (and for
the control engineer) it is not so obvious which method can best be chosen. In this section,
especially the definition of the control goal and the control law selection are studied.

A carrousel type wastewater treatment plant was selected for this study, as many plants in the
Netherlands are of this type. Simulation studies were done with a hypothetical plant, which was
defined in accordance with the studies performed by Meinema et al. (1995): no primary
clarifier, an oxidation circuit (volume of 13000 m3) with one influent inlet point and two
adjustable surface aerators with equal maximal aeration capacity and one final clarifier (3400
m2).
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Figure 1: Oxidation circuit and final clarifier.

The sequel is organised along the steps indicated above, with the main focus on definition of
the control goal and control law selection. First, different control goals are defined with the
objective to investigate the influence of the definition of the controller goal on control system
performance. After describing the modelling step, the sensor and actuator choices are
motivated. Model Predictive Control was selected as the control law for evaluating the different
control goals and to serve as a reference method to explore the possibilities and limitations of
applying advanced, model based control methods. Then the tuning procedure applied is
described. Subsequently, the performances obtained with MPC using the different control goals
are evaluated and finally MPC is compared with results obtained by applying classical control
and LQG in earlier studies.

5.4.2 Definition of the control goal
Starting point in control system design is the translation of legislative demands into control
goals. This step includes the selection of and specifications for process variables to be
controlled. This is an important and nontrivial task, as a poor decision in this basic stage will
dramatically influence overall system performance.

For nitrogen removal, it is common practice to define setpoints for effluent ammonia and/or
nitrate or their sum on the basis of heuristics or simulation studies, which may lead to
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suboptimal performance. Legislative demands may be met with different choices for controlled
variables and setpoints, but it is difficult to guarantee that a particular choice is optimal with
respect to installed plant capacity, energy or cost.

An alternative approach to regulation of predefined, fixed and probably suboptimal setpoints is
to apply (on-line) optimisation using mathematical models. The current knowledge in the
wastewater community in the form of mathematical models suggests such an approach.
However, although the goal for a wastewater treatment plant can be stated quite simply in
verbal terms, e.g. ‘maximal treatment at minimal costs’. it is more difficult to formulate this
optimisation problem mathematically in technical terms fit for use in control, such that indeed
an optimisation criterion is defined which makes sense. This is due to several reasons, amongst
which the presence of process constraints and interactions (Weijers et al., 1995). Furthermore,
it is difficult to attribute costs or weight factors to all relevant variables, especially for ammonia
and nitrate, although efforts are being taken to come up with criteria entirely based on costs to
enable objective benchmarking (Vanrolleghem et al., 1996).

The current study aims at assessing possibilities and limitations of applying optimal control, for
which Model Predictive Control is used as a tool. In the Netherlands, the effluent requirement
on total nitrogen has been set at 10 mg N/l as a yearly average. To study the influence of goal
on system performance, this requirement was translated into three different control goals for
MPC. Goal 1 was to keep both ammonia and nitrate on a constant level. Goal 2 was to keep
ammonia at a constant level and at the same time minimise the sum of effluent ammonia and
nitrate. The rationale for this second goal was to put more emphasis on ammonia, and allow for
easier tuning. Goal 3 was to keep the sum of effluent ammonia and nitrate at a constant level of
10 mg-N/l, thus aiming at exactly meeting the requirements at all time instants. The choice of
setpoints is motivated in Section 5.4.4; the values for the setpoints chosen are given in Section
5.4.6.

5.4.3 Modelling
Models are needed for control system evaluation as well as for controller tuning and, in the case
of model based control, as internal model. Control system evaluation is carried out before
control system testing on the real plant. For control system evaluation, typically large,
mechanistic simulation models are applied. For the plant model to be used for evaluation in this
study (step 6, see below) a nonlinear model was used for the oxidation circuit, which existed of
14 ideally mixed reactors in series as indicated in Figure 1, whilst the clarifier was modelled by
a 10 layer Otterpohl model (Ifak, 1995).

For controller tuning, usually linear models or low-order, grey box nonlinear models are used;
in some cases, neural networks are applied. Here, a linear model was applied for controller
tuning and as internal model in the Model Predictive Controller. This model was obtained by
linearizing a nonlinear plant model for the oxidation circuit which corresponded to the
nonlinear plant simulation model used for evaluation, but using ASM1 according to Henze et
al. (1987) instead of the model used in the plant simulator. For the clarifier, ideal and
instantaneous clarification was assumed.
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5.4.4 Control structure selection
This stage comprises the I/O Selection and the Control Configuration Selection. In the I/O
Selection stage, the number, type and location of sensors and actuators is selected; in the
Control Configuration Selection, their interconnections are decided upon (van de Wal, 1996).

Effluent ammonia and nitrate concentrations were chosen as measured variables, to be
controlled by the power input into both aerators. A multivariable control configuration was
chosen because of the system interactions. The choice to use both aerators was made because it
had been shown that improved performance can be obtained if both aerators are used. This is
due to the fact that the two aerators give different responses as a result of the location of the
influent inlet point. Consequently, there is some, be it limited, freedom to control ammonia and
nitrate independently.

Besides this MIMO control loop, the sludge concentration was measured and kept at a constant
value by the waste sludge flow by a first order controller. The sludge recycle flow was switched
to a higher flow rate when the influent flow rose above a certain limit for storm weather control.

5.4.5 Control law selection
As the control law for the multivariable control of the ammonia and nitrate concentration in the
effluent, linear Model Predictive Control (MPC) was chosen. This model based optimal control
method was used both as a tool to study influence of criterion definition on control system
performance, as well as a reference method to compare achievable performance by (linear)
model based control methods with classical control. The focus on model based control is
motivated by the currently available knowledge in the form of quantitative, mathematical
models, which allows for a relatively straightforward design and analysis of the control system.
MPC is a control method which is becoming relatively well accepted in the process industries,
one of the reasons for this success being that constraints can be systematically incorporated into
the control system.

The principle of MPC is as follows (Figure 2). At each sampling instant k, a prediction is made
of the estimated future outputs over a
prediction horizon P. The future outputs are
computed from the free response, which is
determined by the state of the system at
instant k, plus the forced response, which is
determined by the future control increments
or moves. The control moves are varied over
a control horizon M, which is equal to or
smaller than the prediction horizon. That
sequence of control move is computed,
which gives an optimal trajectory with
respect to a defined optimisation criterion.
Only the first move of this optimal sequence
is then applied to the plant, after which the
state estimation is corrected with the
measured process output at the sampling

Figure 2: Principle of MPC.
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instant. At the next time instant, the whole procedure is repeated. This repetitive procedure is
referred to as receding horizon control. In this case, MPC according to Morari (1994) was used,
with the following quadratic criterion, subject to linear constraints on the inputs and/or outputs:
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subject to constraints on u,  u and y∆ .

The first term, the predicted error, is weighted with a diagonal matrix Γy; the control moves are
weighted by a diagonal matrix Γu. With the weights Γy and Γu a trade-off can be made between
trajectory following and control action.

Three criteria were formultaed corresponding with the three control goals defined. In the
criteria, setpoints are defined for ammonia and/or nitrate. This choice was made, because a
linear model is used in the controller which has a limited range of validity around the setpoints.
Three criteria were defined with increasing freedom for the control system and with increasing
ease of tuning.

1. Combined ammonia/nitrate criterion:
Both for nitrate and ammonia a fixed setpoint is selected. The model internally used in MPC is
linearised around these setpoints. The idea is that by enforcing these setpoints, the state of the
non-linear plant stays close to the linearisation point and thus in the validity region of the
model. The combination of setpoints and weights will determine the performance of the
controller. Due to limitiations of the plant, there is limited freedom to choose the setpoints so
the feasibility of selected setpoints was checked with the nonlinear model.

2. Ammonia criterion:
A fixed setpoint for ammonia is selected, while simultaneously inorganic nitrogen is
minimised, the inorganic nitrogen concentration being defined as the sum of the ammonia and
the nitrate concentration. The idea for choosing this controller criterion function is that it is
easier to tune than the previous, because only a setpoint for ammonia has to be chosen.

 
3. Inorganic nitrogen criterion:
Only a setpoint for inorganic nitrogen is imposed, which gives the controller the freedom to
select the optimal ammonia and nitrate concentrations corresponding to this setpoint.

The current study was limited to linear control laws, and furthermore it was assumed that all
process information such as plant parameters was available. Adaptive control including online
parameter estimation was not studied, as the focus of this study was to first determine
(theoretical) limits on performance.

5.4.6 Controller tuning

In the tuning step, weighting factors Γy for the controlled variables and Γu for the manipulated
variables have to be chosen. Other important tuning parameters for MPC are the prediction
horizon P, the control horizon M and the observer gain matrix. In the procedure followed here,
also setpoints for the controlled variables have to be chosen. The performance is determined by
the combination of the chosen setpoints and weights and other tuning parameters.



CHAPTER 5 CONTROLLER DESIGN172

In the choice of setpoints and weights, a careful trade-off is to be made between ammonia and
nitrate. This is because of the fact that often not only the sum of both components,
corresponding to N-removal, is aimed at, but also simultaneously a goal is put onto effluent
ammonia, which is consequently more emphasised than nitrate (or total-N). Putting too much
emphasis on ammonia however can lead to a small decrease in ammonia at the cost of a large
increase in nitrate, and thus may lead to poor nitrogen removal, especially at lower temperature,
as was shown in preliminary studies with the same plant model (Veersma et al., 1995).

A tuning strategy was developed in which as much quantitative knowledge was used as possible
in order to obtain a relatively straightforward, systematic tuning procedure. First the setpoints
were chosen. The sampling time was 15 minutes, based on typical sampling rates of ammonia
and nitrate sensors. The prediction horizon P and control horizon M were both set at 35 samples
(corresponding to 8h35min) which was chosen in relation to the time constants of the system.
Weights for the inputs (aerator 1 and 2) were derived from steady-state gains and were 0.2458
and 0.7197, respectively. Weights for the outputs were determined by trial and error using the
linear model of the plant. The minimum and maximum power input to the aerators were
included as constraints on the inputs and were set at 30 and 132 kW respectively.. The values
mentioned here were applied in the simulations, unless stated otherwise. The setpoints and
weighting factors for the controlled variables are given below, at the corresponding results. For
the observer gain, the standard DMC settings were applied (Morari, 1994).

5.4.7 Results: Control system evaluation

Evaluation of control goals with MPC
After tuning, the controllers were evaluated on the full nonlinear plant model by applying an
influent pattern representing dry weather as well as storm weather flow conditions, all at 12 °C
(Figure 3). On day 6, a storm event lasting 10 hours takes place During 1.5 hour all
concentrations are kept unchanged, after which a concentration drop of approximately 80 % for

the organic COD fractions and N fractions takes
place, but not for ammonia and nitrate. The initial
states for the simulations were obtained by
simulating the dry weather pattern over a large
number of days, until a repetitive pattern of the
effluent concentrations was obtained.

First, the combined ammonia/nitrate criterion was
studied. The setpoints for ammonia and nitrate
were 3.5 and 7 mg/l, respectively and the weights
10 rep. 5. In Figure 4, in the left figure the
effluent ammonia and nitrate concentrations are
shown together with their setpoints and the total
inorganic nitrogen effluent concentration, during
one day. In the middle figure, the power input to
the aerators is shown; in the right figure, the total
power input to the aerators is shown. It can be

seen that the controller is not able to keep the ammonia and nitrate concentration exactly at their
setpoints, but that deviations occur up to 2 mg/l. In the open loop case (not shown), the nitrate
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Figure 3: Applied influent flow.
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concentration would have risen to 15 mg/l on day 5, so the controller is effective in setpoint
regulation. In the average, the deviation for ammonia is smaller than for nitrate, due to the
higher weighting factor. What can also be observed, is that the aerators are operating against
their constraints during a significant part of the time, and that most of the aeration is provided
by aerator 2. This is caused by the location of the influent inlet point, which is close to aerator
1; by using aerator 2, the denitrification capacity is used more efficiently. What can also be
observed in the right figure, is that the total aeration capacity is never used.

With regard to constraints on the power input to the aerators, it was observed that these
constraints have a significant effect on performance (Figure 5). A better distribution of power
input over the aerators leads to a better setpoint regulation with approximately the same total
maximum capacity. The prediction horizon was chosen adequate, as no significant
improvement was observed by doubling the prediction horizon.

Under storm weather conditions, the same cases were studied. The results for the last 4 days are
shown in Figure 6 with constraints active. A temporary peak in effluent occurs and after the
peak, there is a significant deviation from both setpoints. This was not avoided by releasing the
constraints, although in that case the peak area for ammonia was slightly lower and the
ammonia an nitrate concentrations were kept closer to their setpoints, be it at the expense of
more than twice the peak aeration capacity (not shown).

To enable comparison with results obtained in earlier studies, tuning was carried out such that
average ammonia under dry  weather was 3 mg/l . In that case, the achievable nitrate
concentration was 14 mg/l. The same cases were studied, showing similar results. For criterion
2, ammonia, performance comparable to criterion 1 could be obtained, whilst tuning was more
straightforward.
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Figure 4: Combined ammonia/nitrate criterion, dry weather.
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Figure 5: Combined ammonia/nitrate criterion, dry weather, no constraints.
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With criterion 3, the sum of effluent ammonia and nitrate were to be kept at 10 mg/l. Under dry
weather conditions, a constant sum at the setpoint value was obtained, with higher average
ammonia and lower energy input. Thus, the total inorganic nitrogen concentration is
significantly lower (10.0 vs. 17.3), at significantly lower aeration cost (182 vs. 201) than for the
combined ammonia/nitrate criterion (with setpoints 3.0 and 14). Under storm weather
conditions, at a certain time instant the controller became unstable (result not shown), which
was due to the linear model which predicted negative concentrations.

In addition to these, in one case also feedforward control of the influent flow to the power input
to the aerators was applied, using a model of the influence of the influent flow rate to the
effluent ammonia and nitrate concentration. Applying this feedforward utilising the actual value
of the influent flow showed only minor improvement in effluent quality (result not shown).

Comparison of MPC with other control laws
The results obtained by MPC were compared with LQG (Linear Quadratic Gaussian control),
which is a well known optimal linear control law and three control structures with classical PI
(Proportional Integral) controllers, namely only DO (Dissolved oxygen) control, ammonia
control and ammonia control cascaded with DO control (Meinema et al., 1995, Schagen et al.
1995). To make a comparison possible, all these controllers were tuned such that the average
ammonia concentration during dry weather flow was 3 mg/l. The controllers applied were as
follows:
1. DO Control (PI): The power input to aerator 1 was selected as the manipulated variable,
while aerator 2 was fixed at its maximal capacity. This choice was made for efficient utilisation
of the denitrification capacity. The DO sensor was located in compartment 3 (Figure 1), and the
setpoint was set at 1 mg/l.
2.  Ammonia control (PI): Also aerator 1 was chosen, and the effluent ammonia setpoint was set

at 3 mg/l.
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Figure 6: Combined ammonia/nitrate criterion, storm weather.
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Figure 7: Inorganic nitrogen setpoint, dry weather.
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3. Cascade/ratio control (PI/PI): For aerator 2, a two-speed aerator was chosen. In addition to
the power input to aerator 1, the power input to aerator 2 was now also selected as manipulated
variable. Two PI controllers were used in a cascade configuration: the master PI controller for
maintaining a fixed ratio of (NH4-N+NO3-N)/NH4-N at 6, with as output the DO setpoint for a
slave PI controller.
4. LGQ control: The same manipulated variables are used as for the cascade controller. The
goal is to minimise both ammonia and nitrate,  while minimising aeration costs.

In Table 1, the results obtained are compared. For dry weather flow, the effluent concentration
given in the table is the flow proportional mean over 1 day (day 5). For storm weather flow, the
flow proportional mean over 4 days (day 6 - 9) is given. For MPC, the results are given for
criterion 1, with setpoints for ammonia and nitrate 3 and 14 mg/l, respectively; also the results
with a setpoint for NH4-N of 3.5 mg/l are given.

First, the systems were compared under dry weather conditions. If the same effluent NH4-N
concentration of 3 mg/l is aimed at, similar or better effluent quality at lower energy
consumption is obtained with MPC than with LQG, which in turn performed better than the
classical controllers. DO control is least satisfactory. A setpoint for NH4-N of 3.5 mg/l, which is
slightly higher, lead to a significantly better N-removal at less aeration cost. It is to be
remarked, that the improved performance of the advanced controllers is achieved at the cost of
more instrumentation, which would however be very low compared to total investment costs.

To compare the controllers under conditions different from the tuning conditions, also storm
weather conditions were applied. With the setpoint for NH4-N of 3 mg/l, MPC performed
slightly worse than LQG with respect to total inorganic nitrogen, as somewhat higher nitrate
concentrations were achieved. Apparently, more weight is put onto ammonia, which also leads
to a slightly higher energy consumption. Upon increasing the NH4-N setpoint to 3.5, a
significantly lower inorganic nitrogen concentration is achieved, at the expense of an increased
NH4-N concentration. This dramatic effect of setpoint choice and tuning on system
performance complicates a clear judgement of control laws.

Table 1: Comparison of MPC with other control laws (D: dry weather flow, S: storm)

Flow proportional [mg/l] [kWh/d]
CONTROLLER INFLUENT Ninorganic NH4-N NO3-N PA

Influent D 51.5 50.0 1.5 -
Open loop D 18.8 3 15.8 202

DO (PI-type) D 22 3 19 unknown
N-NH4 (PI type) D 20 3 17 unknown
Cascade (PI-type) D 19 3 16 213

LQG D 18 3 15 200
MPC D 17.2 3.1 14.1 201
MPC1 D 12.1 4.1 8.0 191

Influent S 35.6 34.1 1.5 -
Open loop S 20.2 3.6 16.6 202

N-NH4 (PI type) S 20 3 17 unknown
Cascade (PI-type) S 17 5 12 214

LQG S 17 4 12 201
MPC S 17.7 3.6 14.1 205
MPC1 S 13.5 4.7 8.8 191

1: Setpoint for NH4-N is 3.5 mg/l, for NO3-N 7 mg/l.
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5.4.8 Conclusions
Treatment performance achieved by applying MPC indicates that this is a promising approach
for control of nitrogen removal in carrousels. The fact that constraints can be taken into account
adds another advantage to MPC over LQG and other linear control methods. Comparison of
different control goals using MPC showed that the definition of the control goal has a large
impact on control system performance. Both the setpoints and weighting factors influence the
trade-off between ammonia and nitrate. Therefore, tuning is complicated and it is difficult to
formulate criteria that lead to an appropriate trade-off under all operating conditions. Also the
comparison of control laws is complicated. Therefore, it is worthwhile to formulate goals which
are more general than setpoint regulation and which also allow for a flexible weighting of
ammonia and nitrate; this would also enable a more objective evaluation of controller
performance. This was aimed at by defining a criterion which imposed only a total inorganic
nitrogen setpoint, which was unsuccessful under storm conditions due to  the limited validity of
the linear model used in the MPC controller. This may be improved by increasing controller
robustness; another alternative may be the application of nonlinear MPC.
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5.5 Robustness analysis of MPC controlled activated sludge plants

Abstract†

Process control is considered an important means to meet the increasingly tighter demands that
are being placed on sewage treatment in most western countries, especially with respect to
nutrients. This section investigates stability robustness of a wastewater treatment plant
controlled with Model Predictive Control (MPC). Aims of this model study are to study
possibilities and limitations of advanced control application to wastewater treatment, to obtain
insight in the process factors that affect control system robustness, and to find tuning rules to
improve MPC robustness. A simple plant model was studied. A structured uncertainty
description of parameter and state uncertainty was used to avoid conservative results. �-
Analysis was used to compute robustness bounds of the closed loop system. The results show
that achievable robustness improvement by tuning is limited and indicate that nonlinearity has a
stronger effect on stability than parameter errors.

Keywords
Bio control, Wastewater treatment, Predictive control, Robust control, Structured singular
value.

5.5.1 Introduction
Increasingly stringent demands are being put onto nitrogen removal from wastewater.
Municipal wastewater is treated biologically in so-called activated sludge plants. To meet the
stricter demands, plants have to be upgraded and the treatment process becomes more
complicated. Process control is generally considered as an important means to achieve stable
operation under the typically large variations in load and temperature. This view and recent
advances in modelling and sensor technology have been the motivation for significant research
efforts in different countries to develop effective control strategies.

One particular question of interest is how and to which extent advanced control can contribute
to improved plant operation and decreased investment costs. The activated sludge process is
multivariable, nonlinear, time-variable and stiff, input constraints are present, and load and
temperature vary considerably. It is difficult to find controllers that cope with all these
characteristics, and currently different control laws are applied, proposed and investigated,
ranging from classical control including cascade control, model based control such as LQG and
MPC, adaptive control to rule-based control, including knowledge-based control and fuzzy
control.

The currently available knowledge in the form of mathematical models, especially the well-
known Activated Sludge Model No. 1 (ASM1, Henze et al., 1987) suggests the application of
model based control. In previous work, application of MPC to different wastewater treatment
systems was studied (Weijers et al. 1995, 1997) where MPC was used as a reference method to
assess achievable performance with linear model based control. In some of the cases, instability
occurred due to model mismatch as a result of linearization errors. In other studies that applied

                                                
† This section has been published as: Robustness analysis of MPC controlled activated sludge plants by S.R.
Weijers and H.A. Preisig (2000), Accepted for AdChem2000, Pisa, Italy.
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linear control (LQG), no instability was observed (van Schagen et al., 1995). This was probably
due to the more limited operational range in these studies.

In this section, robustness of linear MPC control is investigated. The goal is to obtain physical
insight in process factors that affect control system robustness, and to develop tuning guidelines
for improving MPC robustness, if possible. Three main causes of uncertainty are studied,
namely parameter uncertainty due to either identification errors (corresponding to small
parameter errors) or parameter variation (large parameter errors), and linearization errors due to
deviation of the states from the linearization point. The interest in the effect of linearization
errors is motivated by results in the earlier studies. If linearization errors will be identified as a
more severe cause of instability than parameter errors, this indicates that application of
nonlinear MPC has preference over a parameter adaptive MPC controller.

For this study, a model is used that is as simple as possible but nevertheless exhibits some of
the characteristics of the full ASM1 model, especially nonlinearity and stiffness.

The section is organised as follows. In Section 5.5.2, the applied state-space MPC controller is
described and a closed loop expression for the MPC controlled plant that is used for the
robustness analysis is given. Then, �-analysis is outlined and the applied plant uncertainty
model is described, followed by a description of the model system and the model studies.
Section 5.5.3 presents the results and discussion and Section 5.5.4 gives the conclusions.

5.5.2 MPC, Robustness analysis tools, Modelling and Model studies

MPC
The principle of MPC is as follows (Figure 1). At each sampling instant k, a prediction is made
of the estimated future outputs over a prediction horizon P. The future outputs are computed
from the free response, which is determined by the state of the system at instant k, plus the
forced response, which is determined by the future control increments or moves. The control
moves over a control horizon M are used to compute an optimal trajectory with respect to a
defined optimisation criterion. Only the first move of this optimal sequence is then applied to
the plant, after which the state estimation is corrected with the measured process output at the
sampling instant. At the next time instant, the whole procedure is repeated. This repetitive
procedure is referred to as receding horizon control. In this case, MPC according to Morari and
Ricker (1994) was used, with the following quadratic criterion, subject to linear constraints on
the inputs and/or the outputs:
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where y(k+i|k) is the prediction of the outputs for time step k+i, done at time step k and r(k+i|k)
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SECTION 5.5 ROBUSTNESS ANALYSIS OF MPC CONTROLLED ACTIVATED SLUDGE PLANTS 179

Figure 1: Receding horizon principle of MPC

The following time-invariant state-space difference equation is used as prediction model:
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with manipulated variables u(k) and measured disturbances w(k). The measurement equation is:
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w

p ++= (4)

A closed loop expression is now derived for the controlled system to enable the robustness
analysis, which holds if no constraints are active. The system and measurement equations (3)
and (4) are rewritten in incremental form:
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For state estimation the following observer is used:

)1()1()1|1()1|( −∆+−∆+−−=− kwBkuBkkXAkkX wu        (9)

))1|()(ˆ()1|()|( −−+−= kkXCkyKkkXkkX f (10)

If no constraints are active, the receding horizon control law reduces to a linear controller that is
the sum of state feedback control and feedforward:
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where MPCK  is the (constant) MPC gain matrix, ][ px
MPCMPC SSKL = , R(k+1|k) is the

reference trajectory over the prediction horizon and Y(k+1|k) the predicted output (free
response):
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MPCK  is an explicit analytical function of the system equations and the weights uΓ  and yΓ . If

there is no model-plant mismatch, then the plant is described with a state-space model with

system matrices pA , p
uB and p

wB that are equal to the matrices pA , p
uB and p

wB of the MPC

prediction and observer model. The (nominal) closed-loop operator from the external inputs
�������������
����������w(k), measurement noise v(k) and reference signals R(k+1|k) to y(k)
can then be written as follows (Lee and Yu, 1994):

















+
⋅
∆

×







=

)|1(

)(

)(

)(

kkR

kvq

kw

DC

BA
ky (13)

where












−

−
=

ACKA

LBLBA
A

f

MPCuMPCu

0
,   (14)













−
−

=
00

0

f

MPCu
w

MPCuw

K

KBSKBB
B , [ ]0CC = , [ ]000=D  (15, 16)

DBAqIC
DC

BA
+−=







 −∆
1)(      (17)



SECTION 5.5 ROBUSTNESS ANALYSIS OF MPC CONTROLLED ACTIVATED SLUDGE PLANTS 181

and q is the forward shift operator. A similar, more complicated expression was derived for the
������� ����� �����
��� ������ ����
"������ �����
��� 	��� �����
�
���� �	� 
��� �����������i) and
����i) the uncertainty description (see below).

Robustness analysis
In the robustness analysis of the MPC controlled plant, several parameters, including states,
were considered as sources of uncertainty. The states were included to investigate the effect of
linearization errors on the closed loop stability. In order to take different parameters and states
into account and to avoid conservatism in the results of roust stability bounds, a structured
uncertainty description was applied. The structured singular value (SSV) or simply µ ) was
used to compute robustness bounds.

The structured singular value is a matrix function denoted by )(⋅∆µ . The value of )(M∆µ does
��
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analysis. The feedback system becomes unstable if
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for some s. The structured singular value is defined such that )(1 M−µ is equal to the smallest
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Let γ  > 0 be a number such that the closed-loop system is stable for all γ<∆ ∞ . Increase γ
until maxγ so that the system becomes unstable. So maxγ is the robust stability margin. The

smaller )sup( ∆µ , the larger the robust stability margin:
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In this section, robust stability is studied. The deltablock describes the differences between the
true plant and the internal model. The analysis gives us the structured singular value for the
frequency domain of interest. With the uncertainty blocks scaled such that )(∆σ (��� 
��

structured singular value has to be smaller than 1 for all frequencies up to the sampling
frequency to guarantee robustness.

An uncertainty description was developed for the closed loop system (nominal MPC controlled
plant) in state-space format. For the uncertainty description, the general affine state space
uncertainty according to Zhou was chosen (Zhou et al., 1996). This description is most suited
for the application under study, because the model and controller are in state-space format, and



CHAPTER 5 CONTROLLER DESIGN182

it allows for dealing with the type of nonlinearities involved in ASM1, be it that some
approximations have to be made; these are described below. In the uncertainty description used,
the linear system (here the closed loop system) is considered that is parametrized by k uncertain
parameters, kδδ ,...,1 . The nominal description of the system is given by known matrices A, B,

C and D and the parametric uncertainty in the nominal system is reflected by the k scalar
uncertain parameters kδδ ,...,1 . The uncertain parameters can be specified by ]1,1[−∈δ .

The uncertainty description in state space can be written as a linear fractional transformation as
shown in Figure 2.
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Figure 2: Linear fractional transformation representation of state space uncertainty
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The uncertain state-space system is written as:
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Therefore, it is supposed that for all k uncertain parameters the uncertainty of the state space
matrices can be written as:
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For the nonlinear system, the terms 
i

iA

θ
θ

∆
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were computed with a difference approximation

rather than by differentiation, as this will result in a better approximation of the uncertainty
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���� 
��� ������
��� ���� �
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��� ��#��
����� ���� ����� � � ����i) is computed by subtracting the
nominal value of A from the matrix A that is computed with all parameters equal to the nominal
value, except parameter �i that is equal to an extreme (minimum or maximum) value of that
specific parameter (or state). Inspection of the above equation leads to following matrices:
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With the uncertainty description thus derived, robust stability bounds were computed using the
µ -toolbox (Balas et al. 1991).

Modelling
A simple model was derived with the following characteristics and assumptions: two states are
considered, namely substrate and biomass; Monod growth kinetics ( )/( SKSm +µ ) are

assumed; one measured output is selected, namely the concentration of the substrate; the reactor
is described by one continuous stirred tank reactor; the volume of the final clarifier is neglected;
in the final clarifier no reactions take place and clarification is ideal.
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Figure 3: Process flowsheet for simple model

The nonlinear model then follows from component mass-balances:
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The sludge age DSA was chosen as the manipulated variable. Linearizing the differential

equations for this configuration, with system T
Sbh SX ][=ξ  gives the following state space

equations in deviation variables with y= sS , u=DSA and w=
insS :
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[ ]10=C      (35)

The nominal values of the kinetic and stoichiometric parameters (specific growth rate mµ ), half

saturation coefficient for biomass sK , yield for heterotrophic biomass 1/k1) were as follows:

k1 = 3/2 [g(COD)oxidized/g(COD)formed]

mµ = 4 [d-1]

sK = 20 [g(COD)/m-3]

The values for parameters that describe the reactor model were as follows:

Din = 2 [d-1]
DSA = 1/10 [d-1]

insS = 20 [g(COD)/m-3]

with Din the dilution rate, DSA the reciprocal of the sludge age and 
insS the substrate

concentration in the influent. The dilution rate is the reciprocal of the hydraulic residence time
(volume divided by influent flow rate) and the sludge age is the mean biomass residence time.
For deriving the state-space model, the system is linearized at the equilibrium state. Setting the
derivative terms in (30) and solving for bhX  and sS  gives two solutions for the equilibrium

states, the nontrivial solution being:
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Substituting the numerical values of all parameters gives 0bhX = 659.8 [g(COD)m-3] and 0sS  =

0.5128 [g(COD)m-3].

Model studies
With the linear model, a nominal tuning was carried out. The following controller tuning was

applied: TS = 1/48 [d], P = 48, M = 8, uΓ = 0.1, yΓ = 1 and Kf = [ 0 0 1 ]T (standard DMC
estimator). Nominal stability was checked by inspection of the closed-loop poles. With the
nominal MPC controller, the nonlinear system was simulated over 10 d., with the initial state
equal to the steady-state. At t=1 d., a step of +15% was imposed on the setpoint; at t=11 d., a
setpoint 15% lower than the original concentration was imposed. The simulation was repeated
with a small parameter deviation ( sK (-20%), mµ  (+20%) and k1 (+20%)) and a large deviation

( sK (-50%), mµ  (+100%) and k1 (+100%)). The state trajectories were used to determine the

state deviations from the linearization point during the simulation. These were used for
computation of the robustness bounds under state uncertainty. The initial states for the
perturbed parameter cases were computed such that they corresponded to a situation where the
output is at its desired setpoint.

The simulations and corresponding µ -plots were carried out for different values for the MPC
tuning parameters to identify whether and which tuning improves robust stability. The
following MPC tuning parameters were studied: prediction horizon P, control horizon M, input

and output weights uΓ  and  yΓ  and especially the observer gain matrix Kf, as suggested by Lee
and Yu (1994).

5.5.3 Results and discussion
In Figure 4, the results of the different simulations are shown. It can be seen that the system
with perturbed parameters responds faster at t=11 d. in downward direction than the nominal
system, which is a result of the higher growth rate. The corresponding biomass concentrations
in the perturbed case are much lower, which is understood from the larger growth rate and
lower yield in this case. The system remains stable despite the large parameter variations.
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Figure 4: System with nominal parameters (-), slightly deviated parameters (⋅⋅⋅⋅⋅)
and stronger deviated parameters (-.-.).

Robust stability plots for the nominal and perturbed situations are given in Figure 5. From the
µ -plots, the simulation with large parameter variation was expected to become unstable
(µ >1), which is not in correspondence with the simulation results. This indicates conservatism
in the µ -computation, which is probably a result of the fact that in the µ -computation
unrealistic state and parameter combinations occur.

From the µ -plots of the total uncertainty and only parametric uncertainty, a large difference
can be observed. The effect of parametric uncertainty alone is much lower than the total
uncertainty. This result indicates that linearization errors due to state deviation have a larger
effect than parameter errors. Due to the observed conservatism this is however not conclusive.

Finally, µ -plots were computed for different MPC tuning parameters. Most of the tuning
parameters had a limited effect on stability robustness. The prediction horizon and control

horizon had little influence on the robustness bounds. Increasing the input weights uΓ  did not
always improve robustness as in the linear case. This is because too sluggish control due to
large input weights leads to a large state deviation that deteriorates stability. Consequently, an
optimal value for the input weights must be selected. The observer tuning has more effect. High
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observer gains improved robustness; here a trade-off has to be made with noise rejection (which
was not studied here).
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Figure 5: Upper µ -plot: total uncertainty (states and parameters);
lower µ -plot: only parameter uncertainty

5.5.4 Conclusions
A simple bioreactor system was used as a model for activated sludge plants. In simulations with
a nonlinear plant model controlled by a nominally tuned MPC controller, no instability
occurred, even under large parameter variations. Comparison with µ -plots indicated
conservatism in the µ -computation. MPC tuning had a limited influence on robustness. A
much larger value for µ  was found for uncertainty including parameters and states when
compared with uncertainty in parameters only. This result indicates that linearization errors
have a more pronounced effect on stability robustness than parameter errors. Consequently,
development of nonlinear MPC should have priority over parameter adaptive MPC for
application in wastewater treatment. While the conservatism observed and the simplicity of the
model applied prohibit completely solid conclusions, the results provide a good starting point
for further insight in and development of robust control systems in biotechnology and
wastewater treatment.
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5.6 Discussion and conclusions
Controller design was studied, including control structure design and the actual controller
design. Because existing control design theories and methods cannot cope directly with realistic
problems, approximations are required in problem formulation (criteria), plant model or
controller and associated design method. Two extreme approaches were outlined, namely exact
solution of an approximate design problem versus approximate solution of the exact problem.
Application of on-line optimisation including feedback was concluded to be the most promising
control approach.

Control structure design includes IO selection and control configuration selection.  IO selection
receives too little attention in the literature on activated sludge process control. Input selection
for wastewater treatment is generally not a problem. Output selection is more difficult. Most
difficult appears however to be selection of controlled variables. Output selection will be more
straightforward once a correct selection of controlled variables has been made, and we expect a
basic, quantitative analysis to be sufficient for output selection for activated sludge control. A
methodology for selection of controlled variables was proposed.

With respect to control configuration selection, several interactions occur in the
activated sludge processes that argue for MIMO control. Whether MIMO control is required
from the point of view of the final control objectives remains to be determined, however.

Several advanced, model-based controllers have been suggested in the literature and tested in
simulations and on pilot-scale. Adaptive model predictive control is a promising approach,
which has been studied relatively well for alternatingly aerated systems. Few advanced control
techniques however are being applied on full-scale. Comparative studies showed that
advantages of model-based control are not necessarily in improved (nominal) performance, but
in more straightforward design procedures and in providing an indication of achievable
performance. Moreover, robustness can be higher if accounted for in the controller design.

For application to continuously operated systems, application of MPC to pre-denitrification and
carrousels was investigated. Linear MPC with constraints, which is a standard technique, was
applied as a starting point. In both systems, stability problems occurred, caused by model
mismatch. In the cases studied, these problems might be circumvented by restricting models or
by ad-hoc modifications, but this is not desirable in a generic methodology.

To find systematic remedies against the observed problems with model mismatch, robustness of
MPC was investigated. A simple model and a structured uncertainty description were applied to
study robustness against state vs. parameter uncertainty. The results indicate that state
uncertainty has a larger effect than parameter uncertainty. Consequently, nonlinear control
development should be given priority over parameter adaptation. However, these conclusions
��#�� 
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conservative.

MPC requires an accurate plant model. From experiences with controllers tuned based on a
calibrated ASM1, one should avoid too optimistic expectations when employing existing
calibration strategies if a calibrated ASM1 is used for controller tuning. For possible future
application of nonlinear MPC, identifiable and reduced models are required.
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Chapter 6 Conclusions and future developments

The aim of this thesis has been to study possible performance improvements of nitrogen
removal activated sludge plants through application of advanced modelling and control
techniques and to develop methodologies and tools to achieve improved operation. The
emphasis has been on continuously operated carrousel systems and pre-denitrification plants,
which are the most important systems in The Netherlands. In the preceding chapters, different
topics were addressed along successive steps in control system design. In this concluding
chapter, first general conclusions are formulated. Then, detailed conclusions are summarised
per topic in the corresponding subsections. The final section formulates expectations for the
future.

6.1 General conclusions
Stricter legislation calls for improved performance of activated sludge processes. Defining
performance goals as a mathematical optimisation problem can guide performance
improvement as it provides a clear judgement of performance. Moreover, the availability of
advanced modelling and control techniques argues to develop straightforward, optimisation-
based controller design procedures to close the gap between legislation and controller
specifications. A good starting point is to minimise plant operating costs under quality and
reliability constraints. The trade-offs between economy, quality and reliability can be analysed
with a multi-criterion formulation.

Mathematical modelling based on Activated Sludge Model No. 1 (ASM1) is a very helpful tool
for off-line application. Qualitative conclusions are well possible from comparative
simulations, for example to compare alternative plant modifications or to compare performance
and robustness of different controller types. Existing calibration procedures do not yield unique
parameters, however. Consequently, one should avoid absolute, quantitative use of calibrated
models, such as exact tuning of controllers. More insight is required in the prediction
uncertainty and validity of calibrated models based on ASM1, especially if extrapolating
beyond experimental conditions of calibration.

For on-line use such as in model-based control, direct application of ASM1 is less suited, due to
its size, identifiability problems and stiffness. While several reduced models have been
reported, there is a lack of reduced models for distributed systems, such as carrousels.
Moreover, especially reduction based on timescale separation is interesting for control.
Therefore, we studied techniques for understanding timescale properties of ASM1 and for
systematic model reductions, which yielded valuable insight and tools that are useful for further
research.

Advanced model-based control application to activated sludge processes is promising, but
hardly applied on full-scale. On-line optimising control with feedback is the most suitable
technique to approximate realistic objectives under constraints. From the activated sludge
process characteristics, it is expected that best performance can be achieved with adaptive and
nonlinear control. We studied linear Model Predictive Control application to a pre-
denitrification system and a carrousel. The results indicate that nonlinear MPC is more suitable
than linear MPC for operation over a larger operational range, which is required for economic
operation.
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The advantages of model-based over rule-based control must be further investigated. For this,
model studies are invaluable, as is an optimisation-based analytic design procedure.  It is here,
where the value of models is most pronounced. Even if the actually applied controller is very
simple, its development and design is greatly facilitated by a model-based approach, while its
performance is much better guaranteed.

6.2 Goal formulation
A major task in controller design is formulation of consistent and sensible control system
specifications. In Chapter 2, translation of legislation to control goals for wastewater treatment
plants was analysed, which revealed that there is insufficient insight in the relationship between
plant goals as derived from legislation and control goals. Consequently, a heuristic controller
design approach is typically adopted, with trial-and-error design procedures that lead to time-
consuming design and inability to recognise inconsistent specifications. Moreover, lack of
standard, consistent criteria for plant performance evaluation complicates judgement of
particular controller designs.

Instead of a heuristic approach, we suggest to apply an analytic design procedure, by
formulating the design problem as a mathematical optimisation problem. In this approach, all
plant objectives and constraints are explicitly formulated in a quantitative way. Trade-offs can
be made explicit during design through mathematical optimisation and cumbersome trial-and-
error and artificial objectives are avoided. Application of such a procedure requires availability
of reliable models of specifications, disturbances and the plant and their uncertainties.

One possibility to define the control goal is to pose it as a minimisation problem of
operating costs for the plant as a whole, treating quality and reliability as constraints. The
operating costs should include costs of effluent disposal as imposed by national legislation,
costs of energy consumption, costs of consumption of chemicals and sludge disposal costs.

A multi-criterion optimisation formulation that includes cost, quality and reliability is a
more suitable paradigm for realistic definition of control goals than cost minimisation. This is
because correct trade-off between different conflicting objectives is essential for a good
controller design in wastewater treatment plants. In a multi-objective optimisation approach,
these trade-offs can be analysed more transparently than in single objective optimisation.

Considering the treatment plant alone may lead to suboptimal solutions. This can be
avoided in an integrated approach that considers the complete wastewater system, including
sewer and receiving water.

6.3 Modelling, calibration and identifiability
For application of the analytic design procedure, reliable plant models are required. In Chapter
3, rigorous modelling and identification of activated sludge plants have been studied. The study
focused on the bioreactor. Reactor modelling involves both biokinetic models and transport
physical models. Biokinetics are typically modelled with Activated Sludge Model No. 1
(ASM1), while transport in the reactor is usually modelled with combined models from ideal
model reactors. For accurate prediction of plant behaviour, both ASM1 parameters and
transport model parameters should be calibrated, especially for distributed systems such as
carrousels. The literature shows that most emphasis has been put on calibration of ASM1 model
parameters, while transport model parameter calibration has been given little attention to.

Despite the observed emphasis on ASM1 calibration, still no clear, standard procedures for this
task exist. To reveal how many and which ASM1 parameters can be uniquely obtained from
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input-output data, ASM1 parameter identifiability was studied with practical identifiability
analysis. A combined criterion based on the determinant and the condition number of the so-
called Fisher information matrix proved effective to detect identifiable parameters.

A local identifiability analysis on a particular plant showed that at most eight parameters
can be accurately estimated from realistic input/output measurements, assuming perfect
knowledge of the transport model. This was confirmed by tests, estimating parameters from
artificial data. From real plant data, only five to six parameters could be uniquely estimated.
This lower number when using real data was most probably due to model mismatch of the
transport model.

A procedure was proposed for global identifiability analysis, to investigate the
dependency of the results of the local analysis towards the parameters values that must be
assumed a priori. This procedure employs a so-called Latin Hypercube Sampling scheme, to
efficiently select random parameter points. This procedure was successful in making a
parameter identifiability ranking. It showed a limited dependency of results in the local analysis
on the a priori selection of the parameter values. Moreover, the procedure showed that
approximately fourteen parameters are important and must be calibrated. Other parameters may
be fixed and taken from the literature. While the exact results obtained may differ from plant to
plant, it is expected that the same trends will be observed for other continuously operated
systems.

The results of the global analysis further lead to conclude that additional information is
required to typical full-scale input/output measurements, as these measurements do not allow
unique estimation of all required ASM1 parameters. To obtain additional information, an
experimental test for determination of biodegradable COD was further refined and
experimentally tested. The results show that total COD should be used as a basis to determine
biodegradable COD. Interpretation of respirometry results should be done with care however
because biological parameters in the tests can differ from those in the plant.

A special note is made with respect to the heterotrophic yield. This parameter is required
for interpretation of respirometric experiments. It appears to be the best identifiable parameter
from full-scale input/output data. Instead of using default values for this parameter, which has
been suggested by several authors, one should consider to estimate this parameter from full-
scale data to avoid bias in other parameters.

Existing calibration procedures do not yield unique parameters. Moreover, transport models in
distributed systems are not adequately calibrated. Consequently, the physical (macroscopic)
interpretation of parameters is unclear. One should avoid absolute quantitative conclusions
when employing models tuned with existing calibration strategies.

6.4 Model reduction
Reduced models are better suited for identification, control and optimisation than high-order,
rigorous models like ASM1. Model reduction of ASM1 was therefore studied in Chapter 4.
Several approaches are applied in ASM1 model reduction, of which simplifying assumptions
have been applied most frequently. For control, however, especially model order reductions into
different timescales are interesting. Such reduced order models operating on a single timescale
allow for reduced controller complexity, reduced computational requirements and for a
hierarchical control approach. Understanding of timescale properties of ASM1 is insufficient
however because few systematic studies have been done.
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Singular perturbation theory has been studied to develop a systematic approach to derive
reduced order models and to obtain understanding in timescale properties of ASM1. For model
reduction by singular perturbation, the model must be into the so-called standard form. Usually
the most difficult part in the reduction is to recognise if the model is in standard form or to
bring it into this form, especially for nonlinear systems. Three procedures to obtain the standard
form have been proposed, namely direct scaling, time-scale estimation and analytical scaling.
They were tested on a simple model system with one biomass species and one substrate species.

The timescale estimation procedure proved a very helpful tool in model reduction. It
correctly indicated whether the quasi-steady-state assumption was valid in all cases studied.
Moreover, it is simpler to apply than eigenvalue analysis, because an ambiguous state-to-
eigenvalue association is avoided. The analytical scaling procedure was helpful to bring the
problem into standard form and to obtain a perturbation parameter in some cases, thus
providing insight into the cause of time scale multiplicity. However, it was not always
successful. The direct procedure is not generally applicable.

For interpretation of the BOD test for determination of biodegradable COD that was proposed
in Chapter 3, ASM1 model reduction through application of the quasi-steady-state assumption
led to a correct, reduced first-order model. This model provides a direct, analytical relation
between experimentally observed parameters and ASM1 parameters, and thus gives valuable
qualitative insight for interpretation of BOD tests. Moreover, it provides a quantitative basis to
convert observed BOD to biodegradable COD, required to make the test useful in modelling.

6.5 Controller design
Chapter 5 treated control structure selection and the actual controller design. IO selection in
activated sludge process control receives too little attention in the literature. Input selection for
wastewater treatment is generally not a problem. Output selection is more difficult, but will be
more straightforward once a correct selection of controlled variables has been made, so we
expect a basic, quantitative analysis to be sufficient for output selection for activated sludge
control. Most difficult is selection of controlled variables, and a methodology for their selection
was proposed. With respect to control configuration selection, several interactions occur in the
activated sludge processes that argue for MIMO control. However, it remains to be determined
whether MIMO control is required from the point of view of the final control objectives.

Few full-scale applications of advanced control techniques have been reported. No single, all-
embracing control theory or technique yet exists that can cope with realistic, nonlinear
problems or with all process characteristics. A good approximation of actual optimisation
problems is achieved by applying model-based optimisation on-line, including feedback, which
is done in Model Predictive Control. The time-varying and nonlinear characteristics of the
activated sludge process argue for adaptive and nonlinear control. Adaptive MPC has been
studied for alternating systems in simulations and on pilot-scale, but not on full-scale.

We applied linear MPC with constraints to a pre-denitrification and a carrousel, which
both are continuously operated systems. This was done to establish possibilities of this standard
technique before investing in development of nonlinear and adaptive control application. In
both systems, stability problems occurred, caused by model mismatch. In the cases studied,
these problems can be circumvented by restricting models or by ad-hoc modifications, but this
is not desirable.

To find remedies against the observed problems, MPC robustness against state vs.
parameter uncertainty was investigated. A simple model and a structured uncertainty
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description were applied. The results show that state uncertainty has a larger effect than
parameter uncertainty. Consequently, nonlinear control development should be given priority
over parameter adaptation. However, these conclusions are drawn with caution, because the
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Comparative studies in the literature showed that advantages of model-based control over rule-
based control are not always in improved (nominal) performance, but in more straightforward
design procedures, in indicating achievable performance and in increased robustness. This also
holds for application of an analytic design procedure versus a heuristic procedure.

6.6 Future developments

Goals
Performance improvement for wastewater treatment must be guided through clear goal
formulation. A valuable starting point towards rational goal formulation within the wastewater
community is the definition of an objective function based on operating cost in the control
benchmark for activated sludge process control (Alex et al., 1999). We expect that its use will
stimulate further development of suitable goal formulation. The use of the objective function
can be extended beyond control system evaluation, by using it more directly in controller
design, using optimisation as outlined in this thesis.

Minimisation of individual plant operational costs neglects total impacts from the
wastewater system and consequently leads to suboptimal solutions. An alternative is to apply an
integrated approach that employs water quality oriented instead of emission based goals and
that considers the whole wastewater system. Application of artificial, fixed setpoints or weight
factors can be abandoned in such an approach. Such an approach may be feasible if the
following approach is adopted. For receiving waters, generally a limited set of quality
objectives can be selected, so that the required problem complexity is limited. Development of
goal oriented models and decomposition into timescales will further reduce model and
computational complexity.

Controlled variable selection is currently too heuristic. Models like ASM1 are helpful to obtain
insight in relationships between process variables and process performance and should be more
fully exploited to guide in selecting appropriate controlled variables.

Modelling
Calibration procedures of activated sludge models must be further developed if better
extrapolation is desired. The role of transport model calibration in activated sludge plant
calibration needs further attention. Transport and kinetics can be calibrated separately. For
example, kinetics can be determined from optimally designed experiments in ideally-mixed lab-
scale reactors, such as respirometers. For transport models, a combination of computational
fluid dynamics, empirical relationships and tracer responses can be applied. Input/output
measurements on full-scale can subsequently be used for fine-tuning.

Practical identifiability analysis based on the Fisher information matrix is a useful tool
for selection and design of additional experiments for ASM1 calibration. For example, using
the condition number, one might select to develop tests for determining those parameters that
have the strongest interaction with the parameters identified from full-scale plants.
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Model reduction
A model-based control approach that employs the process dynamics for economic optimisation
requires internal control models that describe a larger operational range. This imposes stronger
requirements with respect to model validity than operating with fixed setpoints. For possible
future application of nonlinear MPC, reduced and identifiable nonlinear models are desired.

Model reduction will remain an active research area in the next years, for application in
control, identification and process optimisation. Many activated sludge systems are of the plug-
flow type. An interesting research area is model reduction of distributed systems, for example
carrousels with gradients in the dissolved oxygen concentration. In almost all reported cases of
ASM1 reduction, the reduction was applied to lumped systems without concentration gradients,
assuming the system either aerobic or anoxic. In these cases, reduction concentrated on
reduction of the reaction kinetics, rather than reduction of transport and mixing in the reactor.

Singular perturbation is a useful theory for model reduction studies. The procedure for
timescale estimation of variables is a helpful tool for model reduction. It would be interesting to
apply the procedure to the full ASM1 and its successors.

Controller design
In controller design, the great merit of models is that they enable application of an analytic
design procedure by applying mathematical optimisation. This is possible despite the
limitations of calibrated models. Even if the implemented controller is not model-based, then
still a model-based design procedure offers significant advantages. We will now outline several
options to apply optimisation and models, which are better or worse approximations of the
actual problem.

First consider off-line application. If no model is available, precise formulation of
system specifications into a mathematical optimisation criterion has a value in its own right as a
performance measure, as this enables a more objective judgement of performance.

If reliable mechanistic models are available, mathematical optimisation can be applied.
If a well-calibrated and validated model would be available, the result would be a tuned
controller that can directly be used on the real plant. Due to the limitations of ASM1
calibration, this is generally not the case. Instead, only an approximate model is available. Still,
such an approximate model can be used to study controller design and to compare different
controller types and tuning procedures. Some approaches to apply optimisation are listed.

One possibility is single criterion optimisation. Dynamic optimisation with known
disturbances will lead to optimal performance (under the assumed disturbances) that provides a
reference for other, suboptimal approaches. One such suboptimal approach is parameter
optimisation of fixed structure controllers, using the actual criterion. Another suboptimal
approach is to approximate the problem as a linear control design problem.

Multi-criterion optimisation is useful for trade-off analysis, to determine suitable weight
factors or constraints for on-line application. As this typically requires user interaction, this is
limited to off-line application.

For on-line optimisation, standard linear MPC with constraints is the simplest option, while
adaptive nonlinear MPC can give better performance as it better approximates the actual
performance optimum. For economic operation over a larger range, some form of nonlinear
MPC is required. Adaptation may lead to additional performance improvement. Its application
to distributed systems requires suitable reduced models however.

An interesting option for MPC development is to develop MPC for stiff systems such as
activated sludge plants. It would be interesting to apply singular perturbation theory to
decompose the optimal control problem into slow and fast sub-problems. This allows a divide
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et impera strategy with optimal results. The required theory is available and has been developed
for greenhouse climate control, a problem that also has slow process dynamics and fast
disturbances (van Henten, 1994).

Advantages of advanced, model-based controllers over simple rule-based controllers remain to
be studied further. Besides for nominal performance, different control techniques and design
approaches should be compared for robustness against model mismatch due to structural and
parametric uncertainty, for sensitivity towards suboptimal tuning and for constraint handling.
Such a study should also indicate which of the approximating design procedures is best. Here
model studies will again be invaluable.
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Appendix A  Activated Sludge Model No. 1

On the next page, the stoichiometry matrix and the reaction rates as defined in Activated Sludge
Model No. 1 (Henze et al., 1987) are given in matrix notation. The columns hereby represent
the model components, the rows the processes that are distinguished in the model. The net
reaction rate for each component is obtained by summation over the respective column.

The Task Group preferred to use COD for modelling for the following reasons. The COD is
superior as it provides a link between electron equivalents in the organic substrate, the biomass
and the oxgen utilized. Its use simplifies the stoichiometric coefficients and reduces the number
of conversion factors required. Component balances can be checked for correctness by a
continuity check. It allows calculating the oxygen requirement by a simple COD balance
(Henze et al., 1987, 1987a).
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Appendix B Simulation Model Description

The plant that was used to produce Figure 2.7 approximates a carrousel. The aerated part is
modelled by 2 CSTRs in series, the anoxic part by 3 CSTRs in series (see Figure B.1). There is
a large internal recycle.

' � � � � � ' � � � � � ' � � � � � ' � � � � � � ' � � � � � �

Figure B.1: Plant flow-scheme

Transport-physical model

Volume: V : 10 000 m3 (each reactor 2000 m3)
Flows: Qin = Qr : 10 000 m3/d

Qic : 1000 000 m3/d
Sludge age : 15 d

The DO concentrations in the two aerobic reactors are controlled at the same setpoint.

Biokinetic model

Influent concentrations and characterisation into components:

Influent concentrations:
COD : 507.7 (kg m-3)
BOD 200.8 (kg m-3)
Nkj : 51.0 (kg N m-3)
NH4-N : 40 (kg N m-3)

Influent characterisation into model components:
SS : 46.7 Readily biodegradable COD (kg m-3)
SI : 32.9 Soluble inert COD (kg m-3)
SNH : 40.0 Ammonia and ammonium (kg N m-3)
SNO : 0 Nitrite and nitrate (kg N m-3)
SND : 2.47 Soluble biodegradable organic N (kg N m-3)
SALK : 5 Alkalinity (Mol m-3)
SO : 0.01 Dissolved oxygen (kg m-3)
XBH : 70.6 Heterotrophic biomass (kg m-3)
XBA : 0.1 Active autotrophic biomass (kg m-3)
XS : 234.0 Slowly biodegradable COD (kg m-3)
XI : 123.1 Particulate inert COD (kg m-3)
XND : 0.03 Particulate biodegradable org. N (kg N m-3)
XP : 0 Particulate COD from decay (kg m-3)
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ASM1 parameters:

Stoichiometric parameters:
YH : 0.67 Heterotrophic yield (-)
YA : 0.24 Autotrophic yield (-)
fp : 0.08 Fraction biomass yielding inert products (-)
ixb : 0.04 Fraction N in biomass (kg N/kg COD)
ixp : 0.04 Fraction N in inert products (kg N/kg COD)

Kinetic parameters:
µH : 4 Heterotrophic growth rate constant (d-1)
bH : 0.62 Heterotrophic decay rate constant (d-1)
KS : 20 Affinity constant for SS (kg m-3)
KOH : 0.25 Heterotrophic affinity constant for SO (kg m-3)
KNHH : 0.1 Heterotrophic affinity constant for SNH (kg m-3)
KALKH : 0.1 Heterotrophic affinity constant for SALK (mol m-3)
KNO : 0.5 Affinity constant for SNO (kg m-3)
ηg : 0.8 Correction factor for anoxic growth (-)

µA : 1.0 Autotrophic growth rate constant (d-1)
bA : 0.15 Autotrophic decay rate constant (d-1)
KOA : 0.5 Autotrophic affinity constant for SO (kg m-3)
KNHA : 0.8 Autotrophic affinity constant for SNH (kg m-3)
KALKA : 0.25 Autotrophic affinity constant for SALK (Mol m-3)

kh : 2.4 Hydrolysis rate (d-1)
Kx : 0.02 Hydrolysis affinity constant (kg m-3)
ηh : 0.4 Correction factor for anoxic hydrolysis (-)

ka : 0.08 Ammonification rate (d-1)

The following parameters were assumed temperature dependent with temperature dependency
coefficients as follows:

µH bH kh Kx ka 0.067
µA bA 0.098
KNHA 0.117

The temperature dependency is described according to (Gujer, 1985):

p(T) = p20*exp((T-20)*fT,p

with: p(T) : parameter at temperature T (in ºC)
p20 : parameter value at 20 ºC
fT,p : temperature dependency coefficient for parameter p
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The plots in Figure 2.7 were produced by performing simulations during 250 days to
approximate steady-state. It was checked that the approximation was sufficiently accurate,
which was the case. The steady-state concentrations of the ASM1 components were computed
for a range of DO setpoints at 12 ºC and 8.4 ºC, from which plots 2.7.a and b were made,
respectively. These temperatures were chosen such that at the lower temperature the minimal
total effluent N concentration is 10 mg-N/l and thus meets the demands (at least in steady-
state).

The sludge concentrations at the different DO setpoints were also computed to test if these were
realistic and to check whether the sludge concentration difference between the two temperatures
were not too different. The results are given in Figure B.1, which shows that the concentrations
are comparable.

a: T=12 ºC         b: T=8.4 ºC
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Figure B.1: Sludge concentration at different temperatures

It would be interesting to perform this type of studies under dynamic loading conditions, but
this is beyond the scope of this thesis.
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Appendix C  Causes of ASM1 identifiability problems

This appendix indicates a few reasons why identifiability problems can be expected when
calibrating Activated Sludge Model No. 1.

One reason is that Monod kinetics is applied for dependency of the growth rate on the
concentrations of limiting substrates (Monod, 1942):

SK

S

S
max +

µ=µ (C.1)

The model parameters of Monod kinetics are the maximum growth rate and the affinity
constant for the limiting substrate(s). These parameters are known to be poorly practically
identifiable. Some important results from the literature are summarised here to support this
claim.

If biomass and substrate measurements are available, the Monod model is theoretically
identifiable (Aborhey and Williamson, 1978) (see Section 3.2.3 for a definition of theoretical or
structural identifiability), but was found to be poorly practically identifiable (Holmberg and
Ranta, 1982). They showed that different parameter combinations were obtained when
estimating Monod parameters from a model response onto which different noise sequences
were added. They concluded that ‘the meaningfulness of comparing parameters and using them
as biological characteristics should be critically reconsidered’.

It is emphasised that the practical identifiability problems occurred if the experiments
were set up such that the substrate concentration was larger that the affinity constant. If this
����������	
���
���
����
�����������
������
���
��������������
�����
�������������
���������S

can then be estimated, from which of course the separate parameters are not identifiable.
Dochain et al. (1995) studied theoretic identifiability of Monod kinetics (amongst

others) when using only oxygen uptake rate data, which is the case when repirtomtry is used
todetermine these parameters. They showed that three combinations of the five original
parameters are theoretically identifiable.

Subsequently, practical identifiability of the Monod parameters was studied under the
assumption that the yield, the initial substrate concentration and the biomass concentration are
known. A contour plot of the object functional’s (sum of squared errors) shape clearly indicated
practical identifiability problems. This was also clear from the Fisher information matrix in the
optimum and its trace and condition number. The practical identifiability could be improved
significantly by an additional substrate pulse at the end of the batch experiments. The moment
of pulse addition was determined by optimal experiment design techniques.

The model components for COD are only conceptual, and cannot be measured directly. This
significantly complicates determination of model parameters of individual processes in the
model.
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Another reason for occurrence of identifiability problems is the fact that the model contains
several loops, because of the death-regeneration concept. It is not possible to directly measure
all the individual model components in these loops. For example, when using respirometry, the
total loop effect is measured. Individual process rates and parameters can only be determined
through careful experimental design. For example, through looking at different timescales,
different processes may be identified.

For the very slow timescale in the order of days, this was done in Section 4.5 for the
heterotrophic, aerobic death-regeneration cycle. Also short-term experiments have been
designed to extract specific information from batch tests, see Spanjers and Vanrolleghem
(1995) and the discussion in Section 3.2.2.

A final cause of possible identifiability problems is that the concentration of several
components is the net result of several processes, e.g. production and consumption. An example
is the nitrate concentration that is the result of nitrification and denitrification. If these two
processes are separated in place or in time, then the course in time of the nitrate concentration is
informative for each of these processes. With simultaneous denitrification, this is not the case.
Separate additional experiments then must be designed to obtain the required information. A
similar situation occurs for the DO concentration, which is determined by aeration on one hand
and consumption on the other hand. See for example Holmberg and Olsson (1985) and
Sollfrank and Gujer (1990) as efforts to estimate both the oxygen transfer rate and the oxygen
uptake rate from DO measurements.

Identifiability is required for (classical) point estimation of parameters. It can be argued that,
especially for prediction of ill-defined systems with complex models, regional parameter
estimation techniques that make estimates of parameter distributions instead of values are
preferable, and that Bayesian techniques may be even better (Omlin and Reichert, 1998). The
computational requirements for such Bayesian estimation are very large and typically require
Monte-Carlo simulation, usually according to a Latin Hypercube Sampling scheme for
computational efficiency. Bayesian estimation is therefore less suited for on-line application
such as in adaptive control. A procedure to reduce computational requirements by combining
classical estimation with Bayesian techniques has been suggested by Reichert and Omlin
(1997). More research is required to reveal if such a combined procedure will eventually be
suitable for on-line use for control of activated sludge plants.
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Symbols

ASM1 symbols

Stoichiometric parameters:
YH :: Heterotrophic yield (-)
YA :: Autotrophic yield (-)
fp :: Fraction biomass yielding inert products (-)
ixb :: Fraction N in biomass (kg N/kg COD)
ixp :: Fraction N in inert products (kg N/kg COD)

Kinetic parameters:
µH :: Heterotrophic growth rate constant (d-1)
bH :: Heterotrophic decay rate constant (d-1)
KS :: Affinity constant for SS (kg m-3)
KOH :: Heterotrophic affinity constant for SO (kg m-3)
KNHH :: Heterotrophic affinity constant for SNH (kg m-3)
KALKH :: Heterotrophic affinity constant for SALK (mol m-3)
ηg :: Correction factor for anoxic growth (-)
µA :: Autotrophic growth rate constant (d-1)
bA :: Autotrophic decay rate constant (d-1)
KOA :: Autotrophic affinity constant for SO (kg m-3)
KNHA :: Autotrophic affinity constant for SNH (kg m-3)
KNO :: Affinity constant for SNO (kg m-3)
KALKA :: Autotrophic affinity constant for SALK (Mol m-3)
kh :: Hydrolysis rate (d-1)
Kx :: Hydrolysis affinity constant (kg m-3)
ka :: Ammonification rate (d-1)
ηh :: Correction factor for anoxic hydrolysis (-)

Components:
SS :: Readily biodegradable COD (kg m-3)
SI :: Soluble inert COD (kg m-3)
SNH :: Ammonia and ammonium (kg N m-3)
SNO :: Nitrite and nitrate (kg N m-3)
SND :: Soluble biodegradable organic N (kg N m-3)
SALK :: Alkalinity (Mol m-3)
SO :: Dissolved oxygen (kg m-3)
XBH :: Active heterotrophic biomass (kg m-3)
XBA :: Active autotrophic biomass (kg m-3)
XS :: Slowly biodegradable COD (kg m-3)
XI :: Particulate inert COD (kg m-3)
XND :: Particulate biodegradable org. N (kg N m-3)
XP :: Particulate COD from decay (kg m-3)
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Other symbols:

BOD5 :: Biological Oxygen Demand measured after 5 days (kg m-3)
BODst :: Short term BOD
CODBD :: Biodegradable COD
F Flow rate
G :: Generalised plant
K :: Controller
kLa :: Mass transfer rate for oxygen
M :: Fisher Information Matrix
NKJ :: Kjeldahl nitrogen concentration (kg N m-3)
NH4 :: Ammonia (kg N m-3)
NO3 :: Nitrate (kg N m-3)
Ntot :: Total nitrogen (kg N m-3)
OUR :: Oxygen Uptake Rate (kg O2  m

-3 d-1)
p :: number of parameters
Qic :: internal recirculation flowrate (m3 d-1)
Qk :: measurement error covariance matrix
Qr :: sludge recycle flowrate (m3 d-1)
Qw :: sludge wastage flowrate (m3 d-1)
Rk :: weighting matrix
u :: manipulated variables
V :: Volume (m3)
Vaer :: aerobic volume (m3)
w :: weight factors
w :: external inputs to general system
y :: output (column vector)
yp :: measured output (column vector)
y :: measured variables
z :: external outputs

Greek symbols:

∆ :: Model uncertainty
α :: influent flow distribution
β :: return sludge flow distribution
λ :: eigenvalue
µ :: structured singular value
θ :: parameter vector
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Glossary

Terms

Activated sludge Suspended material consisting of inert material, biodegradable material
and active biomass. This active biomass degrades pollutants in wastewater.

Aerobic With (abundant) oxygen
Anaerobic Without oxygen or other inorganic electron acceptor
Anoxic Without oxygen, with nitrate
Clarifier Sedimentation tank in wastewater treatment system which separates sludge

from wastewater
Mixed liquor Liquid-sludge mixture in the activated sludge reactor

Acronyms

AI Artificial Intelligence
AMvB Algemene Maatregel van Bestuur (General Enactment of Administration)
ANN Artificial Neural Network
ASM1 Activated Sludge Model No. 1
ASM2 Activated Sludge Model No. 2
ASM3 Activated Sludge Model No. 3
ASP Activated Sludge Plant
ATU Allylthioureum, a nitrification inhibitor
BNR Biological Nitrogen Removal
BOD Biological Oxygen Demand
COD Chemical Oxygen Demand
CSD Control System Design
CSO Combined Sewer Overflow
CSTR Continuous Stirred Tank Reactor
DMC Dynamic Matrix Control, MPC based on step responses
DO Dissolved Oxygen
DOF Degrees of freedom
ES Expert System
FLC Fuzzy Logic Control
GPC Generalised Predictive Control
IAE Integral of Absolute Error
IAWQ International Association on Water Quality (formerly IAWPRC, now IWA)
ICA Instrumentation, Control and Automation
IDCOM Identification and Command (an MPC implementation)
ISE Integral of Squared Error
LHS Latin Hypercube Sampling
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
MAMS Multiple Actuator Multiple Sensor
MFD Matrix Fraction Description
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
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MLSS Mixed liquor suspended solids
M(B)PC Model (Based) Predictive Control
NAP North Sea Action Program
NVA Dutch Society for Water Quality
ORP Oxidation-Reduction Potential
OUR Oxygen Uptake Rate
p.e. Person Equivalent
PSSA Psuedo-steady-state Assumption
QDMC Quadratic Dynamic Matrix Control
QP Quadratic Program
QSSA Quasi-steady-state Assumption
RAP Rhine Action Program
RAS Return Activated Sludge
RB Rule based
RHOC Receding Horizon Optimal Control
SA Sludge Age
SCOUR Specific Oxygen Uptake Rate
SISO Single Input Single Output
SIMO Single Input Multiple Output
SQP Sequential Quadratic Programming
SS Suspended Solids
STOWA Stichting Toegepast Onderzoek voor Water en Afvalwater
STP Sewage Treatment Plant
SVI Sludge Volume Index
TKN Total Kjeldahl nitrogen
TOC Total Organic Carbon
VSS Volatile Suspended Solids
WWTP Wastewater treatment plant
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Samenvatting

Huishoudelijk afvalwater wordt doorgaans biologisch gezuiverd in zogenaamde actief-slib
installaties. Strengere wetgeving in de EG ten aanzien van nutriëntverwijdering bij
afvalwaterzuivering vereist een verbeterde prestatie van actief-slib systemen. Deze moeten
daarom worden aangepast om aan nieuwe lozingsnormen voor stikstof (N) te voldoen. Doel van
dit proefschrift is het bestuderen van mogelijke prestatieverbeteringen van actief-slibsystemen
door toepassing van wiskundige modellering en geavanceerde regeltechniek en het ontwikkelen
van methodologieën om verbeterde procesprestatie te bereiken. De nadruk ligt op continu
bedreven carrousel systemen en pre-denitrificatie systemen, omdat deze in Nederland het meest
worden toegepast. Verschillende aspecten worden belicht aan de hand van achtereenvolgende
stappen in regelsysteemontwerp, namelijk formulering van de regeldoelen, procesmodellering
en –identificatie en regelaarontwerp.

Een literatuurinventarisatie toont dat onvoldoende inzicht bestaat in de relatie tussen wetgeving
en regeldoelen. Indirecte en vage regeldoelen worden toegepast. Deze leiden tot tijdrovende
ontwerpprocedures die gebaseerd zijn op trial-and-error en bemoeilijken beoordeling van
ontworpen regelaars. De beschikbaarheid van geavanceerde modellering en regeltechniek pleit
ervoor om systematische, doelgerichte ontwerpprocedures te ontwikkelen die gebaseerd zijn op
wiskundige optimalisatie om zodoende de kloof tussen wetgeving en regeldoelen te dichten.
Een dergelijke zogenaamde analytische ontwerpprocedure wordt gekenmerkt  door wiskundige
modellering van doelstellingen, verstoringen en procesgedrag en door inzet van mathematische
optimalisatietechnieken. Hierbij worden kwalitatieve doelstellingen voor actief-slib
procesvoering vertaald naar formulering als een (multi-criterium) optimalisatieprobleem.
Afwegingen tussen verschillende doelstellingen en de keuze van de systeemgrenzen dienen
zorgvuldig te geschieden voor een adequate doelstelling.

Voor toepassing van een analytische ontwerpprocedure voor regelsysteemontwerp zijn
betrouwbare procesmodellen nodig, onder meer voor de evaluatie van het ontworpen
regelsysteem. Modelvorming en identificatie worden daarom bestudeerd, in het bijzonder het
IAWQ Actief Slib Model No. 1 (ASM1), dat de biologische reacties beschrijft. Om het gedrag
van een praktijkinstallatie te beschrijven, is calibratie van modelparameters vereist. Hiervoor
bestaan echter nog geen eenduidige standaardprocedures. Daarom wordt nagegaan of voldoende
parameters kunnen worden geschat op basis van een realistische verzameling van in- en
uitgangsmetingen aan praktijkinstallaties. Dit wordt onderzocht via analyse van de praktische
identificeerbaarheid. Een gecombineerd criterium dat gebaseerd is op zowel de determinant als
het conditiegetal van de Fisher informatie matrix blijkt hiervoor effectief. Zowel een locale als
een globale identificeerbaarheidsanalyse is uitgevoerd voor een bepaalde installatie, onder de
aanname dat het transportmodel dat de menging beschrijft perfect is. De resultaten tonen dat in-
en uitgangsmetingen onvoldoende zijn voor het uniek schatten van alle benodigde ASM1
parameters en dat daarom additionele informatie nodig is. Een test om dergelijke aanvullende
informatie te krijgen, namelijk voor het bepalen van de concentratie van biodegradeerbaar CZV
(Chemisch Zuurstofverbruik) in het influent, een belangrijke grootheid voor de modellering,
wordt daarom nader onderzocht en experimenteel getest.

Het volledige ASM1 model is minder geschikt voor identificatie, als intern model bij regeling
en regelaarontwerp, vanwege de hoge orde, identificeerbaarheidsproblemen en stijfheid, dat is
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het voorkomen van zeer uiteenlopende tijdschalen. Daarom wordt onderzocht in hoeverre
modelreductie op basis van tijdschaalseparatie met singuliere perturbatietheorie mogelijk is.
Drie procedures voor het testen of tijdschaalseparatie mogelijk is worden voorgesteld, namelijk
tijdschaalschatting, directe schaling en analytische schaling. Deze procedures worden getest met
een algemeen, eenvoudig, continu bioprocesmodel. De tijdschaalschatting blijkt een goed
hulpmiddel voor modelreductie. Deze procedure is directer dan eigenwaarde analyse, omdat een
niet-eenduidige toestand-eigenwaarde associatie niet nodig is en omdat de procedure tevens
voorziet in een schatting van de fout die de reductie introduceert.  De analytische schaling
verschaft inzicht in de oorzaakvan het optreden van tijdschaalmultipliciteit. Deze procedure is
echter slechts in een beperkt aantal gevallen succesvol en is minder algemeen toepasbaar. De
directe schaling blijkt niet algemeen toepasbaar.
Voor de bovengenoemde test voor bepaling van biodegradeerbaar CZV is via een quasi-steady-
state aanname een eerste-orde model afgeleid. Dit gereduceerde model verschaft inzicht en
kwantitatieve relaties voor interpretatie van de test.

De volgende stap in regelsysteemontwerp is de regelaarstructuurselectie en het eigenlijke
regelaarontwerp. Regelaarstructuurselectie omvat in-/uitgangsselectie (de selectie van
actuatoren en sensoren) en de regelaarconfiguratie (de interconnecties ertussen).

Voor in-/uitgangsselectie voor regeling van actief-slibsystemen is een basale
modelanalyse waarschijnlijk voldoende, wanneer eenmaal een goede selectie van te regelen
grootheden is gedaan. Selectie van te regelen grootheden is een moeilijker stap. Een mogelijke
methodologie voor deze selectie gebruikt de minimale singuliere waarde van de
overdrachtsmatrix, die bijvoorbeeld met een model op basis van ASM1 wordt gemaakt. Wat
betreft de regelaarconfiguratie wordt opgemerkt dat in het actief-slibproces meerdere interacties
optreden. In hoeverre multivariabele regeling nodig is gezien vanuit het perspectief van de
uiteindelijke doelstellingen dient echter nog te worden vastgesteld.

Het eigenlijke regelaarontwerp, met name de regelwetselectie, wordt onderzocht met
Model Predictive Control als een prototype regeling. MPC voert on-line optimalisatie uit, en is
zeer geschikt om realistische optimalisatieprolemen onder beperkingen aan te pakken. Lineaire
MPC met beperkingen op de ingangen wordt toegepast op een model van een pre-
denitrificatiesysteem en van een carrousel. In beide systemen deden zich stabiliteitsproblemen
voor ten gevolge van discrepantie tussen model in de regelaar en model van het te regelen
systeem. De resultaten tonen dat MPC met een niet-lineair model beter geschikt is voor
economisch bedrijf omdat het interne model dan over een groter bereik geldig is. Daarnaast
pleit de tijd-variantie van het proces voor het toepassen van adapterende regelsystemen. Om de
noodzaak van niet-lineaire regeling en adapterende regeling na te gaan, is robuustheid van MPC
geregelde systemen onder parameter- en toestandonzekerheid onderzocht. Hiervoor is een
eenvoudig procesmodel gebruikt en is een gestructureerd onzekerheidsmodel opgesteld en mu-
analyse toegepast. De resultaten toonden dat vooral fouten ten gevolge van linearisatie bepalend
zijn voor het optreden van instabiliteit. Daarom dient ontwikkeling van niet-lineaire regeling
prioriteit te hebben boven parameteradaptatie. Deze conclusies worden echter met enige reserve
getrokken vanwege de conservativiteit in de robuustheidsanalyse.

Bij de huidige stand van kennis in modellering van actief-slib systemen dient men absolute,
kwantitatieve conclusies te vermijden wanneer men deze baseert op modellen die gecalibreerd
zijn met bestaande calibratiestrategieën. Deze resulteren namelijk niet in unieke
parameterwaarden, zodat de fysische interpretatie van de parameters onduidelijk is en daardoor
de predictienauwkeurigheid van het model beperkt is. Verdere ontwikkeling is nodig van
methodologieën voor calibratie van ASM1 of andere actief-slibmodellen. Dit is ook het geval



voor ontwikkeling en calibratie van transportmodellen, in het bijzonder voor carrousels en
andere gedistribueerde systemen.

Modellen zoals ASM1 zijn ondanks deze genoemde beperkingen uiterst nuttige
hulpmiddelen voor het ontwikkelen van directere procedures voor regelaarontwerp. In
combinatie met wiskundige optimalisatietechnieken bieden ze een referentiepunt voor haalbare
procesprestatie en maken een eenduidige beoordeling mogelijk van het effect van alle
ontwerpstappen en van modelonzekerheid op de totale procesprestatie. Daarmee zijn
modellering en optimalisatie van onschatbare waarde om tot procesverbetering te komen en om
te beslissen over geschikte regelstrategieën.
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1. Toepassing van modelgebaseerde regeling en een systematische ontwerpprocedure op basis
van mathematische optimalisatie is een veelbelovende weg om de doelstellingen voor
regeling van actief-slib systemen dichter bij de werkelijke doelstellingen, bijvoorbeeld
economische, te kiezen en zodoende tot een verbetering van de totale systeemprestatie te
komen.

Dit proefschrift, Hoofdstuk 2.

2. Indien men modelparameters identificeert met het doel om een bestaande praktijkinstallatie
te beschrijven met gebruikmaking van Actief Slib Model No. 1, bijvoorbeeld ten behoeve
van procesanalyse en/of regelaarontwerp, dan dient men dit te doen op basis van het
gemeten in-/uitgangsgedrag van de betreffende installatie, om zodoende het menggedrag
van de betreffende installatie te verdisconteren in het model. Omdat bij deze werkwijze
echter de biologische parameters oneigenlijk worden gebruikt, verdient het in plaats van
deze werkwijze de voorkeur om meer aandacht te besteden aan het menggedrag dan tot
dusver gebruikelijk is en dit  expliciet experimenteel te bepalen en te identificeren.

Dit proefschrift, Hoofdstuk 3.

3. Bij parameteridentificatie van Actief Slib Model No. 1 is het aan te bevelen de
opbrengstcoëfficiënt van de heterotrofe biomassa niet, zoal wel gesuggereerd wordt, bekend
te veronderstellen, maar te schatten uit gemeten in-/uitgangsgedrag van de te identificeren
installatie. Hiermee worden afwijkingen in schattingen van andere parameters ten gevolge
van een onjuiste waarde van de opbrengstcoëfficiënt vermeden.

Dit proefschrift, Hoofdstuk 3.

4. Het toepassen van een probabilistische benadering bij regelaarontwerp is voor veel
systemen een realistischer benadering om regelsystemen te ontwerpen die robuust zijn voor
parametersonzekerheid dan H∞-optimaal regelaarontwerp en µ-synthese, omdat deze de
conservativiteit van de worst-case benadering in laatstgenoemde methoden en de daarmee
gepaard gaande prestatiedegradatie vermijdt. Een worst-case benadering kan wel een
adequate benadering zijn indien absolute garanties geëist worden ten aanzien van
systeemgedrag onder onzekerheid, bijvoorbeeld vanuit het oogpunt van veiligheid.

M Vidyasagar (1997) Statistical learning theory and its applications to randomized
algorithms for robust controller synthesis, Proceedings European Control Conference 1997,
pp.162-189.

Y. Boers (1998) Average Performance Control for Systems with Parametric Uncertainty,
Proefschrift, Vakgroep TU Eindhoven.
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waterkwaliteit, is het voor de lange termijn belangrijk om grondig te onderzoeken of
decentrale, kleinschalige waterzuivering niet een duurzamer optie is, onder meer met het
oog op eindigheid van fosfaatvoorraden. Essentieel hierbij is een juiste keuze van
systeemgrenzen en van het begrip duurzaamheid. Multi-criterium optimalisatie kan ook
voor dit probleem een nuttig hulpmiddel zijn om tot een transparante afweging van
alternatieven te komen.

A.J. Balkema, S.R. Weijers and A.J.D. Lambert (1998) On methodologies for comparison of
wastewater treatment systems with respect to sustainability, Proc. International WIMEK
congress ‘Options for closed water systems: sustainable water management’, Wageningen, The
Netherlands, March 11-13, 1998.
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produceren van ‘afvalwater’ dient te worden vermeden door de afzonderlijke waardevolle
componenten niet door menging nutteloos te maken voor hergebruik. Om een verandering
in attitude te stimuleren is tevens een alternatief gewenst voor de term
‘afvalwaterzuivering’, bijvoorbeeld ‘water- en mest kringloopsluiting’. Voordat dit laatste
echter positieve associaties oproept zullen grote veranderingen in de landbouwsector
noodzakelijk zijn.

9. Galileo Galilei beschouwde wiskunde als een gids die hem hielp de bewegingen van
hemellichamen te begrijpen. Voor het hanteren van wiskundige modellen als gids moet de
gebruiker echter goed doordrongen zijn van de uitgangspunten en beperkingen van het
model, omdat deze modellen anders dwaalgids in plaats van leidgids zijn.
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prijs zo hoog zal worden dat het voor een toenemend aantal mensen een onbereikbaar want
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toekomstige beroepsbevolking straks door deze ziekte geveld is. Investeringen in goede
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13. Kleine stappen vooruit zijn ook stappen vooruit.

14. Beter is de vijand van goed.
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