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Applying Data Mining for Early Warning in Food Supply Networks 
 
Abstract 
 
In food supply networks, quality of end products is a critical issue. The quality of food 
products depends in a complex way on many factors. In order to effectively control food 
quality, our research aims at implementing early warning and proactive control systems in 
food supply networks. To exploit the large amounts of operational data collected throughout 
such a network, we employ data mining in various settings. This paper investigates the 
requirements on data mining posed by early warning in food supply networks, and maps those 
requirements to available data mining methods. Results of a preliminary case study show that 
data mining is a promising approach as part of early warning systems in food supply 
networks. 
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1   Introduction 
Food quality problems in food supply networks form a critical issue for both consumers and 
food companies. However, in recent years, food quality crises occurred frequently all over the 
world. A recent case is dioxin contamination in pork in Belgium, the Netherlands, and 
Germany. In order to effectively control food quality, we need early warning systems to 
predict potential problems and give suggestions for proactive control. 

The primary source of information on food supply networks is expert knowledge. 
However, expert knowledge is not always sufficient to deal with new quality problems in a 
direct way. This is partly due to the complexity of food supply networks. Further, food 
products and food processing procedures show inherent uncertainty and variability. Recent 
developments in information systems of food supply networks provide us with possibilities to 
discover valuable information about quality problems from recorded data. We deal with these 
problems with the help of a powerful quantitative method – data mining. 

Data mining has been successfully applied in many areas, such as biology, finance, 
and marketing. However, the uptake of this technique in food supply networks has not 
matched the amount of applications in business (Berry and Linoff 1997). One of the reasons is 
that historically food supply networks were less automated than other businesses. However, in 
recent years, the food industry began to build information systems to collect data about 
various stages of food supply networks. These information systems provide us with 
opportunities to employ data mining techniques to discover interesting relations for food 
quality problems. 

In our research, we are aiming at employing data mining techniques to construct early 
warning systems in food supply networks. Such an early warning system will adaptively 
identify new problems in food quality, aid in discovering possible causes for these problems, 
and monitor those causal factors to predict potential food quality problems. We anticipate 
taking even a step further towards proactive control to provide measures to prevent food 
quality problems. 
 
2   Food Supply Networks 
According to Santoso et al. (2005), a supply chain is a network of suppliers, manufacturing 
plants, warehouses, and distribution channels organized to acquire raw materials, convert 
these raw materials to finished products, and distribute these products to customers. Van der 
Vorst et al. (2005) extend this to a food supply network, referring to an interconnected system 
with a large variety of complex relationships such as alliances, horizontal and vertical 
cooperation, forward and backward integration in supply chains. 

Figure 1 depicts a supply chain network with accompanying monitoring and control 
systems. Processes can be seen at different levels, depending on the kind of problems 
considered. They may be as large as complete farms, factories or warehouses, or as small as 
one individual activity. The monitoring system gathers performance data of processes and 
their inputs and outputs. The control system can influence settings of the processes involved. 
Together, the monitoring system and control system manage the whole series of processes. 

Food supply networks have specific characteristics compared to other supply networks 
(Van der Vorst, Beulens and van Beek 2005). A food supply network includes multiple 
stages, global sourcing, variety of sources, leading to a complex network structure. Moreover, 
food is an inhomogeneous material, with a wide uncertainty and variability in quality and 
quantity of supply, as well as yield of production processes. 

Current research on performance measurement systems in food supply networks 
provides ways to quantify quality attributes of food products (Van der Vorst 2005). Each 
factor influencing a quality attribute has a certain effect. For instance, temperature is a very 
important factor for many quality attributes of food products. In order to model the effect of 



those factors, we need quantitative models, especially when variability and uncertainty 
characterize the food quality attributes. 

Next to uncertainty and variability, theoretical understanding of food quality problems 
is scarce. As a result, one has to rely on other sources of knowledge. Current advances in 
information systems in food supply networks provide us with another way to deal with this 
kind of problems: to induce knowledge from data. 
 
2.1   Information Systems in Food Supply Networks 
In food supply networks, the use of information systems has increased over the last decades. 
One reason is that the need for transparency in food supply networks has increased (Hofstede, 
Beulens and Spaans-Dijkstra 2004). Transparency implies that extensive information 
associated with food products should be recorded along the supply network, e.g. regarding 
production data, product identification, and product and process properties. Several modern 
logistical and management trends such as E-commerce, scanning, total quality management 
(Barendsz 1998), and HACCP (Horchner et al. 2006) also generate bulk data. 

Due to these advances of information systems in food supply networks, large amounts 
of data about food production and processing are recorded every day. Apart from their 
original purpose, the information implicitly present in these data is valuable as a basis for 
implementing early warning and proactive control. First, abnormal change in these data will 
give indications for potential problems. Second, many unknown causal relations may exist 
between recorded data about inputs, controls and production means, and operational 
performance of processes inside food supply networks. Knowledge about these relations 
provides a possibility to prevent problems by monitoring and proactively influencing the 
corresponding determinant factors. So it is worthwhile to employ data mining methods to 
adaptively identify new problems and discover causal relations from recorded data. 
 
3   Data Mining 
According to Simoudis (1996), data mining is the process of extracting valid, previously 
unknown, comprehensible and actionable information from large databases and using it to 
make crucial business decisions. Nowadays the term data mining is more and more regarded 
as equivalent to KDD (Knowledge Discovery in Data) (Han and Kamber 2001). So, in this 
paper we will treat data mining as another term for KDD. 

There are two approaches for data mining: verification driven, with the aim to confirm 
a hypothesis, or discovery driven, which is the automatic discovery of information by the use 
of appropriate tools. The underlying principle of the conventional scientific cycle 
“observation-hypothesis-experiment” fits well with the processes of Data Mining. The 
discovery driven mining works well for the observation-hypothesis step, whereas the 
verification driven mining works well for the hypothesis-experiment step (Crawford and 
Crawford 1996). 

Application of data mining in food supply networks is cheap and flexible when 
domain knowledge is scarce (Verdenius and Hunter 2001). For many food quality problems, 
detailed domain knowledge is scarcer than exemplary data. We can only observe the inputs 
and outputs of processes, without extensive knowledge about internal functions. Consequently 
collecting data in those cases is less costly than acquiring the required process knowledge. Of 
course, a basic understanding is needed. Flexibility appears from the ease of adapting models. 
In food supply networks, food products are subject to change once there is innovation in 
production processes or development in raw materials. Models constructed with data mining 
methods can easily adapt to such evolving behavior. 



Even when domain knowledge is available, data mining is still helpful for validation 
of models derived from domain knowledge. When a derived model performs considerably 
worse than data mining methods, its validity can be questioned. 

Existing applications of data mining for food quality problems in food supply 
networks mainly consider specific tasks at individual stages. For example, neural networks 
have been applied for classification of apple beverages (Gestal et al. 2004), evaluation of meat 
quality (Whittaker et al. 1991), and prediction of milk shelf-life (Vallejo-Cordoba, Arteaga 
and Nakai 1995). However, in our research we are aiming at multiple stages of the network. 
As discussed above, various influential factors for food quality originate from multiple stages 
of food supply networks. Thus, in order to construct early warning systems for food quality 
problems, it is necessary to include multiple stages of food supply networks. 
 
4   Framework for Early Warning Systems 
Early warning systems are well known in natural sciences. These systems, based on historical 
monitoring, local observation, or computer modeling, predict natural disasters, such as floods 
(Grijsen, Snoeker and Vermeulen 1992) or earthquakes (Wu et al. 1999), and help to prevent 
or reduce their impact. In food technology, Costello et al. (2003) presented a prototype sensor 
system for the early detection of microbially linked spoilage in stored wheat grain. 

The early warning systems we intend to build should not only predict potential food 
quality problems, but also help to identify relations between determinant factors and quality 
attributes of food products. Ultimately, the knowledge about these relations and the decision 
varieties associated with these factors will enable proactive control to prevent those problems. 

To achieve our objectives of early warning, we designed a framework for early 
warning systems in food supply networks (see Figure 2). The main distinguishing attribute of 
our approach is the aim for adaptivity. Other early warning systems are designed only 
predicting for specific predefined problems. Due to uncertainty in food supply networks, we 
do not have predefined knowledge about all kinds of problems that could occur. 

In our framework, users with new problems follow a template approach, which will 
guide them to find causes of the problem, select appropriate data mining methods, and 
instantiate a new predictor. The knowledge base provides valuable references for all these 
steps. This knowledge base will be continuously extended with new cases and domain 
knowledge. So it will be helpful not only for us to construct early warning systems, but also 
for other stakeholders to deal with similar problems. 
 
5   Requirements 
5.1   Requirements Imposed by Early Warning in Food Supply Networks 
An effective early warning system helps to identify potential problems, and to analyze their 
characteristics and causes. In order to realize early warning in food supply networks, we 
defined the following essential functional requirements. These requirements are derived from 
existing early warning systems discussed above and from the characteristics of food supply 
networks.  

1. Prediction: The primary purpose of early warning is to forecast potential problems as 
early as possible. So early warning systems should be able to describe future states of 
performance measures based on monitoring of historical and current determinant 
factors. 

2. Problem detection: In operational use, early warning systems should be able to detect 
new problems in food quality when they occur, and describe the characteristics of 
those problems. 

3. Finding determinant factors: After identifying a problem (either automatically or by 
expert input), it is necessary to investigate what are determinant factors for this 



problem, and how those determinant factors influence the performance measures 
involved. 

4. Complex structure representation: Due to the complexity of food supply networks, 
long chains of causal relations between factors may exist. Moreover these chains may 
branch and join at certain points. As a result, our system has to be able to represent 
those complex causal relations. 

5. Different representation forms: Many different kinds of relations between factors may 
exist. So early warning systems require the possibility to show different representation 
forms. 

6. New knowledge incorporation: Our early warning systems should be capable of 
incorporating new knowledge when it is discovered, either from newly detected 
problems or by expert input (e.g. due to the continuous development in food supply 
networks). 

The whole process is iterative. After problem detection, it is necessary to explore determinant 
factors for the problem detected. Then we try to describe the structure and form of relations 
between factors and performance measures in an appropriate way. After this, we can update 
the model in our knowledge base with obtained new knowledge. Of course, domain experts 
may also make their contribution to the model. With the updated model, we could again 
monitor the determinant factors in food production and predict potential problems. 
 
5.2   Contribution of Data Mining to Fulfill the Requirements 
In this section we look at how to employ data mining to fulfill the requirements discussed 
above. Our focus is mainly on the functional aspects, which means we look at what are the 
functions of data mining, and how these functions can be used to fulfill the requirements of 
early warning systems. Definitions of data mining functions are gathered from Fayyad et al. 
(1996) and Freitas (1997). Below, we provide tables that present suitable data mining methods 
for each function, to facilitate selecting appropriate methods for specific tasks. 
 
Prediction. Prediction of food quality problem based on historical and current data of 
determinant factors is one of the principle requirements imposed by early warning. And 
fortunately one of the merits of data mining techniques is the prediction power. There are 
many success stories on application of data mining methods for prediction of food quality in 
food supply networks (Vallejo-Cordoba, Arteaga and Nakai 1995; Ni and Gunasekaran 1998; 
Rousu et al. 2003).  
 
Problem Detection. Signals that trigger early warning usually appear as anomalies in 
monitored performance measures first: deviations from the established norm and expected 
behavior. Deviation detection from various types of data is a prominent function of data 
mining (Freitas 1997). Literature shows the application of several data mining techniques to 
identify problems in food production. One example is the use of neural networks in an X-ray 
system to identify contaminants in packaged food products (Patel, Davies and Hannah 1995).  
 
Finding Determinant Factors. In order to identify determinant factors for food quality 
problems, ultimately the knowledge of domain experts is indispensable. However, data 
mining may help to quickly find candidate factors. Applicable data mining functions include 
causation modeling, factor selection, and to some extent classification and regression.  

Causation models describe the causal relations between determinant factors and 
performance measures. Currently there are two methods available: Bayesian causal discovery 
(Pearl 2000) and constraint based causal discovery (Silverstein et al. 2000). However, both 



methods are only at an experimental stage. The number of successful applications of these 
two techniques is limited. See Freedman (2004) for causes of this problem. 

Besides causation modeling, various factor selection methods for data mining 
purposes could help to quickly find a set of potentially relevant factors to focus on, and 
determine the relative importance of each factor. Note however, that factor selection is not 
regarded as a data mining function, but rather as a preprocessing step. There are many 
methods for selecting relevant factors (Liu and Motoda 1998). In general, factor selection 
methods can either use a filter approach or a wrapper approach. A filter approach selects 
relevant factors independently of the data mining techniques used for prediction. But a 
wrapper approach can only be used in combination with a specific data mining technique 
(Kohavi and John 1998). 

Some data mining methods for classification and regression can also help to find 
relevant factors. For example, neural networks can be used for classification. With sensitivity 
analysis on neural networks (Yao 2003), we can find which factors are influencing the 
outcomes of the neural network. 

No matter what techniques are selected for causal relation discovery, the result should 
be checked by domain experts before being applied in practice. Only with the interaction 
between domain experts and data mining we can find valuable relations. 
 
Complex Structure Representation. In order to represent interactions that span multiple stages 
of a food supply network, we need methods that are able to describe relations between factors 
from various stages. For this purpose, we may apply dependency modeling and causation 
modeling. 

Dependency modeling describes significant dependencies among variables (Fayyad, 
PiatetskyShapiro and Smyth 1996). It is different from causation modeling in that causal 
relations are intuitively stronger than dependencies. The latter only indicates a correlation 
between determinant factors and performance measures, but there is no causality semantics in 
this relationship. Causation models not only show correlations, but also indicate that those 
determinant factors actually cause the observed effects. 

One of the candidate methods for dependency modeling is Bayesian networks. This 
method builds a graphical network to describe the complex structure. Variables are 
represented as nodes, and dependencies between variables are represented as links. Variability 
in variables is described by conditional probability distributions, specifying the probability for 
each variable given the values of the ones linked to it. Baker et al. (2002) describe how they 
applied Bayesian networks to assess the risk of botulism. 

There are many ways to combine the requirements imposed, functions of data mining, 
data mining methods, and some other aspects. Listing all possible combinations would yield a 
multi-dimensional table of all aspects. Here, we present the most important combinations of 
two dimensions in Table 1 and Table 2. The requirements of describing different kinds of 
relations and novel relation incorporation will be dealt with in following subsections. 

In Table 1, we summarize the use of data mining for different functional requirements 
as reported in literature. In Table 2, we compare some commonly used data mining methods 
against the data mining functions mentioned above. We will use such tables for technique 
selection. 
 
Different Representation Forms. Relations between food quality problems and determinant 
factors may appear in different forms. Sometimes we find quantitative mathematical formulas 
directly relating one or more determinant factors to a performance measure (Marcelis 2001). 
In other instances the relation takes the form of a conditional probability distribution (van 
Boekel, Stein and van Bruggen 2004). For some cases we do not have enough detailed 



knowledge and we can only give a model as a black box (Geeraerd et al. 1998). Table 3 
shows relevant representation forms and corresponding data mining methods. 

Selection of appropriate representation forms depends on the purpose of 
representation, the data characteristics, and the knowledge on the relation. For example, if the 
purpose is to represent causal relations to users of an early warning system, then we should 
choose more understandable representation forms, such as decision tree or association rule. 
 
New Knowledge Incorporation. As discussed above, there are two kinds of novel relations 
that need to be incorporated: relations discovered from new problems, and relations obtained 
from domain experts. The requirement to incorporate such new relations can be fulfilled 
easily by some of the data mining methods, such as association rules and Bayesian networks. 
For example, in a case study to predict DOA (Death On Arrival) in a chicken supply network, 
we obtained knowledge that DOA will increase with transportation density. It is easy to add 
this knowledge as an association rule to a rule set, or as a node and an arc to a Bayesian 
network. Table 3 also provides an overview of capabilities of different methods for 
incorporating new knowledge into models constructed with these methods. 
 
5.3   Other Remarks towards Technique Selection 
There are many aspects for technique selection. Function, representation form, and capability 
for novel knowledge incorporation are important aspects. The data format is another aspect. 
Various kinds of performance measures are available for food quality; some are quantitative, 
such as body weight; some are qualitative, such as objective evaluation of meat color. The 
data format (nominal, ordinal, numerical) has to be taken into consideration as well when 
selecting a technique. 

However, the quality of a model also depends on how well the model class is able to 
represent patterns in the data set. Some research on automatic technique selection has already 
been conducted. Three main lines of interest have been found: heuristic expert rules 
(Kodratoff and Moustakis 1994), meta-learning (Kalousis and Hilario 2001), and landmarking 
(Pfahringer, Bensusan and Giraud-Carrier 2000). Verdenius (2005) has used data class 
boundary characteristics for selecting techniques. He distinguishes orthogonal and non-
orthogonal (linear and nonlinear) class boundaries. Decision trees are especially suitable for 
orthogonal instead of non-orthogonal class boundaries, while neural networks are also good at 
non-orthogonal class boundaries. 
 
6   Conclusion 
This paper explains why and how data mining can be helpful in building up early warning 
systems in food supply networks. The construction and functioning of early warning systems 
will inevitably require the involvement of domain experts. However, with the help of data 
mining, we could relieve those experts from many time consuming tasks, and also 
complement their knowledge with new, interesting relations. 

We investigated the functional requirements for data mining in food supply networks, 
and presented an overview of applicable data mining methods for those requirements. This 
overview forms a starting point for technique selection for specific applications of data 
mining. 

As part of our research, we use a number of case studies to investigate the applicability 
of data mining methods. The first case study has been reported elsewhere (Li et al. 2006); the 
next one is in progress. In subsequent steps in our research, we will use the information 
gained by these case studies to build a knowledge base for early warning in food supply 
networks. Data mining technique selection will be one of the components of this knowledge 
base. 
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Table 1. Functions of DM vs. requirements from early warning system 
  Requirements imposed by early warning system 
Function of  
data mining 

1.Predict  2.Detect 
problem 

3.Find determinant 
factors 

4.Describe complex 
structure 

Deviation 
detection 

 Valid   

Factor selection 
* 

  Helpful  

Classification Valid   Helpful  
Regression Valid  Helpful  
Dependence 
model 

Valid  Helpful  Valid 

Causal model Valid  Valid  Valid 
* Factor selection methods are usually regarded as a pre-processing step for data mining 
rather than a separate data mining function. 
 



Table 2. Applicability of DM methods for specific functions 
 DM methods 
DM 
Function   

Decision tree Neural 
network 

Bayesian 
network 

Association 
rule 

Nearest 
neighbors 

Deviation 
detection 

Valid 
(Fayyad, 
Djorgovski 
and Weir 
1996) 

Valid 
(Patel, 
Davies and 
Hannah 
1995) 

Valid 
(Agarwal 
2005) 

Valid 
(Balderasy et 
al. 2005)  

Valid (Knorr, 
Ng and 
Tucakov. 
2000) 

Classification  Valid 
(Verdenius 
and Hunter 
2001) 

Valid 
(Gestal et 
al. 2004) 

Valid (Gorte 
and Stein 
1998)  

 Valid 
(Soeria-
Atmadja et 
al. 2004) 

Regression Valid (Lobell 
et al. 2005) 

Valid 
(Millan, 
Roa and 
Tapia 
2001) 

Valid (Roos 
et al. 2005) 

 Valid 
(Goulermas 
et al. 2005) 

Dependence 
model 

  Valid 
(Heckerman 
1996) 

Valid (Smyth 
and 
Goodman 
1992) 

 

Causal model   Valid (Pearl 
2000) 

  

 



Table 3. Representation forms of DM methods and extensibility of corresponding 
models 

Data mining 
method 

Representation form (Fayyad, 
Piatesky-Shapiro and Smyth 1996) 

Novel knowledge 
incorporation 

Decision trees Decision trees Easy (Milde et al. 1999) 
Association 
rules 

Rules Easy (Adomavicius and 
Tuzhilin 2001) 

Neural 
networks 

Linear or Nonlinear model Difficult (Pitz and Shavlik 
1995) 

Nearest 
neighbors 

Example-base methods Difficult   

Bayesian 
networks 

Probabilistic graphical dependency 
model 

Easy (van Boekel, Stein and 
van Bruggen 2004) 
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Fig. 2. Framework for early warning system in food supply networks  
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