Durable resistance against Meloidogyne spp. possible for italian ryegrass?

L. van Kruijssen, M. van Nes, E. Loeffen, J. Jager - Barenbrug Research Holland
F. Zoon, L. Poleij - Plant Research International, Wageningen

The variation in resistance to Meloidogyne chitwoodi and M. fallax in italian ryegrass has been studied in order to breed more resistant ryegrass varieties.
Italian ryegrass plants of several seedling populations were inoculated in 2001 with a mix of M. chitwoodi or a mix of M. fallax isolates. Plants used for M. chitwoodi inoculation were not the same clones as used for M. fallax inoculation. The number of egg masses (EM) on the roots was counted. The results are presented as the average and (minimummaximum) EM per plant below. This first test shows variation in resistance levels of populations. Even within the populations there is considerable variation in EM formation per plant. Results for M. chitwoodi correspond to some extent to those for M. fallax.

Selected clones which formed few egg masses after inoculation with M.fallax were subsequently inoculated with a mix of M.chitwoodi isolates in 2002. Again the number of egg masses (EM) per plant was counted. Some results are presented in the table below.

Conclusion

There is a lot of variation within and between seedling populations in resistance against M. chitwoodi and M. fallax. Populations of italian ryegrass generally consist of a mixture of susceptible, intermediate and resistant plants. By selecting the more resistant plants within several populations it is possible to breed new varieties with improved resistance to M. chitwoodi and M. fallax.

Population H clone nr.	M. fallax $\mathrm{EM} / \mathrm{pl}$.	M. chitwoodi $\mathrm{EM} / \mathrm{pl}$.	M. chitwoodi $\log 10(\mathrm{EM})$
$\mathrm{H}-63$	4	0.5	0
$\mathrm{H}-58$	0	3.3	0.4
$\mathrm{H}-60$	1	3.5	0.4
$\mathrm{H}-66$	5	5	0.5
$\mathrm{H}-59$	0	4.3	0.6
$\mathrm{H}-64$	4	5	0.7
$\mathrm{H}-62$	3	9.3	0.8
$\mathrm{H}-65$	4	10	0.8
$\mathrm{H}-57$	0	14.5	1
c.v.		48.9	33.2
Isd (0.05)		12.3	0.6
av.100 $=$	2.3	8.7	0.6

