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1. Introduction 
 
 

1.1 Soil erosion by water 
Mankind adapts its environment to meet its demands (UNEP, 2005). Its interventions can be 
radical, and may cause disequilibrium of the natural system. The search for a new dynamic 
equilibrium implies the action of natural processes on the changed circumstances. These 
processes frequently involve negative impacts on the valuable natural resources that humans 
require for their living. Exponential growth of the human population during the last centuries 
in combination with increasingly demanding consumption patterns is putting a strong 
pressure on these resources (Cohen, 1995; Ehrlich et al., 1993; Meyer and Turner, 1992). 
Global awareness about the consequences of our conduct on the environment is however 
rising. Worldwide, efforts are being taken to mitigate the negative impacts of our 
interventions and to obtain a situation in which the human utilisation of natural resources is 
in equilibrium with their long-term ecological functions (e.g. Hannam and Boer, 2001; 
United Nations, 2002). The ideal situation for the earth and mankind would be a sustainable 
system in which ecological and production functions are in balance and which can be 
maintained for an indefinite number of years to come. However, at the global level this ideal 
seems distant as alarming reports indicating strong imbalances reach us regularly, e.g. on 
melting of ice sheets (Bindschadler, 2006), large-scale river flooding (Kundzewicz et al., 
2005), and decline of biodiversity (Dirzo and Raven, 2003). 

Soil erosion is one of the menaces to the sustainability ideal. It is a natural process 
that detaches and transports soil material through the action of an erosive agent. Possible 
agents are water, wind, gravity, and anthropogenic perturbations (Lal, 2001). At geological 
time-scales there is a balance between erosion and soil formation (Tricart and 
KiewietdeJonge, 1992), but at many locations worldwide a disequilibrium currently exists 
between the two processes. This disequilibrium is called accelerated soil erosion and is 
principally caused by anthropogenic land use changes like deforestation and agricultural 
practices. At the global scale soil erosion by water is the most important land degradation 
problem (Eswaran et al., 2001). It generates strong environmental impacts and high economic 
costs by its on-site effects on agricultural production and off-site effects on infrastructure and 
water quality (Ananda and Herath, 2003; Lal, 1998; Pimentel et al., 1995). To mitigate these 
effects and reduce soil erosion, soil and water conservation strategies are required at different 
spatial scales and at different organizational levels (Morgan, 2005). Spatial information on 
the importance of erosion at different scales is necessary for defining effective strategies and 
prioritizing conservation efforts. 

Soil erosion processes by water comprise: splash erosion, which occurs when soil 
particles are detached and transported as a result of the impact of falling raindrops; sheet or 
interrill erosion, which removes soil in thin layers and is caused by the combined effects of 
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splash erosion and surface runoff; rill erosion, which is the disappearance of soil particles 
caused by concentrations of flowing water; and gully erosion, that occurs when the flow 
concentration becomes large and the incision deeper and wider than with rills (Morgan, 
2005). Gully dynamics are however not limited to runoff processes only, but can be greatly 
influenced by sub-surface flow, tunnelling and side-wall failures (Bocco, 1991). Biophysical 
factors that regulate erosion processes include climate, soil, terrain and ground cover (Lal, 
2001). The importance of each individual factor is not always the same, but depends on 
regional characteristics, the specific erosion process under consideration, and the spatial and 
temporal scale studied.  
 
 

1.2 Spatial erosion assessment 
Spatial assessment of soil erosion can basically be done in three different ways. The first is to 
measure soil erosion rates at different locations using some measuring device or erosion plots 
(Hudson, 1993; Loughran, 1989). However, accurate measurements are generally expensive 
and time-consuming, standard equipment is hardly available (Stroosnijder, 2005), and 
measurement results may be highly variable under similar circumstances (Nearing et al., 
1999). Field measurements are mostly used for assessing the role of a specific erosion factor, 
model development, or validation purposes, but not for spatial evaluation of erosion. 

The second approach is the execution of erosion field surveys in which features are 
identified that formed due to erosion processes, such as pedestals or rills (Herweg, 1996). 
Although quantitative information may be obtained through repeated measurement of feature 
dimensions, surveys are often performed in a qualitative sense thus classifying the amount of 
erosion based on the features encountered. Survey timing is important, because features may 
not be visible throughout the year due to e.g. management practices like ploughing. Surveys 
may allow spatial erosion mapping for small catchments of about 2-km2 (Vigiak et al., 2005), 
but for larger regions this becomes difficult. However, systematic visual identification of 
certain features from aerial photographs would be another form of erosion survey that could 
be performed for larger areas up to 50-km2 (Bergsma, 1974). 

The third and most common method for spatial erosion assessment is through 
integrating spatial data on erosion factors. Widely-used is the Universal Soil Loss Equation  
(USLE: Wischmeier and Smith, 1978), although many other erosion models exist that allow 
spatial mapping of erosion (Merritt et al., 2003). However, erosion models are all developed 
for a certain region and scale, and transferring a model to other scales or regions is not 
straightforward and may give poor or erroneous results (Brazier et al., 2000; Jetten et al., 
2003; Kirkby et al., 1996; Schoorl et al., 2000). Furthermore, many erosion models require a 
large amount of detailed data on a wide variety of rainfall, soil, vegetation, and slope 
parameters. In data-poor environments like e.g. developing countries, these data are often not 
readily available, or only at very coarse scales. Qualitative data integration methods that 
allow some flexibility in the selection and combination of erosion factors can provide a good 
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alternative to erosion models. Selection of erosion factors can be region-specific, depending 
on the processes that occur and the key parameters that explain the variability of these 
processes within the region. Local or expert knowledge can provide important input to such 
qualitative approaches (De la Rosa et al., 1999; Sonneveld, 2003). Outcomes of these 
methods are generally a qualitative measure of erosion risk, which is the relative risk that 
erosion will occur at a certain location as compared to other locations in the region mapped. 

Spatial data are needed for the application of both erosion models and qualitative 
methods. The scale or resolution of these data should correspond with the desired output 
scale of the mapping exercise (Woodcock and Strahler, 1987). For example, at the national 
scale it would make no sense to work with field-scale data, whereas for erosion assessment in 
small catchments (e.g. 10 km2) national soil inventories are of little value. Two types of 
spatial data are required for erosion mapping: (1) input data on erosion factors that allow the 
application of the mapping method, (2) validation data to assess how accurate and reliable the 
results of the method are. Relevant spatial data may be derived from a variety of sources like 
e.g. existing soil, land use, and topographic maps, weather stations, field measurements and 
surveys, aerial photographs, and satellite imagery.  
 
 

1.3 Satellite remote sensing 
Observations of environmental variables are required for assessing the status of the earth’s 
resources and for monitoring their dynamics. Space technology, in particular satellite remote 
sensing, currently offers an important contribution to the synoptic and timely evaluation of 
natural resources over large areas. The term remote sensing means that information about 
objects or phenomena is acquired from a distance, without having physical contact with the 
object or phenomenon under study (Colwell, 1983). In practice, the term is mostly used for 
the acquisition, processing, and interpretation of data which are recorded by a sensing device 
mounted on an aircraft or satellite. Although military purposes have been the driving factor 
for its development, satellite remote sensing is currently an important source of information 
for environmental studies on the atmosphere, oceans, and land surfaces. At present, hundreds 
of artificial satellites are orbiting our planet that record and transmit valuable information on 
our environment using a wide range of sensors. 

Information needs to be derived however from the recorded image data. Sensors 
onboard satellites record electromagnetic radiation, which is subsequently transmitted to the 
ground where it is stored in electronic form. Radiation can be measured at different 
wavelengths (e.g. visible light, infrared, thermal), depending on the specific sensor 
characteristics. The sun is the most common source of radiation, but in some cases like for 
imaging radar the satellite system itself provides its own radiation source by transmitting 
energy pulses to the earth surface. Satellite images thus merely show spatial differences of 
how electromagnetic radiation has interacted with the atmosphere and the earth surface at a 
specific moment in time. From the recorded imagery, information on environmental variables 
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may be inferred using physical models or empirical approaches. The variable of interest in a 
particular study dictates the choice of the image type (sensor and satellite) to be used. Besides 
the recorded wavelength(s), also other sensor characteristics like spatial and temporal 
resolution may be important. Temporal resolution refers to how often an image with the same 
characteristics can be recorded, and is generally inversely related to spatial resolution. Spatial 
resolution depends on the sensor and the height of the satellite orbit. Methods for extracting 
environmental variables from satellite data are thus based on the specific image type chosen. 
Independent in situ observations of the variable of interest are needed for the development 
and validation of these methods (Jensen, 2004). Variables obtained from satellite data may 
subsequently be combined with additional spatial data to extract new or more accurate 
information (e.g. He et al., 1998; Lubczynski and Gurwin, 2005; Saha et al., 2002). 
 
 

1.4 Mapping erosion from space 
Through the variety of spaceborne sensors currently orbiting the earth, satellite remote 
sensing can offer an important input to erosion assessments at various spatial scales. 
Particularly for data-poor regions, satellite data may assist in rapid mapping of erosion over 
large areas, while otherwise this could only be done through expensive and time-consuming 
surveying methods. Many types of satellite images and image-derived products obtained 
from earth-observing space missions are presently available to the general public. Although 
some image types are still costly, a lot of data is inexpensive or free of charge, which 
facilitates its use for a wide community. Satellite imagery is therefore increasingly being used 
for regional erosion studies. This can be done either through the detection of erosion features 
and eroded areas, or through assessing erosion factors like vegetation cover or slope. 

Eroded areas larger than 1 ha may in some cases be distinguished from its 
surroundings because vegetation cover is reduced (Pickup and Nelson, 1984), soil properties 
have changed (Hill et al., 1995a), or random changes of the earth surface have occurred (Lee 
and Liu, 2001). However, successful application of satellite remote sensing to detect eroded 
areas is generally limited to (semi-) arid natural and rangeland environments or extensive 
areas suffering gully erosion (badlands). In more humid regions vegetation cover often 
obscures the visibility of the soil, whereas agricultural activities may furthermore greatly 
influence vegetation cover, soil properties, and surface roughness. For humid and agricultural 
areas these variables can thus not be directly related to soil erosion occurrence. Besides 
eroded areas also individual erosion features like gullies and large rills may be identified 
from satellite imagery. This is partly due to distinct properties such as subsoil exposure and 
reduced vegetation cover, but perhaps more importantly because of the clear spatial structure 
of rills and gullies. Spatial resolution of the imagery should however correspond with the size 
of the features. Visual interpretation has been a common method for detecting individual 
gullies from aerial photographs (Martínez-Casasnovas, 2003; Nachtergaele and Poesen, 
1999) and satellite images (Bocco and Valenzuela, 1993). Automatic retrieval of gullies from 
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satellite images would provide fast insight in the importance of gully erosion and the 
consequent loss of productive land for large regions, although some authors have questioned 
the feasibility of this exercise due to the spectral heterogeneity of gullies themselves and of 
their surroundings (King et al., 2005; Zinck et al., 2001). 

Information on a variety of erosion factors can be obtained from satellite imagery, 
including climate, soil, terrain, and vegetation characteristics. Important climate parameters 
for erosion studies are rainfall amount and intensity, which may at coarse scales be assessed 
e.g. using data of the spaceborne Tropical Rainfall and Measurement Mission (TRMM). 
Terrain attributes such as slope are generally assessed using digital elevation models 
(DEMs), which can be obtained from stereo images (Toutin, 2001) or advanced techniques 
like radar interferometry (Toutin and Gray, 2000). The spatial distribution of various soil 
properties may be evaluated with satellite data, although often this is restricted to arid or 
semi-arid regions due to the disturbing influence of vegetation (Huete, 2004). To assess 
vegetation cover, satellite data can be applied for land use classification or the extraction of 
continuous measures of vegetation abundance and structure (Hall et al., 1995). Erosion 
factors are not static, but change with time. The most dynamic factors are rainfall and 
vegetation, although soil properties may also be altered on short time-scales due to e.g. tillage 
or crusting. The temporal variability of erosion factors needs to be accounted for in satellite-
based erosion assessments one way or another. One option for this is to assess the factors at 
different moments of the year using multi-temporal satellite imagery (e.g. De Jong et al., 
1999). A second option is to ascertain that a mono-temporal satellite image represents 
conditions of the factor under study at the moment of highest erosion risk. Image timing can 
thus be relevant for obtaining accurate spatial erosion patterns, although rationales for image 
selection are often not clearly defined in erosion studies. 

Despite the vast amount of existing studies on the remote sensing of variables that are 
of importance for erosion studies, little work has been done on developing methodologies for 
mapping soil erosion based specifically on these remotely-sensed variables. Instead, often an 
erosion model such as the USLE, developed for small erosion plots (1.8 by 22.1 m) in the 
eastern United States, is simply applied to larger scales and different regions, while satellite 
data merely provides vegetation information as an input (e.g. CORINE, 1992; Kim et al., 
2005; Lu et al., 2004). Some exceptions are the modelling work of De Jong et al. (1999) and 
a few erosion studies using qualitative data integration methods (e.g. Haboudane et al., 2002; 
Hill et al., 1995b; Liu et al., 2004; Metternicht, 1996). However, these studies were all 
performed for semi-arid regions and rely on specific observables in these environments. 
Erosion mapping methodologies based on remotely-sensed variables could however also be 
valuable for more humid environments. Local experts may assist in defining suitable 
methodologies for region-specific erosion mapping through defining the locally-important 
variables which can explain the spatial differences of erosion and can be obtained from 
satellite data. 

Any erosion mapping methodology will result in a nice-looking map, but without 
validation of the results it is unknown whether the obtained results are accurate (Favis-
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Mortlock et al., 1996). To assess the performance of methodologies for a specific region, 
spatial results should therefore be compared with independent data such as derived from field 
measurements or surveys. Validation data may also be obtained through visual identification 
of erosion features from high-resolution (about 1 m) airborne or spaceborne data. Besides 
aerial photographs, good options for this are currently offered by high-resolution satellites 
like QuickBird and IKONOS. However, due to the time-consuming nature of obtaining 
validation data, and the lack of standard validation approaches especially for larger regions, 
many erosion studies merely performed map construction without questioning the outcomes 
(e.g. Anys et al., 1994; Fan et al., 2004; Jürgens and Fander, 1993; Reusing et al., 2000; 
Sekhar and Rao, 2002). To advance the ability of accurately mapping erosion risk, the 
validation effort should however be made and clear options for collecting proper spatial 
validation data at regional scales need to be defined. 
 
 

1.5 Aim 
The aim of the research described in this thesis is to develop new methodologies for 
qualitative regional erosion mapping using satellite remote sensing. The methodologies 
should be easily applicable in tropical environments and not rely on erosion models which 
were developed for different scales and regions. Especially options are envisaged for regions 
(50-10.000 km2) which besides satellite imagery have poor data availability at a sufficiently 
detailed scale. The specific objectives of this study are: 

• to provide a detailed overview of how satellite data have been used previously for the 
assessment of soil erosion; 

• to determine whether automatic identification of large erosion features from satellite 
imagery is possible under certain circumstances; 

• to develop methodologies that integrate satellite and additional data for accurate 
qualitative erosion risk mapping, and explore the potential role of expert knowledge; 

• to assess the importance of temporal dynamics of vegetation cover and rainfall for the 
selection of satellite images that are used to describe the spatial variability of erosion 
risk. 

 
 

1.6 Study outline 
This thesis presents a number of studies that apply satellite remote sensing data for assessing 
soil erosion in three different tropical regions, namely the Brazilian Cerrados, the Colombian 
Eastern Plains, and the West Usambara Mountains of Tanzania. The thesis starts with a 
literature review of existing methodologies for soil erosion assessment using satellite data 
(Chapter 2). It covers the detection of erosion features and eroded areas, the evaluation of 
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off-site impacts such as water quality of inland lakes, and the assessment of erosion factors. 
Furthermore data integration techniques and validation methods are discussed. 

Chapter 3 addresses the detection of erosion features with satellite imagery. Bi-
temporal ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 
imagery was applied to evaluate whether automatic identification of large permanent erosion 
gullies is possible for an area in the Brazilian Cerrados.  

Chapters 4 to 6 explore new options for qualitative erosion risk mapping, in which 
satellite data is used to obtain information on one or more erosion factors. In Chapter 4 a 
decision-tree approach to erosion risk mapping is presented for a municipality (about 7000 
km2) in the Colombian Eastern Plains. It uses expert knowledge for defining and combining 
the locally-important variables for different erosion factors. Land use and vegetation cover 
were evaluated with a Landsat image, while additional data sources used include a soil and 
geology map and a DEM derived from a topographic map. 

Chapter 5 presents a different erosion risk mapping approach for a 70-km2 watershed 
in the West Usambara Mountains of Tanzania. For the watershed, spatial information at a 
proper scale was scarce. Therefore, the question was raised whether an accurate erosion risk 
map may be created using only satellite information. The chapter presents two data 
integration methods that merely use information on vegetation cover and slope derived from 
a well-timed Landsat image and a DEM of the Shuttle Radar Topography Mission (SRTM).  

The issue of image timing is further explored in Chapter 6. For the Brazilian study 
area multi-temporal coarse-resolution satellite data were applied to determine when high 
rainfall intensities coincide with a limited vegetation cover. The implication of this timing 
was assessed with a time-series of six medium-resolution ASTER images. Six different 
mono-temporal erosion risk maps were derived from the images by relating erosion risk to 
vegetation cover patterns. The optimal timing of the ASTER imagery was evaluated by 
comparing the maps with the presence of erosion features that were visually delineated from 
a fine-resolution QuickBird image.  

Finally, in Chapter 7 the major findings of this thesis are discussed and general 
directions for future work are given. 
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2. Satellite remote sensing for water erosion 
assessment: a review 

 
 

Abstract 
Water erosion creates negative impacts on agricultural production, infrastructure, and water quality 
across the world. Regional-scale water erosion assessment is important, but limited by data 
availability and quality. Satellite remote sensing can contribute through providing spatial data to such 
assessments. During the past 30 years many studies have been published that did this to a greater or 
lesser extent. The objective of this paper is to review methodologies applied for water erosion 
assessment using satellite remote sensing. First, studies on erosion detection are treated. This 
comprises the detection of erosion features and eroded areas, as well as the assessment of off-site 
impacts such as sediment deposition and water quality of inland lakes. Second, the assessment of 
erosion controlling factors is evaluated. Four types of factors are discussed: topography, soil 
properties, vegetation cover, and management practices. Then, erosion mapping techniques are 
described that integrate products derived from satellite remote sensing with additional data sources. 
These techniques include erosion models and qualitative methods. Finally, validation methods used to 
assess the accuracy of maps produced with satellite data are discussed. It is concluded that a general 
lack of validation data is a main concern. Validation is of utmost importance to achieve regional 
operational monitoring systems, and close collaboration between the remote sensing community and 
field-based erosion scientists is therefore required. 
 
 

2.1 Introduction 
Soil erosion by water is the most important land degradation problem worldwide (Eswaran et 
al., 2001). Although some authors question its impact on global food security (Crosson, 
1997; Lomborg, 2001) soil erosion creates strong environmental impacts and high economic 
costs by its effect on agricultural production, infrastructure and water quality (Lal, 1998; 
Pimentel et al., 1995). Furthermore, erosion results in emission of soil organic carbon to the 
atmosphere in the form of CO2 and CH4, causing impact on global warming (Lal, 2004). 
Global warming in turn is expected to increase erosion rates (Nearing et al., 2004). A proper 
assessment of erosion problems is greatly dependent on their spatial, economic, 
environmental, and cultural context (Warren, 2002). 

Water erosion is controlled by climatic characteristics, topography, soil properties, 
vegetation, and land management. Detachment of soil material is caused by raindrop impact 
and drag force of running water. Detached particles are transported by overland flow (sheet- 
or interrill erosion) and concentrated flow (rill erosion) and deposited when flow velocity 
decreases (Lal, 2001). Gullies can develop as enlarged rills, but their genesis is generally 
more complex, involving sub-surface flows and side-wall processes (Bocco, 1991). 



Chapter 2 

 16

To control water erosion, biophysical measures need to be implemented at the field, 
hillslope or watershed scale. However, allocation of scarce conservation resources and 
development of policies and regulations require erosion assessment at the regional scale. An 
important limitation for this task is data availability and quality (Van Rompaey and Govers, 
2002). Remote sensing provides homogeneous data over large regions with a regular revisit 
capability, and can therefore greatly contribute to regional erosion assessment (King and 
Delpont, 1993; Siakeu and Oguchi, 2000). 
 Traditionally, remote sensing has been used for soil erosion research through aerial 
photo interpretation both for detecting erosion features (e.g. Bergsma, 1974; Jones and 
Keech, 1966) and obtaining model input data (e.g. Morgan and Napela, 1982; Stephens et al., 
1985). Starting in 1972 with the launch of Landsat-1, satellite imagery has become 
increasingly available to the scientific community. 

During the past 30 years many studies have been published that fully or partially 
applied satellite imagery for soil erosion assessment in many different ways. The objective of 
this paper is to provide an overview of methodologies applied for water erosion assessment 
using satellite remote sensing. It focuses on erosion processes related to surface run-off and 
gullying. Although important sensor development has taken place during the past years using 
airborne systems, which are of interest to erosion research (e.g. laser altimetry, hyperspectral 
remote sensing), this paper focuses only on satellite-based applications. Mainly peer-
reviewed journal articles are treated, with a few exceptions. The review addresses (1) erosion 
detection, (2) the assessment of erosion controlling factors, and (3) data integration for 
erosion mapping. 
 
 

2.2 Satellites and sensors applied in erosion research 
A large number of earth observation satellites has orbited, and is orbiting our planet to 
provide frequent imagery of its surface. From these satellites, many can potentially provide 
useful information for assessing erosion, although less have actually been used for this 
purpose. This section provides a brief overview of the spaceborne sensors applied in erosion 
studies. More recent satellites (e.g. SPOT-5, CBERS) and future satellites (e.g. ALOS, 
SMOS) that are of potential interest, are not discussed here. The sensors can be divided in 
those measuring reflection of sunlight in the visible and infrared part of the electromagnetic 
spectrum and thermal infrared radiance (optical systems), and those actively transmitting 
microwave pulses and recording the received signal (imaging radars). 

Optical satellite systems have most frequently been applied in erosion research. The 
parts of the electromagnetic spectrum covered by these sensors include the visible and near-
infrared (VNIR) ranging from 0.4 to 1.3 µm, the shortwave infrared (SWIR) between 1.3 and 
3.0 µm, and the thermal infrared (TIR) from 3.0 to 15.0 µm. Table 2.1 summarises sensor 
characteristics of the systems used. Landsat is still among the widest used satellites, partly 
because  it  has  the  longest  time  series  of  data  of  currently  available  satellites.  The first 
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Table 2.1 Overview of optical satellite sensors applied in erosion research 

Satellite Sensor Operation time 
Spatial 

resolution 
# Spectral 

bands 
Spectral domain 

Landsat-1,2,3 MSS 1972-1983 80 m 4 VNIR 
Landsat-4,5 TM 1982-1999 30 m 6 VNIR, SWIR 
   120 m 1 TIR 
Landsat-7 ETM 1999-present 15 m 1 VNIR 
   30 m 6 VNIR, SWIR 
   60 m 1 TIR 
SPOT-1,2,3 HRV 1986-present 10 m 1 VNIR 
   20 m 3 VNIR 
SPOT-4 HRVIR 1998-present 10 m 1 VIS 
   20 m 4 VNIR, SWIR 
IRS-1A,1B LISS-1 1988-1999 72.5 m 4 VNIR 
 LISS-2  36.25 m 4 VNIR 
IRS-1C,1D PAN 1995-present 5.8 m 1 VNIR 
 LISS-3  23.5 m 3 VNIR 
   70 m 1 SWIR 
Terra ASTER 1999-present 15 m 3 VNIR 
   30 m 6 SWIR 
   90 m 5 TIR 
NOAA/TIROS AVHRR 1978-present 1.1 km 5 VNIR, SWIR, TIR 
IKONOS Panchromatic 1999-present 1.0 m 1 VNIR 
 Multispectral  4.0 m 4 VNIR 
QuickBird Panchromatic 2001-present 0.61 m 1 VNIR 
  Multispectral   2.44 m 4 VNIR 

 
 
satellites of the Landsat family were equipped with the Multispectral Scanner (MSS), having 
four bands at 80-m resolution. Later Landsat satellites had the Thematic Mapper (TM) and 
the Enhanced TM (ETM) sensors onboard with improved resolution and more spectral bands. 
The SPOT (Système Pour l’Observation de la Terre) series of satellites started acquiring data 
in 1986 with the HRV-sensor (High Resolution Visible). The HRV-sensor has a 10-m 
panchromatic mode and a three-band 20-m resolution multispectral mode. SPOT-4 flew the 
HRVIR-sensor (High Resolution Visible Infrared) on which a SWIR band was added. The 
Indian Remote Sensing Satellites (IRS) 1A and 1B both have two sensors called LISS-1 and 
LISS-2 (Linear Imaging and Self-Scanning Sensor), which are identical except for a two 
times higher spatial resolution on LISS-2. IRS 1C and 1D also have an identical payload 
being a 5.8-m resolution panchromatic camera (PAN) and a 23.5-m resolution multispectral 
sensor called LISS-3. ASTER (Advanced Spaceborne Thermal Emission and Reflection 
Radiometer) is one of the sensors onboard the Terra satellite. It has 14 spectral bands of 
which several are situated in the SWIR and TIR regions. One near-infrared (NIR) band looks 
both nadir and backward creating stereo-view from a single pass. IKONOS and QuickBird 
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are both high-resolution satellites, with a spatial resolution in panchromatic mode of 0.61 and 
1.00-m respectively, and 2.44 and 4.00-m in multispectral mode. AVHRR (Advanced Very 
High Resolution Radiometer) has five bands in 1.1-km resolution and has been flown on 
many platforms, including TIROS-N (Television Infrared Observation System) and several 
NOAA-satellites (National Oceanic and Atmospheric Administration). 

The start of spaceborne imaging radar instruments was in 1978 with the SAR 
(synthetic aperture radar) onboard SEASAT, operating in L-band (23.5-cm wavelength) 
during 105 days only. For erosion studies, only five SAR sensors have been applied, which 
were flown on ERS-1 and 2, JERS-1, RADARSAT-1, and ENVISAT respectively. In 1991 
ERS-1 was launched with onboard the Active Microwave Instrument (AMI) operating in C-
band (5.7-cm wavelength). The SAR image mode of AMI acquired data at 30-m resolution. 
ERS-2 flies the same instrument and has been operational from 1995 till present. JERS-1 
(Japanese Earth Resources Satellite) flew an 18-m resolution L-band SAR (23.5-cm 
wavelength), recording data from 1992 to 1998. RADARSAT-1 has acquired C-band SAR 
data since 1995 and has the possibility of using a variety of incidence angles (between 20 and 
49°) and different resolutions (between 10 and 100-m). The Advanced SAR (ASAR) onboard 
ENVISAT, launched in 2002, also has the possibility of using several incidence angles 
(between 15 and 45°). Besides, its C-band SAR can transmit and receive radar pulses both in 
horizontal and vertical polarization, which refers to the plane in which the electromagnetic 
wave is propagating. Spatial resolutions of ASAR are approximately 30-m, 150-m, or 1 km, 
depending on the mode used. 

Furthermore, a number of short-duration Space Shuttle flights have flown earth-
observation instruments. Only two of them have been used for erosion studies, being MOMS-
2, and SIR-C/X-SAR. MOMS-2 (Modular Optoelectronic Multispectral Scanner) is an 
optical sensor that was flown in 1993. It has four multispectral bands in the VNIR range at 
13.5-m resolution, a panchromatic band having 4.5-m resolution, and two panchromatic 
stereo bands (backward and forward looking) at 13.5-m resolution. SIR-C/X-SAR is a joint 
instrument consisting of SIR-C (Shuttle Imaging Radar-C) and X-SAR, which was flown two 
times in 1994. SIR-C provided multi-polarization L- and C-band SAR imagery and X-SAR 
simultaneously X-band (3.1-cm wavelength) mono-polarized SAR imagery with 
approximately 30-m resolution. 
 
 

2.3 Erosion detection 
Satellite data can be applied to directly detect erosion or to detect erosion consequences. 
Direct detection has been achieved through identification of individual large erosion features, 
discrimination of eroded areas, and assessment of erosion intensity based on empirical 
relations. Detectable effects include the damage occurred due to major erosion events, and 
the sedimentation of reservoirs. 
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2.3.1 Detection of erosion features and eroded areas 

Although the mapping of erosion features is an important application of aerial photography, 
the limited spatial extent of the features often inhibits its detection using satellite imagery. 
Spatial resolutions such as offered by Landsat and SPOT imagery can at best be applied for 
identification of individual large and medium sized gullies (Langran, 1983; Millington and 
Townshend, 1984) and do not allow gully growth analysis with sequential imagery (Bocco 
and Valenzuela, 1993). For large gullies in Central Brazil, Vrieling and Rodrigues (2004) 
found that optical ASTER imagery provided better description of gully shape than ENVISAT 
ASAR data, when compared to a QuickBird image. With the current availability of high-
resolution satellites such as IKONOS and QuickBird, options for detecting and monitoring 
individual small-scale features have increased, although not yet reported in literature.  

Instead of detecting individual erosion features, satellite data have been effectively 
applied for assessing eroded areas. Extensive areas suffering gully erosion (i.e. badlands) 
have been mapped with visual interpretation techniques on optical image composites of 
different sensors (e.g. Bocco et al., 1991; Dwivedi et al., 1997b; Kumar et al., 1996). In some 
cases erosion classes could be separated based on vegetation cover derived as well from 
visual interpretation (Dwivedi and Ramana, 2003; Sujatha et al., 2000) or vegetation and 
topographic characteristics derived from additional data sources (Yuliang and Yun, 2002). 
The delineation of eroded areas on multi-temporal images allowed an assessment of its 
increase (Fadul et al., 1999; Sujatha et al., 2000). Karale et al. (1988) performed a bi-
temporal comparison using aerial photos and Landsat TM imagery. Although a clear increase 
of eroded lands was found, aerial pictures allowed for a better differentiation of ravine types 
than satellite imagery. 

An alternative for visual interpretation techniques is the automatic extraction of 
eroded lands from satellite imagery. Serveney and Prat (2003) applied an unsupervised 
classification algorithm to multispectral SPOT HRV data to distinguish four stages of 
erosion. Floras and Sgouras (1999) used the maximum likelihood classifier after principal 
component analysis of Landsat TM imagery to separate one erosion class. Bocco and 
Valenzuela (1988) applied the same classifier for multispectral Landsat TM and SPOT HRV 
images to discern several erosion and vegetation classes. They found that the higher-
resolution SPOT data performed better in classifying eroded areas, but that the larger number 
of spectral bands of Landsat TM resulted in a better classification of land cover and land use. 
Dwivedi et al. (1997a) also found that SPOT HRV was better in classifying eroded lands than 
Landsat TM and MSS, but they did not use all TM bands for classification. Metternicht and 
Zinck (1998) performed a maximum likelihood classification on Landsat TM, and on the 
combination of Landsat TM with JERS-1 SAR data. They achieved highest classification 
accuracy using the combination of both images.  

Besides classification techniques, direct correlation between erosion and spectral 
reflectance values sometimes permits the detection of erosion and the mapping of its 
intensity. Price (1993) found high correlation between reflectance values of single Landsat 
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TM bands, especially band 4 (NIR), and erosion rates for pinyon-juniper woodlands. Erosion 
rates were determined from the distance between the ground level and a string that was 
stretched between the base of two adjacent tree trunks, assuming a stable surface level at the 
trunks. For arid rangelands in Australia, Pickup and Nelson (1984) successfully distinguished 
eroding, stable, and depositional areas using the data space defined by the 4/6 and 5/6 band 
ratios of Landsat MSS imagery (corresponding to green/NIR and red/NIR respectively). They 
stressed that the method is dependent on the relation between erosion status and vegetation 
cover, and is not suitable for humid climates. Pickup and Chewings (1988) used the same 
approach in combination with autocorrelation functions to predict changes in patterns of 
erosion and deposition. Beaulieu and Gaonac’h (2002) describe a more complex method 
involving Fourier scaling and multifractal analysis of Landsat TM and ERS-1 SAR imagery, 
which allowed for separating eroding surfaces in Ethiopia.  

Changes of surface states can supply direct information on erosion occurrence. A 
great variety of methods for change detection from satellite imagery exists (Coppin et al., 
2004). Studies that relate changes merely to soil properties will be described in Section 2.4.2. 
Albedo differences between different Landsat MSS passes allowed identification of soil 
degradation and erosion areas in arid and semi-arid environments of the USA (Frank, 1984a, 
b; Robinove et al., 1981). Dhakal et al. (2002) showed that the methods of spectral image 
differencing, principal component analysis, and spectral change vector analysis on bi-
temporal Landsat TM imagery all resulted in a proper detection of erosion and flooded areas 
resulting from an extreme rainfall event, when compared to a field survey of affected and 
non-affected areas.  

Repeat-pass SAR interferometry is a special change detection technique (Massonnet 
and Feigl, 1998; Rosen et al., 2000). It uses the amplitude and phase information of two SAR 
scenes having a very similar viewing geometry and a certain time lag. Although digital 
elevation model (DEM) extraction and slight deformation measurements are among the 
application areas, derived interferometric coherence imagery has most potential for erosion 
detection. Coherence between two radar signals is high when the land surface characteristics 
are very similar on both recording dates. Random surface changes as caused by erosion result 
in temporal decorrelation. Spatial decorrelation effects due to differences in satellite paths 
can be partly accounted for using the ratio between two coherence images (Lee and Liu, 
2001). However, vegetation and soil moisture changes are also a major cause of decorrelation 
(e.g. Vrieling and Rodrigues, 2004; Wegmüller et al., 2000), which confines erosion 
detection with coherence imagery to (semi-)arid environments. In Mediterranean sites, ratio 
coherence imagery derived from ERS SAR data has been effectively applied to detect erosion 
(Lee and Liu, 2001; Liu et al., 2001; Liu et al., 2004). For an extreme glacier flooding event 
in Iceland, Smith et al. (2000) applied interferometric decorrelation to assess unstable areas 
that were related to erosion and deposition. Wegmüller et al. (2000) separated erosion classes 
in the Death Valley (USA) using coherence imagery in combination with backscatter values. 
A relation was found between erosion activity and degree of coherence. In spite of erosion 
detection possibilities, most authors stressed the need to integrate coherence imagery with 
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additional spatial data, like optical imagery, because of the multiple causes of temporal 
decorrelation. 

For extreme events, the extraction of multi-temporal DEMs using SAR interferometry 
offers possibilities to assess erosion and deposition volumes, as demonstrated by Smith et al. 
(2000). They created DEMs from pre-flood and post-flood interferometric ERS tandem pairs, 
and by subtraction they were able to assess volumes of erosion and deposition. Because of 
height accuracy DEM subtraction is limited to areas that experience at least 4-m net erosion 
or deposition. 
 

2.3.2 Detection of erosion consequences 

Erosion is a process that transports soil particles. At downstream locations, both the transport 
and the deposition of soil material often cause undesired effects. Izenberg et al. (1996) 
determined the loss of agricultural land due to the extreme flooding of the Missouri River in 
1993 with Landsat TM and SPOT HRV imagery. Thickness of deposited sand could be 
assessed with SIR-C L-band, as field data revealed a correlation between the sediment 
thickness and vegetation on deposition areas. Khan and Islam (2003) used multi-temporal 
Landsat data to investigate the dynamics of the Brahmaputra-Jamuna River, which is greatly 
influenced by the heavy sediment load originating from erosion in the Himalayas. However, 
most studies that have applied satellite imagery to assess erosion consequences focus on 
reservoirs and lakes, where sediments create important economic and ecological impacts.  

Sedimentation volumes have been estimated for Indian reservoirs using multi-
temporal IRS LISS-2 and LISS-3 imagery (Goel and Jain, 1996; Goel et al., 2002; Jain et al., 
2002). Images were selected of a year with maximum variation in the reservoir water level. 
For different image dates, water-spread areas at varying depths were extracted using simple 
classification algorithms. Reservoir capacity was then calculated with geometric equations 
and compared with the original capacity to determine sedimentation volumes. A drawback of 
the approach is that capacities can only be determined in the water fluctuation zone. 
Comparison with a hydrographic survey showed a slight overestimation of sedimentation 
rates, which was attributed to confusion between water and land pixels at the reservoir 
periphery (Jain et al., 2002).  

Erosion influences the water quality of downstream lakes and reservoirs. The 
suspended sediment concentration is the most important water quality parameter for erosion 
studies (Ritchie and Schiebe, 2000). Reflectance from surface water in the visible and infra-
red domain is positively influenced by suspended sediments (Ritchie et al., 1976). Many 
studies found significant relationships between in situ determined suspended sediment 
concentration of inland water bodies and atmospherically corrected spectral reflectance 
derived from satellite remote sensing data, such as Landsat (e.g. Carpenter and Carpenter, 
1983; Harrington-Jr. et al., 1992; Nellis et al., 1998), IRS LISS-1 (e.g. Choubey, 1998), and 
multispectral SPOT HRV (e.g. Chacontorres et al., 1992). The optimal wavelength to 
determine these relations depends on the sediment concentration (Curran and Novo, 1988; 
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Ritchie and Cooper, 1991), but often used spectral bands are between 500 and 800 nm 
(within VNIR range). Because sediment characteristics, like texture and colour, influence the 
water reflection (Han and Rundquist, 1996; Ritchie et al., 1989), developed empirical 
relationships are not easily transferable to other regions where erosion entrains different 
sediment types. To increase transferability, Schiebe et al. (1992) developed a theoretically-
derived exponential equation for a wide range of sediment concentrations, which also 
attempted to account for chlorophyll and algal influences. However, until present a universal 
equation does not exist, and most models of suspended sediment are site-specific (Liu et al., 
2003). Detailed reviews of remote sensing for water quality assessment, including suspended 
sediments, are provided by Dekker et al. (1995), Ritchie and Schiebe (2000) and Liu et al. 
(2003). A combination of suspended sediment equations and a remote sensing based 
identification of water bodies across the landscape, was proposed by Ritchie et al. (1987) to 
assess areas with high soil erosion rates, and concentrate soil conservation efforts. However, 
practical applications of this approach have not been found in literature. 
 
 

2.4 Erosion controlling factors 
Most remote sensing studies of soil erosion concentrated on the assessment of erosion 
controlling factors. Especially soil and vegetation attributes have often been determined with 
satellite data, and to a lesser extent topography and management. Here, only studies that 
determined these attributes in relation to erosion processes are treated. The climate factor is 
not discussed, as no satellite applications were found in literature for assessing rainfall 
characteristics in erosion studies. Rainfall gauges are generally used for this purpose, 
although Mannaerts and Saavedra (2003) propose the use of large-scale precipitation data 
derived from the Tropical Rainfall Measuring Mission (TRMM), which is the first satellite 
system with a precipitation radar.  
 

2.4.1 Topography 

To study the effect of topography on erosion, landforms have been discriminated on the basis 
of visual interpretation of e.g. Landsat image composites (Khan et al., 2001; Mitchell, 1981). 
However, current spatial erosion models nearly always require DEM input for the assessment 
of slope characteristics. Traditionally such DEMs have been obtained from contour lines on 
topographic maps, or less frequently from stereo aerial photography. Nowadays, various 
options exist to extract good quality DEMs (vertical accuracy < 20-m) from satellite data, 
such as stereo optical imagery provided by SPOT and ASTER (Toutin and Cheng, 2003) or 
SAR imagery (Toutin and Gray, 2000). SAR interferometric processing of the Shuttle Radar 
Topography Mission (SRTM) data, provided readily available DEMs for land areas between 
60 degrees northern and 57 degrees southern latitude (Rabus et al., 2003). 
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Few researchers have applied DEMs derived from satellite data for erosion studies. 
Khawlie et al. (2002) calculated slope gradient from an ERS SAR interferometric DEM. Also 
ERS SAR interferograms, an interferometric product obtained before the DEM construction 
step, have been used directly for slope extraction (Liu et al., 2000). SPOT HRV derived 
DEMs were used to aid visual interpretation of erosion features (Bishop and Shroder-Jr., 
2001) and to extract slope and topographic curvatures (Haboudane et al., 2002). Stereo-data 
of MOMS-2 allowed DEM extraction and subsequent calculation of slope length and gradient 
(Reusing et al., 2000). Applications of ASTER and SRTM derived DEMs for erosion studies 
have not been found yet in peer-reviewed literature, although it is probable that this already 
happens at the institution level.  
 

2.4.2 Soil 

Soils differ in their resistance to erosion, which is a function of a range of soil properties such 
as texture, structure, soil moisture, roughness, and organic matter content. The susceptibility 
of soil to erosion agents is generally referred to as soil erodibility (Lal, 2001). Soil 
classifications are often used to account for spatial differences in erodibility. Important 
factors on the basis of which soils can be classified include soil properties, climate, 
vegetation, topography, and lithology. These factors can be potentially mapped with satellite 
remote sensing (McBratney et al., 2003). Especially optical satellite imagery has been used 
for soil mapping, mainly through visual delineation of soil patterns (Dwivedi, 2001). To use 
visual interpretation techniques, detailed knowledge on the relationship between observable 
terrain characteristics and the occurrence of soil units is required. Such knowledge can be 
formalized in clear criteria, like those used for the creation of the Soils and Terrain digital 
databases SOTER (Van Engelen and Wen, 1995; Van Lynden and Mantel, 2001). Soil 
classification by visual interpretation of optical satellite imagery has been used to assess 
differences in soil erodibility (Reusing et al., 2000; Sharma and Singh, 1995). The relation 
between soil classes and erodibility was determined using equations of Wischmeier and 
Smith (1978).  

Wang et al. (2003) used the same equations to determine erodibility in the field. The 
obtained erodibility values were extrapolated to the whole sampling region using two 
geostatistical methods, collocated co-kriging and joint sequential co-simulation. Within these 
methods, Landsat TM band 7 allowed for reproducing the spatial variability of the 
erodibility. The success of this mapping must be contributed to the existence of a clear link 
between natural vegetation and soil types in the studied area. When this link is clearly 
present, spatial variability of erodibility will probably be better represented than when 
assigning erodibility values to a soil classification. 

Topsoil characteristics influence the soil surface colour, and thus spectral reflectance 
curves. Significant relationships were found between soil colours defined by the Munsell 
system and optical satellite imagery (Escadafal, 1993; Singh et al., 2004). Various soil 
properties affect the soil’s spectral reflectance, such as soil texture, organic matter content, 
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moisture content, iron oxides and soil minerals (Barnes and Baker, 2000; Dwivedi, 2001; 
Escadafal, 1994). This can be a limitation for the study of one particular property, but surface 
states may be classified when one or more topsoil properties affect its spectral reflectance. 
These surface states can then be related to run-off and erosion potential using field 
measurements (Gardner and Duffy, 1985). Surface state conditions that are important for 
erosion are surface crusting and the uncovering of subsoil. Crusted soil can sometimes have 
distinct spectral properties as compared to uncrusted soil, due to an increase in clay particles 
at the soil surface, and a decrease of surface roughness (Ben-Dor et al., 2003; Escel et al., 
2004), but this is largely dependent on the crust type and soil type. Satellite applications 
using this relation for erosion assessment are limited to analysis of crust dynamics of bare 
soil surfaces for Northern France with multi-temporal SPOT HRV imagery (King et al., 
1989; Mathieu et al., 1997). Apart from crusting, the gradual uncovering of subsoil by 
erosion also results in detectable spectral changes. When these changes are well known, 
optical satellite data allows spatial and temporal assessment of erosion status (Latz et al., 
1984; Pelletier and Griffin, 1985, see also Section 2.3.1).  

A difficulty in measuring topsoil reflectance with satellite data is the disturbing 
influence of vegetation, which greatly limits satellite-based soil studies for temperate and 
humid areas, unless agricultural practices leave the soil bare periodically. To separate the soil 
from the vegetation signal, a common used technique in (semi-) arid environments is linear 
spectral unmixing (Adams et al., 1986; Smith et al., 1990). In this technique, spectral 
reflectance signatures are modelled as a linear combination of a few prototype spectra, called 
endmembers. It is assumed that the spectral variation in remote sensing images is caused by 
mixtures of a limited number of surface materials, which have sufficient spectral contrast, 
allowing their separability. As long as the number of endmembers does not exceed the 
number of spectral bands minus one, a unique solution is obtained for the relative 
endmember abundance per pixel. Disturbing influences for soil assessment as caused by 
vegetation and shade can thus be accounted for (Adams et al., 1989; Hill, 1993). Knowing 
the regional soil types and their respective climax and degradation forms in combination with 
their spectral characteristics, spectral unmixing allows erosion assessment (Hill et al., 1995a). 
When the top layer of the soil is removed by erosion, the volume of organic matter and iron 
oxides decreases, and gradually rock becomes visible at the surface (De Jong et al., 1999). 
Hence, spectral unmixing has been used for erosion status mapping with Landsat TM 
imagery (e.g. De Jong et al., 1999; Haboudane et al., 2002; Hill and Schütt, 2000; 
Metternicht and Fermont, 1998). Changes in erosion status were analyzed with multi-
temporal imagery for a site in Greece and showed an increase of erosion between 1985 and 
1990 (Hill et al., 1995a; Hill et al., 1995b).  

Soil properties that can be assessed with SAR systems are surface roughness, soil 
moisture, and texture (Ulaby et al., 1978; Ulaby et al., 1979). Although many studies 
addressed the soil moisture assessment by SAR, satellite-based assessment is still very 
complicated (Walker et al., 2004). Even at locations with bare soil, there is a confusing 
influence of surface roughness conditions and soil moisture on radar backscatter (Davidson et 
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al., 2000) and the two effects cannot be separated without additional information (Colpitts, 
1998). Nevertheless, several authors claimed success in representing spatial and temporal soil 
moisture variability when good land use information is available (e.g. Löw et al., 2004; 
Quesney et al., 2000). For erosion studies, few authors have used SAR to assess roughness 
and moisture properties. To identify run-off risks in vineyards in southern France, Remond et 
al. (1999) identified the periodic and stable surface roughness of agricultural areas with 
multi-temporal ERS-1 imagery. Baghdadi et al. (2002) classified surface roughness to 
determine run-off potential of bare soils in northern France. They found that RADARSAT-1 
imagery with a high incidence angle (47º) performed better for roughness classification than 
images with incidence angles of 39º (RADARSAT-1) and 23º (ERS-1). 
 

2.4.3 Vegetation 

Vegetation cover provides protection of the soil against erosion processes. To account for 
vegetation in erosion assessments, a cover and management factor (C-factor) has often been 
used. The C-factor is defined as the ratio of soil loss from land cropped under specified 
conditions to the corresponding clean-tilled continuous fallow (Wischmeier and Smith, 
1978). In many regions of the world, vegetation cover shows a high temporal dynamics. 
Long-term dynamics relate to e.g. land use conversions or gradual depletion of resources. 
Short-term dynamics are caused by rainfall characteristics, and by human activities such as 
crop harvesting or burning practices. Many satellite remote sensing studies of soil erosion 
focus on the assessment of vegetation cover. These studies need to account somehow for the 
temporal variation, and consequently image timing is highly important, although not always 
sufficiently highlighted. Depending on the purpose of the study, sometimes a mono-temporal 
assessment can be sufficient. However, especially for physically-based models (see Section 
2.5.1) careful matching of satellite imagery with rainy periods and crop development is 
required, which demands a time series of remote sensing images to account for seasonal 
variability (e.g. Cyr et al., 1995).  

Land use classification is often used to map vegetation types that differ in their 
effectiveness to protect the soil. After classification, a qualitative ranking of vegetation types 
is made, or C-factors are assigned from reported values in literature (e.g. Morgan, 1995; 
Wischmeier and Smith, 1978). In most cases seasonal crop dynamics are accounted for 
within the classification, because an average annual C-factor is assigned. For erosion studies, 
land use classification has been performed with optical satellite systems through visual 
interpretation of image composites (e.g. Khan et al., 2001; Mati et al., 2000; Sharma and 
Singh, 1995) or automated classification approaches. The most common ones are 
unsupervised classification, in which pixels are grouped according to their relative spectral 
similarity (e.g. Feoli et al., 2002; Jakubauskas et al., 1992) and supervised classification, 
where pixels are allocated to predefined classes that are generally established based on 
ground-truth data (e.g. Jürgens and Fander, 1993; Millward and Mersey, 1999; Pelletier, 
1985). The mentioned classification techniques can also be combined. Folly et al. (1996) 
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performed a visual interpretation of a Landsat TM composite to classify main cover types. 
Subsequently a fine-tuning within each class was achieved with a supervised classification. 
Several authors applied hybrid unsupervised-supervised approaches (e.g. Bhuyan et al., 2002; 
Fraser et al., 1995; Vaidyanathan et al., 2002). Due to seasonal changes of some vegetation 
classes, classification of multi-temporal imagery can improve the classification accuracy 
(Müschen et al., 2001). Details on the accuracy assessment of land use classifications are 
given by Foody (2002). Although SAR systems allow land use classification (e.g. Brisco and 
Brown, 1998) and other classification approaches exist such as neural networks (e.g. Miller et 
al., 1995), no studies were found in literature that relate this to erosion assessment.  

To decrease the influence of classification errors and account for within-class 
variability, direct linear regression has been performed between image bands or ratios and C-
values determined in the field. For agricultural lands in New Brunswick, Canada, good 
relationships were obtained between C-values and band ratios of NIR to red reflection 
(Cihlar, 1987; Stephens and Cihlar, 1982). In a mixed savannah-woodland landscape in 
Texas, Gertner et al. (2002) found a high correlation between Landsat TM band ratio 3/4 (red 
over NIR) and vegetation attributes. They mapped C-factors with the technique of joint 
sequential co-simulation, in which the band ratio accounted for the spatial variability of 
vegetation attributes (secondary variable), while field data provided the attribute values 
(primary variable). In the same study area, Wang et al. (2002) used Landsat image ratio 
(TM3 + TM7 / TM4), which gave higher correlation with directly calculated C-values from 
the field. Wang et al. (2003) applied Landsat TM band 7 as a secondary variable, because 
they jointly mapped erodibility and C-values, for which band 7 gave optimal correlation. 
While comparing different C-factor mapping techniques for this area, joint sequential co-
simulation with a Landsat TM image outperformed classification, regression of C-values 
against image ratios, collocated co-kriging, and co-simulation without a Landsat TM image 
(Wang et al., 2003; Wang et al., 2002).  

Vegetation indices are a specific class of spectral band ratios. A wide range of such 
indices exists. Often they exploit the fact that green vegetation has high reflectance in the 
NIR and low reflectance in the red part of the spectrum. A common index is the normalized 
difference vegetation index (NDVI), which is defined as the NIR reflection minus red 
reflection divided by the sum of the two (Tucker, 1979). NDVI has been used directly as an 
indication of the protective cover of vegetation (Gay et al., 2002; Jain and Goel, 2002; Liu et 
al., 2000; Thiam, 2003) or was related to vegetation cover with regression analysis (Bhuyan 
et al., 2002; Symeonakis and Drake, 2004; Zhang, 1999). De Jong (1994b) concluded that the 
relationship between Landsat derived spectral indices and vegetation attributes was quite 
poor for Mediterranean France, but he still applied the NDVI for C-factor estimation in later 
works (De Jong et al., 1999; De Jong and Riezebos, 1997). Such poor relationships can also 
partly be explained by the methodological difficulties in precisely assessing the proportional 
vegetation cover in the field (Hill et al., 1995a; Zhou et al., 1998). Due to seasonal variability 
it is often highly important for which date a vegetation index is calculated, and for most 
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environments a carefully chosen time series of satellite images is required to reliably estimate 
the vegetative soil protection (e.g. De Jong et al., 1999). 

Main problems with indices like the NDVI are the effect of soil reflectance 
(Escadafal, 1994, Section 2.4.2) and the sensitivity to the vitality of the vegetation (De Jong, 
1994b; Frederiksen, 1993). To account for soil reflectance, several soil adjusted vegetation 
indices have been developed, like the transformed soil adjusted vegetation index TSAVI 
(Baret and Guyot, 1991). Cyr et al. (1995) showed that TSAVI performed better for the 
assessment of low vegetation covers than NDVI. Negative TSAVI values have been related 
to potentially degraded areas (Flügel et al., 2003; Hochschild et al., 2003). However, soil 
adjusted indices have difficulty in accounting for spatially variable soil types (Hill et al., 
1994a). The main vegetation vitality effects are during early growth stages, when thin 
vegetation covers are often over-estimated by vegetation indices due to intense chlorophyll 
activity, and during vegetation senescence when vegetation indices usually decrease even 
when the cover remains the same (Cyr et al., 1995). For erosion processes, vegetation 
condition is of minor importance however, as senescent vegetation offers the same protection 
to the soil as vigorous vegetation. To improve the detection of dry vegetation, Bonn et al. 
(1997) proposed to combine SWIR and NIR reflection in a soil adjusted crop residue index 
(SACRI). Spectroradiometer studies support the use of SWIR reflection for separating crop 
residue from soils (e.g. Daughtry et al., 2004; Nagler et al., 2000). French et al. (2000) 
showed that senescent vegetation can be distinguished from bare soil using TIR emissivity in 
combination with NDVI, which is currently possible with the ASTER sensor on the Terra 
satellite. Bhuyan et al. (2002) avoided vegetation indices for separating wheat-stubble areas, 
but related ground data on crop residue to classes obtained by unsupervised clustering 
instead.  

Linear spectral unmixing is an alternative technique for assessing the vegetation cover 
(see Section 2.4.2). This technique is mainly used in (semi)-arid environments, where it has 
the advantage that different soil characteristics within a scene can be accounted for. Using the 
green vegetation spectrum as an endmember, spectral unmixing permits an estimation of 
percentage green cover (e.g. De Jong et al., 1999; Haboudane et al., 2002; Hill, 1993). In this 
way, Zhang et al. (2002) determined green vegetation cover at different spatial scales using 
aerial photographs, Landsat TM and AVHRR imagery. Ma et al. (2003) related the derived 
vegetation cover from unmixing Landsat data to the C-factor using a log-linear relation. To 
account for distinct spectral properties of vegetation types, Paringit and Nadaoka (2003) 
automatically retrieved the vegetation endmember from a field-survey based land use map 
before applying the unmixing procedure, assuming no mixing of vegetation types per pixel. 
Hill et al. (1995a; 1995b) proposed that possible endmembers can include non-photosynthetic 
vegetation, like senescent vegetation or leaf litter. Bonn et al. (1997) stated that for such 
vegetation, SWIR spectral bands are required, and thus Landsat TM is more appropriate than 
SPOT (HRV) satellites. Asner and Heidebrecht (2002) effectively assessed non-
photosynthetic vegetation cover with spectral unmixing. To assess the protection effect to 
erosion of crop residues, Biard and Baret (1997) proposed the algorithm CRIM (crop residue 
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index multiband) which is based on spectral unmixing of soil and residue spectra. Using field 
radiometric measurements, they achieved better estimates for residue cover with CRIM than 
with the vegetation index SACRI. As the crop residue spectrum tends towards the soil 
spectrum with progressive aging, the residue fraction can best be determined soon after 
harvest. Using Landsat data, CRIM also performed better than indices like SACRI in 
assessing maize and wheat residue fractions on clayey and silty soils in Quebec (Arsenault 
and Bonn, 2005). 
 

2.4.4 Conservation practices and tillage 

Especially in agricultural areas, conservation practices such as contouring, strip cropping, or 
terracing, reduce soil losses. The effectiveness of such practices is often analyzed with a 
support practice factor (P-factor), defined as the ratio of soil loss with the practice applied 
and up- and downslope cultivation (Wischmeier and Smith, 1978). P-values have been 
assigned to land use classes that were derived from a classification of remote sensing 
imagery, using literature values (Lee, 2004) or expert opinion (Bhuyan et al., 2002) for 
practices that commonly occur for the land use class in the studied area. Interpretation of 
aerial photographs allows the detection of many conservation measures, but with coarse 
resolution Landsat MSS data this becomes problematic (Langran, 1983). Nevertheless, 
Pelletier and Griffin (1985) managed to successfully detect several conservation measures 
with Landsat MSS and TM imagery. Still, there have been few studies on the detection of 
conservation practices with satellite remote sensing. 

An exception to this is the detection of tillage practices with satellite imagery. Tillage 
practices differ in their effect on surface roughness and amount of crop residues, which forms 
the basis of their detection (see also Section 2.4.2 and 2.4.3). Image timing is very important, 
because tillage operations are performed during a specific time of the year. DeGloria et al. 
(1986) performed visual interpretation of 5-year Landsat MSS data to monitor land under 
conventional and conservation tillage practices in California. Various authors used logistic 
regression techniques to separate tillage practices in Landsat imagery (Bricklemyer et al., 
2002; Gowda et al., 2001; Van Deventer et al., 1997). Although several band combinations 
were used in the different studies, all authors included TM band 5 (SWIR), which has been 
related to crop residue (Section 2.4.3).  

In temperate regions, cloud cover restricts acquisitions of optical imagery at the time 
of tillage. Therefore, SAR data has been used for assessing tillage, mainly because the radar 
return is dependent on surface roughness. To assess the effect of autumn tillage on erosion in 
Norway, ERS-1 SAR imagery allowed a good separation of grain stubble and ploughed 
fields, whereas SPOT HRV imagery performed worse (Leek and Solberg, 1995; Solberg, 
1992). Using RADARSAT imagery, McNairn et al. (1998) separated classes with different 
erosion potential based on the effect of residue cover and tillage operations on radar return. 
They stress that multi-temporal or multi-polarization SAR imagery is required for effective 
class separation. As radar return depends on other factors than those affected by tillage, such 
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as soil moisture and vegetation density, assessment of tillage practices is not always 
straightforward. For example, effects of tillage row direction on radar backscatter have found 
to be as significant as the differences between tillage implements for grain stubble fields 
(Brisco et al., 1991). Moran et al. (2002) demonstrated that integration of optical and SAR 
imagery provides more information on tillage and other surface characteristics than the 
separate analysis of both data sources. 
 
 

2.5 Data integration for erosion mapping 
Many rationales exist for the mapping of soil erosion. A first step in erosion mapping is the 
definition of clear objectives on the type of assessment, the extent of the region, the spatial 
integration level, and temporal aspects. A general used level of spatial integration is a pixel, 
but also hydrological catchments may be used. Temporal aspects refer to the assessment of 
either past, actual, or predicted erosion, to events versus long-term averages, and to the 
mono- versus multi-temporal assessment.  

Remote sensing data assist erosion mapping through direct erosion detection (Section 
2.3) or through the use of erosion controlling factors (Section 2.4). With detection, multiple 
explanations may exist for certain image characteristics, which could be accounted for with 
additional data sources. Using erosion controlling factors, a framework for integrating the 
different factors is required to map erosion. In many cases, only one factor (e.g. vegetation) is 
assessed with satellite imagery, and other factors are derived from additional data. The choice 
for a specific integration method depends highly on the mapping objectives. A common way 
of integrating erosion controlling factors is through the use of erosion models, although other 
more qualitative approaches exist. Such qualitative approaches may include erosion detection 
results within the framework. To assess the accuracy of the produced maps, validation with 
independent data is required, which can be obtained from field measurements, surveys, and 
high-resolution imagery. 

 

2.5.1 Erosion models 

A large number of erosion models exists, which can be divided in empirical models and 
physically-based models (Morgan, 1995). Empirical models have a statistical basis, whereas 
physically-based models intend to describe the acting processes on a storm event basis. 
Nevertheless, many models contain both empirical and physically-based components. A 
recent review of several current erosion models is provided by Merritt et al. (2003). Satellite 
imagery has the potential to provide regional spatial data for several input parameters of 
erosion models (e.g. King and Delpont, 1993; Pelletier, 1985). However, most published 
studies merely use optical satellite data to assess the vegetation component (see Section 
2.4.3). Additional spatial data is generally extracted from rainfall gauges, readily available 
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soil maps and DEMs, topographic maps, aerial photographs, and field measurements. 
Conservation practices are sometimes considered, but usually assumed not present. 

The most widely used model is the Universal Soil Loss Equation (USLE), which is an 
empirical model assessing long term averages of sheet and rill erosion, based on plot data 
collected in eastern USA (Wischmeier and Smith, 1978). The USLE and adapted versions 
(RUSLE: Renard et al., 1997; MUSLE: Smith et al., 1984) have been applied to various 
spatial scales and region sizes in different environments worldwide. USLE applications in 
which satellite imagery accounted for the vegetation component have been performed for a 
small hydrological catchment of about 2.5 km2 in size (Jürgens and Fander, 1993), areas 
between 10 to 100 km2 (Fenton, 1982; Fraser et al., 1995; Lee, 2004; Millward and Mersey, 
1999; Reusing et al., 2000), between 100 and 500 km2 (Anys et al., 1994; Baban and Yusof, 
2001; Bonn et al., 1997; Cihlar, 1987), large watersheds of more than 10,000 km2 (Cerri et 
al., 2001; Ma et al., 2003; Mati et al., 2000), the country scale for Morocco (Gay et al., 2002) 
and to the European scale (CORINE, 1992; Van der Knijff et al., 2000). Most of these studies 
have not sufficiently realized that in different environments empirical relationships of the 
USLE may not be valid. Besides, the model is developed for evaluating sheet and rill erosion 
on short slopes. In larger regions also other erosion processes and deposition occur, which are 
not included in the USLE. Furthermore the data applied in these studies generally have a low 
spatial resolution (30-m to 1-km), which greatly affects soil loss estimates (e.g. Schoorl et al., 
2000). Ideally, the spatial scale of a model is in balance with the various erosion processes 
that occur in a specific region (Favis-Mortlock et al., 1996). These considerations also 
concern the application of other models, as many studies fail to provide a clear rationale why 
a specific model is selected. 

The only model which was developed with the intention to be used with satellite data 
is the Soil Erosion Model for Mediterranean regions SEMMED (SEMMED: De Jong, 
1994a). It is based on the Morgan, Morgan and Finney model (Morgan et al., 1984), but 
modifications were made to model the erosion process in a spatially distributed approach and 
to enable the input from satellite imagery and DEMs. SEMMED uses optical imagery to 
assess the crop cover factor (same as USLE C-factor) and the rainfall interception factor of 
vegetation at different moments. Multi-temporal Landsat TM imagery and additional data 
sources allowed the application of SEMMED to the Ardèche Province in France (De Jong 
and Riezebos, 1997), to a small watershed (12 km2) in the same area, and to a 4200-km2 
watershed in Sicily, Italy (De Jong et al., 1999). Although the model yields quantitative 
values, De Jong and Riezebos (1997) recommend to use model outcomes in a qualitative 
sense, thus to assess the spatial erosion pattern. 

Other models that have been used in combination with satellite data include the 
Thornes model (Thornes, 1985), the Agricultural Nonpoint Source Pollution model (AGNPS: 
Young et al., 1989), and the Areal Nonpoint Source Watershed Environment Response 
Simulation model (ANSWERS: Beasley et al., 1980). The Thornes model was applied with 
satellite-derived vegetation cover information at the continental scale for assessing annual 
erosion rates, both in a multi-scale approach with remote sensing data of different resolutions 
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(Zhang et al., 2002), and in a multi-temporal approach using AVHRR NDVI data 
(Symeonakis and Drake, 2004). The AGNPS model was used for predicting soil loss from 
several watersheds (33-1223 km2) within Kansas State (USA) employing a land use map 
derived from satellite data (Bhuyan et al., 2003; Bhuyan et al., 2002). ANSWERS allowed 
for the prediction of soil loss at the outlet of three watersheds (320-1020 km2) in the arid 
zone of northwest India (Sharma and Singh, 1995). Landsat TM data was used here to assess 
landform, drainage, soil, land use, and land cover. Paringit and Nadaoka (2003) compiled 
their own physical model from existing equations using a Landsat image to derive vegetation 
parameters. A combination of models was used by Flügel et al. (2003) for a 4400-km2 
catchment in South Africa. They first delineated terrain units having homogeneous process 
dynamics with aerial photography and a Landsat TM image. Depending on the relative 
importance of sheet and rill erosion versus gully erosion, the RUSLE and a gully erosion 
model were applied to estimate sediment yields. 
 

2.5.2 Qualitative methods 

Drawbacks of erosion models are the fixed data requirement, and the fact that models are 
developed for a certain region, scale, and specific processes. Often erosion rates are not 
required, but merely an indication of the spatial distribution of erosion, e.g. for conservation 
prioritization. Therefore, qualitative erosion mapping approaches have been developed, 
which are adapted to regional characteristics and data availability. Resulting maps usually 
depict classes ranging from very low to very high erosion or erosion risk. There is not a 
standard method for qualitative data integration, and consequently many different methods 
exist. However, common features are the classification of considered erosion controlling 
factors in discrete classes and the application of a decision rule to combine the classes. Factor 
selection and decision rules are generally based on expert judgment, or on the author’s 
personal knowledge of the regional erosion processes. 

The most basic qualitative approach is to assign weights to spatial units expressing 
the erosion intensity. This way, Khan et al. (2001) assigned a weighting to visually delineated 
units from a Landsat TM image. Multiplication with a sediment delivery ratio allowed the 
contribution of each watershed to sedimentation at a reservoir downstream. Instead of 
directly assigning weights to units, separate weights can be assigned to different erosion 
controlling factors according to their importance in the occurring erosion processes. Erosion 
risk has subsequently been determined from factor weights by summation (Jain and Goel, 
2002; Shrimali et al., 2001), averaging (Vrieling et al., 2002), and using hierarchical decision 
rules to combine the weights (Haboudane et al., 2002). Simple if-then decision rules were 
applied by Hill et al. (1994b) to combine soil status and vegetation cover information layers 
derived from spectral unmixing of Landsat TM data. The resulting index is related to erosion 
occurrence. Multi-temporal comparison of this index derived from images acquired in the 
same season but during different years would allow the assessment of further erosion, 
stability, or recovery (Hill et al., 1995b).  



Chapter 2 

 32

For semi-arid Spain, Liu et al. (2000; 2004) used multi-temporal SAR interferometric 
decorrelation images to detect candidate pixels for erosion. Areas vulnerable to rapid erosion 
were determined by applying fuzzy logic and multi-criteria evaluation to Landsat-derived 
lithology and vegetation information, and slope calculated from a SAR interferogram. Where 
the candidate pixels and vulnerable areas coincided, rapid erosion was expected. However, 
erosion on agricultural land cannot be accounted for with this approach. For a semi-arid part 
of Bolivia, Metternicht (1996) applied fuzzy logic to determine the degree of membership of 
a particular pixel to considered factors, including slope, landscape position, vegetation cover, 
rock fragments, reddish soil, and whitish soil, derived from a DEM, a geopedologic map, and 
spectral unmixing of Landsat TM data. The membership functions were translated to five 
classes from very low to very high expressing the erosion hazard. If-then decision rules 
subsequently combined the ranges for the different factors.  
 

2.5.3 Validation 

To evaluate the performance of a specific erosion mapping method and its predictive value, 
validation of resulting maps with independent data is required. Validation implies an 
assessment of the accuracy of the representation of spatial erosion patterns, and of erosion 
rates in the case of quantitative results. Obtaining spatial validation data for assessing the 
accuracy of erosion maps is a complicated task. Two major issues play a role: first, the 
considerable investment of time and money required to understand, assess and possibly 
quantify the local erosion processes; and second the difficulty of extrapolating local 
observations to larger areas (Stroosnijder, 2003). For example, a common measurement 
technique for quantification purposes is the collection of runoff and sediments from bounded 
plots. However, plot size has a considerable impact on measured sediment concentrations 
(Chaplot and Le Bissonnais, 2000) and results from plot replications can show high variation, 
which stresses the need for long-term measurements (Nearing et al., 1999). Several good 
summaries of field techniques for erosion assessment and measuring exist (e.g. Ciesiolka and 
Rose, 1998; Hudson, 1993; Loughran, 1989; Morgan, 1995). Here we will focus on 
techniques applied for validation in remote sensing studies of erosion. 

From the reviewed literature, it is striking that many studies have not or only slightly 
addressed the issue of validation. Some merely related the acquired range of quantitative 
erosion rates to measured or predicted values from literature, and were satisfied when values 
correlated (e.g. De Jong, 1994a; Reusing et al., 2000; Zhang et al., 2002). However, reported 
values of erosion rates should be treated carefully, as was pointed out by Boardman (1998). 
De Jong and Riezebos (1997) performed an internal validation of the SEMMED model, using 
a Monte Carlo approach to compute the effect of various sources of uncertainty on the model 
outcome. They found a large uncertainty in soil loss predictions, although the error 
contribution of remotely sensed vegetation parameters was relatively small. 

Erosion measurements were seldom used for validating satellite-based erosion 
assessments, which is partly due to the high time and labour requirement to perform these 
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measurements. Techniques that have been used include soil loss measurements from bounded 
plots (Mati et al., 2000); runoff measurement and sampling to determine sediment 
concentrations at the outlet of a watershed (Sharma and Singh, 1995); the assessment of 
sediment concentrations at the outlet using optical turbidity sensors (Paringit and Nadaoka, 
2003); and the evaluation of sediment accumulation in a reservoir through successive 
bathymetry campaigns (Bonn et al., 1997). 

The common output of satellite-based erosion assessment is a spatial map, which 
ideally requires validation at several locations. The above-mentioned measurements cannot 
be easily repeated at many locations. Spatial validation may however be done with Cesium-
137 measurements that were used by Bonn et al. (1997) to determine areas of erosion and 
deposition. More common though are erosion surveys, in which rill dimensions are measured 
(Cerri et al., 2001; Mathieu et al., 1997), or which are limited to a visual field estimation of 
erosion risk based on observed features and erosion factors that depend on the study region 
(e.g. Dwivedi et al., 1997b; Metternicht and Zinck, 1998; Millward and Mersey, 1999). 
  Besides erosion measurements and surveys, interpretation of high-resolution remote 
sensing imagery can also be used for validating erosion maps. Aerial photographs have been 
used to locate evidence of erosion or deposition, and this information provided good 
correlation with a data space defined by two Landsat MSS band ratios (Pickup and 
Chewings, 1988; Pickup and Nelson, 1984). Current availability of high-resolution satellites 
provides similar possibilities as aerial photography in detecting erosion features and thus 
providing validation data. Panchromatic QuickBird imagery was used to evaluate the 
potential of detecting and delineating large gullies with optical and SAR satellite imagery 
(Vrieling and Rodrigues, 2004). 
 
 

2.6 Conclusions and recommendations 
This review has shown that satellite remote sensing can contribute to erosion assessment in 
many ways. The effectivity of most methodologies presented largely depends on site 
characteristics. For semi-arid areas, many interesting techniques such as SAR interferometry 
and spectral unmixing of optical data were applied to assess erosion status. However, these 
techniques will only work under specific conditions and cannot be transferred easily to more 
humid environments. In these environments, satellite applications were mostly limited to the 
assessment of vegetation class and cover. Recent and future satellite missions will 
continuously provide new possibilities for erosion research and assist in filling current gaps. 
Some of the major observation-related gaps are (1) the automatic detection of individual 
erosion features like gullies or medium-sized rills; (2) the accurate assessment of senescent 
vegetation cover in different environments; (3) the spatial and temporal evaluation of rainfall 
characteristics; (4) precise mapping of soil properties and soil moisture in a wide range of 
environments.  
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Due to the complexity of erosion processes, regional differences, and scale 
dependency, it cannot be expected that a standardized operational erosion assessment system 
using satellite data will develop in the near future. Furthermore the required erosion 
assessment type depends largely on the regional context and the intended use. Therefore no 
recommendations can be made for one single technique or a set of methods in erosion 
assessment. Instead, it is recommended for any erosion study that intends to use satellite data, 
to first thoroughly evaluate what are the observables that may be derived from different types 
of satellite imagery for the region and the scale required. For most cases, empirical relations 
will have to be developed, and thus field data on the variable to be observed is needed. 
Promising methods that deserve special attention and require additional testing include: (1) 
SAR interferometric decorrelation for erosion detection; (2) evaluation of differential 
suspended sediment across water bodies in a landscape; (3) the use of geostatistics for soil 
erodibility or C-factor mapping; and (4) spectral unmixing of optical data to assess soil and 
vegetation status. 

Satellite-derived vegetation information has been the most important input for erosion 
mapping approaches. For simple empirical models generally one well-timed image is 
sufficient, but for process-based models multi-temporal imagery is often needed to account 
for seasonal variability of vegetation cover. Qualitative erosion mapping methods are more 
flexible than models and can easily incorporate other satellite-derived information. For 
erosion mapping and monitoring, it is recommended to use qualitative approaches in the case 
that no model is available that was developed or tested in the region under study. Unless 
merely a quick identification of erosion risk is envisaged, a proper validation of presented 
results is always required, which currently is not or poorly done in many studies. Validation 
is essential for identifying methods that allow accurate mapping and monitoring of erosion. 
Long-term erosion field measurements and detailed field surveys are indispensable for this 
purpose, although costly and time-consuming. Close collaboration between the remote 
sensing community and field-based erosion scientists is therefore required, and accordingly 
forms the key towards achieving regional operational erosion monitoring systems. 
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3. Automatic identification of erosion gullies with 
ASTER imagery in the Brazilian Cerrados 

 
 

Abstract 
Gully erosion is a serious problem at many locations worldwide, but little is known about its 
importance at large spatial scales. The remote sensing contribution for the spatial assessment of 
gullies has thus far been confined to visual image interpretation. This study was conducted to 
determine whether automatic classification of optical ASTER imagery could accurately discern 
permanent erosion gullies in the Brazilian Cerrados. A maximum likelihood classifier (MLC) was 
trained with two classes, gullies and non-gullies, and applied to images of March (wet season) and 
August (dry season). Moreover, a bi-temporal classification was performed by labelling a pixel as 
gully when both for the March and August image it was classified as such. Validation was done with 
a gully map obtained from a panchromatic QuickBird image and field data. For mono-temporal 
classification, the March image performed much better than the August image, because spectral 
differences are more pronounced during the wet season. Based on spatial analysis of output maps, the 
bi-temporal classification performed best in identifying gullies, as user’s accuracy was above 90%, 
while two of 17 actual gullies were not detected and two small locations were erroneously identified 
as gully. The combination of ASTER bands 1, 2, 3, and 4 gave highest accuracies. It is concluded that 
accurate automatic identification of permanent gullies is possible with optical satellite data. Because 
the Cerrados occupy a vast area, it is expected that the approach presented could be applied to larger 
areas with similar characteristics. 
 
 

3.1 Introduction 
Erosion gullies are important sources of sediments in reservoirs, while they reduce 
agricultural land and form a threat to infrastructures like roads. Gully initiation is usually 
triggered by land use changes (Valentin et al., 2005), thus reducing infiltration and increasing 
runoff which accumulates in narrow channels and consequently incises the soil profile. When 
incisions are shallow, ploughing operations may remove them (ephemeral gullies), but when 
incisions are deeper, gullies become permanent features in the landscape. Although many 
studies have addressed gully erosion, little is known about its importance at larger spatial 
scales (Poesen et al., 2003).  

The major contribution of remote sensing to gully erosion assessment has been the 
visual interpretation of aerial photography. Gully limits are delineated from aerial 
photographs and gully retreat rates are assessed using multi-temporal comparison (e.g. Daba 
et al., 2003; Vandekerckhove et al., 2003). However, the size of the regions studied is 
generally small. Satellite imagery can be used to evaluate the importance of gully erosion at 
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larger spatial scales. Mostly this has been done through classification of large areas suffering 
from gully erosion, called badlands (Vrieling, 2006). 

Identification of individual gullies with satellite data has also been suggested (e.g. 
Langran, 1983), but accurate identification was judged impossible without additional data or 
expert knowledge (Bocco and Valenzuela, 1993). This can be attributed to the spectral 
heterogeneity of the gullies themselves (including natural vegetation, bare soil, shadows) as 
well as the heterogeneity of their environment (King et al., 2005; Zinck et al., 2001). 
However, it remains questionable whether this necessarily prohibits automatic gully retrieval 
in all environments and for all gully types. In different environments worldwide, permanent 
erosion gullies of large spatial sizes (>10m wide) and considerable depth (>5m) occur 
(Bocco, 1991; Poesen et al., 2003). Such gullies may possess distinct spectral characteristics 
due to e.g. exposed subsoil and bedrock, shadows from gully walls, and a permanently moist 
gully bottom. 

Automatic identification of erosion gullies may contribute to the understanding of 
why and where gully erosion occurs. Furthermore, an automatic method may provide fast 
insight in the importance of gully erosion and the consequent loss of productive land for large 
regions. This study was conducted to evaluate whether automatic classification of ASTER 
imagery can accurately identify permanent erosion gullies within the Brazilian Cerrados. 
 
 

3.2 Materials and methods 

3.2.1 Study area 

The Brazilian Cerrados are a natural savannah ecosystem originally consisting of grassland, 
shrubland, and woodland, occupying nearly 23% of Brazil (Furley, 1999). During the past 35 
years the ecosystem experienced strong impacts from the expansion of agriculture, cattle 
raising and forestry. It was estimated that approximately 40% of the Cerrados has currently 
been converted to human land uses (Ferreira and Huete, 2004). A major negative 
environmental impact of these land conversions has been soil erosion including the 
development of large erosion gullies (Rodrigues, 2002). 

The study area is located near the city of Uberlândia in Minas Gerais (Fig. 3.1). It has 
a humid tropical climate with rainfall occurring from November to April. Topography is 
slightly undulating with slope angles of 0-15%. Soils are deep (up to 25 m) and consist 
predominantly of loamy sand. Large erosion gullies occur in the area (Fig. 3.2), with gully 
depths ranging from 4 to 25 m, thus reaching the bedrock. Several gullies initiated more than 
50 years ago, but are still active. They most likely initiated due to increased drainage by road 
construction, parcelling of properties by ditches, and land conversions. The current 
vegetation cover is dominated by pastures, often with scattered trees and shrubs. Most 
pastures are degraded and their vegetation cover can be minimal including bare patches. 
Furthermore shrubland, woodland, and gallery forest is present in the area. A 16-km2 area 
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Figure 3.1 Location of the study site in Brazil (map source: EMBRAPA) 
 
 
was selected for method development, and an adjoining 36-km2 area for independent 
validation (Fig. 3.3). Both areas have similar characteristics in terms of land cover types and 
contain several large gullies. 
 

3.2.2 Data and pre-processing 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery from 
the Terra-satellite was selected for this study, because of the good spatial resolution – 15 m in 
the three visible and near infrared (VNIR) bands – in combination with considerable spectral 
information, including six 30-m resolution bands in the shortwave infrared (SWIR). 
Moreover,  the  reasonable  image  swath  (60 km) may  allow  gully  identification over wide  
 
 

 
Figure 3.2 Example of a large erosion gully within the study area (picture taken in July 

2002, dry season) 
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Figure 3.3 Study area divided in a 16-km2 training area (left quadrant) and a 36-km2 

validation area (right quadrant). The figure shows the NDVI of the ASTER March 
image, linearly scaled between 0.40 (black) and 0.90 (white). 

 
 
regions, as opposed to high-resolution (about 1-m) data. Table 3.1 summarizes the 
characteristics of the ASTER spectral bands. The five ASTER thermal infrared bands were 
not used in this study. Surface reflectance products of VNIR and SWIR (AST_07: Thome et 
al., 1999) were acquired for the wet season (4 March 2003) and the dry season (11 August 
2003). The two ASTER scenes were geocoded using a panchromatic orthorectified 
QuickBird image acquired on 4 August 2003. A first-order polynomial model was applied 
and cubic convolution resampling to a 12.5-m pixel size was performed for all bands, 
resulting in a positional accuracy of less than 10 m.  

Reference data on gully location and extent were obtained during fieldwork 
performed in January 2004, and from the QuickBird image. Potential gullies were identified 
on the QuickBird image for the 16-km2 and 36-km2 areas, and their existence was 
subsequently  confirmed  in  the  field  using  a  GPS.   Limits  of  actual  gullies  were  then  
 
 
Table 3.1 Characteristics of ASTER VNIR and SWIR spectral bands 

Spectral domain Resolution Spectral band Spectral range (µm) 
VNIR 15 m 1 0.52 - 0.60 

  2 0.63 - 0.69 
  3 0.76 - 0.86 

SWIR 30 m 4 1.600 - 1.700 
  5 2.145 - 2.185 
  6 2.185 - 2.225 
  7 2.235 - 2.285 
  8 2.295 - 2.365 
  9 2.360 - 2.430 
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delineated by means of visual interpretation of the QuickBird image. Besides, representative 
samples of other land cover classes were determined with the same procedure, including: 
bare soil, pasture, degraded pasture, shrubland, woodland, and gallery forest. These land 
cover classes were merely used for analysing their spectral signatures in comparison to the 
gullies’ spectral signature, as to understand why gullies may be detected in the study area. 
Because of potential human activities, a check of both ASTER images was performed to 
ascertain that the land cover classes actually existed at the selected locations both in March 
and in August 2003.  
 

3.2.3 Gully identification 

Identifying gullies from satellite imagery is a form of feature extraction. A variety of 
methods exist for extracting features from multi-spectral images. Here we used the 
supervised classification approach of the maximum likelihood classifier (MLC), based on 
only two classes: gullies and non-gullies. This method was chosen, because: 
 

• the training procedure accounts for spectral variability within the gully class and for 
the background variability, 

• there is no need for extensive training, because only two classes are used, 
• there is no need to set subjective thresholds, 
• results can be reproduced for different scenes, unlike unsupervised classification 

methods whose results depend on specific scene characteristics, 
• it is difficult or impossible to assign one representative signature or pixel for the gully 

class, which is required for methods like linear spectral unmixing (Adams et al., 1986) 
and spectral angle mapping (Kruse et al., 1993). 

 
The statistics for the MLC classes were derived from the 16-km2 (4 by 4 km) area. In this 
area seven gullies are present. The gully training set consisted of a subset of ASTER pixels 
located fully within the gully limits digitized from the QuickBird image. The non-gully 
training set is a big class consisting of all pixels fully outside these limits. For both classes, 
the probability density function P(X | wi) which gives the probability that a pixel belongs to 
class wi  is calculated using: 
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where X is the pixel’s data vector in all spectral bands, n is the number of spectral bands, Mi 
is the mean vector for class wi, and Vi is the variance-covariance matrix for class wi (Jensen, 
2004). A pixel is classified as gully when the probability for that pixel being a gully is higher 
than the probability of belonging to the non-gully class. 
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The MLC was applied separately to the March-image and the August-image, resulting 
in two maps showing classified gully pixels in the 36-km2 (6 by 6 km) validation area. A 
sieve filter was applied to remove small isolated pixel groups smaller than three pixels. 
Subsequently, using the logical AND the two maps were combined creating the March-
August (MA) classification. For the MA classification, a pixel is therefore labelled as a gully 
if for both the March and the August scene it was classified as gully. 

This procedure was repeated for several spectral band combinations with the aim of 
improving classification results. The rationale for testing other band combinations is that 
highest feature separability (and thus classification accuracy) does not necessarily result from 
the maximum number of bands (e.g. Metternicht and Zinck, 1997). For nine spectral bands, 
511 possible band combinations exist. Because it is impracticable to test all 511 
combinations, band selection was performed to obtain a subset of potentially good band 
combinations. These potentially good combinations were assessed separately for the 
individual March and August scenes, using statistics calculated from the 16-km2 calibration 
area. The following common band selection methods were applied for this purpose: 

 
•  The correlation-variance (CV) method. Correlation between all different pairs of 

spectral bands and the variance of each individual band is calculated. For the two 
highest-correlating bands, the one with the lowest variance is removed from the 
selection. This is repeated until the desired number of bands remains. 

• The Jeffries-Matusita (JM) distance calculated between the gully and the non-gully 
training set (Jensen, 2004). For the desired number of bands, the band combination 
with the highest JM-distance is selected. 

• The Transformed Divergence (TD) calculated between the gully and the non-gully 
training set (Jensen, 2004). For the desired number of bands, the band combination 
with the highest TD is selected. 

 
If for example the desired number of bands is set at four, six potentially good band 
combinations may be found, i.e. three selection methods (CV, JM, and TD) applied to two 
scenes (March and August). In practice however, different methods may select the same band 
combination, or the same method may select the same band combination for both images. A 
specific band combination selected for one scene (e.g. March) was also applied to the other 
scene (August) and combined to create the MA gully map for that band combination. The 
number of bands used in this study ranges from three to nine.  
 

3.2.4 Validation 

The gully classifications were validated using the reference gullies obtained from the 
QuickBird image in the 36-km2 area. The digitized gullies were converted to the same 12.5-m 
raster format as the ASTER scenes. The total number of gullies was 17 covering an area of 
about 46 ha (1.27% of the validation area). The accuracy of each classification was 
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determined using merely the gully class, because the number of non-gully pixels was very 
large compared to the number of gully pixels. Inclusion of non-gully pixels would therefore 
excessively influence common accuracy measures like the overall accuracy or the kappa 
statistic (Congalton, 1991). Instead, a good gully classification should meet two criteria: 
 

1. Most of the actual gully pixels in the reference data are also classified as being gully. 
This implies a high producer’s accuracy (Ap). 

2. As few as possible actual non-gully pixels are classified as gully. This means that the 
user’s accuracy (Au) is high for the gully class. 

 
Both criteria are considered important. To obtain the best result for the combination of both 
criteria, here we propose to use the average accuracy (Aa) as an additional measure. Aa is 
defined as the average of Au and Ap and is not intended to represent the overall accuracy of 
the classification, but is merely used to determine which of the band combinations results in 
the optimal classification. The accuracy measures used can thus be expressed as: 
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where Gc is the number of pixels correctly classified as gully, Gt is the total number of pixels 
classified as gully, and Gr is the number of gully pixels in the reference data. 

Besides the area-based accuracy assessment, resulting maps with the highest 
accuracies were visually compared to the reference map to understand which actual gullies 
are detected and which locations are erroneously assigned to the gully class. 
 
 

3.3 Results and discussion 

3.3.1 Spectral signatures 

Fig. 3.4 shows average spectral signatures for gullies and three other land cover classes that 
are found to be most similar to gullies, including bare soil, degraded pasture, and shrubland. 
The relatively high reflectance for band 9 is probably caused by instrument problems (Rowan 
and Mars, 2003), but because the effect is similar for different land uses, MLC results will 
not be affected. 
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Figure 3.4 Spectral signatures of gullies, bare soil, degraded pasture, and shrubland for 

ASTER scenes of March and August 2003 
 
 

From Fig. 3.4, it can be observed that the overall reflectance of gullies is generally 
low compared to normal bare soil. Knowing that an important fraction of the gullies is also 
bare soil, the low reflectance can be attributed to several factors: a higher moisture content 
(Baumgardner et al., 1985), a higher iron content in the subsoil (EMBRAPA, 1982; Stoner 
and Baumgardner, 1981), and presence of a shadow component caused by the gully depth 
and the irregular surface (Metternicht and Zinck, 1998). The wet-season (March) signature of 
degraded pasture is to some extent similar to the gullies signature, but pasture has a higher 
NIR reflectance (band 3) due to the vegetation. Shrubland also has a higher NIR reflectance 
and moreover lower red and SWIR reflectances, but during the dry season (August) its 
signature is rather similar to gullies. In general the differences between gullies and the other 
land cover classes are more pronounced in March. 

Furthermore the spectral graphs show that gully reflectance is more constant over 
time as compared to other land cover classes. This should probably be attributed to: 
 

1. the general moist conditions of the gully bottom, also during the dry season; 
2. the steep gully walls, and active sidewall erosion processes during the wet season, 

impeding normal vegetation development. 
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This does however not imply that vegetation development does not occur in gullies during 
the wet season, which is shown by the higher NIR reflectance in March. 

Identification of gullies with ASTER imagery seems to be feasible following the 
comparison of spectral signatures. The March-image (wet-season) is most promising for 
mono-temporal identification, because spectral differences are more pronounced. Bi-temporal 
identification using both images may however be more valuable to limit misclassifications, 
by exploiting the fact that gullies generally have a more stable spectral signature through time 
than its surroundings. 
 

3.3.2 Gully identification results 

Gully identification was performed with the MLC for 25 different spectral band 
combinations. Table 3.2 shows the band combinations used and the method(s) that selected 
each specific combination (CV, JM, and TD). Band 3 is the only spectral band present in all 
combinations, mostly likely because the gully reflectance for this spectral range is generally 
lower than the reflectance of all other land use types, which is not the case for the other 
spectral bands (Fig. 3.4). For each combination, a March, an August, and a MA gully map 
were constructed. Comparison with the reference gully map, generated from the QuickBird 
image and field data, yielded the accuracies Au, Ap, and Aa (Table 3.2). A clear relation 
between the method selecting a specific band combination and the accuracy does not exist. 
E.g. for March the highest Au and Aa for a six-band combination is a combination selected by 
JM and TD using the August image. Nevertheless, these band selection methods generated a 
reasonable and workable subset of promising spectral band combinations for detecting gullies 
in the study area. From Table 3.2 statements on whether CV, JM, or TD is better for spectral 
band selection cannot be made, but this was not a purpose of this study.  

Table 3.2 demonstrates that Au and Aa are considerably higher for the March image as 
compared to the August image, which supports the observation made in Section 3.3.1 that 
spectral differences are more pronounced in March. The higher Ap for the August image 
indicates that more actual gully pixels are correctly classified, but following the low Au it 
shows that this is mostly a consequence of the fact that a much larger area is also erroneously 
classified as gully. As stated in Section 3.2.4, a good classification has both a low fraction of 
non-gullied area classified as gullies (high Au) and a large area of the actual gullies classified 
as such (high Ap). The average accuracy Aa is used to define this optimum. Aa is highest 
(0.75) for the March image using the band combination ‘1,2,3,4’. For this classification, 64% 
of the actual gully pixels are classified as gully, whereas in 87% of the cases a classified 
gully pixel is actually part of a gully. For the best August classification (using bands ‘1-
4,6,7,8’) these values are 64% and 60% respectively. 

The bi-temporal MA classification can by its definition not have a higher Ap than the 
individual classifications, because a gully pixel is only a gully pixel when this is the case for 
both the March and August classification. Nevertheless, the Au increases due to this condition 
and reaches values of above 90%. Although the highest Aa for MA (0.74 for band combination 
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Table 3.2 Selected ASTER band combinations and corresponding accuracy values: 
M=March image; A=August image; MA=March and August combined. Band 
selection methods are: CV=Correlation/variance method; JM=Jeffries-Matusita 
distance; TD=Transformed Divergence distance. Grey cells indicate the highest 
accuracy level for the specific column (taking into account also the third 
decimal). 

Spectral bands 
 

 User's accuracy 
(Au)  

Producer's accuracy
(Ap) 

 Average accuracy 
(Aa) 

# combination selected by:  M A MA  M A MA  M A MA 
9 1-9 - 0.79 0.63 0.94  0.53 0.60 0.43  0.66 0.61 0.68 
8 1-4,6-9 CV/JM/TD A/M 0.85 0.60 0.93  0.53 0.63 0.44  0.69 0.61 0.68 
7 1-4,6,7,8 JM A 0.88 0.60 0.93  0.57 0.64 0.48  0.72 0.62 0.70 
 1-4,6,7,9 JM/TD M, CV A 0.87 0.52 0.93  0.55 0.64 0.46  0.71 0.58 0.69 
 1-4,6,8,9 CV M 0.86 0.57 0.92  0.55 0.64 0.47  0.70 0.60 0.69 
 1,3,4,6-9 TD A 0.89 0.55 0.93  0.51 0.65 0.45  0.70 0.60 0.69 
6 1,2,3,4,6,7 JM M 0.85 0.54 0.93  0.60 0.66 0.51  0.72 0.60 0.72 
 1,2,3,4,6,9 CV A/M 0.83 0.30 0.92  0.62 0.67 0.52  0.72 0.48 0.72 
 1,2,3,4,7,9 TD M 0.80 0.43 0.93  0.57 0.66 0.48  0.68 0.55 0.71 
 1,3,4,6,7,8 JM/TD A 0.89 0.54 0.93  0.57 0.67 0.50  0.73 0.60 0.72 
5 1,2,3,4,6 CV A 0.90 0.27 0.92  0.51 0.58 0.43  0.71 0.43 0.67 
 1,2,3,4,9 CV M 0.89 0.29 0.92  0.50 0.60 0.41  0.69 0.44 0.66 
 1,2,3,6,7 JM M 0.90 0.47 0.93  0.54 0.60 0.43  0.72 0.53 0.68 
 1,3,4,6,8 JM/TD A 0.89 0.55 0.93  0.52 0.62 0.45  0.71 0.58 0.69 
 1,3,4,7,9 TD M 0.88 0.37 0.93  0.48 0.63 0.42  0.68 0.50 0.67 
4 1,2,3,4 CV M 0.87 0.26 0.92  0.64 0.67 0.55  0.75 0.47 0.74 
 1,3,4,7 TD M 0.87 0.35 0.93  0.55 0.68 0.50  0.71 0.52 0.71 
 2,3,4,6 CV A 0.83 0.20 0.90  0.61 0.66 0.51  0.72 0.43 0.71 
 2,3,6,7 JM M 0.83 0.28 0.90  0.63 0.67 0.53  0.73 0.48 0.72 
 3,4,6,8 JM/TD A 0.83 0.49 0.91  0.60 0.67 0.53  0.72 0.58 0.72 
3 1,3,4 CV M 0.72 0.15 0.84  0.63 0.67 0.55  0.68 0.41 0.69 
 2,3,4 CV A 0.76 0.19 0.84  0.63 0.67 0.54  0.70 0.43 0.69 
 2,3,7 TD M 0.85 0.15 0.92  0.61 0.63 0.50  0.73 0.39 0.71 
 3,6,7 JM M 0.85 0.25 0.90  0.61 0.69 0.52  0.73 0.47 0.71 
 3,6,8 JM/TD A 0.83 0.38 0.90  0.61 0.68 0.53  0.72 0.53 0.72 

 
 
‘1,2,3,4’) is slightly lower than for the best March classification, Au is 92% in this case, 
implying that only 8% of the pixels are erroneously labelled as gullies, whereas still 55% of 
all gully pixels are classified as such. Therefore, depending on the purpose of gully 
identification, the combination of classifications from different image acquisition dates can 
be useful because the reliability of a pixel being correctly assigned to the gully class 
increases. This may be important e.g. when using the gully map acquired for deriving 
empirical relationships between gully occurrence and controlling factors derived from 
additional spatial data sources. 
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Band combination ‘1,2,3,4’ gives best results both for mono-temporal and bi-
temporal gully identification. This indicates that optimal identification can be obtained using 
spectral data from the visible, NIR, and SWIR domain. Fig. 3.4 shows that the average 
spectral signature of gullies is distinct in this domain, especially during March. Band 1 and 2 
have a similar reflectance, as well as band 3 and 4. For bi-temporal identification, the August 
scene is mostly used to reduce false identifications, as August by itself does not allow 
accurate extraction of gullies. The most important characteristics allowing gully 
identification therefore seem to be the limited vegetation (low ratio band 1/2 and band 3/2) 
and the differences of the subsoil as mentioned in Section 3.3.1 (moisture, iron, and shadows) 
causing a lower reflectance as bare soil. An additional effect which may play a role is the 
higher spatial resolution of bands 1, 2, and 3, resulting in less spectral mixing than for the 
other bands. Information in bands 5 to 9 seems to be redundant and does not increase the 
separability of gullies from their environment.  

Besides analysing how many pixels are correctly classified, it is of interest to 
determine spatially which pixels and gullies are detected. Fig. 3.5 shows the gully maps 
corresponding with the highest Aa’s of the March, the August, and the MA classifications, 
and furthermore the reference gully map (Fig. 3.5a). It is clear from Fig. 3.5c that the Au of 
the August map is much lower, because many non-gully areas are erroneously classified. The 
March map (Fig. 3.5b) is a lot better: 16 out of 17 actual gullies are detected (only missing 
gully #16), however also 14 non-existing small gullies are identified. The MA gully map 
(Fig. 3.5d) is a combination of Fig. 3.5b with an August classification based on the band 
combination ‘1,2,3,4’ (not presented in figure). Comparing the MA map to the March map, 
the number of actual gullies identified reduces from 16 to 15 (gully #1 and #16 are not 
present in the MA map) which is a slight reduction, but more importantly the number of non-
existing small gullies detected is reduced to only two. From field observations it is known 
that these two locations are sedimentation areas just upstream of a large reservoir. Soil 
material from the gullies is detached and transported by active gully erosion, and 
subsequently deposited at these locations that are generally moist, resulting in a similar 
spectral behaviour. The spatial analysis shows that the MA map outperforms the March map 
in terms of number of gullies correctly classified, because only two locations are wrongly 
identified as gullies and most of the actual gullies are detected. 

Despite the good performance of the MA map, several gully parts and entire gullies 
remain unidentified. A good example is gully #16, which is absent in all classifications. The 
reasons are first that this gully is narrow (< 15m) complicating identification due to mixed 
pixels, and second that abundant trees grow in and around it. Therefore, the gully has low 
activity, implying that further erosion of the gully is minimal, and thus the distinct 
characteristic of exposed bare subsoil is not dominant and moreover concealed by tree 
crowns. The presence of many trees in and around parts of other gullies is also the chief 
reason for not classifying these gully parts (e.g. gully #10, #14, #15), judging from 
overlaying the detected gullies with the QuickBird image. In this respect it can be expected 
that  Ap  and  consequently  Aa  increase  when  focussing  solely  on  gully  parts  with  active  
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Figure 3.5 Gully detection with ASTER imagery in 36-km2 validation area. (A) Reference 

data acquired from QuickBird image and field data, gully numbers refer to the 
text; (B) detected gullies from March image, bands 1-4; (C) detected gullies from 
August image, bands 1-9; (D) detected gullies from combined March and August, 
bands 1-4. 

 
 
erosion. However, the activity of gully parts cannot be objectively determined based merely 
on one QuickBird image, and does moreover depend on the time scale. Therefore, in this 
study no distinction was made between more or less active gully parts for the accuracy 
assessment. 

The areal extent affected by gullies is underestimated as a result of the failure to 
identify certain gullies and gully parts, as mentioned above. The reference data show that 
1.27% of the validation area is covered by gullies, versus 0.95% for the March classification, 
and 0.76% for the MA classification. Probably here also gully activity plays a role, and the 
estimation may improve if it were done only for the active parts. 
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3.3.3 General discussion 

A two-class MLC proved to be a good method for extracting erosion gullies in the study area. 
Usually a MLC is applied for land use classification where each pixel in the image should 
belong to a specific land use class. Here, MLC is applied for extracting one specific class 
from an image by training the classifier with a gully class and a very general class of any 
pixel falling outside the gully boundaries. Subsequent analysis showed that the training set 
for the latter class could also be replaced by all pixels in the scene, thus including gully pixels 
as well. This way an average scene class is formed and compared with the gully spectral 
statistics. The results appeared to be practically the same due to the very small number of 
pixels in the gully class, as compared to the non-gully class. The only training involved 
would then be the definition of a set of known gully pixels. No references were found in 
literature for this special application of the MLC. 

The methodology may be adapted to enhance specific gully spectral and temporal 
characteristics prior to classification. One option for this relates to the statement made in 
Section 3.3.1 that the gully reflectance is more constant over time as compared to other land 
cover types. For each band, the difference in reflectance between March and August could be 
calculated and used in the classification procedure. Another option is to calculate spectral 
indices and use those in the classification. Potential indices include the normalized difference 
vegetation index (NDVI), the Infrared Index (II: Hardisky et al., 1983) or the ferric index 
(Madeira et al., 1997). NDVI and II would be substantially lower for gullies than for most 
other land cover types, whereas the ferric index would be higher. Here, we chose not to make 
any enhancements prior to classification to maintain a simple and straightforward analysis 
procedure. Moreover, classification without further enhancements provided good results. 

The gully identification methodology of this study may be applied to imagery 
acquired by different satellites. Landsat TM, ETM+, and SPOT-5 for example have the same 
spectral bands as the best-performing set of spectral bands selected here (ASTER bands 1-4). 
For lower spatial resolutions (Landsat) more spectral mixing problems will occur, whereas 
SPOT-5 data may result in better gully identification due to its higher resolution. Very-high 
resolution data (IKONOS, QuickBird) has limited spectral information and little spatial 
coverage, and is therefore considered inappropriate for large-scale automatic gully 
identification. 

Fusion of synthetic aperture radar (SAR) and optical data can in some cases enhance 
classification accuracies. For example Metternicht and Zinck (1998) achieved higher 
accuracies for classifying badlands and other eroded areas in the Bolivian Andes when 
combining JERS-1 L-band data (23 cm wavelength) with Landsat TM, as compared to 
Landsat TM alone. For the study area, fusion with ENVISAT Advanced SAR (ASAR) C-
band (5.6 cm wavelength) was tested, but did not provide better classification results. This 
can be attributed to the side-looking nature of radar systems, and the steep gully walls 
causing in some instances radar shadows (no signal received) and at other occasions a very 
high return signal due to double bounce mechanisms, depending on the gully orientation. 
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Furthermore the radar backscatter of gullies changes substantially during time and much 
confusion with other features in the environment exists (Vrieling and Rodrigues, 2004). 

Assessing gully retreat rates from ASTER-derived gully maps will be difficult, if not 
impossible, knowing that the method presented does not allow identification of all gully 
parts. Moreover, reported gully retreat rates in the area do not exceed 5 m year-1 (Baccaro, 
1999), which is less than the ASTER resolution. Even if ASTER imagery would be available 
for longer time-series (> 10 years), the gully identification method does not provide a very 
accurate delineation of gully boundaries. Only major changes (>100 m) and the establishment 
of new gullies may therefore potentially be identified. 

A major question remaining is how information on gully identification may contribute 
to the understanding of where and why gully erosion occurs, as stated in the introduction. 
Where gully erosion occurs, can be assessed by overlaying the identified gullies with 
additional information sources like DEMs, lithology and land use maps, etc. (e.g. Bocco and 
Valenzuela, 1993). For this region one of the conclusions would then be that most gullies are 
situated near the drainage divides and are generally encountered in the vicinity of roads. 
Statistical analysis for larger areas using a variety of spatial information layers can result in 
significant correlations between gully occurrence and controlling factors, which provides 
insight in why gully erosion takes place at these locations. Models of gully erosion can thus 
be created (Poesen et al., 2003) that could also assist in predicting what may happen if land 
use changes. Potentially such models may then be linked to spatially-explicit land use change 
models (Veldkamp and Lambin, 2001), and thus allow predictions on effects of global 
warming or human disturbances on gully erosion. 

Before gully erosion models can be created using ASTER-based gully identification, 
the methodology should be applied to larger regions (more than 1000-km2). An important 
issue is therefore up-scaling, i.e. can the method be applied to larger regions within the 
Cerrados? A clear answer to this question cannot be given at this stage. Nevertheless, the 
Cerrados have a very large spatial extent of around two million km2. Although substantial 
differences exist between regions (e.g. differences in rainfall amounts, land use, lithology, 
and gully types), vast areas of the Cerrados are to a greater or lesser extent similar to the 
study site and comparable large gullies can be found at many locations (Motta et al., 2002). 
In any case, this study showed that despite the heterogeneity of gullies and their surroundings 
(King et al., 2005; Zinck et al., 2001), permanent gullies within the Cerrados may possess 
sufficient spectral homogeneity to allow their accurate automatic detection with optical 
satellite data.  
 
 

3.4 Conclusions 
Automatic identification of gullies with satellite data is possible for certain areas in the 
Cerrados. This study showed that a simple MLC with ASTER data using only two classes 
was effective for discriminating gullies in a 36-km2 area. The only training required is the 
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identification of a number of known gully areas. Wet-season imagery gave the best 
performance for mono-temporal classification. However, when combining a wet-season with 
a dry-season classification into a single map, user’s accuracy increased to above 90%, while 
only at two locations small non-existing gullies were identified and two of 17 actual gullies 
were not detected. Based on a combination of area-based and spatial validation, it is 
concluded that bi-temporal classification is the best approach for extracting gullies within the 
Brazilian Cerrados. The spectral band combination used has a strong effect on the results. 
Highest overall accuracies in this study were obtained with ASTER bands 1, 2, 3, and 4, both 
for the mono-temporal (wet-season) and bi-temporal classification. Therefore, this 
combination of visible, NIR, and middle infrared bands is recommended for future gully 
identification studies. Although limitations exist for gully change detection, there are clear 
opportunities for applying the method presented to larger areas within the Cerrados. 
Resulting spatial maps of gully occurrence could then be integrated with additional spatial 
data, and thus advance the understanding of where and why gully erosion occurs.  
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4. Erosion risk mapping: a methodological case study  
in the Colombian Eastern Plains 

 
 

Abstract 
Soil erosion caused by water is an increasing global problem. Land use and soil conservation planning 
for large areas requires erosion risk maps, which are typically created using erosion models. These 
models are often developed for different regions than where they are applied. This paper describes a 
new qualitative methodology for mapping soil erosion risks over large areas, called Qualitative 
Erosion Risk Mapping (QUERIM). It is a flexible method that uses decision trees to assign ratings to 
the erosion-controlling factors. Constructed using expert knowledge, these decision trees reflect the 
important characteristics influencing erosion risk within a specific region. Ratings for erosion-
controlling factors are combined at every location to obtain potential and actual erosion risk maps. 
QUERIM was applied to the Puerto López municipality in the Colombian Eastern Plains. The 
obtained erosion risk maps showed agreement with field observations of erosion risk. However, more 
ground data should be gathered for a better evaluation of the method. It is concluded that a simple 
qualitative approach such as QUERIM can be more effective in erosion risk mapping than the use of 
models that were not developed for the region to which they are applied. 
 

 

4.1 Introduction 
Accelerated soil erosion caused by water is an increasing global problem that threatens 
sustainable agricultural production (Oldeman, 1994). Analyzing soil erosion risks is an 
important task, especially in vulnerable areas. Erosion risk maps of large areas are required to 
plan land use and soil conservation measures. Many mapping methods exist to fulfill this 
requirement (e.g. De Jong and Riezebos, 1992; Fu and Gulinck, 1994; Stocking and Elwell, 
1973). Each method usually accounts for the following erosion-controlling factors: climatic 
characteristics, soil properties, topography, and land management (Morgan, 1986). These 
factors are often highly variable in space and time, which makes erosion risk mapping a 
complicated task. 

Most erosion risk mapping methods use empirical or physically-based models. They 
all address the erosion-controlling factors differently. In general, these models have some 
important drawbacks. First, they require a large amount of detailed data. Often, these data are 
not available for large areas, especially in less-developed countries. Second, the models are 
most often developed for regions other than those to which they are applied, and for scales in 
which different processes and process-interactions may be important (Favis-Mortlock et al., 
1996). Moreover, past studies reveal a low correlation between model outcome and observed 
soil loss (Favis-Mortlock, 1998; Jetten et al., 1999; Nearing, 1998; Rudra et al., 1998; Takken 
et al., 1999). 
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The most widely applied erosion model for erosion risk studies over large areas is the 
Universal Soil Loss Equation (USLE: Wischmeier and Smith, 1978). It is a statistically 
calibrated model that combines erosion-controlling factors based on runoff plot data collected 
in the United States. A point of criticism made by Tricart and KiewietdeJonge (1992) is that 
the USLE is a simple addition of parameters and thus excludes all interaction and feedback 
effects in the erosion process, which invalidates its universal use. They advocate a more 
qualitative approach in mapping erosion risks. While a quantitative approach is necessary for 
the design of hydraulic infrastructures such as reservoirs, a qualitative approach is usually 
suitable for land use and conservation planning purposes (Herweg, 1996). 

Soil erosion risks can be divided into potential and actual risk. Potential erosion risk 
is defined here as the inherent risk of erosion irrespective of current land use or vegetation 
cover. Actual erosion risk relates to the risk of erosion under current vegetation and land 
management conditions. 

The aim of this study was to define a methodological framework for qualitative 
mapping of erosion risks over large areas (several thousand square kilometres), using expert 
knowledge. It is hypothesized that a relatively simple qualitative approach is sufficient to 
indicate the spatial distribution of erosion risk. To illustrate the developed methodology, it 
was applied to the Puerto López municipality in the Eastern Plains of Colombia as part of a 
study that aimed at exploring simple methods that could be used for land use planning in 
Colombian municipalities (Beaulieu et al., 2000). 
 
 

4.2 Methodological framework 
Erosion studies can benefit from increased attention to the morphogenic-pedogenic balance 
(Tricart and KiewietdeJonge, 1992). Morphogenic processes form the landscape by 
gravitational or other tangential working forces. Erosion is a typical example of a 
morphogenic process. Pedogenic processes refer to the development of soil horizons parallel 
to the soil surface, including rock weathering. Morphogenesis generally proceeds downslope 
along a topographic gradient, whereas pedogenesis proceeds vertically into the soil profile. 
As the factors controlling the morphogenic-pedogenic balance vary in space, their study is a 
good starting point for determining the spatial distribution of erosion risks. 

Tricart and KiewietdeJonge (1992) consider geology, soil, relief, vegetation, and 
climate as being the most important factors influencing the morphogenic-pedogenic balance. 
The Brazilian National Institute for Space Research (INPE) developed a method to rate these 
factors (Crepani et al., 1996). If at a certain location a specific factor is favourable to 
pedogenesis, which implies a low erosion risk for that factor, its value becomes 1.0. For 
example, if permanent vegetation with a high fractional vegetation cover (FVC) is present at 
a specific location, its vegetation factor becomes 1.0. If the factor is favourable to 
morphogenesis (high erosion risk), its value becomes 3.0. In the case of the vegetation factor, 
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this value would be assigned to bare soil. The values of the five factors are averaged at every 
location, resulting in an erosion risk map. 

INPE’s approach intends to analyze erosion risk within the whole of Brazil. 
Therefore, they use standard values or methods of calculation for each of the five factors 
across the entire country (Crepani et al., 1999). Although this is a valid approach for analysis 
on the national scale, it cannot account for regionally distinct processes and process-
interactions, nor does it give insight into the characteristics that determine erosion risks 
within a particular area. A different methodology is needed for erosion risk evaluation on a 
regional scale, especially considering that erosion control and mitigation strategies are mostly 
regionally planned. 

We propose a new methodology known as Qualitative Erosion Risk Mapping 
(QUERIM). QUERIM uses the same strategy as INPE in the scaling and averaging of the 
factors that influence the morphogenic-pedogenic balance. The factors are essentially the 
same, although the vegetation factor is renamed the management factor to account for human 
impact such as tillage and conservation measures. The main difference between INPE’s 
approach and QUERIM is the way the factor values are derived. QUERIM divides the five 
factors into sub-factors, which reflect the physical parameters that affect the erosion 
processes in the region. These parameters can be derived from the available spatial data and 
are assigned a qualitative rating, which may be the same as the rating from the data classes. 
To extract a final numerical index for each factor, the occurring value combinations of the 
sub-factors are evaluated using decision trees that are a qualitative representation of the 
relationships between each of the sub-factors. The average of the geology, soil, relief, and 
climate factors at each location results in the potential erosion risk map, whereas the average 
of all five factors (including management) gives the actual risk map. 

Two other aspects of the QUERIM method should be noted. First, sub-factors and 
decision trees can vary according to region. Second, the success of the method depends on 
the use of appropriate expert knowledge. Experts that have worked on soil erosion in the 
region under study form a valuable source of information. They often understand the 
regionally occurring erosion processes and they usually know the locally significant 
parameters controlling those processes. QUERIM uses the knowledge of these experts in the 
definition and selection of the sub-factors, which are subsequently extracted from the 
available data. The experts also help create the decision trees by assigning an appropriate 
numerical index to each factor according to the occurring combinations of sub-factor values. 
QUERIM translates expert knowledge into a formal structure that uses available spatial data 
to create erosion risk maps. 

In principle, QUERIM can be applied to a zoned area, when the zones have the same 
characteristics and a high degree of internal uniformity. In this case, erosion-controlling 
factors have to be evaluated for each zone. But it can also be used in a raster environment to 
account for the high spatial variability of erosion risks. Then factors are analyzed per pixel. 
The choice also depends on the data availability. Either way, a geographic information 
system (GIS) is an indispensable tool for analysis of the spatial data. 
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4.3 Study area 
QUERIM was applied to the Puerto López municipality, located in the department of Meta, 
Colombia (Fig. 4.1). It covers an area of 6907 km2 and belongs to the Colombian Eastern 
Plains. The region has an average temperature of 27°C and an annual rainfall, most of which 
occurs in high intensity storms between April and November, of 2800 mm. On an annual 
basis, rainfall amount and characteristics are distributed evenly over the municipality. Terrain 
elevations vary from 180 to 300 m above mean sea level. 

The area consists of low-lying alluvial plains where floods occur and a higher 
elevation that is called the altillanura (high plains). These high plains can be divided into 
non-dissected and dissected regions. They are underlain by coarse to medium sands with 
argillic horizons at varying depths and layers of gravel and petroferric rock that appear on the 
surface of hills. The alluvial plains are composed of younger material with finer sands, clay, 
and cemented gravel. Introduced and natural pastures form the main ground cover in the high 
plains, whereas forest vegetation can be found along the drainage network. Analysis of 
Landsat Thematic Mapper (TM) data shows that pastures constitute 50%, forest 20%, and 
transitional vegetation 25% of the area. The remainder consists mainly of agricultural crops, 
of which lowland rice is the most important. 

Soils in the municipality generally have a low infiltration capacity, which results from 
low organic matter content, poor soil structure, and surface crusting. Rainfall with intensities 
of more than 20 mm h-1 causes Hortonian runoff and erosion (Amézquita and Londoño, 
1997). Given the present rainfall regime, the area is at high risk for soil erosion, and a good 
vegetation cover is essential to prevent the soil from being eroded. 
 
 

 
Figure 4.1 Location of study area in Colombia 
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4.4 Methods and materials 
We used three available spatial data sources for the Puerto López municipality. The first is a 
soil survey done by the Colombian Geographical Institute (IGAC, 1978), which resulted in a 
soil map on a scale of 1:100,000. The study is well documented; for each cartographic unit 
the constituting soil profiles are described in terms of their physical and chemical properties. 
The second data source is a Digital Elevation Model (DEM) that was interpolated from 
contour lines and point elevation data. The third data source is a Landsat TM image from 
August 10, 1998. The soil survey data were converted into a 25-m grid format and the 
Landsat TM image was resampled to obtain the same 25-m grid as the DEM. This allowed a 
pixel-based evaluation of erosion risk within a GIS. In this study PCI Geomatics software 
was used, but any raster-based GIS package could be applied for this purpose. 

In addition, ground data of land use and FVC were gathered using a Global 
Positioning System (GPS). Border coordinates of parcels or homogeneous vegetation areas 
were measured, resulting in a collection of polygons. For every polygon, land use and 
average FVC were determined. The average FVC was estimated visually. 

Apart from vegetation data, the GPS was used to indicate areas with clear signs of 
erosion and that suffer from a very high erosion risk. Erosion risk verification data were 
taken at seven locations distributed over the study area. After construction of the risk maps, 
we observed signs of erosion and estimated topsoil, geology, topography, and vegetation 
characteristics. 

We interviewed four soil experts who have worked in the region. Three of them have 
performed soil erosion studies within the Puerto López municipality or in its vicinity. The 
experts identified the sub-factors to select and extract from the available spatial data, as well 
as the relationships needed for the construction of decision trees. 
 
 

4.5 Results and discussion 
The selected sub-factors are shown in Table 4.1. Every sub-factor was given a qualitative 
rating that was subsequently used in the decision trees. Note that this value is not necessarily 
between 1.0 and 3.0. In this study, the climate factor was not used, as annual rainfall can be 
assumed homogeneous in the study area and therefore climate would not contribute to the 
spatial distribution of the erosion risk. The sub-factors for geology and soil were selected 
from the attributes contained in the soil survey by IGAC (1978). The geology sub-factor, 
alteration degree, was defined as the degree of physical and chemical change that occurs in 
rocks at the ground surface or close to it through atmospheric agents (SSSA, 1987). The 
relief attributes followed from the DEM. Slope gradient was calculated and dissection grade 
was visually interpreted. For the management factor, a maximum likelihood classification 
was performed, using the Landsat TM image and ground data on land use, to obtain a land 
use map. The overall accuracy of this map was 84 %. The FVC was determined for the total 
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Table 4.1 Factors and sub-factors for Qualitative Erosion Risk Mapping (QUERIM) in 
Puertó Lopez, Colombia 

Factor Sub-factor Rating Description Criteria 
  
Geology Alteration degree 1 Strongly weathered  
  2 Moderately weathered  
  3 Slightly weathered  
     
Soils Effective depth 1 Moderately deep > 50 cm 
  2 Superficial 25 - 50 cm 
  3 Very superficial 10 - 25 cm  
  4 Excessively superficial   0 - 10 cm 
  
 Topsoil texture 1 Fine  
  2 Medium  
  3 Coarse  
  
 Organic matter 1 Very high > 6.0 % 
 content (topsoil) 2 High 2.5 - 6.0 % 
  3 Medium 1.5 - 2.5 % 
  4 Low 1.0 - 1.5 % 
  5 Very low < 1.0 % 
  
 Structure 1 Strong  
  2 Moderate  
  3 Weak  
  4 Structureless - massive  
     
Relief Dissection grade 1 Not dissected  
  2 Slightly dissected  
  3 Moderately dissected  
  4 Very dissected  
  
 Slope gradient  1 Flat 0 - 3 % 
  2 Slightly inclining 3 - 7 % 
  3 Moderately inclining 7 - 12 % 
  4 Strongly inclining 12 - 25 % 
  5 Steep 25 - 50 % 
  6 Very steep >50 % 
     
Management Land use 1 Water  
  2 Tree and shrub vegetation  
  3 Natural pastures  
  4 Introduced pastures  
  5 Lowland rice  
  6 Bare and burned land  
  
 Fractional vegetation 1 High 80 – 100 % 
 Cover   (FVC) 2 Moderately high 60 – 80 % 
  3 Moderate 40 – 60 % 
  4 Low 20 – 40 % 
  5 Very low 0 – 20 % 
  6 None 0 % 



Erosion risk mapping in the Colombian Eastern Plains 
 

 71

Table 4.2 Decision tree for soil factor* 

Effective depth 
 

Topsoil texture 
 

Organic matter 
content 

Structure 
 

Soil Factor 
 

1 1 4 3 1.4 
1 2 2 3 1.3 
1 2 3 1 1.3 
1 2 3 2 1.4 
1 2 4 2 1.5 
1 2 4 4 2.3 
2 2 1 2 1.7 
2 2 2 2 1.9 
2 2 4 1 2.2 
2 2 5 3 2.4 
2 3 3 2 2.3 
2 3 5 4 2.8 
3 1 1 3 2.0 
3 2 3 2 2.5 
3 2 3 3 2.6 
3 2 4 3 2.7 
4 3 5 4 3.0 

* The decision tree shows the occurring value combinations of the specific sub-factors. These values correspond with Table 
1. The last column shows the final factor rating as assigned by the local experts for each sub-factor combination. 

 
 

area by relating the ground estimates to the normalized difference vegetation index (NDVI) 
extracted from the image. Neither erosion prevention measures nor practices of conservation 
tillage are present in the area, and therefore these factors were not included in this study. 

A numerical index between 1.0 and 3.0 was assigned to each factor by the local 
experts through qualitative evaluation of the occurring combinations of sub-factor values, as 
shown in the decision trees (Tables 4.2, 4.3, and 4.4).The geology factor obtained the same 
rating as in Table 4.1. Table 4.2 shows the decision tree for the soil factor. The experts gave 
the four sub-factors nearly equal weight in determining erosion risk, although structure-less 
massive soils (structure rating = 4) considerably increased the risk. Table 4.3 shows the 
decision tree for the relief factor. Experts indicated that the slope gradient should receive the 
highest weight, but stressed the increased erosion risk in highly dissected terrain. Table 4.4 
shows the decision tree for the management factor. Erosion risk is highest on the pastures 
(land use ratings = 3 and 4) that form a great part of the area, as well as on bare soils (mainly 
burned pastures; land use rating = 6). The FVC is the most determining sub-factor according 
to the experts. 

A map was constructed for each factor, resulting in a numerical index for every pixel. 
The averages of the geology, soil, and relief factors per pixel produced the potential erosion 
risk map (Fig. 4.2), whereas the averages of the geology, soil, relief, and management factors 
resulted in the actual erosion risk map (Fig. 4.3). Table 4.5 reclassifies the values to obtain a 
more comprehendible legend. 



Chapter 4 

 72

Table 4.3 Decision tree for relief*           Table 4.4     Decision tree for management*  

Dissection grade Slope gradient Relief factor Land use FVC Management 
factor 

1 1 1.0 1 6 1.0 
1 2 1.3 2 1 1.0 
1 3 1.8 2 2 1.2 
1 4 2.1 3 1 1.3 
1 5 2.3 3 2 1.5 
1 6 2.5 3 3 1.9 
2 1 1.4 3 4 2.3 
2 2 1.7 3 5 2.7 
2 3 2.0 4 1 1.4 
2 4 2.3 4 2 1.6 
2 5 2.5 4 3 2.0 
2 6 2.7 4 4 2.4 
3 1 1.9 4 5 2.8 
3 2 2.2 5 3 1.8 
3 3 2.4 6 6 3.0 
3 4 2.6    
3 5 2.8    
3 6 2.9    
4 1 2.2 
4 2 2.6 
4 3 2.8 
4 4 2.9 
4 5 3.0 
4 6 3.0 

 

 
 
* The decision trees show the occurring value 

combinations of the specific sub-factors. These 
values correspond with Table 1. The last column 
shows the final factor rating as assigned by the 
local experts for each sub-factor combination. 

 
 

The potential erosion risk map (Fig. 4.2) shows a high risk for the dissected high 
plains (centre and south) and the low-lying areas (western and northern boundary), which 
consist of young unstable alluvial sediments. A low risk is found on the non-dissected high 
plains (north). A similar attenuated pattern can be seen on the actual erosion risk map (Fig. 
4.3). This attenuation does not hold for patches with bare soil or pastures with a very low 
FVC. As the geology, soil, and relief factors are much more stable over time than the 
management factor, recurrent satellite remote sensing imagery should be used for better 
monitoring of the actual erosion risk. This allows timely identification of management 
changes, such as pastures that have been burnt, resulting in a low FVC and therefore a high 
actual risk. 

The erosion risk verification data showed a correspondence between areas in the field 
with advanced signs of erosion or high erosion risk, and areas on the map indicating a high 
erosion risk at all of the seven locations visited. At four locations advanced signs of sheet 
erosion and gully formation could be observed, whereas at the remaining three locations 
favourable conditions for erosion (steep slopes, bare soil, etc.) were present.  In spite of this  
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Table 4.5 Reclassification of erosion risk classes 

Rating Erosion risk 

1.0 - 1.3 very low 
1.4 - 1.6 low 
1.7 - 1.9 medium 
2.0 - 2.2 high 
2.3 - 3.0 very high 

 
 

 
Figure 4.2 QUERIM potential erosion risk map of Puerto López municipality 
 
 

 
Figure 4.3 QUERIM actual erosion risk map of Puerto López municipality 
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correspondence between high erosion risk areas on the map and in the field, the study could 
benefit from a more thorough ground check. We suggest selecting several sites, not larger 
than 0.2 km2, with clear differences in erosion risk on the maps. Within these sites the 
interrelations between the erosion-controlling factors can be identified through detailed field 
estimations of topsoil characteristics, geology, topography, and vegetation cover. Combined, 
these estimations can help predict site-specific erosion processes, which will result in a 
qualitative rating of the erosion risk. 

It could be argued that QUERIM is a simple averaging of parameters, but the region-
specific decision trees representing the interactions between sub-factors lend flexibility to the 
method. In the Puerto López study, the important controlling role of vegetation 
(management) becomes clear through the overall attenuated pattern of actual erosion risk as 
compared to potential erosion risk. If vegetation were removed, soil characteristics 
influencing the infiltration rate would become a key factor, as well as the stability of the 
underlying material (geology factor). Obviously, low infiltration rates would create more 
runoff and erosion in steep and highly dissected terrain. 

The merit of applying QUERIM to the Puerto López municipality is that it has 
produced a map of areas under potential or actual erosion risk. This will encourage proper 
land use and conservation planning, mostly by identifying areas threatened by erosion if, for 
example, vegetation were removed or burnt, or fields taken under cultivation. Land use 
planning using QUERIM results will direct these activities to “safer” areas. Moreover, areas 
having high actual erosion risk will qualify for being re-planted. Implications for 
conservation planning principally relate to recommendations of tillage practices, on either 
present or future agricultural fields. 

As a qualitative method, QUERIM cannot give quantitative estimates of erosion, 
other than through the up-scaling of erosion measurements that could be executed in the 
previously mentioned sites of 0.2 km2. This may be a shortcoming for high-relief regions, if 
radical measures, such as terraces or dams, are to be constructed. QUERIM can indicate areas 
of interest within a larger region, but other quantitative methods such as the Water Erosion 
Prediction Project (WEPP: Flanagan and Nearing, 1995), may have to be used in these areas 
for final conservation planning. 
 
 

4.6 Summary and conclusions 
A simple qualitative approach that takes expert knowledge into account is a valuable tool for 
erosion risk mapping, especially when this mapping is conducted to focus soil conservation 
actions or to establish land use restrictions. Such an approach can be more effective than the 
use of quantitative models that were not developed for the region to which they are applied. 
QUERIM provides a methodological framework for mapping erosion risks over large areas. 
A ground check indicated that it is an appropriate method for mapping erosion risks in the 
Puerto López municipality. More detailed ground data is desirable for a better verification. 
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The flexibility of QUERIM has several advantages. First, although the erosion-
controlling factors have to be accounted for, QUERIM has no fixed data requirement, such as 
necessary parameters. This makes the method applicable to a wide variety of regions for 
which studies are available that do not necessarily contain model parameters. Second, the 
choice of sub-factors and their combinations can be adapted by region, so locally-important 
processes and factors can be accounted for. Furthermore, QUERIM uses the knowledge of 
experts that have worked for a long time in the region under study. The absence of local 
expert input is a main shortcoming of present geographical data integration. Current models 
that integrate geographical data seldom serve the purpose for which they are used. 
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5. Spatial evaluation of soil erosion risk in the West 
Usambara Mountains, Tanzania 

 
 

Abstract 
Effective soil and water conservation programmes require the concentration of resources on limited 
areas. For that purpose regional scale assessments of erosion risk are required. However, availability 
of good-quality spatial data for such assessments is often poor, especially in regions like sub-Saharan 
Africa. This study was conducted to evaluate the potential of analyzing regional erosion risk using a 
limited amount of readily available data. The analysis was executed for the 70-km2 Baga watershed 
in the West Usambara Mountains, Tanzania. Principal data sources were a Landsat image and an 
SRTM DEM. Two qualitative mapping methods resulting in five erosion risk classes were evaluated 
against field-based erosion risk estimates. The first method derived slope classes from the DEM and 
fractional vegetation cover (FVC) classes from the Landsat image and FVC field estimates. Data 
integration was achieved with a decision tree. The second method did not apply field data for the map 
construction, but combined five equally sized NDVI classes and five slope classes using the 
minimum-operator. Resulting maps showed a high and comparable accuracy, 80 % for Method 1, and 
81 % for Method 2, when allowing a maximum difference of one class with field erosion risk 
estimates. Spatial patterns of erosion risk were well represented by both methods and high erosion 
risk areas can be properly identified within the Baga watershed. Due to the limited data requirement 
of Method 2, it has a high potential for quick identification of erosion risk in other areas of the East 
African Highlands. 
 
 

5.1 Introduction 
Soil erosion negatively affects sustainable agricultural production in sub-Saharan Africa (Lal, 
1988). Governmental policies targeted at reducing soil erosion, thereby increasing production 
levels, are required when local land users lack the resources or knowledge for effective 
erosion control (Ananda and Herath, 2003). National programmes towards soil and water 
conservation have altered substantially during the past decades, moving from top-down 
conservation planning towards increased farmer participation (Pretty and Shah, 1997). 
Although proper farmer participation has proven to be more effective than top-down 
approaches in soil and water conservation adoption (Mbaga-Semgalawe and Folmer, 2000), 
participatory methods require substantial time and dedication of extension staff. Given the 
limited budgets of involved institutions, there is a need to focus resources and efforts on 
small areas (e.g. 50-500 ha). Once the implemented measures proved their effectiveness, 
these areas can have a demonstration effect on surrounding farmer groups or villages. The 
selection of such a focal area is therefore very important. Criteria for this selection generally 
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include social factors like local requests for support, but a very important criterion is the 
extent of erosion (Pretty et al., 1995).  

As a consequence, information on erosion is required at different spatial scales. Both 
for the selection of a focal area, and for assisting the conservation planning procedures within 
a focal area, spatial information is needed on where erosion is occurring or is likely to occur 
in the near future. This can be either quantitative information (erosion rates) or qualitative 
information (e.g. high versus low erosion risk). There is not one single straightforward 
method for assessing erosion and its evaluation is highly dependent on the spatial scale and 
the purpose of the assessment (Warren, 2002). For limited spatial scales (<100 ha) field 
surveys can provide an accurate means of analyzing erosion damage (Herweg, 1996). For 
focal area selection however, other approaches should be applied that integrate available 
spatial data.  

Current methods for spatial erosion assessment at the regional scale (50 - 10,000 km2) 
include the application of erosion models and qualitative approaches. Many erosion models 
exist at present (Merritt et al., 2003). However, performance of these models outside the 
region where they were developed has generally been poor (e.g. Brazier et al., 2000) and the 
models require substantial calibration to have some predictive value (Jetten et al., 1999; 
Jetten et al., 2003). Furthermore, most models have been developed for small scales and 
cannot easily be applied to larger regions (Kirkby et al., 1996; Schoorl et al., 2000; Yair and 
Raz-Yassif, 2004). To overcome some of the drawbacks of erosion models, alternative 
approaches have been developed that aim at a qualitative mapping of erosion risk through the 
use of expert judgments (Sonneveld, 2003). This is possible through (1) spatial assessments 
by experts (e.g. Oldeman et al., 1991) or (2) through the identification of key factors and 
processes in a certain region (e.g. De la Rosa et al., 1999; Vrieling et al., 2002). In the second 
case, decision rules are defined to combine important factors that can be derived from 
available spatial data. For example, Vrieling et al. (2002) developed an erosion risk mapping 
methodology for the Colombian Eastern Plains, in which expert judgments determined the 
important erosion controlling factors in the study area and the rules to combine those factors. 

Whether erosion models or qualitative approaches are used for assessing the erosion 
risk in an area and for focal area selection, spatial data are always required. Many erosion 
models have a high data demand, and can therefore only be applied in data-rich 
environments, or even after extensive collection of field data on model parameters. Such 
models have their major benefit in increasing the understanding of the erosion process for the 
region under study. However, to be useful for decision makers, erosion assessment methods 
must have limited data requirements (Renschler and Harbor, 2002). This becomes even more 
important in data-poor regions, such as sub-Saharan Africa. For example, soils data are often 
merely available at very coarse scales, which hampers its direct use in regional assessments 
(<10,000 km2). Van Rompaey and Govers (2002) showed that simple methods provide a 
more accurate assessment of erosion than complex methods, for which the available data 
does not allow the estimation of required parameters with a minimum accuracy.  
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A positive development is the increasing availability of good quality spatial data with 
a near worldwide coverage. For a large part this can be contributed to the many earth 
observing space missions that have been conducted by national, international, and private 
agencies since the 1970s. A wide variety of satellite images and image-derived products, 
such as digital elevation models (DEMs), are currently available to the general public, often 
at low or no cost, although some image types are still expensive. A good example is the 
Shuttle Radar Topography Mission (SRTM) offering a free high-quality 90-m resolution 
DEM (Rabus et al., 2003). For regional erosion studies, satellite imagery is increasingly 
being used, both for the detection of erosion features and eroded surfaces, and for the 
assessment of erosion determining factors like soil properties and vegetation cover. However, 
in most studies satellite data are merely applied to assess the vegetation cover, partly due to 
the limited visibility of the soil surface in humid environments (Vrieling, 2006). As a 
consequence, methods applied for spatial assessment of erosion at the regional scale still 
heavily rely on data sources that have a limited availability in wider regions. 

The objective of this study was to evaluate the potential of readily available spatial 
data to analyze regional erosion risk. The erosion assessment was executed to provide a 
qualitative erosion risk map that can be used for prioritization of soil and water conservation 
efforts within the 70-km2 study area. 
 
 

5.2 Study area 
The West Usambara Mountains are located in northeast Tanzania (Fig. 5.1) and form part of 
the system known as the East African Highlands, which comprises highland areas in Burundi, 
Ethiopia, Kenya, Rwanda, Tanzania, and Uganda. This highland system was formed during 
and after the Tertiary period. The West Usambara Mountains are an upraised horst of 
Precambrian metamorphic rocks, consisting mainly of gneisses (Pfeiffer, 1990). Because of a 
favourable climate and fertile soils, these mountains are very important for food, fibre, and 
fodder production. However, high population pressure (> 100 persons/km2) has resulted in 
overexploitation of natural resources causing deforestation and land degradation (Conte, 
1999; Kaoneka and Solberg, 1994). Currently, soil erosion is widespread and forms the major 
limiting factor for agricultural production (Tenge et al., 2004). In spite of several 
governmental, non-governmental and international donor programmes aiming at tackling the 
soil erosion problem by construction of soil and water conservation measures, adoption of 
such practices by farmers has been poor, particularly due to the incompatibility of the 
measures with socio-economic conditions and limited farmer participation (Mbaga-
Semgalawe and Folmer, 2000; Tenge et al., 2004). Following the Kenyan example, during 
recent years the Catchment Approach has been applied to increase farmer participation and 
effectiveness of soil conservation programmes (Johansson, 2001). In this approach, a small 
focal  area  (about 200 ha in West Usambara Mountains)  is selected where the  soil erosion 
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Figure 5.1 Location, boundary, and drainage pattern of Baga watershed 
 
 
problem is addressed in a participatory manner and joint farmer action towards soil and water 
conservation is envisaged (Pretty et al., 1995).  

The Baga watershed is a 70-km2 hydrological watershed situated in the humid warm 
agro-ecological zone of the West Usambara Mountains (Fig. 5.1). Average annual rainfall is 
approximately 1000 mm falling in a bimodal pattern. The two rainy seasons are locally 
named short rains (October-November), and long rains (March to May), and a dry spell 
occurs in January-February. Average monthly temperatures vary between 18°C (July) and 
23°C (March), with high diurnal variation. The elevation within the watershed ranges from 
1200 to 2000-m above mean sea level. The terrain is highly dissected with local slopes of up 
to 90%. A detailed soil survey in a small part of the Baga watershed (2 km2) showed that 
Humic and Haplic Acrisols occur on the slopes and ridges, Haplic Lixisols on the footslopes, 
and Eutric Fluvisol and Umbric Gleysols in the river valley, using the FAO classification 
system (Meliyo et al., 2002). Possibly other soil types occur in the Baga watershed, but 
besides this soil survey only coarse-scale soil maps (1:500,000) are available. 

Land use principally consists of agriculture, although mountain rain forest is present 
in the higher parts of the watershed. Agricultural land is mostly composed of small-scale 
fields that are generally cultivated with maize, intercropped with beans, banana, cassava, and 
sugarcane. The combination of coffee, banana, and coco yam occurs on some steeper slopes. 
Irrigated vegetables are intensively planted in the valley bottoms. Furthermore, large mono-
crop tea plantations are present in the area. Dispersed trees of different species are found in 
varying densities throughout the watershed. Erosion occurs mainly in the form of sheet and 
rill erosion on fields that are cultivated with annuals. It is most severe at the onset of the long 
rains, when high-intensity rainstorms occur and the soil cover is poor due to antecedent land 
preparation (Vigiak et al., 2005). Very few soil and water conservation measures were found 
in the Baga watershed. 
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5.3 Materials and methods 

5.3.1 Data 

Three main data sources were used for the erosion risk analysis: a Shuttle Radar Topography 
Mission (SRTM) DEM, a Landsat Enhanced Thematic Mapper (ETM+) image, and field 
data. The only additional data applied were a set of orthophotos (i.e. orthorectified aerial 
photographs) covering the complete study area, which allowed precise georefencing of the 
Landsat image. 

SRTM was flown in February 2000 onboard the Space Shuttle Endeavour. During the 
11-day mission, two antenna pairs operating in C- and X-band (5.6 and 3.0 cm wavelength) 
simultaneously transmitted and received radar signals. Good quality DEMs were obtained 
from the received signals using interferometric synthetic aperture radar processing (Rabus et 
al., 2003). DEMs derived from C-band radar are freely available from the internet at 90-m 
resolution for any land mass between 60°N and 57°S latitude. The DEM containing the study 
site was selected.  

The Landsat series of satellites started to acquire images in 1972 with the launch of 
Landsat-1. Large archives of Landsat imagery exist, that can be easily accessed and bought 
through the internet, and for some regions free scenes are available. The Landsat-7 ETM+ 
image used in this study, was acquired on 6 February 2003 (path/row: 167/73), slightly 
before the start of the long rains. At that moment, many agricultural fields were bare, causing 
high erosion risks at the onset of the rains. The image was of good quality with no clouds 
present in the study area. Only the 30-m resolution multispectral bands number 3 and 4 were 
used, which capture respectively red (0.63-0.69 µm) and near infrared (NIR: 0.76-0.90 µm) 
reflection. 

A detailed field survey was executed during late February to early March 2003, 
before the start of the long rains. Three reasons existed for the timing of the survey: (1) the 
high erosion risk at the onset of the long rains, which is caused by the concurrence of high 
intensity rainfall and the high presence of bare fields that are prepared for cultivation in 
January-February, (2) the easier accessibility of many locations as compared to the wet 
season, and (3) the availability of a good Landsat image with a maximum deviation of 28-
days from the last survey performed. Prior to the field survey, several field visits were carried 
out in presence of extension officers and different groups of local farmers. The purpose of 
these field visits was to understand the local perception of erosion, its causes, and the locally 
used indicators of erosion. This knowledge assisted in assigning qualitative estimates to 
erosion risk throughout the survey. During the survey, 151 points with an approximately 
uniform vegetation cover were located within the Baga watershed using a Global Positioning 
System (GPS). At each point the following characteristics were recorded: land cover, 
fractional vegetation cover (FVC), presence of soil and water conservation measures, slope 
gradient, and erosion indicators. The assessment of FVC was done through visual estimation, 
and slope was measured with an inclinometer. Erosion risk was qualitatively estimated 
jointly with an extension officer on a scale ranging from 1 (very low) to 5 (very high), based 
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on the recorded surface characteristics and the presence of local erosion indicators (Okoba, 
2005). Used indicators of high erosion risk included stony soil, exposed roots, and the 
presence of rills and pedestals (although at many locations limited due to dry period and 
ploughing). 
 

5.3.2 Preprocessing 

The SRTM DEM contained minor data voids within the study area. These occurred due to 
radar shadows that are caused by steep terrain. The voids were filled by interpolating 
neighbouring elevation values. Slope was calculated from the DEM using the slope definition 
of Zevenbergen and Thorne (1987). Subsequently the slope map was reprojected to a UTM 
projection, using nearest neighbour resampling and a 30-m output pixel size. This 
reprojection was executed to be consistent with available base data, including a topographic 
map and aerial orthophotos. The 30-m pixel size was chosen to match the Landsat ETM+ 
image. A coarse (90-m) DEM normally results in lower slope values for steep slopes and 
slightly higher slope values for gentle slopes, but slope values are generally well correlated 
when compared to a finer DEM (e.g. Thompson et al., 2001; Wolock and McCabe, 2000). 
Because slope values were to be used in a qualitative way, it was assumed that the calculation 
of slope from the 90-m DEM would provide a proper approximation of slope classes in the 
Baga watershed.  

The Landsat ETM+ image was orthorectified to reduce geometric distortions caused 
by the steep topography. The process of orthorectification calculates a horizontal correction 
to the image data by combining information on the elevation and viewing geometry of each 
image point (Tucker et al., 2004). Elevation was obtained from the SRTM DEM and viewing 
geometry was derived from the path definition of the Landsat-7 satellite. The geometric 
reference of the Landsat image was determined by visually relating 23 control points on the 
available orthophoto to the same points on the Landsat image. The root mean square error of 
the orthorectification model using these control points was 23.6-m, which is lower than the 
image resolution. Nearest neighbour resampling was applied with an output pixel size of 30-
m. The 30-m image resolution was maintained to allow the representation of small-scale 
changes in vegetation cover. 

The digital numbers of the orthorectified Landsat image bands 3 and 4 were 
converted into reflectance (ρ) values (i.e. radiometric calibration) using a straightforward 
procedure described in Chander and Markham (2003). Subsequently, the Normalized 
Difference Vegetation Index (NDVI) was calculated using the following equation: 
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For healthy green vegetation ρ(NIR) is high, while ρ(red) is low, resulting in a high NDVI, 
whereas for bare soil ρ(NIR) and ρ(red) are similar causing a low NDVI.  Because the NDVI  
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Figure 5.2 Area near study site to illustrate the reduction of the topographic effect. (A) 

Landsat band 4 reflectance stretched between 0.15 (black) and 0.35 (white); (B) 
NDVI stretched between 0.4 and 0.8 of same area. In (A) several dark shadows 
are present, which are nearly absent in (B). In B, dark areas are related to limited 
vegetation cover. 

 
 
is an image ratio, it reduces the effect of topography (Holben and Justice, 1981). Due to 
variation of slope inclination and aspect in rugged terrain, spectral reflection is different for a 
similar vegetation cover. Although more sophisticated approaches exist towards topographic 
normalization (e.g. Riaño et al., 2003; Sandmeier and Itten, 1997), these approaches require a 
DEM with a spatial resolution that is as high, or higher than the image resolution. For the 
Baga watershed, the NDVI resulted in a good reduction of the topographic effect (Fig. 5.2).  
 

5.3.3 Erosion risk assessment using field data (Method 1) 

The construction of the soil erosion risk map for the Baga watershed with Method 1 was 
achieved through a qualitative integration of the slope map and a fractional vegetation cover 
(FVC) map. The choice of these two variables does not imply that we consider factors like 
soil properties, rainfall characteristics, land use, tillage operations, and presence of 
conservation practices, of little importance for erosion. There are however three main 
rationales for using only these two variables: (1) the relative ease with which the variables 
can be obtained from readily available data, (2) the reported high correlation between these 
variables and the occurrence of erosion features in a region within the Kenyan Highlands 
(Okoth, 2003), and (3) the frequency by which these variables were mentioned by both 
farmers and extension officers as important causes of erosion within the region during the 
field visit. Furthermore, FVC is strongly correlated with several other factors (e.g. soil 
properties and presence conservation measures). A third cause of erosion that was often 
mentioned by farmers and extension officers is heavy rainfall. On an annual basis, this factor 
can be assumed uniform in the Baga watershed, and thus does not contribute to spatial 
differences of erosion risk. In larger regions, spatial variability of rainfall characteristics may 
be accounted for using readily available data products from the Tropical Rainfall Measuring 
Mission (TRMM: Kummerow et al., 1998). 
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Regression analysis was performed between the 151 field estimates of FVC and the 
corresponding NDVI values derived from the Landsat image. The resulting relationship was 
applied to obtain an FVC-map of the complete watershed. The FVC and the slope map were 
both reclassified resulting in five classes for each variable. The class limits were set at 
multiples of 10, in such a way that the class range was of equal size for each class, and that 
each class was represented in 5 to 35 % of the study area. For slope this resulted in the 
following classes: 0-10 %, 10-20 %, 20-30 %, 30-40 %, and more than 40 %. For FVC the 
classes were: 0-20 %, 20-40 %, 40-60%, 60-80 %, and 80-100 %. 

Erosion risk classes were assigned to FVC and slope class combinations using a 
decision tree. The same five erosion risk classes as of the field survey assessments were used, 
ranging from very low (1) to very high (5). The construction of the decision tree was 
achieved through comparing 100 field estimates of erosion risk with the corresponding FVC-
slope class combinations derived from the spatial data sources. A logical sequence of erosion 
risk classifications was always maintained, e.g. assuming the same FVC class, a steeper slope 
class cannot be assigned a lower erosion risk as a less steep class. The 100 locations used for 
the calibration of the decision tree were randomly selected from the 151 available field 
estimates. The remaining 51 locations were used for validation. The erosion risk map was 
subsequently constructed through applying the decision tree to the classified FVC and slope 
map of the Baga watershed. 
 

5.3.4 Erosion risk assessment without field data (Method 2) 

A second method was tested to assess the requirement of using field data for accurate erosion 
risk mapping. In most cases field data are not readily available, and therefore Method 1 may 
be difficult to extrapolate and apply to other areas, unless a detailed field survey is 
performed. Method 2 is also a qualitative approach and addresses the same factors as Method 
1, but in a very simple straightforward manner that can easily be applied to other areas. 

NDVI was used directly as a measure of vegetation cover, thus no processing was 
done to determine FVC. Both NDVI-values and slope-values were automatically classified 
into five classes that occupy an equal area within the study area. For both factors, an erosion 
risk class – five classes ranging from very low (1) to very high (5) – was assigned based on 
the relative erosion susceptibility. For example, very steep slopes obtained a very high 
factorial erosion risk class, whereas flat areas and very gentle slopes received a very low risk 
class. For NDVI it was the other way around, i.e. very high NDVI values obtained a very low 
risk class. The erosion risk map was constructed by simply taking the minimum of the NDVI-
based and the slope-based risk classes at each location. The minimum-operator was chosen 
for two reasons: (1) it was assumed that the lowest of the two factorial risk classes is 
determinative for the final erosion risk, because e.g. a good vegetation cover on a steep slope 
and a poor cover on a very gentle slope both result in a relatively little erosion, and (2) this 
operator effectively limited the occurrence of high and very high erosion risk classes, 
resulting in a similar occurrence histogram as Method 1. 
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5.3.5 Accuracy assessment 

To assess the accuracy of the erosion risk maps, field estimates of erosion risk were 
compared against mapping results for the same locations. The frequency of occurring 
combinations of estimates and mapping results were tabulated in a confusion matrix. Two 
definitions were used to obtain a quantitative measure of accuracy (A). The first (A1) strictly 
defines a correct classification as one where the field estimate of erosion risk is the same as 
the mapping result. For a confusion matrix, this implies the sum of the diagonal elements 
divided by the total number of observations, or in an equation: 
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where ui,j represents a specific number in the confusion matrix. The second definition (A2) is 
more flexible and assumes that a one-class difference is acceptable. This may be justified 
because the classes are not defined on a nominal scale, but on an ordinal scale. If we state 
that a classified pixel with a certain erosion risk is considered correctly classified when there 
is a maximum difference of one class (e.g. low erosion risk in classification is correct if field 
estimate is very low, low, or medium), we obtain the following equation: 
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To assess the accuracy of the erosion risk map constructed with Method 1, 51 field estimates 
of erosion risk were used that were not included for calibrating the decision tree. To assess 
the accuracy of Method 2, all 151 field estimates were included. 
 
 

5.4 Results and discussion 

5.4.1 Results Method 1 

The classified slope map is presented in Fig. 5.3a. The map shows steep slopes, which at 
several places are more than 40 %. In the field, steeper slopes of up to 90 % were measured. 
However, the high local slope variations cannot be represented with the relatively coarse 
SRTM DEM.  Consequently, very low correlations were found between field measurements 
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and calculated slopes from the DEM, with slope inclinations derived from the DEM generally 
being lower than the field measurements. This is supported by other studies, which showed 
that reduced DEM resolution negatively affects slope accuracy especially in areas of steep 
elevation changes like in the Baga watershed (e.g. Chang and Tsai, 1991; Gao, 1997) and 
cause a systematic underestimation of slope (Hill and Neary, 2005). Nevertheless, from the 
acquired field knowledge on the watershed it can be concluded that the general slope pattern 
is well represented. Although for physically-based erosion modelling exact slope values are 
very important (Warren et al., 2004), for the qualitative approach presented here a proper 
representation of slope pattern is sufficient. 

The relationship between FVC and NDVI was determined using linear regression and 
yielded the following equation: 
 

437.000325.0 += FVCNDVI                   (5.4) 
 

having a R2 of 0.80 (Fig. 5.4). Linear relationships between NDVI and FVC with comparable 
correlation coefficients were also found for, e.g., semi-arid grassland regions in Kansas 
(Rundquist, 2002) and in China (Zha et al., 2003) and for agricultural and forested areas in 
Germany (Wittich and Hansing, 1995). Others have suggested that a second order polynomial 
regression provides a better relationship (e.g. Carlson and Ripley, 1997; Purevdorj et al., 
1998), but no evidence was found for this in our study (Fig. 5.4).  

The fractional vegetation cover was calculated for the complete Baga watershed 
through inversion of Eq. 5.4. Classification of the outcomes resulted in the FVC map (Fig. 
5.3b). The highest FVC is found in the forested areas, generally on high elevations. The 
lowest FVC class corresponds largely to bare fields that are cleared for cultivation of annual 
crops during the upcoming long rains. 
 

NDVI = 0.00325 FVC + 0.437
R 2 = 0.80
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Figure 5.4 Relationship between fractional vegetation cover (FVC), estimated in the field, 

and calculated NDVI-values from the Landsat image (n=151) 
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The erosion risk map was constructed using a decision tree that combined the 
obtained FVC and slope classes. The development of this decision tree followed a calibration 
procedure, in which for each FVC-slope class pair (in total 25 different possible pairs) the 
optimal erosion risk class was determined, using the 100 field estimates set aside for 
calibration. Optimal refers to the number of field estimates falling in the different risk 
classes. For instance, six field locations coincided with the pair ‘FVC = 80-100 %; slope = 
30-40 %’. Of these six locations, the field estimate of erosion risk was four times ‘very low’ 
and two times ‘low’. Therefore the decision tree assigns ‘very low’ to this FVC-slope class 
pair. However, some pairs did not coincide with any field estimates, e.g. ‘FVC = 0-20 %; 
slope = >40 %’. For such cases the assigned class was based on surrounding pairs. For the 
previous example this resulted in the class ‘very high’, because this class was already 
assigned to the pair ‘FVC = 0-20 %; slope = 30-40 %’. If the optimal classification of a 
certain pair, based on the field estimates, differed from surrounding pairs, the class was 
changed to obtain a logical sequence. The resulting decision tree is presented in Table 5.1. 
The confusion matrix of the calibration points is shown in Table 5.2.  

Applying the decision tree to the FVC and slope map yielded the erosion risk map 
(Fig. 5.3c). Although the map has a similar appearance as the FVC map, close examination 
reveals several differences from which the effect of the slope becomes clear. The large areas 
of very low erosion risk correspond mostly to the forested areas, whereas very high erosion 
risk is mainly found on sloping fields of annual crop cultivation that were bare at the time the 
Landsat image was taken. 
 
 
 
Table 5.1 Decision tree for the construction the erosion risk map (Method 1) 

FVC (%) Slope (%) Erosion risk 

80–100 0–40 Very low 
80–100 >40 Low 
60–80 0–30 Low 
60–80 >30 Medium 
40–60 0–10 Low 
40–60 10–40 Medium 
40–60 >40 High 
20–40 0–10 Low 
20–40 10–20 Medium 
20–40 20–30 High 
20–40 >30 Very high 
  0–20 0–10 Low 
  0–20 10–20 High 
  0–20 >20 Very high 
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Table 5.2 Confusion matrix comparing field-based estimates of erosion risk with 
classification results for the 100 locations used for calibrating the decision tree 
(Method 1) 

                             Field estimate of erosion risk Erosion 
risk map 

Very low Low Medium High Very high Total 

Very low 10 3 1 0 0 14 
Low 8 16 9 1 1 35 
Medium 4 6 9 6 2 27 
High 1 3 5 5 0 14 
Very high 0 1 0 5 4 10 

Total 23 29 24 17 7 100 
 
 
 
 
 

The accuracy of the erosion risk map was analyzed with 51 independent field 
estimates of erosion risk. Table 5.3 presents the confusion matrix comparing these field 
estimates with the mapping results for the same locations. Using the accuracy definition of 
Eq. 5.2, A1 becomes 35 %, which is low. However, under the assumption that a one-class 
difference is acceptable, the accuracy (A2 from Eq. 5.3) increases to 80 %. This value seems 
to indicate that areas with respectively low and high erosion risk can be reasonably well 
identified for the Baga watershed using Method 1. Misclassifications with more than one 
class difference from the field estimates (10 points) appeared to be randomly distributed 
within the study area. No clear reason was found for this misclassification. 
 
 
 
 
Table 5.2 Confusion matrix for validation of the erosion risk map (Method 1) 

                             Field estimate of erosion risk Erosion 
risk map 

Very low Low Medium High Very high Total 

Very low 6 5 0 0 0 11 
Low 7 6 3 2 0 18 
Medium 2 3 3 2 2 12 
High 0 1 0 2 0 3 
Very high 0 1 2 3 1 7 

Total 15 16 8 9 3 51 
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5.4.2 Results Method 2 

The automatic classification of NDVI and slope values in equal frequency classes resulted in 
the class limits presented in Table 5.4. The interval for each range is different because the 
only classification criterion is that each class occupies 20 % of the study area. An erosion risk 
class was assigned to both factors based on the relative susceptibility of erosion. Fig. 5.5a and 
5.5b show respectively the erosion risk class for the slope factor and the NDVI. The overall 
patterns are similar as Fig. 5.3a and 5.3b, but the appearance is different due to the distinct 
class limits and sizes. 

The erosion risk map (Fig. 5c) was created by taking the minimum value of Fig. 5.5a 
and 5.5b for each location. Relatively flat or highly vegetated areas show a very low erosion 
risk, including river valleys and forested areas. The highest erosion risk is found on steep 
slopes with limited vegetation cover at the time of image acquisition. Table 5.5 presents the 
confusion matrix comparing 151 field estimates of erosion risk with the classification results 
for the same locations. From this matrix the accuracy was calculated: A1 is 38 %, whereas A2 
is 81 %. This shows that Method 2 allows for a proper identification of areas with low and 
high erosion risk within the Baga watershed. Erroneous classifications that differ by more 
than one class showed a random distribution within the study area. Obvious causes for these 
misclassifications could not be identified. 
 
 
 
Table 5.4 Factorial erosion risk classes based on equal frequency of each class (Method 2) 

Factorial erosion risk classes NDVI  ( – ) slope (%) 

Very low (1) > 0.735 < 14.6 
Low (2) 0.695 – 0.735 14.6 – 20.9 
Medium (3) 0.649 – 0.695 20.9 – 26.2 
High (4) 0.580 – 0.649 26.2 – 32.9 
Very high (5) < 0.580 > 32.9 

 
 
 
Table 5.5 Confusion matrix for validation of the erosion risk map (Method 2) 

                             Field estimate of erosion risk Erosion 
risk map 

Very low Low Medium High Very high Total 

Very low 25 16 9 3 1 54 
Low 8 13 6 5 2 34 
Medium 5 13 9 8 1 36 
High 0 3 8 8 3 22 
Very high 0 0 0 2 3 5 

Total 38 45 32 26 10 151 
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5.4.3 Comparison of Method 1 and 2 

Two methods for regional erosion risk mapping were presented that are similar in several 
ways: (1) the use of slope information derived from a SRTM DEM; (2) the use of the NDVI 
derived from a Landsat image to obtain a measure of vegetation cover; (3) the classification 
of slope and vegetation information in five classes; and (4) the application of a qualitative 
decision rule for integration of slope and vegetation factors. The main differences are: (1) 
Method 1 transforms the NDVI to fractional vegetation cover (FVC) using field data, 
whereas Method 2 uses NDVI directly; (2) Method 1 creates “logical” classes for slope and 
FVC, whereas Method 2 automatically assigns classes of equal area; (3) the decision rule for 
Method 1 is a decision tree that is constructed using field estimates of erosion risk, whereas 
the decision rule for Method 2 is a simple minimum-operator.  

The relative occurrence of the resulting five erosion risk classes within the Baga 
watershed is presented in Fig. 5.6. The histograms of both methods are similar, with major 
differences occurring in classes ‘very low’ and ‘medium’. The erosion risk maps of Method 1 
and 2 (Fig. 5.3c and 5.5c) show some differentiating features. For example Method 1 is more 
sensitive to the vegetation factor, whereas Method 2 clearly shows the location of river 
valleys as a strong determining factor for low erosion risk. This is not surprising because of 
the different methods used for data integration. However, when both maps are compared 
quantitatively, differences appear to be small. Fig. 5.7 shows the absolute class difference 
between both maps, and the percentage of the study area where these class differences occur. 
Nearly 93 % of the study area has a maximum class difference between both methods of only 
one class. This implies that both maps are rather comparable. Higher class differences occur 
scattered over the watershed, and are mostly areas with relatively little vegetation cover and 
low slopes. 
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Figure 5.6    Histogram of erosion risk class occurrence within Baga watershed for both methods 
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Figure 5.7 Absolute class difference between Method 1 and 2. Within brackets the frequency 

of occurrence is indicated for the Baga watershed. 
 
 

In spite of the low accuracy A1 for both methods (35 % for Method 1, and 38 % for 
Method 2), the accuracy A2 is rather high (80% and 81 %). This means that both erosion risk 
classifications have a similar accuracy. The use of field data within the methodology did 
therefore not contribute to increased map quality, judging from the field estimates of erosion 
risk. Based on the accuracy assessment, both methods seem to provide a proper identification 
of respectively high and low erosion risk areas. Because of the ease of application, the 
slightly higher accuracy, and the high correspondence between both results, Method 2 is 
preferred over Method 1 for the mapping of erosion risk within the Baga watershed.  
 

5.4.4 General discussion 

The assessment of the map accuracy for both methods was solely based on a limited number 
of field estimates of erosion risk. Ideally the field survey would include all the locations 
(pixels) shown in the map, but this is practically impossible. Nevertheless, it would be of 
interest to obtain field knowledge on the locations that show a high difference between both 
maps in Fig. 5.7. In this study however, the field survey was executed before the map 
construction, and the area has not been revisited later.  
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The qualitative estimates of erosion risk in the field are no hard figures, because the 
estimates depend to some extent on the person executing the survey. Although the criteria for 
the estimation were clear, it is possible that a different person assigns more importance to a 
particular factor at a specified location. For that reason, only five classes were differentiated 
and the estimates were executed in collaboration with a local extension officer, to obtain a 
more balanced estimate of erosion risk. It was believed that this resulted in a proper 
qualitative estimate. It makes sense however to apply a flexible definition of accuracy when 
using such ordinal qualitative estimates, as was done here through the use of Eq. 5.3. Okoba 
(2005) performed a study to standardise a field-based approach for qualitative erosion 
assessment based on local indicators, but this has not been applied during this study. 

Other possibilities for validating the constructed erosion risk maps include the 
execution of erosion measurements (Stroosnijder, 2003) or the performance of more 
quantitative surveys for example through the repetitive measurement of rill volumes 
(Herweg, 1996). However, such measurements are extremely labour intensive, and require 
long time series of data in order to make a proper assessment of the occurring erosion at a 
certain location. In most cases it is therefore not feasible to perform measurements in many 
different locations in order to validate regional erosion risk maps. For this reason many 
regional erosion studies create maps but do not provide any validation of these maps (e.g. 
Jürgens and Fander, 1993; Lu et al., 2004; Reusing et al., 2000; Shrimali et al., 2001; 
Vaidyanathan et al., 2002). This makes it hard, if not impossible, to assess the validity of the 
methods applied for the region and scale under study. Therefore, we believe that the 
qualitative field-based estimation of erosion risk provides a good alternative for validating 
regional erosion maps and mapping methodologies. Proper timing of the field survey is very 
important, because erosion determining factors and erosion features show a strong temporal 
trend. Here a clear choice was made to execute the survey at a moment of high erosion risk 
(little soil cover due to land preparation), but when few erosion features occurred.  

In this study two simple methods for regional erosion risk mapping were presented 
that only address the factors slope and vegetation, which could be derived from readily 
available data. In spite of using only these factors, we recognize that other factors are 
important for the occurrence and intensity of erosion processes, like soil properties and 
rainfall intensity. Moreover important additional information could potentially be derived 
from the data sources used, such as land cover classes and topographic attributes. For the 
West Usambara Mountains accurate land cover classification using Landsat imagery is 
however difficult, due to the small-scale fields covered with a variety of crops, the presence 
of dispersed trees, and the rugged topography causing shadowing effects. For this purpose, 
also additional detailed field data would be required. Additional topographic attributes like 
slope length do not have much physical meaning when using a 90-m resolution DEM because 
important micro-topography features reducing the slope length are not represented. 
Therefore, the use of such additional information would likely introduce additional 
uncertainty into the erosion risk assessment, due to the limited quality of the information that 
can be obtained. 
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Following the accuracy assessment it appears that the combination of the two 
measures used for slope and vegetation allowed for a good representation of the spatial 
distribution of erosion risk. This underlines the conclusion of Van Rompaey and Govers 
(2002), which state that for optimal predictions of erosion at the regional scale the 
complexity of the mapping method has to be in balance with the quality of the available input 
data. Therefore, with limited availability of input data, as was the case in this study, a simple 
method is required. For a different part of the East African Highlands, in Kenya, Okoth 
(2003) used regression analysis to relate erosion determining factors to erosion features 
recorded in the field and from aerial photographs. Both for the field scale and the landscape 
scale, the factors that were selected and best explained the presence of the erosion features, 
were slope and vegetation cover. This seems to indicate that for regional scale erosion risk 
mapping in different parts of the East African Highlands, integration of the factors slope and 
vegetation cover provides accurate results. It would be of interest to test whether this is true 
for other regions of the East African Highlands. 

Potentially even outside the East African Highlands, particularly Method 2 may be 
useful for obtaining a quick identification of high erosion risk areas within a region, 
especially when otherwise little information is available. As classes are defined automatically 
based on equal occurrence in the region, the method has a high flexibility to adapt to other 
environments with different slope and vegetation cover characteristics. The method simply 
pinpoints the areas where relatively steep slopes coincide with limited vegetation cover. For 
environments where spatial variability of erosion processes is for an important part 
determined by other factors (such as soil characteristics) this approach will probably fail, 
unless there is a strong correlation between the soil characteristics and vegetation cover. A 
great advantage of applying such an approach over the application of e.g. erosion models, is 
the readily availability of the data, at least for regions between 60°N and 57°S latitude. 
Obviously, a proper validation of the method in other environments would be required. 

The purpose of the erosion assessment, as defined in the introduction, was to provide 
a qualitative risk map to be used for prioritizing soil and water conservation efforts. The 
erosion risk maps presented in Fig. 5.3c and 5.5c should not necessarily be seen as the end 
product for this particular case study. The presented raster-based maps show where problem 
areas are located with respect to erosion. However, as soil and water conservation 
programmes in the area function through the application of the Catchment Approach, it may 
be of more interest for the local extension agency to construct a map showing erosion risk per 
focal area, through e.g. averaging the pixel values per focal area. This approach resembles the 
vast amount of literature from India on (large) watershed prioritization (e.g. Jain and Goel, 
2002; Khan et al., 2001). Here, we did not present the results in this way, because focal areas 
were not clearly defined and do not always coincide with hydrological catchments. However, 
the presented map is a base map that can be elaborated on for increased utility and improved 
readability by involved agencies. 

Many possible ways exist for qualitative data integration. In this study Method 1 used 
a decision tree, whereas Method 2 applied the minimum-operator. Other options include e.g. 



Chapter 5 

 98

the averaging, addition, or multiplication of factors. There is no standard method for 
qualitative erosion risk mapping, and it is often a personal choice of the cartographer or 
scientist which approach is chosen. Although most approaches are clearly documented, the 
fact that there is so much variability complicates their comparison. This is worsened by the 
different techniques applied for validation, and the often-encountered lack of validation. In 
this study two different methods that use the same data sources are compared using the same 
source of validation data. It appears that depending on the method chosen, results show some 
differences. However, the accuracy of both maps was comparable, for both around 80 %, and 
in nearly 93 % of the study region the two maps did not differentiate by more than one class. 
This may imply that the factors used and the way these factors can be described by the 
available data, are more important than the specific manner in which the data are integrated. 

The two main data sources used in this study were the SRTM DEM and a Landsat 
image. Field data was used within the methodology for Method 1, but Method 2 did not 
require these data, and performed equally well. The only additional data used in this study 
were the aerial orthophotos for the precise georeferencing of the Landsat image. This was 
necessary for creating a correct link with the GPS-points recorded in the field. Therefore 
stating that we only used readily available data would not be entirely correct. For the 
application of the methodology in other areas we cannot assume that orthophotos are always 
available. However, a good fit of the data can generally also be obtained when using 1:50,000 
topographic maps which exist for most East African countries. Otherwise, the georeferencing 
information that is contained in both the SRTM DEM and Landsat imagery usually allows for 
an acceptable overlay of the two sources. 

A static representation of erosion risk is given in this study through the use of only 
one Landsat image. The timing of the image is therefore very important. Although here the 
image was taken just before the start of the long rains, which is thought to be the most 
erosive period, it is known that more fields were cleared for cultivation of annual crops 
between the image date and the start of the rains. Ideally the image would thus have been 
taken a month later to include the bareness of those fields in the analysis. However, 
availability of good-quality optical satellite images is quite low in the area due to frequent 
cloud cover. The image used was therefore the optimal solution, and the timing can be 
considered quite good. When analyzing vegetation cover for the purpose of assessing erosion 
risk in any region, it is of utmost importance to obtain a properly timed image with respect to 
the most erosive season. Besides Landsat, other optical satellite images like ASTER or SPOT 
are equally good options. Although synthetic aperture radar (SAR) data also has the potential 
to assess vegetation characteristics (e.g. Brisco and Brown, 1998; Kasischke et al., 1997), the 
radar lay-over and shadow effects complicate its effective use in mountainous environments. 
Multi-temporal optical imagery acquired during the same season in different years would 
allow a monitoring of changes in erosion risk due to e.g. improved soil and water 
conservation. In the case of method validation through the execution of field surveys, the 
fieldwork should ideally be planned near the image acquisition date. 
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5.5 Conclusions 
The main conclusions to be drawn from this study are the following: 

• The qualitative integration of the factors vegetation cover and slope allows for an 
accurate mapping of soil erosion risk in the Baga watershed. 

• Good-quality information on these factors can be derived from a limited amount of 
readily available data, including an SRTM DEM and a Landsat image. 

• A method that mapped erosion risk as the minimum of automatically defined NDVI 
and slope classes performed very similar to a more sophisticated approach that used a 
decision tree, which combined slope and NDVI-derived fractional vegetation cover 
classes. 

• The simpler method has a high potential to provide a quick and proper identification 
of erosion risk in different regions within the East African Highlands, and possibly 
also in other environments. 

• Timing of the Landsat image is very important for accurate risk assessment and 
should be during or just before the most erosive season, when soils are less protected 
and rainfall intensity becomes high. 
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6. Timing of erosion and satellite data: a multi- 
resolution approach to soil erosion risk mapping 

 
 

Abstract 
Erosion is an erratic process and occurs when high-intensity rainfall coincides with limited vegetation 
cover. The timing of erosion events has implications on the selection of satellite imagery, used to 
describe spatial patterns of protective vegetation cover. This study proposes a method for erosion risk 
mapping using multi-temporal and multi-resolution satellite data. The specific objectives of the study 
are: (1) to determine when during the year erosion risk is highest using coarse-resolution data, and (2) 
to assess the optimal timing of available medium-resolution images to spatially represent vegetation 
cover during the high erosion risk period. The analyses were performed for a 100-km2 pasture area in 
the Brazilian Cerrados during one full growing season. The first objective was studied by qualitatively 
comparing 3-hourly TRMM rainfall estimates with MODIS NDVI time series. November and 
December were identified as the months with highest erosion risk. The second objective was 
investigated using a time series of six available ASTER images acquired between August 2002 and 
August 2003. Persistent cloud cover clearly limited image acquisition during high erosion risk 
periods. For each ASTER image the NDVI was calculated and classified into five equally-sized 
classes. Low NDVI was related to high erosion risk and vice versa, while a DEM was used to set 
approximately flat zones to very low erosion risk. The six resulting risk maps were compared with 
erosion features, visually interpreted from a fine-resolution QuickBird image. Results from the 
October ASTER image gave highest accuracy (84%), indicating that images acquired shortly before 
the first erosion events show best results for the Brazilian Cerrados. The presented approach for 
erosion risk mapping using both coarse-resolution temporal data for determining erosion periods and 
medium-resolution data for effective mapping uses only readily available data and is fast and 
straightforward, and may thus easily be applied in other areas with high spatial and temporal 
variability of vegetation cover. 
 
 

6.1 Introduction 
In many regions around the world, soil erosion by runoff is one of the main processes 
reducing the soil productivity by removing fertile topsoil layers, thus decreasing levels of 
organic matter and nutrients. Furthermore, it often causes negative downstream impacts, such 
as the sedimentation of soil material in reservoirs or damage to infrastructural facilities like 
houses, roads and canals (Morgan, 2005). Because soil erosion has a high spatial variability, 
it is useful to obtain knowledge on where erosion is occurring, for example for the planning 
of mitigation measures. Many efforts have been made to map erosion at different scales and 
in different regions around the world. Although sometimes maps are constructed with 
deterministic erosion models describing the erosion processes and resulting in quantitative 
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outcomes, especially for larger regions (> 50 km2) it is more common to construct erosion 
risk maps. Erosion risk usually indicates the relative risk that erosion will occur at a certain 
location as compared to other locations in the region mapped. Erosion risk maps are 
constructed using either erosion models or more qualitative approaches (e.g. Vrieling et al., 
2002). Although erosion models yield absolute soil loss values, their outcome is generally 
used in qualitative terms. 

Satellite remote sensing can offer important inputs for the mapping of erosion risk 
(Vrieling, 2006). Some options exist for direct detection of erosion, but these are mostly 
limited to semi-arid environments (Liu et al., 2004) or detection of large features such as 
permanent gullies (Vrieling et al., 2006a). High-resolution imagery like QuickBird (< 1 m) 
may however detect smaller features such as rills and signs of overland flow, but neither the 
price of these data nor the data volume would currently allow timely erosion detection over 
large areas. Therefore, the most important role of satellite data for erosion risk mapping is the 
assessment of erosion controlling factors. Although in semi-arid areas soil properties may be 
assessed with satellite data, for more vegetated (tropical) areas the use of satellite data is 
generally limited to assessing slope (from DEMs) and particularly vegetation (Vrieling, 
2006). However, depending on the region this limitation need not be a constraint for erosion 
risk mapping, as some factors may be assumed spatially constant or directly related to 
vegetation cover. For example Vrieling et al. (2006b) showed that for a mountainous region 
in northeast Tanzania, erosion risk could be accurately mapped using only information on 
slope and vegetation cover. 

Erosion is an erratic process and occurs usually during high-intensity rainfall events. 
Given a certain slope and soil type, much erosion occurs when high-intensity rainfall 
coincides with limited soil protection. Vegetation cover is one of the most important factors 
offering protection of the soil against erosion. Vegetation cover, and thus erosion risk, can 
however be highly variable during the year, depending on seasonal effects and land 
management. Using satellite data, different ways exist to deal with the spatial and temporal 
dynamics of vegetation cover. One approach is to create a land use map and apply a 
vegetation growth model for the different mapping units (e.g. using WEPP: Laflen et al., 
1991). However, growth models cannot account for within-class spatial variability, nor for 
the effects of varying management practices and ad-hoc changes by land users, like for 
instance land clearing, burning, late sowing, or mismanagement. In many land use- and 
ecosystems, this variability cannot be discarded. 

A different approach is the use of spectral vegetation indices. Unlike land use, a 
vegetation index is a continuous variable which allows detailed spatial and temporal 
comparison. Vegetation indices like the NDVI (normalized difference vegetation index) can 
easily be derived from data acquired by a variety of satellites operating at different spatial 
resolutions and long time series are available. Although the NDVI is affected by soil 
reflectance (Escadafal, 1994) and vegetation vitality (De Jong, 1994), it can give a proper 
relative indication of the spatial and temporal variability of vegetation cover (e.g. Carlson 
and Ripley, 1997; Purevdorj et al., 1998). NDVI has therefore often been used for assessing 
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the protective vegetation cover within erosion studies (e.g. De Jong et al., 1999; Jain and 
Goel, 2002; Symeonakis and Drake, 2004).  

Time series of NDVI images, combined with temporal rainfall data, allow 
determining where and when erosion can be expected to occur. Erosion risk is high, if low 
NDVI values coincide with high rainfall intensities. However, a problem for detailed 
temporal analysis of NDVI is the persistent cloud cover, which especially in humid (tropical) 
regions hampers frequent observation of the land surface. In these regions, cloud cover is 
particularly problematic during periods of high-intensity rainfall. At coarse resolution (250-m 
and above) images are acquired frequently and thus good opportunities may exist for 
obtaining cloud-free scenes (either individual scenes or composite products), also during 
difficult periods. However, at medium (10-30 m) resolution image acquisition is far less 
frequent, often only once every 14 days and hence cloud cover often reduces image 
availability to less than five scenes per year. For mapping at the regional scale (50-10,000 
km2), medium-resolution data is required. 

A detailed quantitative description of spatial and temporal changes of vegetation 
cover is not always necessary for effective mapping of erosion risk as we will show in this 
paper, because erosion risk is normally expressed in qualitative terms. Although vegetation 
cover may change, relative spatial patterns of vegetation cover may remain fairly constant 
during certain periods. What is required therefore is an accurate spatial representation of 
relative vegetation cover within a region, which is valid for the period when most erosion is 
expected to occur. 

This paper proposes a new, two-step method for erosion risk mapping using multi-
resolution multi-temporal satellite data. The method is applied in a 100-km2 area in the 
Brazilian Cerrados and consists of (1) coarse-scale evaluation of the timing of erosive periods 
and (2) medium-resolution erosion risk mapping. At the medium resolution, vegetation 
patterns during the erosive period need to be accurately described. The timing of the erosive 
period thus dictates medium-resolution image selection, but due to limited image availability 
often at best an image can be obtained before or after this period. The specific objectives of 
this study are: 

 
1. to determine during which period of the year erosion risk is highest, based on a 

combined analysis of rainfall and NDVI time series derived from coarse-resolution 
satellite data; 

2. to assess which of the differently-timed available medium-resolution images allows 
for the optimal spatial representation of erosion risk and how does this optimal image 
timing relate to the erosive period found under the first objective. 

 
All analyses were performed for one full year ranging from August (dry season) 2002 to 
August 2003. Erosion in this study is limited to processes of rill and sheet erosion. Gully 
erosion is a more complex phenomenon (Valentin et al., 2005) and was subject of another 
study in the same region (Vrieling et al., 2006a) and is not considered here. 
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6.2 Study area 
The selected study area is located in the Brazilian Cerrados (Fig. 6.1). The Cerrados are a 
natural ecosystem of woody savannahs, which vary from nearly treeless grasslands with 
small shrubs to woodlands of semi-deciduous trees, with inclusions of gallery forest. The 
Cerrados cover nearly 23% of the land surface of Brazil (Furley, 1999). Since the 1970s the 
ecosystem increasingly suffered from the expansion of agriculture, cattle raising and forestry, 
not in the last place due to active government policies (Klink and Moreira, 2002). Current 
estimates of land conversions indicate that between 40 and 80 % of the Cerrados region has 
been affected by human activities (Jepson, 2005). Soil erosion is one of the major 
environmental impacts of these conversions (Rodrigues, 2002). 

The 10 by 10 km study area is situated near the city of Uberlândia in the Triângulo 
Mineiro (Fig. 6.1). Slopes are between 0 and 15 % in a slightly undulating topography. Most 
soils consist of loamy sand, and are generally deep, with soil depths of up to 25 m. Average 
annual rainfall amounts 1500 mm, mostly falling during the rainy season between October 
and April. The seasonal changes in rainfall have a large effect on the vegetation cover, which 
is generally poor during the dry season (Ferreira and Huete, 2004). The present vegetation 
consists mainly of introduced pastures, with varying amounts of scattered trees and shrubs. 
Most pastures are degraded, thus having a high fraction of weeds and shrubs, and a relatively 
limited vegetative cover, including bare patches. Fig. 6.2 shows a nadir view of both a 
degraded pasture and a well-maintained pasture with good ground cover. Pasture degradation 
is caused by several factors, including inadequate management and overgrazing (Costa and 
Rehman, 1999). Because of this degradation, pastures are often renovated a number of years 
(5-10) after pasture installation. Pasture renovation signifies cutting and burning of present 
weeds, shrubs and trees, leaving the soil bare for several months. After ploughing new grass 
seeds are sown and the pasture develops during the rainy  season.   Besides pastures, other 
vegetation types in the area include open and dense woodland, gallery forest, and some small 
patches of agricultural fields with principally maize or sugarcane. 
 
 

 
Figure 6.1 Location of the study site in Brazil (map source: EMBRAPA) 
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Figure 6.2 Nadir photographs showing the vegetative ground cover of a well-maintained 

pasture (A), and of a degraded pasture with many bare parts having crusted soil 
(B). Both photographs were taken in January 2004 (wet season). 

 
 

Erosion occurs in the study area in several forms. The most visible form is gully 
erosion. Several large permanent erosion gullies are present with gully depths ranging from 4 
to 25 m. The other forms are sheet and rill erosion and occur at many locations in the 
landscape at different rates (Baccaro, 1999). Sheet and rill erosion are caused by high rainfall 
intensity storms in combination with limited infiltration of water into the soil, generating 
Hortonian overland flow. Infiltration rate is low especially at areas with little vegetation 
cover where raindrop impact on the soil causes rapid crust formation and soil permeability is 
low due to the absence of a well-developed rooting system (Bezerra and Rodrigues, 2006). 
Resulting runoff concentrates and entrains sediments, causing the formation of rills. 
 
 

 
Figure 6.3 Strong rill development during the start of the rainy season (2003-2004) on a field 

prepared for pasture renovation. 
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Erosion decreases pasture productivity and causes decline of soil nutrients and 
organic matter, which also negatively impacts options for future pasture renovation. Pasture 
renovation practices create periodically bare surfaces where strong erosion may occur during 
the beginning of the rainy season (Fig. 6.3). At many places, farmers try to reduce or control 
the erosion process by the construction of earthen contour bunds of about 0.50 to 1.00 m 
high, favouring infiltration and sedimentation of soil particles behind the bund. Nevertheless, 
poor construction and maintenance of the contour bunds often worsen the situation, due to 
minor depressions behind the bund where water concentrates and subsequently can cause 
ruptures. These bund failures can even trigger gully formation or gully advance in some 
cases. 
 
 

6.3 Materials and methods 

6.3.1 Assessment of high erosion risk periods with coarse-resolution data 

Moments of high erosion risk between August 2002 and August 2003 were determined with 
low-resolution NDVI data, and rainfall intensity data, both freely available and acquired from 
satellite missions. MODIS (Moderate-Resolution Imaging Spectroradiometer) imagery from 
the Terra platform was used to determine the temporal variation of NDVI during the year. 
Two different MODIS products were used: MOD09GQK and MOD13Q1. MOD09GQK is a 
daily surface reflectance product at 250-m resolution with two spectral bands, red (620-670 
nm) and NIR (841-876 nm), allowing NDVI calculation. Scenes were selected that were 
cloud-free and of good-quality for the entire study area. MOD13Q1 is a 16-day composite 
vegetation index product derived from daily surface reflectance data (using amongst others 
MOD09GQK as an input). The NDVI for the 16-day period is calculated on a pixel-by-pixel 
basis, in which images are selected or excluded based on quality, cloud cover and viewing 
geometry as described by Huete et al. (2002). MOD09GQK data therefore show NDVI 
values when cloudless scenes are available, whereas MOD13Q1 always provides a well-
timed NDVI value for each pixel even during poor conditions (such as persistent cloud cover 
or bad quality during 16-day period, but not necessarily over the full study area at every 
instance). 

Average NDVI time series were derived from both MODIS data sources for the most 
important land cover classes in the area, including forest, well-maintained pasture, degraded 
pasture, and new pasture. The only reason for using land cover classes in this study is to 
assess differences in temporal NDVI signatures and to analyse at what time of the year 
protective vegetation cover is limited. Forest is found along drainage lines and on some 
higher-lying flat areas, whereas pastures dominate the landscape. Section 6.2 describes the 
degraded and new pastures. Well-maintained pastures are characterized by a good vegetative 
ground cover with a low presence of weeds and are often found on less sloping land. Field 
knowledge obtained during the execution of field surveys was used as the basis for visual 
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interpretation of medium-resolution ASTER (Advanced Spaceborne Thermal Emission and 
Reflection Radiometer) imagery. In this way large representative areas of the above-
mentioned classes were identified, thus allowing the generation of average NDVI time series 
with MODIS for each class. 

The temporal variability of rainfall intensity was assessed using 3-hourly rainfall 
estimates obtained from the Tropical Rainfall Measurement Mission (TRMM) in 
combination with other satellites. These data are available starting from January 1998 and 
were obtained through the TRMM Online Visualization and Analysis System (TOVAS: 
http://disc2.nascom.nasa.gov/Giovanni/tovas/). TRMM is the first satellite carrying a 
precipitation radar. Active and passive instantaneous microwave measurements made by 
instruments onboard the satellite are combined with geosynchronous infrared rainfall 
estimates to obtain the 3-hourly data (Kummerow et al., 2000). The integration of the various 
data sources into one product is achieved using specific merging techniques described by 
Adler et al. (2000). The data are available at a 0.25° grid and the single grid-cell was selected 
in which the study area was completely included (in this case about 27-km resolution). 
Although the spatial resolution is low, it was assumed that a good indication can be obtained 
of when high rainfall intensities occur. Moreover, for risk mapping the exact location of the 
rainfall is less important than knowing the risk period. Recordings at 8-hour intervals of a 
rain gauge at 30-km distance from the study area showed the same period of high rainfall 
intensities for the 2002-2003 season as TRMM data. The advantage of using TRMM data is 
that these are available for any region between latitudes 50°N and 50°S, whereas rain gauge 
measurements do not always exist or are often hard to obtain. Three thresholds of 15, 20, and 
30 mm rainfall per 3-hours were set to evaluate the moments of highest rainfall intensities. 
The thresholds are merely intended for clear graphical display in Fig. 6.6 and 6.7 (discussed 
in Section 6.4) and consequent analysis of the figures. 

The two time series of information, i.e. times of low vegetation cover (low NDVI) 
and times of high intensity rainfall, were combined to determine high erosion risk periods in 
the study area. Erosion risk is considered high when high-intensity rainfall coincides with 
low NDVI (thus limited vegetation cover). 
 

6.3.2 Optimal image timing for medium-resolution erosion risk mapping 

After the rapid coarse-scale analysis of when erosion is expected to have occurred, we look at 
the implications of this for medium-resolution erosion risk mapping. A major problem is the 
generally low availability of cloud-free medium-resolution data in tropical regions. In this 
study 15-m resolution ASTER imagery was used, containing amongst others a red (630-690 
nm) and a NIR (760-860 nm) spectral band, which allow NDVI calculation. ASTER is 
obtained from the same Terra platform as from which the MODIS images used in this study 
were acquired. Nearly continuous ASTER data acquisition requests were made during 
September 2002 until September 2003 through the Japanese ERSDAC (Earth Remote 
Sensing Data Analysis Center). This resulted in six good-quality images over the study area, 
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recorded on 9 September 2002, 11 October 2002, 4 March 2003, 23 May 2003, 24 June 2003, 
and 11 August 2003. The major observation gap is during the wet season between October 
and March, and is caused by cloud cover. ASTER surface reflectance products were used 
(AST_07: Thome et al., 1999) and they were geocoded using a panchromatic orthorectified 
QuickBird image. A first-order polynomial model with a cubic convolution resampling to a 
12.5-m pixel size was applied, resulting in a positional accuracy of  better than 10 m.  

A DEM (digital elevation model) was obtained from 10-m interval contourlines 
digitized from a 1:25,000 topographic map. The DEM was constructed with the same raster 
definition as the ASTER images using the ArcGIS-implementation of the method of 
Hutchinson (1989). This DEM-source was preferred over other DEMs, like the free 90-m 
resolution SRTM (Shuttle Radar Topography Mission) DEM, because a similar resolution as 
the ASTER imagery could be obtained. An ASTER DEM was not used here because the 
resolution that can be obtained is 30-m (versus 15-m resolution ASTER imagery) and the 
quality was judged poor. Slope was calculated from the DEM using the slope definition of 
Zevenbergen and Thorne (1987).  

Six different erosion risk maps were constructed by integrating the six individual 
ASTER images with the slope information based on a simple erosion risk mapping 
methodology described by Vrieling et al. (2006b). They used for a mountainous area in 
northern Tanzania a Landsat ETM+ image recorded just before the main rainy season when 
soils are bare, in combination with an SRTM DEM. Landsat-derived NDVI was classified 
into five classes, each covering 20% of the study area. Low NDVI-values corresponded with 
a high erosion risk and high NDVI-values with a low erosion risk. For slope (derived from 
the DEM) a similar classification was made, where low slope values corresponded with low 
erosion risk. The final qualitative erosion risk map was then constructed by taking the 
minimum of the two classifications at each location. High erosion risk thus occurs at places 
were low vegetation cover coincides with steep slopes.  

For the study area in the Brazilian Cerrados a very similar approach was followed. 
For each ASTER image, NDVI-values were classified into five equal-area classes. These 
classes therefore fully depend on the relative occurrence of NDVI values within an individual 
ASTER scene. However, based on field knowledge and data, slope did not play such an 
important role here as in northern Tanzania, because clear erosion features were also 
observed at places with limited slope steepness. At the Tanzanian site slopes are a lot steeper 
(with slopes up to 90%), while at the Brazilian site the generally long slope lengths in 
combination with strong crust formation and consequently high runoff during rainfall events 
trigger erosion even on gentle slopes. Differences in slope length at the Brazilian site are 
greatly influenced by the good- or mal-functioning of contour bunds constructed (see Section 
6.2), and may potentially only be described properly with a very detailed DEM, i.e. better 
than 1.0-m resolution. Because no clear indications existed for strong spatial differences of 
erosion based on slope length, erosion risk was based solely on the NDVI-classification, 
except for places were the slope was below 3%. At these very gentle slopes, erosion risk was 
assumed to be always very low. 
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The assumption that slope is of less importance in this study area, is supported by 
field observations at 331 locations, which were made between December 2003 and February 
2004. At each location the slope was measured with an inclinometer, fractional vegetation 
cover (FVC) was visually evaluated, and an estimate of erosion risk was made. Erosion risk 
estimates were done on a scale of 1 to 5 (very low to very high erosion risk) and were based 
on the occurrence of erosion features (i.e. rills), and signs of concentrated overland flow. Fig. 
6.4 shows how erosion risk relates to vegetation cover when discarding slopes lower than 
3%. Erosion risk was generally low for low slopes, and the FVC-erosion risk relationship was 
optimal when using this 3% slope threshold value. 

Unlike slope, vegetation cover changes substantially during the year due to seasonal 
changes and human impacts. Through NDVI classification, general patterns of vegetation 
cover are analysed, without considering exact quantitative values. These patterns also change 
during the year. Of course the approach followed here is rather basic to assess erosion risk 
almost solely on the basis of vegetation cover. However, the method is fast and easy to use 
and yields spatial overviews of regional erosion risk. Because a clear relationship exists 
between the erosion risk and vegetation cover (Fig. 6.4), the intention here is to indicate 
when the vegetation patterns described by the NDVI classes best correspond with patterns of 
erosion risk. For that purpose, the six generated maps (Fig. 6.8 to be discussed in Section 
6.4.2) need to be compared individually against validation data. Thus an evaluation can be 
made of the optimal image timing of satellite data to describe patterns of protective 
vegetation cover, as related to the erosion risk during a specific year. 
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Figure 6.4 Relationship between erosion risk and fractional vegetation cover (FVC) for 

slopes higher than 3%. Both erosion risk and FVC were estimated in the field. 
The figure shows average FVC values for each erosion risk class (1 = very low, 5 
= very high) together with the standard deviation. The equation and R2 are 
calculated using all 311 observations 
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Figure 6.5 QuickBird image (August 2003) of small part of study area. Concentrated runoff 

patterns can be observed, starting from the dirt road, at the left of the image. 
Subsequent failures of contour bunds are clearly visible, of which various were 
repaired later. On the right a part of a large reservoir can be seen. Pasture 
renovation was initiated here in the dry season of 2002. 

 
 
 

6.3.3 Validation of erosion risk maps with fine-resolution data 

The six erosion risk maps were evaluated using information obtained from a panchromatic 
orthorectified QuickBird image acquired on 4 August 2003. Although field observations were 
also available (Section 6.3.2), it was preferred to evaluate the erosion risk maps using only 
the QuickBird information, which was interpreted using field knowledge. The reason is that 
field observations were done between December 2003 and February 2004, and therefore 
correspond to another wet season than when the ASTER images were acquired (from 
September 2002 to August 2003). As a result other erosion features may have formed which 
relate to more recent changes in vegetation cover and some erosion features may have been 
removed by tillage or pasture renovation practices. The QuickBird image was acquired after 
the 2002-2003 rainy season, and shows the erosion features that were formed during that year 
at very detailed spatial resolution. 

Patterns of concentrated flow and ruptures of contour bunds could be clearly 
identified from the panchromatic QuickBird image as shown in Fig. 6.5. Unambiguous 
features related to soil erosion were visually discerned for the full 10 by 10 km QuickBird 
image, and their limits were digitized on-screen. Although cattle paths may also be identified 
and can trigger rill formation, they were not treated here as erosion features. The reason is 
that cattle paths are not necessarily related to erosion and including them would therefore not 
be correct in various cases. In general the distinction could be easily made due to the 
direction and the form of these paths. A set of 436 polygons was thus generated, which was 
rasterized to obtain the 12.5-m grid of the corrected ASTER data. The area of the erosion 
features totals 0.82 km2 and the features are located throughout the study area. 

The accuracy of the six erosion risk maps was evaluated by determining which 
erosion risk classes occurred at the locations where an erosion feature was detected from the 
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QuickBird image (here called erosion feature pixels). In this way, the producer’s accuracy 
(Ap) could be assessed by dividing the number of pixels correctly classified as high and very 
high erosion risk, by the total number of erosion feature pixels. In this study Ap can be 
defined as the probability that an erosion feature pixel is correctly mapped as high or very 
high risk. Ap will be low if most erosion feature pixels correspond with very low, low, or 
medium erosion risk classes. The user’s accuracy (Au) can be defined here as the probability 
that a pixel classified on the erosion risk map actually represents that erosion risk class on the 
ground. This measure could not be evaluated here, because from the absence of erosion 
features we cannot infer that erosion risk will consequently be low for the specific location. 
Features may have been removed by human action or be too small to be observed by the 
QuickBird image, for instance in the case of sheet erosion. The optimal erosion risk 
classification and thus the optimal ASTER image timing, was therefore considered as the 
classification where Ap had the largest value. 
 
 

6.4 Results 

6.4.1 Coarse-resolution evaluation of high erosion risk periods 

Erosion generally occurs when high-intensity rainfall events affect soils that are poorly 
protected by vegetation cover. Time series of MODIS imagery allow the monitoring of 
changing vegetation cover. Fig. 6.6 shows the temporal NDVI pattern for different land cover 
types during 2002-2003, as derived from MOD13Q1 data. The NDVI of forest is affected by 
seasonal changes, but throughout the year the NDVI values for forest are much more stable 
and higher than for pasture as might be expected. The NDVI of pasture has a high temporal 
variability, indicating that changes of green vegetation cover are substantial during the year. 
Fig. 6.6 also shows that the development of a well-maintained pasture (no overgrazing, good 
management of nutrients and runoff, generally little slope) starts earlier than degraded or new 
(renovated) pastures. Well-maintained pasture shows an important rise of NDVI starting in 
the beginning of November, whereas for the other pastures this rise starts mid-December. 
Optimal green cover is obtained for all pastures between February and April, after which 
NDVI-values decrease again. Degraded pasture has a low NDVI also during the wet season, 
while new pastures show the most significant increase during the onset of the rainy season. 
However, before December, their NDVI is lowest of all classes, because soils are almost 
completely bare at that time of the year. 

The temporal NDVI signatures were compared with rainfall data from TRMM. The 
lower part of Fig. 6.6 shows the moments when the TRMM data indicate intensities of more 
than 15, 20, and 30 mm per 3-hours. During three events the rainfall intensity exceeded 30 
mm per three hours. These events took place on 18 November, 10 December, and 29 
December 2002. These intensities are averages for an area of about 27*27 km, as explained 
in Section 6.3.1. Locally, intensities may thus have been higher. The TRMM data give a good 
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Figure 6.6 Temporal NDVI-signature of 2002-2003 for four land cover types obtained from 16-

day MODIS composites (MOD13Q1). The lower part of the figure indicates the 
moments when TRMM 3-hourly data show high-intensity rainfall for the study area. 

 
 
 

 
Figure 6.7 Temporal NDVI-signature of 2002-2003 for four land cover types obtained from 

daily MODIS composites (MOD09GQK). The lower part of the figure indicates the 
moments when TRMM 3-hourly data show high-intensity rainfall for the study area. 
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indication of when high-intensity rainfall events have occurred during the specific year 
within the study area. The highest intensity events of more than 30 mm per 3-hours occurred 
principally at the beginning of the rainy season, whereas also some smaller events can be 
observed in this period. Vegetation cover for the pastures is still very poor at this moment, 
especially for degraded and new pastures. The smaller events later in the season (February-
April) have less impact on erosion, because vegetation cover offers better protection during 
this period. For the year 2002-2003, the period with highest erosion risk is therefore 
November-December. 

Fig. 6.7 shows the temporal NDVI signatures of the different land cover types based 
on daily MOD09GQK imagery. In this case, only images were selected that were of good 
quality and free of clouds for the complete 10 by 10 km study area. Not surprisingly, the 
temporal pattern is similar to the one presented in Fig. 6.6. The most striking difference is 
that although many good-quality images could be selected, a large gap exists at the beginning 
of the rainy season. Between 9 November 2002 and 4 February 2003 no single good image 
was acquired due to poor weather conditions. Two conclusions may be drawn from this. The 
first is that MOD13Q1 is a better source for assessing the temporal changes of NDVI than 
MOD09GQK, because even during the period of high erosion risk a NDVI estimate is 
obtained. The differentiated development of the various pasture types during the early rainy 
season is not clear from the daily MOD09GQK images. The second conclusion is that 
medium-resolution imagery is very difficult to obtain for the erosion period. If from daily 
MODIS data no cloud-free, good-quality image is available for the area, this indicates that 
persistent cloud cover makes it difficult, if not impossible, to obtain medium-resolution 
imagery, which is acquired less-frequently (see Section 6.1). In general it should thus not be 
expected that a good quality optical medium-resolution image can be obtained for the period 
of high erosion risk, in any case not from the optical sensors of ASTER which are onboard 
the same Terra-platform as the MODIS instrument that acquired the images used in this 
study. Nevertheless, images do exist for the period shortly before the first high-intensity 
rainfall event. Medium-resolution spatial patterns of relative amounts of protective vegetation 
cover during the critical erosion period may therefore nonetheless be well represented. 
 
 

6.4.2 Medium-resolution erosion risk mapping and image timing 

Erosion risk was assessed using six ASTER images acquired at different moments between 
August 2002 and August 2003. Based on the coarse-scale NDVI analysis, the ASTER image 
dates correspond to the following situations:  

• 9 September 2002: end of the dry season with minimal vegetation cover 
• 11 October 2002: the rainy season has started but the low rainfall amounts have not 

yet have an important influence on vegetation development 
• 4 March 2003: the middle of the rainy season when pastures and other vegetation has 

or is near to optimal green vegetation cover 
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• 23 May 2003: beginning of dry season, vegetation senescence and reduction of 
vegetation cover 

• 24 Jun 2003: continued reduction of vegetation cover 
• 11 August 2003: approaching the end of the dry season and vegetation cover is again 

minimal 
 
The nearly five-month observation gap between October and March corresponds with a 
period of strong vegetation development and high-intensity rainfall, and consequently of high 
erosion risk. Quantitative changes of NDVI are presented in the first column of Fig. 6.8. This 
column shows that vegetation cover changes substantially in the October-March period. The 
quantitative NDVI maps were transformed into qualitative maps by classification of NDVI 
values into five equally-sized classes (Fig. 6.8, second column). Table 6.1 shows the NDVI 
class limits for each image. Due to differentiated development of vegetation cover within the 
region, the qualitative spatial patterns of vegetation cover also change. Patterns of September 
and October, and of June and August are very similar, whereas the differences between the 
spatial patterns of September 2002 and August 2003 can be mainly attributed to pasture 
renovation. Pasture renovation results in a very low NDVI during the dry season when 
vegetation is burnt and removed, and a high NDVI during the wet season when pasture 
develops. This explains the black area in the centre of the March NDVI class image (very 
high NDVI), whereas for previous dates the NDVI class was very low (white). 

Erosion risk maps were created by inversely relating the NDVI classes to erosion risk, 
while setting the erosion risk to ‘very low’ for areas with slopes less than 3% (Fig. 6.8, third 
column). High erosion risk areas on the different maps mostly correspond with degraded 
pastures or bare areas, which are generally related to pasture renovation and some small 
agricultural fields. Nevertheless, also within these classes strong spatial and temporal 
variability exists in vegetation cover and therefore in erosion risk. Gallery forest and dense 
woodlands always show a very low erosion risk. The six erosion risk maps were compared 
with the erosion features derived from the QuickBird image. Table 6.2 shows for each risk 
map the percentage of erosion feature pixels (pixels where an erosion feature was detected) 
that fall within the different risk classes. The producer’s accuracy (Ap) is the percentage of 
 
 
Table 6.1 NDVI class limits for the six ASTER images 

Image date NDVI class 

 Very low Low Medium High Very high 
9 Sep 2002 <0.271 0.271-0.297 0.297-0.342 0.342-0.448 >0.448 

11 Oct 2002 <0.275 0.275-0.302 0.302-0.349 0.349-0.462 >0.462 
4 Mar 2003 <0.595 0.595-0.660 0.660-0.719 0.719-0.785 >0.785 

23 May 2003 <0.465 0.465-0.532 0.532-0.599 0.599-0.693 >0.693 
24 Jun 2003 <0.364 0.364-0.421 0.421-0.495 0.495-0.617 >0.617 

11 Aug 2003 <0.268 0.268-0.299 0.299-0.349 0.349-0.477 >0.477 
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Figure 6.8 Erosion risk map construction for six different ASTER images. Column 1 shows 

the scaled NDVI, column 2 the NDVI divided in five classes, and column 3 the 
erosion risk maps, which integrate slope information with the NDVI classes. 
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Table 6.2 Percentage of erosion feature pixels falling within the different risk classes for 
each erosion risk map. The producer’s accuracy (Ap) is the percentage falling in 
the classes ‘high’ and ‘very high’. 

Image date Erosion risk Accuracy 

 Very low Low Medium High Very high (Ap) 
9 Sep 2002 4.9 3.7 9.5 21.9 60.0 81.9 

11 Oct 2002 4.9 2.5 8.6 18.5 65.5 84.0 
4 Mar 2003 14.5 8.4 12.2 17.8 47.1 64.9 

23 May 2003 8.4 17.2 9.4 22.6 42.4 65.0 
24 Jun 2003 4.9 6.3 24.2 30.9 33.7 64.6 

11 Aug 2003 5.0 5.1 24.7 32.5 32.7 65.2 
 
 
erosion feature pixels falling in erosion risk class ‘high’ or ‘very high’. The map of 11 
October 2002 shows the highest Ap (84.0%) closely followed by the map of 9 September 
2002 (81.9%). All other maps have lower Ap-values of about 65%, while the percentage 
falling in the class ‘very high erosion risk’ is gradually decreasing from 47.1% to 32.7%. 
This indicates that the later the image is acquired (after October 2002), the worse spatial 
NDVI patterns match erosion feature patterns.  

Reasons for the time-dependency of Ap-values are related to the specific timing of the 
ASTER image acquisitions and to the timing of the QuickBird image. The QuickBird image 
was acquired during August 2003, and therefore shows erosion features that were formed 
during the erosion events of the previous rainy season. The distribution of vegetation cover in 
August 2003 does therefore not tell much about the erosion features encountered at that same 
moment, resulting in a low Ap for the 11 August 2003 image. From Section 6.4.1 we learned 
that the erosion period is at the start of the rainy season when soils are poorly protected by 
vegetation. In the case of renovated pasture, vegetation shows strong development during the 
rainy season, but offers little protection during November and December when high-intensity 
rainfall occurs. The ASTER image of 11 October 2002 is acquired shortly before this period 
and thus gives a good description of vegetation patterns at the moment when the first high-
intensity rainfall events occur. However, because relative differences of NDVI between 
August and November 2002 are small (Fig. 6.6), the Ap for 9 September 2002 is only slightly 
lower. If images would be available for late October or November, Ap can be expected to 
show a slight increase. During the rainy season however, vegetation patterns change 
substantially and thus the March 2003 image and subsequent images show a poor relation 
with the digitized erosion features. Optimal image timing for this case study of erosion risk 
mapping in pasture areas of the Cerrados is therefore during late dry season/ start of wet 
season (September to November).  

An important factor for differences between Ap-values of the ASTER image dates is 
the location of pasture renovation practices during a specific year, although factors such as 
local overgrazing also play a role. Nonetheless, all classifications correctly classify an 
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important amount of erosion feature pixels as ‘high’ or ‘very high’. This is because many 
features are found on degraded pastures which have relatively low NDVI-values at any 
instance during the year. Field observations affirmed that degraded pastures have a poor 
vegetation cover also during the wet season (see Fig. 6.2), and that many erosion features are 
present in these areas. 
 
 
 

6.5 Discussion and conclusions 
The new method presented in this paper shows that it is possible to produce accurate soil 
erosion risk maps of the Brazilian Cerrados using satellite derived information of rainfall and 
vegetation cover. Such a method is valuable for areas where data availability on land use, 
land management, vegetation cover, soil type and rainfall is poor. The method also illustrates 
that timing of satellite images for erosion risk mapping is critical. The protective cover of 
vegetation can be well described by a satellite image if the spatial patterns of vegetation 
cover at the time of image acquisition are similar to the vegetation patterns present at the time 
of the major erosion events. 

The timing of major erosion events was assessed by qualitatively comparing temporal 
NDVI-signatures with high-intensity rainfall events for a specific year. This was performed 
using coarse-resolution multi-temporal MODIS-images in combination with rainfall intensity 
data from TRMM. The 16-day MODIS composites (MOD13Q1) performed better than daily 
MODIS data (MOD09GQK) for obtaining NDVI time series, because the composites showed 
no temporal gaps. The MODIS/TRMM analysis provided a quick overview of when erosion 
is likely to occur in a specific region. For the study area, the major erosion period for season 
2002-2003 is November-December. This corresponds well with measurements performed by 
Baccaro (1990) during 1984-1986 using several Gerlach troughs in an area about 10 km 
south of the study region. Gerlach troughs are a type of unbounded erosion plots consisting of 
a collecting gutter in the soil surface, which is connected to a collecting container on the 
downstream side. They are used to measure runoff and erosion (Hudson, 1993). Baccaro 
found that despite high rainfall intensities and high runoff in other periods of the year, the 
highest erosion was measured generally during the months November-January. 

The vegetation patterns were well described by NDVI classes derived from ASTER 
imagery of October, and to a lesser extent of September. For pasture areas in the Cerrados, 
optimal image timing is therefore during late dry season/ start of wet season (September to 
November). During the wet season, image availability is low in these areas, but judging from 
accuracy values of above 80%, this does not seem to constitute an important problem for 
mapping areas with high erosion risk. Actually late dry season imagery performed much 
better than an image acquired during the wet season. As optimal timing is before the erosion 
occurs, the resulting risk maps will have a predictive value for erosion occurrence during the 
upcoming rainy season. 
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Although a general indication of optimal image timing is given for pasture areas in 
the Cerrados, we recommend that for any erosion risk mapping activity the timing of satellite 
images is clearly considered in relation to the erosive season. This may alternatively be 
derived from temporal field measurements or local knowledge. Here however, a very 
straightforward and promising qualitative evaluation was presented that uses readily available 
data (MODIS and TRMM), and can therefore be easily applied in other regions. We stress 
that the optimal timing depends on specific regional characteristics, such as climate, 
vegetation types, and land management. Moreover, for a specific region important 
differences may exist in climate and vegetation development, which would require a multi-
year analysis to determine whether the high-erosion period is always at the same moment. 

The method presented for erosion risk mapping is straightforward and easy to apply, 
based on a mono-temporal evaluation of NDVI-values at the moment of high erosion risk, in 
combination with masking of low slope values. By no means do we intend to deny the 
importance of other factors controlling the erosion process. Especially for large-scale studies 
and quantitative erosion studies we believe factors such as climatic differences and soil 
properties need to be accounted for. For quantitative modelling in small catchments, accurate 
data on all erosion factors are needed. Nevertheless, for qualitative erosion risk mapping in 
the 100-km2 region, we assumed additional factors to be constant, which according to the 
high accuracy (84%) of the optimal erosion risk map seems to be a valid assumption. 
Moreover, soil properties are also often related to vegetation cover, as for example under 
forest the soil organic matter is higher than under pasture.  

Instead of mono-temporal evaluation of NDVI-values for erosion risk mapping for a 
specific year, multi-temporal erosion risk mapping would also be a possibility. Multi-
temporal mapping would signify the combined evaluation of rainfall intensity and NDVI data 
during different moments of a year to construct one final erosion risk map. However, the 
major problem, at least for tropical regions, is the uncertainty of the availability of medium-
resolution optical images during specified moments of a year which are of importance for 
vegetation development. For 2002-2003 a total of six ASTER images was recorded. For other 
years or areas however, it is unlikely that optical images exist for the same moments, 
especially for the wet season when cloud cover is persistent. Therefore, if erosion risk for a 
particular year can be assessed quite accurately with only one well-timed image per year, this 
is a much better option for monitoring during consecutive years. Late dry season imagery of 
different years can thus show the changes occurring in erosion risk patterns. Based on the 
differences between NDVI patterns of 9 September 2002 and 11 August 2003 (Fig. 6.8), it 
can be expected that in the study area spatial erosion risk patterns change substantially from 
year to year. This implies that the erosion risk assessments are valid for a specific year, and 
for each growing season a different assessment is required. 

Synthetic aperture radar (SAR) imagery seems a logical alternative to optical satellite 
data, because its acquisition is not hindered by cloud cover and thus in principal images may 
be required at any moment during the year. The assessment of vegetation cover and related 
parameters is possible using spaceborne SAR systems. However the SAR backscatter is 
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dependent not only on vegetation parameters, such as crop biomass and plant structure, but 
also on soil parameters, such as soil moisture and soil roughness, and on sensor configuration 
parameters, like polarization, frequency, and incidence angle (Brisco and Brown, 1998; 
Paloscia, 2002). Some recent studies have investigated the potential of multi-polarisation 
SAR data in order to retrieve vegetation parameters (McNairn and Brisco, 2004). Good 
results were obtained for regular vegetation types such as agricultural crops, such as wheat 
and sugar beet, in the retrieval of the biomass and leaf area index (e.g. Mattia et al., 2004; 
Vyas et al., 2003). However it was also shown that the structure of the plants plays an 
important role in the retrieval capability and that for vegetation characterised by low density 
and low biomass the soil contribution to the multi-polarisation SAR backscatter is dominant. 
This means that over irregular vegetated areas (e.g. degraded pastures with scattered shrubs 
and trees) the retrieval becomes much more difficult. Our study site showed a large variety of 
scattered vegetation types and irregular elements and accurately estimating vegetation cover 
with SAR data would therefore be extremely difficult and require much additional field data. 

This study has shown that regional erosion studies can benefit from the use of multi-
resolution satellite imagery. Coarse-resolution data (MODIS, TRMM) allow for a temporal 
assessment of vegetation cover and rainfall intensity, thus knowledge can be obtained of 
when erosion risk is high for a particular area. Medium-resolution imagery (ASTER) can 
describe the more detailed spatial variability of vegetation cover at different moments of the 
year. The cover patterns of slightly before or at the start of the rainy season can be used for 
mapping of erosion risk. Fine-resolution imagery (QuickBird) may subsequently be applied 
for validating erosion risk maps by assessing where erosion features occur. The approach 
followed here is fast and straightforward and may be easily applied to other areas, although 
the precise medium-resolution data integration method may vary according to specific 
regional characteristics. The approach is especially useful for areas where spatial and 
temporal variability of vegetation is significant and cannot be captured merely by land use 
classification. 
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7. Synthesis 
 
 
Satellite remote sensing can offer an important input to soil erosion assessments at various 
spatial scales. A wide range of options for evaluating erosion with satellite data exist. This 
thesis has provided an extensive review on different options described in literature (Chapter 
2), followed by four case studies in three tropical regions: the Brazilian Cerrados (Chapter 3 
and 6), the Colombian Eastern Plains (Chapter 4), and the West Usambara Mountains of 
Tanzania (Chapter 5). For each case study, a different methodology was developed, taking 
into account the local conditions and the generally limited availability of detailed spatial data 
for these regions. Inevitably, only a small fraction of the thinkable ways for studying erosion 
with satellite data is covered by the case studies. Nevertheless, the studies clearly indicate 
potential alternative opportunities for mapping erosion with satellite data besides the 
application of often-used erosion models. The current chapter aims at synthesizing the studies 
presented in this thesis. The synthesis is based on three pillars: obtaining erosion related 
information from satellite data (Section 7.1), integrating spatial data for regional assessment 
of erosion (Section 7.2), and validation of the outcomes (Section 7.3). Finally, Section 7.4 
expresses the author’s views on future directions for satellite-based erosion assessment. 
 
 

7.1 Remote sensing of erosion related variables 
For any erosion study intending to use satellite data, first a thorough evaluation is required of 
the potential variables that may be obtained from satellite imagery for the region and scale 
considered. Chapter 2 gave an overview of the different variables obtained from satellite data 
in previous erosion studies, including presence of erosion features, and erosion factors such 
as slope and vegetation cover. Also the amount of additional data needed to accurately derive 
these variables has to be evaluated. Limited resources may imply that certain variables cannot 
be derived in case additional data can only be obtained through labour-intensive field 
campaigns. Tropical regions possess distinct characteristics which may complicate the 
retrieval of certain variables. Firstly, in humid tropical areas vegetation cover is generally 
abundant, thus hampering effective study of soil properties most of the time. Secondly, 
persistent cloud cover in these areas limit the options for timely acquisition of optical satellite 
data for at least part of the year. Also spatial resolution plays a role here: while coarse-
resolution images such as obtained from the MODIS-instrument (250-1000 m) can be 
acquired daily over the same site, for higher resolution imagery (e.g. ASTER, 15-60 m) this 
frequency is much lower, thus limiting opportunities for cloud-free observations (Chapter 6). 
For the case studies presented in this thesis, satellite data was used for assessing the 
following variables: presence of erosion features (Chapter 3 and 6), vegetation type (Chapter 
4) and cover (Chapter 4, 5, and 6), rainfall (Chapter 6), and slope (Chapter 5). 
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Erosion features of sufficient spatial size may be discerned through visual 
identification of distinct patterns on high-resolution satellite imagery. In Chapter 3 erosion 
gullies could be visually identified from a panchromatic 0.60-m resolution QuickBird image. 
Also smaller features could be discerned from this image, i.e. patterns of concentrated flow 
and contourbund ruptures, indicating the occurrence of rill erosion and potentially gully 
initiation (Chapter 6). However, high-resolution data are still expensive if required for large 
areas, whereas visual interpretation techniques demand substantial time from an interpreter. 
Therefore, Chapter 3 examined the possibility of automatic detection of large individual 
erosion features. A special application of the maximum likelihood algorithm was proposed 
using only two classes for training, i.e. a gully class and a large non-gully class. Gully class 
training sites were obtained from the QuickBird-derived gully limits, whereas the non-gully 
class consisted of all other pixels in the training area. The algorithm was applied to 
multispectral ASTER data. A combination of visible, near infrared, and middle infrared 
bands gave accurate classification results, especially when combining classifications from the  
wet and the dry season. 

Vegetation is an important dynamic factor offering protection of the soil. In Chapter 
4, a Landsat Thematic Mapper image was applied for land use classification using the 
maximum likelihood algorithm. Spatial reference data acquired in the field, allowed for the 
training of the algorithm and validation of the results. Six classes with different soil 
protection properties could be separated with an accuracy of 84%. In both Chapter 4 and 
Chapter 5 (method 1), field estimates of fractional vegetation cover (FVC) were related with 
linear regression to the normalized difference vegetation index (NDVI) calculated from a 
Landsat image. However, NDVI may also be used directly as an indicator of FVC, in case 
only FVC patterns are required. Moreover, this may circumvent problems of timing 
differences between satellite acquisition and field estimates, and methodological difficulties 
for precisely estimating FVC in the field. In Chapter 5 (method 2) and Chapter 6, NDVI was 
used directly as a measure of FVC. In Chapter 6 the NDVI was derived from coarse-
resolution MODIS data to study the temporal dynamics of FVC for different land cover 
classes during one year. For this purpose, 16-day MODIS composites outperformed daily 
MODIS data due to better masking of cloud effects. At the medium-resolution spatial NDVI 
patterns were determined at different moments of the year from six available ASTER images 
to examine when these NDVI patterns best correlate with patterns of erosion occurrence. 

Besides vegetation, rainfall is also a highly dynamic erosion factor. Erosion is an 
erratic process and occurs usually during high-intensity rainfall events. To reduce soil 
erosion, soils should be protected (e.g. by vegetation) during periods when these events 
occur, thus knowledge on the timing of events is required. Often rainfall data is obtained 
from raingauges, but for large regions in the tropics these data are not gathered or stored in a 
systematic way, or otherwise difficult to obtain. Until present, no erosion studies have been 
published that use satellite data to obtain rainfall information. In Chapter 6 periods of high-
intensity rainfall periods were determined from 3-hourly precipitation data obtained from the 
spaceborne TRMM mission, carrying a precipitation radar. Although the data are at a coarse 
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resolution (0.25° corresponding with 27-km resolution for the study area), they gave a good 
indication of the timing of high-intensity rainfall periods. In this study, merely temporal data 
from a single TRMM resolution cell corresponding with the study area were used. 

Without a certain slope, no runoff and thus no erosion occurs. For some environments 
slope is strongly related to erosion (Chapter 5), whereas for others this is less the case 
(Chapter 6). Also other terrain parameters, like dissection grade (Chapter 4) may explain 
erosion at certain scales and regions. Various studies in this thesis obtained topography-
related variables from DEMs. In some cases it was chosen to use a DEM derived from 
contourlines digitized from a topographic map, because it offered a higher resolution or 
quality for the desired scale as satellite-derived DEMs (Chapter 4 and 6). Nevertheless, 
several satellite sources for good-quality DEMs exist, such as the SRTM, offering a free 
readily available 90-m resolution DEM for any land mass between 60°N and 57°S latitude. In 
Chapter 5 SRTM data were used for slope estimation. 
 
 

7.2 Spatial data integration for erosion assessment 
The strength of satellite remote sensing for erosion studies is that good-quality timely spatial 
information can be obtained on a variety of erosion related variables (Chapter 2). Although 
detection of the presence of erosion features may give direct information, a lot can be gained 
from integrating remotely sensed variables with additional data. These data may also be 
derived from satellite imagery, or have another source (e.g. field measurements, soil and 
topographic maps). Even if erosion features can be directly obtained from satellite imagery, 
integration with other variables can assist in explaining the occurrence of erosion features or 
to predict future erosion. As an example, visual interpretation of QuickBird imagery allowed 
for gully detection in Chapter 3. This formed the basis for automatic gully detection with 
ASTER, which then permits obtaining fast information on gully occurrence in larger regions. 
Coupling this knowledge to other variables (like presence of roads, terrain variables, 
vegetation cover, etc.) may subsequently explain why gullies occur at certain locations. 
Chapter 6 could also be looked at from this perspective: QuickBird was applied for extracting 
erosion features, while NDVI patterns in combination with slope information explained its 
occurrence. Detection of features from satellite data can therefore be a goal in itself, but also 
a way to arrive at understanding of the erosion process. Unfortunately, limitations exist for 
detecting erosion features from satellite imagery due to e.g. the limited size of the features, 
vegetation cover obscuring feature presence (e.g. in agricultural fields), feature removal by 
ploughing, the high cost of high-resolution data, or simply the inability of discerning certain 
features by current satellite systems. Nevertheless, the general factors responsible for erosion 
occurrence are rather well-known partly because of many decades of erosion research, but 
equally due to the experience of e.g. local farmers, working daily in the field. 

Although the factors that play a role in the erosion process are well-known (i.e. 
climate, terrain, soil, vegetation), there is more confusion about how to best select parameters 
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describing these factors at different scales, and to integrate these parameters for accurate 
estimation of erosion rates or prediction of locations where erosion is likely to occur. For 
assessing erosion rates and erosion mapping, a variety of data-integrating erosion models 
have been developed for different locations worldwide. However, in Chapters 1, 2, 4, and 5 it 
was discussed that most erosion models have certain drawbacks that limit their adequacy for 
accurate erosion mapping. This is partly because specific model assumptions may not be 
valid for other regions and scales, and partly because the model’s input data requirements are 
often too high as compared to data availability, even when considering the variables that may 
be extracted from satellite data. This may imply that more assumptions considering input 
variables will have to be made, thus reducing accuracy of the input and therefore of the 
outcomes. Erosion models give some estimate of erosion rates, but its predictive value is 
generally low. Often, especially for larger regions, precise erosion rates are not required, but 
merely a spatial (and sometimes temporal) indication of where (and when) erosion is likely to 
occur. This is generally expressed as erosion risk, being the relative risk that erosion will 
occur at a specific location (and moment) as compared to other locations in the region 
mapped. Therefore, qualitative data integration methods using data on regionally-important 
parameters can be a good option for the goal of erosion risk mapping. Local knowledge of 
experts (Chapter 4) or farmers (Chapter 5) can be an important input to such methods. 

In Chapter 4, a qualitative erosion risk mapping methodology was presented that uses 
expert knowledge to select and combine locally-important parameters that can be extracted 
from available data sources. A generic description of the methodology was given, such that 
the method can be applied for other regions with different parameters of importance and 
different data availability. For the Colombian Eastern Plains, four erosion factors were 
defined, namely geology, soils, relief, and management. Through interviews with local soil 
experts the relevant parameters for each factor were identified and subsequently derived from 
a soil survey, a DEM, and a Landsat image. For each factor a decision tree was constructed 
allowing combination of the selected parameters into a factor rating between 1.0 (low erosion 
risk) and 3.0 (high erosion risk). Averaging factor ratings resulted in a potential (without 
management factor) and actual erosion risk map. Chapter 4 concluded that flexible 
methodologies using expert knowledge are valuable for erosion risk mapping as locally-
important factors and processes can be accounted for effectively. 

The Colombian case study still used several data sources that may not be readily 
available at a sufficiently detailed scale in other areas (e.g. soil map). Therefore, in Chapter 5 
it was examined if accurate erosion risk mapping is possible using only readily available data 
obtained from spaceborne sensors. Two methods were tested that both used a well-timed 
Landsat image for assessing patterns of vegetation cover and a SRTM DEM to evaluate 
slope. During informal interviews in the 70-km2 watershed in the West Usambara Mountains 
of Tanzania, both farmers and extension officers mentioned steep slopes and reduced 
vegetation cover during certain moments of the year as the most important causes of erosion 
in the region. Therefore, only these factors were addressed for assessing erosion risk. The 
first method was partly based on field surveys, estimating FVC, slope, and erosion risk. Field 
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estimates of FVC were related to NDVI-values of corresponding pixels in the Landsat image. 
Using multiples of 10% as class limits, FVC and slope were both classified in five classes. A 
decision tree was set up using part of the field surveys to optimally combine the slope and 
FVC classes into erosion risk classes. Although spatial erosion risk patterns are eventually 
derived from readily available data sources, development of method 1 greatly relies on field 
surveys. 

Method 2 of Chapter 5 on the contrary did not require field data for its development. 
NDVI was used directly as an indicator of FVC. The NDVI and slope values were both 
automatically classified in five classes, with each class covering 20% of the watershed. For 
each factor, value 1 was assigned to the class with the lowest erosion risk (gentle slopes or 
high NDVI) and value 5 to the highest erosion risk. The final erosion risk map was 
subsequently created by taking the minimum class value of NDVI and slope classification for 
each pixel. Performance of both methods was similar in terms of accuracy, and therefore the 
simpler and more straightforward method 2 is preferred. Chapter 5 showed that qualitative 
integration of the factors vegetation cover and slope, indicated by local farmers, may allow 
for accurate mapping of soil erosion risk in the watershed studied. Spatial information on 
these factors could be easily extracted from readily available spaceborne data, while proper 
timing of the Landsat image to assess patterns of vegetation cover at the time of high erosion 
risk was considered important. 

Chapter 6 assessed more in detail the importance of temporal dynamics of vegetation 
cover and rainfall for satellite image timing. For the 10 by 10 km Brazilian study area, multi-
temporal information on rainfall intensity and vegetation cover (through NDVI) during one 
year was derived from coarse spatial resolution TRMM and MODIS data. Qualitative 
comparison of the time series allowed for identifying the period when erosion risk is highest 
due to limited vegetation cover and occurrence of high-intensity rainfall events. To assess the 
implications of this timing on the selection of available optical medium-resolution imagery, 
the NDVI was calculated from six medium-resolution ASTER images. For each image, the 
calculated NDVI was classified in five equally-sized classes the same way as in method 2 of 
Chapter 5. However, field surveys showed that slope is not an equally important factor for 
erosion at the Brazilian site as in the West Usambara Mountains. Classes with low NDVI 
were related to high erosion risk and vice versa, while a DEM was merely used to set pixels 
with gentle slopes less than 3% to very low erosion risk. Of the six erosion maps thus 
constructed, the one created from the image acquired at the start of the rainy season, shortly 
before the erosion period, best described the erosion patterns, as observed visually from the 
QuickBird image. The different erosion risk maps gave varying accuracy values because the 
spatial NDVI patterns, and not only NDVI values, change during the year. Chapter 6 showed 
that erosion studies can benefit from the use of multi-resolution and multi-temporal satellite 
data, and that temporal dynamics of vegetation cover and rainfall are to be considered for 
satellite image selection in erosion studies. 

The different case studies of this thesis showed that various alternatives exist for 
erosion risk mapping besides the use of erosion models. With only a limited amount of 
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information that can easily be extracted from satellite imagery or other sources, often a good 
indication of the spatial variability of erosion risk can be obtained. While under some 
circumstances erosion features may be detected directly from satellite data (Chapter 3 and 6), 
in other cases selection and combination of information sources can be based on expert 
knowledge (Chapter 4), farmer’s knowledge (Chapter 5), or field surveys (Chapter 6). A 
flexible approach that can easily be adapted to regional characteristics is therefore to be 
preferred over data-demanding approaches that are developed for other scales and regions. 
Here it is not meant to repudiate the validity of physically-based erosion models, as their 
development assists in understanding the erosion process. However, for the goal of regional 
erosion mapping they are probably not the best tool. To obtain relevant input data, especially 
for assessing vegetation patterns, timing of satellite imagery can be important. Coarse-
resolution satellite data may assist in defining the optimal timing (Chapter 6).  
 

7.3 Validation 
The term ‘accurate’ was mentioned several times in Sections 7.1 and 7.2. Accuracy is the 
degree of conformity of the results with actual values. To determine the accuracy of output 
maps, results need to be validated with independent data. In this section the focus will be 
merely on validating erosion results, and not on validation of intermediate products, such as 
FVC or land use maps. Chapter 2 gave an overview of the validation techniques applied in 
erosion studies that use satellite remote sensing. Erosion is a difficult process to measure, 
because accurate measurements are generally expensive and time-consuming, standard 
equipment is hardly available, and measurement results may be highly variable under similar 
circumstances. Probably partly because of this, many of the reviewed studies in Chapter 2 did 
not or only slightly address the issue of validation. However, validation is essential for 
identifying accurate erosion mapping methodologies and closer collaboration between the 
remote sensing community and field-based erosion scientists may be needed for that purpose. 
Common techniques that have been applied to obtain validation data include soil loss 
measurements from plots, evaluation of sediments leaving hydrological catchments, erosion 
surveys, and aerial photo interpretation. Plot measurements are time-consuming and 
expensive to perform over large areas, whereas evaluating sediments at the outlet does not 
give information on what is happening inside the catchment. Therefore, and because no 
estimates of erosion rates were required, validation data for the case studies presented in this 
thesis were obtained from field surveys and high-resolution image interpretation. 

Field surveys examine erosion features and possible causes of erosion, such as limited 
vegetation cover and steep slopes. These observations are recorded for different points or 
areas which are located with a Global Positioning System (GPS). Erosion features may not be 
visible at every moment of the year, so surveys need to be timed carefully. However, 
accessibility can sometimes become problematic during the rainy season, which would 
impose the need to execute the survey at another moment and focus more on causes of 
erosion (Chapter 5). In Chapter 4, surveys were performed for seven high erosion risk areas 
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identified by the erosion risk map. At these locations advanced signs of sheet and gully 
erosion were observed, and favourable conditions for erosion (e.g. steep slope, bare soil) 
were found. However, the need for more validation data was clearly identified in this study. 
In Chapter 5, field surveys were performed for 151 locations during a period of one month. 
At each location several characteristics were recorded, including land cover, FVC, presence 
of conservation measures, slope, and erosion indicators. Erosion indicators were defined 
locally and comprised stony soil, exposed roots, and the presence of rills and pedestals. 
Based on the characteristics found at a specific location, a qualitative estimate of erosion risk 
was made in the field together with a local extension officer on a scale ranging from 1 (very 
low) to 5 (very high). In Chapter 6, similar surveys as for Chapter 5 were performed at 331 
locations, but were eventually not used for the accuracy assessment, due to important timing 
differences between image acquisition and the execution of the surveys. Nevertheless, 
surveys like presented in this thesis, although to some extent subjective, can be a useful tool 
for assessing the accuracy of regional erosion maps. 

High-resolution image interpretation is another valuable tool for obtaining validation 
data. Although aerial photographs have been used previously for this purpose (Chapter 2), 
high-resolution satellite images may serve equally well. These images may be used to 
visually identify gullies (Chapter 3) or patterns of concentrated flow and ruptures of 
contourbunds (Chapter 6). For the Brazilian site a QuickBird image was used for feature 
detection, whereas field knowledge and observations assisted in image interpretation. 
Although high-resolution satellite images are still expensive, their acquisition should be 
considered for validation purposes in future regional erosion studies. However, important 
factors to take into account are the image timing in relation to erosion occurrence or presence 
of erosion features and the spatial size of the features encountered in the region. 
 
 

7.4 Future directions 
The approaches presented in this thesis constitute a small contribution towards critical 
thinking about regional erosion risk mapping and provide alternatives to erosion models, that 
are often applied to different scales and regions than for which they are developed. For 
several tropical regions, it was shown that erosion risk may be accurately mapped using only 
a limited amount of satellite- and other available data, in combination with local knowledge 
or field surveys. Nevertheless, much more work will be needed to obtain a good 
understanding of the importance of soil erosion across different regions, and at different 
spatial and temporal scales. Remote sensing may contribute to this understanding, but it will 
not alone provide the answers to the great number of uncertainties that exist in erosion 
science. Causes of uncertainties comprise: 

• the difficulty of measuring erosion rates in the field (Stroosnijder, 2005) and 
extrapolating this information to larger regions (Boardman, 1998; Trimble and 
Crosson, 2000); 
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• the complexity of the erratic erosion processes and consequently failing of empirical 
or mathematical solutions to accurately describe and predict these processes for 
varying conditions (Beven, 2001); 

• the problem of disaggregating the impact of soil erosion on crop productivity (Dregne, 
1992; Lal, 2001), food security (Lomborg, 2001) or carbon storage (Lal, 2003), from 
other influences such as the use of ameliorated crop varieties, fertilizer application, 
soil deposition, and climatic changes, thus hampering a good appreciation of this 
impact. 

 
Serious thought is required within the erosion community whether universal approaches 
towards assessment of erosion can be achieved, or whether its assessment is necessarily 
dependent on its spatial, temporal, economic, environmental and cultural context (Warren, 
2002). Or in other words, can a single tool eventually be developed to evaluate erosion across 
different regions and scales, or are approaches intrinsically related to the purpose of the 
assessment, the regional characteristics, and scale? This thesis is clearly in support of the 
contextual approach. If ever a complete universal physical description of erosion processes 
can be obtained, including all relevant factors and processes (which is very doubtful due to 
the causes of uncertainties mentioned above), a model based on this description would have 
such a high requirement for good-quality data at a detailed spatial and temporal resolution, 
that it will prove practically impossible to apply the model anywhere. Notwithstanding, the 
development of physically-based models is important for increasing our understanding of the 
erosion processes. For spatial erosion assessments however, the starting point should not be 
the correct physical description or a pre-defined model developed for a very specific context, 
but rather the relevant spatial and temporal data that may be obtained for a specific region 
and scale. For areas larger than about 50 km2, satellite remote sensing is one of the principle 
sources of spatial and temporal data. Because potential remote sensing observables depend 
on scale and regional characteristics, a data-driven approach is necessarily region-dependent. 
For example for arid environments SAR interferometry to detect random surface changes and 
linear spectral unmixing of optical data to assess status of soil and vegetation are promising 
methods (Chapter 2), and it would thus be unwise to discard their use in erosion assessment 
just because their applicability is not universal. Specific approaches may however prove 
useful for larger regions having a similar regional context, like e.g. the Brazilian Cerrados. 

Based on the experience acquired within the framework of this thesis, future progress 
of regional erosion risk mapping is considered to depend on (1) improved techniques for 
retrieving erosion-related variables from remote sensing data, (2) the ongoing development of 
spaceborne sensors, (3) improved region-dependent data integration methods, and (4) the 
increase of proper validation activities. 
 
1. Information retrieval algorithms from satellite remote sensing data are under strong 

development. Any progress in the retrieval of parameters describing the erosion factors 
may benefit erosion research. Promising fields of interest include the mapping of 
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senescent vegetation (Arsenault and Bonn, 2005; French et al., 2000), soil moisture 
assessment (Le Hégarat-Mascle et al., 2002; Mattia et al., 2006), but also improved 
techniques for erosion detection (chapter 3; Liu et al., 2004). Without doubt, many of the 
algorithms will work better for some regions than for others, and thus erosion risk 
mapping activities should follow the state-of-the-art knowledge on the conditions for 
retrieving specific observables. Relevant observables may then be selected for the local 
situation. With the increasing size and accessibility of current satellite data archives, also 
options for change detection and monitoring increase (Coppin et al., 2004). Assessment 
of dynamic soil and vegetation parameters may thus allow monitoring of erosion, 
although detailed field studies would be required to identify whether a clear relationship 
exists between observed changes and accelerated soil erosion. An operational monitoring 
system would be in need of reliable satellite recordings for a long time period, which may 
require much more similar land-observing satellites to be brought into orbit (Landgrebe, 
2005). 

2. Development of instruments and satellites is ongoing, and many new land-observing 
satellites have recently been launched or are planned to be launched in the near future, 
such as ALOS, RADARSAT-2, SMOS, OrbView-5, and TerraSAR-X. The instruments 
carried by these satellites will provide new capabilities, either through increased spatial or 
temporal resolution, through offering continuity for specific types of observation, or 
through the use of innovative imaging principles. Some satellite missions are mainly 
intended for technology demonstration (e.g. hyperspectral sensors like CHRIS-PROBA 
or Hyperion), whereas others provide data on an operational basis. Several potentially 
interesting instruments that are tested on airborne platforms, are awaiting financing 
opportunities for becoming spaceborne. Erosion research may take advantage of these 
developments, that may provide innovative ways for the retrieval of erosion factors and 
erosion detection. 

3. Proper data integration methods are of utmost importance for accurate regional erosion 
risk mapping. Erosion models have their merit for the particular region and scale for 
which they were developed, but good validated methodologies for larger regions are 
scarce. More benefit is expected from region-specific selection and integration of 
parameters derived from current and future earth observation missions in combination 
with other data sources. This selection and integration may be based on expert knowledge 
(Chapter 4) or potentially on statistical relationships (Okoth, 2003). However, statistical 
relationships require a substantial amount of field data, which may be hard to obtain. A 
better dialogue between the remote sensing community and (local) erosion experts would 
allow determination of the remotely sensed variables required for erosion assessment 
under different conditions. In this way, various approaches would evolve for different 
regions and contexts, while similar techniques and integration methods may be used for 
comparable environments. Special attention should be paid to multi-scale assessments 
(e.g. Chapter 6), in which relevant temporal information is obtained from coarse-
resolution satellite data, medium-resolution data are used for actual erosion risk mapping, 



Chapter 7 

 138

and fine-resolution data offer ground-truth information. Hierarchical erosion risk 
mapping approaches can thus be envisaged, where the coarser assessment defines areas of 
particular interest, while the more detailed assessment can provide validation of the 
coarser-scale results. 

4. Advance in satellite-based erosion assessments is not possible if the performance of 
different methodologies is unknown. Multi-scale validation as presented above should be 
used to validate multi-scale assessments, but at the lowest level the options are largely 
restricted to the use of erosion field measurements, erosion surveys, and high-resolution 
image interpretation. Especially the last option could be used much more frequently in 
erosion studies, although limitations for discerning certain features exist. Standardisation 
of erosion measurement techniques (Stroosnijder, 2005) and a general format for erosion 
surveys (e.g. Herweg, 1996) that may be adapted to include local indicators, could be a 
step in the right direction. Moreover, construction of a global geo-database with field 
observations, measurements, and a clear description of the measurement and survey 
techniques used, is a conceivable option for the future. This would serve both for testing 
of a variety of mapping methodologies in different areas, and for defining generally-
accepted good practices for acquiring validation data. 

 
The time seems to be ripe for defining a clear research agenda and vision for future erosion 
mapping and monitoring across different scales. Under the proposed European Union Soil 
Framework Directive for example, the Member States will be required to identify areas of 
high erosion risk within their country and take appropriate measures for erosion reduction 
(CEC, 2006). At present, satellite remote sensing is still poorly used by erosion scientists, 
which may partly be explained by the fact that too high expectations were raised in the past 
considering remote sensing. Nevertheless, satellite remote sensing constitutes the major 
source of timely spatial information, and is necessarily part of potential monitoring schemes 
at larger scales. It is striking that a recent symposium on erosion assessment (Gabriels and 
Cornelis, 2003) hardly addressed remote sensing, while most presentations at a remote 
sensing conference on land degradation (Röder and Hill, 2006) focussed primarily on 
studying temporal vegetation patterns, which do not have a straightforward relation with 
erosion occurrence. A step forward for regional assessment and monitoring can only be made 
when close collaboration between erosion scientists, geographers, and the remote sensing 
community takes place. Interesting frameworks are currently being defined, bringing together 
space and ground observations to create better services. These include among others the 
European GMES (Global Monitoring for Environment and Security) and the global GEOSS 
(Global Earth Observation System of Systems) initiatives. Linking up of a large community 
of erosion scientists with these initiatives could provide a good means to critically enhance 
current methodologies and thus improve regional erosion mapping and monitoring 
capabilities. 
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Summary 
 

Chapter 1: Introduction 

Accelerated soil erosion by water is a major land degradation problem in many regions 
around the world, creating negative impacts on agricultural production, infrastructure, and 
water quality. For defining effective soil and water conservation strategies, spatial 
information on the importance of erosion is required at various scales. Satellite data can 
provide a valuable input for spatial erosion assessment. One option for this is by identifying 
eroded areas, which is possible for specific conditions. More common is the satellite-based 
assessment of erosion factors, such as vegetation characteristics. In this case, erosion risk 
may be obtained by integrating the derived information with additional spatial data sources. 
Tools that are currently used for data integration are mostly limited to erosion models, which 
frequently have a high data requirement. Generally, these models are developed for smaller 
scales and other regions than for which they are applied. Therefore, model outcomes are 
questionable in many cases, especially if no validation is performed. As erosion processes are 
complex and vary between regions, new approaches are required that can incorporate locally-
relevant information. The main objective of the research described in this thesis was to 
develop new methodologies for qualitative erosion mapping using satellite remote sensing. 
To this end, several tropical regions were studied that, except for satellite data, have poor 
data availability. 
 

Chapter 2: Satellite remote sensing for water erosion assessment: a review 

During the past 30 years, many studies have been published that in some way or another used 
satellite data for assessing soil erosion. This chapter provides an overview of the different 
methodologies used in these studies. Erosion detection was achieved by visually identifying 
large erosion features and eroded areas from satellite images. For specific cases, eroded areas 
could be automatically discerned mainly due to reduced vegetation cover or changing soil 
properties. Erosion consequences were assessed by determining sedimentation volumes or 
sediment concentrations in downstream lakes and reservoirs. However, most studies applied 
satellite data for the evaluation of erosion factors, including topography, soil, management 
practices, but in particular vegetation. The specific satellite sensor used and site 
characteristics determine which variables may be extracted. For example in more humid 
tropical environments, soils are often not visible from space due to the abundant vegetation 
cover. Remote sensing derived variables can subsequently be integrated with other data 
sources to map erosion risk. This has been achieved through erosion models and qualitative 
methods. The latter are generally more flexible in terms of data requirements and adaptability 
to regional characteristics, and allow incorporation of local expert knowledge. Validation of 
output results is important for evaluating the performance of different approaches, but was 
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not or only poorly done in most studies. It was concluded that satellite remote sensing can 
contribute to erosion assessment in many ways, but that a general lack of validation is a main 
concern. 
 

Chapter 3: Automatic identification of erosion gullies with ASTER imagery 
in the Brazilian Cerrados 

Although automatic identification of large eroded areas from satellite data has been 
performed in previous studies, individual erosion features were merely detected using visual 
interpretation techniques. The objective of this chapter was to determine whether it is 
possible to automatically identify large permanent erosion gullies from satellite data for the 
Brazilian Cerrados. For that purpose, a common algorithm called maximum likelihood 
classification was applied to a wet- and a dry-season optical ASTER image. Training of the 
algorithm was done by calculating the spectral statistics of the classes ‘gullies’ and ‘non-
gullies’ from a 16-km2 portion of the ASTER scene. Visual interpretation of a high-resolution 
QuickBird image allowed for precise delineation of class limits, which for a non-overlapping 
36-km2 area resulted in a gully map that was used for validation. The wet-season performed 
better than the dry-season classification, but best results were obtained when both 
classifications were combined. User’s accuracy was above 90%, while only two out of 17 
actual gullies were not detected and two small locations were erroneously identified as gully. 
It was therefore concluded that accurate identification of permanent erosion gullies is 
possible with optical satellite data. It is furthermore expected that the approach may be 
applied to larger areas with similar characteristics. 
 

Chapter 4: Erosion risk mapping: a methodological case study in the 
Colombian Eastern Plains 

Because erosion models are generally developed for a specific region and small scales (plot-
scale to maximum 2 km2), qualitative data integration may be a better option for erosion risk 
mapping at larger scales (>50 km2) and for different regions where model assumptions are 
not valid. This chapter presents a qualitative erosion risk mapping methodology that uses 
expert knowledge to select and combine locally-important parameters, which can be 
extracted from available data sources. A generic description of the methodology was given, 
such that the method may be applied for other regions with different parameters of 
importance and different data availability. For the Puerto López municipality in the 
Colombian Eastern Plains, four erosion factors were defined, namely geology, soils, relief, 
and land management. Through interviews with local soil experts the relevant parameters for 
each factor were identified and subsequently derived from a soil survey, a digital elevation 
model (DEM), and an optical Landsat satellite image. The Landsat image was used for 
classifying land use and estimating fractional vegetation cover (FVC). For each factor a 
decision tree was constructed to combine the selected parameters into a factor rating, 
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reflecting the relative susceptibility to erosion for that factor. Erosion risk maps were 
obtained through averaging factor ratings, where actual risk used all factors and potential risk 
excluded the management factor. The maps showed good agreement with field observations, 
although more field observations would be required for thorough validation. The chapter 
concludes that flexible methodologies using expert knowledge are valuable tools for erosion 
risk mapping as locally-important factors and processes can be accounted for effectively. 
 

Chapter 5: Spatial evaluation of soil erosion risk in the West Usambara 
Mountains, Tanzania 

Poor availability of good-quality spatial data is common in regions like sub-Saharan Africa, 
and complicates effective regional erosion assessment. The aim of this chapter was to 
evaluate whether a limited amount of readily available data from spaceborne sensors may 
allow for accurate erosion risk mapping. For a 70-km2 watershed in the West Usambara 
Mountains of Tanzania, a DEM from the Shuttle Radar Topography Mission and a Landsat 
image, recorded slightly before the erosive season, were used. Two qualitative data 
integration methods were tested. The first method derived slope classes from the DEM and 
fractional vegetation cover (FVC) classes from the Landsat image and FVC field estimates. 
Data integration was achieved with a decision tree that was calibrated using field 
observations. The second method did not require field data, but automatically classified slope 
and a spectral vegetation index called NDVI (normalized difference vegetation index) into 
five classes, with each class covering 20% of the watershed. Low NDVI and steep slopes 
were related to high erosion risk and vice versa. For each pixel the lowest value of both 
classes was retained to create the final erosion risk map. High erosion risk areas are thus 
places with both a steep slope and a low vegetation cover. Resulting maps both showed a 
high accuracy of about 80%. The second method is therefore preferred because its application 
requires less field data. The study demonstrated that qualitative integration of the factors 
vegetation cover and slope allows for accurate mapping of soil erosion risk in the watershed 
studied. Proper timing of the Landsat image to assess patterns of vegetation cover at the time 
of high erosion risk was considered important. 
 

Chapter 6: Timing of erosion and satellite data: a multi-resolution approach 
to erosion risk mapping 

Erosion is an erratic process and occurs when high-intensity rainfall coincides with low 
vegetation cover. When mapping erosion risk, the timing of the major erosion events can 
have implications for the selection of satellite images, used to describe the spatial patterns of 
FVC. This chapter presents a method for erosion risk mapping using multi-temporal satellite 
data at various resolutions. The analyses were performed for a 100-km2 pasture area in the 
Brazilian Cerrados during a full growing season from August 2002 to August 2003. At the 
coarse spatial scale, 3-hourly rainfall estimates, obtained from the spaceborne TRMM 



Summary 

 146

mission, were compared with NDVI time series derived from daily and 16-day 250-m 
resolution MODIS imagery. This comparison indicated that highest erosion risk occurred 
during the months November and December. At the medium spatial scale, the NDVI was 
calculated from a time series of six 15-m resolution ASTER images available for the year 
studied. Due to persistent cloud cover no recordings were made between October and March. 
NDVI was classified in five equally-sized classes, of which the low NDVI classes were 
related to high erosion risk, while a DEM was merely used to set approximately flat zones to 
very low erosion risk. The six resulting erosion risk maps were evaluated with data on 
erosion features that were visually interpreted from a 0.61-m resolution QuickBird image. 
Results from the ASTER image of October gave the highest accuracy (84%), which is shortly 
before the first erosion events. The presented approach for erosion risk mapping applies 
coarse-resolution temporal data for determining erosion periods, which subsequently assists 
in the selection of medium-resolution data for effective mapping. High-resolution data allows 
for validation of the results, at least for the situation of Brazilian Cerrados. The approach may 
easily be applied in other areas with high spatial and temporal variability of vegetation cover. 
 

Chapter 7: Synthesis 

Based on the studies presented in this thesis, it can be concluded that satellite remote sensing 
has much to offer to spatial erosion assessments, especially for data-poor regions. Variables 
that may be derived from satellite data depend on the sensor type, specific regional 
characteristics, and the possibility of obtaining additional data. While in some cases direct 
detection of erosion features is possible, and automatic methods may achieve this, the general 
input of satellite data is to assess erosion factors that may be integrated with additional spatial 
data. The thesis showed that qualitative data integration methods that address regionally-
important parameters can be a good option for erosion risk mapping, while local knowledge 
and field surveys can provide important input to such methods. A flexible approach that can 
easily be adapted to regional characteristics is to be preferred over data-demanding erosion 
models, developed for other scales and regions. Validation of results is however highly 
important for defining appropriate mapping techniques. Because erosion is a difficult process 
to measure, simple qualitative field surveys or high-resolution image interpretation constitute 
good alternatives for obtaining validation data. Timing of satellite imagery and of surveys is 
important and needs to be considered carefully in any erosion study. Coarse-resolution 
satellite data can assist in obtaining a quick overview of the most erosive periods. Future 
progress of regional erosion risk mapping is considered to depend on (1) improved 
techniques for retrieving erosion-related variables from remote sensing data, (2) the ongoing 
development of spaceborne sensors, (3) improved region-dependent data integration 
methods, and (4) the increase of proper validation activities. A clear research agenda and 
vision for future erosion mapping and monitoring activities across different scales should be 
developed. A step forward for these activities can only be made when close collaboration 
between erosion scientists, geographers, and the remote sensing community takes place. 
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Samenvatting 
 

Hoofdstuk 1: Inleiding 

Versnelde bodemerosie door water is een aanzienlijk landdegradatie-probleem in veel 
gebieden wereldwijd en veroorzaakt negatieve effecten voor agrarische productie, 
infrastructuur, en waterkwaliteit. Ruimtelijke informatie over bodemerosie is noodzakelijk op 
verschillende schaalniveaus om effectieve strategieën voor bodem- en waterconservering te 
ontwikkelen. Satellietdata kunnen een belangrijke bijdrage leveren aan de ruimtelijke 
evaluatie van bodemerosie. Enerzijds kan dit door geërodeerde gebieden te identificeren, wat 
mogelijk is onder bepaalde omstandigheden. Gebruikelijker is het echter om erosiefactoren, 
zoals vegetatiekenmerken, te bepalen met behulp van satellietbeelden. In dit geval kan 
erosierisico verkregen worden door de verworven informatie te integreren met andere 
bronnen van ruimtelijke data. Tegenwoordig gebeurt deze integratie voornamelijk door 
middel van erosiemodellen, die voor hun toepassing doorgaans veel invoergegevens vereisen. 
Over het algemeen zijn dergelijke modellen ontwikkeld voor kleinere schaalniveaus en 
andere gebieden dan waar ze op toegepast worden. Daardoor zijn modeluitkomsten in veel 
gevallen twijfelachtig, vooral wanneer deze niet zijn gevalideerd. Aangezien erosieprocessen 
complex zijn en variëren tussen gebieden, zijn er nieuwe benaderingen nodig die 
gebiedsrelevante informatie benutten. De voornaamste doelstelling van het onderzoek, 
beschreven in dit proefschrift, was om nieuwe methodologieën te ontwikkelen voor 
kwalitatieve kartering van bodemerosie, gebruik makend van satelliet remote sensing. 
Hiertoe werden verschillende tropische gebieden onderzocht die behoudens satellietgegevens 
een lage beschikbaarheid van ruimtelijke data hebben. 
 

Hoofdstuk 2: Satelliet remote sensing voor het bepalen van watererosie: 
een overzicht 

Gedurende de afgelopen 30 jaar zijn er een groot aantal studies gepubliceerd die op de één of 
andere manier satellietgegevens hebben toegepast om bodemerosie door water te bepalen. Dit 
hoofdstuk geeft een overzicht van de verschillende methodologieën die deze studies 
gebruikten. Erosiedetectie werd bereikt door visuele identificatie van grote erosievormen en 
geërodeerde gebieden vanaf satellietbeelden. In speciale gevallen was het mogelijk om 
geërodeerde gebieden automatisch te onderscheiden vanwege verminderde 
vegetatiebedekking of veranderende bodemeigenschappen. Gevolgen van erosie werden 
geëvalueerd door sedimentatievolumes of -concentraties in benedenstroomse meren of 
stuwmeren te bepalen. De meeste studies gebruikten satellietgegevens echter voor het 
analyseren van erosiefactoren, met inbegrip van topografie, bodem, landbeheerspraktijken, 
maar in het bijzonder vegetatie. De specifieke satellietsensor die gebruikt wordt alsmede 
gebiedskarakteristieken bepalen welke variabelen verkregen kunnen worden. In nattere 
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tropische gebieden bijvoorbeeld, belet de dichte vegetatiebedekking dikwijls de zichtbaarheid 
van de bodems vanuit de ruimte. De door remote sensing verkregen variabelen kunnen 
vervolgens met andere databronnen geïntegreerd worden teneinde erosierisico te karteren. Dit 
is gedaan met behulp van erosiemodellen en kwalitatieve methoden. De laatstgenoemden zijn 
doorgaans flexibeler wat betreft datavereisten en de aanpasbaarheid aan regionale 
kenmerken, en kunnen gebruik maken van de kennis van lokale experts. Het valideren van 
uitkomsten is belangrijk om de waarde van verschillende karteringsbenaderingen in te 
schatten, maar de meeste studies hebben dit niet of slecht gedaan. Er werd geconcludeerd dat 
satelliet remote sensing op vele manieren kan bijdragen aan erosiebepalingen, maar dat een 
algemeen gebrek aan validatie een belangrijk probleem is.  
 

Hoofdstuk 3: Automatische detectie van erosiegeulen met ASTER beelden in 
de Braziliaanse Cerrados 

Hoewel in eerdere studies grote geërodeerde gebieden automatisch konden worden 
geïdentificeerd met behulp van satellietgegevens, zijn individuele erosievormen tot dusverre 
slechts gedetecteerd door middel van visuele interpretatietechnieken. Dit hoofdstuk had tot 
doel om te bepalen of het mogelijk is om met satellietdata automatisch grote permanente 
erosiegeulen te detecteren in de Braziliaanse Cerrados. Daartoe werd een gangbaar algoritme, 
genaamd maximum likelihood classificatie, toegepast op een optisch ASTER-beeld van het 
natte en van het droge seizoen. Het algoritme werd getraind door de spectrale statistieken van 
de klassen ‘geul’ en ‘niet-geul’ te berekenen voor een gedeelte van 16 km2 van het ASTER-
beeld. De exacte ruimtelijke limieten van deze klassen werden bepaald door visuele 
interpretatie van een QuickBird-beeld van hoge resolutie. Voor een niet-overlappend gebied 
van 36 km2 resulteerde de QuickBird-interpretatie in een geulkaart, die gebruikt werd voor 
validatie. Het ASTER-beeld van het natte seizoen gaf betere classificatieresultaten dan het 
beeld van het droge seizoen, hoewel de beste resultaten verkregen werden wanneer beide 
classificaties werden gecombineerd. In dit geval waren 90% van de als geul geclassificeerde 
pixels correct geclassificeerd, terwijl slechts twee van de 17 feitelijke geulen niet werden 
gedetecteerd en twee kleine gebieden foutief als geul geïdentificeerd werden. Hieruit kan 
worden opgemaakt dat nauwkeurige detectie van permanente erosiegeulen mogelijk is met 
optische satellietdata. Bovendien wordt verwacht dat de methode toegepast kan worden op 
grotere gebieden met gelijksoortige kenmerken. 
 

Hoofdstuk 4: Erosierisico-kartering: een methodologische case studie in de 
Colombiaanse Llanos 

Aangezien erosiemodellen doorgaans ontwikkeld zijn voor specifieke gebieden en kleine 
schaalniveaus (plotschaal tot maximaal 2 km2), kan kwalitatieve data integratie een betere 
keuze zijn voor erosierisico-kartering op grotere schaal (>50 km2) en voor andere gebieden 
waar modelaannames niet geldig zijn. Dit hoofdstuk presenteert een kwalitatieve 
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methodologie voor erosierisico-kartering, die gebruikt maakt van kennis van lokale experts 
om plaatselijk belangrijke parameters te selecteren en integreren. Ruimtelijke informatie met 
betrekking tot deze parameters kan verkregen worden uit beschikbare databronnen. De 
methodologie werd generiek beschreven, zodat deze toegepast kan worden voor andere 
gebieden met verschillen in belangrijke parameters en beschikbaarheid van gegevens. Voor 
de gemeente Puerto López in de Colombiaanse Llanos werden vier erosiefactoren 
gedefinieerd, namelijk geologie, bodem, topografie, en landbeheer. Door interviews met 
lokale bodemexperts werden de relevante parameters voor elke factor geïdentificeerd. 
Informatie over deze parameters werd vervolgens afgeleid van een bodemstudie, een digitaal 
hoogtemodel, en een optisch Landsat-beeld. Het Landsat-beeld werd gebruikt voor 
landgebruiksclassificatie en voor het schatten van de fractie vegetatiebedekking. Voor elke 
factor werd een beslissingsboom gemaakt met als doel de geselecteerde parameters te 
combineren tot een factorwaarde, die de relatieve vatbaarheid voor erosie uitdrukt voor de 
desbetreffende factor. Erosierisico-kaarten werden verkregen door de factorwaarden te 
middelen, waarbij actueel risico alle factoren gebruikte, en potentieel risico alle factoren 
behalve de landbeheer factor. De kaarten kwamen goed overeen met veldwaarnemingen, 
hoewel meer waarnemingen nodig zijn voor grondige validatie. De conclusie uit dit 
hoofdstuk is dat flexibele methoden, die kennis van lokale experts benutten, waardevolle 
middelen zijn voor erosierisico-kartering, aangezien er effectief rekening gehouden kan 
worden met plaatselijk belangrijke factoren en processen. 
 

Hoofdstuk 5: Ruimtelijke evaluatie van bodemerosierisico in het westelijk 
Usambara Gebergte, Tanzania 

Ruimtelijke data van goede kwaliteit is slecht beschikbaar voor gebieden zoals Afrika ten 
zuiden van de Sahara, en dit bemoeilijkt doeltreffende regionale erosiebepalingen. Het doel 
van dit hoofdstuk was te evalueren of nauwkeurige erosierisico-kartering mogelijk is met een 
beperkte hoeveelheid goedtoegankelijke satellietgegevens. Voor een vanggebied van 70 km2 
in het westelijk Usambara Gebergte van Tanzania, werd een digitaal hoogtemodel van de 
Shuttle Radar Topography Mission en een kort voor het erosieseizoen opgenomen Landsat-
beeld gebruikt. Twee kwalitatieve data-integratiemethoden werden getest. Voor de eerste 
methode werden hellingsklassen afgeleid van het hoogtemodel, en fractionele 
vegetatiebedekking (FVC) van het Landsat-beeld en FVC-veldschattingen. Data-integratie 
werd gedaan door middel van een beslissingsboom, welke gecalibreerd was met 
veldwaarnemingen. Voor de tweede methode waren geen veldgegevens nodig, aangezien in 
dit geval hellingshoeken en een spectrale vegetatie-index genaamd NDVI automatisch 
werden ingedeeld in vijf klassen, welke elk 20% van het vanggebied omvatten. Lage NDVI-
waarden en steile hellingen werden gerelateerd aan een hoog erosierisico en vice versa. De 
uiteindelijke erosierisico-kaart werd gegenereerd door voor elk pixel de laagste erosierisico-
klasse van de helling en NDVI classificatie te behouden. Gebieden met hoog erosierisico zijn 
dus plekken die een steile helling en een geringe vegetatiebedekking hebben. De resulterende 
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erosierisico-kaarten lieten voor beide methoden een hoge nauwkeurigheid van ongeveer 80% 
zien. De voorkeur gaat daarom uit naar de tweede methode, omdat minder veldgegevens 
nodig zijn voor de toepassing hiervan. De studie toonde aan dat nauwkeurige kartering van 
erosierisico mogelijk is voor het bestudeerde vanggebied door de factoren 
vegetatiebedekking en helling op een kwalitatieve manier te integreren. Een correcte timing 
van het Landsat-beeld om patronen van vegetatiebedekking te schatten op het moment van 
hoog erosierisico werd als belangrijk beschouwd. 
 

Hoofdstuk 6: Timing van erosie en satellietdata: een multi-resolutie 
benadering van erosierisico-kartering 

Erosie is een onregelmatig proces en vindt plaats wanneer regenval van hoge intensiteit 
samenvalt met een geringe vegetatiebedekking. Bij het karteren van erosierisico, kan de 
timing van grote erosiegebeurtenissen consequenties hebben voor de selectie van 
satellietbeelden, die gebruikt worden om ruimtelijke patronen van vegetatiebedekking te 
beschrijven. In dit hoofdstuk wordt een methode voor erosierisico-kartering gepresenteerd, 
die multi-temporele satellietdata van verschillende resoluties gebruikt. De analyses werden 
uitgevoerd voor een graslandgebied ter grootte van 100 km2 in de Braziliaanse Cerrados en 
besloegen een volledig groeiseizoen van augustus 2002 tot augustus 2003. Op de groffe 
ruimtelijke schaal werden 3-uurlijkse regenvalschattingen van de TRMM satellietmissie 
vergeleken met NDVI tijdsseries verkregen uit dagelijkse en 16-dagelijkse 250-m resolutie 
MODIS-beeldproducten. Deze vergelijking liet zien dat het hoogste erosierisico optreedt 
gedurende de maanden november en december. Op de middelgrote schaal werd de NDVI 
berekend voor een tijdreeks van zes 15-m resolutie ASTER-beelden die beschikbaar waren 
voor het bestudeerde groeiseizoen. Vanwege aanhoudende wolkenbedekking waren er tussen 
oktober en maart geen ASTER-opnames gemaakt. De NDVI werd geclassificeerd in vijf even 
grote klassen, waarbij de klassen met lage NDVI werden gerelateerd aan hoog erosierisico. 
Een digitaal hoogtemodel werd slechts gebruikt om zeer laag erosierisico toe te kennen aan 
bij benadering vlakke gebieden. De zes resulterende erosierisico-kaarten werden geëvalueerd 
met gegevens over aanwezige erosieverschijnselen, die door middel van visuele interpretatie 
waren gedigitaliseerd van een 0,61-m resolutie QuickBird-beeld. De hoogste nauwkeurigheid 
(84%) werd bereikt met de resultaten van het ASTER-beeld van oktober. Dit moment valt 
kort voor de eerste erosiegebeurtenissen van het seizoen. De gepresenteerde benadering voor 
erosierisico-kartering gebruikt temporele data van lage ruimtelijke resolutie om 
erosieperioden te bepalen, hetgeen vervolgens kan helpen in de selectie van satellietbeelden 
van gemiddelde resolutie voor effectieve kartering. Validatie van de resultaten was in het 
geval van de Braziliaanse Cerrados mogelijk met een hoogresolutie satellietbeeld. De 
benadering kan eenvoudig toegepast worden in andere gebieden met sterke ruimtelijke en 
temporele variabiliteit van vegetatiebedekking. 
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Hoofdstuk 7: Synthese 

Gebaseerd op de gepresenteerde studies in dit proefschrift, kan geconcludeerd worden dat 
satelliet remote sensing veel te bieden heeft voor erosie-kartering, vooral voor gebieden met 
geringe beschikbaarheid van ruimtelijke data. De variabelen die uit satellietdata afgeleid 
kunnen worden zijn afhankelijk van het type sensor, specifieke gebiedskenmerken, en de 
mogelijkheid om aanvullende data te verkrijgen. In sommige gevallen is directe detectie van 
erosievormen mogelijk, en kunnen automatische methoden dit bewerkstelligen. Echter, het 
voornaamste gebruik van satellietdata is om erosiefactoren te analyseren die vervolgens 
geïntegreerd kunnen worden met additionele ruimtelijke gegevens. Dit proefschrift liet zien 
dat kwalitatieve data-integratiemethoden, die gebruik maken van regionaal belangrijke 
parameters, een goede optie zijn voor erosierisico-kartering. Lokale kennis en veldstudies 
kunnen een belangrijke bijdrage leveren aan dergelijke methoden. Een flexibele benadering 
die gemakkelijk aangepast kan worden aan regionale kenmerken zou verkozen moeten 
worden boven erosiemodellen met een hoge databehoefte, die ontwikkeld zijn voor andere 
gebieden en schaalniveaus. Om te komen tot adequate karteringstechnieken is validatie van 
resultaten echter onontbeerlijk. Aangezien erosie een lastig proces is om te meten, kunnen 
eenvoudige kwalitatieve veldstudies of interpretatie van remote sensing beelden van hoge 
resolutie goede alternatieven zijn ter verkrijging van validatiegegevens. De timing van 
satellietbeelden en van veldstudies is belangrijk en moet zorgvuldig overwogen worden voor 
iedere erosiestudie. Satellietdata van lage ruimtelijke en hoge temporele resolutie kunnen 
bijdragen om een snel overzicht te krijgen van de periodes waarin de meeste erosie verwacht 
kan worden. Toekomstige verbetering van regionale erosierisico-kartering wordt beschouwd 
afhankelijk te zijn van (1) verbeterde technieken om erosie-gerelateerde variabelen uit remote 
sensing data af te leiden, (2) de voortgaande ontwikkeling van satellietsensoren, (3) 
verbeterde gebiedsafhankelijke data-integratiemethoden, en (4) een toename van goede 
validatie-activiteiten. Een duidelijke onderzoeksagenda en een visie voor toekomstige erosie-
kartering en monitoring activiteiten voor verschillende schaalniveaus zal ontwikkeld moeten 
worden. Een stap voorwaarts kan alleen gezet worden voor deze activiteiten wanneer nauwe 
samenwerking plaatsvindt tussen erosiewetenschappers, geografen, en de remote sensing 
gemeenschap. 
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- MODLUC-modelling land use change (Université catholique de Louvain, Belgium) (2002) 
- Wind and water erosion: modelling and measurement (Wageningen University, The Netherlands 

& Ghent University, Belgium) (2003) 
- ENVISAT summer school (ESRIN-ESA, Frascati, Italy) (2004) 
- Multivariate analysis (Wageningen University, The Netherlands) (2004) 

 
Deficiency, Refresh, Brush-up and General Courses (1 credits) 

- Career perspectives (Meijer & Meijaard) (2005) 
 
PhD Discussion Groups (3 credits) 

- Sustainable land-use and resource management (2004-2005) 
- Advances in land management (seminar series at the ESWC Group) (2004-2005) 

 
PE&RC Annual Meetings, Seminars and Introduction Days (1 credit) 

- Annual meeting: “The truth of science” (PE&RC) (2005) 
- Meeting for “10 years anniversary” (PE&RC) (2005) 
- Master classes (PE&RC) (2005) 

 
International Symposia, Workshops and Conferences (5 credits)  

- 25 Years of assessment of erosion (Ghent, Belgium) (2003) 
- ENVISAT symposium (Salzburg, Austria) (2004) 
- International symposium on land degradation and desertification (Uberlândia, Brazil) (2005) 
- Remote sensing and geoinformation processing in the assessment and monitoring of land 

degradation (Trier, Germany) (2005) 
- Remote sensing and spatial analysis tools on erosion processes (Samos, Greece) (2006) 

 
Laboratory Training and Working Visits (1 credits) 

- Radar interferometry processing (Delft University of Technology, The Netherlands) (2002) 


