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Abstract  
Gene regulation differences are often important in crop improvement. This project aimed to explore the involvement of 

gene regulation differences in wheat improvement using network analysis, an analysis that groups co-expressed genes into 

modules. Regulation differences can be due to variation in trans-acting factors that affect the expression of downstream 

genes, or in upstream regions of genes acting on the gene itself (cis-regulatory variation). Many unlinked loci underlying a 

single trait are difficult to retain in a segregating population due to recombination. We therefore propose that  regulation of 

biological processes involved in plant improvement would favor either single master regulatory loci that control expression 

of downstream genes or fixed cis-regulatory variation of linked genes, i.e. genes located on the same chromosome.  

We tested these hypotheses using RNA-sequencing data from a segregation population derived from heritage and modern 

spring wheat cultivar cross. We assessed differing biological processes between the parents using differential expression 

analysis. With network analysis, we aimed to identify co-expressed genes regulated by single regulatory loci and linked 

genes with cis-regulatory variation that have consistent upregulation or downregulation in one of the parents. We interfered 

biological processes related to modules. 

Among the parents and modules many biological processes related to wheat improvement were identified, such as disease 

resistances, abiotic stress, flowering time and dwarfing. We identified both modules without linked genes, indicating 

regulation by single regulatory loci, and modules with linked genes, possibly regulated by cis-acting variation. For the latter, 

two modules with consistent parental upregulation or downregulation were identified that indicate selection, however no 

biological processes were inferred. We conclude that single regulatory loci are involved in many cases in the improvement 

of wheat. No strong evidence indicated that linked genes with cis-regulatory variation are involved in wheat improvement. 

These results may be shared with other crops.  
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Introduction 
Wheat (triticum aestivum) is one of the most consumed crops worldwide, partially due to its richness in proteins, 

carbohydrates and minerals. This crop has a complex allohexaploid genome structure, that arose after two polyploidization 

events (Dubcovsky and Dvorak., 2007). During the first polyploidization event around 0.5 million years ago Triticum urartu 

(AA genome, 7 chromosomes) and an Aegilops spleltoides related species (BB genome, 7 chromosomes) together formed 

Triticum turgidum (AABB genome, 14 chromosomes). At the second polyploidization event T. turgidum and Aegilops 

tauschii (DD genome, 7 chromosomes) together formed the modern hexaploid bread wheat (AABBDD genome, 21 

chromosomes) 10.000 years ago (figure 1) (IWGSC., 2014, Pont and Salse., 2017). The genome contains a high proportion 

(>80%) of highly repetitive transposable elements (IWGSC., 2014). Even though large polyploid genomes are difficult to 

assemble, recently a new genome of 14.4 Gb has been sequenced and assembled based on the wheat reference genome of 

the Chinese Spring cultivar by the International Wheat Genome Sequencing Consortium (unpublished data).  

 

Figure 1. Representation of the wheat genome 

During the course of wheat improvement many traits have been selected for, such as dwarfing and flowering time, and many 

disease resistance genes have been introgressed. The dwarfing trait is characterized by a decrease in stem length, resulting 

in shorter plants, this has been a great contributor to grain yield increase (Hedden., 2003). Dwarfing is caused by mutational 

alleles of the Reduced height (Rht) genes, which act as repressors of the plant hormone gibberellin (GA), thereby decreasing 

GA-responsive elongation of the stem (Hedden., 2003, Pearce et al., 2011). As wheat is grown in a wide range of different 

environments, flowering time is an important trait for this adaption. While winter wheat requires a long period of low 

temperatures to flower (vernalization), spring wheat does not and can thus be grown in spring or fall. Genes in the 

vernalization pathway prevent flowering in the winter, two important genes in this pathway are VRN-1 and VRN-2 (Yan et 

al., 2004). Together with vernalization, photoperiod (daylight length) response is key for heading time of wheat, which must 

be adjusted to the growth conditions of the crop (Yasuda and Shimoyama, 1965). For instance, heading too early could 

cause frost injury during winter. An example for involvement in photoperiodism is the photoreceptor gene PHYTOCHROME 

C (PHYC). Loss of function mutations in this gene showed an extreme delay in flowering, indicating the importance of this 

gene (Chen et al., 2014).  

Among other processes, such as protein modifications, gene regulation differences are often the basis for crop improvement 

(Doebley et al., 2006, Swinnen et al., 2016). A review on 60 known domestication and improvement genes, revealed that 

most mutational changes were in regulatory genes or regions, while only 10 genes were due to protein modifications (Meyer 

et al., 2013). Although this is only a small selection of such genes, it illustrates the importance of regulation differences 

involved in plant domestication and improvement. Breeders have selected for the best crops, thereby unintentionally selected 

for changes in gene expression and regulatory networks. These gene regulation differences that cause phenotypic differences 

in crops can be caused by mutations in regulatory elements. For instance, allelic differences in trans-acting factors, affecting 

the expression of many downstream genes. Another possibility is allelic differences in upstream regions of genes, often 

promotor regions, acting on the expression of the gene or genetic region itself (cis-acting). An example of trans-acting genes 

regulating a trait is kernel color in maize, in which different alleles of several transcription factors of two different pathways 

cause different kinds of kernel colors (Ford., 2000). An example of cis-acting variation is the VRN-1 gene in wheat. 
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Deletions in the promotor region of this vernalization gene are associated with spring growth as these deletions are absent 

in winter wheat (Yan et al., 2004). 

For breeding it is difficult to fix many alleles if they are genetically unlinked, due to recombination they will segregate, and 

thus the chance that the offspring carries favorable alleles lowers. As an example, in a cross between two cultivars with a 

single additive effects locus, one quarter of the F2 population would have a favorable allele for a trait (AA). In case of two 

loci the ratio of obtaining homozygous favorable alleles would be 1/16th, and for three loci 1/64th. We therefore propose that 

selection would favor a simpler genetic control. In this simple control, variation contributing to trait differences is either 

found in single regulatory elements (trans-factors), or alternatively in upstream regions of many genetically linked genes 

(cis-factors). With these two regulations, there is a lower chance of change or loss of traits due to segregation of loci. This 

as linked cis-factors would most likely segregate together because they are closely located on the genome, and a single 

trans-factor affects all downstream genes, thus the chance of changing or losing a trait is lower.  

An approach of investigating this simple regulation is by use of network analysis. With network analysis, usually the 

expression of many genes is monitored over different environmental conditions, genes that co-express over these conditions 

are clustered together. These co-expressed genes are considered to be involved in the same pathway (Langfelder and 

Horvath., 2008). To use network analysis for assessing regulation, we perform the clustering of co-expressed genes over a 

population that has genetic variation for different chromosome regions, causing the individuals in the population to have 

either parental allele for specific genetic regions. Genes can be co-regulated due to single regulatory factors, as the 

individuals carry either parental allele for a trans-acting factor that affect all downstream genes. Multiple trans-acting factors 

affecting a single biological process will be difficult to observe with network analysis, as due to segregation of the trans-

acting factors, the downstream genes will not be co-expressed over the entire population. Alternatively, we can observe co-

regulation of genes due to genetically linked cis-factors, i.e. genes located on the same chromosome that have genetic 

variation in each of their upstream regions affecting the expression of the gene itself. Again, the offspring carries either 

parental allele and due to being linked there is a lower chance of segregating.  

To explore this genetic control and regulatory networks in wheat in relation to improvement, a recombinant inbred line 

(RIL) population was derived from a cross with the heirloom cultivar 'Red Fife' and modern cultivar 'Stettler' (registered in 

2008). The semi-dwarf Stettler has higher yield values and protein concentration in comparison to Red Fife, while also 

flowering earlier and being resistant to several diseases due to introgression of disease resistance genes. The non-dwarf Red 

Fife is the oldest spring bread wheat cultivar in the west of Canada, originating around 1860.  

Aim and objectives 
This project aims to explore the involvement of gene regulatory variation in wheat improvement using network analysis. 

This project is part of an expression-QTL (e-QTL) project. Correlation in expressed genes caused by many unlinked loci 

would be hard to retain in a segregating population. We therefore hypothesize that for regulation of biological processes 

involved in plant improvement selection would favor 1) single master regulatory loci that control the expression of many 

downstream genes and/or 2) the fixation of alleles in upstream regions of linked genes that control their expression (cis-

acting).  

In this thesis we tested these hypotheses in wheat, using RNA-sequencing data from a segregating population derived from 

a cross between a recent and heritage spring wheat cultivar, respectively “Stettler” and “Red fife”. Our first objective is to 

identify the biological processes that differ between the parents using differential expression analysis. Hereafter we aim to 

identify single regulatory factors that control the expression of many genes and to identify linked genes that are controlled 

by variation in their upstream regions, using network analysis. With this analysis we identified groups of genes based on 

their co-expression, known as modules.  

We arbitrarily defined a module as containing linked genes when more than 50% of the genes is located on a single 

chromosome. We expected to identify modules containing unlinked genes, these are regulated by single trans-regulatory 

elements. In addition, we expect to identify modules that contain linked genes. We expect that genes co-regulated due to 

linkage are positively and negatively correlated except if they are functionally related and are consistently upregulated by 

one of the parental alleles, i.e. have a bias towards one of the parents. This bias indicates that the linked genes have been 
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selected for and are not the result of random segregation. These results must be validated with e-QTL analysis to exclude 

that other factors, such as chromatin reorganizations, are causing these results and to identify the genetic basis of the 

regulation differences. 

Approach 
To test our expectations, we first trimmed our reads and mapped them to our genome. Hereafter, we quantified reads, 

followed by normalization. To identify the biological processes that differ between the parents we performed differential 

expression analysis, followed by gene ontology enrichment analysis and exploration of transcription factors and known 

selection genes. Selection genes are genes that have been identified to contribute to the improvement of wheat by previous 

research.  

To identify single regulatory elements and linked genes with variation in upstream regions, we performed a network 

analysis. With this analysis we identified clusters of co-expressed genes (i.e. modules). To infer biological meaning to the 

modules we performed gene ontology enrichment analysis for genes within each module. This will give us insights in what 

pathways have been selected for to improve wheat. For linked genes with cis-regulatory variation we identified whether 

there was a bias towards one of the parents, which indicates selection for this region. This was done by identifying which 

genes in each module are differentially expressed between the parents, and if these genes are upregulated or downregulated 

in one parent in comparison to the other. Hereafter with gene ontology analysis, as well as pathway analysis we will get 

insights if these genetically variable and linked genes are also involved in the same biological pathway. We also identified 

transcription factors and known selection genes in wheat in our modules.  

Methods 
In this project we used RNA-sequencing data from a wheat double haploid RIL population of 154 individuals, this 

population was created by androgenesis on pollen of the F1 offspring. This population was formed by a cross of the modern 

wheat cultivar Stettler and heritage cultivar Red Fife. Each line of plants was represented by one pot containing five plants. 

From these five plants the second leaf at two-leaf stage (10 days old) was collected, cut about one cm from the base of the 

leaf, and RNA was extracted. This was repeated three times, with two weeks in between, and every time the arrangement 

of the pots was random to exclude environmental effects. The samples (5 leaves x 3 weeks) were pooled into one sample, 

thus of each individual one replicate is available. In addition, four replicates of Red Fife and four Stettler parent individuals 

(double haploid) are included in the data. RNA was collected at two-leaf stage because at this stage Stettler and Red Fife 

are in the same developmental stage.  

Before library construction, mRNA molecules containing poly-A were purified. Reads were sequenced using Hiseq 2500 

Illumina. Sequencing data encompasses 20-60 million paired end reads per individual, reads are 100 nucleotides long. Plant 

were grown in a growth room with 16h of daylight (21oC) and 8h of darkness (18oC), from May to August 2016. The relative 

humidity in the room was 70%. The plants were grown in ‘50/50 Sungro horticulture professional growing mix and turface’ 

pots. 

Quality control 

Read quality was assessed with FastQC (Andrews., 2010), and low-quality sequences were trimmed with Trim Galore (--

phred33 --fastqc --gzip --illumina --trim-n --paired --length 75) by dr. E. Raherison (Krueger., 2015). Reads were trimmed 

of adapter sequences prior to obtaining the raw data, however trim-galore with standard quality setting (20) still showed 

slightly lower quality in the end of the reads. As alignment of reads with standard quality setting overall showed a mapping 

percentage of 85%, we chose to compare different quality settings in order to see if the percentage of uniquely mapped reads 

increases. Overall a score between 20 and 30 is suggested to have the best trade-off between read loss and increase in read 

alignment with Cutadapt (Martin., 2011), this tool removes unwanted sequences from your reads and is implemented in 

Trim Galore. However, the exact quality cutoff score should be assessed for each individual study (Del Fabbro., 2013). We 

therefore compared the standard quality setting of 20 to a quality of 25 and 30, to see the effect on read alignment for one 

individual.  
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Read alignment 

Reads were mapped with fast and sensitive aligning STAR (runThreadN 16 --limitBAMsortRAM 280000000000 --

outSAMtype BAM SortedByCoordinate --outFilterMismatchNmax 2 --readFilesCommand zcat --outFileNamePrefix --

outFilterScoreMinOverLread 0 --outFilterMatchNminOverLread 0) (Dobin et al., 2013) to the newly sequenced genome of 

the wheat reference accession Chinese Spring (IWGSC RefSeq v1.0), with the corresponding annotation file. Parameters 

were optimized by dr. E Raherison prior to the start of this project. To improve identification of novel splice junctions the 

two-pass alignment of STAR was used in which splice junctions are separately identified and quantified (Veeneman et al., 

2015).  

Data pre-processing 

Aligned reads were pre-processed, first with Samtools (Li., et al., 2009) the aligned single end reads were filtered out and 

subsequently the remaining aligned paired end reads were sorted by coordinates (samtools view -h -q 255 -f 0x2 $input | 

samtools sort –o $output). Hereafter read duplicates, most probably originating from PCR, were filtered out with picard 

(java -Xmx12g -jar picard.jar MarkDuplicates INPUT=$input OUTPUT=$output METRICS_FILE=$intermediate_file). 

The output was again sorted by coordinates with samtools (samtools sort $input –o $output). This is necessary for usability 

by the read quantification program, described later.  

Assessment of unmapped reads  

Unmapped reads from STAR were processed with DIAMOND (Buchfink et al., 2015) and MEGAN6 (Huson et al., 2016) 

to understand if the lack of mapping was due to contamination or other technical reasons such as missing genome sequences. 

DIAMOND is a tool that uses blastx based on indexing, but is much faster. Using this tool, we performed blastx with 

unmapped reads against the NCBI non-redundant (nr) database (diamond blastx --threads 12 -d nr.dmnd -q inputname -o 

outputname.m8). Hereafter the taxonomical content of the output was be assessed with MEGAN6, using the prot_acc2tax-

May2017.abin as taxonomic input, which is available at the MEGAN6 download page.   

Read quantification 

Transcripts were quantified with Stringtie (Pertea et al., 2015). Stringtie assembles transcripts while simultaneously 

estimating their expression levels, this allows better estimation of expression levels amongst transcripts than programs such 

as Cufflinks (Pertea et al., 2015). With the prepDE.py, available on the Stringtie manual page, raw aligned read counts were 

extracted from the output files of Stringtie, and arranged in a matrix (samples vs. genes). In total 110790 genes per individual 

were quantified. 

Normalization and transformation  

In R, raw quantified reads were filtered by excluding genes with less than 10 counts in 90% of the samples, resulting in 

50285 expressed genes. As experimental design each line (including parents) was considered a group. Hereafter the reads 

were normalized for library size. For network analysis the normalized data is recommended to be transformed. The DESeq2 

package in R recommends using either regularized log transformation (rlog) or variance stabilizing transformation (vst), 

which are both implemented in the package (Love et al., 2014). Both methods produce results on log2 scale. We therefore 

chose to compare these two transformations with the more conventional log2(x+1) transformation. Rlog and vst 

transformation use the experiment-wide trend of variance over mean in order to transform the data. These normalization 

methods are recommended for downstream analysis such as network analysis or principal component analysis, as these 

work best with gene expression data in which the variance does not depend on the mean. Eventually we chose rlog 

transformation as the shrinkage of low read counts is greater while also correcting more for library size in comparison to 

vst transformation.  

Differential expression analysis parents  

In addition, differential expression (D.E.) analysis between the parents was performed, with three different methods, i.e. 

Deseq2, EdgeR and Ballgown (q-value < 0.05). Venn diagrams were constructed with the number of identified genes and 
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transcripts with each method. With gene ontology (GO) analysis we identified the biological processes of differential 

expressed genes that matched between the DEseq2 and EdgeR method, using AgriGo v2 (fishers exact test, p value < 0.05) 

(Tian et al., 2017).  

Gene co-expression network analysis  

The 30.000 genes with highest variation over the lines were used for network analysis. We performed gene co-expression 

network analysis using the weighted gene co-expression network analysis (WGCNA) package in R (Langfelder and 

Horvath., 2008). With this method we first identified obvious outliers by sample clustering with Euclidean distance, 5 

samples were excluded for further analysis (cutheight = 15). The method transforms the rlog transformed expression data 

into an unassigned expression Pearson's correlation matrix. This matrix is transformed into an adjacency matrix, by raising 

all expression values to a soft thresholding power. The identification of an appropriate soft thresholding power based on a 

scale-free topology fit. The adjacency matrix is in turn converted to a topological overlap matrix (TOM).  An unsigned 

TOM measure will be used, which allows genes to cluster either both positively and negatively correlated, as transcripts can 

be both up or down regulated. This TOM was subsequently converted into a dissimilarity matrix. Based on this matrix, a 

hierarchical cluster tree is produced in which modules are identified with a dynamic tree cut procedure (Langfelder and 

Horvath., 2008). To identify linkage, we looked at the names of the genes within each module, as these indicate the position 

of the gene in the genome. Modules were visualized with the ggplot2 package in R, showing the expression pattern of the 

genes (scaled values) over all lines within each module as a clustered heatmap as well as a line plot.  

Biological processes related to modules and differentially expressed genes parents 

To identify biological function of modules and the D.E. genes of the parents we performed GO analysis using AgriGO with 

standard settings (Statistical test method: Fisher, multi_test adjustment method: Yekutieli (FDR under dependency), 

significance level < 0.05). As a background for the modules the 30.000 genes with highest variation were used, i.e. the input 

for the WGCNA analysis. As background for the parents we used the genes that were the input for the D.E. analysis (i.e. all 

genes with at least 10 counts over the parental lines). We focused on GO-terms that could possibly underlie improvement 

of wheat, such as dwarfing or early flowering (Peng et al., 2003). First, as our annotation file did not contain identifiers 

needed for functional annotation, but only gene positions, we used blastx on our entire genome against a A. thaliana protein 

database, obtained from the TAIR website 

(ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/TAIR10_pep_20101214_updated). With a 

custom python scripts blastx matches were separated into gene lists with the corresponding wheat and A. thaliana identifier. 

Using R, lists of A. thaliana identifiers were created for each module. To perform gene ontology enrichment analysis, we 

used AgriGo v2 (fishers exact test, p value < 0.05) (Tian et al., 2017).   

To get more insights in the biological processes we also evaluated transcription factors identified in the parents as well as 

the modules. This was done by matching a transcription factor database (http://arabidopsis.med.ohio-

state.edu/Downloads/AtTFDB.zip ) of A. thaliana to our identifiers. In addition, using literature, known selection genes 

were identified in our genome by using blast. Per module and in the D.E. genes we identified matches with these selection 

genes.  

Transcriptional bias  

We tested for each module if the genes within a module were biased towards in of the parents, i.e. if the genes are all 

upregulated or downregulated in comparison of one parent to the other. This was done by assessing if the genes within a 

module occur in the differentially expressed gene list of the parents. We observed if the genes were all up or downregulated 

towards one of the parents.  

Pathway analysis   

To identify secondary metabolite pathways, we used the tool PlantiSmash (Kautsar et al., 2017). This tool first predicted all 

genes which could be part of a secondary metabolite pathway that are clustered together on the genome. Hereafter, using R, 

we identified PlantiSmash genes present in each module or in the D.E. gene list. In addition, we identified metabolic 

pathways for several modules and the D.E. genes with BlastKoala (Kanehisa et al., 2016).  

ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/TAIR10_pep_20101214_updated
http://arabidopsis.med.ohio-state.edu/Downloads/AtTFDB.zip
http://arabidopsis.med.ohio-state.edu/Downloads/AtTFDB.zip


9 
 

Results 
The objectives of this thesis were to identify the biological differences between the parents Stettler and Red Fife, and by 

use of network analysis to identify either trans-acting factors and/or linked genes with variation in upstream regions affecting 

their expression. In order to achieve these objectives, we first had to quantify our RNA-sequencing data, that included 

assessing read quality, aligning to a genome, quantifying the reads and normalizing. In addition, for our data to be used for 

network analysis, we performed transformation of the normalized reads.  

Transcript quantification 

At the start of this thesis the raw read quality had already been assessed by dr. E. Raherison. Overall the read quality was 

high, however in order to see if we could improve the read alignment rate, which was around 84%, we tested different 

quality setting cutoff values with FastQC, i.e. 20 (original), 25 and 30. The difference in percentage of uniquely aligned 

reads was minimal between the different cutoff values, i.e. less than 0.05 % difference (see table 1). In addition, a study 

assessing the effect of these three quality settings (20, 25 and 30) found that the percentage of correctly mapped reads inside 

gene models decreases with the higher quality-cutoff trimming setting, indicating that more trimming is unfavorable (Del 

Fabbro et al., 2013). In addition, this study suggests that modern aligners are able to overcome potentially low quality issues, 

making trimming not necessary (Del Fabbro et al., 2013). Therefore, we chose to continue to work with reads trimmed with 

a cutoff value of 20, as these were already performed on all samples prior to the start of this project. 

Table 1. Effects of different quality score cutoff values on STAR 1-PASS alignment, and effect on splices between STAR 1-PASS and STAR 

2-PASS alignment.  

  STAR 1-PASS   STAR 2-PASS 

 Quality score 

cutoff 

20 25 30 20 

Sample 

2271 
Number input 

reads 

22451643 21743139 20170557  

 Unique mapped 

reads 

18883664 18293730 16960027  

 Unique mapped 

reads % 

84.11% 84.14% 84.08%  

sample 10 Number input reads 19028226 18724729 18099298 19028226 

 Unique mapped 

reads 

16074932 15825191 15295973 15834963 

 Unique mapped 

reads % 

84.48% 84.51% 84.51% 83.22% 

 Average mapped 

length 

195.54 195.85 196.03 195.53 

 Number of splices: 

Total 

10398112 10280318 9973095 10800060 

 Number of splices: 

Annotated 

9734800 9625187 9338454 10788674 

 Number of splices: 

GT/AG 

10235218 10119442 9817033 10471377 

 Number of splices: 

GC/AG 

123038 132546 128720 264618 

 Number of splices: 

AT/AC 

5828 5773 5638 15613 
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For alignment STAR 2-pass was used, to identify novel splice 

junctions, useful for transcript identification in further future work of 

dr. E. Raherison. As can be seen in table 1, the percentage of uniquely 

mapped reads decreases slightly (from 84.48% to 83.22%) when using 

the 2-pass. However hereby the total number of splice sites increases. 

The total number of splices increases from 10.398.112 to 10.800.060, 

an increase of approximately 400.000 identified splice sites. 

Overall the proportion of uniquely mapped reads was approximately 

83-84%. To see if unmapped reads did not map due to contamination 

or due to other artifacts, such as genome incompleteness, we blasted 

the single end unmapped reads from 4 random samples with Diamond 

and visualized the output with Megan6 (see figure 2). From the results, 

we see that one quarter of the reads is probably bacterial contamination 

and small traces of fungi are present. The rest is divided in either 

Fabaceae or Poaceae.  

After quantification with Stringtie, generated raw reads count tables 

were normalized with R package DESeq2. First, we performed our 

analysis with 18 samples, including both parents, in order to test our 

pipeline. As for network analysis either regularized log (rlog) or 

variance stabilizing (vst) transformation was recommended by DESeq2 instead of the more conventional log2 

transformation, we decided to compare these methods. We plotted two random samples against each other, using the 

different transformation methods, first the common log2 transformation, against rlog and vst (figure 3). From this plot we 

can see the rlog and vst transformation correct more strictly than the log2 for low count values. Comparison data 

transformation methods (over 18 samples), we will use rlog as it corrects most for low read as well as high read counts.  

 

Figure 3. Two random samples plotted against each other, with three different transformation methods, i.e. log2, rlog and vst. The expression 

values are for all three methods on log2 scale.  

Hereafter, all 162 samples were transformed, however the dispersion plot, a step used within both rlog and vst 

transformation, looked unusual (see figure 4A and 4B).  In this step the estimate of each gene is shrunk towards a fitted 

value (dispersions dependence on the mean), shown with a red line. Using only 18 samples, this plot looks as expected, 

however using all 162 samples the red line shows a strong distortion. Removing samples identified as outliers by further 

steps (91, 155, 184 and 186) did not increase the quality of this plot. Possibly the high number of samples gave problems 

during the fitting of estimates. We still continued with this data as no clear reason was identified.   

Figure 2. Distribution of identified taxonomic families in 

unmapped reads by MEGAN6. 
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Figure 4 A-B.  Dispersion plot. The black dots indicate gene-wise estimates. The red line indicates the fitted estimates. The blue dots indicate the final 

estimates shrunk from the gene-wise estimates towards the fitted estimates. Some gene-wise estimates are not shrunk towards the fitted value due to 

being flagged as outliers. A. Including 18 samples. B Including all 162 samples. 

For exploration of our data a principal component (PC) plot was performed on all genes in the rlog transformed samples 

(figure 5A-C).  In total 162 PCs were calculated, as we use our lines as grouping factor. We expected the parents to be on 

either side of the plot, with all offspring lines in between. For PC1 and PC2, as expected, the lines are not clustered into 

groups, but distributed over the whole plot (figure 5A). The parents (227 and 228) are not strongly clustered together, but 

still quite distributed between all other samples. The variance of the first two principal components is low, i.e. 13% for PC1 

and 10% for PC2. However, when looking at PC3 and PC4, we see a strong clustering of the parents, to either side of the 

plot, with as expected all lines in between (figure 5B). The variance of PC3 and PC4 is respectively 5% and 4%. This 

random distribution seen in figure 5A, is possibly due to an external factor, such as technical noise due to pre-processing or 

an environmental effect. The variance of the first 8 principal components is visualized in figure 5C, each PC has very low 

variance percentages.  
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Figure 5A-C. Principal component plot of all 154 lines and the parents. 227 indicates the heritage cultivar parent “Red fife” (black dot), 228 

indicates the modern cultivar parent “Stettler” (black dot with white center). A. PC1 vs. PC2. B. PC3 vs. PC4. C. Percentage of variance explained 

by the first 8 principal components. 
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Differential expression analysis between parents  

To identify which biological processes differ between the parents, the heritage cultivar Red Fife and modern cultivar Stettler, 

we performed a differential expression analysis followed up by GO analysis. We first performed differential expression 

analysis with three different methods; DESeq2, EdgeR and Ballgown (with q-val < 0.05) (figure 6A). DESeq2 and EdgeR 

show a big overlap of differentially expressed genes, i.e. 6039 (figure 6B). The overlap with Ballgown however is smaller, 

here only 2568 genes are identified. We chose for further analysis to work with genes identified with both DESeq2 and 

EdgeR, this to increase robustness and not rely on one method. For visualization of significantly differentially expressed 

genes, a MA-plot and volcano plot was made with D.E. genes of DESeq2 (figure 6C and 6D).  

To identify biological processes differing between the parents, we performed GO enrichment analysis, with genes 

differentially expressed in both EdgeR and DESeq2. As there was no wheat annotation yet for our genome, we used A. 

thaliana identifiers, obtained through blastx, which represented 85.7% of our wheat genes (5176 Arabidopsis genes in 6039 

wheat genes). We first used all differentially expressed genes to identify significant GO terms (p-val <0.05 and FDR<0.05), 

this gave as a result in total 21 terms mainly related to defense response and response to external factors such as stress or 

biotic stimuli (see table 2).  

Figure 6 A-D. Differentially expressed genes in DESeq visualized between parents. A.  Comparison of identified differentially expressed genes 

between DESeq2, EdgeR and Ballgown. B. Comparison of identified differentially expressed genes between Deseq2 and EdgeR. C. MA-plot. 

This plot shows the mean average of genes against log fold change. Values in red show genes which are significantly differentially expressed, with an 

adjusted p-value smaller than 0.05.  D. volcano plot.  This plot shows the log2foldchange of genes between the parents. Values in orange show genes 

with a log2 fold change bigger than 1, Values in red show genes with an adjusted p-value smaller than 0.05. Values in green are the intersect of red and 

orange genes. 
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Table 2. GO-analysis results with all differentially expressed genes between parents. 

GO term Description Number in input list Number in BG/Ref p-value FDR 

GO:0006952 defense response 287 732 7.50E-14 7.80E-10 

GO:0006950 response to stress 604 1985 5.30E-10 2.70E-06 

GO:0050896 response to stimulus 954 3408 4.50E-09 1.50E-05 

GO:0006468 protein phosphorylation 208 559 8.30E-09 2.10E-05 

GO:0043207 response to external biotic stimulus 208 583 1.10E-07 0.00016 

GO:0009607 response to biotic stimulus 210 589 1.00E-07 0.00016 

GO:0051707 response to other organism 208 581 9.10E-08 0.00016 

GO:0016310 phosphorylation 259 765 1.20E-07 0.00016 

GO:0098542 defense response to other organism 157 428 1.10E-06 0.0013 

GO:0044550 secondary metabolite biosynthetic process 69 144 1.70E-06 0.0017 

GO:0044699 single-organism process 1379 5316 2.50E-06 0.0023 

GO:0019748 secondary metabolic process 97 235 3.00E-06 0.0025 

GO:0051704 multi-organism process 260 808 3.20E-06 0.0025 

GO:0009605 response to external stimulus 254 792 5.10E-06 0.0035 

GO:0009617 response to bacterium 113 291 4.80E-06 0.0035 

GO:0042742 defense response to bacterium 94 243 3.30E-05 0.021 

GO:0009699 phenylpropanoid biosynthetic process 38 71 5.90E-05 0.031 

GO:0006796 phosphate-containing compound metabolic process 321 1080 5.30E-05 0.031 

GO:0006793 phosphorus metabolic process 323 1090 6.10E-05 0.031 

GO:0044710 single-organism metabolic process 657 2410 5.60E-05 0.031 

GO:0044711 single-organism biosynthetic process 313 1057 8.30E-05 0.041 

 

To assess if we could define more GO-terms we decided to separate the gene set in upregulated and downregulated genes 

for Stettler in comparison to Red Fife. Performing GO analysis with only the upregulated genes resulted in a larger number 

of significant GO-terms, i.e. 27 (see Appendix table 4). The majority of the terms include response to external effects, such 

as stress or biotic stimuli. In addition, there are significant GO-terms related to the immune response and salicylic acid. 

Downregulated genes showed only 5 significant GO terms, again related to defense response and external factors (see 

Appendix table 5).   

Hereafter we looked at known transcription factors in A. thaliana and identified 229 of these transcription factors in our 

differentially expressed gene list (see appendix table 6). Assessing the biological processes of these transcription factors 

resulted in many relevant terms related to the improvement of wheat. For instance, several terms related to defense response 

and abiotic stress, e.g. involvement of the stress hormone abscisic acid. Some transcription factors involved in defense 

response include WRKY DNA BINDING PROTEIN 40 (WRKY-40) and 70 (WRKY-70).  The biological process flower 

development was also observed several times, e.g. in APETALA1 (AP1), EARLY FlOWERING MYB PROTEIN (EFM), 

NGATHA1 (NGA1) and AGAMOUS-LIKE 14 (AGL14). Several A. thaliana transcription factor homologs related to leaf 

morphogenesis were identified, such as AUXIN RESPONSE FACTOR 3 (ARF3). Also, transcription factors related to 

gibberellin (GA) pathways were identified, such as BETA HLH PROTEIN 93 (NFL) and REPRESSOR OF GA (RGA1), a 

member of the DELLA regulatory family, which could indicate involvement in dwarfing. For the described transcription 

factors, we assessed if the encoding genes are upregulated in the modern Stettler or heritage Red Fife (Appendix table 7). 

WRKY-40, RGA1, EFM, ARF3, NGA1 and WRKY-70 were all upregulated in Stettler in comparison to Red Fife, while AP1, 

AGL14 and NFL were upregulated in Red Fife.  

To identify possibly secondary metabolite pathways, we used the tool Plantismash, and compared how many of the genes 

from predicted pathways are present in our DE gene list. Plantismash predicted in total 236 clusters, including in total 2987 
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genes. From our differentially expressed gene list, we identified 189 Plantismash genes originating from 111 clusters, 

however it is important to look if full pathways were identified or only single genes, the latter would be less meaningful. 

No full secondary metabolite pathways were identified, mostly 1or 2 genes of a full pathway were found, usually less than 

20% of a cluster. The highest observed percentage of genes identified in a cluster was 44.4%, i.e. 5 out of 11.  

We also used BlastKoala to assess possible pathways in our gene list. A lot of different processes were identified (see figure 

7). For instance, processes related energy metabolism, such as photosynthesis (7 Kegg identifiers). One Kegg identifier was 

identified that is involved in diterpenoid (gibberellin) biosynthesis, categorized under metabolism of terpenoids and 

polyketides. In total 16 KEGG identifiers belonging to Plant hormone signal transduction were identified, in which 2 

proteins involved in gibberellin transduction and 3 in abscisic acid downstream signal transduction were found (figure 8). 

We assessed again the log2fold change between the parents for the genes shown in this figure (appendix table 8). The 

DELLA repressor is upregulated in Stettler, while the repressor of DELLA, GID2, is upregulated in Red Fife. DELLA 

represses further downstream signaling of gibberellin, which could be important for the reduced stem growth in Stettler. 

For the ABA downstream signaling, PP2c and SnRK2 are upregulated in Stettler, while ABF is upregulated in Red Fife.  

 

Figure 7. Functional categories identified with BlastKoala 

 

Figure 8. Two examples of identified components by BlastKoala in Plant hormone signal transduction pathways. With gibberellin and abscisic 

acid downstream signaling. 

We also looked if already known selection genes were present in the list of differentially expressed genes. For this we first 

identified the matching genes in our genome. Two of these genes were identified in our gene list, i.e. RHT-B1 (I7HUS4) 

and PPD-D1c (A7J5U2). RHT-B1 encodes a GA-insensitive protein, involved in dwarfing which is a common selection 
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trait in wheat. This gene is identified also as the DELLA repressor by BlastKoala and as RGA1 by blastx on A. thaliana. 

The PPD-D1c protein is overall associated with later flowering, and is non-responsive to photoperiod. This gene is 

upregulated in the heritage cultivar Red Fife, this is in line with the fact that Red Fife flowers later than Stettler. 

Gene co-expression network analysis  

To explore the genetic basis behind transcriptional variation between Red Fife and Stettler we performed a network analysis. 

This was followed by a GO-analysis to assign biological processes to modules. For the network analysis we used 30.000 

genes with highest variation over samples after rlog transformation. First, we detected outlying samples by sample clustering 

(see Appendix figure 15). Samples higher than the cutoff height of 15 were discarded for further analysis, i.e. line 188, 

91,155, 193 and one of the parental samples 227. After gene clustering and assigning modules 94 modules were generated 

(figure 10). We decreased the number of modules by cutoff of clustered eigengenes (Appendix figure 16), modules below 

this cutoff were merged, resulting in a final module number of 73, including an unassigned grey module (see figure 9). The 

average size of our modules was 416.7 genes, with our smallest module including 30 genes and the largest module including 

5813 genes.  

 

Figure 9. Gene cluster dendrogram created by WCGNA, visualizing modules before and after merging of eigengenes. 

Our objectives were to identify modules in which genes are regulated by single trans-acting factor, and modules in which 

linked genes occur that each are regulated cis-regulatory variation. Genes co-regulated by a trans-acting factor will likely 

be positively co-regulated and not linked. These genes will be clustered into a module due to co-regulation. In addition, if 

linked genes vary due to cis-regulatory variation one expects them to cluster in a module. Genes co-regulated due to linkage 

are expected to be positively and negatively correlated unless they are functionally related (i.e. involved in the same 

pathway) and consistently upregulated by one of the parent’s alleles. To determine if modules are composed of linked or 

unlinked genes, an arbitrary threshold was chosen assigning a module as linked if more than 50% of the genes is located on 

a single chromosome, or unlinked if less that than 50% of the genes is located on a single chromosome. We indeed identified 

indeed in total 26 modules with only little genetic linkage, while 46 modules showed linkage of genes. A summary of 

module information is shown in table 3, more extensive information can be found in appendix table 9. 

Table 3.  Overview of module information. 

Total number of modules (excluding unassigned grey module) 72 

Average size 416.7 

Number modules without linkage 26 

Average percentage of modules with no linkage (<50%) with only positive correlation 66.7 % 
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Average percentage of modules with linkage (>50%) with positive and negative correlation 97.8 % 

Percentage of modules with unlinked genes (<50%) with significant GO-terms 65 % 

Percentage of modules with linked genes (>50%) with significant GO-terms 22.2 % 

Total number of D.E. genes of parents in modules  4587 

Average number of transcription factors in modules  23 

Average representation of A. thaliana identifiers  88.1 % 

 

We visualized the expression of genes in all modules, by plotting their scaled (subtracting means and dividing by standard 

deviation per gene) expression patterns over all lines in a line graph as well as a clustered heatmap. In many modules we 

observe both negative and positive correlation (for example see figure 10A). In 19 modules there is clear positive correlation, 

with only few genes showing negative correlation (for example figure 10B). This can also clearly be observed in the 

clustered heatmaps made for each module, see figure 10C and D. We observed that most modules without linked genes had 

a positive correlation expression pattern (66.7%) (figure 10B), while almost all modules with linkage have both positive 

and negative correlation (97.8%) (10A). In modules showing positive and negative correlation, the parents are in most cases 

clearly clustered to either side of the pattern, i.e. each parent has either lower or higher expression. In the unlinked modules 

we see less strong clustering of the parents, they are often grouped together but not clearly separated in having all higher or 

lower expression values. Hereafter the number of differentially expressed genes between the parents found back in modules 

was assessed. In total 4587 genes were identified in modules. This means that 1452 genes which are differentially expressed 

between the parents were not found back in modules.  

 

 

Figure 10. A-D. Correlation patterns and clustered heatmaps. For all figures the x axis indicates the different samples and y axis either scaled 

expression values (A+B) or gene names (C+D). Blue and red indicate the parents, respectively modern Stettler and heritage Red Fife A. module 

saddlebrown, both positive and negative correlation b. Module tan, clear positive correlation over the module c. Clustered heatmap 

saddlebrown. D. Clustered heatmap tan.  
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A boxplot was made to visualize more clearly the positive and 

negative correlation observed in modules with linked genes and 

the positive correlation in modules without linked (figure 11). In 

this boxplot the average correlation values of the genes were 

calculated and separated in modules with linked genes and 

without linked genes. Modules with linked genes have a clear 

lower average correlation, most probably due to having both 

negative and positive correlation of genes, while modules without 

linked genes have a higher average correlation due to having 

mainly positive correlation between the genes.  

 

Modules without linked genes  

In this section we will describe in more depth the results for modules without linked genes, which are potentially regulated 

by single trans-acting factors. We assessed the biological processes related to modules to see which processes are related to 

the improvement of wheat. A small number of interesting modules will be described in more detail, chosen based on being 

potentially involved in the improvement of wheat. In total 65% of the modules without linked genes had enriched GO-

terms. Several of these modules have enriched GO-terms related to defense response and response to external factors, such 

as abiotic or biotic stress. Other enriched terms potentially involved in wheat improvement include photosynthesis and 

flower development.  

The pink module (figure 12A), with a size of 1099 genes, encompassed several GO terms related to flowering, epigenetics 

and differential splicing (see appendix figure 10). In addition to this, a known selection gene encoding wheat phytochrome 

and flowering time protein 1 was found in this module. This protein is involved in flowering time, inducing flowering under 

optimal light conditions, while, mutants cause late flowering. In total 45 transcription factors were identified in this module, 

many of these are involved in processes such as flower development and epigenetics, such as chromatin silencing. A small 

selection of these transcription factors can be found in Appendix table 11. Most of the pink module genes identified in the 

D.E. gene list shows a bias towards the ancestral parent Red Fife, as these genes are significantly downregulated in Stettler 

(figure 12B). Stettler flowers earlier than Red Fife, thus possibly Red Fife carries also some early flowering alleles or 

possibly these genes induce flowering time. However as only 18 genes out of the 1099 genes present in the module are 

visualized it might not be a good representation.  

The green module (figure 13A) is enriched in GO-terms related to defense and (biotic) stress response, also a known 

selection gene (WRKY) involved in the resistance against the fungus fusarium head blight was identified in this module. In 

total 58 transcription factors were identified, most of these seem to be related to regulation of any external factor. We 

observe for instance transcription factors with biological processes related to response to chitin, fungus or bacterium, but 

also to salinity and heat response (Appendix table 12). In total 564 out of 1759 genes in this module were found back in the 

list of differentially expressed genes in the parents and show a strong bias towards the modern Stettler parent (figure 13B), 

indicating selection. 

Figure 12. A-B. A. Expression pattern of pink module over all samples. B. Genes from pink modules that significantly differ 

between the parents plotted (Red fife vs Stettler), with p-value < 0.05. Shows bias towards ancestral cultivar Red Fife. Visualized 

with genes from the pink module which are found back in the differentially expressed gene list of parents. 

Figure 11. Average correlation of genes in modules with linked 

genes (left) and modules without linked genes (right). 
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Another module with interesting GO-terms is the darkorange module, including terms related to photosynthesis. Two 

transcription factors were identified in this module, i.e. a telomere binding protein AT1G49950 and basic-leucine zipper 

(bZIP) transcription factor family protein AT5G11260. The latter is involved in light-regulated transcriptional activation of 

G-box-containing promoters. No known selection genes have been identified in this module.  

To see if modules without no linked genes include pathways with multiple KEGG identifiers we assessed four random 

modules, i.e. orange, blue, green and maroon. In the module orange there were multiple KEGG identifiers found within one 

pathway. In total 10 identifiers were found related to photosynthesis (energy metabolism), mostly involved in components 

of photosystem one and two. This module is also enriched GO-terms related to photosynthesis. Blue is enriched in protein 

localization and vesicle transport. A lot of KEGG terms related to metabolism were identified, such as energy metabolism, 

e.g. 8 for photosynthesis, and carbohydrate metabolism. Green is enriched in a lot GO of terms related to response to external 

stimuli, defense response and (a)biotic stress. Interesting pathways with multiple identified KEGG identifiers include 

biosynthesis of antibiotics, and signal transduction in MAPK signaling pathway. Maroon includes no significant GO-terms. 

The only pathway in which two hits were identified was related to plant-pathogen interaction. Other pathways were only 

represented by one KEGG identifier in Maroon. 

Modules with linked genes 

For modules with linked genes, we expect that genes are not selected for during wheat improvement, unless there is a bias 

towards one of the parents and the genes are involved in the same biological process. Overall, for modules with linkage 

22.5% of the modules included significant GO-terms. These GO-terms were mainly involvement in phosphorylation and 

defense response. None of these significantly enriched modules had a transcriptional bias towards one of the parents. This 

is in line with a previous result, in which the parents are located on either side of heatmaps of modules with linked genes 

(figure 10D).   

One module with linkage showing a bias towards one of the parents is module blue2 (figure 14A-C), a module with 92.5% 

of the genes located on a single chromosome. This is the only module, together with skyblue1, showing a bias towards one 

of the parents. The co-expression pattern of the genes is both positive and negative suggesting cis-factors, thus having either 

allele of the parents. Genes in blue2 have a transcriptional bias towards the modern cultivar Stettler, this could indicate 

selection (figure 14C). However, no significant GO terms were identified for this module. The transcription factors 

identified in this module include different biological processes, such as cell wall organization, response to stimulus, and 

flower development (Appendix table 13.). 

 

Figure 13. A-B. A. Expression pattern of green module over all samples. B. Genes from green modules that significantly differ 

between the parents plotted (Red fife vs Stettler), with p-value < 0.05. Shows bias towards modern cultivar Stettler. Visualized 

with genes from the green module which are found back in the differentially expressed gene list of parents. 
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To get more insights if modules with linked genes are also functionally linked we looked at pathways. We used the tool 

PlantiSmash to identify clustered genes of secondary metabolite pathways, and see if these occur fully in our modules. With 

this tool in total 236 clusters were identified over the whole genome, including 2987 genes. However, no full secondary 

metabolite pathways predicted by PlantiSmash were identified in modules. Co-expression analysis within PlantiSmash itself 

did not give any result. The highest percentage of genes identified in a secondary metabolite pathway was 38% in the coral2 

module, related to a saccharide biosynthesis. This module does not have any significant GO terms. Still two known selection 

genes were identified, encoding vernalization protein VRN-3 and Flowering time locus T-like protein 3. With BlastKoala 

we identified several KEGG identifiers for coral2, we observed that all components belong to different pathways, thus not 

identifying a full potential pathway.  

We used BlastKoala on several other modules that include linked genes, i.e. blue2, skyblue1, honeydew1 and darkslateblue. 

Skyblue1 and Blue2 are modules without significant GO-terms, but both show a bias towards one of the parents (see figure 

14C for blue2). Honeydew1 is not enriched in a GO-term but does include one known selection gene (involved in Fusarium 

resistance). Darkslateblue shows significant GO terms related to defense response. In all blue2, skyblue1 and darkslateblue 

several KEGG identifiers were identified, however again all from different pathways, representing only one identifier per 

pathway. In honeydew1 up to three components per pathway were identified. For instance, two components related to 

effector triggered immunity, which is involved in plant-pathogen interaction. Still, no full pathways are identified, indicating 

that different components of pathways are likely to be distributed over the genome and not genetically clustered together. 

Overall, we did not find strong evidence linked genes with cis-regulatory variation have contributed to the improvement of 

wheat, with possibly few exceptions as still two modules showed a bias in the parents. 

Figure 14. A-C. Information blue2 module. A. Expression pattern of blue2 module over all samples. With the sample on the x-axis 

and scaled expression values on the y-axis. B. Clustered heatmap of blue2. With the samples on the x-axis and genes on the y-axis. 

C. Genes from blue2 module that significantly differ between the parents plotted (Red fife vs Stettler), with p-value < 0.05. 

Shows bias towards modern cultivar parent blue2. Visualized with genes from the blue2 module which are found back in the 

differentially expressed gene list of parents 
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Discussion 
This thesis aimed to explore the involvement of gene regulatory variation in relation to biological processes involved wheat 

improvement, such as disease resistance, dwarfing, flowering time or abiotic tolerance. We performed differential 

expression analysis between the parents to get insights in the biological processes that differ significantly. Hereafter 

performed network analysis to identify single regulatory factors that control the expression of many genes and linked genes 

that are controlled by variation in their upstream regions.  

Transcript quantification 

In order to see if we could increase the percentage of uniquely mapped reads, we compared if increasing the quality cutoff 

parameter to 30 during trimming resulted in more uniquely mapped reads (after alignment) than with the original used 

quality cutoff value of 20, used prior to the start of this project. We did not see a large increase in uniquely mapped reads. 

This is probably because the quality of the reads was already very high when obtained (raw), thus increasing this cutoff will 

not resulting in better alignment.  

For unmapped reads we assessed their taxonomy, in order to get insights in why they did not map. This revealed that part 

of it is due to bacterial and fungal contamination. But most of the unmapped reads were categorized as Poaceae, of which 

wheat is a member, or closely related Fabaceae. The reason for this is most probably that our genome is not fully complete, 

thus missing parts cause the lack of mapping.   

Quantified read counts were transformed using R package DESeq2, this package suggests using either vst or rlog 

transformation for network analysis (Love et al., 2014), therefore we tested both methods. In comparison to the more 

conventional log2 transformation, rlog and vst transform the count data to a log2 scale, but reduce the variance of genes 

with low counts, as these are more affected by counting noise, and could thus be less biologically meaningful. The vst 

calculates a variance stabilizing transformation from the fitted dispersion mean and then transforms the expression count 

data, normalizing by the size factors, this results in a matrix of values which have approximately a constant variance along 

the range of mean values. The rlog is less sensitive to differences in library sizes, and thus more robust when library sizes 

differ (Love et al., 2014). We chose to work further with rlog transformation as it shows to corrects for low read counts 

while also being more robust for differences in library size.   

One issue was the unexpected dispersion plot when performing our pipeline with all samples. Prior to transforming with 

either vst or rlog the dispersions for the gene expression matrix are calculated. The result of this, the fitted dispersions, is 

an input parameter for both transformation methods. Excluding outlying samples (after sample clustering) did not change 

the result. We could not identify a clear reason why this plot behaves as it does. Possibly the large number of samples (162), 

caused problems during the fitting of the estimated dispersions.  

For exploration of the data we performed a Principal component plot (PC plot). For PC1 vs. PC2, the parents are not as 

strongly clustered together as expected. The offspring lines are distributed over the whole plot, this is as expected. Still the 

plot PC3 vs. PC4, shows us that here there is clustering of the parents towards either side, with all lines distributed in 

between, these PCs explain most likely the genetic variation. The variation seen in PC1 vs. PC2 could be due to segregation 

of loci spontaneous variation can occur, causing this distribution. This is for instance seen in transgressive segregation, in 

which the offspring lines have more variation that the parents. This could be due to recombination, as due to segregation of 

loci expression can change (Rieseberg et al., 1999). Possibly environmental factors could be involved, however unlikely 

due to our experimental design. Another possibility is that there are technical errors affecting the data, possibly from pre-

processing the data. 

Differential expression analysis parents 

The methods DESeq2, EdgeR and Ballgown were compared for differential expression analysis between the parents. There 

is more overlap in differentially expressed genes identified with DESeq2 and EdgeR than with Ballgown. This is most 

probably because DESeq2 and Edger have very similar methods with a similar approach. One difference is that Ballgown 

is working on a log2(1+FPKM) scale, while EdgeR and DESeq2 work with raw read counts. In addition, Ballgown uses an 

F-statistic while the other two use a generalized linear model fitting. Because of the big difference we chose to only work 
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further with genes identified with both EdgeR and DESeq2. Quite a lot of differentially expressed genes were identified. 

The parents, although both wheat, are relatively distant varieties. 200 years of intensive breeding has caused a lot of trait 

changes and improvements (such as disease resistances, dwarfing etc.) in wheat, explaining the high number of differentially 

expressed genes. 

Among the differentially expressed genes we identified enriched GO terms related to defense and stress response. This can 

be explained by the fact that during the course of wheat improvement a lot of disease resistance genes have been 

introgressed, and are thus only recently introduced in modern wheat. Resistances or tolerance to abiotic stresses are another 

important factor that has been selected for in wheat. We identified transcription factors by comparing the A. thaliana 

homologs found in our differentially expressed gene list to an A. thaliana transcription factor database. A lot of identified 

transcription factors were related to biological processes that include abiotic defense response. For instance, lot of genes 

related to the stress response hormone abscisic acid were identified. Other transcription factors included involvement in leaf 

development, such as ARF3 and KANADIs (Eshed et al., 2005). This could be due that RNA was extracted from leaf tissue. 

Small difference in leaf morphology between the two species could be the cause of this. However, also other terms were 

identified such as involvement in the plant hormone Gibberellin (GA), which plays an important role in dwarfing. GA is 

involved in the elongation of a plant, whereby dwarfing is caused by GA-insensitivity. Two known selection genes were 

identified, one involved in dwarfing, i.e. the GA-insensitive gene RHT-B1 (Sourdille et al., 1998). The other known selection 

gene encodes the PPD-D1c protein. This protein is related to later flowering (Bentley et al., 2013). This gene is upregulated 

in the later flowering Red Fife in comparison to Stettler, and could thus possibly contribute to the flower time trait.  

Genes from secondary metabolite pathways, predicted by PlantiSmash, were only for a low percentage represented in the 

differentially expressed gene list. Thus, no full pathways, but only few genes of a pathway were identified. This could be 

due to chance, as PlantiSmash identified in total 2987 genes, and we initially started with around 100.000 genes, so one 

would expect that at least a few genes are in here at random. In 6000 genes you could therefore expect around 180 genes by 

chance (
3000

100.000
× 6000), this is very close to the actual number of identified PlantiSmash genes, i.e. 189. A lot of pathway 

components were identified by BlastKoala, also including various KEGG identifiers per pathway. Components in 

photosystem I and II could be involved in energy transduction, a possible explanation is due to adaptation of circadian clock. 

A study identified that when the circadian clock of A. thaliana matches to photoperiod of the surrounding environment, 

photosynthesis conversion becomes significantly more efficient, fixing more carbon and growing faster (Dodd et al., 2005). 

Several components of hormone signal transduction were identified. Two genes involved in Gibberellin suppression, which 

could be due to the dwarfing trait. This included the selection gene RHT-B1, which is identified in BlastKoala as a DELLA 

repressor. In line with our expectations, this gene was upregulated in Stettler, while the other identified gene, a repressor of 

this DELLA repressor, was upregulated in Red Fife. The modern variety Stettler is a semi-dwarf while Red Fife is non-

dwarf, explaining this differential expression. Differential expression in abscisic acid downstream signaling components 

could involve changes in response to abiotic stress response.  

Network analysis 

To identify single regulatory factors that control the expression of many genes and to identify linked genes with cis-

regulatory variation we used network analysis. As we expected, we identified modules that could be regulated by single 

regulatory factors. These were observed as modules without linked genes. We also identified modules with linked genes, 

i.e. most genes originated from a single chromosome, these modules are thought to be co-expressed due to variation in their 

upstream regions. In most cases modules with unlinked genes showed a strong positive correlation expression pattern, while 

modules with linked genes showed both positive and negative correlation. This could be explained by that modules with 

unlinked genes are regulated by single trans-acting factors, thus affecting many downstream genes located on different 

places along the genome. An explanation for the pattern observed in modules with linked genes is that these are co-expressed 

due segregation of mutations in their upstream regions. As our population is only F2 (and double haploid), the recombination 

frequency is relatively low. It is thus possible, that lines have either allele of one of the parents at a position, causing this 

both positive and negative correlation expression pattern among the lines. Both explanations should be confirmed by e-QTL 

mapping analysis, to exclude the effect of random factors or for instance chromatin remodeling, and as we do not have 

evidence for the genetic basis, i.e. we did not identify actual alleles causing the expression changes. In theory, environmental 
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factors could have influenced our results. However, we think environmental factors were excluded in our analysis, as our 

experimental design pooled samples from three different growth periods (two weeks apart), which where all placed at 

random every period.   

To further test our hypothesis, we assessed biological processes related to modules with GO-analysis, using A. thaliana 

identifiers. Sometimes up to 6 wheat homologues genes were identified for a single Arabidopsis gene, this is due to wheat 

being a hexaploid, carrying six gene copies instead of two. It will be interesting for future research to investigate more the 

role of these homologs and how they evolved in relation to wheat improvement. We see a difference in significant GO-

terms identified in module with linked or unlinked genes. Modules with unlinked genes show in most cases significant GO-

terms, often related to response to external factors, such as defense response. In addition, photosynthesis and flower 

development are identified in two distinct modules. These are all terms expected to be involved in improvement of wheat.  

The pink module showed a lot of GO-terms related to alternate splicing, epigenetics and flower development, and could 

thus possibly be involved in flowering time as Stettler is known to flower earlier than Red Fife. A known selection gene 

involved in flowering was identified, i.e. encoding PHYTOCHROME AND FLOWERING TIME PROTEIN 1. Interesting 

is that the transcriptional bias of the genes is towards the Red Fife parent, the heritage cultivar. Possibly this cultivar carries 

also early flowering alleles, or the genes in this module induce flowering time. The bias was assessed by looking which 

genes in the module were differentially expressed between the parents, and if these genes were all up or down regulated in 

one parent in comparison to the other. Although only few genes of the total module were represented in the differentially 

expressed gene list of the parent, one would expect that all genes are directed towards one parent if our hypothesis is true. 

This as if one single factor affects the expression of all downstream genes, these genes should overall be all upregulated or 

all downregulated, with exception for repressors. A previous study identified that upon temperature alterations in A. 

thaliana, the splicing machinery itself is alternatively spliced which in turn targets the alternative splicing of flower time 

genes (Verhage et al., 2017). Genes such as components of the circadian clock and flowering time genes, are sensitive to 

alternative splicing due to temperature fluctuations (Verhage et al., 2017). In other studies, the effect of alternative splicing 

on flowering time is stressed also out, for instance alternative splicing of the flowering time control (FCA) gene shows 

significant effect on promotion of flower development (Eckardt et al., 2002).  

Linked genes co-expressed due to variation in their upstream regions were expected to be found among modules, however 

they are not per se biologically meaningful, as they can cluster together due to segregation by chance. We therefore question 

if these genetically linked genes are all upregulated or downregulated in the parents (biased) as this indicates selection and 

if they are functionally linked, i.e. involved in the same biological process. Only a small percentage of these modules showed 

significant enriched GO-terms, related to defense response. Whether these defense response enriched modules are selected 

for is doubtful, as defense response genes have been found to cluster together on the genome by previous research (Li et al., 

1999, Clavijo et al., 2016). This could be the result of genome reorganizations, and does not necessarily mean it is due to 

selection. Also, testing whether genes of the module present in the differentially expressed gene list of the parents, had a 

bias towards one of the parents, did not identify a bias for any modules with significant GO-enrichment. Only two modules 

showed a bias towards one of the parents, but these did not include any significant GO-terms. However, it is not that 

surprising most of these linked cis-regulated modules do not show a bias towards one of the parents, as in the clustered 

heatmaps the parents were mostly located at either side, suggesting half of the lines would carry the alleles of either parent. 

In addition, we performed pathway analysis, no full pathways predicted by PlantiSmash were identified. For the modules 

we assessed with BlastKoala also no full pathways were identified, only very few KEGG identifiers per pathway. We thus 

did not find evidence that linked cis-factors are involved in the regulation of biological processes related to plant 

improvement in wheat, with maybe two exceptions as two modules showed a bias towards one of the parents. 

In total 1452 differentially expressed genes of the parents were not found back in the modules. A possible explanation for 

this is that these genes are regulated by multiple unlinked cis-regulated loci. Due to segregation of these loci, these genes 

would not be co-expressed over the whole population and thus not found back in the network. However, this must be 

confirmed by e-QTL mapping analysis. Another way to verify our statements about variation in trans or cis-acting factors 

causing our results, is to look at the connectivity of the genes in the module. If in a module there are genes with high 

connectivity, it is an indication that these are important regulators (trans-acting factors) (Carlson et al., 2006). Alternatively, 
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genes within a module have only low connectivity, thus only few connections to other genes, could indicate that variation 

in upstream regions affects the regulation. 

Conclusions 

This thesis aimed to explore the involvement of gene regulatory variation in relation to wheat improvement, involving traits 

such as disease resistances, dwarfing and flowering time. Regulation due to multiple alleles is difficult to maintain in a 

segregating population. We therefore proposed that selection during wheat improvement would favor a simpler regulation, 

that includes either regulation by single master regulatory loci or by linked genes with variation in their upstream regions.  

From our results, we conclude that single master regulatory loci that control the expression of many downstream genes play 

a role in the regulation for biological processes involved in wheat improvement. Several modules were identified that 

showed a strong positive correlation, and had low linkage of genes. For many of these modules we found evidence for 

involvement in biological processes related to wheat improvement, such as dwarfing and flowering time.   

Even though we identified modules that are possibly correlated due to fixation of linked genes with cis-regulatory variation, 

we do not have strong evidence that these are involved in regulation for biological processes related to wheat improvement. 

This because only in two modules most genes were biased in the parents, i.e. all upregulated or downregulated towards one 

of the parents, which would indicate selection for this region. Although, these two modules were not enriched in GO-terms 

they can still potentially be biologically relevant. In addition, no full pathway components were found in modules with 

linked genes that could indicate functional linkage.  

Still, a lot of differentially expressed genes between the parents were not identified in our modules, possibly due regulation 

by multiple unlinked cis-regulated loci. Overall, we state that for wheat improvement, the genetic control of many genes 

involves single regulatory genes for many cases. All our results should be combined with e-QTL analysis for validation, 

e.g. assess whether known selection genes are involved in genetic control, and to identify the genetic basis of variation. 

After this validation, possibly new genes can be identified that are the important regulators of genes involved in wheat 

improvement. These results may be applicable for other (complex polyploid) crops. This as selection for plant improvement 

might have caused similar gene regulatory variation for similar traits.     
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Appendix 
 

Table 4. GO-analysis results with upregulated differentially expressed genes between parents, i.e. these are upregulated in Stettler. 

GO term Description Number in input list Number in BG/Ref p-value FDR 

GO:0006952 defense response 221 732 8.10E-20 6.10E-16 

GO:0009607 response to biotic stimulus 157 589 1.00E-10 2.00E-07 

GO:0050896 response to stimulus 640 3408 5.80E-11 2.00E-07 

GO:0006950 response to stress 407 1985 8.00E-11 2.00E-07 

GO:0051707 response to other organism 155 581 1.30E-10 2.00E-07 

GO:0043207 response to external biotic stimulus 155 583 1.60E-10 2.00E-07 

GO:0006468 protein phosphorylation 150 559 1.90E-10 2.00E-07 

GO:0051704 multi-organism process 193 808 1.70E-09 1.40E-06 

GO:0098542 defense response to other organism 120 428 1.60E-09 1.40E-06 

GO:0009617 response to bacterium 91 291 2.20E-09 1.60E-06 

GO:0016310 phosphorylation 180 765 1.60E-08 1.10E-05 

GO:0042742 defense response to bacterium 75 243 8.70E-08 5.50E-05 

GO:0044550 secondary metabolite biosynthetic process 52 144 1.80E-07 0.0001 

GO:0009605 response to external stimulus 178 792 2.90E-07 0.00015 

GO:0044711 single-organism biosynthetic process 223 1057 5.60E-07 0.00028 

GO:0019748 secondary metabolic process 68 235 2.30E-06 0.0011 

GO:0044710 single-organism metabolic process 439 2410 5.10E-06 0.0021 

GO:0044699 single-organism process 887 5316 5.10E-06 0.0021 

GO:0002376 immune system process 69 253 1.10E-05 0.0042 

GO:0008152 metabolic process 1057 6503 1.60E-05 0.0061 

GO:0007166 cell surface receptor signaling pathway 46 149 2.60E-05 0.0094 

GO:0009699 phenylpropanoid biosynthetic process 28 71 3.40E-05 0.012 

GO:0006955 immune response 61 229 5.90E-05 0.019 

GO:0045087 innate immune response 59 220 6.60E-05 0.021 

GO:0006793 phosphorus metabolic process 213 1090 7.70E-05 0.023 

GO:0006796 phosphate-containing compound metabolic process 211 1080 8.40E-05 0.024 

GO:0009751 response to salicylic acid 36 114 0.00013 0.036 

 

Table 5. GO-analysis results with downregulated differentially expressed genes between parents, i.e. these genes are downregulated in 

Stettler. 

GO term Description Number in input list Number in BG/Ref p-value FDR 

GO:0006468 protein phosphorylation 106 559 5.10E-06 0.017 

GO:0006950 response to stress 301 1985 3.80E-06 0.017 

GO:0006952 defense response 129 732 1.20E-05 0.026 

GO:0016310 phosphorylation 133 765 1.60E-05 0.026 

GO:0050896 response to stimulus 472 3408 3.00E-05 0.04 
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Table 6. Small selection of A. thaliana transcription factor homologs identified in the D.E. gene list. 

TF Gene description  Biological processes 

AT1G69120 APETALA1 cell differentiation, floral meristem determinacy, flower development, maintenance of floral 

meristem identity, meristem structural organization, positive regulation of transcription from 

RNA polymerase II promoter, positive regulation of transcription, DNA-

templated, regulation of transcription, DNA-templated, transcription, DNA-templated 

AT1G80840 WRKY DNA-binding 

protein 40 

defense response to bacterium, defense response to fungus, negative regulation of 

transcription, DNA-templated, regulation of defense response, regulation of defense 

response to virus by host, regulation of transcription, DNA-templated,lated, response to 

chitin, response to molecule of bacterial origin, response to salicylic acid, response to 

wounding, transcription, DNA-templated 

AT2G01570 Repressor of GA, 

RGA1. Member of 

the VHIID/DELLA 

regulatory family. 

gibberellic acid mediated signaling pathway, hyperosmotic salinity response, jasmonic acid 

mediated signaling pathway, meiotic cytokinesis, multicellular organism development, 

negative regulation of gibberellic acid mediated signaling pathway, negative regulation of 

seed germination, regulation of protein catabolic process, regulation of reactive oxygen 

species metabolic process, regulation of seed dormancy process, regulation of seed 

germination, regulation of transcription, DNA-templated, response to abscisic acid, response 

to ethylene, response to far red light, response to salt stress, salicylic acid mediated signaling 

pathway, transcription, DNA-templated 

AT2G03500 EARLY 

FLOWERING MYB 

PROTEIN; EFM 

flower development, gibberellic acid mediated signaling pathway, histone H3-K36 

methylation, negative regulation of long-day photoperiodism, flowering, negative regulation 

of nucleic acid-templated transcription, regulation of transcription, DNA-templated, 

response to temperature stimulus, transcription, DNA-templated 

AT2G33860 ARF3, Auxin 

response factor 3 

abaxial cell fate specification, auxin metabolic process, auxin-activated signaling pathway, 

floral meristem determinacy, regulation of transcription, DNA-templated, response to auxin, 

transcription, DNA-templated, vegetative phase change  

AT2G46870 NGA1, AP2/B3-like 

transcriptional factor 

family protein 

flower development, leaf development, regulation of leaf morphogenesis, regulation of 

transcription, DNA-templated, transcription, DNA-templated 

AT3G56400 WRKY DNA-binding 

protein 70 

defense response to bacterium, defense response to fungus, induced systemic resistance, 

jasmonic acid mediated signaling pathway, negative regulation of leaf senescence, negative 

regulation of transcription, DNA-templated, regulation of defense response, regulation of 

transcription, DNA-templated, response to chitin, response to jasmonic acid, response to 

salicylic acid, systemic acquired resistance, salicylic acid mediated signaling pathway, 

transcription, DNA-templated  

AT4G11880 AGAMOUS-like 14 flower development, maintenance of floral meristem identity, positive regulation of 

transcription from RNA polymerase II promoter, regulation of auxin polar transport, 

regulation of root meristem growth, transcription, DNA-templated, vegetative to 

reproductive phase transition of meristem  

AT5G65640 beta HLH protein 93 gibberellin catabolic process, multicellular organism development, regulation of gibberellin 

biosynthetic process, regulation of transcription, DNA-templated, transcription, DNA-

templated  

 

Table 7. Differential expression of small selection of TFs in the parents Red Fife (heritage) and Stettler (modern).  

TF Gene description log2FoldChange Upregulated in pvalue 

AT1G69120 APETALA1 -4.732529683 Red Fife 3.25E-09 

AT1G80840 WRKY DNA-binding protein 40 4.345259631 Stettler 1.16E-05 

AT2G01570 GRAS family transcription factor family protein [repressor of GA] 0.529965077 Stettler 1.56E-05 

AT2G03500 EARLY FLOWERING MYB PROTEIN; EFM 1.156057298 Stettler 0.000278221 

AT2G33860 ARF3, Auxin response factor 3 1.5971067 Stettler 0.002788694 

AT2G46870 NGA1, AP2/B3-like transcriptional factor family protein 0.669954117 Stettler 0.003358567 

AT3G56400 WRKY DNA-binding protein 70 3.125871584 Stettler 3.58E-06 

AT4G11880 AGAMOUS-like 14 -4.095415999 Red Fife 0.000450772 

http://amigo.geneontology.org/amigo/term/GO:0010158
http://amigo.geneontology.org/amigo/term/GO:0010158
http://amigo.geneontology.org/amigo/term/GO:0010158
http://amigo.geneontology.org/amigo/term/GO:0042742
http://amigo.geneontology.org/amigo/term/GO:0042742
http://amigo.geneontology.org/amigo/term/GO:0042742
http://amigo.geneontology.org/amigo/term/GO:0042742
http://amigo.geneontology.org/amigo/term/GO:0042742
http://amigo.geneontology.org/amigo/term/GO:0042742
http://amigo.geneontology.org/amigo/term/GO:0009908
http://amigo.geneontology.org/amigo/term/GO:0009908
http://amigo.geneontology.org/amigo/term/GO:0009908
http://amigo.geneontology.org/amigo/term/GO:0009908
http://amigo.geneontology.org/amigo/term/GO:0045487
http://amigo.geneontology.org/amigo/term/GO:0045487
http://amigo.geneontology.org/amigo/term/GO:0045487
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AT5G65640 beta HLH protein 93 -0.711493679 Red Fife 0.002381715 

 

Table 8. Differential expression of small selection of identified genes by KEGG in the parents Red Fife (heritage) and Stettler (modern).  

Protein Wheat ID baseMean log2FoldChange Upregulated in pvalue 

GID2 TraesCS3B01G068100 20.13114021 -2.673757238 Red Fife 1.94E-08 

DELLA TraesCS4B01G043100 1451.579684 0.529965077 Stettler 1.56E-05 

PP2C TraesCS1D01G449700 56.5644922 1.236323691 Stettler 1.48E-05 

SnRK2 TraesCS2A01G566700 1096.112837 1.375036757 Stettler 7.59E-08 

ABF TraesCS6A01G333600 65.8710473 -0.729750764 Red Fife 0.000423 

 

Figure 15. Sample clustering to detect outliers.  

 

 

  

http://www.kegg.jp/kegg-bin/blastkoala_result_gene_list?id=b2f990e32b649c2226ccd9df776513996914087f&passwd=rxwwys&type=blastkoala&code=user&target=TraesCS3B01G068100
http://www.kegg.jp/kegg-bin/blastkoala_result_gene_list?id=b2f990e32b649c2226ccd9df776513996914087f&passwd=rxwwys&type=blastkoala&code=user&target=TraesCS4B01G043100
http://www.kegg.jp/kegg-bin/blastkoala_result_gene_list?id=b2f990e32b649c2226ccd9df776513996914087f&passwd=rxwwys&type=blastkoala&code=user&target=TraesCS1D01G449700
http://www.kegg.jp/kegg-bin/blastkoala_result_gene_list?id=b2f990e32b649c2226ccd9df776513996914087f&passwd=rxwwys&type=blastkoala&code=user&target=TraesCS2A01G566700
http://www.kegg.jp/kegg-bin/blastkoala_result_gene_list?id=b2f990e32b649c2226ccd9df776513996914087f&passwd=rxwwys&type=blastkoala&code=user&target=TraesCS6A01G333600
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Figure 16. Module eigengene clustering 

 

 

Table 9. Overview of module information. Includes module name, module size, correlation pattern (if only positive correlation over all lines then 

marked with +), the percentage of genes located on a single chromosome, the number of identified transcription factors (from blast results with A. 

thaliana), the number of known selection genes, the number of genes identified with plantismash and the percentage of A. thaliana identifiers obtained 

through blastx.   

Module Size Correlation 

pattern 

percentage genes on 

single chromosome 

# Transcription 

factors [AT] 

# 

Known 

genes 

# Plantismash 

genes 

percentage AT 

identifiers (blastx) 

antiquewhite2 37  81.1 2 0 0 94.6 

antiquewhite4 347 + 8.1 20 0 7 98.3 

bisque4 111  90.1 6 0 1 78.4 

black 3861  6.0 289 1 46 93.9 

blue 2738  5.8 109 1 32 95.1 

blue2 53  92.5 7 0 0 75.5 

brown2 58  89.7 2 0 1 70.7 

coral 37  75.7 0 0 0 89.2 

coral2 75  61.3 7 2 2 94.7 

coral3 34  94.1 1 0 2 64.7 

darkgrey 278  86.7 8 0 3 87.8 

darkmagenta 148  93.2 8 0 1 84.5 

darkolivegreen4 58  65.5 6 0 0 84.5 

darkorange 221 + 14.9 2 0 6 44.8 

darkorange2 528 + 6.4 4 0 18 96.2 

darkred 631 + 6.8 31 0 9 97.8 

darkseagreen3 37  73.0 1 0 2 89.2 

darkseagreen4 77 + 10.4 3 0 9 90.9 

darkslateblue 105  64.8 3 0 4 92.4 

darkviolet 51 + 37.3 1 0 0 88.2 

firebrick4 58  81.0 0 0 4 81.0 
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floralwhite 128 + 7.8 4 0 6 96.1 

green 1759 + 7.0 58 1 72 94.5 

greenyellow 631 + 7.8 42 0 14 94.8 

grey60 377 + 8.0 19 0 22 97.9 

honeydew 38  94.7 4 0 18 89.5 

honeydew1 83  89.2 2 1 1 90.4 

indianred4 129  72.1 3 0 2 92.2 

ivory 128  97.7 4 0 9 86.7 

lavenderblush2 39  97.4 5 0 4 94.9 

lavenderblush3 84  75.0 1 0 1 78.6 

lightcoral 63  92.1 1 0 2 77.8 

lightcyan1 128  87.5 5 0 0 82.8 

lightpink3 39 + 12.8 0 0 2 87.2 

lightpink4 85  89.4 7 1 4 84.7 

magenta4 39  82.1 1 0 1 79.5 

maroon 86 + 10.5 30 0 0 93.0 

mediumorchid 74  95.9 3 0 3 87.8 

mediumpurple2 66 + 13.6 2 0 2 89.4 

mediumpurple3 130  60.0 6 0 3 85.4 

mediumpurple4 33  97.0 1 0 3 84.8 

midnightblue 1695  6.6 113 1 0 95.6 

navajowhite1 39  100.0 1 0 37 87.2 

navajowhite2 89  87.6 1 0 0 86.5 

orange 726  7.2 25 0 11 96.7 

orangered3 66  80.3 1 0 12 93.9 

orangered4 313 + 8.3 0 0 4 98.1 

palevioletred2 39 + 23.1 3 0 0 94.9 

palevioletred3 5813  5.7 369 3 0 93.7 

pink 1099 + 6.1 45 1 93 95.2 

plum2 104  94.2 3 0 14 86.5 

plum3 49  77.6 0 0 4 89.8 

red 1259  6.8 96 0 0 93.7 

saddlebrown 205  90.7 10 0 17 83.4 

salmon2 43  76.7 0 0 2 90.7 

salmon4 98  92.9 3 0 5 76.5 

sienna3 144  56.3 5 0 0 88.2 

skyblue1 68 + 88.2 3 0 1 88.2 

skyblue2 72  56.9 1 0 0 95.8 

skyblue3 143  90.9 4 0 2 81.1 

skyblue4 32  87.5 2 0 0 84.4 

tan 523 + 6.3 117 0 0 89.7 

thistle 43  83.7 5 0 9 79.1 

thistle1 98  8.2 1 0 3 88.8 

thistle2 99  66.7 9 0 0 86.9 

thistle3 45  93.3 1 0 1 95.6 

violet 165  90.9 6 0 2 83.6 

white 676 + 6.7 23 0 2 95.0 

yellow 1494  6.6 60 0 25 93.6 

yellow3 30  60.0 1 0 34 96.7 

yellow4 72  81.9 1 0 2 88.9 

Parents 6039   229 2 6 85.7 

Parents up 3581      88.0 

Parents down 2456      82.4 
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Table 10. Enriched gene ontology terms in the pink module 

GO term Description Number 

in input 

list 

Number 

in 

BG/Ref 

p-value FDR 

GO:0051276 chromosome organization 60 217 2.40E-20 9.10E-17 

GO:0006325 chromatin organization 46 168 1.10E-15 1.40E-12 

GO:0090304 nucleic acid metabolic process 156 1355 1.10E-15 1.40E-12 

GO:0010467 gene expression 162 1498 4.50E-14 4.30E-11 

GO:0040029 regulation of gene expression, epigenetic 33 97 9.60E-14 7.30E-11 

GO:0010629 negative regulation of gene expression 45 187 1.20E-13 7.70E-11 

GO:0010605 negative regulation of macromolecule metabolic process 48 216 2.30E-13 1.30E-10 

GO:0016569 covalent chromatin modification 36 123 3.10E-13 1.40E-10 

GO:0016070 RNA metabolic process 138 1229 5.70E-13 2.40E-10 

GO:0010468 regulation of gene expression 116 962 1.10E-12 4.00E-10 

GO:0060255 regulation of macromolecule metabolic process 122 1042 1.50E-12 5.20E-10 

GO:0006139 nucleobase-containing compound metabolic process 162 1569 1.80E-12 5.70E-10 

GO:0016458 gene silencing 32 106 3.30E-12 9.70E-10 

GO:0009892 negative regulation of metabolic process 48 240 6.40E-12 1.70E-09 

GO:0019222 regulation of metabolic process 129 1157 6.80E-12 1.70E-09 

GO:0006996 organelle organization 87 650 1.00E-11 2.40E-09 

GO:0044260 cellular macromolecule metabolic process 240 2744 1.30E-11 2.80E-09 

GO:0046483 heterocycle metabolic process 169 1728 3.40E-11 6.90E-09 

GO:2000113 negative regulation of cellular macromolecule biosynthetic process 35 141 3.40E-11 6.90E-09 

GO:0050789 regulation of biological process 190 2043 6.80E-11 1.30E-08 

GO:0043170 macromolecule metabolic process 253 2993 7.40E-11 1.30E-08 

GO:0051171 regulation of nitrogen compound metabolic process 108 936 9.20E-11 1.60E-08 

GO:0043933 macromolecular complex subunit organization 61 392 9.70E-11 1.60E-08 

GO:0016071 mRNA metabolic process 43 217 1.10E-10 1.70E-08 

GO:0010558 negative regulation of macromolecule biosynthetic process 35 148 1.10E-10 1.70E-08 

GO:0051172 negative regulation of nitrogen compound metabolic process 36 158 1.40E-10 2.10E-08 

GO:0031323 regulation of cellular metabolic process 117 1063 1.90E-10 2.60E-08 

GO:0080090 regulation of primary metabolic process 112 1006 2.80E-10 3.70E-08 

GO:0048608 reproductive structure development 76 575 4.30E-10 5.40E-08 

GO:0061458 reproductive system development 76 575 4.30E-10 5.40E-08 

GO:0006396 RNA processing 53 327 5.00E-10 5.90E-08 

GO:0031327 negative regulation of cellular biosynthetic process 35 158 5.00E-10 5.90E-08 

GO:2000112 regulation of cellular macromolecule biosynthetic process 102 891 5.20E-10 6.00E-08 

GO:0010556 regulation of macromolecule biosynthetic process 102 894 6.20E-10 6.90E-08 

GO:0009890 negative regulation of biosynthetic process 35 161 7.70E-10 8.00E-08 

GO:0031324 negative regulation of cellular metabolic process 38 187 7.50E-10 8.00E-08 

GO:0006725 cellular aromatic compound metabolic process 168 1794 1.00E-09 1.10E-07 

GO:0003006 developmental process involved in reproduction 82 659 1.10E-09 1.10E-07 

GO:0065007 biological regulation 197 2223 1.40E-09 1.30E-07 

GO:0031326 regulation of cellular biosynthetic process 104 933 1.30E-09 1.30E-07 

GO:0050794 regulation of cellular process 169 1826 2.10E-09 1.90E-07 

GO:0009889 regulation of biosynthetic process 104 947 2.80E-09 2.50E-07 

GO:0018205 peptidyl-lysine modification 22 68 2.90E-09 2.60E-07 

GO:0097659 nucleic acid-templated transcription 96 849 3.40E-09 2.90E-07 

GO:0006351 transcription, DNA-templated 96 849 3.40E-09 2.90E-07 

GO:0022414 reproductive process 87 738 3.60E-09 2.90E-07 

GO:0032774 RNA biosynthetic process 96 851 3.80E-09 3.10E-07 

GO:0016043 cellular component organization 116 1110 4.00E-09 3.10E-07 

GO:0006397 mRNA processing 36 182 4.00E-09 3.10E-07 

GO:0048519 negative regulation of biological process 57 393 4.30E-09 3.30E-07 

GO:0034641 cellular nitrogen compound metabolic process 180 2005 4.40E-09 3.30E-07 

GO:0009790 embryo development 46 279 4.70E-09 3.40E-07 

GO:0000003 reproduction 87 743 4.80E-09 3.40E-07 
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GO:0048523 negative regulation of cellular process 44 261 5.70E-09 4.00E-07 

GO:1901360 organic cyclic compound metabolic process 169 1855 6.40E-09 4.40E-07 

GO:0019219 regulation of nucleobase-containing compound metabolic process 95 853 8.50E-09 5.70E-07 

GO:0016570 histone modification 23 83 1.50E-08 1.00E-06 

GO:0051252 regulation of RNA metabolic process 92 828 1.70E-08 1.10E-06 

GO:0009791 post-embryonic development 83 718 2.00E-08 1.30E-06 

GO:2001141 regulation of RNA biosynthetic process 90 807 2.10E-08 1.30E-06 

GO:0006355 regulation of transcription, DNA-templated 90 807 2.10E-08 1.30E-06 

GO:1903506 regulation of nucleic acid-templated transcription 90 807 2.10E-08 1.30E-06 

GO:0007389 pattern specification process 21 73 3.70E-08 2.20E-06 

GO:0031047 gene silencing by RNA 20 68 5.80E-08 3.40E-06 

GO:0071840 cellular component organization or biogenesis 120 1224 6.20E-08 3.60E-06 

GO:0009893 positive regulation of metabolic process 36 209 9.10E-08 5.20E-06 

GO:0044702 single organism reproductive process 76 659 9.30E-08 5.30E-06 

GO:0048731 system development 91 853 1.20E-07 6.60E-06 

GO:0010604 positive regulation of macromolecule metabolic process 32 174 1.30E-07 7.10E-06 

GO:0051128 regulation of cellular component organization 29 148 1.60E-07 8.60E-06 

GO:0034654 nucleobase-containing compound biosynthetic process 98 953 1.80E-07 9.60E-06 

GO:0006807 nitrogen compound metabolic process 188 2239 2.20E-07 1.20E-05 

GO:0045892 negative regulation of transcription, DNA-templated 24 107 2.30E-07 1.20E-05 

GO:0016441 posttranscriptional gene silencing 16 47 2.40E-07 1.20E-05 

GO:0034645 cellular macromolecule biosynthetic process 127 1366 3.80E-07 1.90E-05 

GO:0003002 regionalization 18 64 4.70E-07 2.30E-05 

GO:0048518 positive regulation of biological process 50 377 4.90E-07 2.40E-05 

GO:0045934 negative regulation of nucleobase-containing compound metabolic 

process 

25 122 5.60E-07 2.70E-05 

GO:0009793 embryo development ending in seed dormancy 36 228 6.00E-07 2.90E-05 

GO:1903507 negative regulation of nucleic acid-templated transcription 24 114 6.10E-07 2.90E-05 

GO:1902679 negative regulation of RNA biosynthetic process 24 114 6.10E-07 2.90E-05 

GO:0008380 RNA splicing 26 132 6.40E-07 3.00E-05 

GO:0051253 negative regulation of RNA metabolic process 24 115 7.10E-07 3.20E-05 

GO:0009059 macromolecule biosynthetic process 127 1389 8.80E-07 4.00E-05 

GO:0006259 DNA metabolic process 33 202 9.10E-07 4.00E-05 

GO:0018130 heterocycle biosynthetic process 104 1076 1.10E-06 4.90E-05 

GO:0048522 positive regulation of cellular process 39 268 1.30E-06 5.50E-05 

GO:0031325 positive regulation of cellular metabolic process 31 187 1.50E-06 6.40E-05 

GO:0010608 posttranscriptional regulation of gene expression 23 112 1.50E-06 6.50E-05 

GO:0032268 regulation of cellular protein metabolic process 26 144 2.70E-06 0.00011 

GO:0035194 posttranscriptional gene silencing by RNA 13 38 3.20E-06 0.00013 

GO:0033044 regulation of chromosome organization 13 38 3.20E-06 0.00013 

GO:0010228 vegetative to reproductive phase transition of meristem 21 100 3.20E-06 0.00013 

GO:0043414 macromolecule methylation 18 76 3.80E-06 0.00015 

GO:0006342 chromatin silencing 13 39 4.00E-06 0.00016 

GO:0048316 seed development 40 295 4.40E-06 0.00017 

GO:0090567 reproductive shoot system development 35 241 4.70E-06 0.00018 

GO:0045814 negative regulation of gene expression, epigenetic 13 41 6.30E-06 0.00024 

GO:0010154 fruit development 41 312 6.70E-06 0.00026 

GO:0048856 anatomical structure development 119 1341 8.60E-06 0.00032 

GO:0000819 sister chromatid segregation 9 18 9.80E-06 0.00037 

GO:0010628 positive regulation of gene expression 24 137 1.00E-05 0.00038 

GO:0007059 chromosome segregation 12 37 1.20E-05 0.00043 

GO:0007275 multicellular organism development 108 1196 1.20E-05 0.00045 

GO:0034968 histone lysine methylation 11 31 1.40E-05 0.00049 

GO:0019438 aromatic compound biosynthetic process 102 1115 1.40E-05 0.00049 

GO:0009908 flower development 33 233 1.40E-05 0.00049 

GO:0051246 regulation of protein metabolic process 26 160 1.40E-05 0.0005 

GO:0017148 negative regulation of translation 11 32 1.80E-05 0.00061 
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GO:0044707 single-multicellular organism process 109 1223 1.90E-05 0.00066 

GO:0032502 developmental process 120 1383 2.10E-05 0.00071 

GO:0044767 single-organism developmental process 117 1341 2.20E-05 0.00073 

GO:0018022 peptidyl-lysine methylation 11 33 2.20E-05 0.00074 

GO:0034249 negative regulation of cellular amide metabolic process 11 33 2.20E-05 0.00074 

GO:0050793 regulation of developmental process 37 284 2.30E-05 0.00074 

GO:0051248 negative regulation of protein metabolic process 13 48 2.60E-05 0.00084 

GO:0032269 negative regulation of cellular protein metabolic process 13 48 2.60E-05 0.00084 

GO:0035195 gene silencing by miRNA 9 22 3.40E-05 0.0011 

GO:1901362 organic cyclic compound biosynthetic process 104 1178 4.50E-05 0.0014 

GO:0043412 macromolecule modification 103 1165 4.70E-05 0.0015 

GO:0044271 cellular nitrogen compound biosynthetic process 120 1411 4.90E-05 0.0015 

GO:0032259 methylation 22 133 5.10E-05 0.0016 

GO:0032501 multicellular organismal process 111 1283 5.20E-05 0.0016 

GO:0048367 shoot system development 45 394 5.80E-05 0.0018 

GO:0016571 histone methylation 11 38 6.50E-05 0.002 

GO:0098813 nuclear chromosome segregation 10 31 6.60E-05 0.002 

GO:1902275 regulation of chromatin organization 10 31 6.60E-05 0.002 

GO:0016573 histone acetylation 9 25 7.70E-05 0.0022 

GO:0018393 internal peptidyl-lysine acetylation 9 25 7.70E-05 0.0022 

GO:0018394 peptidyl-lysine acetylation 9 25 7.70E-05 0.0022 

GO:0033043 regulation of organelle organization 16 80 7.90E-05 0.0023 

GO:0044238 primary metabolic process 274 3841 8.40E-05 0.0024 

GO:0009987 cellular process 346 5059 9.10E-05 0.0026 

GO:0006366 transcription from RNA polymerase II promoter 18 100 9.50E-05 0.0027 

GO:0045935 positive regulation of nucleobase-containing compound metabolic 

process 

21 131 0.00011 0.0031 

GO:0006475 internal protein amino acid acetylation 9 27 0.00012 0.0035 

GO:2000026 regulation of multicellular organismal development 29 218 0.00013 0.0035 

GO:0018193 peptidyl-amino acid modification 23 153 0.00013 0.0035 

GO:0008213 protein alkylation 11 42 0.00014 0.0038 

GO:0006479 protein methylation 11 42 0.00014 0.0038 

GO:0060968 regulation of gene silencing 8 21 0.00014 0.0038 

GO:0051173 positive regulation of nitrogen compound metabolic process 22 144 0.00014 0.0038 

GO:0007033 vacuole organization 9 28 0.00016 0.0041 

GO:0006473 protein acetylation 9 29 0.0002 0.0051 

GO:0010557 positive regulation of macromolecule biosynthetic process 20 127 0.0002 0.0051 

GO:0006974 cellular response to DNA damage stimulus 20 127 0.0002 0.0051 

GO:0051239 regulation of multicellular organismal process 30 236 0.0002 0.0051 

GO:0006304 DNA modification 10 37 0.00022 0.0057 

GO:0009891 positive regulation of biosynthetic process 22 149 0.00022 0.0057 

GO:0044728 DNA methylation or demethylation 10 37 0.00022 0.0057 

GO:0009909 regulation of flower development 15 80 0.00024 0.0061 

GO:0044237 cellular metabolic process 280 4002 0.00028 0.0069 

GO:0031328 positive regulation of cellular biosynthetic process 21 141 0.00028 0.0069 

GO:0006417 regulation of translation 15 82 0.00031 0.0075 

GO:0006378 mRNA polyadenylation 6 12 0.00032 0.0076 

GO:0043631 RNA polyadenylation 6 12 0.00032 0.0076 

GO:0007062 sister chromatid cohesion 6 12 0.00032 0.0076 

GO:0034248 regulation of cellular amide metabolic process 15 83 0.00034 0.0082 

GO:0051254 positive regulation of RNA metabolic process 19 124 0.00039 0.0093 

GO:0006306 DNA methylation 9 33 0.00044 0.01 

GO:0006305 DNA alkylation 9 33 0.00044 0.01 

GO:0006338 chromatin remodeling 7 19 0.00044 0.01 

GO:0000956 nuclear-transcribed mRNA catabolic process 9 33 0.00044 0.01 

GO:0035196 production of miRNAs involved in gene silencing by miRNA 6 13 0.00044 0.01 

GO:0048831 regulation of shoot system development 17 105 0.00045 0.01 
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GO:0006357 regulation of transcription from RNA polymerase II promoter 14 76 0.00045 0.01 

GO:0007067 mitotic nuclear division 10 41 0.00045 0.01 

GO:2000241 regulation of reproductive process 19 126 0.00047 0.01 

GO:0071103 DNA conformation change 8 26 0.00046 0.01 

GO:1902680 positive regulation of RNA biosynthetic process 18 116 0.00048 0.011 

GO:0045893 positive regulation of transcription, DNA-templated 18 116 0.00048 0.011 

GO:1903508 positive regulation of nucleic acid-templated transcription 18 116 0.00048 0.011 

GO:0061647 histone H3-K9 modification 6 14 0.0006 0.013 

GO:0000280 nuclear division 13 69 0.0006 0.013 

GO:0031124 mRNA 3'-end processing 6 14 0.0006 0.013 

GO:0043543 protein acylation 11 51 0.00059 0.013 

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated 

decay 

6 14 0.0006 0.013 

GO:0043331 response to dsRNA 8 28 0.0007 0.015 

GO:0031050 dsRNA fragmentation 8 28 0.0007 0.015 

GO:0070918 production of small RNA involved in gene silencing by RNA 8 28 0.0007 0.015 

GO:0071359 cellular response to dsRNA 8 28 0.0007 0.015 

GO:0033554 cellular response to stress 42 408 0.00076 0.016 

GO:0031399 regulation of protein modification process 11 53 0.00078 0.016 

GO:0031060 regulation of histone methylation 6 15 0.0008 0.016 

GO:0048580 regulation of post-embryonic development 22 166 0.00084 0.017 

GO:0006401 RNA catabolic process 10 45 0.00085 0.017 

GO:0006402 mRNA catabolic process 9 37 0.00088 0.018 

GO:0031056 regulation of histone modification 7 22 0.00089 0.018 

GO:0006281 DNA repair 17 114 0.001 0.02 

GO:0031123 RNA 3'-end processing 7 23 0.0011 0.022 

GO:0000398 mRNA splicing, via spliceosome 12 65 0.0011 0.022 

GO:1901699 cellular response to nitrogen compound 10 47 0.0011 0.022 

GO:0071704 organic substance metabolic process 288 4226 0.0013 0.026 

GO:0031935 regulation of chromatin silencing 5 11 0.0014 0.028 

GO:0006914 autophagy 8 32 0.0015 0.028 

GO:1902589 single-organism organelle organization 19 141 0.0016 0.03 

GO:0022402 cell cycle process 18 131 0.0017 0.032 

GO:0007049 cell cycle 23 190 0.0019 0.037 

GO:0000070 mitotic sister chromatid segregation 5 12 0.0019 0.037 

GO:0045944 positive regulation of transcription from RNA polymerase II 

promoter 

7 26 0.002 0.038 

GO:0044249 cellular biosynthetic process 155 2097 0.002 0.038 

GO:0051130 positive regulation of cellular component organization 9 43 0.0022 0.041 

GO:0051567 histone H3-K9 methylation 5 13 0.0025 0.047 

GO:0006333 chromatin assembly or disassembly 6 20 0.0027 0.049 

GO:0000375 RNA splicing, via transesterification reactions 12 73 0.0027 0.049 

GO:0000377 RNA splicing, via transesterification reactions with bulged 

adenosine as nucleophile 

12 73 0.0027 0.049 

 

Table 11. Small selection of identified transcription factors in pink module. 

TF Description  Biological process 

AT1G43850 transcriptional co-regulator of 

AGAMOUS, that functions with 

LEUNIG to repress AG in the 

outer floral whorls 

cell differentiation, cellular response to DNA damage stimulus, cellular response to external 

biotic stimulus, embryo development, gynoecium development,multicellular organism 

development, plant ovule development, regulation of flower development, regulation of 

transcription, DNA-templated, response to auxin,response to bacterium, response to 

cycloheximide, response to fungus, response to hypoxia, response to nematode, response to 

oxidative stress, response to silver ion, transcription, DNA-templated 

AT2G23740 SU(VAR)3-9-RELATED 

PROTEIN 5 

chromatin silencing, regulation of histone H3-K9 dimethylation 
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AT4G02560 LD, nuclear localized protein 

with similarity to transcriptional 

regulators. 

cell differentiation, flower development, positive regulation of flower development,regulation 

of transcription, DNA-templated, vegetative to reproductive phase transition of meristem 

AT4G04885 PCFS4 (Pcf11p-similar protein 

4) 

flower development, mRNA cleavage, mRNA polyadenylation, mRNA processing,positive 

regulation of flower development, termination of RNA polymerase II transcription 

AT5G20730 Auxin response factor 7 auxin-activated signaling pathway, blue light signaling pathway, gravitropism,lateral root 

development, lateral root formation, leaf development, phototropism,positive regulation of 

transcription, DNA-templated, regulation of growth,regulation of transcription, DNA-

templated, response to auxin, response to ethylene, transcription, DNA-templated 

AT5G44180 Homeodomain-like 

transcriptional regulator 

flower development, negative regulation of transcription, DNA-templated,regulation of 

transcription, DNA-templated, transcription, DNA-templated,vegetative to reproductive phase 

transition of meristem 

 

Table 12. Small selection of identified transcription factors in green module. 

TF Description Biological process 

AT5G26170 WRKY DNA-binding 

protein 50 

defense response to fungus, jasmonic acid mediated signaling pathway, regulation of 

transcription, DNA-templated, transcription, DNA-templated  

AT4G17750 Heat shock factor 1 response to heat, regulation of transcription, DNA-templated, transcription, DNA-

templated  

AT3G56400 WRKY DNA-binding 

protein 70 

defense response to bacterium, defense response to fungus, induced systemic resistance, 

jasmonic acid mediated signaling pathway, negative regulation of leaf senescence, 

negative regulation of transcription, DNA-templated, regulation of defense response, 

regulation of transcription, DNA-templated, response to chitin, response to jasmonic 

acid, response to salicylic acid, systemic acquired resistance, salicylic acid mediated 

signaling pathway, transcription, DNA-templated  

AT2G40950 BZIP17 hyperosmotic salinity response, positive regulation of transcription, DNA-templated, 

regulation of transcription, DNA-templated, transcription, DNA-templated  

AT1G53910 Member of the ERF 

(ethylene response 

factor) subfamily B-2 of 

ERF/AP2 transcription 

factor family 

detection of hypoxia, ethylene-activated signaling pathway, regulation of root 

development, regulation of transcription, DNA-templated, response to hypoxia, 

transcription, DNA-templated 

 

Table 13. All identified transcription factors in module blue2, including description and involvement in biological processes. 

TF Description Biological process 

AT1G71930 vascular related NAC-domain 

protein 7 

cell wall organization, cellular response to auxin stimulus, defense response to 

fungus, multicellular organism development, positive regulation of gene 

expression, positive regulation of transcription, DNA-templated, protoxylem 

development, regulation of transcription, DNA-templated, response to abscisic 

acid, response to auxin, response to brassinosteroid, response to cytokinin, 

response to fungus, transcription, DNA-templated, xylan metabolic process, 

xylem development, xylem vessel member cell differentiation 

AT1G75710 C2H2-like zinc finger protein NA 

AT4G36160 NAC domain containing protein 

76 

cell wall organization, multicellular organism development, positive regulation 

of secondary cell wall biogenesis, regulation of transcription, DNA-templated, 

transcription, DNA-templated, xylem vessel member cell differentiation 

AT4G36920 AP2, Integrase-type DNA-

binding superfamily protein 

cell differentiation, flower development, meristem maintenance, plant ovule 

development, regulation of transcription, DNA-templated, seed development, 

sexual reproduction, specification of floral organ identity, transcription, DNA-

templated 
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