

Hemp-Sys, Quality control and integrated supply chain of hemp for textile processing

2nd International Conference of the European Industrial Hemp Association 18-19 / 11 / 2004

> Jan E.G. van Dam Martien van den Oever Jörg Müssig

Integrated production and quality system for hemp textile production chain

HEMP Research at A & F

- hemp fibre for paper production
- hemp fibre reinforced composites
- hemp cellulose for non-wovens
- Integrated production and quality system for hemp textile production chain

Objective and Methods

Competitive and innovative hemp fibre production chain for textile industry in EU

- raw material production and processing
 - agronomical protocols
 - harvest and decortication methods
- yarn production and processing
 - fibre processing
 - product design
- quality control systems

Qualified production chain

- objective quality assessment
- improved logistic supply chain
- reduced dependency on organoleptic methods
- efficient use of raw materials, with highest added value

Partners HEMP-sys

Work package (1)

• Hemp Production - growing conditions for textile use

- growing conditions

- * soil, water, temperature, photoperiod
- genotype
- management
 - * density, irrigation, fertilizer, sowing and harvest time
- decision support system

Work package (2)

• Hemp processing (post harvest handling)

- from harvest to ribbon preparation
- decortication, degumming
- Yarn production
 - quality control of hemp fibre raw material
 - spinning performance

• Design

- yarns and fabric transformation to fashionable end-products

AGROTECHNOLOGY & FOOD INNOVATIONS WAGENINGEN UR

Work package (3)

• Integrating Quality aspects of the production chain

relationships between crop growth conditions, genotypes management fibre extraction techniques

and quality parameters of stem raw and processed fibre yarns and fabrics

AGROTECHNOLOGY & FOOD INNOVATIONS WAGENINGEN UR

Hemp fibre quality (1)

- Agricultural crop production
- Fibre extraction process
- Fibre cleaning and preparatio
- Textile processing & design

Consumer

Hemp fibre quality (2)

• Agricultural crop production

- Plant variety / cultivar
- growing conditions
 - seed density
- harvesting and storage
 - moment of harvest (flowering / seed formation)

yield rather than quality

15 (-up to 25) tons dry matter per ha

-> Breeding

-> Agronomy

-> Harvesting technique

stem

Hemp fibre quality

Hemp fibre quality (3)

Fibre extraction process

 retting
 field retting / water retting / enzyme retting
 decortication
 degumming

cleaned bast fibre

Hemp fibre quality (4)

• Fibre cleaning and preparation

- mechanical, chemical decortication (breaking / scutching)
 - parallel handling of long fibre bundles
- hackling / combing

sliver fine and homogeneous fibres with high strength

Hemp fibre quality (5)

• Textile processing

- long fibre spinning (wet spinning, dry spinning)
- fineness
- strength
- homogeneity (cleanness)
- colour, softness

yarn high strength, fineness (Nm)

Hemp textile products

Design and consumer perception

"dash hemp"

"tribal fibre"

"sweet grass"

Harvesting hemp

Bundle of parallel primary fibres

Agronomical trials HEMP-sys project (1)

• 5 locations

- North and South Italy, Hungary, The Netherlands, Finland

• 12 varieties

- beniko, bialorzeski, carmagnola, dioica 88, epsilon,

- fedora 17, felina 34, ferimon, fibranova, futura 75,
- lovrin, tiborszallasi

Agronomical trials HEMP-sys project (2)

• 7 sowing dates / 4 varieties

- monoecious: felina 34, futura 75
- dioecious: fibranova, tiborszallasi
- two weeks interval
- 3 plant densities

- 120, 240 and 360 seeds per m^2

Multiple Sowing dates

Density trial

Stem properties and quality assessment

	Seed density	genotype	growth stage
length	+	+	++
thickness	+++	++	++
flowering	+	+++	++
colour	-	-	+
fibre extraction	-	+	++
fibre content	+	++	++
fibre quality	++	++	+++
fibre yield	+	++	+++

Study of fibre formation in Hemp

- Bast fibre development in the stem
 - stem growth and primary fibre cell elongation
 - cell wall thickening
 - lignification
 - stem thickness growth and secondary fibre cell formation

Primary and Secondary Fibres

Hemp Fibre Dimensions

	Length mm	diameter µm	cell wall thickness µm
primary fibre	10-40	20-40	10-20
secondary fibre	2-3	5-10	10-20

Observations on fibre formation

Primary fibres run from bottom to top

- cell wall thickening proceeds from outer to inner layers
- Secondary fibres do not occur above 2nd or 3rd internode when:
 - hemp not taller than about 2.5 m
 - diameter (at the bottom of the stem) < 1 cm
 - hemp has not started to flower

Primary and Secondary Fibres

Cell wall thickening of fibres

Fibre properties and quality assessment

strength

length fineness

tensile

image analysis image analysis

fibrillation cleanness colour micronaire image analysis image analysis colorimeter stelometer instron

air flow ISO 2370 ASTM D1448

NIR

Fibre yield hemp retting

Preliminary quality data of hemp samples

			nsile th strain (%)	airflow fineness (1/A)	
Benico	top	559	2.3	2,3	
	bottom	663	2.5	3.5	
Dioica	top	643	3.1	2.1	
	middle	724	3.3	4.0	
	bottom	642	2.6	2.1	
Fibranova	top	822	3.4	2.4	
	middle	801	3.5	2.4	
	bottom	513	2.3	2.0	

Extractives and phenolic content hemp bast fibre

	EtOH/ Toluene	H ₂ O	AIL	ASL
	%	%	%	%
green top	3.0	9.5	4.7	1.1
middle	3.6	8.1	3.2	0.8
bottom	3.2	7.3	3.3	0.7
ww retting top	1.2	1.8	2.8	0.5
middle	0.3	2.0	1.9	0.4
bottom	0.2	2.4	1.9	0.5

Polysaccharide content hemp bast fibre

	Rha %	Ara	Xyl	Man	Gal	Glc	UA
green top	0.5	1.1	2.0	2.6	2.1	62.1	6.3
middle	0.4	0.8	1.9	3.2	1.7	69.6	4.4
bottom	0.4	0.8	1.8	3.7	1.7	72.0	3.8
ww retting top	0.0	0.5	1.0	3.8	1.7	78.3	2.0
middle	0.4	0.4	1.1	4.1	1.4	85.8	2.3
bottom	0.0	0.5	1.6	4.6	1.4	79.5	1.9

Fibre properties and quality demands

	cellulose	chemical composition	morphology
strength length fineness fibrillation cleanness absorbency	+++ ++ - -	++ + + ++ ++	++ ++ +++ ++ +

Hemp fibre quality and end-use

Conclusions (1)

Hemp bast fibre formation occurs in two stages:primary fibre is formed during fast growthsecondary fibre is formed during maturing

Agronomical management affects: (timing of sowing and harvest)
ease of fibre extraction
fibre quality
fibre yield

Conclusions (2)

Hemp fibre quality testing for textile processing :

• standard protocols and data exchange

 correlation of processing conditions and input output product quality data (yield and performance)

 feedback mechanism in the production chain (tracking and tracing)

Conclusions (3)

Hemp bast fibre could find highest added value in textiles

whole crop utilisation in other end-uses (apper pulp, composites, building materials.etc.) requires coordination of supplies

Quality control is essential in the whole production chain

Hemp bast fibre bundle

