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Bending rigidities of tensionless balanced liquid-liquid interfaces as occurring in microemulsions
are predicted using self-consistent field theory for molecularly inhomogeneous systems. Considering
geometries with scale invariant curvature energies gives unambiguous bending rigidities for systems
with fixed chemical potentials: The minimal surface Im3m cubic phase is used to find the Gaussian
bending rigidity, κ̄, and a torus with Willmore energy W = 2π2 allows for direct evaluation of
the mean bending modulus, κ. Consistent with this, the spherical droplet gives access to 2κ + κ̄.
We observe that κ̄ tends to be negative for strong segregation and positive for weak segregation; a
finding which is instrumental for understanding phase transitions from a lamellar to a sponge-like
microemulsion. Invariably, κ remains positive and increases with increasing strength of segregation.

Interfaces characterized by dense surfactant packings,
such as microemulsions [1] and biological membranes [2]
that are found naturally or manipulated artificially to
be in a state of near-zero tension, have extensive areas.
Often such interfaces feature a spontaneous curvature
that manifests in spherical or cylindrical (swollen) mi-
celles [3, 4]. When a system is tensionless and precisely
balanced—typical for single component bilayers and ex-
pected for the middle-phase microemulsions—the inter-
face’s spontaneous curvature vanishes [5] and ultra-low
interfacial energies can be achieved [6, 7]. Here, the elas-
tic moduli, mean (κ) and Gaussian (κ̄) bending rigidities,
control the interface fluctuations and topology, respec-
tively. Such systems show a first-order phase transition
from lamellar to sponge-like phases, e.g., upon an in-
crease of the temperature for nonionic systems, and a
change of the salinity for ionic systems [6, 8]. A pre-
eminent challenge is to predict, from a molecular model
for such interfaces, a means to induce a sign change in the
κ̄ from negative to positive; this signals the loss of stabil-
ity of the lamellar, Lα, oil-surfactant-water ordering in
favor of a phase with saddles, L3 or sponge-like. Another
long-standing problem is understanding the relation be-
tween surfactant chain architecture and corresponding
bending rigidities [9, 10].

Earlier theoretical methods [11, 12], experiments [13–
15], and simulations [16, 17] that attempted to link bend-
ing rigidities to molecular properties did not provide in-
formation on κ̄; moreover, the results for κ were not con-
sistent with each other. Therefore uncertainties prevail
and these persist also because internal checks for pre-
sented rigidities are rarely provided. As a result, there
exists no accepted molecular level theory that convinc-
ingly links molecular characteristics to both mechanical
parameters of the interfaces (κ and κ̄). Notably, the miss-
ing information for κ̄ is remarkable as its magnitude and,
in particular, its sign are fundamental to the understand-
ing of microemulsions.

The primary obstacle in establishing a molecular model

for determining bending rigidities is the requirement of
curving the interface at fixed chemical potentials. In
this letter, we propose an elegant protocol with inter-
nal checks to find these rigidities. We consider interfaces
with scale invariant curvature energies and illustrate the
protocol for tensionless, balanced liquid-liquid (L/L) in-
terfaces. In line with experimental findings, we report
the existence of a sign switch for κ̄ which triggers a phase
transition from planar to sponge-like phases in middle-
phase microemulsions. We focus on the role of the inter-
action parameter which in strong segregation has a large
value and for weak segregation a small value; further,
we elaborate on the role of the molecular weights of the
solvents and that of the amphiphile.

Experiments, simulations, and calculations [11–17] re-
viewed above have major disadvantages and ambiguities
because the systems featured too many complications.
We examine a tensionless balanced interface which still
is highly relevant to middle-phase microemulsion systems
wherein oil and water are separated by a surfactant film
with extensive areas and often a complex interface topol-
ogy. Our focus on tensionless (interfacial tension γ = 0)
balanced (spontaneous curvature J0 = 0) L/L interface
avoids the complications of a finite Laplace pressure (i.e.
∆PL = 0) when imposing some interfacial curvature.
Such a model is readily implemented in the Scheutjens-
Fleer Self-Consistent Field theory (SF-SCF) for molecu-
larly inhomogeneous systems. We can consider this ide-
alized system in three different geometries with scale-
invariant curvature energies. The latter is essential, as
it allows for an analysis in the grand canonical ensemble
(µ, V, T ), which opens a convincing route to estimate the
rigidities: (i) A spherically curved droplet with ∆PL = 0
is used to find 2κ + κ̄; (ii) A minimal Im3m surface (by
construction has ∆PL = 0) is used to find κ̄; (iii) A min-
imal torus interface is used to find κ also for conditions
that ∆PL = 0.

We note that the route to obtain rigidities of balanced
tensionless L/L interfaces shows similarities but also im-
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portant differences from the symmetric freely dispersed
lipid bilayers [18]. For bilayers, we could use the Im3m
cubic phase and the spherical vesicle to find κ̄ and 2κ+κ̄,
respectively. The cylindrically curved vesicle could be
used to obtain κ in two ways: (i) As the number of lipids
per unit area is found to be a constant (i.e., not a function
of the radius R of the cylindrical vesicle), κ was found
from the excess Helmholtz energy per unit length, Fσc ,
i.e., κ = RFσc /π; (ii) Realizing that the grand poten-
tial of the cylindrical vesicle per unit length Ωc is split
up equally into bending energy and stretching energy, κ
is also found from (half) the grand potential density per
unit length, i.e. κ = RΩc/(2π). However, for the tension-
less balanced L/L interface, curved in cylindrical geome-
try with ∆PL = 0, κ can neither be computed from the
Helmholtz energy per unit length, nor from the grand po-
tential per unit length, as there is neither a conservation
of the number of surfactant per unit area nor a conser-
vation of the chemical potentials of the molecules of the
system, cf. Figs. (1c) and (1d) shown below. Impor-
tantly, in the L/L interface, we do not find a coincidental
equal splitting of curvature and tension energies.

Following Helfrich, by expanding the interfacial tension
(γ) in mean curvature (J = 1/R1 + 1/R2) and Gaussian
curvature (K = 1/R1R2), with R1, R2 being principle
radii of curvature as

γ(J,K)− γ(0, 0) = −κJ0J +
1

2
κJ2 + κ̄K, (1)

we identify γ(J,K) as the appropriate characteristic
function that carries the bending information for curving
the interface at constant chemical potentials [19]. This
expansion is the starting point for our analysis of in-
terfacial equilibrium properties, as it appears, refer Fig.
(1d), for the balanced L/L interface, we find curved in-
terfaces that exist at chemical potentials equal to that of
the ground state (tensionless balanced planar interfaces)
not only for the surfactant but also for the two solvents.
Note, that in this system, both γ(0, 0) = 0 and J0 = 0
and Eqn. (1) simplifies to γ(J,K) = 1

2κJ
2 + κ̄K.

Within SF-SCF framework, extremizing the mean field
free energy for a molecularly inhomogeneous system pro-
vides both structural and accurate thermodynamic in-
formation [18, 20–22]. We have implemented a coarse-
grained molecular model in which there are two types
of spherically symmetric segments A and B. These seg-
ments are used in two solvents, each with length n, An
and Bn forming the two liquid phases α and β, respec-
tively, and in a diblock copolymer composed of blocks of
equal length N , ANBN . This approach requires molec-
ular partition functions, which are evaluated within a
lattice considering the molecules as freely jointed chains.
Accordingly, segments fit on lattice sites. The lattice
sites are organized as homogeneously curved- or planar
layers. Driven by the segregation between the segments,
an interface develops on which the lattice geometry im-
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FIG. 1. (a) Volume fraction distribution and (b) Lateral pres-
sure distribution (in kBT/b

3) in a planar tensionless interface.
(c) Area per surfactant molecule (Γ) [in units b2] and (d)
Chemical potential of surfactant (µ ≡ µs) [in units of kBT ] as
a function of interface curvature as indicated for systems with
∆PL = 0. Surfactant A30B30, solvents, A4 and B4. χ = 0.6

poses the curvature. Segment density gradients can only
develop in the direction perpendicular to such interface,
as a mean field approximation is implemented in lattice
layers ‘parallel’ to the interface. In the absence of density
gradients, the model is equivalent to the Flory-Huggins
theory. There is just one Flory-Huggins interaction pa-
rameter (χ) between monomers A and B. We choose a
value slightly above the critical point of the binary sol-
vent (χcr = 2/n). Below the minimum value used for n is
4, and the interaction is chosen between χ = 0.52 - 0.68
(for more details on method and model refer supplemen-
tal material [23]).

Volume fraction profiles, ϕ(z), and the lateral pressure
distribution, p(z) = −ω(z), with ω as the grand potential
density, are presented for the default planar tensionless
L/L interface, in Figs. (1a) and (1b). Here, z ≡ z/b
is the dimensionless normal coordinate. In Fig. (1a)
we see that the two liquids give a Van der Waals-like
profile and the accumulated copolymers have their blocks
on corresponding sides of the interface. The pressure
profile p(z), see Fig. (1b), has a negative excursion at the
interface due to the contribution from the L/L interface
and positive ‘wings’ on either side of the interface due
to the overlap of copolymers in brush-like configuration.
From earlier work [24] we know that γ = −

∑
z p(z) and,

that the second moment of the pressure distribution with
respect to the Gibbs plane (Rg) provides a direct estimate
of κ̄ =

∑
−(z − Rg)2p(z). The latter relation proved

useful for the evaluating κ̄ of lipid bilayers, and presents
a strong test for alternative, more elaborate routes to
obtain the same quantity.

Similar as for lipid bilayers, an independent alterna-
tive route for evaluating κ̄ makes use of three-gradient
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FIG. 2. Volume fraction distribution of α−phase from 3D
SCF calculation of interface modeled as Im3m cubic phase.
1/8 of a unit cell is shown in (a) 8 unit cells are shown for
visualization in (b). Schematic illustration of an interface
in torus shape is shown in (c). Volume fraction distribution
of α−phase from 2D SCF calculation of minimal torus in a
cylindrical lattice is shown in (d). The molecular model is
similar as in Fig. 1. Color scale from blue to red is 0.2 − 0.8
for all contours.

SCF computation as shown in Fig. (2a), where on all six
faces of the elementary box, Neumann boundary condi-
tions apply; the elementary box is 1/8th of a unit cell
of an Im3m phase, 8 unit cells are shown in Fig. (2b).
When equal amounts of A and B are present in the sys-
tem, the interface splits the volume into two identical
sub-volumes (phase α and β) while J = 0 along the sur-
face and ∆PL = 0. As soon as the copolymers are added,
such that the chemical potential of all molecular species
is equal to the corresponding values of the planar tension-
less system, we lie within an (µ, V, T )-ensemble; thus, the
grand potential, Ω = F −

∑
j µjnj , is the characteristic

function, and Ω = κ̄
∫
M
KdA. Using Gauss-Bonnet the-

orem for compact, boundary-less Riemann manifold, the
integral of curvature over the area can be evaluated as
−8π [25, 26]. Thus, the grand potential for the unit cell,
Ω = −8πκ̄. Hence, from the scale-invariant grand poten-
tial Ω directly follows κ̄. The result is consistent with the
second moment over the pressure profile (see Tab. (1) in
supplemental material [23]).

The procedures to evaluate κ are more involved. In
Figs. (1c) and (1d), we have presented typical results
for spherically and cylindrically curved interfaces when
∆PL = 0 as a result of the adsorption of the copoly-
mers. In Fig. (1c) we show the area per copolymer at
the interface (inverse of adsorbed amount) and in Fig
(1d) the corresponding chemical potentials as a func-
tion of the curvature J . In Fig. (1d) we notice that
the chemical potentials remain constant upon bending in
case of spherical curvature. This means that in this ge-

ometry bending is performed in the (µ, V, T )-ensemble.
The reason why the system can maintain its chemical
potentials upon bending of the interface is traced to the
known fact that integrating Eqn. (1) over the area,
Ω =

∫
M
γ(J,K)dA = 4π(2κ + κ̄), is a constant irre-

spective of the size of the spherical droplet showing scale
invariance.

Now an indirect route is available to compute κ,
namely from combining the total curvature energy from
the spherical droplet with the Gaussian bending modu-
lus κ̄ found above. Ideally, we would like to validate this
indirect route with a direct estimate.

Again, as in the cylindrical geometry, neither the ad-
sorbed amount of surfactant, cf. Fig. (1c), nor the corre-
sponding chemical potential, cf. Fig. (1d), is conserved,
and we cannot use this geometry to obtain κ. A direct
route to evaluate the mean bending modulus is still possi-
ble using a system that features a minimal torus, as illus-
trated in Fig. (2c). Within SF-SCF this is realized using
a two-gradient (r, z) cylindrical lattice. A typical result
is presented in Fig. (2d) as a density contour plot in
the (r, z) cross-section. From Gauss-Bonnet theorem, as
the torus has genus g = 1 the integral

∫
M
KdA vanishes.

Moreover, the so-called Willmore energy of the torus has
contribution only from mean curvature, W = 1

4

∫
M
J2dA.

In 1965, T.J. Willmore conjectured that the Willmore
energy (W ) of a smooth torus immersed in 3D space is
always greater than or equal to 2π2 [27]. This conjec-
ture was proved by Marques and Neves in 2012 [28]. The
Willmore energy reaches its minimum when the radius
of revolution is

√
2 times the radius of the generating

circle, as shown in Fig. (2d). By integrating the Hel-
frich equation for the toroidal configuration with mini-
mal Willmore energy, we obtain the grand potential for
torus as, Ωt = 1

2κ
∫
M
J2dA = 2κW = 4π2κ.

Now the protocol boils down to generating this min-
imal torus in SF-SCF while adding the copolymer such
that ∆PL = 0. It occurs that in this case, the system con-
verges with all its chemical potentials equal to that of the
planar tensionless interface and lies within the (µ, V, T )-
ensemble. Similar as in the droplet case this result is
traced to the scale invariance, in this case of the mini-
mal Willmore energy. Its grand potential gives a direct
estimate of κ = Ωt/4π

2.
The values found for κ by the direct route and indirect

route are congruent, proving that there is complete con-
sistency in obtaining the bending rigidities, using scale-
invariant surfaces, for tensionless balanced L/L interfaces
[23].

As we have established the molecular link for bending
rigidities, we now present in Fig. (3) the chain length
dependence of the bending rigidities in the regime where
N > n. The trends support the results from simulations
[16, 17, 29]. While alluring to conclude that bending
rigidities have a linear dependence on the chain length
of the surfactants, results in regime n ≈ N are contra-
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FIG. 3. Chain length dependence of bending rigidities. (a)
and (b) N > n Regime: Chain length of bulk phases fixed
(A4, B4), surfactant chain length is varied (ANBN , where
20 < N < 50; 0.6 < χ < 0.7).

dicting this observation and do not show a similar linear
dependence [see supplemental material [23] Fig. (1)]. It
is observed that the surfactant chain length dependence
of rigidities is strongly influenced by solvent chain length
and interaction parameter between monomeric units, an
important effect which has not been addressed in previ-
ous works [9–17]. A thorough analysis of the magnitude
of κ is, however, beyond the scope of the present letter
and will be presented elsewhere.

Moving from the regime where the solvent length is
smaller compared to the surfactant block length, n < N ,
to the regime where the solvent length is comparable to
that of the surfactant, we observe that κ̄ is of opposite
sign (cf. Fig. (3) above and Fig. (1) of supplemental
material [23]). Such a sign switch is of exceptional in-
terest, as it addresses a topological phase transition in
microemulsions to be achieved in two ways: (1) by tun-
ing the interaction parameter for fixed solvent and sur-
factant lengths and (2) by tuning solvent length for fixed
surfactant length and ∆χ = χ− 2/n.

In Fig. (4a) the dependence of both κ and κ̄ are shown
for surfactant block length of N = 20 as a function of a
measure of closeness to the critical point of the binary
solvent ∆χ. The Gaussian bending modulus, κ̄, switches
from negative to positive when moved towards weak seg-
regation; this transition occurs earlier in higher n (dashed
line) for fixed N .

A similar effect can also be achieved by tuning the
surfactant chain length for a given solvents chain length
and interaction energy (∆χ). Experimentally, one can
reach weak segregation by the addition of a suitable co-
solvent which diminishes the difference between the two
primary solvents.

A summary of results, obtained by tuning N , is pre-
sented as a ‘phase diagram’ in Fig. (4b). The two govern-
ing parameters, i.e., block length of the copolymer and
the length of the solvents are on the x− and y−axis, re-
spectively. The interaction parameter is chosen as ∆χ.
By tuning the surfactant length for given interactions
(∆χ) and solvent chain length, κ increases and κ̄ de-
creases monotonically, also showing a sign switch at the
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FIG. 4. (a) Gaussian bending modulus (blue axis) κ̄ [in units
of kBT ] and mean bending modulus (red axis) κ [in units of
kBT ] as a function of ∆χ (∆χ = χ − 2/n). Surfactants are
modeled as ANBN . α−phase is modeled as An and β−phase
is modeled as Bn. [solid line: n = 4, dashed line: n = 6]
(b) Phase diagram in n and N coordinates for fixed ∆χ as
indicated. The sign and magnitude (in units of kBT of the
rigidities are indicated.

solid lines.

These results imply the tendency of the interface to
remain planar on average when n << N . This result is
contrasted with the situation when the length of the sol-
vent molecules is increased to be similar, n ≈ N , or even
larger than that of the copolymer, n > N ; κ̄ becomes pos-
itive in this regime while κ is small but positive. For large
n, we have κ̄ > 0; 0 < κ < 1. These features are con-
sistent with a sponge phase (Winsor III) [4] which grows
in importance with reducing χ. Stable but very flexible,
and strongly fluctuating lamellar phases (as κ̄ < 0 and
0 < κ < 1) are observed as N is increased for fixed n,
whereas for very large N , κ is > 1, and we enter a region
where the fluctuations of the interface are weak, crossing
the dashed lines, as shown in Fig. (4b).

We have linked molecular characteristics to bending
rigidities for surfactant-covered L/L interfaces. Using
surfaces with scale-invariant curvature energies is embel-
lished as an elegant route to determine κ and κ̄ unam-
biguously; this route cautiously exploits the tensionless
state of the interfaces and avoids the linear term in cur-
vature. Large deviations from these constraints imply
the loss of the microemulsion middle-phase in favor of
emulsions with oil-in-water or water-in-oil droplets; how-
ever, understanding the effects of small deviations is vi-
tal, as it is a prerequisite for any detailed comparison
with experiments. The current analysis provides a nat-
ural starting/reference point to generalize for molecular
asymmetry, spontaneous curvature and finite tension of
the interfaces.

This work is part of an Industrial Partnership Pro-
gramme, ‘Shell/NWO Computational Sciences for En-
ergy Research (CSER-16)’, of the Foundation for Funda-
mental Research on Matter (FOM), which is part of the
Netherlands Organisation for Scientific Research (NWO).
Project number: 15CSER26. We are indebted to T. E.
Kodger for helpful discussions.
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