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1 Introduction

This document reports on the Framework to Relate / Combine Modeling Languages and Tech-
niques of Working Group1 on Foundations of the ICT COST Action IC1404 Multi-Paradigm
Modelling for Cyber-Physical Systems (MPM4CPS). It first presents an ontology of Cyber Physi-
cal Systems in chapter 2 and then an ontology of Multi-Paradigm Modeling in chapter 3. Then,
these ontologies are combined to define an ontology of Multi-Paradigm Modeling for Cyber
Physical Systems presented in chapter 4. Finally, a number of megamodel examples are pre-
sented in chapter 6 that instantiate the core ontologies and make use of the catalog of languages
and tools individuals.

The work of working group 1 on foundations revealed that the dependencies between the
framework targeted in this report and the state-of-the-art report in form of deliverable D1.1
(67) was much more tight than initially expected. To avoid capturing some content of the state-
of-the-art report also in a redundant form in the ontologies of the framework of this report, it
was decided instead to include the relevant information in the ontologies and extract it from
there automatically for generating the state-of-the-art report.

Figure 1.1: Overview of the structure of the MPM4CPS ontology

In figure 1.1, the structure of the framework and its elements in form of the different ontologies
and its instances is presented.

The first column depicts the framework and its ontologies as presented in this report. This in-
cludes the ontology of Cyber Physical Systems presented in chapter 2, the ontology of Multi-
Paradigm Modeling presented in chapter 3 and the combined ontology of Multi-Paradigm
Modeling for Cyber Physical Systems presented in chapter 4.

The Glossary of Terms for Cyber Physical Systems presented in the report on the State-of-the-
art on Current Formalisms used in Cyber-Physical Systems Development covered by deliver-
able D1.1 (67) is extracted automatically from these ontologies and the contained concepts
defining the framework.
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1. Introduction

In the second column, the catalog of modeling languages and tools that is an instance of the
MPM4CPS ontology presented in the report on the State-of-the-art on Current Formalisms
used in Cyber-Physical Systems Development covered by deliverable D1.1 (67) is depicted. The
catalog of that deliverable will be automatically derived from this instance such that ontology
and instances can be kept consistent with only minimal coordination efforts.

In the third column, some examples for CPS employing MPM in form of mega models are de-
picted that are presented in detail in the Catalog of Megamodel Examples in chapter 6. As
shown in the figure, these examples employ the languages and tools listed in the report on
the State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development and
covered by deliverable D1.1 (67), and also instantiate the MPM4CPS ontology.

1.1 Ontology Development Approach

To define the ontologies of WG1, we have carried out a domain analysis process (83). The do-
main analysis process can be defined as the process of identifying, capturing and organizing
domain knowledge about the problem domain with the purpose of making it reusable when
creating new systems. A domain is usually defined as an area of knowledge or activity charac-
terized by a set of concepts and terminology understood by practitioners in that area. In our
context, the domains of consideration are the domains of CPS and MPM, and we aim to derive
and model the concepts of these domains. Figure 1.2 represents the common structure of do-
main analysis methods as it has been derived from survey studies on domain analysis methods.

Conventional domain analysis methods consist generally of the activities Domain Scoping and
Domain Modeling : Domain Scoping identifies the domains of interest, the stakeholders, and
their goals, and defines the scope of the domain. Domain Modeling is the activity for repre-
senting the domain, or the domain model. In our study the outputs of the domain modeling
process will be the set of ontologies for CPS and MPM as identified by figure 1.1.

The domain model can be represented in different forms such as ontological languages, object-
oriented language, algebraic specifications, rules, conceptual models etc. Typically, a domain
model is formed through a commonality and variability analysis to concepts in the domain.
A domain model is used as a basis for engineering components intended for use in multiple
applications within the domain.

One of the popular approaches for domain modeling is feature modeling. A feature is a system
property that is relevant to some stakeholder and is used to capture commonalities or discrimi-
nate between. A feature model is a model that defines features and their dependencies. Feature
models are usually represented in feature diagram (or tables). A feature diagram is a tree with
the root representing a concept (e.g., a software system), and its descendent nodes are features.
Relationships between a parent feature and its child features (or subfeatures) are categorized
as:

• Mandatory - child feature is required.

• Optional - child feature is optional.

• Or -at least one of the sub-features must be selected.

• Alternative (xor) - one of the sub-features must be selected

A feature configuration is a set of features which describes a member of an SPL. A feature con-
straint further restricts the possible selections of features to define configurations. The most
common feature constraints are:

• A requires B - The selection of A in a product implies the selection of B.

• A excludes B - A and B cannot be part of the same product.
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Figure 1.2: Common structure of domain analysis methods (adopted from: (110))

Feature modeling is a domain modeling technique, which is widely used to model the com-
monality and variability of a particular domain or product family. Another domain modeling
technique that is used in software engineering is ontology modeling. A commonly accepted
definition of an ontology is “an explicit specification of conceptualization” (73). An ontology
represents the semantics of concepts and their relationships using some description language.
Basic feature modeling is also a concept description technique that focuses on modeling both
the commonality and variability. It has been indicated that feature models can be seen as views
on ontologies (48).

To develop the WG1 ontologies presented in details in the following chapters, the aforemen-
tioned techniques have been used. For the CPS ontology, feature modeling has been used
while for the MPM ontology, modeling with the W3C OWL language and its tool Protege has
been used. In the next year, it is planned to also integrate the CPS ontology into the Protege
OWL technical space.
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2 Ontology of Cyber-Physical Systems

2.1 State-of-the-art

Cyber-Physical Systems (CPS) are systems that integrate the physical world with the virtual,
computational world. The components include software systems, communications technol-
ogy, and sensors/actuators that interact with the real world. CPSs can provide an innovation
for various kinds of industries, creating entirely new markets and platforms for growth. Ex-
ample application domains of CPS include healthcare, transportation, precision agriculture,
energy conservation, environmental control, avionics, critical infrastructure control (electric
power, water resources, and communications systems), high confidence medical devices and
systems, traffic control and safety, advanced automotive systems, process control, distributed
robotics (telepresence, telemedicine), manufacturing, and smart city engineering. The positive
economic impact of any one of these applications areas would be enormous.

CPS requires transdisciplinary approaches merging different engineering disciplines. As such,
an important challenge of CPS is to conjoin abstractions of the various engineering disciplines
and the models for physical processes including differential equations, stochastic processes,
etc. However, currently there is no common design and modeling approach yet to all the in-
volved disciplines in CPS. For the design of CPS actually engineers from various disciplines
need to be able to explore system designs collaboratively, allocating responsibilities to soft-
ware and physical elements, and analyzing trade-offs between them. Recent advances show
that coupling disciplines by using co-simulation will allow disciplines to cooperate without en-
forcing new tools or design methods. TODO: Develop the need for MPM?

CPS builds on embedded systems, which are a self-contained systems that incorporates ele-
ments of control logic and real world interaction. An embedded system is typically a single
device, while CPSs include many constituent systems. Further, embedded systems are specifi-
cally designed to achieve a limited number of tasks, often with limited resources. A CPS in con-
trast operates at a much larger scale, potentially including many embedded systems or other
CPS elements including human and socio-technical systems. It is expected that further devel-
opments in engineering will improve the link between computational and physical elements
by means of intelligent mechanisms, thereby further increasing the impact of cyber-physical
systems.

2.2 Ontology

After a domain analysis to CPS we have derived the feature model as shown in figure 2.1. A CPS
system can be designed together or separately. In the latter case the various different compo-
nents which were separately designed need to be integrated. A CPS has different component
types which can be computational or physical. Further, a CPS has a network which can have
different configurations and protocols.

Interoperability relates to how well the different components can operate together. Here we can
have syntactic or semantic interoperability. Since both are required in CPSs these two features
are considered mandatory and not alternative. Components in a CPS can be of different same
type or different types thereby distinguishing between homogenous vs. heterogeneous CPSs.
The final feature in the feature model presents the various application domains in which CPSs
can be applied including manufacturing, healthcare, transportation etc.
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Figure 2.1: Feature Model of a CPS representing common and variant properties
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2. Ontology of Cyber-Physical Systems

2.2.1 Ontology Diagram

In this section we describe the metamodel (TODO: convert to OWL) for CPS which represents
the concepts and their relations. The metamodel is shown in figure 2.2. A CPS system consists
of CPS Components that interact using one or more Communication Protocols that run on a
Communication Network. CPS Components interact with other components. A CPS Compo-
nent is a Computational Component or Physical Component. A computational component is a
Software Component or Hardware Component that can include zero or more Sensors and Ac-
tuators. Sensors monitor the Physical Component while Actuators can affect them. Essentially,
sensors take a mechanical, optical, magnetic or thermal signal and convert this into voltage and
current. This provided data can then be processed and used to define the required action. Both
computational components and physical components could have a virtual surrogate. Virtual
entities can have different representations such as 3D models, avatars, objects or even a social
network account. Some Virtual Entities can also interact with other Virtual Entities to fulfill
their goal.

Figure 2.2: Basic concepts of CPSs

2.2.2 Architecture

The architecture of a CPS represents the gross level structure of the system consisting of cy-
ber physical components. The current architecture design approaches for CPSs seem to be
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primarily domain-specific and no standard reference architecture has been defined yet. The
development of an ontology for CPS also paves the way and supports the efforts for design-
ing a reference architecture. A CPS reference architecture defines the generic structure of CPS
architectures for particular application domains.

Figure 2.3 presents a layered view of a CPS architecture. Hereby, a layer simply represents a
grouping of modules that offers a cohesive set of services. The reference architecture consists
of four layers including device layer, network layer, CPS layer, application layer, and business
layer. The CPS component layer includes the capabilities for the CPS components in the net-
work. The network layer provides functionality for networking connectivity and transport ca-
pabilities. The Services layer consists of functionality for generic support services (such as data
processing or data storage), and specific support capabilities for the particular applications.
The application layer contains the applications. The Security layer is a side-car layer relating
to the other layers, and provides the security functionality. Finally, the management layer sup-
ports capabilities such as device management, local network topology management, and traffic
and congestion management.

Figure 2.3: Layered view for CPS architectures

The reference architecture can be used to derive concrete application architectures. A con-
crete architecture defines the boundaries and constraints for the implementation and is used
to analyse risks, balance trade-offs, plan the implementation project and allocate tasks.
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3 Ontology of Multi-Paradigm Modeling

3.1 State-of-the-art

Developing nowadays complex systems with MPM requires Global Model Management
(GMM) (21; 58) to ensure that the models of different subsystems, of different views and
of different domains are properly combined, even though the models might reside at different
levels of abstraction. GMM must also ensure that the development activities that operate
on the models are properly coordinated such that the models lead to a proper system as a
whole, where the different elements and aspects covered by the different models are correctly
integrated and are consistent with each other.

A classification of model integration problems and fundamental integration techniques has
been introduced in (68). It highlights the techniques of decomposition and enrichment, which
characterize two orthogonal dimensions of development where the system is decomposed into
subsystems and domains (horizontal dimension) and into a set of models with increasing level
of details (vertical dimension). This requires coordinating all activities operating on the mod-
els across these dimensions to ensure their consistency. However, inconsistency management
goes beyond simply identifying and resolving inconsistencies, since as pointed out in (60), in-
consistencies may need to be tolerated at some stage of development. Therefore, living with
inconsistencies must be manageable and consequently, an approach is required to detect, re-
solve, but also tolerate inconsistencies for a considerable amount of time during development.

The development activities for nowadays complex systems and in particular CPSs encompass
multiple domains and teams, where each team is using its own set of modeling languages thus
requiring proper integration of these languages. Indeed, it has been shown that using a single
language to cover all domains would lead to very large monolithic languages not easily cus-
tomizable for the development environment and tools needed by development organizations.
These considerations lead to Multi-Paradigm Modeling (MPM) (114), which advocates the
combination of reusable modular modeling languages instead of large monolithic languages.
Hence, GMM must support integrating models and modeling languages with appropriate mod-
ularity, but also coordinating all activities operating on the models and specified as model oper-
ations / transformations. The execution of these model operations has to be scalable for being
able to handle large models. This requires incrementality, where only the operations impacted
by a model change are re-executed, thus avoiding the effort to recompute entire models, as in
the case of incremental code compilers.

GMM is also known as modeling-in-the-large, which consists of establishing global relation-
ships (e.g. model operations that generated one model from other models) between macro-
scopic entities (models and meta models) while ignoring the internal details of these enti-
ties (21). Mega modeling (22; 58) has been introduced for the purpose of describing these
macroscopic entities and their relations. Nowadays only preliminary approaches exist that
provide ad hoc solutions for fragments of the sketched problem and a solid understanding of
the underlying needs including new foundations to address this problem as proposed to be
developed by WG1 of MPM4CPS. In particular, the current approaches do at most offer some
modularity and/or incrementality for a single aspect as modeling languages or model opera-
tions. However, support for handling complex modeling landscapes as a whole in a modular
and incremental fashion as required for the large-scale problems that exist in practice is not
offered so far.

In the following, we will first look at existing solutions that address the construction and exe-
cution of I) models and modeling languages, II) model operations, and III) mega models.
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3.1.1 Models and Modeling Languages: Construction and Execution

The construction of models and modeling languages is addressed in the current approaches
in three main ways via (1) linking of models and model elements, (2) model interfaces and (3)
meta model composition.

3.1.1.1 Links

All approaches make use of some kind of trace links between models and their model elements
to integrate models. In this project, we adopt the definitions of traceability proposed by the
Center of Excellence for Software Traceability (CoEST) (CoEST). A trace link is "...a specified as-
sociation between a pair of artifacts, one comprising the source artifact and one comprising the
target artifact...". Following the CoEST again, trace links are specialized into traces between the
vertical and horizontal dimensions. Hence, a vertical trace "...links artifacts at different levels
of abstraction so as to accommodate lifecycle-wide or end-to-end traceability, such as from re-
quirements to code...". An horizontal trace links "...artifacts at the same level of abstraction, such
as: (i) traces between all the requirements created by ’Mary’, (ii) traces between requirements that
are concerned with the performance of the system, or (iii) traces between versions of a particular
requirement at different moments in time".

There is a plethora of approaches (e.g., (AMW; Epsilon; 59; 92; 77; 108; 28) (MoTE)) making
use of trace links to integrate models. The Atlas Model Weaving (AMW) language (AMW) pro-
vided one of the first approaches for capturing hierarchical traceability links between models
and model elements. The purpose was to support activities such as automated navigation be-
tween elements of the linked models. In this approach, a generic core traceability language is
made available and optionally extended to provide semantics specific to the meta models of
the models to be linked. Similarly, the Epsilon framework (Epsilon) provides a tool (ModeLink)
to establish correspondences between models. MegaL Explorer (59) supports relating hetero-
geneous software development artifacts which do not necessary have to be models or model
elements using predefined relation types. SmarfEMF (92) is another tool for linking models
based on annotations of Ecore meta models to specify simple relations between model ele-
ments through correspondence rules for attribute values. Complex relations are specified with
ontologies relating the concepts of the linked languages. The whole set of combined models
is converted into Prolog facts to support various activities such as navigation, consistency and
user guidance when editing models. The CONSYSTENT tool and approach (77) make use of a
similar idea. However, graph structures and pattern matching are used to represent the com-
bined models in a common formalism and to identify and manage inconsistencies instead of
Prolog facts as in the case of SmartEMF.

There are also a number of approaches such as (108) and (28) that build on establishing links
between models through the use of integration languages developed for a specific set of inte-
grated modeling languages, where the integration language embeds constructs specific to the
linked languages. This is also the case for model weaving languages extending the core AMW
language. However, AMW has the advantage of capturing the linking domain with a core com-
mon language. Other means for linking and integrating models are Triple Graph Grammars
(TGG) such as the Model Transformation Engine (MoTE) tool (MoTE), which similarly requires
the specification of some sort of integration language (correspondence meta model) specific
to the integrated languages. However, an important asset of this approach is that it automati-
cally establishes and manages the traceability links and maintains the consistency of the linked
models (model synchronization) in a scalable, incremental manner. Finally, in (107; 105)(20),
an approach is presented to automatically create and maintain traceability links between mod-
els in a scalable manner. While the approach focuses on traceability management rather than
model integration, compared to integration languages, it relies on link types defined at the
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model level (and not at the meta model / language level), thus avoiding the need to update the
integration language every time a new language must be integrated.

The comparison of these approaches shows that apart from the approach (107; 105)(20), all
approaches suffer from being dependent on the set of integrated languages, thus requiring to
better support modularity. Furthermore, only (MoTE)(107; 105)(20) supports automated man-
agement of traceability links.

3.1.1.1.1 Interfaces

In addition to links, a few more sophisticated approaches (e.g., (89; 78; 82)) introduce the con-
cept of model interface (int. column in Table ??) for specifying how models can be linked.
In (89), the Analysis Constraints Optimization Language (ACOL) is proposed, which has been
designed to be pluggable to an Architecture Description Language (ADL). A concept of inter-
face specific to ACOL is included so that constraints can refer to these interfaces to relate to the
model elements expected from the ADL. SmartEMF (78; SmartEMF) proposes a more generic
concept of model interface to track dependencies between models and meta models and pro-
vide automated compatibility checks. Composite EMF Models (82; Composite EMF Models)
introduces export and import interfaces to specify which model elements of a main model
(body) should be exposed to other models (i.e. are part of the public API), and which elements
of a body model are to be required from an export interface.

However, these approaches are only preliminary and need to be enriched to cover a larger num-
ber of model integration use cases such as for example, specifying modification policies of the
linked model elements required to ensure the models can be kept consistent. They also lack
integration into GMM.

3.1.1.1.2 Meta Model Composition

Some approaches (e.g., (Kompren; Kompose; 57; EMF Views) (25)) consider the construction of
view meta models in terms of other meta models or language fragments. In (57), an approach
implemented in the Gaspard2 tool (Gaspard2) is presented where meta models are artificially
extended for the purpose of combining independent model transformations resulting in an
extended transformation for the extended meta models. In (24), a language and tool (Kom-
pren) (Kompren) are proposed to specify and generate slices of meta models via the selection
of classes and properties of an input meta model. A reduced meta model is then produced from
the input meta model. However the produced meta model must be completely regenerated
when the input meta model is changed. Such is the case for the Kompose approach (Kompose),
which on the contrary to Kompren proposes to create compound meta models, where a set of
visible model elements from each combined meta models is selected, and optionally related.
The EMF Views (EMF Views; 44) provides similar approach however without the need to dupli-
cate the meta model elements as opposed to Kompose and Kompren where a new meta model
is created. These virtual view meta models seem to be usable transparently by tools. Finally,
the Global Model Management language (GMM*)1 (25) provides means to specify and interpret
reusable language subsets as sets of constraints combined to form subsetted meta models. Like
for EMF Views, these reduced meta models can to some extent be used transparently by tools.

While each of these approaches provides interesting support for modular modeling languages,
their unification into a common formalism, the use of an explicit notion of a model interface
and their integration into GMM is lacking, except for subsetted meta models already integrated
within the GMM* language.

1We use * to distinguish this existing language and tool from the generic Global Model Management (GMM)
acronym.
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The execution of integrated models concerns the evaluation of the well-formedness constraints
of each combined model alone, but also of the combined models as a whole. To our knowledge,
no approach addresses the incremental checking of well-formedness conditions across the dif-
ferent language fragments of compound models. However, some approaches on incremental
constraints evaluation exist. In (23), changes on models are expressed as sequences of atomic
model operations to determine which constraint is impacted by the changes, so that only these
constraints need to be re-evaluated. In (EMF-IncQuery; 112), a graph-based query language
(EMF-IncQuery) relying on incremental pattern matching for improved performance is also
proposed. In (53), an approach is presented for incremental evaluation of constraints based
on a scope of model elements referenced by the query and determined during the first query
evaluation. This scope is stored into cache and used to determine which queries need to be
re-evaluated according for some model changes. In (72), this approach is extended for the case
where the constraints themselves may change besides the constrained models. Finally in (37),
an incremental OCL checker is presented where a simpler OCL expression and reduced con-
text elements set are computed from an OCL constraint and a given structural change event.
Evaluating this simpler constraint for the reduced context is sufficient to assert the validity of
the initial constraint and requires significantly less computation resources.

3.1.2 Model Operations: Construction and Execution

The construction of model operations is addressed in two ways in the literature. Most ap-
proaches combine model operations as model transformations chains (named (1) flow com-
position), where each chained transformation operates at the granularity of complete models.
In order to support reuse and scalability for complex modeling languages, which are defined by
composing them from simpler modeling languages, a few approaches have considered spec-
ifying model transformations as white boxes. Composed of explicit fine grained operations
processing model elements for a given context, these operations are reusable across several
model transformations (named (2) context composition).

3.1.2.1 Flow Composition Approaches

Formal United System Engineering Development (FUSED) (28) is an integration language to
specify complex relationships between models of different languages. It supports model trans-
formation chains, but only implicitly via execution of tools, without explicit representation of
the involved transformations and processed data. On the contrary, there is a plethora of ap-
proaches allowing the explicit specification and construction of model transformation chains
implementing a data flow paradigm. Such is the case of the AtlanMod Mega Model Manage-
ment (AM3) tool (AM3), for which the Atlas Transformation Language (ATL) (ATL) is used to
specify the model transformations. Besides, a type system has been developed (115), which
enables type checking and inference on artifacts related via model transformations. Another
similar but less advanced tool is the Epsilon Framework (Epsilon), which provides model trans-
formation chaining via ANT tasks. Wires (103) and ATL Flow (ATLFlow) are tools providing
graphical languages for the orchestration of ATL model transformations. The Formalism Trans-
formation Graph + Process Model (FTG+PM) formalism (93) implemented in the AToMPM (A
Tool for Multi-Paradigm Modeling) tool (AToMPM) provides similar functionality. However, it
has the advantage of also specifying the complete modeling process in addition to the involved
model transformations. This is achieved via activity diagrams coupled with model transfor-
mation specifications executed automatically to support the development process. Finally,
GMM* (25) also supports model transformation chaining, but through the specification of re-
lations between models of specific meta models that can be chained. One advantage of this ap-
proach is that automated incremental (re-)execution of the specified relations between models
is provided in response to received model change events. Incrementality of the execution of
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3. Ontology of Multi-Paradigm Modeling

the transformations is also made possible by the integration of the MoTE (MoTE) incremental
model transformation tool into GMM*.

However, while chaining model transformations offers some degree of modularity of model
transformation specifications, apart from GMM*, most approaches suffer from scalability is-
sues for large models, since the used transformation tools do not support incremental execu-
tion. In addition, the case where a generated model is modified by hand to add information
not expressible with the language of the original model(s) cannot easily be handled by these
approaches, since regenerating the model modified by hand will destroy the user-specific in-
formation. This need is better supported by context composition approaches.

3.1.2.2 Context Composition Approaches

A few approaches allow context composition of model operations. In (57) as mentioned
above, an approach is described to combine independent model transformations resulting
in extended transformations for corresponding extended meta models. In (51), an approach
is described for specifying the construction of view models using contextual composition
of model operations (derivation rules) encoded as annotations of queries of the EMF Inc-
Query (EMF-IncQuery) language. Traceability links between view and source model elements
are automatically established and maintained. The use of EMF IncQuery natively provides
incremental execution of the derivation rules to synchronize the view model with the source
model. Some views may be derived from other views thus allowing flow composition as chains
of view models. This approach achieves results similar to TGGs supporting incrementality,
however with the drawback of being unidirectional. Similarly, but with bi-directionality the
MoTCoF language (106) allows for both flow and fine grained context composition of model
transformations. An advantage over (57) however is that model transformations are used as
black boxes without the need to adapt the transformations according to the context.

As can be seen, most approaches only support flow type modularity for model operations with
batch execution except for the GMM* language thanks to its integration of MoTE providing
incremental execution. This will not scale and lead to information losses in case of partial
model information overlap. Only a few approaches allow context modularity, which better sup-
ports incremental application where only the impacted operations can be re-applied following
a change in order to avoid the cost of re-computing complete transformations. Such is the
case of MoTCoF, which theoretically permits incremental execution, but a concrete technical
solution is still lacking for it.

3.1.3 Mega Models and other Global Model Management Approaches

Two strands can be identified for GMM. A first one makes use of (1) model integration lan-
guages, which are defined for a specific set of integrated modeling languages and tools mean-
ing that the integration language must be updated every time a new language or tool is used.
The second strand attempts to solve this problem by making use of (2) mega models providing
configurable global model management.

3.1.3.1 Integration Language and other Approaches

The CyPhy (108) used in the GME modeling tool (GME) and FUSED (28; FUSED) are examples
of model integration languages. But as mentioned above, these languages must be adapted as
soon as a different set of integrated languages and tools must be used, thus requiring highly
skilled developers. Integration languages are therefore not practical.

Open Services for Lifecycle Collaboration (OSLC) (OSLC) provides standards for tool integra-
tion through the Web. Many specifications are available for change management, resource pre-
views, linked data, etc. It builds on the W3C linked data standard, which aims at providing best
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practices for publishing structured data on the Web based on the W3C Resource Description
Framework (RDF). RDF is a model for data interchange on the Web where data is represented
as graphs. However, OSLC is more services (and tools) oriented and inherits the problems of
linked data, which is specific to the Web and therefore does not separate the concerns of data
representation and persistence as opposed to Model-Driven Engineering (MDE) where an ab-
stract syntax is used independently of the way the data is stored.

Another approach making use of these standards is (77) and is implemented in a the CONSYS-
TENT tool used to identify and resolve inconsistencies across viewpoints due to information
overlapping. The information of all models involved during development is captured in a com-
mon RDF graph. The approach relies on a human2 to specify patterns representing seman-
tic equivalence links (semantic connections) across the graph models. Inconsistency patterns
based on these semantic connections are continuously checked over the RDF model for poten-
tial matches identifying inconsistencies. Means to automatically resolve inconsistencies are
under development. However, this approach necessitating the conversion of all models as a
RDF graph is not incremental and will not scale for large models.

3.1.3.2 Mega Models

In this second strand, mega models serve to capture and manage MDE resources such as mod-
eling languages, model transformations, model correspondences and tools used in modeling
environments. There are several mega modeling approaches as already mentioned. AM3 (AM3)
is one of the first initiatives where a mega model is basically a registry for MDE resources. Model
transformations are specified with ATL (ATL) and model correspondences with the Atlas Model
Weaving (AMW) language [2]. Similarly, FTG+PM (93) as mentioned above is also a mega mod-
eling language as well as MegaL Explorer (59) allowing to model the artifacts used in software
development environments and their relations from a linguistic point of view. The involved
software languages and related technologies and technological spaces can be captured with
linguistic relationships between them such as membership, subset, conformance, input, de-
pendency, definition, etc. Operations between entities can also be captured. The artifacts do
not need to be represented as models, but each entity of the mega-model can be linked to a Web
resource that can be browsed and examined. However, the language seems to be used mostly
for visualization providing a better understanding of the developments artifacts but cannot be
executed to perform model management. The aforementioned GMM* infrastructure (25) con-
sists of a mega modeling language inspired from (74). Meta models can be declared, as well as
relations between models of these meta models. In particular, synchronization relations can
relate models of two different meta models making use of the MoTE TGG engine (MoTE) to
transform or synchronize the models. As mentioned earlier, chains of model transformations
can be specified and executed incrementally in response to model change events and subsets of
modeling languages can be declared. GMM* is experimented within the Kaolin tool (26) mak-
ing use of complex and rich industrial languages such as AADL and VHDL thus challenging
GMM for realistic specifications.

However, most of these mega modeling approaches only cover to a certain degree the core in-
gredients of specifying MDE resources by means of meta models and model operations with
appropriate modularity and incrementality. Only fragments of the problem are solved. Fur-
thermore, all these mega modeling languages are monolithic and as a result, predefined mega
model fragments cannot be composed and reused to avoid rebuilding complete mega model
specifications from scratch for new projects. Among these mega modeling approaches, only
FTG+PM, GMM* and (107; 105) address the automated execution of mega models in response
to model changes or modeling events from the tool’s user interface. GMM* and (107; 105) pro-

2An automated method making use of Bayesian Belief Networks is also under study (76).
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vide incremental execution of mega models to some extent by re-evaluating only the relations
concerned with the detected model changes.

3.1.3.3 Semantic Integration

Multiformalism modeling

According to (96), multiformalism modeling is one of the three dimensions of the Computer
Automated Multi-Paradigm Modeling framework, established to allow the representation, the
analysis and the synthesis of intricate knowledge at various levels of abstraction, together with
multilevel abstraction and metamodeling. Multiformalism, Multiresolution, Multiscale Mod-
eling (M4) environments may provide (49) an important and manageable resource to fulfill the
needs for modeling and simulation of modelers that have to deal with complex systems, where
complexity derives from heterogeneity of components and relationships, multiple scales, mul-
tiple interacting requirements. Besides performance (or verification) oriented issues, multifor-
malism approaches may also deal with software architecture oriented issues, e.g. by integrating
UML as one of the formalisms to assist the development cycle of large, complex software sys-
tems (102): in general, literature proposes very popular dedicated transformational approaches
for computer automated or assisted software generation, that provide a formal framework to
support the steps that lead from a formal or semiformal specification to code, but in the rest of
this subsection the focus is on performance oriented approaches.

In multiformalism modeling many formalisms may be used simultaneously in a model. This
may or may not exploit compositionality in the modeling approach, as elements of the different
formalisms may coexist in the model, or the model may be composed of submodels written in
different (single) formalisms, or the different formalisms may be used in different steps of the
processing of the model, by means of model transformation or generation. A general introduc-
tion to these themes can be found in (94).

Metamodeling is an important resource for both performance oriented approaches (88)(113)
and software oriented transformation based tools, consequently metamodeling based multi-
formalism approaches can be considered a peculiar category. Another special category of ap-
proaches is constituted by the ones that deal with hybrid systems, that support multiformalism
with both continuous and discrete formalisms, and are thus capable of modeling natural sys-
tems in a better way (119). These approaches should be able to describe and solve jointly and
coherently differential equation like descriptions and state space based descriptions, for a same
complex system. While the problem has been popular in the 70s and 80s, there is currently a
renovated interest in it from the point of view of cyberphysical systems: the interested reader
can find specific general multiformalism approaches in (118), (15) and (16), that also provides
an overview of selected previous, classical literature.

Approaches

With reference to multiformalism approaches oriented to performance evaluation, a number
of different naive and structured approaches to the problem have been presented in literature
(a survey is provided in (9)). In the second group, the approaches have been implemented in a
number of different tools, with different backgrounds, such as SHARPE, SMART, DEDS, AToM,
Möbius, OsMoSys and SIMTHESys. These tools also differ in the solution strategy adopted for
the evaluation of models, and are designed with different purposes (e.g. some of them are
designed to be extensible, some for experimenting new formalism variants, some optimize the
solution process).

SHARPE (111) supports the composition by submodels of some given different formalisms,
solved by different solvers, but based on Markovian approaches. The composition consists
in the exchange of probability distributions between submodels. SMART (41)(42)(40) supports
the specification and solution, by simulation or approximation, of complex discrete-state sys-
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tems. DEDS (19) provides a common abstract notation in which submodels written in different
formalisms are translated. Möbius (104)(43)(47)(50) supports, by states and events superposi-
tion, a number of different formalisms (that can be extended by user provided code) and alter-
native solvers (that can be chosen by the modeler) in a very articulated modeling and solution
process.

Other approaches exploit, in different ways, metamodeling too. AToM (90)(52) exploits meta-
modeling to implement model transformations, used to solve models by its solver. OsMoSys
(62)(116)(63)(64)(70) and SIMTHESys (11)(13)(80)(79) use metamodeling to let different user
defined formalisms interact by founding them over common metaformalisms and using el-
ements and formalism level inheritance, and to implement different compositional mecha-
nisms: while OsMoSys implements ad hoc operators for parameters exchange between sub-
models, and integrates external solvers by means of orchestration and adapters, SIMTHESys
privileges the experimentation of user defined formalisms and embeds into formalism ele-
ments the interactions between different formalisms implementing multiformalism by arcs
superposition, allowing the automatic synthesis of proper solvers, according to the nature of
the involved formalisms (with no claim for their optimality): there is an explicit specification
of both syntax and semantics of every formalism element to allow high flexibility in the speci-
fication of custom, user defined formalisms. For more details, the reader may refer to (94), that
provides a more detailed analysis on multiformalism features and implementation, solution
processes, purposes, compositional and transformational mechanisms of these approaches.

Solution

Most of the approaches are backed up with state space analysis techniques. Both analytical and
simulation based methods are applied to perform the analysis, eventually with specific solu-
tions to cope with the state space explosion problem, such as folding, decomposition, product
forms solutions. The most common way is to directly generate the whole state space, with (e.g.
in Möbius or in (99)) or without (e.g. in SMART or in some SIMTHESys solvers) an intermediate
step of simple translation or more sophisticated transformation towards a specific intermedi-
ate representation, or by using partial state spaces exploiting modularity (e.g. in OsMoSys or in
some SIMTHESys solvers(18)), or by transformation (e.g. in AToM, or in (27)). Noticeable are
the approaches that exploit mean field analysis to cope with very large space states (e.g. (29) or
(38)).

Applications

The literature provides a conspicuous number of applications: here some significant examples
are provided. The effect of cyber exploits have on information sharing and task synchroniza-
tion have been studied in (91); performance evaluation of Service Oriented Architecture have
been studied in (1) and (81); cardiovascular system and its regulation has been studied, with
a hybrid approach, in (75); interdependencies in electric power systems have been studied in
(39); the ERMTS/ETCS European standard for high speed trains has been studied in (61); se-
curity attacks have been studied in (71); exceptions aware systems have been studied in (17);
effects of software rejuvenation techniques have been studied in (10); NoSQL systems have
been studied in (14). Multiformalism has been also applied as an implementation technique
to provide higher level tools or formalisms: in (101) a flexible, optimized Repairable Fault Tree
modeling and solution approach is presented; a performance oriented model checking exam-
ple is given in (12); an analysis framework for detecting inconsistencies in high level semantic
relationships between models has been developed in (100).
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3.2 Ontology Overview

This ontology captures the Multi-Paradigm Modeling Domain (MPM). It includes concepts for
the related modeling, linguistic and formal sub domains.

Figure 3.1 shows an overview of the MPM ontology. The details of each concept are provided in
the following subsections.

Figure 3.1: Overview of the MPM ontology

3.3 Domain Concepts

This ontology of MPM contains concepts divided into sub-domains as presented in the follow-
ing subsections.

3.3.1 Formal Domain Concepts

This class groups domain concepts that are related to the formal aspects of MPM.

3.3.1.1 Architecture

Subclass of:

• FormalSemantics (see section 3.3.2.14)

https://en.wikipedia.org/wiki/Systems_architecture

3.3.1.2 Behavioral

Subclass of:

• Architecture (see section 3.3.2.2)

«TODO: Provide rdfs:comment annotation assertion»

3.3.1.3 BehavioralConstraintLanguage

Subclass of:

• ConstraintLanguage (see section 3.3.2.9)

«TODO: Provide rdfs:comment annotation assertion»

3.3.1.4 Centralized

Subclass of:

• Deployment (see section 3.3.2.10)

«TODO: Provide rdfs:comment annotation assertion»
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3.3.1.5 Communication

Subclass of:

• Behavioral (see section 3.3.2.4)

Communication is the act of conveying intended meanings from one entity or group to another
through the use of mutually understood signs and semiotic rules.

3.3.1.6 ConstraintLanguage

Subclass of:

• FormalLanguage (see section 3.3.2.13)

«TODO: Provide rdfs:comment annotation assertion»

3.3.1.7 Deployment

Subclass of:

• FormalSemantics (see section 3.3.2.14)

The deployment of a mechanical device, electrical system, computer program, etc., is its as-
sembly or transformation from a packaged form to an operational working state. Deployment
implies moving a product from a temporary or development state to a permanent or desired
state.

3.3.1.8 Distributed

Subclass of:

• Deployment (see section 3.3.2.10)

«TODO: Provide rdfs:comment annotation assertion»

3.3.1.9 FormalLanguage

Subclass of:

• FormalDC (see section 3.3.1)

• Language (see section 3.3.2.16)

In mathematics, computer science, and linguistics, a formal language is a set of strings of sym-
bols together with a set of rules that are specific to it.

3.3.1.10 FormalSemantics

Subclass of:

• FormalDC (see section 3.3.1)

• Semantics (see section 3.3.2.19)

In programming language theory, semantics is the field concerned with the rigorous mathe-
matical study of the meaning of programming languages. It does so by evaluating the meaning
of syntactically legal strings defined by a specific programming language, showing the com-
putation involved. In such a case that the evaluation would be of syntactically illegal strings,
the result would be non-computation. Semantics describes the processes a computer follows
when executing a program in that specific language. This can be shown by describing the re-
lationship between the input and output of a program, or an explanation of how the program
will execute on a certain platform, hence creating a model of computation.
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3.3.1.11 Formalism

Subclass of:

• FormalDC (see section 3.3.1)

• Principle (see section ??)

In foundations of mathematics, philosophy of mathematics, and philosophy of logic, formal-
ism is a theory that holds that statements of mathematics and logic can be considered to be
statements about the consequences of certain string manipulation rules.

3.3.1.12 Logic

Subclass of:

• Formalism (see section 3.3.1.11)

«TODO: Provide rdfs:comment annotation assertion»

3.3.1.13 Structural

Subclass of:

• Architecture (see section 3.3.2.2)

Structure is an arrangement and organization of interrelated elements in a material object or
system, or the object or system so organized.

3.3.1.14 StructuralConstraintLanguage

Subclass of:

• ConstraintLanguage (see section 3.3.2.9)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2 Linguistic Domain Concepts

This class groups domain concepts related to the linguistic aspects of MPM, such as modeling,
programming, formal and even natural languages and their syntax.

3.3.2.1 AbstractSyntax

Subclass of:

• Syntax (see section 3.3.2.22)

metamodel

3.3.2.2 Architecture

Subclass of:

• FormalSemantics (see section 3.3.2.14)

https://en.wikipedia.org/wiki/Systems_architecture

3.3.2.3 ArchitectureDescriptionLanguage

Subclass of:

• ModelingLanguage (see section 3.3.3.12)

Architecture description languages (ADLs) are used in several disciplines: system engineering,
software engineering, and enterprise modelling and engineering.

18



Framework to Relate / Combine Modeling Languages and Techniques

The system engineering community uses an architecture description language as a language
and/or a conceptual model to describe and represent system architectures.

The software engineering community uses an architecture description language as a computer
language to create a description of a software architecture. In the case of a so-called techni-
cal architecture, the architecture must be communicated to software developers; a functional
architecture is communicated to various stakeholders and users. Some ADLs that have been
developed are: Acme (developed by CMU), AADL (standardized by the SAE), C2 (developed by
UCI), SBC-ADL (developed by National Sun Yat-Sen University), Darwin (developed by Impe-
rial College London), and Wright (developed by CMU).

The up-to-date list of currently existing architectural languages might be found at Up-to-date
list of ADLs.

The ISO/IEC/IEEE 42010 document, Systems and software engineering-Architecture descrip-
tion, defines an architecture description language as "any form of expression for use in archi-
tecture descriptions" and specifies minimum requirements on ADLs.

The enterprise modelling and engineering community have also developed architecture de-
scription languages catered for at the enterprise level. Examples include ArchiMate (now a
standard of The Open Group), DEMO, ABACUS (developed by the University of Technology,
Sydney). These languages do not necessarily refer to software components, etc. Most of them,
however, refer to an application architecture as the architecture that is communicated to the
software engineers.

Most of the writing below refers primarily to the perspective from the software engineering
community.

3.3.2.4 Behavioral

Subclass of:

• Architecture (see section 3.3.2.2)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2.5 BehavioralConstraintLanguage

Subclass of:

• ConstraintLanguage (see section 3.3.2.9)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2.6 Centralized

Subclass of:

• Deployment (see section 3.3.2.10)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2.7 Communication

Subclass of:

• Behavioral (see section 3.3.2.4)

Communication is the act of conveying intended meanings from one entity or group to another
through the use of mutually understood signs and semiotic rules.
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3.3.2.8 ConcreteSyntax

Subclass of:

• Syntax (see section 3.3.2.22)

textual/graphics as in AADL

3.3.2.9 ConstraintLanguage

Subclass of:

• FormalLanguage (see section 3.3.2.13)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2.10 Deployment

Subclass of:

• FormalSemantics (see section 3.3.2.14)

The deployment of a mechanical device, electrical system, computer program, etc., is its as-
sembly or transformation from a packaged form to an operational working state. Deployment
implies moving a product from a temporary or development state to a permanent or desired
state.

3.3.2.11 Distributed

Subclass of:

• Deployment (see section 3.3.2.10)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2.12 DomainSpecificLanguage

Subclass of:

• Language (see section 3.3.2.16)

A domain-specific language (DSL) is a computer language specialized to a particular applica-
tion domain. This is in contrast to a general-purpose language (GPL), which is broadly appli-
cable across domains.

3.3.2.13 FormalLanguage

Subclass of:

• FormalDC (see section 3.3.1)

• Language (see section 3.3.2.16)

In mathematics, computer science, and linguistics, a formal language is a set of strings of sym-
bols together with a set of rules that are specific to it.

3.3.2.14 FormalSemantics

Subclass of:

• FormalDC (see section 3.3.1)

• Semantics (see section 3.3.2.19)

In programming language theory, semantics is the field concerned with the rigorous mathe-
matical study of the meaning of programming languages. It does so by evaluating the meaning
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of syntactically legal strings defined by a specific programming language, showing the com-
putation involved. In such a case that the evaluation would be of syntactically illegal strings,
the result would be non-computation. Semantics describes the processes a computer follows
when executing a program in that specific language. This can be shown by describing the re-
lationship between the input and output of a program, or an explanation of how the program
will execute on a certain platform, hence creating a model of computation.

3.3.2.15 Graphical

Subclass of:

• ConcreteSyntax (see section 3.3.2.8)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2.16 Language

Subclass of:

• LinguisticDC (see section 3.3.2)

Language is the ability to acquire and use complex systems of communication

3.3.2.17 ModelingLanguage

Subclass of:

• Language (see section 3.3.2.16)

• ModelingDC (see section 3.3.3)

A modeling language is any artificial language that can be used to express information or
knowledge or systems in a structure that is defined by a consistent set of rules. The rules are
used for interpretation of the meaning of components in the structure.

3.3.2.18 ProgrammingLanguages

Subclass of:

• Language (see section 3.3.2.16)

A programming language is a formal computer language designed to communicate instruc-
tions to a machine, particularly a computer. Programming languages can be used to create
programs to control the behavior of a machine or to express algorithms.

3.3.2.19 Semantics

Subclass of:

• LinguisticDC (see section 3.3.2)

Semantics (from Ancient Greek: "significant") is primarily the linguistic, and also philosophical
study of meaning in language, programming languages, formal logics, and semiotics. It focuses
on the relationship between signifiers-like words, phrases, signs, and symbols-and what they
stand for, their denotation.

3.3.2.20 Structural

Subclass of:

• Architecture (see section 3.3.2.2)

Structure is an arrangement and organization of interrelated elements in a material object or
system, or the object or system so organized.
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3.3.2.21 StructuralConstraintLanguage

Subclass of:

• ConstraintLanguage (see section 3.3.2.9)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2.22 Syntax

Subclass of:

• LinguisticDC (see section 3.3.2)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2.23 Textual

Subclass of:

• ConcreteSyntax (see section 3.3.2.8)

«TODO: Provide rdfs:comment annotation assertion»

3.3.2.24 TransformationLanguage

Subclass of:

• Language (see section 3.3.2.16)

A transformation language is a computer language designed to transform some input text in a
certain formal language into a modified output text that meets some specific goal.

3.3.3 Modeling Domain Concepts

This class groups domain concepts related to the modeling aspects of MPM.

3.3.3.1 ApplicationMegaModel

Subclass of:

• Megamodel (see section 3.3.3.7)

A representation of the real models in the CPS development environment.

3.3.3.2 ArchitectureDescriptionLanguage

Subclass of:

• ModelingLanguage (see section 3.3.3.12)

Architecture description languages (ADLs) are used in several disciplines: system engineering,
software engineering, and enterprise modelling and engineering.

The system engineering community uses an architecture description language as a language
and/or a conceptual model to describe and represent system architectures.

The software engineering community uses an architecture description language as a computer
language to create a description of a software architecture. In the case of a so-called techni-
cal architecture, the architecture must be communicated to software developers; a functional
architecture is communicated to various stakeholders and users. Some ADLs that have been
developed are: Acme (developed by CMU), AADL (standardized by the SAE), C2 (developed by
UCI), SBC-ADL (developed by National Sun Yat-Sen University), Darwin (developed by Impe-
rial College London), and Wright (developed by CMU).
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The up-to-date list of currently existing architectural languages might be found at Up-to-date
list of ADLs.

The ISO/IEC/IEEE 42010 document, Systems and software engineering-Architecture descrip-
tion, defines an architecture description language as "any form of expression for use in archi-
tecture descriptions" and specifies minimum requirements on ADLs.

The enterprise modelling and engineering community have also developed architecture de-
scription languages catered for at the enterprise level. Examples include ArchiMate (now a
standard of The Open Group), DEMO, ABACUS (developed by the University of Technology,
Sydney). These languages do not necessarily refer to software components, etc. Most of them,
however, refer to an application architecture as the architecture that is communicated to the
software engineers.

Most of the writing below refers primarily to the perspective from the software engineering
community.

3.3.3.3 CapturingOperation

Subclass of:

• TransformationOperation (see section 3.3.3.15)

The process of capturing information (e.g from users) into a model.

3.3.3.4 ConfigurationMegaModel

Subclass of:

• Megamodel (see section 3.3.3.7)

Declares types for the models and relations contained in application megamodel. (language
and relation types)

3.3.3.5 IntegrationOperation

Subclass of:

• ModelOperation (see section 3.3.3.10)

The process to integrate many models together.

3.3.3.6 MegaModelFragment

Subclass of:

• Model (see section 3.3.3.8)

The fragment is not a complete megamodel, and can’t be used alone. It can be reused to take
part in another megamodel. (e.g. physical part, view of the system, self-adaptation .... etc.)

TODO: Do we add also application and configuration division here?

3.3.3.7 Megamodel

Subclass of:

• Model (see section 3.3.3.8)

A model that contains models and relations between them.

3.3.3.8 Model

Subclass of:
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• ModelingDC (see section 3.3.3)

A representation of real artifacts regardless of the metamodeling technical space. e.g. xml file,
equations...etc.

3.3.3.9 ModelConstraint

Subclass of:

• Constraint (see section 5.2.2.1)

• ModelingDC (see section 3.3.3)

A restriction over model that is input or output for relation

3.3.3.10 ModelOperation

Subclass of:

• ModelRelation (see section 3.3.3.11)

It is any kind of transformation from input set of models to output set of models.

3.3.3.11 ModelRelation

Subclass of:

• Relation (see section 5.2.2.2)

• ModelingDC (see section 3.3.3)

• Process (see section ??)

A relation that connects models.

3.3.3.12 ModelingLanguage

Subclass of:

• Language (see section 3.3.2.16)

• ModelingDC (see section 3.3.3)

A modeling language is any artificial language that can be used to express information or
knowledge or systems in a structure that is defined by a consistent set of rules. The rules are
used for interpretation of the meaning of components in the structure.

3.3.3.13 ModelingTool

Subclass of:

• Tool (see section 5.2.5.1)

• ModelingDC (see section 3.3.3)

Tools to model the system.

3.3.3.14 TracabilityRelation

Subclass of:

• ModelOperation (see section 3.3.3.10)

«TODO: Provide rdfs:comment annotation assertion»

3.3.3.15 TransformationOperation

Subclass of:
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• ModelOperation (see section 3.3.3.10)

The process to transform one model to another.

3.4 Properties

3.4.1 hasConcerns

A concern of stakeholder.

Subproperty of: None

Domains:

• Stakeholder (see section 5.2.3.6)

Ranges:

• Concern (see section 5.2.3.1)

3.4.2 hasConstraint

A constraint applied on relation.

Subproperty of: None

Domains:

• Relation (see section 5.2.2.2)

Ranges:

• Constraint (see section 5.2.2.1)

3.4.3 hasContext

«TODO: Provide rdfs:comment annotation assertion»

Subproperty of: None

Domains:

• ModelOperation (see section 3.3.3.10)

Ranges:

• ModelOperation (see section 3.3.3.10)

3.4.4 hasEvolvedTo

An updated version of an element. (e.g.Tool evolved to another)

Subproperty of: None

Domains: None

Ranges: None

3.4.5 hasFormalLanguage

The relation defines the formal language for a formalism. It is an inverse of hasFormalism.

Subproperty of: None

Domains:

• Formalism (see section 3.3.1.11)

Ranges:
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• FormalLanguage (see section 3.3.2.13)

3.4.6 hasFormalism

The relation defines the formalism for a formal language. It is an inverse of hasFormalLan-
guage.

Subproperty of: None

Domains:

• FormalLanguage (see section 3.3.2.13)

Ranges:

• Formalism (see section 3.3.1.11)

3.4.7 hasInput

The model need inputs to do perform the determined task.

Subproperty of:

• isConnecting (see section 3.4.24)

Domains:

• ModelOperation (see section 3.3.3.10)

Ranges:

• Model (see section 3.3.3.8)

3.4.8 hasInputModel

It describes the input model for a model relation.

Subproperty of: None

Domains:

• ModelRelation (see section 3.3.3.11)

Ranges:

• Model (see section 3.3.3.8)

3.4.9 hasLanguage

The model could be expressed in natural language or formal language that is why the range is
Language class not the ModelingLanguage class.

Subproperty of: None

Domains:

• Model (see section 3.3.3.8)

Ranges:

• Language (see section 3.3.2.16)

3.4.10 hasMegaModelFragment

It describes the relation between megamodel and its fragments.

Subproperty of:

• hasModel (see section 3.4.11)
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Domains:

• Megamodel (see section 3.3.3.7)

Ranges:

• MegaModelFragment (see section 3.3.3.6)

3.4.11 hasModel

It describes a recursive relation. e.g. MegaModelFragment hasModel xModel ...

Subproperty of: None

Domains:

• Model (see section 3.3.3.8)

Ranges:

• Model (see section 3.3.3.8)

3.4.12 hasModelConstraint

«TODO: Provide rdfs:comment annotation assertion»

Subproperty of:

• hasConstraint (see section 5.3.2)

Domains:

• ModelOperation (see section 3.3.3.10)

Ranges:

• ModelConstraint (see section 3.3.3.9)

3.4.13 hasModelOperation

It defines a model operation for a model.

Subproperty of:

• hasModelRelation (see section 3.4.14)

Domains:

• Model (see section 3.3.3.8)

Ranges:

• ModelOperation (see section 3.3.3.10)

3.4.14 hasModelRelation

It defines a model relation for a model.

Subproperty of: None

Domains:

• Model (see section 3.3.3.8)

Ranges:

• ModelRelation (see section 3.3.3.11)
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3.4.15 hasNext

«TODO: Provide rdfs:comment annotation assertion»

Subproperty of: None

Domains:

• Process (see section ??)

Ranges:

• Process (see section ??)

3.4.16 hasOutput

The model provides results in the following form.

Subproperty of:

• isConnecting (see section 3.4.24)

Domains:

• ModelOperation (see section 3.3.3.10)

Ranges:

• Model (see section 3.3.3.8)

3.4.17 hasOutputModel

It describes the output model for a model relation.

Subproperty of: None

Domains:

• ModelRelation (see section 3.3.3.11)

Ranges:

• Model (see section 3.3.3.8)

3.4.18 hasProvider

The company/university which the tool is developed by.

Subproperty of: None

Domains: None

Ranges: None

3.4.19 hasPurpose

«TODO: Provide rdfs:comment annotation assertion»

Subproperty of: None

Domains:

• Model (see section 3.3.3.8)

Ranges:

• Purpose (see section 5.2.3.4)
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3.4.20 hasRole

A role of stakeholder

Subproperty of: None

Domains:

• Stakeholder (see section 5.2.3.6)

Ranges:

• exactly 1 Role (see section 5.2.3.5)

3.4.21 hasTool

The tool that represent the Language. It is an inverse of isToolFor.

Subproperty of: None

Domains:

• Language (see section 3.3.2.16)

Ranges:

• Tool (see section 5.2.5.1)

3.4.22 isAppliedTo

A constraint is applied to a some element. (e.g. relation)

Subproperty of: None

Domains:

• Constraint (see section 5.2.2.1)

Ranges: None

3.4.23 isAppliedToModel

«TODO: Provide rdfs:comment annotation assertion»

Subproperty of:

• isAppliedTo (see section 5.3.6)

Domains:

• Constraint (see section 5.2.2.1)

Ranges:

• Model (see section 3.3.3.8)

3.4.24 isConnecting

A relation connects a model.

Subproperty of: None

Domains:

• ModelOperation (see section 3.3.3.10)

Ranges:

• Model (see section 3.3.3.8)
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3.4.25 isExtending

Shows the extension of another language

Subproperty of: None

Domains:

• Language (see section 3.3.2.16)

Ranges:

• Language (see section 3.3.2.16)

3.4.26 isImplementedBy

«TODO: Provide rdfs:comment annotation assertion»

Subproperty of: None

Domains: None

Ranges: None

3.4.27 isPerformedBy

«TODO: Provide rdfs:comment annotation assertion»

Subproperty of: None

Domains: None

Ranges: None

3.4.28 isReturningTo

«TODO: Provide rdfs:comment annotation assertion»

Subproperty of: None

Domains:

• IntegrationOperation (see section 3.3.3.5)

Ranges:

• IntegrationOperation (see section 3.3.3.5)

3.4.29 isToolFor

The language that is represented by a tool. It is an inverse of hasTool.

Subproperty of: None

Domains:

• Tool (see section 5.2.5.1)

Ranges:

• Language (see section 3.3.2.16)
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4 Ontology of Multi-Paradigm Modeling for
Cyber-Physical Systems

4.1 Introduction

This ontology of MPM for CPS provides cross-cutting concepts between the two domains of
CPS and MPM. At the current stage of development, this ontology only contains a limited num-
ber of classes related to viewpoints inspired from (31).

4.2 Ontology

Figure 4.1 shows the classes and properties of the MPM4CPS ontology. The MPM4CPSDC class
groups the Viewpoint and View classes to constitute the MPM4CPS domain.

Figure 4.1: Overview of the MPM4CPS ontology

A viewpoint relates the concerns of stakeholders with parts of the system of interest. For exam-
ple, a control design performance viewpoint may relate the controller designer with the concern
of performance and the controller, software, sensors and actuators, computing platform and
physical plant parts of the system.

In the next version of this ontology, other classes that relate the MPM and CPS domains will be
added as needed.
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5 Ontology of Core Common Concepts

5.1 Ontology Overview

The core ontology provides concepts that do not pertain to the CPS neither the MPM domain,
but that are still required by one of the domains or both. It is a place to define concepts reusable
by all the ontologies developed by WG1.

Figure 5.1 shows an overview of the core ontology. The details of each concept are provided in
the following subsections.

Figure 5.1: Overview of the core ontology

5.2 Domain Concepts

This ontology of shared concepts is divided into sub-domains as presented in the following
subsections.

5.2.1 Paradigm Domain Concepts

This class groups domain concepts that are related to the paradigm aspects used by the MPM
and / or CPS domains.

5.2.2 Relation Domain Concepts

This class groups domain concepts that are related to the relational aspects used by the MPM
and / or CPS domains.

5.2.2.1 Constraint

Subclass of:

• RelationDC (see section 5.2.2)

A limitation or a restriction over a relation.

5.2.2.2 Relation

Subclass of:

• RelationDC (see section 5.2.2)

Relation or relations may refer to anything that involves communicating with another person,
group, society or country.
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5.2.3 Stakeholder Domain Concepts

This class groups domain concepts that are related to the stakeholder aspects used by the MPM
and / or CPS domains.

5.2.3.1 Concern

Subclass of:

• StakeholderDC (see section 5.2.3)

In computer science, a concern is a particular set of information that has an effect on the code
of a computer program. A concern can be as general as the details of database interaction or as
specific as performing a primitive calculation, depending on the level of conversation between
developers and the program being discussed. IBM uses the term concern space to describe the
sectioning of conceptual information.

5.2.3.2 DevelopmentOrganization

Subclass of:

• StakeholderDC (see section 5.2.3)

«TODO: Provide rdfs:comment annotation assertion»

5.2.3.3 DevelopmentProject

Subclass of:

• StakeholderDC (see section 5.2.3)

«TODO: Provide rdfs:comment annotation assertion»

5.2.3.4 Purpose

Subclass of:

• StakeholderDC (see section 5.2.3)

The object for which something exists

5.2.3.5 Role

Subclass of:

• StakeholderDC (see section 5.2.3)

A role (also rï£¡le or social role) is a set of connected behaviours, rights, obligations, beliefs, and
norms as conceptualized by people in a social situation. It is an expected or free or continu-
ously changing behaviour and may have a given individual social status or social position. It is
vital to both functionalist and interactionist understandings of society.

5.2.3.6 Stakeholder

Subclass of:

• StakeholderDC (see section 5.2.3)

• Stakeholder (see section 5.2.3.6)

A stakeholder or stakeholders, as defined in its first usage in a 1963 internal memorandum
at the Stanford Research Institute, are "those groups without whose support the organization
would cease to exist." The theory was later developed and championed by R. Edward Freeman
in the 1980s. Since then it has gained wide acceptance in business practice and in theorizing
relating to strategic management, corporate governance, business purpose and corporate so-
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cial responsibility (CSR). A corporate stakeholder can affect or be affected by the actions of a
business as a whole.

5.2.3.7 ToolProvider

Subclass of:

• Stakeholder (see section 5.2.3.6)

Who provides the product and gives the licenses (e.g. company, university, group, ..)

5.2.4 SystemDevelopmentProcess Domain Concepts

«TODO: Provide rdfs:comment annotation assertion»

TODO: To be reviewed. Should this be named SystemDevelopment or simply development?

5.2.5 Tool Domain Concepts

This class groups domain concepts that are related to the tooling aspects used by the MPM and
/ or CPS domains.

5.2.5.1 Tool

Subclass of:

• ToolDC (see section 5.2.5)

A programming tool or software development tool is a computer program that software devel-
opers use to create, debug, maintain, or otherwise support other programs and applications.
The term usually refers to relatively simple programs, that can be combined together to accom-
plish a task, much as one might use multiple hand tools to fix a physical object. The ability to
use a variety of tools productively is one hallmark of a skilled software engineer.

5.3 Properties

5.3.1 hasConcerns

A concern of stakeholder.

Subproperty of: None

Domains:

• Stakeholder (see section 5.2.3.6)

Ranges:

• Concern (see section 5.2.3.1)

5.3.2 hasConstraint

A constraint applied on relation.

Subproperty of: None

Domains:

• Relation (see section 5.2.2.2)

Ranges:

• Constraint (see section 5.2.2.1)
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5.3.3 hasEvolvedTo

An updated version of an element. (e.g.Tool evolved to another)

Subproperty of: None

Domains: None

Ranges: None

5.3.4 hasProvider

The company/university which the tool is developed by.

Subproperty of: None

Domains: None

Ranges: None

5.3.5 hasRole

A role of stakeholder

Subproperty of: None

Domains:

• Stakeholder (see section 5.2.3.6)

Ranges:

• exactly 1 Role (see section 5.2.3.5)

5.3.6 isAppliedTo

A constraint is applied to a some element. (e.g. relation)

Subproperty of: None

Domains:

• Constraint (see section 5.2.2.1)

Ranges: None
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6 Catalog of Megamodel Examples

This chapter presents examples of CPS development environments that have served for the
development of the ontologies presented in the previous chapters. Classes of the provided
ontologies have been instantiated to create individuals representing the example environments
and analyzed to discover and fix shortcomings of the ontologies in an iterative manner.

6.1 Ensemble-based CPS

6.1.1 Overview

An Ensemble-Based Cyber-Physical System (EBCPS) is an emergent system that has au-
tonomous components which form ensembles together depending on the context and in the
aim of achieving determined goals (i.e. organizing and decision-making). Furthermore, the de-
velopers that target building such systems should consider as well the system nature of being
distributed, decentralized, dynamic, self-adaptive and scalable.

To manifest the new concepts of EBCPS, the Department of Distributed and Dependable Sys-
tems (d3s: http://d3s.mff.cuni.cz/) at Charles University in Prague developed an
EBCPS toolchain that is used as development environment which merges the concepts of
emergent systems with the CPS parts (i.e. physical, computational and network). More specif-
ically, the parts that will be explained here are requirements, design, runtime, self-adaptation,
analysis, composition and simulation. Moreover, there are many integrations and transforma-
tions between the tools.

Starting with modeling EBCPS requirements, Invariant Refinement Method (IRM) [(84)], which
is developed in Epsilon, is used to represent the tree of invariants and assumptions for the
system. The tree ends with leaves of two types: 1) processes which is part of a component,
2) or exchange knowledge between components which is an ensemble. Simply put, the IRM
allows to connect the requirements to the architecture entities. Later on, the developer can
transform the IRM model to code which is Java for the current represented tool-chain under
DEECo specification (stands for Dependable Emergent Ensembles of Components).

Regarding the design and runtime parts (32)(2) , the team developed a runtime environment
which is implemented in java and is known as jDEECo. The defined system respects the DEECo
specification for each of its entities for both components and ensembles. Therefore, each role
has a set of fields which represent the knowledge related to this specific role and it also includes
a set of modes and their transitions. Thus, each component is defined as a set of processes fea-
turing (a) role(s) having by that the role knowledge besides its local knowledge. Having knowl-
edge in the role allows for preserving the encapsulation of the components that features the role
and provides a separation in concerns. Finally, each ensemble forms depending on the context
and perform knowledge exchange between different components with determined roles.

Self-adaptation and analysis parts are reusable parts, where the self-adaptation is done by us-
ing IRM-SA engine that uses SAT solver to make decisions between the different paths. The
analysis part is presented as an extension of mode-switch transition logic which includes three
basic ideas: 1) using ordinary differential equation (ODE) to evaluate the inaccuracy bound-
aries of physical attributes(3), 2) statistical testing to use prediction depending on trends of
historical data(34).

Another essential point that the EBCPS development environment focuses on is forming en-
sembles and exchanging knowledge. DEECo manifests those concepts and allows for using
conditions that are a representation of context to form ensembles. The conditions are refined
by using a fitness model that filters out the less suitable compositions between all possible
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ones. Regarding the exchanging knowledge between components, it could be determined by
context constraints or by adding boundaries on gossip protocol that is responsible of spreading
information(33). Furthermore, DEECo allows a hierarchical composition for components and
ensembles (36)(35).

Finally, the simulation part targets two domains for vehicles(85) and robots(95). Concerning
vehicles, jDEECo has an integration with MATSim which allows to simulate vehicles and OM-
NET++ which simulates the network delays. Regarding the robots case, jDEECo has an integra-
tion with ROS which simulates movements of robots. While ROS has in its turn an integration
with OMNET++ to simulate network delays and with Stage to simulate sensors and actuators.

To conclude, EBCPS development environment provides a toolchain for modeling CPS system
with an emergent behavior starting from requirement to runtime and simulation. To get the
different views of system development many transformation and integration operations are
involved which supports the idea of multi-paradigm modeling. These are further presented in
the developed ontology of EBCPS briefly presented below.

6.1.2 Ontology

The structure of EBCPS is described using the ontologies provided by MPM4CPS by instanti-
ating its classes to create a set of individuals representing EBCPS. It includes an EBCPS meg-
amodel and its fragments defining all model operations for EBCPS as outlined in Figure 6.1.
Model operations are of different kinds such as transformation and integrations operations.
The first model operation is the capture of requirements followed by a transformation opera-
tion from the requirements model into a design model, then by an instantiation operation to
create a runtime model. The integration operations are basically links between the runtime
model, the analysis models, the self-adaptation model, and the simulation models.

Figure 6.1: EBCPS Mega-Model, which includes mega-model fragments, models and model operations

All this information and much more details of EBCPS have been captured in the EBCPS ontol-
ogy. It is planned to generate a detailed specification of EBCPS automatically from this ontology
as future work of the MPM4CPS action.
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6.2 HPI CPS Lab1

As outlined in more detail from a conceptual point of view in (117), the presented CPS Lab2

at the Hasso Plattner Institute (HPI)3 at the University of Potsdam applied, adapted, and eval-
uated an existing industrial-strength development methodology from the automotive domain
(30) (see also Figure 6.2) for the robotic system application domain. We therefore evaluated and
adapted component-based approach using a MDE approach supporting also the combination
of soft and hard real-time behavior.

methodology

MT = model test

MiL = model-in-the-loop

RP = rapid prototyping

SiL = software-in-the-loop

HiL = hardware-in-the-loop

ST = system test

MT/MiL

RP
SiL

HiL

ST

Simulation
stage

Prototyping
stage

Pre-production
stage

Figure 6.2: Overview of the methodology for modeling, verification, and validation employing simula-
tion and testing (see (30))

The resulting methodology for robotic system support therefore several development activities
such as modeling, simulation, verification/testing at the different stages simulation, prototyp-
ing, and pre-production. The lab supports related tools and related libraries in an integrated
toolchain that reflect physical and cyber aspects of distributed robotic systems.

We consider a robot system, where a single robot has the duty to transport pucks as advised by
the overall factory automation. The regular behavior of the robot is to move around, transport
pucks, or charge the batteries. The behavior must ensure strict constraints, such as it excludes
that the battery is exhausted and with a lower priority ensures to transport pucks as requested.
It also must perform reasonable with respect to some soft goals to minimize energy consump-
tion and maximize throughput.

The upper drawing of Figure 6.3 depicts a structural overview of the robot system, while the
photo in the middle of Figure 6.3 show the concrete setup. The whole cyber-physical evaluation
scenario consists of four different rooms. In the first room, the pucks are packed and dropped
for transportation in area AP. A robot RP transports the puck to a second room and drops it
within the sorting area AS. Based on the current delivery status, the robot RS chooses one of
the two booths and a band-conveyor transports the puck to the customer or stock delivery area
(ACD, ASD) afterwards. In a third step, the robot RSt transfers the puck to stock in St. The doors
can be opened or closed dynamically to vary the scenario. A robot can charge its battery at
one of the two charging points. Each robot acts as an autonomous unit. Therefore, the tasks
transportation, sorting and stocking are independent from each other.

For the evaluation of our research activities, we use our CPS Lab robot laboratory consisting
of three Robotino robots (see bottom of Figure 6.3). The robots can be equipped with several

1Acknowledgements: We thank Sebastian Wätzoldt, Stefan Neumann, Joachim Hänsel, and Falk Benke for their
contributions to the lab described in the section and their contribution to the presented content and figures.

2http://www.cpslab.de
3http://www.hpi.de
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evaluation_scenario_3

Figure 6.3: Overview of the employed evaluation scenario (see (117))

sensors (e.g., laser scanner, infrared (IR) distance sensors, GPS like indoor navigation systems)
as well as different actuators (e.g., servo motors, omnidirectional drive, gripper). The general
idea of our evaluation scenario is the realization of a variable production setting, where robots
can transport small pucks (representing goods in a production system) to different locations.
Robots must fulfill different requirement, e.g., they must provide basic functionality like mov-
ing and avoiding obstacles in hard real-time (reacting on obstacles within a few milliseconds).
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Further, the robots must reflect high level goals, e.g., energy saving of the battery, short routing
to the destination points and optimizing the throughput while transporting the pucks. While
basic functionalities, such as obstacle avoidance, must be realized in hard real-time, we use
existing libraries to realize higher functionalities such as path planning or creating a map by
evaluating measured distance values. The latter can rarely be realized under hard real-time
constraints because of insufficient libraries. Furthermore, we run a RTAI Linux operating sys-
tem on the robot to enable hard real-time execution.

Figure 6.4: Overview of the employed tool chain (see (117))

In Figure the toolchain consisting of MATLAB/Simulink for modeling and simulation, dSPACE
SystemDesk for modeling software architecture, hardware configuration, and task mapping,
dSPACE TargetLink for code generation, and the FESTO Robotino-Library with the FESTO
Robotino©Sim simulator is depicted.

An additional element depicted in Figure is a prototypical tool we developed to map AUTOSAR
models to a real-time simulator from INCRON to permit detailed performance evaluation early
on in parallel to SiL activities. Another extension not depicted in Figure is a link between the
SysML tool TOPCASED and the dSPACE tool SystemDesk for AUTOSAR that permits to derive
the software and hardware architecture in AUTOSAR from the SysML system engineering mod-
els. However, to keep things simpler we in the following omit both extensions in our detailed
description and the sketches of the megamodels.

6.2.1 Simulation Stage

The first stage supported is the simulation stage that focus on the model development
resp. functional development for the employed control laws. At this stage, many details result-
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ing from the physical and cyber part of the system are ignore resp. simplified such as real sensor
values with noise, specific effects of scheduling, the impact of communication interaction and
messages, and timing/memory/computation constraints.

mt

MT/MiL

RP

Figure 6.5: Overview of the model testing in the simulation stage of (30)

In a first activity named model testing (MT) (see Figure 6.5), a so-called one-way/one-shot sim-
ulation with MATLAB/Simulink is supported where the model of the control behavior can be
stimulated by inputs to see that they react properly. This provides some confidence that the
setup control behavior work as intended.

mil

MT/MiL

RP

Figure 6.6: Overview of the model in loop simulation in the simulation stage of (30)

In a second step then the model of the control behavior is combined with a MATLAB/Simulink
model of the plant by means of a model-in-the-loop (MiL) simulationas shown in Figure 6.6,
which uses the feedback provided by the plant model to evaluate that the control behavior is as
expected.

As the validity of plant models is often only rather limited when it comes to sophisticated as-
pects pf the physical behavior, as an additional step rapid prototyping as depicted in Figure 6.7
is supported. For smaller control behavior, the model of the control behavior is linked to the
real robot such that real sensor values with noise and timing constraints of the environment
and platform can be covered. However, specific effects of scheduling, the impact of commu-
nication interaction and messages, and memory/computation constraints remain uncovered.
For larger scenarios and for the multi robot scenarios a link to a real hardware setup is not
feasible here. Instead we employ a model-in-the-loop (MiL) simulation where a complex en-
vironment and the communication between the robots can be explored. While this covers the
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rp

MT/MiL

RP

Figure 6.7: Overview of the rapid prototyping in the simulation stage of (30)

impact of communication interaction and messages, other aspects like real sensor values with
noise, specific effects of scheduling and timing/memory/computation constraints are, how-
ever, not covered.

While several tools are employed at several stages and activities, the models developed for each
of these activities are quite different as visible in the megamodel depicted in Figure 6.8. For
the model testing, only simply MATLAB Simulink models with the standard block set and in-
put signals are usually employed. For the model-in-the-loop simulation, both the model of
the control behavior and of the related fragment of the plant are modeled and evaluated us-
ing MATLAB/Simulink models with the standard block set. To link the behavior to the FESTO
Robotino©Sim Simulator and visualize the outcome with FESTO Robotino©View, a specific
block set compatible with the FESTO Robotino-Library has to be employed.

6.2.2 Prototyping Stage

The second stage supported is the prototyping stage where the focus changes from models to
their implementation in software or hardware and where besides the individual functions also
the system architecture is covered. Due to this refined view, in particular discretization effects
of the cyber part that are absent in the abstract mathematical models employed in the former
stage now become visible. At this stage, less details are ignore resp. simplified as step by step
specific effects of scheduling, the impact of communication interaction and messages, and
timing/memory/computation constraints are take into account.

6.2.2.1 Modeling

To consider the more detailed view outlined, at the prototyping stage the models must be re-
fined such that besides the individual functions also the system architecture is defined.

As depicted in Figure 6.9, this is done by first define components and their communication via
port types, messages, interfaces, and data types with AUTOSAR and map the beforehand con-
sidered functional partson them. In this step, we also have to map the functionality extending
the existing models and where necessary add custom implementation files. In a second step,
we then define the overall architecture using AUTOSAR including besides the components and
their communication also task specification and the hardware configuration.

As depicted in Figure 6.10, an important element of this refinement are also real-time con-
straints. e.g. to guarantee safety constraints. A combination of hard and soft real-time aspects
at functional as well as architectural level must be defined including a mapping to hard and
soft real-time task with proper levels for the priorities.
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input

Output
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plant

Outputcontrol
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operation
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Figure 6.8: Sketch of the megamodel of the different stage of (30)
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SiL

Prototyping Stage

Figure 6.9: Overview of the definition of the software architecture in the prototyping stage of (30)

map

Task description:

Task 1

Task n

…
Task 1

Task n

…

hard real-time soft real-time

trigger via 
data event

report
results

High priority Low priority

Figure 6.10: Overview of the mapping of the architecture to tasks and communication in the prototyping
stage of (30)

6.2.2.2 Verification

Concerning the verification, we employ code generation at the prototyping stage and try to step
by step add more and more details of the software and hardware to the picture.

sil

SiL

Code 
Generation

Figure 6.11: Overview of software-in-the-loop (sil) simulation in the prototyping stage of (30)

The software-in-the-loop (SiL) simulation at the prototyping stage as depicted in Figure 6.11,
requires that code generation is employed to derive code for the functional models and archi-
tectural models. In special cases, also additional manually developed code has to be integrated.
Then, the code is executed and run against the available simulation of the robot and its envi-
ronment.
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As we still do not use the real hardware, we still ignore resp. simplified elements such as real
sensor values with noise and not by the simulator covered timing constraints of the environ-
ment or platform, while specific effects of scheduling, the impact of communication interac-
tion and messages, and by the simulator covered timing constraints of the environment or plat-
form, and timing/memory/computation constraints of the software.

hil

HiL

Code 
Generation

Figure 6.12: Overview of hardware-in-the-loop (hil) testing in the prototyping stage of (30)

By moving on to the lab itself, we can then also consider a hardware-in-the-loop (SiL) simu-
lation at the prototyping stage as sketched in Figure 6.12, where besides the software that is
generated or integrated also the specific characteristics of the robot hardware and labe envi-
ronment and its hardware can be experienced.

As we now employ the real hardware, we no longer ignore resp. simplified elements. Therefore,
now real sensor values with noise, specific effects of scheduling, the impact of communication
interaction and messages, and timing/memory/computation constraints are all considered.

In contrast to the restriction to MATLAB/Simulink during the simulation stage, for the pro-
totyping stage also dSPACE SystemDesk for describing a component-based architecture with
AUTOSAR must be considered as well as outlined above and depicted in the megamodel pre-
sented in Figure 6.8. For the software-in-the-loop simulation, it is necessary to adjust the func-
tional models to the specific dSPACE TargetLink block set such that the dSPACE TargetLink for
code generation can be employed. In addition, dSPACE SystemDesk is employed to define the
software architecture, hardware configuration, and task mapping with AUTOSAR. Then, this
combination of models is linked via the blocks for the FESTO Robotino-Library and simulated
by linking the MATLAB/Simulink and FESTO Robotino©Sim simulators and visualize the out-
come with FESTO Robotino©View. In case of the hardware-in-the-loop testing, the same block
set for the FESTO Robotino-Library can be reconfigures such that either the complied software
runs on a host computer and controls the Robotino robots remotely or the compiled and linked
software runs directly on the Robotino robots.

6.2.3 Pre-Production Stage

In our specific setting and due to our focus on the software development, the system test in the
pre-production stage is not really different as we do not produce any system we want to sale
later. In a commercial setting the robots in the prototyping, the robots in the lab would likely
be equipped with more testing hardware or prototypical hardware, while in our lab only one
level exists here.

6.2.4 Summary

The outlined methodology and tool chain adjusted from the automotive domain, provides suit-
able guidance due to the different focus in stages and follows where possible a MDE approach
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6. Catalog of Megamodel Examples

where tool and library are integrated such that models drive the development only later code
and configuration data automatically generated from the models is employed to consider more
details concerning the verification, simulation, and testing. We put special focus on support-
ing also hard and soft real-time consideration which are oftentimes ignored in robotic devel-
opment scenarios.
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7 Summary and Future Work

In this report on the Framework to Relate / Combine Modeling Languages and Techniques of
Working Group1 on Foundations of the ICT COST Action IC1404 Multi-Paradigm Modelling for
Cyber-Physical Systems (MPM4CPS), we first presented an ontology of Cyber Physical Systems
in chapter 2 and then an ontology of Multi-Paradigm Modeling in chapter 3. Then, we pre-
sented an MPM4CPS ontology that combine these ontologies to cover Multi-Paradigm Mod-
eling for Cyber Physical Systems presented in chapter 4. Finally, we presented two examples
for CPS development cases and sketched how they fit into our framework and how their meg-
amodels look like in chapter 6. These examples instantiate the MPM4CPS ontology and also
make use of the catalog of languages and tools.

As future work, we plan to enrich the CPS ontology such that the catalog of languages can be
better classified, to enrich the MPM ontology such that all needs of the example cases for CPS
development approaches are covered, and to improve MPM4CPS ontology. Furthermore, we
plan to develop documentation generators that will produce detailed specifications of CPS de-
velopment environment examples to complete the overview descriptions provided in this doc-
ument. Finally, besides improving the examples it would be also helpful to support more ex-
amples such that due to a higher heterogeneity in the group of examples a better coverage of
the different aspects of CPS and MPM can be achieved.
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