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Abstract

Although climate warming is expected to make habitat beyond species’ current cold

range edge suitable for future colonization, this new habitat may present an array

of biotic or abiotic conditions not experienced within the current range. Species’

ability to shift their range with climate change may therefore depend on how popu-

lations evolve in response to such novel environmental conditions. However, due to

the recent nature of thus far observed range expansions, the role of rapid adapta-

tion during climate change migration is only beginning to be understood. Here, we

evaluated evolution during the recent native range expansion of the annual plant

Dittrichia graveolens, which is spreading northward in Europe from the Mediter-

ranean region. We examined genetically based differentiation between core and

edge populations in their phenology, a trait that is likely under selection with

shorter growing seasons and greater seasonality at northern latitudes. In parallel

common garden experiments at range edges in Switzerland and the Netherlands, we

grew plants from Dutch, Swiss, and central and southern French populations. Popu-

lation genetic analysis following RAD-sequencing of these populations supported

the hypothesized central France origins of the Swiss and Dutch range edge popula-

tions. We found that in both common gardens, northern plants flowered up to

4 weeks earlier than southern plants. This differentiation in phenology extended

from the core of the range to the Netherlands, a region only reached from central

France over approximately the last 50 years. Fitness decreased as plants flowered

later, supporting the hypothesized benefits of earlier flowering at the range edge.

Our results suggest that native range expanding populations can rapidly adapt to

novel environmental conditions in the expanded range, potentially promoting their

ability to spread.

K E YWORD S

adaptation, climate change, contemporary evolution, Dittrichia graveolens, flowering time,

migration, population spread, range shift

1 | INTRODUCTION

The redistribution of species in response to climate change (Chen,

Hill, Ohlem€uller, Roy, & Thomas, 2011; Parmesan, 2006) has focused

ecologists and evolutionary biologists on the processes determining

population spread. The persistence of many species will depend on

their ability to migrate (Thuiller et al., 2008), and the resulting range

shifts will have broad implications for both natural systems and
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human welfare (Pecl et al., 2017). A central unresolved question in

the study of range expansion is whether evolutionary changes that

occur in contemporary time facilitate the spread of range shifting

populations and thereby contribute to persistence (Hoffmann &

Sgr�o, 2011; Urban et al., 2016). In particular, as populations spread,

they face novel environments, and thus adaptation to local condi-

tions - or the lack thereof – could profoundly affect species’ capacity

to establish and therefore migrate (Garcia-Ramos & Rodriguez, 2002;

Gilbert et al., 2017). Forecasting species’ responses to climate

change could therefore benefit from a better understanding of the

role of adaptive evolution during native range expansions (Urban

et al., 2016).

Even if the northward range expansion of climate change

migrants is ultimately set in motion by warming conditions (Parme-

san & Yohe, 2003), continued expansion may require evolution in

response to other environmental variables experienced in the

expanded range. For example, day length, light quality, and seasonal

variation in climate all change markedly with latitude (Saikkonen

et al., 2012; Taulavuori, Sarala, & Taulavuori, 2010), and may present

range expanding populations with conditions not experienced within

their historic range. Consequently, the cues used by many plant and

animal species to time key events in their life cycle may no longer

match the temperature conditions optimal for life cycle transitions

(Visser, 2008), and populations may be maladapted to the environ-

ment of the expanded range, limiting further range expansion.

Phenology in particular, is expected to be under strong selection as

populations spread northward because timing reproductive events

with the seasonal climate pattern is essential for reproductive suc-

cess (Maron, Vil�a, Bommarco, Elmendorf, & Beardsley, 2004; Saikko-

nen et al., 2012).

That range expanding populations can evolve during spread is

supported by studies of species introduced to new continents (re-

viewed in Colautti & Lau, 2015). For example, non-native species of

plants and animals have established latitudinal clines in photoperi-

odic response (Urbanski et al., 2012), developmental rate (While

et al., 2015), and phenology (Colautti & Barrett, 2013b; Novy, Flory,

& Hartman, 2013; Weber & Schmid, 1998) in their exotic range over

a time period of decades to a few hundred years. However, our

understanding of evolution during exotic range expansions after

introduction to new continents cannot be simply extrapolated to

intracontinental, native range expansions induced by climate change,

because these two processes differ in several key ways. Native

range-expanding populations may be under weaker selection than

their exotic counterparts, because environmental change is expected

to be more gradual than after introduction to a new continent (Boss-

dorf et al., 2005). Moreover, genetic diversity and gene flow often

decrease only gradually with distance from the core within a native

range (Austerlitz, Jung-Muller, Godelle, & Gouyon, 1997), whereas

both are reduced abruptly upon introduction to an exotic range.

Studies of evolution during native range expansion (e.g., Buckley &

Bridle, 2014; Lancaster, Dudaniec, Hansson, & Svensson, 2015) remain

rare, in part because the spatial extent of most native range expan-

sions has thus far been modest, especially relative to the migrations

expected with future climate change (Parmesan & Yohe, 2003; Root

et al., 2003). Moreover, due to the recent nature of these expansions,

the range expansion history of many species is only beginning to be

documented. Finally, demonstrating adaptive differentiation in spread-

ing populations, native or exotic, is challenging, because they evolve

through a combination of genetic drift, gene flow, and natural selec-

tion. For example, range edge populations may sometimes be prea-

dapted to local conditions beyond the historical range limit by

originating from similar environments within the historical native range

(Colautti & Lau, 2015; Oduor, Leimu, & van Kleunen, 2016).

Here, we evaluate rapid evolution during the recent native range

expansion of Dittrichia graveolens (L.) Greuter (hereafter Dittrichia), an

annual plant species in the Asteraceae with a native distribution in the

Mediterranean (Brullo & De Marco, 2000). Consistent with climate

warming over the last 50 years, Dittrichia has rapidly expanded its

range northward over this period (Rameau, 2008), spreading from

France into Germany (Brandes, 2009; J€ager, 2017) and then into the

Netherlands (Stouthamer, 2007). This northward expansion subjects

the plants to a reduction in light availability, especially toward the end

of the year (Appendix S1), which may be particularly important

because the species flowers in late summer and fall in the core of its

range in France (Rouy, 1903). For many plant species, growth is limited

by low temperatures, and particularly frost, at the end of the growing

season (Larcher & Bauer, 1981). In addition to its northward range

expansion, Dittrichia has also expanded its range eastward into

Switzerland (Ciardo & Delarze, 2005; Lauber, Wagner, & Gygax, 2012),

which is located at a similar latitude and altitude as the historical

northern range edge (Figure 1). The recent nature, large spatial extent,

and detailed historical record of the spread of Dittrichia provide a

unique opportunity to study the role of rapid adaptation in native

range expansions. Moreover, Dittrichia’s annual life cycle allows for

meaningful evolutionary change to occur within a few decades.

We tested the hypothesis that rapid evolution in response to

novel environmental conditions promotes native range expansion

with climate change. For Dittrichia, we specifically expected the evo-

lution of earlier flowering time with its northward range expansion.

To test this hypothesis, we examined differentiation in phenology

between populations from the range core and edge, in common gar-

den experiments situated at the Dutch and Swiss range edges. With

this approach, we asked (i) How have core and range edge popula-

tions of Dittrichia diverged in phenology? and (ii) How does selection

shape phenology under the conditions experienced at the range

edge? Finally, we used RAD-sequencing to characterize population

structure and genetic diversity across the native and expanded

range, allowing us to place the observed differentiation in phenology

in the context of the range expansion history.

2 | MATERIALS AND METHODS

2.1 | Study system

Dittrichia occurs in ruderal, open habitat such as abandoned fields,

stony hillsides and river banks, roadsides, and industrial areas (Brullo
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& De Marco, 2000; Rameau, 2008; Rouy, 1903). Plants are 20–

50 cm high (Brullo & De Marco, 2000) and produce a few hundred

to several thousand flower heads, with approximately 30 seeds per

head (N. Lustenhouwer, personal observation). Fruits consist of an

achene (containing the seed) and a bristled pappus, which forms a

plume assisting in wind dispersal (Rameau, 2008). Flowers are insect-

pollinated (Rameau, 2008) or self-fertilized. Floras of France report a

flowering time between August and November (Rouy, 1903; Tison,

Jauzein, & Michaud, 2014), but do not distinguish between regions.

Our own field observations indicated that phenology was more

advanced in central France than in southern France in early fall.

The historic range of Dittrichia in France around 1900 extended

from the Mediterranean basin to the Atlantic coast up to Paris,

excluding the east and the north of the country (Coste & Flahault,

1937; Rouy, 1903; Figure 1). Current evidence is not conclusive

about whether climate change is the only cause of the recent range

expansion of Dittrichia in Europe, but the timing and northward shift

coincide with climate warming in Europe in the late 20th century

(Lenoir, G�egout, Marquet, de Ruffray, & Brisse, 2008). In the 1980s,

Dittrichia was reported on roadsides in south-west Germany (Garve

& Garve, 2000; Nowack, 1993) and the northwestern Ruhr district

(Dettmar & Sukopp, 1991), and began spreading along highways

from there around 10 years later (Garve & Garve, 2000; Nowack,

1993; Radkowitsch, 1996). In the Netherlands, it has been expanding

its range along highways since approximately 2005 (NDFF, 2015;

Sparrius & Van Strien, 2014; Stouthamer, 2007). In addition to its

northward range expansion, the species also recently extended its

distribution eastward in France (Antonetti, Kessler, Brugel, Barbe, &

Tort, 2006), and spread into Switzerland along highways (Lauber

et al., 2012). By 2003, it was widely distributed around Lake Geneva

(Ciardo & Delarze, 2005). In this study, we examine plant perfor-

mance at the Dutch and Swiss range edges (Figure 1).

2.2 | Seed collection

To establish the common gardens and provide plant material for

molecular analysis of population structure, we collected seeds from

the core of the range in France, and from the expanding range edges

in Switzerland and the Netherlands. We collected seeds from four

populations in southern France, representing the Mediterranean con-

ditions in much of the native range, and from nine populations in

central France, along a latitudinal gradient toward the historic

99

Range core 
(ca. 1900)

Southern France

Central 
France

Predominantly K1 

Predominantly K2

Predominantly K3

Gene�c composi�on 
of popula�on

NetherlandsSwitzerlandcentral France Bcentral France Asouthern France

F IGURE 1 Sample locations and
population structure. Top: sampled
populations in the historical range
(indicated by the dashed line) and
expanded range of Dittrichia. Each symbol
represents one population, located in one
of four geographic regions compared in
this study: southern France, central France,
Switzerland, and the Netherlands. Shapes
correspond to the genetic cluster most
prevalent in the population (K1, diamonds;
K2, circles; K3, triangles). Bottom:
STRUCTURE output based on all 13,582
single nucleotide polymorphisms. Each bar
represents one individual, and thick lines
separate populations. Gray tones within
bars indicate the degree to which an
individual was assigned to each genetic
cluster (K1, dark gray; K2, medium gray;
K3, light gray). Central France consists of
two genetically differentiated groups, with
the Dutch and most Swiss populations
belonging to the second group shown by
circles. Map data ©2017 GeoBasis-DE/
BKG (©2009), Google, Inst Geogr. Nacional
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northern range edge. From the range edge in Switzerland, which is

located at a similar latitude and altitude as the populations in central

France, we collected seeds from three populations. Finally, we col-

lected seeds from three populations in the Netherlands, representing

the most novel northern latitude populations (Figure 1, Table 1). The

Netherlands receives markedly less photosynthetically active radia-

tion as compared to Switzerland, central or southern France

(Appendix S1, Fig. S1), meaning that if daylight is limiting, Dutch

plants must complete their life cycle earlier in the year to receive

comparable photosynthetically active radiation as found in the more

southern locations. Outside of winter, mean daily temperatures at

our sampling locations do not differ between the Netherlands and

Switzerland or central France, though are markedly lower in these

regions than found in southern France (Appendix S1, Fig. S1).

The Swiss and Dutch populations all occurred close to highways,

whereas the French populations were located in various disturbed

habitat such as roadsides, abandoned fields and industrial areas. For

each population, we collected seeds from at least 10 individual

plants if available, and stored them by maternal family in paper bags

at room temperature. Seeds from Switzerland and France were col-

lected in the field in October-November 2013, and seeds from the

Netherlands in October 2015.

2.3 | DNA extraction and RAD-sequencing

To identify the genetic relationships among our populations, and

provide background on the spread history of Dittrichia, we geno-

typed individuals grown from the field-collected seeds from all popu-

lations of origin. If possible, we grew one seedling from each of 10

maternal families per population, adding extra half-siblings where

necessary to achieve a total of 190 individuals from 19 populations.

We freeze-dried the plant material in a lyophilizer for 48 hr and

extracted DNA using Qiagen DNeasy� Plant Mini Kits (Ref. 69104).

We then genotyped all individuals using double digest, single-end

RAD-sequencing, following the protocol by Peterson, Weber, Kay,

Fisher, and Hoekstra (2012) with restriction enzymes EcoR1 and

Taq1 (New England Biolabs). The insert size of the library was

around 600 bp. The four pools with 48 indexes were then pooled in

equimolar ratios and 15% standard DNA library was added to

increase complexity. All individuals were then sequenced in two

lanes of an Illumina HiSeq 2,500 sequencer using a 125 bp single-

end protocol at the Functional Genomics Center Zurich. DNA extrac-

tion, RAD library preparation and bioinformatics analyses were car-

ried out in collaboration with the Genetic Diversity Center, ETH

Zurich. Keygene N.V. owns patents and patent applications protect-

ing its Sequence Based Genotyping technologies.

2.4 | Common garden experiments

To examine the reproductive timing and fitness of plants from all

regions of origin under range-edge conditions, we set up parallel

common garden experiments in Wageningen, the Netherlands, and

Zurich, Switzerland. The gardens were established in 2016 and

located at the range edges because these are the locations at which

understanding how phenology has evolved and influences fitness is

most relevant to future range expansion. To reduce the impact of

maternal effects across all regions of origin and produce seeds for

use in our main common garden experiments, we first grew plants

from seed in a common environment for one (Dutch seeds) or two

(Swiss and French seeds) generations of self-fertilization. Maternal

families in our study descend from a single field plant (Appendix S2).

Ultimately, we used seeds from three Dutch, three Swiss, six central

French and three southern French populations to establish the com-

mon gardens (Table 1). Three populations from central France were

excluded because they were located very close to another popula-

tion within the same city, and one population from southern France

was excluded due to limited seed availability. For each of the 15

populations, we grew three individuals from four maternal families,

comprising 12 plants per population. This design was replicated in

the two gardens, using the same seed sources (Appendix S2).

TABLE 1 Sampled populations in France, Switzerland, and the
Netherlands

Population location Latitude Longitude Elevation (m)

Southern France

Fr�ejus 43.450 6.697 26

Aire du Merle nord 43.640 4.986 63

P�egomas 43.588 6.935 15

la Roquebrussanne† 43.373 5.974 390

Central France

Montluc�on (roadside)* 46.375 2.592 197

Montluc�on (field) 46.378 2.590 196

Montmarault 46.323 2.970 475

Le-Puy-en-Velay 45.057 3.933 705

Bourges (industrial area) 47.099 2.447 138

Bourges (highway)* 47.046 2.345 131

Cournon-d’Auvergne 45.751 3.160 357

Issoire (highway)* 45.525 3.257 379

Issoire (industrial area) 45.556 3.250 383

Switzerland

Gare de Lonay-Pr�everenges 46.523 6.519 388

M€unsingen highway exit 46.879 7.542 525

Chemin d’Ogoz, Saint-

Saphorin

46.475 6.805 564

The Netherlands

Cuijk 51.755 5.845 14

‘t Harde 52.406 5.887 13

Laren 52.239 5.228 5

The order of populations matches the order (left to right) in the STRUC-

TURE plot in Figure 1. Populations with an asterisk (*) were not included

in the common garden experiments, because another population was

sampled within the same town. In such cases, we excluded roadside pop-

ulations and kept the population located within the town. Population la

Roquebrussanne (†) was not included in the common garden experiments

due to limited seed availability.
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To produce the seedlings that would eventually be planted into

these gardens, on June 13th (2016), seeds were placed on moist ger-

mination paper (Zurich) or gamma-sterilized soil (Wageningen) in

transparent boxes in growth cabinets set to 28°C with a 16 hr day/

8 hr night cycle. After approximately 4 days, seeds began germinat-

ing and were transferred onto soil in seedling trays in a greenhouse.

On July 11th, when the seedlings were strong enough, they were

transplanted into 6 L plastic pots (21.2 cm in diameter and 16.8 cm

high) filled with a common sterilized sandy loam soil collected from a

former agricultural field in the Netherlands (Beneden-Leeuwen;

51.89°N, 5.56°E). In Wageningen, the pots were placed on a tarp in

an open field (51.99°N, 5.67°E, 13 m); in Zurich, in wooden beds on

a roof terrace (47.38°N, 8.55°E, 460 m). We used a randomized

block design, with each of three blocks containing one plant from

each maternal family. For the duration of the experiment, we pro-

vided extra water when plants were at risk of drying out due to hot

or dry weather conditions.

To quantify phenology, we conducted a census twice a week on

fixed days, and recorded the date each plant first produced flowers

(at least one yellow floret visible). The day of first flowering (which

is more accurately measured than budding or fruiting date) was our

measure of phenology, quantified as days since plants were placed

in the common garden. Plants were harvested on December 1st and

2nd, when development had slowed and plants started to senesce.

For each plant, we counted the number of fruiting heads (those with

pappus-bearing achenes) on the plant. We defined plant fitness as

the number of fruiting heads multiplied by seed viability, the meth-

ods for which are explained next. To evaluate the possible fate of

plants after our harvesting date, we left 11 of the latest-flowering

plants in the common garden until early February, but only three of

these 11 produced any viable seeds.

After harvesting the experiment, we evaluated seed viability. For

each plant, 30 seeds were selected haphazardly from fruiting heads

that were collected at the time of harvest. These fruiting heads were

open-pollinated, so influence from paternal individuals from different

populations is possible. Nonetheless, seed development is strongly

linked to the flowering phenology and maternal investment of the

mother plant. We first tested the germination fraction of the seeds

on moist germination paper in transparent boxes in growth cabinets

set to 28°C with a 16 hr day/8 hr night cycle. Germinated seeds

were counted and removed after 15–16 days. The remaining seeds

were covered in a 250 mg/L gibberellic acid (GA3) solution and fur-

ther germinants were counted after 24 hr. We lastly estimated the

viability of the still nongerminated seeds at the region of origin level

(Netherlands, Switzerland, central France and southern France) for

each garden. To do so, we selected one seed at random from 30

individuals from each region, cut the seeds in half and stained them

with a 0.25% tetrazolium solution. Viable embryos were counted

after 2.5 hr. The final viability rate per individual plant was thus the

number of germinated seeds at the plant level plus the projected

number of viable, nongerminated seeds (based on 30 seeds from the

plant’s region of origin and garden), divided by the total number of

seeds tested.

2.5 | Data analysis

2.5.1 | Population structure and genetic diversity

Bioinformatics analysis of the RAD sequencing data (details provided

in Appendix S3) yielded 13,582 single nucleotide polymorphisms

(SNPs) across 190 individuals. We evaluated population structure

using STRUCTURE v2.3.4 (Pritchard, Stephens, & Donnelly, 2000).

To prevent bias in the clustering algorithm, we used the haplotype

data and a single individual per maternal family (153 in total) for our

analysis, selecting the half-sib with the least amount of missing data.

The analysis was conducted with two to eight genetic clusters (K),

and replicated 10 times using the admixture model with correlated

allele frequencies. We visualized the output using Structure Har-

vester (Earl & vonHoldt, 2012) and determined the optimal K using

the Evanno, Regnaut, and Goudet (2005) method. In range expand-

ing populations, we may expect many loci not to be in Hardy–Wein-

berg equilibrium (HWE). We therefore tested the robustness of our

results to this assumption by rerunning the STRUCTURE analysis

using only the SNPs in HWE, and by computing a neighbor-joining

tree, which does not depend on a population model (details in

Appendix S3).

To infer changes in genetic diversity during range expansion, we

examined the genetic diversity within three genetically distinct

groups in the core of the range (identified in the population struc-

ture analysis) and at the two expanding range edges. To ensure

equal numbers of individuals within these five groups, we selected

18 individuals at random per group, distributed uniformly across the

available populations. Nucleotide diversity p was calculated for each

SNP using VCFtools (Danecek et al., 2011), averaged across the loci

and divided by the mean fragment length of 121 bp.

2.5.2 | Differentiation in phenology and adaptation
to range edge conditions

All statistical analyses were conducted in R v3.4.0 (R Core Team, 2017).

We analyzed phenological differences between geographic origins using

a mixed-effects Cox proportional hazards model with a Gaussian distri-

bution of random effects (coxme package, Therneau, 2015). In our anal-

yses, we compared four distinct regions of origin: central and southern

France in the core of the range, and the two range edges in Switzerland

and the Netherlands. Population and maternal family (nested in popula-

tion) were treated as random effects. We first fit a global model with

the day of first flowering as the response variable and region of origin,

common garden location, and their interaction as fixed effects. Main

and interaction effects were evaluated using Type II partial-likelihood-

ratio tests (car package, Fox & Weisberg, 2011). Because there was a

significant interaction between origin and garden, we then fit separate

models per garden and analyzed pairwise differences between regions

of origin using Tukey contrasts (multcomp package, Hothorn, Bretz, &

Westfall, 2008).

To estimate selection on phenology in each garden, we assumed

flowering day to be a quantitative trait and standardized it to zero

LUSTENHOUWER ET AL. | 5



mean and unit variance, separately for each garden. Relative fitness

was calculated by dividing each plant’s fitness by the average fitness

of each garden. We then estimated natural selection on phenology

at the garden level using fitness splines (Schluter, 1988), fitting a

nonlinear fitness function to all individuals using generalized additive

models in R (R code based on Colautti & Barrett, 2013a; package

mgcv, Wood, 2011). Additionally, we estimated selection on flower-

ing day separately for individuals from each region of origin, because

these regions differed in their range of phenology. Here, we used

linear regression as in a classic selection analysis (Lande & Arnold,

1983).

To analyze the effects of origin, garden, and their interaction

on fitness, we fit a mixed-effects negative binomial model using

maximum likelihood (function glmer.nb in package lme4, Bates,

Maechler, Bolker, & Walker, 2015), which is appropriate for

overdispersed count data. We tested the main and interaction

effects of origin and garden on fitness using likelihood ratio tests,

and removed the interaction since it was not statistically signifi-

cant. We then tested pairwise differences between regions using

Tukey contrasts in an additive model with garden and origin as

fixed effects.

3 | RESULTS

3.1 | Spread history

Population genetic analysis revealed three distinct genetic clusters of

individuals (STRUCTURE analysis based on all SNPs; Figure 1). The

first cluster (K1) included all plants from southern France and a few

individuals from central-French populations. Within central France,

we found two different clusters, one of which (K2) included all of

the Dutch populations and half of the individuals from Switzerland.

The other Swiss plants were more closely related to individuals from

southern France (K1), or consisted of a mix of the two clusters (Fig-

ure 1). It is therefore likely that the Dutch populations originate from

central France, whereas multiple introductions of mixed genetic com-

position occurred in Switzerland. The last cluster (K3) was common

in four populations in central France, but otherwise rare. FST analysis

including populations from southern France, the two groups within

central France, and the range edges in Switzerland and the Nether-

lands supported these results (Appendix S3). Finally, the STRUC-

TURE analysis with only the SNPs in HWE and neighbor-joining tree

produced qualitatively similar results to our analyses including all

SNPs (Appendix S3).

Neutral genetic diversity was lower at the range edge in the

Netherlands (nucleotide diversity p = 0.0014) than in central France

populations belonging to the same genetic cluster (p = 0.0023) or in

populations from southern France (p = 0.0023). In contrast, genetic

diversity was not lower in the Swiss populations (p = 0.0024) com-

pared to the central France populations, consistent with their mixed

genetic composition. The genetic cluster found in central France but

rare elsewhere (K3) had low genetic diversity (p = 0.0013).

3.2 | Phenological changes with spread

Plants in both common gardens showed wide variation in flowering

phenology, with its onset spanning from early September to early

November (Figure 2). There was a significant interactive effect of

region of origin and common garden location on flowering day

(v2(3) = 25.4, p < .001). However, plants from different regions of

origin were strongly differentiated in their phenology in both gar-

dens (Wageningen: v2(3) = 234, Zurich: v2(3) = 230, p < .001). Plants

from central France flowered 3 weeks earlier on average than plants

from southern France (z = �5.8 and �4.3, p < .001). Within the

expanded range, plants from the Netherlands flowered even 1 week

earlier than those from central France (Wageningen garden:

z = �5.7, p < .001; Zurich garden: z = �2.3, p = .09 (marginally sig-

nificant); Figure 2), despite only having reached their more northern

latitude over the last 20–50 years. Swiss plants had similar phenol-

ogy to plants from central France, which matches their comparable

latitude and altitude.

To further explore the importance of early phenology for plant

fitness, we estimated phenotypic selection on flowering day. In both

common gardens, fitness declined as plants flowered later,
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F IGURE 2 Cumulative flowering phenology of plants of Dutch
(n = 36), Swiss (n = 33 in Wageningen, n = 36 in Zurich), central
French (n = 70 in Wageningen, n = 72 in Zurich) and southern
French (n = 33 in Wageningen, n = 36 in Zurich) origins in the
common gardens in (a) Wageningen and (b) Zurich. We used the day
each individual first produced flowers as the response variable
(quantified as days since placed in the common garden), recorded in
twice-weekly surveys (points). For illustration purposes, here we
present the day of year, ranging from 245 (September 1st) to 308
(November 3rd). Curves that do not share letters are significantly
different at a = 0.05, tested individually for each garden
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approaching zero for plants flowering from early October onwards

(Figure 3). Although plants from southern France, which flowered

last, had the lowest fitness, we also found selection for earlier phe-

nology at the range edges among plants from central France, the

putative region of origin of the populations spreading at both range

edges (Figure 3). Statistically significant selection on earlier flowering

time was found in nearly all populations placed at the range edge

(Figure 3).

In both common gardens, plants of Dutch, Swiss, and central

French origin had comparable fitness, whereas the fitness of plants

from southern France was much lower and often zero (pairwise dif-

ference with all other regions: p < .001; Figure 4). Consistent with

expectations based on their phenology, the fitness of Dutch plants

in the common garden in Wageningen (the Netherlands) was slightly

higher than the fitness of central French plants (Figure 4, left),

although there was no statistical support for this result due to the

limited number of sampled populations. Overall, plants in the

Wageningen garden had almost three times higher fitness than

plants in the Zurich garden (v2(1) = 169, p < .001; Figure 4).

4 | DISCUSSION

As species expand their ranges northward in response to climate

warming, the timing of key events in their life cycle may be mal-

adapted to the photoperiod and seasonality they encounter in the

expanded range, limiting further spread. Our results suggest that as

Dittrichia has migrated northward over the last several decades, rapid

evolution has shifted its phenology to earlier in the season. We

found genetic variation in flowering time associated with latitude of

origin, extending from the core of the range in southern France to

the expanding northern range edge in the Netherlands. Moreover,

we observed a fitness advantage of early-flowering plants at both

range edges, suggesting that rapid phenology evolution could pro-

mote the range expansion of Dittrichia. Thus, as hypothesized, even

if the northward range expansion of climate change migrants is pre-

cipitated by warming conditions, continued expansion may benefit

from evolution in response to other environmental variables experi-

enced in the expanded range.

The early flowering time of the Dutch populations is striking

because the species did not occur at this latitude previously, sug-

gesting that evolution in response to novel environmental conditions

in the Netherlands occurred in less than 50 years (NDFF, 2015;

Stouthamer, 2007). Given our genetic results suggesting that the

Dutch populations likely originate from central France (Figure 1), the

phenology of the Dutch populations represents a 1-week advance in

average flowering time relative to the source population (Figure 2).

Swiss populations flowered around the same time as the central

French populations, which would be expected based on their similar

latitude and altitude. However, given the mixed genetic composition

of the Swiss populations (Figure 1), only a fraction of the individuals

introduced to Switzerland were of similar genetic composition as0
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those in central France (genetic cluster K2), and therefore likely pre-

adapted to Swiss environmental conditions. Other Swiss populations,

which more likely originated from southern France (genetic cluster

K1), may have recently evolved earlier phenology as they spread

north.

Several lines of evidence support our hypothesis that the differ-

entiation in phenology among central France, Swiss, and Dutch pop-

ulations is the result of selection for earlier flowering time over the

fifty years of range expansion. Since de novo mutations are unlikely

to play a large role on this timescale, sufficient genetic variation in

phenology would be required within the central France populations,

providing the material on which natural selection could act (Barrett

& Schluter, 2008). Indeed, the phenology variation among the central

France plants was such that the earliest individuals were comparable

in timing to those of the Dutch and Swiss populations (Figure 3).

Moreover, flowering time is highly heritable in this species

(h2 = 0.86; Appendix S4). Finally, we found selection for early phe-

nology in both range edge common gardens (Figure 3). The decline

in fitness as plants flowered later matches our expectation that early

flowering is beneficial at northern latitudes, and is consistent with

the observed differentiation in flowering time between populations

from southern and central France within the range core (Figure 2).

Taken together with the short generation time of Dittrichia, the

observed genetic variation in flowering time, high heritability of

flowering phenology, and selection for earlier flowering allow for the

rapid evolution of phenology during the range expansion.

4.1 | Caveats and open questions

Although our results strongly support the hypothesis that Dittrichia

evolved to flower earlier in the year over the course of range expan-

sion, several of our results are surprising in light of the observed dif-

ferentiation in flowering time between northern and southern

populations. First, plants of a given origin tended to flower 1 week

later in the northern range edge garden in Wageningen than in Zur-

ich (Figure 2). This may reflect nonadaptive plasticity (Ghalambor,

McKay, Carroll, & Reznick, 2007; Ghalambor et al., 2015), where

growing conditions in the Netherlands delay the onset of flowering

despite the adaptive benefits of flowering earlier at the northern

range edge. Second, the strength of selection on flowering time was

similar in both common gardens (Figure 3), even though stronger

selection for earlier phenology might be expected in the north based

on the evolution of earlier flowering in these locations. This result

may be an artifact of the specific year and location of study.

Although 2016 weather conditions in Zurich and Wageningen did

not deviate markedly from long term average conditions in these

locations (Appendix S1, Fig. S2), it may be that earlier flowering time

in the north is selected for by infrequent weather events not experi-

enced during the year of the study. Indeed, for plants with an annual

life history and limited seed bank, 1 year of failed recruitment due

to poorly timed reproduction can be catastrophic.

Third, given the evidence for the evolution of earlier average

flowering time in the Dutch origin populations, and the implication

that this occurred in response to northward range expansion, it is

surprising that these plants overall had similar, rather than higher fit-

ness than central French and Swiss plants at the common garden in

Wageningen (Figure 4). However, the fitness of range edge Dutch

populations could have been reduced by other evolutionary forces

that change mean fitness during range expansion, including life his-

tory trade-offs and the accumulation of deleterious mutations over

the course of spread. The latter, known as the expansion load (Peis-

chl, Dupanloup, Kirkpatrick, & Excoffier, 2013) is supported by the

lower genetic diversity in Dutch than in range core populations. We

therefore believe that the evolution of earlier flowering enhanced

the fitness of northern populations relative to the lower fitness they

would have otherwise had due to expansion load and other factors.

Finally, the overall higher fitness we found in Wageningen compared

to Zurich (Figure 4) is surprising given its more northern location

and the later flowering time of the plants in this garden. The most

likely explanation for this result is that experimental growing condi-

tions in each garden were influenced by microclimate factors unrep-

resentative of the regions as a whole, related to the field and

rooftop locations of the two gardens. This may also explain why

plants flowered later in the Wageningen than Zurich garden.

Although our results indicate that Dittrichia evolved earlier flow-

ering time over the course of range expansion, the agents of selec-

tion and physiological and genetic trade-offs contributing to this

evolutionary trajectory require further study. Previous work has

identified trade-offs between flowering time and size at reproduction

for Solidago spp., Lythrum salicaria, and Microstegium vimineum, all

invasive plant species exhibiting similar latitudinal clines in phenology

across their exotic range in the northern temperate zone. In the

north, plant growth is constrained by shorter growing seasons,

whereas in the south, later flowering allows greater investment into

reproduction (Colautti & Barrett, 2013b; Colautti, Eckert, & Barrett,

2010; Montague, Barrett, & Eckert, 2008; Novy et al., 2013; Weber

& Schmid, 1998). To evaluate whether late-flowering Dittrichia in our

study had a higher reproductive potential than their earlier flowering

counterparts, we examined the total number of reproductive struc-

tures plants produced, regardless of whether those seeds matured.

At the garden in the Netherlands, the late-flowering plants originat-

ing from southern France produced 40% fewer heads than the plants

from other populations (Appendix S5), indicating that earlier flower-

ing does not seem to come at the expense of total reproduction at

the northern range edge. In the Swiss garden, plants from southern

France made as many heads as their more northern counterparts

(Appendix S5), indicating equal reproductive potential. Although

these results suggest that late flowering may be less detrimental to

reproductive potential at the more southern latitude of Switzerland,

a third common garden in southern France would be necessary to

evaluate whether late flowering may in fact be advantageous under

the warm climate in the Mediterranean core of the range.

A second topic for further study are the specific environmental

factors favoring the evolution of earlier phenology in the Nether-

lands. Moving north from the core of the range, the main shift in cli-

mate occurs from southern France to central France and
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Switzerland. By contrast, the amount of received photosynthetically

active radiation is comparable from southern France through to cen-

tral France and Switzerland, and only decreases strongly once plants

spread from these central latitudes to the Netherlands (Appendix S1,

Fig. S1). Although low temperatures, and frost in particular, limit

reproduction of Dittrichia at the end of the growing season (Parsons

& Cuthbertson, 2001), temperature differences do not independently

explain the earlier phenology of populations from the Netherlands

relative to those from central France or Switzerland, given their com-

parable climates. Rather, the increasing seasonality in day length in

more northern latitudes and the associated reduction in light avail-

ability seem a more likely constraint on flowering time in the

Netherlands (Saikkonen et al., 2012). Nonetheless, climate and pho-

toperiod may constrain flowering time in different parts of the range,

and even interact (McKown et al., 2014), an important topic of study

for future work.

4.2 | Implications for the spread of climate change
migrants

The evolution of earlier flowering time as Dittrichia spread north

likely contributed to the velocity of range expansion. In the northern

range edge garden (Figure 3a), late-flowering individuals from central

France, the putative source region of the Dutch populations, pro-

duce less than half the seeds of the earliest-flowering individuals,

illustrating the demographic costs of maladapted phenology. Such

costs would likely affect how fast those populations advance (Gilbert

et al., 2017), given the central role of low density growth rate in

determining the invasion speed (Kot, Lewis, & van den Driessche,

1996; Lewis & Kareiva, 1993).

In combination with recent findings of rapid evolution during

the native range expansion of insects (Buckley & Bridle, 2014; Lan-

caster et al., 2015) and birds (Gunnarsson, Sutherland, Alves, Potts,

& Gill, 2011), we conclude that rapid adaptation to novel environ-

ments is not only a feature of biological invasions, but may also

promote native range expansions with climate change. Though our

study focused on adaptation to seasonality, a factor predictably

changing with northward expansion, rapid evolution may also pro-

mote the expansion of species facing other types of novel environ-

mental conditions. On the biotic side, range expanding populations

may experience novel interactions with enemies (Doorduin & Vriel-

ing, 2011) or mutualists. On the abiotic side, resources that were

present in the native range may not be available in the expanded

range, such as certain soil types or host plants (Buckley & Bridle,

2014).

Our results support growing calls for models predicting the even-

tual range limits and spread velocity of climate change migrants (e.g.,

Kearney, Porter, Williams, Ritchie, & Hoffmann, 2009) to incorporate

evolutionary change (Urban et al., 2016). Given that both spreading

and adapting (cf. Berg et al., 2010) may ultimately prove the most

effective response of native species threatened by global warming,

models properly accounting for rapid adaptation during range expan-

sion may predict greater species persistence (Bush et al., 2016) than

is typical from more traditional modeling approaches (Thomas et al.,

2004). Ultimately, understanding the feedbacks between the ecology

of spreading populations and their evolution in response to novel

environments is key to forecasting species’ responses to global

change.
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