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Abstract 15 

A major drawback to the industrial application of many biocolorants is their instability to 16 

processing conditions, thereby limiting their use to replace artificial colorants. 3-17 

deoxyanthocyanidins have promising features to ensure colour stability in food processing 18 

conditions. This study evaluated the stability of apigeninidin, the main 3-deoxyanthocyanidin from 19 

sorghum leaf sheaths, to food processing conditions in watery extracts and in a maize porridge. 20 

Apigeninidin was not soluble at pH 5.04±0.02. However, apigeninidin was soluble and stable at 21 

pH 6-10 with increased colour density and resistance to bleaching at alkaline pH. A heat treatment 22 

of 121 °C / 30 min degraded 61% of the anthocyanins. At 65 °C, degradation rate of apigeninidin 23 

was four times lower at pH 9.03±0.04 than 6.08±0.02. Storage at room temperature promoted 24 

endothermic degradation reactions. Nevertheless, photodegradation of apigeninidin was not 25 

observed during storage. In the maize porridge, thermal stability of apigeninidin and redness were 26 

similar at pH 4-6 whereas they were higher at pH 9.03±0.04. In summary, the watery extract of 27 

apigeninidin from sorghum leaf sheaths showed good stability regarding common industrial 28 

processes. Nevertheless, the biocolorant’s precipitation at pH 5.04±0.02 and degradation at pH 29 

6.08±0.02 and 9.03±0.04 need further investigation to optimise its industrial applications. 30 

 31 

Keywords: Apigeninidin, heat treatment, pH, colour density, biocolorant   32 
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1. Introduction 33 

Anthocyanins (ACY) are plant pigments with colours that range from scarlet to blue (Wallace & 34 

Giusti, 2015). In solution, ACY are a mixture of the coloured (i.e. the flavylium cation and 35 

quinoidal base) and colourless forms (i.e. the carbinol pseudobase and the chalcone) (Brouillard, 36 

1982). The proportion of flavylium cation, quinoidal base, carbinol pseudobase and chalcone at 37 

equilibrium in an ACY solution are a function of ACY structures and processing conditions (viz. 38 

pH, light exposure and temperature) (Mazza & Brouillard, 1987). In general, an increasing pH 39 

leads to (a) an increasing hydration of the flavylium cation into carbinol pseudobase and (b) 40 

increasing tautomerisation of carbinol pseudobase into chalcone (Brouillard, 1982). Consequently, 41 

the proportion of chalcone would be higher than that of the flavylium cation for pH values above 42 

3 (Brouillard, 1982). However, the pH limit for a dominant proportion of chalcone is higher for 43 

ACY with a methoxylation or a glycosylation (Brouillard, 1982). In addition, a high temperature 44 

during processing or storage increases the rate of endothermic reactions (e.g. hydration of the 45 

flavylium cation and tautomerisation of the carbinol pseudobase) (Brouillard, 1982). Furthermore, 46 

light exposition of ACY leads to photodegradation of flavylium cations into colourless forms (i.e. 47 

the carbinol pseudobase and chalcone) (Dyrby, Westergaard, & Stapelfeldt, 2001).  48 

The 3-deoxyanthocyanidins are a particular class of ACY because the deprotonation constant of 49 

its flavylium cation is higher than for the hydration. Consequently, a solution of 3-50 

deoxyanthocyanidins stays coloured at high pH. The 3-deoxyanthocyanidins have the interest of 51 

the food industry for their resistance to (a) pH changes (Ojwang & Awika, 2008), (b) bleaching 52 

additives (e.g. sulphites) (Ojwang & Awika, 2010), and (c) ring fission during heat treatment 53 

(Yang, Dykes, & Awika, 2014). Moreover, they show a better colouring efficiency than the 54 

majority of the anthocyanins (Awika, Rooney, & Waniska, 2004) and their colour stability 55 
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improves in the presence of phenolic acids (Awika, 2008). Most experiments on the stability of 3-56 

deoxyanthocyanidins were with non-food grade solvents such as ethanol, methanol, 57 

hydroalcoholic solutions, water acidified with HCl or 70% aqueous acetone (Awika, 2008; Awika 58 

et al., 2004; Kayodé, Bara, Dalodé-Vieira, Linnemann, & Nout, 2012; Ojwang & Awika, 2008). 59 

Limited data exist on the stability of apigeninidin in watery extracts as commonly applied by 60 

traditional users of sorghum biocolorant in West Africa. This study evaluated (a) the degradation 61 

of sorghum total ACY in relation to heat treatments and storage conditions (light exposure, storage 62 

temperature), (b) the effect of a food acidulant (viz. citric acid) and alkaline conditions (NaOH) on 63 

apigeninidin solubility and degradation, (c) the thermal degradation kinetics and the resistance to 64 

bleaching of apigeninidin in relation to the pH of the watery extract and (d) the apigeninidin 65 

degradation and colour properties at different pH values in a food matrix, namely maize porridge. 66 

 67 

2. Material and methods 68 

2.1. Materials 69 

Dried dye sorghum (Sorghum bicolor) leaf sheaths and kanwu, an alkaline rock containing 70 

carbonate and bicarbonate salts (Madodé, 2012) used by local users as an extraction aid, were 71 

bought at the market of Dassa-zoumè in Benin and ground into powder using a miller (Coffee 72 

Bean and Spice Mill Grinder Model #843, Moulinex). Maize grains (Zea mays) were purchased 73 

from the market of Abomey-Calavi in Benin, cleaned and milled into flour using a miller 74 

(RotorMill Pulvrisette-14, Idar-Oberstein, Germany) equiped with a 0.2 mm sieve as an ingredient 75 

for making maize porridge. Solutions of 1 N of citric acid (Sigma-Aldrich, Netherlands) and 1 N 76 

hydroxide sodium (Merck, Germany) were used as acidic and alkaline solutions, respectively. 77 
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 78 

2.2. Apigeninidin extraction procedures 79 

Sorghum alkaline watery extract (SAWE) and sorghum hot aqueous extract (SHAE) were 80 

produced by cool alkaline and hot aqueous extraction, respectively (Akogou, Kayodé, den Besten, 81 

& Linnemann, 2017). These two watery extraction methods are the most common traditional 82 

extraction procedures in Benin. Alkaline extraction was conducted by mixing 11.1 g of sorghum 83 

leaf sheath powder, 1.5 g of kanwu and 1000 mL of water and strirring for 20 min at room 84 

temperature. For hot aqueous extraction, 11.1 g of sorghum leaf sheath powder and 1000 mL of 85 

water were mixed and heated with a magnetic heating plate (model FB 15010, Fischer Scientific) 86 

from 21.5 °C to 86 °C and then cooled down in an ice bucket. Both watery extracts were filtered 87 

with 2.5 μm filter paper (Whatman,GE Healthcare UK Limited, UK) to remove sorghum residues. 88 

The pH of the SAWE and the SHAE were 8.67±0.14 and 7.07±0.04, respectively. 89 

 90 

2.3. Thermal treatment and storage of the watery extracts  91 

Volumes of 6 mL of SAWE and SHAE were transferred in glass tubes and subjected to various 92 

heat treatments, i.e. 65 °C / 30 min, 95 °C / 30 min and 121 °C / 30 min. A water bath (Memmert 93 

WNE 14, Schwabach, Germany) and an autoclave (Timo, Pbi International, Italy) were used to 94 

apply (a) 65 °C / 30 min and 95 °C / 30 min and (b) 121 °C / 30 min, respectively. The water bath 95 

was preheated to 65 °C and 95 °C before applying the heat treatments. After the heat treatments, 96 

the tubes were cooled down in a cold water bath. Two independent duplicates of SAWE and SHAE 97 

were subjected to heat treatments. Next the stability of ACY to various storage conditions was 98 

evaluated by keeping independent duplicate extracts for 18 days (i) in the dark at room temperature 99 
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(26-35 °C) (Adinsi et al., 2014), (ii) in the dark under refrigeration at 4 °C, and (iii) in ambient 100 

light at room temperature (26-35 °C) (Adinsi et al., 2014). Two tubes of SAWE and SHAE were 101 

taken (a) before and after treatment and (b) during storage for measurement of the total ACY 102 

content and the total colour density (TCD). 103 

The total ACY content was measured using the pH differential method by Cao, Liu, Pan, Lu, and 104 

Xu (2008). The total ACY was measured only in the pH 1 buffer because the main ACY in 105 

sorghum extract (i.e. apigeninidin) is not colourless in a pH 4.5 buffer (Awika et al., 2004). 106 

Wavelengths of 470 and 700 nm were used for apigeninidin and haze correction, respectively. The 107 

total ACY content was calculated using the following Equation (1): 108 

Total ACY content (apigeninidin equivalent mg L−1) =  
A × 290.69 × DF × 103

𝜀𝜀𝑎𝑎 × l
    (1) 

where A = (A470 nm − A700 nm  )𝑝𝑝𝑝𝑝1.0; 290.69: molecular weight of apigeninidin chloride (g mol-109 

1); DF: dilution factor; 103 : conversion factor from g to mg; εa : molar absorptivity of apigeninidin 110 

chloride (L mol-1 cm-1); l: path length (which is 1 cm). The molar absorptivity of apigeninidin 111 

chloride was determined by the method of Cao et al. (2008) with an apigeninidin chloride standard 112 

(Extrasynthese, Genay, France). 113 

The TCD was determined according to Turfan, Türkyılmaz, Yemiş, and Özkan (2011). 114 

Wavelengths of 420, 470 and 700 nm were used for brown pigments, apigeninidin and haze 115 

correction, respectively.  116 

The TCD was calculated using Equation (2): 117 

𝑇𝑇𝑇𝑇𝑇𝑇 = [(𝐴𝐴420 − 𝐴𝐴700) + (𝐴𝐴470 − 𝐴𝐴700)]𝑛𝑛𝑛𝑛𝑛𝑛−𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 × 𝑇𝑇𝐷𝐷    (2) 

where DF: dilution factor. 118 
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The apigeninidin content and the TCD were measured using a Spectrophotometer (SmartSpec Plus 119 

spectrophotometer, Bio Rad, USA). 120 

 121 

2.4. pH adjustment of the watery extract 122 

Acidic (citric acid 1 N) and alkaline (hydroxide sodium 1 N) solutions were used to adjust the pH 123 

of independent duplicate samples of SAWE (50 mL, pH 8.67) to 5.04±0.02, 6.08±0.02, 124 

10.03±0.03, 11.04±0.03 and 12.07±0.04. Samples were poured in 50 mL polypropylene tubes 125 

(Cellstar, Greiner Bio-One, Frickenhausen, Germany), kept at room temperature for 30 min and 126 

centrifuged at 3000 rpm at 4 °C for 30 min with a centrifuge (Heraeus Multifuge X3R, Thermo 127 

Fisher Scientific, UK). Next, the supernatant was collected and the pellet was suspended in 128 

methanol. The plain extract was used when no pellet had been formed. The apigeninidin content, 129 

its molar adsorptivity and the formation of phenolic acids as degradation products in the 130 

supernatants, the in methanol suspended pellets and the plain extracts were determined by HPLC.  131 

An ultimate 3000 RS High Performance Liquid Chromatography (HPLC) system equipped with a 132 

Diode Array Detector DAD-3000 RS (Thermo Scientific Dionex, Amsterdam, the Netherlands) 133 

and a quaternary pump LPG- 3000 RS (Thermo Scientific Dionex) was used. Standards of 134 

apigeninidin (Extrasynthese, France), 4-hydroxybenzoic acid (Sigma Aldrich, Netherlands) and p-135 

coumaric acid (Sigma Aldrich, Netherlands) were used for identification and quantification. 136 

Compounds were separated with a Polaris C18-A column (150×4.6 mm, Varian, CA, USA) at a 137 

volumetric flow rate of 1 mL min-1 with two mobile phases, i.e. formic acid (10%) in milli-Q water 138 

(A) and methanol (100%) (B). The elution gradient of B was: 0 to 20 min, from 5% to 60% B; 20 139 

to 25 min, from 60% to 100% B; 25 to 30 min with 100% B; 30 to 31 min from 100% to 5% B; 140 
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31 to 35 min with 5% B. Apigeninidin, 4-hydroxybenzoic acid and p-coumaric acid were measured 141 

at 480, 260 and 280 nm, respectively.  142 

The molar absorptivity of apigeninidin was calculated using Equation (3) (Locatelli, Carlucci, 143 

Genovese, Curini, & Epifano, 2011): 144 

εb =
A × f × 255.24
l × c × v × 10−6

    (3) 

where εb: molar absorptivity (L mol-1 cm-1); A: peak area recorded by HPLC (AU min); f: 145 

volumetric flow rate (L min-1); 255.24: molecular weight of apigeninidin (g mol-1); l: optical path 146 

length of the flow cell (which is 1 cm); c: concentration of apigeninidin (mg L-1); 10-6: conversion 147 

factor from mg L-1 to g mL-1; v: volume injected (mL).  148 

 149 

2.5. Degradation of apigenindin in watery extracts at different pH 150 

Four independent replicates of SAWE were prepared. The pH was adjusted to 6.08±0.02 and 151 

9.03±0.04 as described above, after which 6 mL samples were transferred to glass tubes and stored 152 

at 4 °C overnight (16 hours). Next, the kinetic degradation of the extracts was performed at 65 °C 153 

using a block heater (Labtherm Liebisch, Bielefeld, Germany). Two tubes of SAWE at pH 154 

6.08±0.02 and 9.03±0.04 were withdrawn at time intervals from 0 to 60 min to measure the 155 

apigeninidin content and the TCD as described above. In addition the polymeric colour (PC) and 156 

the % PC were determined on the watery extracts treated with bisulphite, see Equations (4) and 157 

(5) (Turfan et al., 2011). Wavelengths of 420, 470 and 700 nm were used for brown pigments, 158 

apigeninidin and haze correction, respectively. The experiment was performed four times with 159 
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independent samples. The thermal degradation of apigeninidin was described with the natural 160 

logarithm scale using the Weibull model, see Equation (6).  161 

𝑃𝑃𝑇𝑇 = [(𝐴𝐴420 − 𝐴𝐴700) + (𝐴𝐴470 − 𝐴𝐴700)]𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 × 𝑇𝑇𝐷𝐷    (4) 

%𝑃𝑃𝑇𝑇 =
𝑃𝑃𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇

× 100    (5) 

ln𝑇𝑇𝑡𝑡 = ln𝑇𝑇0 − �𝑡𝑡𝛿𝛿�
𝛽𝛽

    (6) 

where, Ct : concentration of degraded apigeninidin (mg L-1); C0: initial apigeninidin content (mg 162 

L-1); δ: the inverse of the kinectic rate constant (min-1); β: shape constant, which defines the degree 163 

of concavity of the curve and t: time (min).  164 

 165 

2.6. Combined effect of heat treatment and pH adjustment in a food matrix 166 

Two independent replicates of SAWE and solution of kanwu (SK) (1.5 g L-1 in milli-Q water) were 167 

prepared and adjusted to pH 4.09±0.19, 5.04±0.02, 6.08±0.02 and 9.03±0.04 as described above. 168 

Maize flour (81 g) was added to 810 mL of the pH adjusted SAWE and SK. The mix was cooked 169 

using a thermomixer (Vorwerk, Wuppertal, Germany). The samples of maize porridge cooked 170 

with pH adjusted SK were used as control. The temperature of the cooking programme was set as 171 

follows: from 23 to 95 °C during the first 10 min and cooking at 95 °C during the next 10 min. 172 

Next, the samples were cooled down (i) at room temperature to measure colour and dry matter and 173 

(ii) with liquid nitrogen, freeze-dried at -55 °C / 0.72 mbar (using an Alpha 1-4 LD plus freeze-174 

dryer, Marin Christ, Germany) and milled by impact and friction (mixer mill MM400, Retsch, 175 

Haan, Germany) for extraction and quantification of apigeninidin. Colour parameters (L*, a*, b*) 176 
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were measured with a HunterLab Colorflex EZ spectrophotometer (Reston, VA, USA) (illuminant 177 

D 65 and 10° observer) and the chroma (C*) and the hue (h°) were calculated.  178 

 179 

2.8. Statistical analysis 180 

Data on the total ACY, apigeninidin and phenolic acids (4-hydroxybenzoic acid and p-coumaric 181 

acid), TCD, PC, %PC, colour parameters (L*, C*, h°) were analysed with SPSS 23.0 (SPSS Inc, 182 

Chicago, IL, USA). One way variance analysis (ANOVA) on the means (or on the mean ranks 183 

when the normality or homogeneity of variance failed) followed by post hocs (Duncan or Mann-184 

Whitney pairwise tests) were applied to detect differences between treatments (pH, heat treatment 185 

and time exposure). 186 

The parameters of the Weibull model (ln C0, δ and β) and their standard errors were estimated with 187 

the macro Solver Aid in Excel 2010. The f-value of the model was determined with Equation (7) 188 

(den Besten, Mataragas, Moezelaar, Abee, & Zwietering, 2006). The f-value was compared to the 189 

F-value table for α=0.05 as shown in Equation (8) (den Besten et al., 2006). 190 

f − value =
MSEmodel
MSEdata

    (7) 

where, MSEmodel: mean square error of the model; MSEdata: mean square error of the data  191 

FDFdata
DFmodel = Fn−mn−s     (8) 

where DFmodel: degrees of freedom of the model; DFdata: degrees of freedom of the data; n: number 192 

of data points, m: the number of time points; s: number of parameters of the model. 193 

 194 
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3. Results and discussion 195 

3.1. Stability of total ACY in dye sorghum extract to heat treatment and storage conditions 196 

Total ACY losses of 17-18%, 59-66% and 60-61% were measured after 65 °C / 30 min , 95 °C / 197 

30 min and 121 °C / 30 min heat treatments, respectively (Fig. 1). The percentage of total ACY 198 

that degraded due to the heat treatments was comparable for both types of watery extracts, although 199 

the total ACY differed (323.5±11.8 mg L-1 and 181.0±42.0 mg L-1 for SAWE and SHAE, 200 

respectively) as well as the pH values (8.67±0.14 and 7.07±0.04 for SAWE and SHAE, 201 

respectively). According to Brouillard, Iacobucci, and Sweeny (1982), the quinoidal bases are the 202 

dominant coloured forms of 3-deoxyanthocyanidins at pH 6. The pH of the SAWE and SHAE also 203 

suggested the quinoidal bases as the major forms of ACY at high pH (7.07 to 8.67). Apparently, 204 

the initial total ACY content and the shift from neutral to alkaline pH did not affect (p=0.4 for 65 205 

°C / 30 min and p=0.1 for 95 °C / 30 min and 121 °C / 30 min) the stability of ACY in relation to 206 

heat treatment. A previous study showed a loss of 80% of the anthocyanins at 100 °C / 30 min  207 

(Hiemori, Koh, & Mitchell, 2009). In this respect, the ACY from sorghum extract performed much 208 

better at a neutral and alkaline pH. Data showed that sorghum extract can successfully be used in 209 

foods that require sterilisation treatments at pH 7.07±0.04 and 8.67±0.14, confirming the good 210 

thermal stability of apigeninidin (Yang et al., 2014) and providing additional information on 211 

thermal stability at alkaline pH.  212 

Fig. 2 shows the stability of total ACY during storage. A general decrease of the apigeninidin 213 

content was observed during storage under ambient light and in the dark at room temperature (25-214 

36 °C), as well as in the dark under refrigerated conditions (4 °C). After 18 days of storage, the 215 

decreases of total ACY in SAWE and SHAE were (a) 71.9% and 50.6% under ambient light, 216 

respectively, (b) 71.4% and 48.5% in the dark at room temperature, respectively and (c) 44.8% 217 
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and 24.9% in the dark under refrigerated conditions, respectively. At room temperature, light 218 

conditions apparently had no influence on the apigeninidin decrease in SAWE or SHAE. 219 

Photodegradation of ACY could occur through the hydration of the flavylium cation into carbinol 220 

pseudobase (Dyrby et al., 2001). On the contrary, the high pH of SAWE and SHAE (8.67±0.14 221 

and 7.07±0.04) promoted the formation of quinoidal base, which might not be involved in the 222 

photodegradation of ACY. Awika (2008) also reported good stability of flavylium cation of 223 

apigeninidin with only 25% loss after 15 days of storage under fluorescent light at 25 °C. The 224 

absence of increased degradation in extracts exposed to ambient light is advantageous since it 225 

implies that dye sorghum can be applied to foods and non-food products commonly exposed to 226 

light because common anthocyanins (i.e. glycosides of cyanidin and delphinidin) could lose more 227 

than 90% of the initial concentration of colorant after 15 days under light conditions (Baublis, 228 

Spomer, & Berber‐Jiménez, 1994). The alkaline extract appeared to be particularly sensitive to 229 

storage at room temperature. Storage at room temperature (26-35 °C) increased the degradation of 230 

ACY due to its higher reactivity at high temperature (Alighourchi & Barzegar, 2009; Kırca & 231 

Cemeroğlu, 2003). Refrigerated storage slowed down the degradation of ACY. The reactions 232 

leading to the formation of the carbinol pseudobase and chalcone are known as endothermic 233 

(Brouillard, 1982). Therefore, storage at refrigeration temperature (4 °C) would retard the 234 

endothermic reactions leading to ACY degradation. 235 

 236 

3.2. Effect of pH adjustment  237 

The apigeninidin content of dye extracts was constant at pH 6-10 (Fig. 3), whereas its molar 238 

absorptivity did not change (p=0.06) at pH 5-12 (27629.5±85.7 L mol-1 cm-1). Nevertheless, data 239 

reported in Table 1 shows that the use of an acidulant resulted in a lower TCD at pH 6.08±0.02 240 
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than at pH 9.03±0.04, implying that pH might affect the colour density of the watery extract of 241 

apigeninidin. A stable ACY molar absorptivity suggests a stable colour intensity (Torskangerpoll 242 

& Andersen, 2005). However, despite its stable molar absorptivity, the colour density of 243 

apigeninidin extract was not stable over the pH range tested. The phenolic acid content might affect 244 

the colour density of the apigeninidin watery extract as they could enhance the colour, contributing 245 

to a high TCD at high pH (Awika, 2008). Conversely, the oxidation of organic acids (e.g. citric 246 

acid) and their condensation with other phenolic compounds may occur at low pH values, 247 

contributing to a low colour intensity at pH 6.08±0.02 (Kokkaew, Srithanyarat, & Pitirit, 2015). 248 

The use of an acidulant at pH 5.04±0.02 resulted in an apigeninidin precipitation with the 249 

formation of two phases: (i) a supernatant containing only 5% of the initial apigeninidin and (ii) a 250 

pellet rich in apigeninidin. HPLC analysis showed that the pellet contained apigeninidin with a 251 

purity of 100%. In addition, phenolic acids (viz., 4-hydroxybenzoic and p-coumaric acid) were 252 

absent at a detection limit of 1.95 μg mL-1. Instead of the bleaching of apigeninidin in the presence 253 

of acidulants like acid ascorbic at pH 5 reported by Ojwang and Awika (2008), a loss of net charge 254 

leading to an apigeninidin precipitation in watery extract at pH 5 provided additional information 255 

on the effect of acid pH on apigeninidin extract. Precipitation of apigeninidin at pH 5.04±0.02 256 

might limit its application in acidic drinks (pH ≤ 5). On the contrary, an alkaline pH resulted in the 257 

degradation of apigeninidin. At pH 11.04±0.03 and 12.07±0.04, the apigeninidin concentration 258 

decreased by 44.1% and 81.4%, respectively, compared with the extract at pH 6.08±0.02 (Fig. 3). 259 

According to literature, apigeninidin could be converted into phenolic acids at alkaline pH (Yang 260 

et al., 2014). Therefore alkaline extracts were analysed by HPLC. Parallel to the decrease of 261 

apigeninidin, an increase in the phenolic acid content of the extract was found. From pH 6.08±0.02 262 

to 12.07±0.04, the concentrations of 4-hydroxybenzoic acid and p-coumaric acid increased 3.7 and 263 
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1.7 fold, respectively. Nevertheless, only 3.9 and 0.53% of the degraded apigeninidin were 264 

converted in 4-hydroxybenzoic acid and p-coumaric acid, respectively. This suggests that other 265 

phenolic acids might have been formed too.  266 

The stability of apigeninidin and colour to heat treatment in a semisolid food matrix (i.e. a maize 267 

porridge) at different pH is reported in Table 2. The apigeninidin content of the porridge did not 268 

differ at pH 4-6 (p=0.2), whereas it was higher at pH 9.03±0.04. Furthermore, the colour of the 269 

porridge was comparable at pH 4-6 whereas hue (h°) and lightness (L*) were smaller at pH 270 

9.03±0.04. In other words, the porridge looked more red at pH 9.03±0.04 than at pH 4-6. 271 

Consequently, the increased redness of the porridge and the higher concentration of apigeninidin 272 

at high pH might have resulted from (a) the higher TCD of the quinoidal forms of apigeninidin 273 

and (b) its higher resistance to heat treatment, respectively.  274 

 275 

3.3. Kinetic degradation of sorghum biocolorant as related to pH  276 

Fig. 5 shows the kinetic degradation of sorghum biocolorant at 65 °C and the fitted data. The 277 

degradation is lower at pH 9.03±0.04 than at pH 6.08±0.02. Table 3 summarizes the model 278 

parameters and their fitting performance (f-value). An f-value lower than the F-value table of the 279 

degrees of freedom of the model and the data support the proper fitting performance of the model. 280 

The stability of apigeninidin could adequately be described by three parameters, i.e. the natural 281 

logarithm of the initial concentration (ln C0), the inverse of the kinetic rate constant (δ) and the 282 

shape parameter (β). The natural logarithm of the initial concentration (ln C0) is higher at pH 283 

6.08±0.02 (5.12) than at pH 9.03±0.04 (4.96). Moreover, the inverse of the kinectic rate constant 284 

(δ) is lower at pH 6.08±0.02 (41.2) than at pH 9.03±0.04 (164.2). Nevertheless, the shape 285 
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parameter (β) was not different at pH 6.08±0.02 (0.62) and pH 9.03±0.04 (0.63). The pH change 286 

and the heat treatment affected the initial concentration and the kinetic rate constant. Although 287 

apigeninidin is stable at pH 6-9, its stability can apparently be affected by the time of exposure at 288 

alkaline pH. Indeed, storage at 4 °C overnight (i.e. for 18h) affected ln C0 at pH 9.03±0.04. The 289 

lower degradation rate of apigeninidin at pH 9.03±0.04 is in contrast to the degradation of most 290 

anthocyanins during heat treatment (Matsufuji et al., 2007). Few aglycone anthocyanins like 291 

apigeninidin showed such stability at high pH (Matsufuji et al., 2007).  292 

Table 1 shows the TCD, PC and %PC stability of the watery extract of sorghum biocolorant during 293 

a heat treatment (65 °C) at pH 6.08±0.02 and 9.03±0.04. The higher TCD and PC of quinoidal 294 

apigeninidin at pH 9.03±0.04 compared to pH 6.08±0.02 suggest (i) a higher colour intensity and 295 

(ii) a better resistance to bleaching, respectively. The higher colour density of the SAWE is used 296 

by processors to efficiently colour the surface of wagashi, a soft cheese of West Africa, at room 297 

temperature. During the heat treatment, the TCD was stable at pH 6.08±0.02 whereas it decreased 298 

at pH 9.03±0.04. In addition, the PC and the %PC of the extracts (at pH 6.08 and 9.03) increased 299 

during heating. Therefore, heat treatment (i) affected the density of the colour at pH 9.03±0.04 and 300 

(ii) increased the amount of compounds resistant to bleaching at pH 6.08±0.02 and 9.03±0.04. The 301 

increased PC suggests the formation of new compounds reacting with sulphite. In addition, the 302 

chemical oxidation in heat treated polyphenol-containing foods could enhance the antioxidant 303 

activity (Nicoli, Anese, & Parpinel, 1999). Consequently, the increase of newly formed antioxidant 304 

reactive fragments might protect apigeninidin from the oxidizing activity of sulphite, leading to 305 

the increasing PC. More research is needed to identify the reactive fragments formed during heat 306 

treatment of apigeninidin extracts and how they enhance the resistance to bleaching. 307 

 308 
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3.4. Perspectives for the food industry 309 

The alkaline treatment of sorghum leaf sheaths increased the release of the apigeninidin from the 310 

raw material and could thus be considered as an alternative and selective extraction method for 3-311 

deoxyanthocyanidins (Akogou et al., 2017). The effect of the high pH on the apigeninidin 312 

concentration confirms extraction at pH around 8.7-9 to be the optimum to extract apigeninidin 313 

without the risk of degradation into phenolic acids. Considering the increased loss of apigeninidin 314 

at a decreasing pH using a heat treatment for food processing (Geera, Ojwang, & Awika, 2012), 315 

severe heat treatments should be applied in the pH range 7-9 to minimise loss of apigeninidin. The 316 

SAWE was more resistant to nucleophilic attack due to blanching.  317 

 318 

4. Conclusion 319 

Watery extracts from dye sorghum leaf sheaths demonstrated good stability (i) to processing 320 

conditions, including severe heat treatments, (ii) at pH 6-10 and (iii) to light exposure. Storage 321 

temperature affects stability; refrigerated conditions are to be preferred. Furthermore, the quinoidal 322 

base of apigeninidin (at pH 9) had a higher colour intensity and a better resistance to heat treatment. 323 

The loss of the net charge caused loss of solubility, leading to apigeninidin precipitation. 324 

Controlled acidification of alkaline extracts can be used to precipitate apigeninidin from watery 325 

extracts. Further research is needed to investigate (a) the control of the loss of net charge in acidic 326 

watery extracts of apigeninidin, (b) the identification of new antioxidant reactive fragments from 327 

apigeninidin degradation.  328 

 329 
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 408 

 409 
*Bars with the same letters are not significantly different at 5% 410 

Fig. 1. Stability of sorghum extracts to the most common heat treatments.411 

a*

b b

a

b b

0
10
20
30
40
50
60
70
80
90

100

65 °C/30
min

95 °C/30
min

121 °C/30
min

65 °C/30
min

95 °C/30
min

121 °C/30
min

Hot aqueous extract Alkaline extract

R
em

ai
ni

ng
 

ap
ig

en
in

id
in

(%
)



22 
 

 412 

  413 
*Bars with the same letters are not significantly different at 5% 414 

Fig. 2. Stability of pasteurised extracts to light and temperature during storage.415 
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 416 

 417 
 418 
*Bars with the same letters are not significantly different at 5% 419 

Fig. 3. Effect of the pH adjustment  on apigeninidin measured in solution at room temperature.420 
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 422 

 423 

*Bars with the same colour and the same letters are not significantly different at 5% 424 

Fig. 4. Effect of pH on the concentration of 4-hydroxydenzoic acid (■) and p-coumaric acid (□) 425 

in sorghum colorant.  426 
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 427 

 428 

Fig. 5. Kinetic degradation at 65 °C of apigeninidin in dye sorghum extract at pH 6.08 (□) and 429 

9.03 (▲) and the fitted data with using the Weibull model.  430 
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Table 1: Effect of heat treatment (65 °C) on total colour density and polymeric colour of 431 
sorghum biocolorant at pH 6.08 and 9.03 432 

Time 
(min) 

pH 6.08 pH 9.03 
TCD* PC %PC TCD PC %PC 

0 12.5±1.6 a 3.9±0.5 a 31.0±0.2 a 45.4±1.7 a 7.7±0.4 a 17.0±0.5 a 
 

2.5 13.0±1.7 a 4.2±0.7 
ab 

32.4±1.6 ab 44.8±1.3 ab 7.9±0.5 a 17.7±0.7 ab 

5 13.1±2.2 a 4.2±0.7 
ab 

31.8±1.6 ab 44.5±1.0 ab 8.1±0.5 
ab 

18.2±0.8 ab 

10 12.9±1.9 a 4.3±0.6 
ab 

33.0±0.9 b 44.2±1.5 ab 8.2±0.5 
abc 

18.5±0.8 bc 

20 13.6±1.3 a 4.5±0.5 
ab 

32.8±1.1 b 43.0±1.5 bc 8.4±0.5 
abc 

19.6±0.8 cd 

30 12.9±1.1 a 4.5±0.3 
ab 

34.6±0.8 c 42.6±1.3 bc 8.5±0.6 
abc 

20.0±0.9 d 

40 13.4±1.6 a 4.7±0.5 
ab 

34.9±0.5 c 42.4±1.6 bc 8.7±0.7 
bc 

20.4±1.0 de 

50 12.6±1.2 a 4.6±0.4 
ab 

36.9±0.1 d 42.0±1.5 c 8.8±0.6 
abc 

21.0±0.9 de 

60 12.6±1.1 a 4.9±0.4 b 38.7±0.9 e 41.5±1.7 c 9.0±0.6 c 21.7±0.9 e 
*mean±standard deviation; values with the same value in the same column are not significantly different at 5%. 433 

TCD, total colour density; PC, polymeric colour; %PC, percentage of polymeric colour  434 
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Table 2: Apigeninidin content and colour in cooked maize porridge 435 

pH Apigeninidin 

content (mg/g DM) 

L* C* h° 

4.09 (n=2) 1.3±0.0 a 23.7±0.3 b 33.3±0.5 a 38.0±0.8 b 

5.04 (n=2) 0.8±0.0 a 24.2±0.1 b 30.5±0.1 a 34.8±0.0 b 

6.08 (n=2) 0.8±0.0 a 23±0.3 b 28.8±0.1 a 33.7±0.3 b 

9.03 (n=2) 1.9±0.2 b 13.6±0.6 a 30.6±0.3 a 27.9±0.3 a 

*mean±standard deviation; values with the same value in the column are not significantly different at 5%. 436 

  437 
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Table 3: Values of parameters estimated with the Weibull model 438 

Extract 

pH 

Estimated 

parameters 

Mean  Standard 

error 

f-value of 

the 

model* 

6.08 ln C0 5.12 0.02 1.0** 

δ 41.19 1.60 

β 0.62 0.03 

9.03 ln C0 4.96 0.01 0.9** 

δ 164.2 10.02 

β 0.63 0.04 

*f-value= MSE model/MSE data 439 
**f-value < F-value table of the degrees of freedom of the model and the data (1.87) means Weibull model described the observed values well 440 
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