
Bioinformatics
doi: 10.1093/oxford-bioinformatics/

Advance Access Publication Date: DD Month 2017
Manuscript Category

Subject Section
Read Mapping and Variant Detection in PanTools
Adzkia Salima Nindyantoro1
1Department of Bioinformatics, Wageningen University

Supervisor: Dick de Ridder, Siavash Sheikhizadeh Anari, Department of Bioinformatics, Wageningen
University

Abstract
Motivation: Determining sequence variation is fundamental in genetic research. The most common
approach is aligning short sequence reads to a reference genome and detecting polymorphisms. In
order to get all variants, multiple reference genome can be used in read mapping step. However
repeatedly aligning reads to different genomes is not efficient.
Results: We present a pan-genome approach to read mapping using PanTools as well as an algorithm
to detect variation. Read mapping is performed using the pan-genome construction algorithm in
PanTools. It produces a compressed De Bruijn graph stored in a Neo4J graph database. Variant
detection is then performed using an algorithm implemented in Java API of Neo4j.
Supplementary information: Supplementary data are available at Bioinformatics online.

1	INTRODUCTION	
Next	 Generation	 Sequencing	 (NGS)	 technologies	 have	 drastically	
improved	our	ability	to	sequence	genomes,	by	producing	millions	of	
reads	quickly	and	cheaply.	As	a	 result,	 re-sequencing	has	become	
the	most	popular	genome	analysis	workflow	to	determine	genetic	
variatons	 of	 a	 sample.	 The	 most	 common	 approach	 to	 discover	
sequence	 variation	 is	 by	 aligning	 sequence	 reads	 to	 a	 reference	
genome	and	looking	for	polymorphisms.		
Using	 a	 single	 reference	 genome	 for	 read	 mapping	 has	 some	
disadvantages.	First,	due	to	limitations	of	both	the	NGS	machine	and	
the	aligner,	an	assembled	genome	may	not	perfectly	reflect	the	true	
genome	 sequence.	 Second,	 the	 reference	 genomes	 of	 individuals	
within	 species	 could	 be	 very	 divergent,	 such	 as	 in	 Arabidopsis	
thaliana	 (Clark	 et	 al.,	 	 2007).	 Third,	 as	 the	 number	 of	 available	
sequenced	 genome	 increases,	 detecting	 variants	 with	 respect	 to	
single	 reference	 genome	 becomes	 rather	 arbitrary.	 But,	 aligning	
reads	 to	 a	 collections	 of	 reference	 genome	 one	 by	 one	 is	 time	
consuming	and	impractical.	For	this	reason,	effort	has	been	made	to	
allow	read	mapping	to	be	performed	on	multiple	genomes	using	a	
single	data	structure	known	as	a	pan-genome.	
A	pan-genome	is	defined	as	a	collection	of	genomic	sequences	to	be	
analysed	jointly	or	to	be	used	as	a	reference	(Marschall	et	al.,	2016).	
It	can	be	represented	as	simply	a	set	of	aligned	sequences	or	as	a	
graph	structure.	To	be	used	in	comparative	genomics	analysis,	the	
pan-genome	representation	should	allow	a	long-term	storage.	One	
way	to	achieve	this	is	by	building	a	De	Bruijn	graph	(DBG)	using	an	
online	algorithm	and	storing	it	in	Neo4j	graph	database,	as	proposed	
by	Sheikhizadeh	et	al.	(2016)	in	their	PanTools	project.	A	De	Bruijn	
graph	consist	of	nodes	corresponding	k-mer	that	are	connected	by	
edges	when	k-1	character	overlap.	When	a	path	 in	a	DBG	 is	non-
branching,	its	nodes	can	be	joined	to	form	a	compressed	DBG	thus	
reduce	 its	 space	 complexity.	 PanTools	 has	 an	 “add	 genome”	

functionality	 to	 align	 one	 genome	 sequence	 to	 the	 whole	 pan-
genome.	 In	 this	 work,	 as	 a	 preliminary	 approach,	 we	 used	 this	
function	to	align	reads	to	the	pan-genome.	
Subsequent	 variant	 calling	 can	 be	 done	 by	 detecting	 bubble	
structures	in	the	pan-genome	graph.		A	bubble	is	a	subgraph	with	a	
closing	 bifurcation	 caused	 by	 a	 single	 nucleotide	 polymorphism.	
Casani	 (2015)	 developed	 a	 Cypher	 query	 to	 mine	 the	 structural	
variations	in	Neo4j	graph	database,	but	the	query	only	works	for	two	
sequences.	 This	Cypher	query	 implementation	 is	 also	 theoritecaly	
slower	 compared	 to	 the	 java	 implementation.	 To	 detect	 bubble	
structure	 in	multiple	sequences,	 tools	 such	as	Cortex	 (Iqbal	et	al.,	
2012)	 and	 2k	 +	 2	 (Younsi,	MacLean	 2014)	 have	 been	 developed.	
These	two	algorithms	detect	bubble	by	looking	for	a	source	and	sink	
node.	A	source	is	the	node	where	the	sequence	from	two	or	more	
genomes	diverge.	From	the	source,	all	the	child	nodes	are	traversed	
using	a	breadth	first	search	to	find	the	sink.		In	this	work,	we	used	
this	graph	traversal	to	detect	variation	in	PanTools	using	Java.		
	

2	MATERIALS	AND	METHODS	
Our	experiments	were	conducted	on	a	Linux	server	(Ubuntu14.04)	
with	 an	 Intel®	 Xeon®	 X5660@2.8GHz,	 with	 24	 logical	 cores,	 64GB	
RAM	and	a	32GB	RAM	disk.		

2.1	Data	
To	build	the	pan-genome,	we	used	the	genomes	of	Escherichia	coli	
O157	strain	180-PT54	and	Escherichia	coli	O157:H7	str.	Sakai.	Both	
were	downloaded	from	NCBI	on	17/8/2017.		We	also	used	publicly	
available	Illumina	MiSeq	read	data	genomic	of	Escherichia	coli	O157:	
SRR6207503,	downloaded	from	SRA	archive	NCBI.	The	reads	are		220	
bp		long	in	average,		with	34-fold	coverage.	E.	coli	is	suitable	for	this	
experiment	because	 it	has	a	small	genome	size	 (5Mbp)	and	 it	 is	a	
well-studied	organism.	

Page 2 of 7

2.2	Read	mapping	
2.2.1	Preprocessing	the	reads	
We	trimmed	the	adapter	by	cutting	the	first	and	the	last	ten	bases	
of	each	read	using	the	sed	command.	We	also	cut	 the	bases	with	
quality	lower	30	using	a	sliding	window	method		with	Sickle	(Joshi,	
2012).	We	reduced	the	number	of	reads	to	obtain	a	6-fold	coverage	
to	avoid	long	running	times.	
	
2.2.2	PanTools	
To	 map	 a	 read	 to	 a	 pan-genome,	 we	 used	 the	 build	 genomes	
function	 in	 PanTools	 (Sheikhizadeh	 et	 al,	 2016).	 PanTools	 is	 a	
software	 package	 that	 provides	 functionality	 to	 build,	 store	 and	
analyses	 a	 pan-genome.	 The	 functionalities	 are	 divided	 into	 two	
types;	1.	sequence	 layer	and	2.	annotation	 layer.	 In	the	first	 type,	
PanTools	 has	 some	 functions	 to	 construct	 a	 pan-genome,	 add	
sequences/genomes,	 reconstruct	 genomes,	 compare	 and	 query	
pan-genomes.	In	the	second	layer,	its	features	are	annotating	pan-
genomes,	 grouping	 genes,	 retrieving	 gene	 sequences	 or	 genomic	
regions.	We	only	used	the	sequence	layer	in	this	work,	so	from	now	
on	we	will	just	focus	on	this	layer.			
PanTools	uses	Neo4j,	a	graph	database	that	stores	its	data	instances	
in	the	nodes	and	its	relationships	as	edges	between	these	nodes.	It	
has	 a	 different	 structure	 in	 the	 different	 layers.	 In	 the	 sequence	
layer,	the	graph	has	a	structure	as	shown	in	Figure	1.	The	nodes	have	
4	types	of	labels,	each	with	different	properties;		

a) pangenomes:	contains	statistics	about	the	whole	graphs	
(k-mer	size,	number	of	nodes,	number	of	edges);	

b) genome:	contains	IDs	and	number	of	sequences;	
c) sequence:	In	genome,	a	sequence	is	regarded	as	a	contig,	

with	properties	contig’s	name	and	contig’s	length;	
d) node:	 We	 store	 DBG	 in	 this	 label.	 The	 properties	 are	

nucleotide	sequence,	last	k-mer	and	first	k-mer.	
The	nodes	are	connected	with	two	types	of	relationship;	“has”	and	
“coordinate”.	 The	 “Has”	 relationship	 type	 does	 not	 have	 any	
properties.	It	simply	links	item	eg.	“pan-genome	has	genome”	and	
“genome	has	sequence”.	The	coordinate	relationship	has	four	label:	
FF,	 FR,	 RF,	 and	 RR.	 It	 describes	 the	 orientation	 (F:	 forward,	 R:	
reverse)	 of	 the	 k-mer	 on	 its	 source	 and	 destination	 nodes.	 The	
coordinates	of	the	k-mer		are	stored	as	a	property	in	the	incoming	
edge	of	the	node	containing	the	k-mer.	For	example:	in	Figure	1,	the	
first	 three	 nucleotides	 of	 genome	 1	 and	 contigs	 1	 is	 CTT.	 The	
incoming	 relationship	 for	 the	 node	 CTT	 has	 property	 a1_1:	 0,	
indicating	the	nucleotides	located	in	the	first	sequence	of	the	first	
genome.	
We	provide	 the	 fasta	 file	 of	 the	 SRA	 reads	 and	 a	 fasta	 file	 of	 the	
genome	as	an	input.	The	“construct	pan-genome”	algorithm	works	
in	three	steps.	First,	it	creates	an	index	database	for	the	k-mer	 	of	
the	 genomes	 and	 the	 reads.	 Second,	 it	 constructs	 a	 pan-genome	
using	 an	 online	 algorithm	 to	 create	 a	 compressed	 DBG.	 Third,	 it	
localizes	the	k-mer		in	the	CDBG	by	adding	coordinates	in	incoming	
relationships	of	the	nodes.	
Since	we	only	used	build	pan-genome	function,	PanTools	does	not	
differentiate	between	the	genome	and	the	read	sequences.	For	that	
reason,	we	considered	the	last	number	of	the	sequence	as	the	reads	
file.	The	reads	are	treated	in	the	same	way	as	contigs	in	a	genome.	
Thus,	the	property	of	coordinate	relationship	a3_2:0	means	that	the	
node,	that	relationship	points	to	is	aligned	with	the	second	read	in	
the	file	at	the	first	(0)	position.	

Figure	1	Graph	structure	in	sequence	layer	

	

Figure 2 SNP in read that maps in forward direction

	
2.3	Variant	calling	
2.3.1	Single	Nucleotide	Polymorphism	
A	SNP	is	defined	as	a	single	base	variation	(A,	C,	T	or	G)	at	the	same	
position	 between	 aligned	DNA.	 Each	 variation	 is	 present	 to	 some	
degree	within	a	population.	But	in	our	work,	we	do	not	take	the	SNP	
frequency	into	account,	because	as	a	preliminary	work,	we	want	to	
detect	 all	 polymorphic	 base.	 We	 consider	 all	 alternative	 base	 in	
reads	as	a	SNP.	
	
2.3.2	Bubble	
A	SNP	is	represented	by	a	bubble	structure	in	the	graph	as	shown	in	
Figure	 2.	 A	 bubble	 structure	 is	 a	 sub-structure	 that	 consists	 of	 a	
source	node,	a	sink	node	and		all	nodes	that	are	traversed	on	the	
path	 between	 that	 source	 and	 sink	 node.	 A	 read	 with	 the	 same	
sequence	as	the	genome	will	be	mapped	to	the	same	node;	if	at	the	
next	 location	 it	has	a	different	nucleotide,	 the	node	will	 split	 and	
create	 two	 nodes.	 The	 starting	 node	 where	 the	 k-mer	 diverge	 is	
what	 we	 call	 a	 source	 node	 and	 the	 node	 where	 the	 sequences	
reconverge	into	a	single	node	is	a	sink	node.	
	
2.3.3	Ne04j		
Neo4j	 is	 a	 NoSQL	 graph	 database	 that	 is	 open	 source	 and	 highly	
scalable.		It	uses	a	property	graph	model.	Nodes	are	connected	by	
relationships.	 Both	 nodes	 and	 relationships	 can	 have	 labels	 and	
attributes	(key-value-pair).	A	relationship	can	also	have	a	direction,	
a	start	node	and	an	end	node.		
There	 are	 two	primary	 interfaces	 for	working	with	Neo4j;	 Cypher	
queries	and	Java	API.	Cypher	is	a	declarative	graph	query	language	
(like	 SQL)	 that	 is	 simple	 and	 easy	 to	 understand	 but	 is	 relatively	
slower	compared	to	the	Java	API.	The	Java	API	on	the	other	hand	is	
faster	 and	more	 flexible	 to	 use.	 The	 version	 of	 Neo4j	we	 used	 is	
3.1.5.,	the	same	as	the	current	release	of	PanTools.	
	
2.3.4		SNP	detection	algorithm		
The	 algorithm	 was	 implemented	 in	 Java(TM)	 SE	 Runtime	
Environment	(build	1.8.0_45-b14).	The	program	is	written	as	a	part	
of	 the	 sequence	 layer	 class	 in	 PanTools,	 using	Neo4j’s	 Embedded	
Java	 API.	 We	 developed	 an	 algorithm	 to	 find	 the	 variant	 by	
traversing	the	nodes.	We	compare	it	with	all	variants	found	in	the	
read	mapping	to	each	single	genome	in	the	pan-genome.	

Pangenome	 Genome	 Sequence	 Node	
has	 has	 coordinates	

TTATG

TGC

TTGTG

CTT

Position 0 1 2 3 4 5 6
Genome1 C T T A T G C
Read2 C T T G T G C

source sink

a1_1:0,

a3_2:0

Page 3 of 7

SNP	 bubbles	 can	 be	 formed	 by	 the	 reads	 that	 map	 in	 forward	
direction	 (Figure	 2)	 and	 reverse	 direction	 (Figure	 3).	 Our	 SNP	
detection	 algorithm	 basically	 comprised	 of	 finding	 all	 potential	
source	node	and	traverse	 its	child	to	find	the	sink	node.	Potential	
source	node	for	forward	mapping	is	when	the	two	outgoing	edges,	
one	from	read	and	the	other	from	genome,	has	the	same	side,	eg:	
F_	and	F_		or	R_	and	R_.	For	the	reverse	mapping	case,	the	source	
candidate	has	two	outgoing	edges	with	different	side,	eg:	F_	&	R_.	
To	be	precise	we	created	a	 list	of	genome-reads	pair.	For	forward	
mapping,	 the	 pairs	 are	 [FF-FF,	 FF-FR,	 RR-RR,	 RR-RF].	 For	 reverse	
mapping,	 the	 pairs	 are	 [FF-RR,	 FR-RF,	 FF-RF,	 FR-RR].	 Since	 the	
genome	 and	 the	 read	 in	 reverse	 mapping	 going	 to	 different	
direction,	to	make	sure	that	it	is	a	SNP,	the	start	node	of	the	genome	
incoming	edge	should	be	different	from	the	end	node	of	sequence	
outgoing	edge.	
After	we	find	the	source	node	we	do	breadth-first	search	to	find	the	
sink	nodes	as	described	in	Algorithm	2.	Breadth-first	search	(BFS)	is	
an	 algorithm	 for	 traversing	 or	 searching	 tree	 or	 graph	 data	
structures.	It	starts	at	the	tree	root	(in	this	case,	the	source	node)	
and	 explores	 the	 neighbouring	 nodes	 first,	 before	moving	 to	 the	
next	level	neighbours.	We	use	a	queue	to	list	all	nodes	to	be	visited	
next.	After	we	visit	a	node,	we	directly	delete	it	from	the	queue.		
For	 each	 child,	 we	 check	 if	 the	 node	 is	 a	 sink	 or	 not.	 In	 forward	
mapping	case,	 the	genome	and	the	reads	have	the	same	distance	
from	 the	 source.	 In	 the	 reverse	mapping	 case,	we	 check	 that	 the	
outgoing	edge	has	a	genome	and	compare	the	distance	to	the	read.	
	
Algorithm	1.	Pseudocode	of	SNP	detection	algorithm.	
Data:	 pan-genome	 graph	 produced	 by	 construct	 pnagenome	

algorithm	 in	 PanTools.	 The	 graph	 includes	one	or	more	

genomes	 each	 containing	 one	 or	more	 sequences,	 and	

one	archive	containing	reads	

Result:		locations	of	SNP	in	each	Genome	

for	node	=	1	...	number	of	sequence	node	in	graph	do	

out_or	=	get_all_outgoing_edge(node);	

check_is_source_forward(edge_pair_forward);	

check_is_source_reverse(edge_pair_reverse);	

if	the	node	is	source	in	reverse	direction	then	

find_sink_forward(edge_pair_forward);	

elseif	the	node	is	sink	in	backward	direction	then	

find_sink_reverse(edge_pair_reverse);	

else	

continue	

end	

	

Figure 3 SNP in read that maps in reverse direction

	
Algorithm	2.	pseudocode	of	BFS	search	to	find	sink	
Data:	edge_pair_forward	=	two	outgoing	edges	containing	reads	

&	genome	

Result:		locations	of	SNP	in	each	Genome	

	

Initalize	queue,	visited_node,	depth,	next_coordinate,		

	

queue	<--	children	node	of	edge_pair_forward	

	

from_source_dict	<--	{read_edgeId	:	coordinate}	

//dictionary	of	sequences	in	source	node,	with	read	id	and	edge	

id	as	a	key	and	coordinate	as	a	value	

	

next_coor	=	calculateNextCoordinate(coordinate)	

next_coordinate	<--	{	read_edgeId		:	nextcoor}	

//dictionary	of	next	coordinate	of	the	sequence	in	the	node	

	

While	not	queue.isEmpty()		&&	depth	<	k	graph	do	

node	=	queue.removeFirst()	

for	incoming	relationship	in	node	do	

for	read	in	relationship	do	

if	 read_location	 in	node	-	read_location	 in	source	

==	genome_location	in	node	–	genome_location	in	

source	

checkException(read,	genome)	

end	

if	checkException	true	

return	snp_list.add	{genome:	coordinate}	

else	

calculateNextCoordinate(coordinate)	

end	

end	

end	

for	outgoing	relationship	in	node	do	

for	read	in	relationship	do	

if	read_coordinate	is	in	next_coordinate	do	

child	=	node.getChild()	

queue.add(child)	

end	

end	

end	

end	

	

	

TTATG

TGC

CACAA

CTT

Genome: CTTATGC
 : CTTGTGC (reverse complement of read)
Read : GCACAAG

Page 4 of 7

2.3.5		Exceptions	in	bubble	structures	
Based	on	our	observations,	bubble	structure	are	not	always	caused	
by	SNPs.	For	example,	in	Figure	4	the	bubble	structure	is	formed	by	
the	genome’s	repetitive	sequence	in	the	ranges	[0-7]	and	[8-16].	The	
two	 regions	 differ	 by	 one	 nucleotide	 in	 position	 3	 and	 10	
respectively,	making	 the	path	diverge	and	 reconverge	around	 the	
polymorphic	location.		When	the	read1	(in	blue	edge	path)	maps	to	
genome	in	coordinate	[8-16],	the	read	at	position	3	is	regarded	as	
SNP	 by	 the	 genome	 in	 coordinate	 [0-7].	 We	 prevent	 that	 from	
becoming	a	false	positive	by	adding	a	condition:	 if	a	read	maps	to	
another	part	of	the	genome,	it	is	not	a	SNP,	as	explained	in	Algorithm	
3.	
The	 function	 checkException()	 in	 Algorithm	 3	 is	 called	 at	 a	 node	
where	the	incoming	edges	contains	genome	and	reads	that	have	the	
same	distance.	We	created	a	list	of	all	incoming	sequences	with	the	
same	distance.	For	example	in	Figure	4.	We	have	[[G1,	a,	b],[G1,	c,	
d]]	and	[R1,	c,	d].	The	sink	pair	therefore	is	[G1,	a,	b]	and	[R1,	c,	d].	
For	each	of	the	two	sequences	(G1	and	R1),	find	the	counterpart	that	
has	the	same	edge	id	for	the	incoming	and	the	outgoing	edge.	This	
is	the	case	for	G1	and	R1	with	edges	id	c	and	d.	So,	the	node	is	not	a	
sink	and	there	is	no	SNP	in	that	bubble.	
	

Figure 4. A Bubble structure formed by a repeat with polymorphism.
(k=3) 	

Algorithm	3.	pseudocode	of	checkException	
Data:	 read_list:	 [[read,	 rel_id_out_source,	 rel_id_in_sink]]	and	

genome_list:	 [genome,	 rel_id_out_source,	 rel_id_in_sink]	

that	has	the	same	distance	from	source	to	sink	

Result:		boolean,	true	=	if	there	is	no	other	genome	map	perfectly	

for	read,	genome	in	read_list,	genome_list	do	

if	[rel_id_out_source,	rel_id_in_sink]	is	not	equal	

edge_pair.add(rel_id_out_source,	rel_id_in_sink);	

done	

done	

for	[rel_id_out_source,	rel_id_in_sink]	in	genome_list,	read_list	

do	

if	[rel_id_out_source,	rel_id_in_sink]	is	equal	

return	False;	

else	

return	True;	

done	

end	

	

2.3.6		Accuracy	assessment	
We	compared	the	SNP	coordinates	found	by	our	algorithm	to	those	
found	in	the	indicated	way,	by	mapping	reads	which	we	consider	the	
ground	 truth.	We	align	 the	 reads	using	Bowtie2	 (Langmead	et	 al.	
2012)	version	2.2.6.	We	used	default	settings	.		
We	used	samtools	mpileup	(Li	Heng	et	al.,	2009)	version	0.1.19	to	
retrieve	 all	 information	 on	 mapped	 reads	 such	 as	 matches	 and	
mismatches.	Mpileup	by	default	only	considers	a	depth	up	to	10x;	to	
include	all	reads	we	used	parameters		-BQ	0	-d10000000.	From	the	
mpileup	output,	we	filtered	out	SNP	location	using.		

	
3	RESULTS	AND	DISCUSSION	
3.1	 Read	 mapping	 can	 be	 performed	 by	 “the	
construct	pan-genome”	algorithm	in	PanTools	
First	we	set	out	an	experiment	to	verify	that	read	mapping	can	be	
performed	by	PanTools,	we	therefore	performed	read	mapping	of	
20%	of	 the	available	data	 (6x	 fold	coverage)	on	 two	E.coli	 (5	Mb)	
genomes	in	PanTools.	It	generated	1.4	million	nodes	and	6.7	million	
edges	when	the	reads	are	added.	The	exploding	number	of	edges	
can	result	in	extreme	decrease	in	performance	in	the	variant	calling	
process.	Therefore,	we	performed	read	mapping	and	variant	calling	
using	subsets	of	the	data	with	only	one	genome	of	E.	coli,	to	see	how	
the	performance	relates	to	the	data	size.	We	extract	read	maps	from	
the	first	5,	10,	50,	100,	500,	1000kb	of	the	genome	and	construct	
pan-genome	on	that	data.	
Table	1	shows	the	properties	of	the	resulting	graph	as	well	as	the	
time	 needed	 to	 build	 the	 pan-genome	 graph.	 We	 set	 k	 =	 11	 to	
increase	 the	 variant,	 while	 still	 keeping	 the	 space	 complexity	
reasonable.	 	We	observed	 that	 the	 number	 of	k-mer,	 nodes,	 and	
edges	grow	in	linear	fashion.	However,	the	number	of	nodes	grows	
slower,	 linearly	 with	 larger	 slope,	 compared	 to	 the	 other	 two	
properties.	 This	 is	 because	 the	 nodes	 in	 PanTools	 can	 store	
sequences	in	forward	and	reverse	orientation,	making	it	possible	to	
save	a	lot	of	space.	The	number	of	edges	grows	quickly	because	they	
store	the	orientation	and	the	position	of	each	sequence.		
	
Table	1	Scalability	of	the	program	to	increasing	genome	length.	

Length	(K)	 k-mers	 Nodes	 Edges	 Time	(s)	

5	 5060	 255	 731	 8	

10	 10255	 639	 1786	 4	

20	 20151	 1491	 4175	 6	

50	 50440	 5245	 14364	 12	

100	 99133	 15015	 40502	 45	

200	 189096	 44335	 121197	 59	

500	 418699	 161807	 454138	 303	

1000	 688074	 379622	 1151726	 821	
	
3.2	SNPs	can	be	detected	by	detecting	bubbles	
Next	we	wanted	to	detect	SNPs	from	pang-genome	graph	produced	
by	PanTools.	The	resulting	graph	from	read	mapping	step	is	used	as	
an	input	for	our	algorithm.	We	tested	its	performance	on	the	graph	
resulting	from	mapping	reads	to	the	first	5,	10,	20,	50,	100,	200,	300,	
400,	and	500kb	of	genome.	We	extrapolated	the	result	to	estimate	
how	much	time	needed	for	algorithm	to	call	SNPs	in	realistic	genome	
size	 (Figure	 5).	 We	 found	 that	 the	 computation	 time	 grows	
exponentially	(y	=	0.1022x^2	–	15.5x+269),	whereas	the	number	of	

TTATG

TGCCT

TTGTG

CTT

G1 : CTTATGCCTTGTGCCT
R1 : CTTGTGCCT

1 4

0

0

7

8 9

1 4

b a

c d

Page 5 of 7

nodes	and	edges	grow	in	linear	fashion	(y=1.29x-34.33	and	y=1.26x-
34.48).	 We	 therefore	 hypothesize	 that	 the	 	 computation	 time	
depends	on	the	degree	of	the	nodes	in	the	pan-genome	graph.		
Table	 2	 shows	 that	 the	 degree	 indeed	 increases	 as	we	 add	more	
sequences	to	the	graph.	 In	the	graph	with	genome	 length	smaller	
than	50	 the	 largest	degree	 is	only	10,	whereas	 if	we	 increase	 the	
genome	length	the	degree	could	be	18.	The	degree	almost	follows	a	
normal	 distribution,	 eventhough	 we	 can	 see	 some	 strange	
occurance.	The	highest	number	of	degree	for	every	genome	length	
is	four	or	five,	indicating	that	the	nodes	are	mostly	can	be	considered	
as	a	source.		
Our	algorithm	starts	by	finding	two	edges	leaving	a	node	that	satisfy	
the	 requirement	 of	 being	 a	 source	 node.	 One	 node	 can	 have	
multiple	 edge	 pairs	 to	 be	 considered	 as	 a	 source	 node.	 For	 each	
node	 traversed	 by	 find	 sinks	 function	 also	 could	 have	 multiple	
branch.	The	time	complexity	of	SNP	calling	algorithm	is	O(md)	where	
d	is	the	number	of	average	degree	of	the	graph.			
This	performance	problem	could	be	avoided	by	choosing	the	larger	
number	of	k.	If	we	construct	a	pan-genome	graph	with		smaller	k	we	
would	 have	 more	 nodes,	 since	 the	 k-mer	 is	 repeated	 more	
frequently	 by	 chance.	 This	 repeated	k-mer	will	 also	 creates	more	
edge	and	increasing	the	degree	in	that	node.	However,	this	strategy	
could	decrease	the	number	of	detected	SNP	as	we	will	discuss	later.		
We	could	also	make	the	running	time	shorter	by	parallelizing	each	
child	of	the	node	but	this	is	still	computationally	expensive	and	there	
could	be	an	overhead	time	to	assign	an	instance	to	the	CPU.	
	

3.3	The	number	of	SNPs	detected	depends	on		k	
For	assessing	the	accuracy,	we	used	the	reads	mapped	ofnto	the	first	
50kb.	We	found	that	the	number	of	SNPs	detected		increased	as	we	
choose	smaller	k-mer	as	shown	in	Table	3.	Undetected	SNP	are	those	
SNPs	 that	 are	 located	 in	 less	 than	 k	 base	 pairs	 from	 the	 end	 of	
sequence	 (Figure	 6)	 and	 SNPs	 within	 k	 base	 pairs	 of	 each	 other	
(Figure	7).	The	first	type	of	undetected	SNP	does	not	have	source	or	
sink	 node,	 because	 the	 sequence	 does	 not	 have	 the	 same	 k-mer	
before	 the	 k-mer	 with	 SNP	 occurs.	 The	 second	 type	 of	 the	
undetected	SNP	can	only	detect	the	last	occurrence	of	SNP.	
	
	

Figure	 5	 SNP	 calling	 algorithm	 computation	 time	 as	 a	 function	 of	
genome	length.								

The	first	type	is	more	abundant	because,	as	shown	in	Figure	8,	the	
occurrence	of	the	SNPs	is	higher	towards	the	start	and	the	end	of	
the	reads.	This	can	be	explained	by	low	reads	quality	in	those	region	
(Figure	9)	where	the	quality	 is	also	 lower	at	the	end	of	the	reads.	
Undetected	SNPs	at	the	start	can	be	explained	by	reads	that	map	in	
reverse	direction.	
This	problem	can	be	minimized	by	choosing	a	 lower	k	so	that	 the	
SNP	 can	 be	 detected.	 But	 usually	 the	 SNP	 also	 occurs	 in	 the	
coordinate	 less	 than	 7	 bp	 and	 PanTools	 can	 not	 construct	 a	 pan-
genome	with	k	less	than	7.	Choosing	a	very	low	k	can	also	lead	to	a	
long	running	time.	
Another	way	to	solve	this	problem	is	by	modifying	the	algorithm	to	
do	base	comparison	 in	every	start	of	 the	read	and	the	end	of	 the	
read,	but	it	is	not	efficient	and	can	adds	a	running	time.	It	is	also	not	
effective	because	the	main	idea	of	variant	calling	in	PanTools	is	to	
mine	the	variation	from	the	graph	structure.	
	
Table	2	Degree	distribution	of	the	pan-genome	graph	as	function	of	
genome	length.	

		 Genome	length	
De

gr
ee
	

	 10	 20	 50	 100	 200	 300	 400	 500	
1	 0	 0	 0	 0	 0	 0	 0	 0	
2	 44	 15	 92	 1214	 3337	 6552	 0	 13502	
3	 15	 5	 29	 175	 307	 469	 0	 791	
4	 187	 76	 466	 5903	 18525	 33073	 20722	 65584	
5	 233	 93	 516	 3223	 6908	 10076	 13300	 16428	
6	 115	 51	 252	 1687	 4975	 9280	 14413	 19996	
7	 8	 6	 21	 252	 853	 1602	 2567	 3661	
8	 34	 8	 100	 2165	 7493	 13995	 20927	 29412	
9	 3	 1	 12	 249	 984	 1927	 3079	 4598	
10	 	 	 3	 93	 598	 1455	 2588	 4399	
11	 	 	 	 19	 112	 278	 509	 966	
12	 	 	 	 27	 175	 477	 890	 1664	
13	 	 	 	 6	 31	 111	 201	 395	
14	 	 	 	 1	 25	 73	 138	 281	
15	 	 	 	 1	 6	 10	 31	 67	
16	 	 	 	 	 4	 9	 19	 43	
17	 	 	 	 	 2	 7	 8	 17	
18	 		 		 		 		 		 1	 3	 3	

	
	
Table	3	The	accuracy	of	the	variant	calling	algorithm	at		different	
values	of	k.	

K	 Detected	 Undetected	

11	 113	 45	

10	 118	 40	

9	 124	 34	

8	 128	 30	

Figure 6. A SNP closer than k base pairs from the start of
sequence. k=3

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 1000 2000 3000 4000 5000

Genome	length
time #nodes #edges

CTTG

TGTGC

CATG

Position 0 1 2 3 4 5 6
Genome1 C A T G T G C
Read C T T G T G C

Page 6 of 7

Figure 7. Two SNPs with a distance shorter than k. (here k=3)	

Figure	5	SNP	distribution	accross	the	read	

	

Figure	6.	Reads	quality	before	and	after	trimming	

CONCLUSION	
Detecting	 variants	 is	 important	 for	 genetic	 studies.	 Applications	
range	from	detecting	SNPs	underlying	certain	diseases	in	human,	to	
finding	variants	that	make	a	plant	resistant	to	certain	pests.	Variant	
detection	 is	 mostly	 performed	 by	 aligning	 a	 sequence	 sample	

produced	by	NGS	technology	to	a	reference	genome	and	calling	the	
variants	 afterwards.	 The	 advance	 of	 NGS	 has	 made	 the	 re-
sequencing	became	easier	thus	produce	many	sequenced	genome	
that	can	be	used	as	a	reference.	It	is	beneficial	to	do	read	mapping	
to	the	collection	of	sequenced	genome	but	it	is	also	computationally	
inefficient.	We	tackle	this	problem	by		doing	mapping	reads	to	a	pan-
genome,	where	it	represents	a	set	of	genome	sequences.		
Read	mapping	to	a	pan-genome	in	PanTools	is		possible	and	it	has	
the	same	behaviour	as	adding	a	genome	but	if	we	include	all	reads	
with	 coverage	 higher	 than	 10x,	 it	 will	 become	 slow	 because	 the	
space	required	will	explode.		
Variant	calling	can	be	performed	directly	in	the	pan-genome	graph	
using	our	algorithm.	It	has	around	70%	accuracy	because	it	cannot	
detect	SNPs	closer	together	than	k	bp	and	SNPs	located	less	than	k	
bp	 from	 the	 start	 or	 the	 end	 of	 reads.	 This	 algorithm	 is	 still	 not	
efficient	because	of	its	traversal	strategy.	This	performance	prolem	
can	be	solved	by	carefully	choosing	the	k.	The	lower	k	can	improve	
accuracy	but	the	larger	k	can	improve	the	running	time.	
	

Data	downloaded	from	
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP015832.1?report=fasta		
https://www.ncbi.nlm.nih.gov/sra/?term=SRX3316781	
Reference	

1. Clark	RM,	Schweikert	G,	Toomajian	C,	Ossowski	S,	Zeller	
G,	Shinn	P,	Warthmann	N,	Hu	TT,	Fu	G,	Hinds	DA,	Chen	
H,	Frazer	KA,	Huson	DH,	Schölkopf	B,	Nordborg	M,	
Rätsch	G,	Ecker	JR,	Weigel	D:	Com-	mon	sequence	
polymorphisms	shaping	genetic	diversity	in	Arabidopsis	
thaliana	.	Science	2007,	317:338-342.	

2. Marschall	et	al.	(2016).	Computational	pan-genomics:	
status,	promises	and	challenges.	Briefings	in	
Bioinformatics,	(May),	
http://doi.org/10.1093/bib/bbw089	

3. Sheikhizadeh,	S.,	Schranz,	M.	E.,	Akdel,	M.,	De	Ridder,	
D.,	&	Smit,	S.	(2016).	PanTools:	Representation,	storage	
and	exploration	of	pan-genomic	data.	Bioinformatics,	
32(17),	i487–i493.	

4. Schneeberger,	K.,	Hagmann,	J.,	Ossowski,	S.,	
Warthmann,	N.,	Gesing,	S.,	Kohlbacher,	O.,	&	Weigel,	D.	
(2009).	Simultaneous	alignment	of	short	reads	against	
multiple	genomes.	Genome	Biology,	10(9),	R98.	

5. Langmead,	B.,	Trapnell,	C.,	Pop,	M.,	&	Salzberg,	S.	L.	
(2009).	Ultrafast	and	memory-efficient	alignment	of	

TTAAGC
CC

GCC

TTGTGC

Position 0 1 2 3 4 5 6 7
Genome1 C T T A A G C C
Read C T T G T G C C

CTT

Page 2 of 7

short	DNA	sequences	to	the	human	genome.	Genome	
Biology,	10(3),	R25.	http://doi.org/10.1186/gb-2009-10-
3-r25	

6. Limasset,	A.,	Cazaux,	B.,	Rivals,	.,	&	Peterlongo,	P.	
(2015).	Read	Mapping	on	de	Bruijn	graph.	BMC	
Bioinformatics,	1–12.	http://doi.org/10.1186/s12859-
016-1103-9	

7. Joshi,	N.	A.,	&	Fass,	J.	N.	(2011).	Sickle:	A	sliding-
window,	adaptive,	quality-based	trimming	tool	for	
FastQ	files	(Version	1.33)[Software].	

8. Iqbal,	Z.,	et	al.	(2012)	De	novo	assembly	and	genotyping	

of	variants	using	colored	de	Bruijn	graphs,Nature	
genetics,44	(2),	226-232	

9. Younsi,	R.	and	D.	Maclean	(2014)	Using	2k+	2	bubble	
searches	to	find	Single	Nucleotide	Polymorphisms	in	k-
mer	graphs,Bioinformatics,31	(5),	642-646	

10. Galdon	SC.	(2015)	Mining	Structural	Variation	in	Pan-
genome	Graphs.	[Thesis]	

11. Langmead	B,	Salzberg	S.	Fast	gapped-read	alignment	
with	Bowtie	2.	Nature	Methods.	2012,	9:357-359.	

12. LI,	Heng,	et	al.	The	sequence	alignment/map	format	and	
SAMtools.	Bioinformatics,	2009,	25.16:	2078-2079.

		

	

