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Abstract 
Van Engelen, S. (2018). The genetic background of methane emission by dairy cows. 
PhD thesis, Wageningen University, the Netherlands 
 
Dairy products are important food sources which contain nutrients that are essential 
for human development and healthy ageing. Greenhouse gasses are formed during 
the production of dairy of which methane (CH4) emission by dairy cows is the single 
largest source. A reduction in CH4 emission could be achieved via selective breeding, 
though this requires genetic variation in CH4 emission. In order to quantify the 
genetic variation in CH4 emission, 3 different indicators were used. The first indicator 
was CH4 emission predicted based on milk fatty acids (FA) which were measured 
using gas chromatography. Different FA based CH4 prediction equations were used 
and 12 to 44% of the variation was due to genetic differences between cows. The 
second indicator was CH4 emission measured with breath sensors. The breath of 
cows was analysed during milking in automatic milking systems. Genetics explained 
3 to 12% of the total variation in this CH4 indicator. The third indicator was CH4 
emission predicted based on milk mid-infrared (MIR) spectra. Of this indicator, 
between 17 and 21% of the total variation could be attributed to genetic factors. 
These results suggest that there is genetic variation in CH4 emission and selective 
breeding for lower CH4 emission is possible. The correlations between sensor 
measured CH4 emission and milk MIR predicted CH4 emission were low, indicating 
that both indicators explain a different part of the variation in true CH4 emission. The 
accuracy of the estimated breeding values (EBV) of these CH4 indicators confirms this 
suggestion. Combining information from sensor measured CH4 emission with milk 
MIR predicted CH4 emission increases the accuracy of the EBV compared to using 
them separately. Correlations of sensor measured CH4 emission and milk MIR 
predicted CH4 emission with breeding goal traits (production and fertility traits) were 
low to medium. Genetic correlations between CH4 emission and production traits 
ranged between -0.61 and 0.65, and genetic correlations between CH4 emission and 
fertility traits ranged between -0.32 and 0.38. These results suggest that inclusion of 
CH4 emission in the breeding goal has a minor impact on the breeding goal traits 
studied. These correlations, however, are estimated on relatively small datasets. 
Increasing the amount of data by using EBV, correlations between the EBV of the CH4 
indicators and the EBV of six breeding goal traits were also low to medium. In 
conclusion, there is a possibility to use selective breeding to reduce CH4 emission by 
dairy cows with an anticipated minor impact on other breeding goal traits.  
 



 
 

 
 
 
 



 

 

 
 
 

“Nothing is as powerful as an idea whose time has come 
 

All my life, I've had doubts about who I am, where I belonged 
Now, I'm like the arrow that springs from the bow 

No hesitation, no doubts 
The path is clear” 

 
Project one (2009) 
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1.1 Introduction 
 
Dairy products are important food sources which contain nutrients that are essential 
for human development and healthy ageing (van Staveren et al., 2008;Heaney, 
2009). A few examples of these essential nutrients are the minerals calcium, 
potassium, and magnesium. Many people have insufficient intake of these minerals 
and consumption of dairy products could help to meet the shortfall in these minerals 
(Nicklas et al., 2009). Furthermore, an increase in mothers that are employed is 
associated with a higher demand for baby formula that is produced from whey or 
milk powder (Lagrange et al., 2015). The demand for dairy products is expected to 
increase in the future as the human population is growing (Steinfeld, 2006). It is 
currently anticipated that more than 9 billion people will inhabit this planet by 2050 
(United Nations, 2015).  
The production of dairy products, however, also has a negative impact on the 
environment, as during its production greenhouse gasses (GHG) are being formed. 
Global milk production is responsible for 2.7% of the total anthropogenic GHG 
emissions (FAO, 2010) of which methane (CH4) emission by dairy cows is the single 
largest source (Gerber et al., 2013). Methane is a harmful GHG that is 28 times more 
harmful than carbon dioxide (CO2) over a time period of 100 years (IPCC, 2014). Each 
individual dairy cow emits between 60 and 160 kg of CH4 per year depending on the 
feed intake and size (Hristov et al., 2013). This results in a global average GHG 
production of approximately 2.4 kg of CO2 equivalent per kg of fat and protein 
corrected milk (FAO, 2010). A reduction in CH4 emission by dairy cows is therefore 
wanted.  
A reduction in CH4 emission could be achieved by using different CH4 mitigation 
strategies like management, feeding, microbial, and breeding strategies 
(Beauchemin et al., 2008;Buddle et al., 2011;Cottle et al., 2011). Management 
strategies focus more on the reduction of CH4 emission on the whole farm level 
rather than on individual animal level. For example, reducing the amount of 
unproductive cows on the farm and improving the reproductive rate of the cows 
(Cottle et al., 2011). Feeding strategies are a proven method to reduce CH4 emission, 
but their reduction has been found to be short-term or costly to maintain 
(Beauchemin et al., 2008;Hristov et al., 2013). For example, adding lipids to the diet 
could give a 10 to 25% reduction in CH4 emission in practice, but long-term 
effectiveness of additional lipids needs further investigation (Beauchemin et al., 
2008). Microbial strategies, including defaunation and vaccination, have not been 
found to give a consistent and long-term reduction of CH4 emission (Cottle et al., 



1 General introduction 

 
 

14 
 

2011;Hristov et al., 2013). Breeding strategies have the advantage that they are cost-
effective to implement and could give permanent and cumulative reduction in CH4 
emission. A combination of CH4 mitigation strategies compatible with the type of 
farm has, therefore, been proposed (Buddle et al., 2011).  
 
1.2 Emission of methane by dairy cows 
 
Methane is produced in response to feed degradation in the rumen of the dairy cow. 
A large part of the degradation is done by anaerobic microorganisms in the rumen 
that can ferment feed particles that mono-gastric animals cannot ferment (Dijkstra 
et al., 2011a). Fermentation by the microorganisms (bacteria, protozoa, and fungi) is 
via the production of enzymes by these microorganism that are used to ferment feed 
particles (Russell and Rychlik, 2001;Castillo-González et al., 2014). The host provides 
the microorganisms a habitat to live in and utilizes the fermentation products 
formed in the rumen like microbial protein, CO2, hydrogen, and volatile fatty acids 
(VFA) (Russell and Rychlik, 2001;Cottle et al., 2011).  
The production of hydrogen is the main driver behind the production of CH4 in the 
rumen (Castillo-González et al., 2014). Rumen pH is lowered by increasing hydrogen 
concentrations in the rumen and a lower pH decreases the efficiency of fermentation 
by the microorganisms (Weimer, 1996). Cellulose degrading bacteria, for example, 
prefer a neutral pH and their activity and growth decreases when the pH in the 
rumen decreases (Weimer, 1996). Methane-producing archaea called methanogens 
use the hydrogen in the rumen to form CH4 and, thereby, stabilize the pH in the 
rumen (Hungate, 1967;Morgavi et al., 2010;Cottle et al., 2011). The produced CH4 is 
then belched by the cow from the mouth and nose, and only a small part of the CH4 
leaves the cow via the rectum (Murray et al., 1976;Muñoz et al., 2012).  
The relationship between the host, the rumen microorganisms, and the amount of 
CH4 produced is complex. Determining which microorganisms are present in the 
rumen, their function, and their activity is still a challenge (Tapio et al., 2017). Not 
only are certain bacteria known to ferment multiple different substrates, but also 
are multiple bacteria known to ferment the same substrate (Bergman, 1990). 
Interactions between microorganisms, like commensalism and competition, are not 
uncommon and add to the complexity of the microbiota in the rumen. When 
selecting low and high CH4 emitting sheep, however, differences in composition of 
the microorganisms present in the rumen were found (Kittelmann et al., 2014). 
Furthermore, the abundance of certain groups of microbial genes have been found 
to be indicative for CH4 emission (Roehe et al., 2016). These results indicate that the 
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composition and activity of the rumen microorganisms are different for low and high 
CH4 emitting animals. Interestingly, part of the variation in the composition and 
activity of the microorganisms is explained by the genetic background of the host 
(Roehe et al., 2016).  
Mechanisms of the host, which are partially due to the genetics of the host, that 
influence the composition and activity of the microorganisms are not fully 
understood. An example of a mechanism of the host that influences the 
microorganisms is rumen retention time. Shorter rumen retention time could favor 
fast-growing microorganisms over slow-growing, thereby influencing the amount of 
CH4 produced (Hegarty, 2004) and rumen retention time has a genetic background 
(Smuts et al., 1995). Other possible mechanisms are complex interactions with 
receptors in the rumen wall and antibodies present in the saliva (Tapio et al., 2017). 
Although not all mechanisms are understood and known, the influence of the 
genetics of the host on CH4 production could be utilized by selective breeding for 
reduced CH4 emission. 
Breeding for reduced CH4 emission by dairy cows, however, requires individual CH4 
emission of many dairy cows (Buddle et al., 2011). Currently, the ‘golden standard’ 
for measuring CH4 emission is the climate respiration chamber (CRC). The use of CRC 
to measure CH4 emission on many dairy cows is impractical and expensive (Dehareng 
et al., 2012). Therefore, the use of indicators for CH4 emission as a phenotype that 
could be used in selective breeding has been proposed. This thesis focuses on three 
different types of indicators for CH4 emission: 1) indicator based on milk fat 
composition; 2) indicator based on milk mid-infrared (MIR) spectra; 3) indicator 
based on CH4 and CO2 concentrations measured in the breath of the cow (see Figure 
1.1). 
 
1.3 Methane emission indicator based on milk fat 
composition 
 
Methane emission is linked through the VFA produced in the rumen with milk fat 
composition. Cows producing high or low levels of CH4 have different 
microorganisms, but also show a distinction in VFA produced by these 
microorganisms (Hernandez-Sanabria et al., 2010;Malmuthuge and Guan, 2017). The 
most important VFA in this respect are acetate, propionate, and butyrate (Bergman, 
1990). Most of the VFA produced will be absorbed from the rumen and some will be 
transported to the mammary gland where they are used for de-novo synthesis of 
milk fatty acids (FA)(Garton, 1963;Ma, 2012). Different ratios between the VFA are  
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linked with different types of FA produced in the udder. For example, a larger 
amount of acetate available to the mammary gland is linked with higher production 
of even chain milk FA C4:0 to C16:0 (Ma, 2012;Van Lingen, 2017). Another group of 
milk FA that has been linked to rumen microorganisms are the odd and branched 
chain fatty acids (OBCFA) (Vlaeminck et al., 2004). The amount and composition of 
the OBCFA in the milk has been linked with different types of microorganisms in the 
rumen (Vlaeminck et al., 2004;van Gastelen and Dijkstra, 2016). There is thus a link 
between the microorganisms present in the rumen, CH4 emission, and milk fat 
composition (Jami et al., 2014).  
Several studies have developed CH4 prediction equations based on milk FA 
(expressed as g/100 g of fat) (Chilliard et al., 2009;Dijkstra et al., 2011b;Mohammed 
et al., 2011). Milk FA profiles were determined in these studies via gas 
chromatography, a method that is known to separate FA accurately. The prediction 
equations developed depend on the found relationships between CH4 and milk FA 
and had coefficients of determination (R2) ranging between 0.73 and 0.95. The 
results of these studies indicated that milk FA determined via gas chromatography 
could be a useful indicator for CH4 emission. However, when studying the 
relationship between CH4 and milk FA in an independent dataset, some relationships 
changed and became less pronounced (van Lingen et al., 2014). It was, thus, argued 
that milk FA have a moderate potential to predict CH4.   

Figure 1.1 Overview of the three different indicators used in this thesis 
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1.4 Methane emission indicator based on milk MIR spectra 
 
As mentioned above, milk composition is linked with the processes in the rumen 
(Jami et al., 2014) and can be studied using mid-infrared (MIR) spectroscopy. Milk 
MIR spectra represent the different chemical compounds present in the milk. Like 
visible light, MIR is part of electromagnetic radiation and has wavelengths between 
2,500 and 25,000 nanometer. The absorption of energy of 1,060 specific 
wavelengths that are part of this region are known to reflect the vibration of organic 
molecules like carbohydrates and fats (Dufour, 2009). The interferogram that shows 
the absorption of energy of the wavenumbers is then transformed via a Fourier 
transformation into an infrared spectrum (Soyeurt et al., 2006;Subramanian and 
Rodriguez-Saona, 2009). The technique of MIR to determine milk composition is 
routinely applied to determine milk fat and protein content, can be used to 
determine milk FA composition (Soyeurt et al., 2006;Rutten et al., 2011), and has 
potential to provide an indicator for CH4 emission.  
The use of milk MIR to predict CH4 emission has been used in several studies 
(Dehareng et al., 2012;Vanlierde et al., 2016)[Van Gastelen et al. submitted]. The R2 
found in these studies are quite variable ranging between 0.25 and 0.93. In the 
review by Van Gastelen and Dijkstra (2016), it is argued that the predictive power of 
milk MIR is moderate. Currently, milk MIR spectra of all cows participating in the milk 
production recording (MPR) are being collected. The simplicity of implementing this 
CH4 prediction equation in practice is an advantage.  
 
1.5 Methane emission indicator based on breath samples 
 
Sensor measurements of CH4 concentrations in the breath of the cow during 
automatic milking system (AMS) visits could be used as an indicator for CH4 emission. 
An overview of the measurement set-up used in this thesis can be found in Figure 
1.2. With this measurement set-up, CH4 emitted during an AMS visit is measured and 
this is an indicator of CH4 emission during a full day. These sensor measurements are, 
thus, a direct measurement method for CH4 emitted by the dairy cows. But these 
measurements are also influenced by the distance between the sensor and the head 
of the cow (Lassen et al., 2012;Hammond et al., 2016).  
Two other studies have used sensors in AMS to measure CH4 concentrations present 
in the breath of the cow (Garnsworthy et al., 2012;Lassen et al., 2012). These studies 
have reported a R2 of 0.79 (Garnsworthy et al., 2012) and repeatabilities ranging 
between 0.26 and 0.46 (Lassen et al., 2012). These values indicate that sensor  
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Figure 1.2 Overview of measurement set-up in the 
automatic milking system made from a cow 
perspective. Figure shows the feedthrough with the 
plastic screen above. In the screen the sensor was 
installed.  
 
measurements during AMS visits could give 
repeatable CH4 phenotypes that could be used as 
indicator for CH4 emission. 
 
1.6 Aim and outline of this thesis 
 
With this thesis I would like to answer the main 
question, whether there is genetic variation in CH4 
emission by dairy cows. In order to quantify the 
genetic variation in CH4 emission, 3 different 

indicators were used. The genetic variation present in these indicators could be used 
for selective breeding for lower CH4 emission. Selective breeding is not the only 
method that could be used to reduce CH4 emission by dairy cows. Other strategies 
to reduce CH4 emission are also addressed in the main project of which this PhD 
thesis is part. The main project is funded by Top Institute Food and Nutrition and 
combines the knowledge of nutrition, microbiology, modeling, and genetics to 
reduce CH4 emission by dairy cows (see box 1.1).  
In chapter 2 genetic variation in CH4 yield (g / kg dry matter intake (DMI)) predicted 
with milk FA is quantified. CH4 yield was predicted with three different prediction 
equations containing milk FA determined by gas chromatography. These prediction 
equations are applied to a dataset that was developed by the Dutch Milk Genomics 
Initiative and contains data on more than 1,900 dairy cows. In chapter 3 genetic 
variation in CH4 emission measured with sensors during AMS visits is quantified. CH4 
and CO2 concentrations are measured with a sensor in the breath of the cows. These 
measurements are summed into three CH4 emission indicators per AMS visit. Data 
of more than 123,000 AMS visits of 1,500 dairy cows are used. In chapter 4 genetic 
variation in CH4 emission predicted with milk MIR spectra is quantified. Three 
different prediction equations are applied to a dataset of more than 1,300 dairy 
cows. Furthermore, these three milk MIR predicted CH4 phenotypes are compared 
to the three sensor measured CH4 phenotypes. In chapter 5 the phenotypic and 
genetic correlations between two types of CH4 emission indicators with breeding 
goal traits for production and fertility are quantified. The two types of CH4 emission 
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indicators are the three sensor measured CH4 phenotypes and the three milk MIR 
predicted CH4 phenotypes. In chapter 6, the general discussion, the phenotype 
methane emission is further explored with respect to breeding. In the first part of 
this chapter, the results of a genome-wide association study on all three CH4 
emission indicators are described. In the second part, selection indexes are made 
containing both sensor measured CH4 phenotypes and milk MIR predicted CH4 
phenotypes. In the last part, correlations between estimated breeding values of sires 
for CH4 emission with estimated breeding values for production, health, and fertility 
traits are estimated.  
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Abstract 
 
Dairy cows produce enteric methane, a greenhouse gas with 25-times the global 
warming potential of CO2. Breeding could make a permanent, cumulative, and long-
term contribution to methane reduction. Due to a lack of accurate, repeatable, 
individual methane measurements needed for breeding, indicators of methane 
production based on milk fatty acids (FA) have been proposed. The aim of the 
present study was to quantify the genetic variation for predicted methane yields. 
The milk fat composition of 1,905 first lactation Dutch Holstein-Friesian cows was 
used to investigate three different predicted methane yields (in g/kg DMI): 
Methane1, Methane2, and Methane3. Methane1 was based on the milk fat 
proportions of C17:0anteiso, C18:1trans10+11, C18:1cis11, and C18:1cis13 (R2 = 
0.73). Methane2 was based on C4:0, C18:0, C18:1trans10+11, and C18:1cis11 (R2 = 
0.70). Methane3 was based on C4:0, C6:0, and C18:1trans10+11 (R2 = 0.63). 
Predicted methane yields were demonstrated to be heritable traits, with 
heritabilities between 0.12 and 0.44. Breeding can, thus, be used to decrease 
methane production predicted based on milk fatty acids. 
 
 
Key words: predicted methane yield, milk fatty acid, dairy cow  
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2.1 Introduction 
 
Dairy cows produce enteric methane, a greenhouse gas with 25-times the global 
warming potential of CO2 (Forster, 2007). To reduce methane production, a 
combination of strategies, like feeding strategies, should be considered (Patra, 2012; 
Hristov et al., 2013). Breeding could be a useful addition to any combination of 
strategies, making a permanent, cumulative, and long-term contribution to reducing 
methane production. 
Breeding for reduced methane production can only be achieved when the trait in 
question shows variation and part of that variation is heritable. To quantify (genetic) 
variation, many animals need to be evaluated for the new trait of methane 
production (Buddle et al., 2011). This evaluation is difficult due to a lack of accurate, 
repeatable, individual methane measurements. Alternatively, evaluation of methane 
production can be based on associated traits that are easier to record. Indicators of 
methane production based on milk fatty acids (FA) that are related to rumen 
conditions and methane production have been proposed by several authors 
(Chilliard et al., 2009; Dijkstra et al., 2011; Mohammed et al., 2011).  
The aim of this study was to apply such indicators to a large number of dairy cows 
with known milk fat composition in order to quantify the genetic variation for 
predicted methane production.  
 
2.2 Materials and Methods 
 
Milk fat composition of morning milk samples from 1,905 first lactation (63 to 282 
days in lactation) Dutch Holstein-Friesian cows from 398 herds was obtained from 
the Dutch Milk Genomics Initiative. Milk fat composition was determined by gas 
chromatography as described by Stoop et al. (2008) and expressed in grams per 100 
grams of fat. Stoop et al. (2008) and Bouwman et al. (2011) previously provided 
detailed descriptions of the experimental set-up.  
Three methane (CH4) prediction equations were derived from the dataset of Dijkstra 
et al. (2011) and applied to our data. The FA in these equations are expressed in 
grams per 100 grams of fat. The first prediction equation (Methane1) was reported 
by Dijkstra et al. (2011). 
 
CH4 (in g/kg DMI) = 24.60 + 8.74 * C17:0anteiso - 1.97 * C18:1trans10+11 - 9.09 * 
C18:1cis11 + 5.07 * C18:1cis13 (Methane1).  
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The coefficient of determination (R2) of Methane1 was 0.73. The R2 was corrected 
for experiment effects as described in St-Pierre (2001). A second prediction equation 
(Methane2) was derived excluding FA that were present in relatively different 
concentrations (difference between datasets larger than 40 %) in our dataset 
compared to the one of Dijkstra et al. (2011; R2 = 0.70).  
 
CH4 (in g/kg DMI) = 28.60 - 1.13 * C4:0 + 0.36 * C18:0 – 2.57 * C18:1trans10+11 – 
9.29 * C18:1cis11 (Methane2). 
 
A third prediction equation (Methane3) was derived excluding FA with relatively 
different concentrations and FA with concentrations < 1 g / 100 g fat in our dataset 
as well as the one of Dijkstra et al. (2011; R2 = 0.63).  
 
CH4 (in g/kg DMI) = 27.13 – 3.04 * C4:0 + 2.71 * C6:0 – 1.63 * C18:1trans10+11 
(Methane3).  
 
Note that C18:1trans10 and C18:1trans11 were individually available in our dataset 
and added together before applying the methane prediction equation. Analyses 
were performed for the predicted methane yields and for individual FA used in the 
methane prediction equations. Data of three cows were removed due to high levels 
of C18:1trans10+11 that deviated more than nine phenotypic standard deviations 
from the mean and were considered outliers. Normality of the traits was examined 
and observations with a residual effect > 3.5 based on model 1 were considered 
outliers and removed. Not all cows had complete data on milk fat composition, 
resulting in different numbers of observations for the different traits (Table 2.1).  
Genetic parameters and variance components were estimated using the following 
model in ASReml Version 2.0 (Gilmour, 2006): 
 
Yijkl =  µ + b1 * dimijkl + b2 * e-0.05*dimijkl + b3 * afcijkl + b4 * afcijkl2 + seasoni + sirecodej + 
animalk + herdl + eijkl  (model 1)  
 
where Yijkl is the dependent variable; μ is the general mean; dimijkl is the covariate 
describing the effect of the number of days in milking; afcijkl is the covariate 
describing the effect of age at first calving; seasoni is the fixed effect of the class 
calving season (June-August 2004, September-November 2004, or December 2004-
February 2005); sirecodej is the fixed effect of the difference in genetic level between 
cows sired by different groups of proven bulls and young bulls, animalk is the random 
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additive genetic effect of animal; herdl is the random effect of herd; and eijkl is the 
random error effect. The heritability (h2) was calculated as follows: 

h2= 
σA

2

σA
2  + σE

2 

 
This heritability is often referred to as the intraherd heritability (Heringstad et al. 
2006) and these estimates are very similar to heritability estimates from a model 
with herd as a fixed effect. The interherd heritability (h2inter) was calculated as 
follows: 

ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 = 
σA

2

σherd
2  +σA

2  + σE
2
 

 
The proportion of variance explained by herd was calculated as follows: 
 

Herd = 
σherd

2

σherd
2 + σA

2  + σE
2
 

 
2.3 Results and Discussion 
 
2.3.1 Descriptive statistics 
Results are presented in Table 2.1. The means of methane yields predicted based on 
milk FA ranged from 20.9 g/kg DMI for Methane3 to 23.6 g/kg DMI for Methane1, 
and the means of the individual FA ranged from 0.08% of total fat for C18:1cis13 to 
8.73% for C18:0. The ranges of predicted methane yields in the current study are 
similar to the ranges of methane yields in the study of Dijkstra et al. (2011). The 
ranges of predicted methane yields in this study were 17.3 – 28.2  (g/kg DMI) for 
Methane1, 14.6 – 24.4 for Methane2, and 17.7 – 23.5 for Methane3. The range of 
measured methane (in g/kg DMI) in the study of Dijkstra et al. (2011) was 17.3 – 25.3 
and the range of predicted methane (Methane1; in g/kg DMI) was 17.6 – 23.9. 
Predicted methane yields of this study are also in line with the meta-analysis of Van 
Lingen et al. (2014), with 15.9 - 27.9 (in g/kg DMI) for measured methane and 15.5 – 
25.5 (in g/kg DMI) for methane predicted based on milk fat composition.  
 
2.3.2 Methane prediction equations 
Methane yields in this study were predicted based on milk FA because milk FA are 
suggested to be indicative of rumen conditions and, consequently, of methane 
production in the rumen. Methane and volatile FA (VFA) are mainly produced in the  
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Table 2.1 Milk production traits, predicted methane yields based on milk fat composition, and 
individual milk fatty acids for first lactation Dutch dairy cows. Table contains number of 
observations (n), mean, coefficient of variation (CV), phenotypic standard deviation (σp), 
heritability (h2; h2 = σ2A / σ2A + σ2E) , interherd heritability (h2inter; h2inter = σ2A / σ2Herd + σ2A + 
σ2E), and variance explained by the herd (Herd; Herd = σ2Herd / σ2Herd + σ2A + σ2E) with their 
respective standard errors in brackets 
 
Traits n Mean 1 CV (%) 1 σp 2 h2 h2inter Herd 
Milk production traits       

Milk yield (in kg) 1,901 13.41 20 2.64 0.39 (0.10) 0.29 (0.03) 0.29 (0.03) 
Fat yield (in kg) 1,901 0.58 19 0.11 0.32 (0.09) 0.25 (0.02) 0.25 (0.02) 
Fat percentage 1,902 4.36 16 0.70 0.47 (0.10) 0.44 (0.09) 0.07 (0.02) 
Protein yield (in kg) 1,901 0.47 20 0.09 0.21 (0.08) 0.13 (0.05) 0.38 (0.03) 
Protein percentage 1,902 3.51 8 0.29 0.61 (0.12) 0.48 (0.10) 0.20 (0.02) 
FPCM 3 1,902 14.01 18 2.50 0.33 (0.10) 0.22 (0.07) 0.32 (0.03) 

Predicted methane yields (in g/kg DMI)      
Methane1 4 1,838 23.62 6 1.38 0.12 (0.06) 0.05 (0.03) 0.55 (0.02) 
Methane2 5 1,898 21.34 6 1.23 0.20 (0.07) 0.12 (0.05) 0.38 (0.03) 
Methane3 6 1,898 20.87 4 0.82 0.44 (0.10) 0.30 (0.07) 0.31 (0.03) 

Milk fatty acids (in g/100 g of fat)      
C4:0 1,898 3.50 8 0.28 0.42 (0.09) 0.35 (0.08) 0.16 (0.02) 
C6:0 1,898 2.23 7 0.16 0.46 (0.10) 0.39 (0.09) 0.15 (0.02) 
C17:0anteiso 1,838 0.50 22 0.11 0.11 (0.06) 0.06 (0.03) 0.44 (0.03) 
C18:0 1,898 8.73 16 1.40 0.24 (0.07) 0.19 (0.06) 0.19 (0.02) 
C18:1trans10 1,849 0.22 34 0.07 0.19 (0.08) 0.08 (0.03) 0.56 (0.02) 
C18:1trans11 1,888 0.77 27 0.21 0.28 (0.09) 0.11 (0.04) 0.60 (0.02) 
C18:1trans10+11 1,882 1.00 23 0.24 0.30 (0.09) 0.13 (0.04) 0.58 (0.02) 
C18:1cis11 1,898 0.41 26 0.10 0.20 (0.08) 0.11 (0.05) 0.44 (0.03) 
C18:1cis13 1,883 0.08 20 0.02 0.29 (0.08) 0.17 (0.05) 0.41 (0.03) 

1 Based on morning milk samples and uncorrected. 
2 After adjustment by model 1. 
3 Fat and protein corrected milk (FPCM) = milk (in kg) * (0.337+ (0.116 * fat percentage) + (0.06 
* protein percentage)). 
4 Methane1 = 24.60 + 8.74*C17:0anteiso - 1.97*C18:1trans10+11 - 9.09*C18:1cis11 + 
5.07*C18:1cis13. 
5 Methane2 = 28.60 - 1.13*C4:0 + 0.36*C18:0 – 2.57*C18:1trans10+11 – 9.29*C18:1cis11. 
6 Methane3 = 27.13 – 3.04*C4:0 + 2.71*C6:0 – 1.63*C18:1trans10+11. 
 
rumen as the result of digesting feed in the rumen (Ellis et al., 2008). Certain FA are 
released directly from the feed and absorbed in the blood. VFA and FA from the 
blood can be used in the mammary gland for the production of milk fat. Micro-
organisms present in the rumen and rumen conditions affect the amount and 
composition of VFA that are produced and absorbed, the amount and composition 
of absorbed FA, and the amount of methane produced (Vlaeminck et al., 2006; Ellis 
et al., 2008). Therefore, the composition of milk fat has been suggested to be related 
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to methane production in the rumen. Correlations between milk FA and predicted 
methane production were established successfully (Chilliard et al. 2009; Dijkstra et 
al. 2011; McCartney et al., 2013), confirming this hypothesis.  
Methane prediction equations may not be universal and might be valid only when 
applied to datasets obtained at similar conditions as the dataset from which the 
prediction equations are derived. The prediction equations for this study were 
derived from the dataset of Dijkstra et al. (2011). The use of these prediction 
equations on our dataset was considered appropriate as conditions and breeds were 
similar in both datasets. More particular, both studies were based on the Dutch 
Holstein-Friesian breed and cows in both studies were fed common Dutch diets of 
mixed grass silage and corn silage. No actual methane data was available to verify 
that this similarity in conditions justifies the use of methane prediction equations on 
other datasets.   
Methane prediction equations have generally been developed on datasets 
containing relatively small numbers of observations and limited ranges of dietary 
treatments. It is further expected that the validation R2 of the methane prediction 
equations will be lower than the R2 reported based on the dataset from which the 
prediction equation was derived. The decreased R2 is expected to reduce the ability 
to identify low methane producing dairy cows and might affect the genetic 
parameters of the predicted methane production. The effect of a R2 lower than one 
on the genetic parameters depends on the values of the genetic parameters in the 
part that is not explained by the methane prediction equation. When the values of 
the genetic parameters in the unexplained part are similar to the values of the 
genetic parameters in the explained part, a small effect is anticipated. The difference 
between genetic parameters in the explained part and the unexplained part can only 
be evaluated in datasets containing both measured and predicted methane 
production for large number of cows.   
The coefficient of variation (CV) of predicted methane yields ranged from 4% for 
Methane3 to 6% for Methane1 and Methane2, which is slightly lower than the CV of 
8% reported by Dijkstra et al. (2011). Milk production traits and individual FA had 
higher CV, ranging from 7% for C6:0 to 34% for C18:1trans10. Studies measuring 
methane production in cows have reported different CV depending on the 
measurement method. For example, Chagunda et al. (2013) reported a CV that 
ranged between 10% for the methane production of two cows in climate respiration 
chambers to 46% for methane measured with a laser on two cows. A low CV could 
cause difficulties in quantifying genetic variance.  
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2.3.3 Genetic parameters of predicted methane yields 
The heritabilities of the predicted methane yields ranged from 0.12 for Methane1 to 
0.44 for Methane3, and the proportion of variance explained by herd ranged from 
0.31 for Methane3 to 0.55 for Methane1. The heritabilities of the individual FA 
ranged from 0.11 for C17:0anteiso to 0.46 for C6:0, and the proportion of variance 
explained by herd ranged from 0.15 for C6:0 to 0.60 for C18:1trans11. Lassen and 
Løvendahl (2013) reported a h2 of 0.21 for the ratio between methane and carbon 
dioxide measured in an automatic milking system on 683 dairy cows. Pinares-Patiño 
et al. (2013) measured methane yield (in g/kg DMI) of 1,225 sheep in climate 
respiration chambers and reported a h2 of 0.13. De Haas et al. (2011) predicted 
methane production (g/d) based on feed intake and diet composition for 548 cows, 
reporting a h2 of 0.35, whereas predicted methane production corrected for fat and 
protein corrected milk had a h2 of 0.58. Actual and predicted methane production 
shows heritable variation in the literature and in our study; therefore, methane 
production can be targeted by breeding strategies.  
In conclusion, the results show that methane yields predicted based on milk FA (g/kg 
DMI; R2: 0.73 – 0.63) are heritable traits, with heritabilities ranging between 0.12 and 
0.44. Breeding can, thus, be used to decrease methane production predicted based 
on milk fatty acids. 
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Abstract 
 
International environmental agreements have led to the need to reduce methane 
emission by dairy cows. Reduction could be achieved through selective breeding. The 
aim of this study was to quantify the genetic variation of methane emission by Dutch 
Holstein Friesian cows measured using infrared sensors installed in automatic 
milking systems (AMS). Measurements of methane (CH4) and carbon dioxide (CO2) 
on 1508 Dutch Holstein Friesian cows located on 11 commercial dairy farms were 
available. Phenotypes per AMS visit were the mean of CH4 (CH4mean), mean of CO2 

(CO2mean), CH4mean divided by CO2mean (Ratiomean), and their log10-
transformations CH4log, CO2log, and Ratiolog. The repeatabilities of the log10-
transformated methane phenotypes were 0.27 for CH4log, 0.31 for CO2log, and 0.14 
for Ratiolog. The heritabilities of these phenotypes were 0.11 for CH4log, 0.12 for 
CO2log, and 0.03 for Ratiolog. These results indicate that measurements taken using 
infrared sensors in AMS are repeatable and heritable and, thus, could be used for 
selection for lower CH4 emission. Furthermore, it is important to account for farm, 
AMS, day of measurement, time of day, and lactation stage when estimating genetic 
parameters for methane phenotypes. Selection based on CH4log instead of Ratiolog 
would be expected to give a greater reduction of CH4 emission by dairy cows.  
 
Key words: methane emission, dairy cow, AMS, non-dispersive infrared sensor   
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3.1 Introduction 
 
Agriculture contributes 24% of the total global greenhouse gas emissions (IPCC, 
2014). The single largest pollution source within agriculture is enteric fermentation, 
i.e., the breakdown of feed in the rumen that results in the production of methane 
(CH4) (Gerber et al., 2013). Approximately 8% of the worldwide agricultural 
greenhouse gas emissions originate from enteric CH4 emissions by dairy cows 
(FAOSTAT, 2012;FAO, 2014), showing the impact of dairy production on global 
warming. In December 2015, agreements were made in Paris between 195 countries 
to tackle climate change and keep global warming firmly below 2°C (UNCCC, 2015). 
These agreements have further emphasized the importance of the reduction of CH4 
emission by dairy cows. 
Reduction of CH4 emission by dairy cows can be achieved through a combination of 
mitigation strategies comprising dietary, microbial, management, and breeding 
strategies (Cottle et al., 2011;Hristov et al., 2013). Selective breeding has the 
advantage of giving a cumulative, permanent, and long-term reduction of CH4 
emission. An example of breeding for reduced CH4 is the reduction of 13% of CH4 per 
kg of milk in Dutch dairy cattle that has been realized from 1990 to 2010 by selection 
for higher milk production (Vellinga et al., 2011). A further reduction of CH4 emission 
through selective breeding is wanted and requires quantification of possible genetic 
variation in CH4 emission. 
To quantify possible genetic variation in CH4 emission, CH4 emission needs to be 
measured on large numbers of individual cows. One of the measurement methods 
could be infrared sensors installed in automatic milking systems (AMS). The infrared 
sensor samples the breath of the cows present in the AMS and measures CH4 and 
carbon dioxide (CO2) concentration continuously. An advantage of this system is that 
cows visit the AMS several times per day and these repeated visits ensure repeated 
measurements of the same cow over the day and over time (Garnsworthy et al., 
2012a). Furthermore, sensors can easily be moved from one AMS to another and, 
thus, provide the opportunity to measure individual CH4 emission on large numbers 
of cows.  
Previous studies have shown that CH4 measurements based on infrared sensors in 
AMS are repeatable. Lassen et al. (2012) summarized CH4 measurements per AMS 
visit by taking the mean of CH4, the mean of CO2 and the mean of the ratio between 
CH4 and CO2. Repeatabilities ranged between 0.22 and 0.46 for 50 Holstein cows and 
43 Jersey cows. Bell et al. (2014b) found a repeatability of 0.74 for mean of CH4 per 
AMS visit for 36 Holstein-Friesian cows. These repeatabilities illustrate that infrared 
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sensors in AMS could provide the repeatable measurements on individual cows that 
are needed to quantify possible genetic variation in CH4 emission. 
These CH4 phenotypes can be influenced by farm conditions (Bell et al., 2014a), hour 
of the day (Garnsworthy et al., 2012b), and week of lactation (Lassen et al., 2016); 
therefore, these effects were studied. Farm conditions can impact CH4 emission via 
the differences in feed regimes between farms (Bell et al., 2014a;Hammond et al., 
2016). Hour of the day can influence CH4 emission as cow behavior, time after 
feeding, and ambient conditions change throughout the day (Garnsworthy et al., 
2012b;Lassen et al., 2012;Bell et al., 2014b). Week of lactation can affect CH4 
emission as the amount and composition of feed varies throughout lactation 
(Garnsworthy et al., 2012b;Bell et al., 2014a;Lassen and Løvendahl, 2016). 
Repeated measurements obtained from infrared sensors can be used to estimate 
the variation in CH4 emission between cows. Lassen and Løvendahl (2016) found 
genetic variation in CH4 emission that was summarized in several phenotypes. The 
heritabilities ranged between 0.16 and 0.21, providing support for the use of CH4 
concentrations measured using infrared sensors in AMS to decrease CH4 emission 
through selective breeding.    
The aim of this study was to quantify the genetic variation of CH4 emission by Dutch 
dairy cows measured using infrared sensors installed in AMS. The dataset comprised 
of CH4 and CO2 measurements taken with infrared sensors on Dutch Holstein Friesian 
cows located on commercial dairy farms. Measurements were summarized into 
different CH4 phenotypes per AMS visit and repeatability and heritability were 
calculated for these phenotypes.  
 
3.2 Materials and Methods 
 
3.2.1 Ethical statement 
This research was accredited by the animal experimentation committee of 
Wageningen University and Research and the central committee animal trials under 
application number 2013085 and trial code 2013097.  
 
3.2.2 Methane sensor 
Methane phenotypes were measured using sensors. These sensors were tested in 
climate respiration chambers (CRC) before they were installed on commercial farms. 
In this test, CH4 emissions of 20 individual Holstein Friesian cows were recorded in 
CRC for 3 consecutive days and, simultaneously, by the sensor. In the CRC, CH4 and 
CO2 were measured every 12.5 min as described by Heetkamp et al. (2015). The 
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sensors were gas analyzers (SenseAir LPL CH4/CO2, Rise Acreo, Stockholm, Sweden) 
that were installed in line with the cow’s nostrils when standing and facing forward. 
Air was drawn through the instrument at 1 l/min; CH4 and CO2 concentrations were 
measured continuously using a non-dispersive infrared (NDIR) technique, and logged 
twice per second. Phenotypes were defined as follows: CH4 production (l/d) from 
CRC; CH4 concentration (ppm) from sensor; and CH4:CO2 ratio from sensor.   
 
3.2.3 Data 
CH4 and CO2 concentrations (ppm) were measured on 1508 primiparous and 
multiparous dairy cows from 11 commercial farms in the Netherlands. On nine of 
these farms, cows were fed in the morning, whereas on one farm cows were fed in 
the evening. In addition, some farms had automatic feed pushers that compiled the 
feed continuously during the day, and one farm had an automatic feeder that fed 
the cows freshly mixed feed up to 30 times a day. Furthermore, cows on some farms 
could graze during the day whereas cows on other farms were kept indoors. More 
than 85% of the cows were at least 7/8 Holstein Friesian. Measurements were taken 
during milking in automatic milking systems (AMS; Lely Astronaut A4, Lely Industries 
NV, Maassluis, the Netherlands) using NDIR sensors. A total of four sensors were 
used to collect all data by installing them consecutively in different AMS. 
Measurements were taken in a total of 23 AMS, one to four AMS per farm, between 
November 2013 and March 2016. The data from these sensors were linked to the 
data from the AMS to obtain the identification numbers (ID) of the cows and, 
subsequently, additional animal information, such as week of lactation. The data of 
the sensors were aligned to the AMS visits as both were recorded on different 
devices. The alignment between these devices was based on the pattern of AMS 
visits, i.e., duration and order of AMS visits and the time between the AMS visits. 
This pattern was aligned in such a way that CH4 and CO2 concentrations were highest 
during AMS visits and lowest in between AMS visits. After alignment, the ID of the 
cows were used to link sensor data to data from the cooperative cattle improvement 
organization CRV (Arnhem, the Netherlands) to obtain the pedigree. The pedigree 
was traced back two generations, resulting in 4,214 animals in the pedigree. 
 
3.2.4 Data editing 
Data from the sensors and AMS were edited based on several conditions. The first 
condition was that only data from days with sensor measurements for at least 30% 
of the day were kept. Days with less than 30% data were mostly without data or the 
data present were fragmentary and these days were, therefore, discarded. The 
number of days with measurements ranged from ten up to 81 per AMS. The second 
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condition was that AMS visits should last at least 90 seconds and AMS visits shorter 
than 90 seconds were removed from the dataset. Removing AMS visits shorter than 
90 seconds ensured that most AMS visits that did not result in a milking, and would, 
thus, not provide a steady measurement, were removed from the dataset. The third 
condition was that the ID of the cow visiting the AMS should be known. AMS visits 
without cow ID were removed from the dataset, as these could not be linked to the 
pedigree. The fourth condition was that week of lactation of the cow visiting the AMS 
should be known and cows should be between one and 60 weeks in lactation. The 
fifth condition was that AMS visits with missing CH4 phenotypes (see phenotypes) or 
missing model effects (see model 1) were removed from the dataset. The sixth and 
last condition was that each cow should have at least four AMS visits. After editing, 
a total of 129,900 AMS visits on 1,508 dairy cows that had on average 86 AMS visits 
(range: 4-295 AMS visits) were available for analysis. The number of cows ranged 
between 62 and 224 per farm.  
AMS visits that had a standardized residual effect >3.5 based on model 1 for 
CH4mean, CH4log, CO2mean, CO2log, Ratiomean or Ratiolog were considered outliers 
and were removed. After removal of the outliers, the dataset consisted of 123,369 
AMS visits from 1,508 dairy cows. This dataset was used to estimate the variance 
components and genetic parameters.   
 
3.2.5 Phenotypes 
The CH4 and CO2 measurements were summarized per AMS visit into six phenotypes. 
To correct for the background levels of CH4 and CO2 in the barn, offsets for CH4 and 
CO2 were calculated per AMS visit. The background levels of CH4 were assumed to 
be 0 ppm and the offset for CH4 was the mean of the 10 lowest values for CH4 in a 
specific AMS visit. As the background levels of CO2 were assumed to be 400 ppm, the 
offset for CO2 was the mean of the lowest 10 values for CO2 minus 400. The CH4 
offset was subtracted from the individual (twice per second) CH4 measurements 
during a specific AMS visit and the CO2 offset was subtracted from the individual CO2 
measurements. After adjustment for the offsets, the methane phenotypes were 
calculated. The first phenotype is the mean of CH4 per AMS visit (CH4mean). The 
second phenotype is the mean of CO2 per AMS visit (CO2mean). The third phenotype 
is based on the ratio (CH4/CO2) per AMS visit and is calculated as the mean of CH4 
divided by the mean CO2 per AMS visit (Ratiomean). The residuals of the traits based 
on model 1 were not normally distributed. For example, the residuals of CH4mean 
showed a thicker and longer right tail (Kurtosis=3.24). Therefore, phenotypes were 
log10-transformated and after transformation residuals became normally distributed 
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(Kurtosis of log10-transformed CH4mean=0.55). These log10-transformations resulted 
in the fourth phenotype CH4log (log10(CH4mean)), fifth phenotype CO2log 
(log10(CO2mean)), and sixth phenotype Ratiolog (log10(Ratiomean)). Furthermore, 
milk yield in kg per AMS visit was included as a general trait.  
 
3.2.6 Data analysis 
Variance components of the phenotypes were estimated with ASReml 4.1 (Gilmour 
et al., 2015) using the following model: 
 
Yijklm = mu + DayAMSi + Lactationweekj + Hour*Farmk + Animall + Permanentm + eijklm 
 (model 1) 
 
Where Yijklm is the dependent variable (CH4mean, CO2mean, Ratiomean, CH4log, 
CO2log, Ratiolog or milk yield); mu is the mean; DayAMSi is the combined effect of 
day of measurement, farm of measurement, AMS of measurement and sensor of 
measurement (991 levels); Lactationweekj is the fixed effect of week of lactation (60 
levels); Hour*Farmk is the fixed interaction of hour of the day (24 levels) and farm of 
measurement (11 levels); Animall is the random additive genetic effect of animal (~ 
N (0, Aσ2Animal)) with additive genetic relationship matrix A and additive genetic 
variance σ2Animal; Permanentm is the random permanent environmental effect (~ N (0, 
Iσ2Permanent)) with identity matrix I and permanent environmental variance σ2Permanent; 
and eijklm is the random error effect (~ N(0, Iσ2Error)) with identity matrix I and residual 
variance σ2Error.  
 
3.2.7 Measurement period 
For analysis, all data available for each cow were used, ranging from 1 to 81 days per 
cow. To study the effect of length of measurement period a subset of the data was 
used consisting of data from one AMS on one farm during 50 consecutive days from 
December 2015 to February 2016. The measurement period lengths that were 
tested were 3, 5, 10, 20, and 30 consecutive days. For each of these lengths, five 
individual datasets with that length in consecutive days were created by random 
sampling from the dataset of 50 days (e.g., five datasets containing 30 consecutive 
days). Datasets of the same measurement period length were sometimes partially 
overlapping. Repeatabilities were calculated for each measurement period dataset, 
and repeatabilities and their standard errors were averaged over the five datasets 
for each measurement period length.  
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3.2.8 Genetic parameters 
The repeatability was calculated as follows: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
σAnimal

2 +  σPermanent
2  

σAnimal
2  + σPermanent

2  + σError
2  

 
with additive genetic variance σ2Animal, permanent environmental variance σ2Permanent 
and residual variance σ2Error. The heritability (h2) was calculated as follows:   
 

h2= 
σAnimal

2

σAnimal
2  + σPermanent

2  + σError
2  

 
We presented the descriptive statistics on all six phenotypes, but the genetic 
parameters of only the log10-transformed phenotypes were shown. As the residuals 
of the untransformed phenotypes were not normally distributed, this could affect 
the results found for these genetic parameters. Effects of the model parameters 
were presented on the untransformed phenotypes as these effects are then easier 
to interpret.  
The accuracy of the breeding value for CH4 emission for a cow was calculated as: 

� 𝑚𝑚ℎ2

(𝑚𝑚−1)𝑡𝑡+1
  where m is the number of repeated sensor measurements in an AMS, h2 

is the heritability, and t is the repeatability. The accuracy of breeding value for CH4 

for a bull with half-sib daughters was calculated as: � 𝑛𝑛𝑥𝑥2

(𝑛𝑛−1)𝑥𝑥2+4
 where n is the 

number of half-sib daughters and x is the accuracy of the breeding value of the 
daughters with 25 repeated sensor measurements each. 
 
3.3 Results 
 
3.3.1 Methane sensor test 
During the test, the repeatabilities of CH4 production (l/d), CH4 concentration (ppm) 
and CH4:CO2 ratio were calculated using data averaged per cow per day. 
Repeatability of CH4 production obtained from CRC measurements was 0.87 
(s.e.=0.04), repeatability of CH4 concentration obtained from sensor measurements 
was 0.90 (s.e.=0.04) and repeatability of CH4:CO2 ratio obtained from sensor 
measurements was 0.94 (s.e.=0.02). The correlation between CH4 production 
obtained from CRC and CH4 concentration obtained from sensor was 0.71 (s.e.=0.10). 
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The correlation between CH4 production obtained from CRC and CH4:CO2 ratio 
obtained from sensor was 0.49 (s.e.=0.18).  
 
3.3.2 Descriptive statistics 
Descriptive statistics on the six methane phenotypes and on milk production per 
AMS visit are represented in Table 3.1. After the log10-transformation, the means 
and standard deviations of CH4mean and CO2mean decreased, whereas the mean 
and standard deviation increased in an absolute sense for Ratiomean. A milk yield of  
0 kg for 619 AMS visits illustrates that during these AMS visits the cows were not 
milked by the AMS. These AMS visits were still present in the dataset, despite 
removing AMS visits shorter than 90 seconds. We considered any AMS visit longer 
than 90 seconds suitable for CH4 and CO2 measurements, irrespective if the cow was 
being milked during that visit.  
 
3.3.3 Effect of hour of the day on methane emission 
In general, the effect of hour of the day on CH4mean, as obtained from model 1, was 
lower during the night and higher during the day. This general pattern showed 
variation between farms, as demonstrated by farms A and B in Figure 3.1. Farm A 
showed two distinct peaks in CH4mean during the day: the first peak around 9 AM 
and the second peak around 8 PM. Farm B showed a strong increase in CH4mean 
during the day compared with the night. Both types of patterns were present in the 
dataset, but most farms had a pattern similar to that of farm A.  
 
Table 3.1 Descriptive statistics of phenotypes on methane (CH4) and carbon dioxide (CO2) 
measured with non-dispersive infrared (NDIR) sensors in automatic milking systems (AMS) on 
1,508 Dutch dairy cows (123,369 AMS visits) 
 
Trait Mean SD 1 Minimum Maximum 
CH4mean (ppm) 254 230 11 2073 
CH4log (ppm) 2 2.25 0.37 1.04 3.32 
CO2mean (ppm) 1443 681 408 9054 
CO2log (ppm) 2 3.11 0.20 2.61 3.96 
Ratiomean 0.17 0.12 0.01 0.87 
Ratiolog 2 -0.87 0.27 -1.92 -0.06 
Milk (kg) 3 10.8 3.4 0.00 36.50 
1 Standard deviation. 
2 Log10-transformed phenotypes. 
3 Milk production per AMS visit. 
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Figure 3.1 Effect of hour of the day on CH4mean (ppm) measured with non-dispersive infrared 
(NDIR)  sensors in automatic milking systems (AMS) on 1,508 Dutch dairy cows. The figure 
shows two representative farms (A = 5,554 AMS visits; B = 20,458 AMS visits). The effect of 
hour 4 was set to zero for both farms to enable comparison and the other effects are 
expressed relative to hour 4. 
 

 
Figure 3.2 Effect of week of lactation on CH4mean (ppm) measured with non-dispersive 
infrared (NDIR)  sensors in automatic milking systems (AMS) on 1,508 Dutch dairy cows 
(123,369 AMS visits). The effect of week 4 of lactation was set to zero and the other effects 
are expressed relative to week 4. 
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3.3.4 Effect of week of lactation on methane emission 
The effect of week of lactation on CH4mean, as obtained from model 1, for the first 
50 weeks of lactation is presented in Figure 3.2. The effect of week of lactation on 
CH4mean increased rapidly during the first 12 weeks of lactation. After this strong 
increase, the effect of week of lactation on CH4mean remained relatively constant 
until 35 weeks in lactation and decreased gradually thereafter. Between weeks 12 
and 35, the effect of lactation week accounted for 3 - 7% of the variation in the mean 
of CH4mean. 
 
3.3.5 Genetic parameters for methane emission 
Repeatabilities and heritabilities of the log10-transformated methane phenotypes 
and milk production are presented in Table 3.2. The repeatabilities ranged between 
0.14 and 0.31 for the methane phenotypes, were similar for CH4log and CO2log, and 
were lower for Ratiolog. The heritabilities were lower than the repeatabilities and 
ranged between 0.03 and 0.12 for the methane phenotypes. Heritabilities were 
similar for CH4log and CO2log, and were lower for Ratiolog. Milk yield per AMS visit 
had a higher repeatability (0.45) and heritability (0.17) than the methane 
phenotypes. Standard errors of the repeatabilities and heritabilities were between 
0.005 and 0.03.  
The accuracy of the breeding value for CH4 emission expressed as CH4log for a cow 
based on 25 repeated sensor measurements in an AMS was 0.61. For a bull with 25 
daughters, where each daughter has 25 repeated sensor measurements, the 
accuracy of the breeding value for CH4 emission was 0.85. 
 
 
 
Table 3.2 Repeatabilities and heritabilities of phenotypes on methane (CH4) and carbon 
dioxide (CO2) measured with non-dispersive infrared (NDIR)  sensors in automatic milking 
systems (AMS) on 1,508 Dutch dairy cows (123,369 AMS visits)1 

 
Trait repeatability heritability 
CH4log (ppm) 2 0.27 (0.008) 0.11 (0.02) 
CO2log (ppm)2 0.31 (0.009) 0.12 (0.02) 
Ratiolog 2 0.14 (0.005) 0.03 (0.01) 
Milk (kg) 3 0.45 (0.010) 0.17 (0.03) 

1 This table contains the repeatability (repeatability = σ2Animal + σ2Permanent  / σ2Animal + σ2Permanent 
+ σ2Error) and the heritability (heritability = σ2Animal / σ2Animal + σ2Permanent + σ2Error) with their 
respective standard errors in parentheses.    
2 Log10-transformed phenotypes. 
3Milk production per AMS visit. 
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3.3.6 Effect of measurement period  
The average repeatabilities and standard error of each measurement period length 
are presented in Table 3.3. All three methane phenotypes showed higher 
repeatabilities in measurement periods longer than 5 days compared with shorter 
measurement periods. Measurement periods longer than 10 days did not lead to 
further improvements of the repeatabilities. Standard errors decreased with 
increasing measurement period length, but the largest decrease occurred with the 
increase in measurement period from 3 to 5 days. Furthermore, repeatabilities of 
the measurement period of 10 days were not significantly different from the 
repeatabilities of the dataset with all observations from that specific AMS.  
 
3.4 Discussion 
 
The aim of this study was to quantify the genetic variation in methane phenotypes 
measured with NDIR sensors in AMS. Methane phenotypes based on sensor 
measurements of CH4 and CO2 on Dutch dairy cows were both repeatable and 
heritable. The repeatabilities of these phenotypes ranged between 0.14 and 0.31. 
The heritabilities of these phenotypes ranged between 0.03 and 0.12, indicating that 
there is genetic variation in these phenotypes. 
 
Table 3.3 The average repeatability of phenotypes on methane (CH4) and carbon dioxide (CO2) 
measured with non-dispersive infrared (NDIR) sensors in automatic milking systems (AMS) on 
Dutch dairy cows over different measurement period lengths1,2  
 

Measurement period N CH4log 3 CO2log 3 Ratiolog 3 
Total AMS period 8,851 0.19 (0.029) 0.16 (0.026) 0.19 (0.026) 
3 days 376 0.12 (0.075) 0.12 (0.062) 0.14 (0.079) 
5 days 650 0.15 (0.055) 0.12 (0.044) 0.15 (0.054) 
10 days 1,295 0.22 (0.049) 0.17 (0.043) 0.22 (0.048) 
20 days 2,567 0.23 (0.040) 0.18 (0.034) 0.23 (0.038) 
30 days 3,827 0.23 (0.037) 0.18 (0.031) 0.22 (0.034) 
50 days 6,296 0.22 (0.032) 0.16 (0.026) 0.21 (0.030) 

1Per measurement period length 5 random samples were taken from the dataset of 50 
consecutive days, and numbers reported are the average over these 5 random samples. Total 
AMS period consists of all data from the one AMS (73 days) of which the dataset of 50 
consecutive days was obtained.  
2 The table contains the measurement period in days, the average number of AMS visit per 
measurement period (N), and the average repeatability per methane phenotype  (repeatability 
= σ2Animal + σ2Permanent  / σ2Animal + σ2Permanent + σ2Error) with their respective average standard error 
(s.e.) in parentheses. 
3Log10-transformed phenotypes. 
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3.4.1 Methane sensor test 
High repeatability of CH4 production obtained from CRC measurements and of CH4 
concentration obtained from sensors agree with the literature (Bell et al., 
2014b;Donoghue et al., 2016). The high repeatabilities found in the present study 
demonstrate high consistency between subsequent measurements on the same 
animal, implying high precision of measurement and suggesting consistent 
differences between animals. High repeatabilities and moderate correlations 
demonstrate the potential of the sensor method for the collection of phenotypes on 
CH4 emission for large numbers of individual animals. Repeatabilities are expected 
to be lower when installed in AMS because of more variable conditions on the farm. 
This limitation is most likely compensated by the ability to perform large-scale 
collection of data on commercial dairy farms. This facilitates repeated measures on 
a single animal and recording large numbers of animals, both contributing to the 
accuracy of estimated breeding values. 
 
3.4.2 Methane phenotypes 
Phenotypes used in this study were measured in parts per million (ppm). In the 
literature concentration measurements (in ppm) have been transformed to CH4 
production (g/day) using a dilution factor or using CO2 production (Madsen et al., 
2010;Garnsworthy et al., 2012a;Lassen and Løvendahl, 2016). These 
transformations, however, are based on several assumptions, like a constant CO2 
production of a cow throughout the day, that may not always be met. The CH4 
production that is obtained after transformation is affected by the accuracy of these 
assumptions. For breeding, absolute values are not needed, as it focusses on the 
relative differences between animals to select the best animals.  
Phenotypes similar to those used in our study were also used in other studies (e.g. 
Madsen et al. 2010; Lassen et al. 2012; Bell et al. 2014b). The absolute values of such 
similar phenotypes, however, have not been published except for Ratiomean, i.e., 
the mean of the ratio between CH4 and CO2. We included Ratiomean in our study 
because it was reported in other studies and can be used to quantify methane 
production (Madsen et al., 2010). The absolute value of Ratiomean in our study was 
considerably higher than the one reported by Lassen et al. (2012), i.e., 0.17 vs. 0.065. 
The reason for this difference is unclear as the absolute values of the underlying 
traits to Ratiomean, i.e., CH4mean and CO2mean, were not reported by Lassen et al. 
(2012). Breeding, however, does not depend on absolute values, and, therefore, it is 
expected that the difference in absolute value of Ratiolog compared with the 
literature would not affect the direction of selection if Ratiolog would be used for 
selection.  
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3.4.3 Milk yield 
Selective breeding for milk yield has led to substantial genetic progress over time. 
Heritability for milk yield per AMS visit in our study was 0.17 (s.e.=0.03). This 
heritability is slightly lower than the heritability of 0.24 reported (Mulder et al., 2004) 
for milk yield per day recorded in AMS. The heritability of CH4log was 0.11 (s.e.=0.02), 
which is comparable with the heritability of milk yield per AMS visit. This indicates 
that there is potential for a reduction in methane emission through selective 
breeding when using sensor measurements in AMS.   
 
3.4.4 Effect of DayAMS 
The DayAMS effect that was used in the model includes the effects of the day, farm, 
AMS, and sensor of measurement. These effects could not be disentangled in our 
study, because most measurements took place on one farm at a time, with a single 
sensor installed per AMS. To study the impact of the DayAMS effect on the methane 
phenotypes, an additional analysis was performed in which DayAMS was included in 
model 1 as a random effect instead of as a fixed effect. This analysis showed that the 
percentage of total variation that was explained by the DayAMS effect was 56% for 
CH4log, 27% for CO2log, and 82% for Ratiolog. These results indicate that the 
phenotypes were largely influenced by the DayAMS effect, and illustrates that 
accounting for the effects of day of measurement, farm, AMS, and sensor is 
important when analyzing methane phenotypes. Farm conditions that are known to 
influence CH4 measurements are season, air flow, and barn management (Wu et al., 
2016). The large effect of DayAMS agrees with the other studies that acknowledge 
the impact of farm of measurement and farm conditions on methane measurements 
(Bell et al., 2014a;Hammond et al., 2016).  
 
3.4.5 Effect of hour of the day on methane emission 
Hour of the day had a significant effect in our analysis with a p-value below 0.001 
when DayAMS was included in model 1 as random. The size of the effect is relatively 
small compared with the effect of DayAMS. This is in line with previous studies that 
reported diurnal variation in methane emission, mainly driven by the time of feeding 
of the cows (Garnsworthy et al., 2012b;Lassen et al., 2012;Bell et al., 2014b). To deal 
with the rather different feeding strategies of the 11 farms in our study (see material 
and methods), a farm by hour of the day interaction was included in the model 
instead of a single hour of the day effect. Not only the moment of feeding differed 
between the farms, but also the amount of times the cows were fed and the 
possibility of grazing. These diverse strategies resulted in hour of the day effects per 
farm that were different for each farm. Therefore, inclusion of the interaction 
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between hour of the day and farm instead of a single hour of the day effect into the 
model was preferred to deal with these diverse feeding strategies.  
 
3.4.6 Effect of week of lactation on methane emission 
Week of lactation had a significant effect in the model with a p-value below 0.001 
when DayAMS was included in model 1 as random. The size of the effect is relatively 
small compared with the effect of DayAMS. As feed composition and intake usually 
changes throughout lactation, week of lactation can affect CH4 emission 
(Garnsworthy et al., 2012b;Bell et al., 2014a;Lassen and Løvendahl, 2016). Previous 
studies also reported effects of lactation stage on methane emission measured in 
AMS (Garnsworthy et al., 2012b;Bell et al., 2014a;Lassen and Løvendahl, 2016). 
Similar to our study, these studies found an increase in methane emissions during 
the first weeks of lactation. The highest level of methane emission was found at 
around 10 weeks of lactation by Lassen and Løvendahl (2016), at 20 weeks of 
lactation by Garnsworthy et al. (2012b), and at 12 weeks of lactation in our study. 
After the initial increase in methane emission per week of lactation, either a stable 
level of methane emission until 50 weeks in lactation was reported (Bell et al., 
2014a), or a decrease in methane emission per week of lactation was reported 
(Garnsworthy et al., 2012b;Lassen and Løvendahl, 2016). The extent of this decrease 
varied between 20% of the peak methane emission at 50 weeks of lactation 
(Garnsworthy et al., 2012b) and 80% of the peak methane emission at 44 weeks of 
lactation (Lassen and Løvendahl, 2016). In our study, methane emission decreased 
with about 33% of the peak methane emission at 50 weeks of lactation. The pattern 
found in our study is comparable with the patterns found in literature and the found 
differences in patterns might be explained by many different factors such as the used 
phenotypes. Our study used CH4mean in ppm as phenotype whereas the other 
studies used methane in g/day that was either from the integral area under the peaks 
of methane emission (Garnsworthy et al., 2012b) or by the ratio between CH4 and 
CO2 in relation to heat-producing units (Lassen and Løvendahl, 2016). Based on the 
results of our study and of the literature, inclusion of lactation stage into the model 
to analyze methane emission is recommended.  
 
3.4.7 Repeatabilities of methane phenotypes 
Selective breeding requires a repeatable phenotype for methane emission and 
methane phenotypes measured in AMS using infrared sensors could be suitable 
phenotypes. In this study, repeatabilities of the log10-transformed methane 
phenotypes ranged between 0.14 and 0.31. Other studies have reported 
repeatabilities of CH4 measured in AMS that ranged between 0.34 for the mean of 
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CH4 and 0.86 for the mean of CO2 (Lassen et al., 2012;Bell et al., 2014b). In general, 
the repeatabilities found in other studies were higher than the repeatabilities found 
in our study. Both studies of Lassen and Bell used a model that corrects for diet 
effects and this might explain the higher repeatabilities found in these studies 
compared with our study. Repeatabilities found in our study and other studies do 
confirm that methane measurements by infrared sensors in AMS provide repeatable 
phenotypes. 
 
3.4.8 Effect of measurement period 
Measurement period has influenced the repeatabilities found in our study, and other 
studies have chosen different measurement periods. Bell et al. (2014b) measured 
CH4 and CO2 for a 35-day period whereas Lassen et al. (2012) measured for a 3-day 
period. The results obtained from our study indicate that repeatabilities (and their 
standard errors) remained stable in measurement periods of at least 10 consecutive 
days. In other words, the value of additional repeated measurements beyond 10 
days of measurements on the same individual was close to zero. Although Lassen et 
al. (2012) used a shorter measurement period than our study, their reported 
standard errors are small (s.e.= 0.003 – 0.006). This indicates that the repeatability 
reported will likely not be affected by increasing the measurement period.  
 
3.4.9 Genetic parameters for methane emission 
The heritabilities of the log10-transformed phenotypes in this study were 0.11 for 
CH4log, 0.12 for CO2log, and 0.03 for Ratiolog. Lassen and Løvendahl (2016) 
measured methane using infrared sensors in AMS on 3,121 Holstein cows and 
calculated heritabilities of methane emission. Methane emission calculated using 
the ratio between CH4 and CO2 (in ppm) gave a heritability of 0.16 and both CH4 in 
g/day and CH4 in g/kg fat and protein corrected milk gave a heritability of 0.21. These 
heritabilities were slightly higher compared with the heritabilities of CH4log and 
CO2log in our study. The heritability of Ratiolog of our study is considerably lower 
compared with the other heritabilities. Lassen et al. (2012) used the ratio between 
CH4 and CO2 to create a more stable phenotype that was less influenced by the 
position of the head of the cow to the sensor. In our study, however, we found that 
Ratiolog had relatively more total variation and less genetic variation than CH4log 
and CO2log. Therefore, based on the results of our study, the use of CH4log for 
selection instead of Ratiolog would be expected to give a greater reduction of 
methane emission by dairy cows.  
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The heritability of the phenotypes showed that there is genetic variation present in 
CH4 and CO2 measured using infrared sensors in AMS, indicating that these 
phenotypes could be used in selective breeding. The reduction in methane emission 
that could be achieved through selective breeding depends on the genetic variance 
of methane emission, the intensity of selection, the accuracy of selection, and the 
relationship between methane emission and the other breeding goal traits. The 
accuracies of breeding values for methane emission for cows and bulls were 0.61 
and 0.85, respectively. This illustrates that fairly accurate estimates of breeding 
values for selective breeding can be obtained based on repeated methane 
measurements on a limited number of daughters per bull.   
 
3.5 Conclusions 
 
CH4log, CO2log, and Ratiolog were all repeatable and heritable, but Ratiolog had a 
lower repeatability and heritability than the other two traits. It is recommended to 
measure CH4 and CO2 on at least 10 consecutive days to maximize repeatabilities of 
the methane phenotypes. It is important to account for farm, AMS, day of 
measurement, time of day, and lactation stage when estimating genetic parameters 
for methane phenotypes. The use of CH4log for selection instead of Ratiolog would 
be expected to give a greater reduction of methane emission by dairy cows.  
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Abstract 
 
Dairy cows produce methane (CH4), a greenhouse gas that needs to be mitigated to 
reduce the impact of dairy farming on global warming. Mitigation of CH4 emission by 
dairy cows might be achieved via breeding. The aim of this study was to estimate 
genetic parameters of milk mid-infrared (MIR) predicted CH4 emissions and their 
relationship with CH4 measured with sensors in automatic milking systems (AMS). 
For this purpose milk production and CH4 data on 1,302 cows from 11 commercial 
dairy farms in the Netherlands were available. These cows had three milk MIR 
predicted CH4 phenotypes: CH4 production (g/day), CH4 yield (g/kg DMI), and CH4 
intensity (g/kg fat and protein corrected milk) and three sensor measured 
phenotypes: mean of CH4 per AMS visit (CH4log), mean of carbon dioxide (CO2) per 
AMS visit (CO2log), and mean of CH4 divided by the mean of CO2 (Ratiolog). The 
heritabilities of the milk MIR predicted CH4 phenotypes were 0.17 for CH4 
production, 0.21 for CH4 yield, and 0.18 for CH4 intensity. Correlations between milk 
MIR predicted CH4 phenotypes and sensor measured phenotypes were weak with 
phenotypic correlations ranging between 0.03 and 0.16. This indicates that milk MIR 
predicted CH4 phenotypes provide information that is independent of sensor 
measured phenotypes. Combining information from the two types of CH4 
phenotypes could be a useful next step. Furthermore, the prediction of milk MIR 
predicted and sensor measured phenotypes with test-day milk yield, and 
percentages of fat, protein, and lactose resulted in coefficients of determination 
ranging between 0.01 and 0.63. This indicates that both milk MIR predicted CH4 
phenotypes and sensor measured phenotypes contain information that is not fully 
captured by information that is currently available on milk yield and composition.  
 
Key words: Methane emission, dairy cow, milk mid-infrared, genetic variation  
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4.1 Introduction 
 
Methane (CH4) is a greenhouse gas of which the atmospheric concentration has risen 
significantly since pre-industrial time and which is expected to continue to increase 
the coming years (Boucher et al., 2009). Methane produced by agriculture 
contributes 53% of the total CH4 emissions in the Netherlands (Van der Maas et al., 
2009). The single largest source of CH4 emissions by agriculture is enteric 
fermentation, production of CH4 in the rumen of ruminants, which accounts for more 
than 40% of the agricultural greenhouse gas emissions in the Netherlands (FAOSTAT, 
2014).  
Reduction of CH4 emissions by dairy cows is needed to reduce the impact of 
agriculture on global warming. The demand for animal food products is expected to 
increase with the expected growth of the human population to 9 billion people by 
2050 (United Nations, 2015). Therefore, a reduction in dairy production is not 
anticipated and the mitigation of CH4 emission per dairy cow is required.  
Mitigation of CH4 emission by dairy cows might be achieved through selective 
breeding. Current breeding strategies result in an increased CH4 emission per cow 
per year, but decreased CH4 emission per kg of milk as a result of improved 
production and longevity (Van der Maas et al., 2009; Bannink et al., 2011). A further 
reduction of CH4 emission could be achieved by actual breeding for lower CH4 
emitting dairy cows. Breeding for lower CH4 emitting dairy cows, however, relies on 
the availability of CH4 emission phenotypes that are heritable and can be measured 
on large numbers of animals.  
Milk mid-infrared (MIR) spectra are routinely collected via milk production recording 
and have been suggested for predicting CH4 emission (Dehareng et al., 2012; 
Vanlierde et al., 2015; Van Gastelen et al., Wageningen University & Research, 
Wageningen, personal communication). The three prediction equations developed 
by Van Gastelen and colleagues were used in our study, because breed and diet of 
the cows in the study of Van Gastelen and colleagues were similar to those in our 
study.  
Another method for obtaining large scale CH4 phenotypes is based on sensors in 
automatic milking systems (AMS). Previous studies using sensors to measure CH4 
emission on different Holstein populations found repeatabilities between 0.14 and 
0.86 for CH4 phenotypes (Lassen et al., 2012; Bell et al., 2014; Van Engelen et al., 
Accepted) and heritabilities between 0.03 and 0.21 (Lassen and Løvendahl, 2016; 
Van Engelen et al., Accepted).  
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Selective breeding based on both types of CH4 phenotypes might be possible, though 
no scientific consensus has been reached on which phenotype to use for breeding 
for reduced CH4 emission (Robinson and Oddy, 2016; de Haas et al., 2017). 
Moreover, no comparison between CH4 measured with sensors and CH4 predicted 
with milk MIR spectra has been made. Therefore, we would like to know whether 
CH4 predicted via milk MIR is similar to or different from CH4 measured with sensors 
in AMS. In this study we estimated the genetic parameters for milk MIR predicted 
CH4 emissions, and explored the relationships between milk MIR predicted CH4 
emissions and CH4 measured with sensors in AMS. Data on milk MIR predicted CH4 
emissions were available on more than 1,400 Dutch dairy cows and were obtained 
from milk samples taken during routine milk recording. Most of these cows also had 
data on CH4 and carbon dioxide (CO2) measurements taken with sensors in AMS. 
Genetic variation in milk MIR predicted CH4 emissions was estimated and phenotypic 
and genetic correlations with sensor measured phenotypes were calculated.  
 
4.2 Materials and Methods 
 
4.2.1 Data 
4.2.1.1 Milk MIR and milk production data 
Milk samples were collected during routine milk production recording (MPR) from 
all lactating cows on 11 commercial Dutch dairy farms. Some farms were sampled 
twice resulting in 17 MPR for these 11 farms. Milk samples were analysed with mid-
infrared (MIR) spectroscopy using MilkoScan FT 6000 equipment (Foss Analytical 
A/S, Hillerød, Denmark) by Qlip B.V. (Zutphen, the Netherlands). A total of 2,378 
observations were available for this study with milk MIR spectra and milk production 
traits including milk yield, and fat, protein, and lactose percentages of 1,412 dairy 
cows.  
 
4.2.1.2 Methane predicted based on milk MIR 
Three predictions for CH4 based on milk MIR spectra were used in this study. These 
milk MIR CH4 predictions were developed by Van Gastelen et al. (Wageningen 
University & Research, Wageningen, personal communication), and a detailed 
description of the data and methods can be found there. In short, data for 
development of the milk MIR CH4 predictions consisted of 218 CH4 emission records 
obtained in climate respiration chambers (CRC) from 8 studies that fed diets with at 
least 70% roughage. Milk samples corresponding to the 218 CH4 emission records 
were analyzed with MIR, and MIR spectra were used to develop three CH4 prediction 
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equations via regression models. The three resulting methane prediction equations 
predicted CH4 in grams per day (CH4 production), CH4 in grams per kg of dry matter 
intake (CH4 yield), and CH4 in grams per kg of fat and protein corrected milk (CH4 
intensity). For the latter prediction equation fat and protein corrected milk was 
calculated as (0.337 + 0.116 * fat (g/100 g milk) + 0.06 * protein (g/100 g milk)) * milk 
yield (kg/d). The cross validated coefficient of determination (R2cv) was 0.30 for CH4 

production, 0.19 for CH4 yield, and 0.49 for CH4 intensity (Van Gastelen et al., 
Wageningen University & Research, Wageningen, personal communication). These 
three prediction equations were applied to the 2,378 milk MIR spectra that were 
available for this study, resulting in three milk MIR predicted CH4 phenotypes per 
observation.  
 
4.2.1.3 Editing of milk MIR data 
The milk MIR dataset was edited in four steps. The first step was the removal of 
observations with extreme values for either predicted CH4 emissions or the milk 
production traits. For each of the 17 MPR, the mean and standard deviation (sd) was 
calculated for predicted CH4 emissions and the milk production traits. Observations 
were considered to contain extreme values when the values of predicted CH4 
emissions or milk production traits were outside the range of the mean ± 4*sd. Of 
the 2,378 observations, 32 observations contained extreme values and were 
removed. The second step was to summarize multiple observations for each cow per 
MPR into a single observation per MPR. In total, 410 cows were sampled twice (820 
observations) and 11 cows were sampled three times (33 observations) per MPR. A 
weighted average based on milk yield was calculated for predicted CH4 emissions 
and the milk production traits to obtain a single observation per cow per MPR. The 
third step was to add week of lactation to the dataset and remove observations with 
unknown week of lactation or with week of lactation above 60. Data on calving dates 
were made available by the cooperative cattle improvement organization CRV 
(Arnhem, the Netherlands) and matched to the Milk MIR data to calculate the week 
of lactation at the time of the MPR. In total, 63 cows were removed from the dataset 
during this step. The fourth step was the reduction of the dataset to 1 observation 
per cow as the dataset contained too few repeated observations to be of added 
value in the statistical analysis. Most cows had 1 observation, but some cows had 2 
observations as they took part in two MPR. For these cows, 1 of the 2 observations 
was randomly selected and removed from the dataset. The edited milk MIR dataset 
consisted of 1,302 observations on 1,302 cows (dataset 1) and was used to calculate 
the heritabilities of milk MIR phenotypes and their mutual correlations. 
 



4 Genetic variation in milk predicted methane 

 
 

60 
 

4.2.1.4 Methane measured with sensors 
We also measured the dairy cows on the same 11 dairy farms that yielded the milk 
MIR data with non-dispersive infrared sensors in AMS. A detailed description of this 
data and the methods are given by Van Engelen et al. (Accepted). In short, sensors 
were installed in 23 AMS located at 11 farms and measured CH4 and CO2 
concentrations twice per second. Measurements were summarized per AMS visit by 
the mean of CH4 (CH4mean), the mean of CO2 (CO2mean), and the mean of the ratio 
between CH4 and CO2 (Ratiomean). A log10-transformation was applied to these 
phenotypes, resulting in CH4log (log10(CH4mean)), CO2log (log10(CO2mean)), and 
Ratiolog (log10(Ratiomean)). Data on 123,369 AMS visits with sensor measured 
phenotypes from 1,508 dairy cows were available.  
 
4.2.1.5 Dataset for correlations between milk MIR data and sensor data 
All sensor observations of a cow between two weeks before and two weeks after the 
MPR were selected for calculation of correlations between sensor measured 
phenotypes and milk MIR data (milk MIR CH4 phenotypes and milk production traits). 
The selected sensor observations (on average 39) were averaged and three sensor 
measured phenotypes were constructed: mean of CH4log (mCH4log), mean of CO2log 
(mCO2log), and mean of Ratiolog (mRatiolog). Only cows with both sensor 
measurements in the month surrounding the MPR and MIR predicted CH4 
phenotypes were included in this dataset (dataset 2). Dataset 2 consisted of 1,225 
observations on 1,225 dairy cows and was used to calculate correlations between 
milk MIR phenotypes and sensor measured phenotypes. As milk yield had missing 
observations, correlations with milk yield were calculated on a dataset consisting of 
1,097 observations. 
 
4.2.2 Genetic parameters 
4.2.2.1 Heritability 
Variance components of milk MIR phenotypes in dataset 1 (milk MIR predicted CH4 
phenotypes and milk production traits) were estimated with ASReml 4.1 (Gilmour et 
al., 2015) using the following model: 
 
Yijk = mu + Lactationweeki + MPRj + Animalk + eijk  (model 1) 
 
where Yijk is the dependent variable; mu is the mean of the dataset; Lactationweeki 
is the fixed effect of week of lactation at the time of the MPR (60 levels); MPRj is the 
fixed effect of the date of the milk production recording (17 levels; farm is nested 
within MPR); Animalk is the random additive genetic effect of animal (~ N (0, Aσ2A)) 
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with additive genetic relationship matrix A and additive genetic variance σ2A (the 
pedigree was traced back two generations, resulting in 4,231 animals in the 
pedigree, and was obtained from CRV); and eijk is the random error effect (~ N(0, 
Iσ2E)) with identity matrix I and residual variance σ2E. 
The heritability (h2) of the milk MIR phenotypes was calculated as follows: 

h2= 
σA

2

σA
2  + σE

2 

 
where σ2A is the additive genetic variance and σ2E is the residual variance. 
 
4.2.2.2 Correlation 
To calculate the correlations among the milk MIR phenotypes a bivariate model was 
used with effects as in model 1 on dataset 1. Another bivariate model was used to 
calculate the correlations between milk MIR phenotypes and sensor measured 
phenotypes in dataset 2. The fixed effects for milk MIR phenotypes were those of 
model 1 whereas the fixed effects for sensor measured phenotypes were farm of 
measurement (11 levels) and week of lactation (59 levels). Variance components of 
milk MIR phenotypes and sensor measured phenotypes were estimated with ASReml 
4.1.  
The phenotypic correlations (rp) among milk MIR predicted CH4 phenotypes and 
between milk MIR phenotypes and sensor measured phenotypes were calculated as 
follows: 

𝑟𝑟𝑝𝑝 =  
𝜎𝜎𝑃𝑃1,𝑃𝑃2

�(𝜎𝜎𝑃𝑃12 ∗  𝜎𝜎𝑃𝑃22 )
 

 
where σP1,P2 is the phenotypic covariance between trait 1 and trait 2, and σ2P1 and 
σ2P2 are the phenotypic variances of trait 1 and trait 2. The genetic correlations (rg) 
among the milk MIR predicted CH4 phenotypes and between milk MIR phenotypes 
and sensor measured phenotypes were calculated as follows: 
 

𝑟𝑟𝑔𝑔 =  
𝜎𝜎𝐴𝐴1,𝐴𝐴2

�(𝜎𝜎𝐴𝐴12 ∗  𝜎𝜎𝐴𝐴22 )
 

 
where σA1,A2 is the additive genetic covariance between trait 1 and trait 2, and σ2A1 
and σ2A2 are the additive genetic variances of trait 1 and trait 2.  
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4.2.3 Variation in CH4 phenotypes explained by milk yield and 
composition 
Routinely recorded traits like milk yield and fat, protein, and lactose percentage 
might provide information that could be used to predict CH4 emission. It is of interest 
to investigate to what extent the two types of CH4 phenotypes used in this study 
contain information that is not contained by routinely recorded traits. To investigate 
this, we estimated how much variation in the CH4 phenotypes was explained by the 
milk production traits. Variation in milk MIR predicted CH4 phenotypes and sensor 
measured phenotypes explained by milk yield, and percentages of fat, protein, and 
lactose were estimated using the least squares method of the PROC GLM procedure 
in SAS® 9.3 (SAS Institute Inc., 2011). The amount of variation explained by these 
production traits was calculated on dataset 2 with complete observations (1,097 
observations) and expressed as the coefficient of determination (R2).  
 
4.3 Results and Discussion 
 
4.3.1 Descriptive statistics 
Descriptive statistics and heritabilities of milk MIR predicted CH4 phenotypes and 
production traits are presented in Table 4.1. Test-day milk yield had an average of 
29.7 kg in dataset 1 which is slightly higher than the Dutch average of 27.3 kg (CRV, 
2016). The slightly higher milk yield might be explained by the nature of these farms, 
since the 11 dairy farms part of our study are innovative farms with a focus on higher 
performance. Fat and protein percentages were on average 4.37% and 3.57%, 
respectively. These percentages are similar to the Dutch national average of 4.38% 
for fat percentage and 3.55% for protein percentage in 2016 (CRV, 2016). Predicted 
CH4 emissions found in our study were on average 372.4 g/day, 22.1 g/kg DMI, and 
15.0 g/kg FPCM . These averages are in line with literature (Dijkstra et al., 2016) and 
with the dataset on which the milk MIR predictions were developed (Van Gastelen 
et al., Wageningen University & Research, Wageningen, personal communication). 
These numbers suggest that our data is a good representation of the Dutch dairy 
population.  
 
4.3.2 Heritabilities of milk MIR phenotypes  
Heritabilities of milk MIR predicted CH4 phenotypes were 0.17 for CH4 production, 
0.21 for CH4 yield, and 0.18 for CH4 intensity with standard errors (s.e.) of 0.07. To 
the best of our knowledge, heritabilities of milk MIR predicted CH4 emission have not 
been reported before. Heritabilities of CH4 production based on milk fatty acids that 
were predicted from milk MIR spectra ranged between 0.22 and 0.40 (Kandel et al., 



4 Genetic variation in milk predicted methane 

 
 

63 
 

2015). Furthermore, heritabilities ranging between 0.12 and 0.44 were found for CH4 
yield predicted based on milk fatty acids that were measured by gas chromatography 
(van Engelen et al., 2015). Moreover, data of sensor measured phenotypes used in 
this study had heritabilities between 0.03 and 0.12 (Van Engelen et al., Accepted). 
Thus, heritabilities of milk MIR predicted CH4 phenotypes estimated in the current 
study are in line with these heritabilities reported in literature.  
 
Table 4.1 Descriptive statistics and heritabilities of predicted methane (CH4) phenotypes and 
production traits based on 1,302 milk mid-infrared (MIR) spectra of 1,302 Dutch dairy cows. 
Milk MIR predicted CH4 phenotypes are expressed as grams of methane per day (CH4 
production), grams of methane per kg of dry matter intake (CH4 yield), and grams of methane 
per kg of fat and protein corrected milk (CH4 intensity)1, 2  
 

Trait N mean CV (%) σ2p h2 
Methane phenotypes      

CH4 production (g/day) 1,302 372.4 7 342.86 0.17 (0.07) 
CH4 yield (g/kg DMI) 1,302 22.1 5 0.95 0.21 (0.07) 
CH4 intensity (g/kg FPCM) 1,302 15.0 12 1.62 0.18 (0.07) 

Production traits      
Milk (kg) 1,176 29.7 31 44.24 0.36 (0.07) 
Fat percentage 1,302 4.37 20 0.54 0.39 (0.08) 
Protein percentage 1,302 3.57 12 0.08 0.33 (0.08) 
Lactose percentage 1,302 4.56 4 0.03 0.37 (0.07) 

1 This table contains the number of animals (N), mean, coefficient of variation (CV; CV = 100* 
(σ / µ)), phenotypic variance (σ2p), and the heritability (h2; h2 = σ2A / σ2A + σ2E) with the 
respective standard error in parentheses.    
2 Fat and protein corrected milk (FPCM) was calculated as FPCM = milk (in kg) * (0.337+ (0.116 
* fat percentage) + (0.06 * protein percentage)). 
 
Heritabilities of milk production traits ranged between 0.33 and 0.39 (s.e. = 0.07 - 
0.08). Heritabilities reported by Mulder et al. (2004) were comparable to those in  
this study, whereas heritabilities reported by Stoop et al. (2007) were slightly higher. 
Mulder et al. (2004) found lower heritabilities for AMS compared to conventional 
milking systems. The heritabilities reported by Stoop et al. (2007) were recorded in 
conventional milking systems and this might explain the higher heritabilities found 
by Stoop et al. (2007) compared to our study. Furthermore, both Mulder et al. (2004) 
and Stoop et al. (2007) used data of first parity cows whereas in our study cows of 
multiple parities were included. This might impact the heritabilities estimated, 
though the heritabilities in the current study were in line with literature. 
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4.3.3 Correlations among milk MIR predicted CH4 phenotypes and 
between milk MIR predicted and sensor measured phenotypes 
The correlations among the milk MIR predicted CH4 phenotypes and between milk 
MIR predicted and sensor measured phenotypes are presented in Table 4.2. The 
correlations among milk MIR predicted CH4 phenotypes showed that on the one 
hand CH4 production and CH4 yield were highly correlated (rp = 0.73; rg = 0.63). CH4 
intensity, on the other hand, showed weak correlations with CH4 production and CH4 
yield. These correlations among milk MIR predicted CH4 phenotypes show that CH4 

production and CH4 yield are related, whereas CH4 intensity is a different trait than 
CH4 production and yield. Direct relationships between the three milk MIR predicted 
CH4 phenotypes have not been explored before. In beef and dairy cattle, correlation 
between the three CH4 phenotypes measured in climate respiration chambers (CRC) 
or with sensors in AMS were found to be ranging between 0.07 and 0.96 (Donoghue 
et al., 2016; Lassen and Løvendahl, 2016;  De Haas et al., 2017). Our correlations are 
in range of these correlations, but the distinction between CH4 intensity versus CH4 
production and CH4 yield has not been reported in literature.  
Phenotypic correlations between milk MIR predicted CH4 phenotypes and sensor 
measured phenotypes were weak, and range between 0.03 and 0.16 (s.e. = 0.03). 
Genetic correlations had large standard errors (0.27 – 0.87), especially the 
correlations with mRatiolog (0.55 – 0.87). The large s.e. were likely due to the 
relatively small datasets that were used in this study for estimation of phenotypic 
and genetic correlations. The two datasets used for the correlations ranged between 
1,302 and 1,097 observations and cows. Therefore, the main focus of our study is on 
the phenotypic correlations instead of the genetic correlations.  
Genetic correlations of CH4 intensity with mCH4log and mCO2log were stronger than 
correlations of CH4 production and CH4 yield. Correlations between milk MIR 
predicted CH4 phenotypes and sensor measured phenotypes have not been reported 
before. The results from the current study suggest that sensor measured phenotypes 
are weakly correlated to milk MIR predicted CH4 phenotypes. 
 
4.3.4 Correlations between CH4 phenotypes and milk production 
traits 
The correlations between the two types of CH4 phenotypes and the milk production 
traits are presented in Table 4.2. Genetic correlations estimated in this study had 
large s.e. (0.11 - 0.48) and were, therefore, mostly not significantly different from 
zero. For example, the genetic correlations of test-day milk yield with mCH4log and 
mRatiolog were high, though their large s.e. result in a large range of possible values 
of these correlations. To determine when genetic correlations differ significantly
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from the estimate, we used a log-Likelihood ratio test. Genetic correlations ranging 
from -0.1 to 1 did not differ significantly from our estimate (p-value = 0.95). This 
strongly indicates that these genetic correlations could change when analyses are 
conducted on larger datasets.  
Most of the phenotypic correlations between milk MIR predicted CH4 phenotypes 
and milk production traits were not significantly different from zero. Nine out of the 
12 correlations were weak, with correlations ranging between -0.20 and 0.15 (s.e. = 
0.02 – 0.03). Moderate to strong correlations were found for both CH4 production 
and CH4 yield with fat percentage (r = 0.30 and 0.70, respectively), and between CH4 
intensity and protein percentage (r = 0.51). The phenotypic correlations between 
sensor measured phenotypes and milk production traits were mostly not 
significantly different from zero and weak, ranging between -0.17 and 0.22 (s.e. = 
0.03). The weak correlations between CH4 phenotypes and production traits suggest 
that both types of CH4 phenotypes contain new information that is not already 
captured by routinely collected milk production traits. 
Correlations between CH4 phenotypes and milk production traits have been reported 
in literature and vary between studies (Garnsworthy et al., 2012; Moraes et al., 2014; 
Van Lingen et al., 2014). Milk yield was found to be significantly correlated with CH4 
emission measured with sensors in AMS (Garnsworthy et al., 2012a, b). Fat 
percentage was found to be a key explanatory variable for CH4 emission in lactating 
dairy cows by Moraes et al. (2014). In the study of Van Lingen and colleagues, 
however, fat yield was not included in the prediction equations for CH4 yield and CH4 
intensity (van Lingen et al., 2014). Moreover, the review by Negussie et al. (2017) 
reported that the relationships between CH4 emission on the one hand and milk 
production and major milk components on the other hand vary substantially over 
the different studies. 
 
4.3.5 Variation in methane emission explained by milk yield and fat, 
protein, and lactose percentages  
The amount of variation in the two types of CH4 phenotypes that is explained by milk 
yield and the percentages of fat, protein, and lactose is presented in Table 4.3. These 
milk production traits represent information that is currently available from all cows 
that participate in the MPR. The variation that is not explained by these production 
traits (1-R2) is indicative for the additional information provided by the CH4 
phenotypes. The amount of variation explained by the milk production traits was 
moderate for CH4 yield and CH4 intensity (R2 = 0.45 and 0.63, respectively), whereas 
the R2 for CH4 production and sensor measured phenotypes were low (0.01 – 0.13).  
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This demonstrates that currently available information on milk yield and 
composition does not explain the variation in sensor measured CH4 production and 
sensor measured phenotypes, but does explains part of the variation in CH4 yield and 
CH4 intensity. As stated above, milk yield and composition are correlated with CH4 
emission, but correlations vary between different studies. Furthermore, the amount 
of variation in CH4 emission explained by milk yield and composition was found to be 
limited (Negussie et al., 2017). The higher R2 of milk MIR predicted CH4 phenotypes 
compared to sensor measured phenotypes might reflect the relationship between 
milk yield and composition and milk predicted CH4 emission. Milk yield and 
composition are used to predict this CH4 phenotype. The results of the current study 
and literature show that the CH4 phenotypes contain new information that is not yet 
captured by existing information on milk yield and major milk components. 
 
Table 4.3 Predicted methane (CH4) phenotypes based on 1,302 milk mid-infrared (MIR) 
spectra of 1,302 Dutch dairy cows and phenotypes measured with sensors in automatic 
milking systems (AMS) for 1,225 cows, as predicted with complete test-day milk yield, and 
percentages of fat, protein, and lactose (1,097 observations). Milk MIR predicted CH4 

phenotypes are expressed as grams of CH4 per day (CH4 production), grams of CH4 per kg of 
dry matter intake (CH4 yield), and grams of CH4 per kg of fat and protein corrected milk (CH4 
intensity). The sensor measured phenotypes are the mean CH4 concentration of multiple AMS 
visits (mCH4log), the mean CO2 concentration (mCO2log), and the mean CH4 concentration 
divided by the mean CO2 concentration (mRatiolog) 1,2,3   
 

Methane phenotypes R2 
Milk MIR predicted CH4 phenotypes  

CH4 production 0.13 
CH4 yield 0.45 
CH4 intensity 0.63 

Sensor measured phenotypes  
mCH4log 0.02 
mCO2log 0.05 
mRatiolog 0.01 

1Coefficient of determination (R2) as determined via the least squares method of the PROC 
GLM procedure in SAS 9.3.    
2 Fat and protein corrected milk (FPCM) was calculated as FPCM = milk (in kg) * (0.337+ (0.116 
* fat percentage) + (0.06 * protein percentage)). 
3 Sensor measured phenotypes were log10-transformed. 
 
4.3.6 Milk MIR predicted CH4 phenotypes versus sensor measured 
phenotypes  
The two types of CH4 phenotypes used in this study are proxies of true CH4 emission 
and have low correlations with each other. The golden standard to determine CH4 
emission by dairy cows is the CRC. Sensor measured CH4 had a R2 with CH4 measured 
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in CRC of 0.25 for 20 Dutch dairy cows (Van Engelen et al., Accepted). Milk MIR 
predicted CH4 phenotypes had a R2cv with CH4 measured in CRC between 0.19 and 
0.49 for 218 Dutch dairy cows (Van Gastelen et al., Wageningen University & 
Research, Wageningen, personal communication). The low correlations found 
between both types of CH4 phenotypes might be because of these modest R2 of both 
types of phenotypes with CH4 measured in CRC. The higher the R2 of the two types 
of CH4 phenotypes with CRC CH4, the higher the correlation between the two types 
of phenotypes will be. The R2 of both types of CH4 phenotypes with CRC CH4 is 
expected to be lower in practice, where conditions are more variable than in CRC.  
The low correlations between sensor measured phenotypes and milk MIR predicted 
CH4 phenotypes indicate that each type of CH4 phenotype provides independent 
information on true CH4 emission. In addition, both types of CH4 phenotypes have 
their own advantages and disadvantages. Sensor measured phenotypes are a direct 
method for measuring CH4 emission in the expelled air of dairy cows. They are, 
however, influenced by the environmental factors in the barn and the behavior of 
the cow during sensor measurements (Lassen et al., 2012). For example, selecting 
for cows with low CH4 emission based on sensor measurements in AMS could lead 
to selection of cows that are more restless instead of truly low-emitting (Lassen et 
al., 2012, Hammond et al., 2016). Milk MIR CH4 prediction equations are easy to 
apply to the milk MIR spectra that are currently routinely collected for MPR. The 
performance of MIR spectra to predict CH4 is limited as important components in the 
milk for prediction of CH4 (like low concentration fatty acids) cannot be detected by 
MIR (van Gastelen and Dijkstra, 2016). Combining the information from the two 
types of CH4 phenotypes could be a useful next step, as suggested by Negussie et al. 
(2017). Combining proxies could overcome some of their shortcomings and is useful 
when proxies contain information that is independent of each other (Negussie et al., 
2017).  
 
4.4 Conclusions 
 
Methane emission phenotypes predicted via milk MIR spectra are heritable and 
weakly correlated with CH4 measured via sensors in AMS. This low correlation 
indicates that both types of CH4 phenotypes are independent information sources 
on CH4 emission. Combining the information from the two types of CH4 phenotypes 
could be a useful next step. Milk MIR predicted CH4 phenotypes and sensor 
measured phenotypes contain information that is not fully captured by currently 
available information on milk yield and composition.  
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Abstract 
 
Dairy cows produce methane (CH4), a greenhouse gas that is 28 times more harmful 
than carbon dioxide. The heritable variation in CH4 provides opportunities in 
breeding for lower CH4 emission by dairy cows. Inclusion of CH4 emission into the 
breeding goal for dairy cows in order to reduce CH4 emission could affect selection 
response of other breeding goal traits. The aim of this study was to estimate the 
correlations between CH4 emission indicators and test-day production and fertility 
traits. CH4 emission was either measured with breath sensors in automatic milking 
systems or predicted based on milk mid-infrared spectra. Most genetic correlations 
between CH4 emission and test-day production traits and fertility traits were either 
weak or moderate. Moderate correlations were found between sensor measured 
CH4 phenotypes and the yields of milk, fat, protein, and lactose. Furthermore, 
moderate correlations between milk MIR predicted CH4 phenotypes and 
percentages of fat and lactose were found. Correlations with somatic cell score, urea, 
and fertility traits were weak. Selective breeding for lower CH4 emission might result 
in a change in milk composition when selecting for reduced CH4 emission, but the 
change is expected to be small. 
 
Key words: methane emission, dairy cow, milk production trait, fertility trait   
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5.1 Introduction 
 
Agriculture contributes significantly to greenhouse gas emissions, and enteric 
production of methane (CH4) by ruminants is the single largest source of agricultural 
emissions (FAO, 2014;IPCC, 2014). Methane has a global warming potential that is 
28 times that of carbon dioxide (CO2) on a time span of 100 years (IPCC, 2014). 
Lactating dairy cows on a roughage based diet emit 300 to 400 grams of CH4 per day 
(Dijkstra et al., 2016; Van Gastelen et al., 2017). Moreover, the dairy industry is 
responsible for 2.9 % of the total anthropogenic greenhouse gas emissions 
worldwide (Gerber et al., 2013). A reduction of greenhouse gas emissions by dairy 
cows is therefore necessary. 
The heritable variation in CH4 emission provides opportunities to breed for lower CH4 
emission in dairy cows (Lassen and Løvendahl, 2016; Van Engelen et al., Accepted, 
Submitted). Incorporating CH4 emission into the breeding goal, however, could result 
in unfavourable responses in other breeding goal traits. Therefore, the relationship 
between CH4 emission and other breeding goal traits needs to be studied. Although 
CH4 emission is not part of the current breeding goal, CH4 emission did change as a 
correlated response to current breeding strategies. The CH4 emission per dairy cow 
per year was 17% higher in 2008 as compared with 1990. Methane emission per kg 
of fat and protein corrected milk (FPCM) over the same period decreased with 13%, 
because FPCM per day increased with 5.7 kg (Bannink et al. 2011; Van Middelaar et 
al. 2014). 
The aim of this study was to estimate correlations between CH4 emission and test-
day production and fertility traits. Data on CH4 emission measured with sensors in 
automatic milking systems (AMS) and predicted via milk mid- infrared (MIR) spectra 
were available on more than 1,300 cows. On these cows and cows related to these 
cows had information available on test-day milk production traits, including somatic 
cell score and urea, and fertility traits. Phenotypic and genetic correlations between 
CH4 emission and test-day milk production parameters, and genetic correlations 
between CH4 emission and fertility parameters were estimated.   
 
5.2 Material and Methods 
 
5.2.1 Data 
Data on methane (CH4) measured with breath sensors in automatic milking systems 
(AMS) on 1,508 dairy cows from 11 commercial dairy farms were available. Most of 
these cows (1,302) also had data available on milk production recording (MPR) which 
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were used to determine milk mid-infrared (MIR) predicted CH4 emission. In addition 
to these data, cows with CH4 emission, their sires and dams, and offspring of these 
sires and dams had information on test-day production and fertility traits available. 
Test-day and fertility data were made available by cooperative cattle improvement 
organisation CRV (Arnhem, the Netherlands). Test-day production data consisted of 
nearly 1.6 million records on more than 113,000 dairy cows and fertility data of 
approximately 250,000 records on more than 117,000 dairy cows. Detailed 
description on the data available is given below.  
 
5.2.1.1 Sensor measured CH4 data 
Sensor measured CH4 data contained measurements of CH4 and carbon dioxide (CO2) 
measured with non-dispersive infrared sensors in AMS. Detailed description of the 
data is given by Van Engelen et al. (accepted). In short, sensors were installed on 11 
commercial Dutch dairy farms and CH4 and CO2 measurements were taken twice per 
second during automatic milking. These measurements were summarized per AMS 
visit, resulting in three sensor phenotypes: mean of CH4 (CH4mean), mean of CO2 
(CO2mean), and mean of the ratio between CH4 and CO2 (Ratiomean). As the 
residuals of these three phenotypes were not normally distributed, a log10-
transformation was applied to these phenotypes, resulting in CH4log 
(log10(CH4mean)), CO2log (log10(CO2mean)), and Ratiolog (log10(Ratiomean)). Data on 
123,369 AMS visits from November 2013 till March 2016 with sensor measured CH4 
phenotypes from 1,508 dairy cows were available.  
 
5.2.1.2 Milk MIR predicted CH4 data 
Detailed description of the milk MIR predicted CH4 data is given in Van Engelen et al. 
(submitted). In short, milk samples were collected during MPR of all lactating cows 
on the same 11 dairy farms that are part of the sensor measured dataset. These milk 
samples were collected while the sensors were installed on the farms and were 
analysed by Qlip B.V. (Zutphen, the Netherlands) with MIR exactly like regular MPR 
samples. Three prediction equations were developed by Van Gastelen et al. (2017) 
and applied to the MIR spectra to create three CH4 phenotypes: CH4 production (in 
g/day), CH4 yield (in g/kg dry matter intake (DMI)), and CH4 intensity (in g/kg FPCM). 
The milk MIR predicted CH4 dataset consisted of 1,302 observations of milk MIR 
predicted CH4 phenotypes for 1,302 cows.  
 
5.2.1.3 Test-day production data 
Test-day production data consisted of nine milk production traits per observation, 
resulting in nearly 1.6 million observations on more than 113,000 dairy cows. Part of 
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these cows also had sensor measured and milk MIR predicted CH4. The multiple test-
day observations per cow could be of the same parity as well as from different 
parities. The test-day milk production traits were milk yield, somatic cell count, urea, 
and the percentages of fat, protein, and lactose. Yields of fat, protein, and lactose 
were calculated by taking their respective percentages and multiplying those with 
milk yield. Somatic cell count was transformed to a somatic cell score (SCS): 
 
SCS =1000 + 100*(log2(somatic cell count/1000)). 
 
5.2.1.4 Fertility data 
Fertility data consisted of four fertility traits per lactation during the first three 
lactations on more than 117,000 dairy cows. Part of these cows also had sensor 
measured and milk MIR predicted CH4. Not all cows had all four fertility traits for all 
three lactations. The four fertility parameters used in the current study were number 
of inseminations, non-return at 56 days, interval between calving and first 
insemination, and calving interval.  
 
5.2.2 Data editing 
Editing of sensor measured CH4 data and milk MIR predicted CH4 data has been 
described by Van Engelen et al. (Accepted, Submitted). For each of the test-day 
production and fertility traits extreme values were identified. Extreme values were 
defined as those outside the range mean ± 4*standard deviation and these were set 
to missing. Observations that contained only missing values were removed from the 
datasets. Farms with less than 30 cows were removed from the datasets for test-day 
production and fertility traits. The number of observations per trait after editing is 
presented in Table 5.1.  
 
5.2.3 Sensor measured CH4 data – production and fertility traits 
The test-day milk production and fertility datasets were combined with sensor 
measured CH4 data to calculate correlations between these traits and sensor 
measured CH4 emission. Sensor measured CH4 observations were combined with 
test-day milk production observations of the same parity. For each sensor CH4 
observation, the test-day production observation closest to the sensor CH4 
observation was selected by calculating the difference in days between the 
observations. When a specific test-day production observation was linked to 
multiple sensor CH4 observations, only the test-day production observation with the 
smallest difference in days was kept and the others were set to missing. The time 
between the test-day production observations and the sensor CH4 observations was 
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on average 1.38 days (range: -119 to 105 days). Sensor measured CH4 observations 
were combined with fertility observations of only the first parity. First parity data 
was chosen because most observations were available for the first parity and first 
parity data were not influenced by selection of cows from the first to the second 
lactation. The fertility observation of a cow was linked to one of the observations of 
sensor measured CH4 emission of that cow.  
Sensor measured CH4 data were now combined into two datasets: one combined 
with test-day production data and one combined with fertility data. These two 
combined datasets each consisted of 123,369 observations on 1,508 cows, because 
sensor measured CH4 observations without production or fertility traits were kept in 
the datasets. Production or fertility traits that were not available in these combined 
datasets were set to missing.  
 
5.2.4 Milk MIR predicted CH4 data – production and fertility traits 
The test-day production and fertility datasets were combined with milk MIR 
predicted CH4 data to calculate correlations between these traits and milk MIR 
predicted CH4 emission. The milk MIR predicted CH4 observations were combined 
with the test-day production observations of the same MPR. The single milk MIR 
predicted CH4 observation per cow was combined with fertility observation of the 
first parity of that cow. These two combined datasets each consisted of 1,302 
observations on 1,302 cows, because milk MIR predicted CH4 observations without 
production or fertility traits were kept in the datasets. Production or fertility traits 
that were not available in these combined datasets were set to missing. 
 
5.2.5 Data analysis 
Models used for analysis of sensor measured CH4 and milk MIR predicted CH4 data 
were the models used previously (Van Engelen et al., accepted, submitted). Variance 
components of test-day milk production and fertility traits and their correlations 
with sensor measured CH4 phenotypes and milk MIR predicted CH4 phenotypes were 
estimated with ASReml 4.1 (Gilmour et al., 2015).  
 
5.2.5.1 Test-day production traits 
Variance components of test-day milk production traits were estimated on a dataset 
with 1,561,597 observations of 112,398 cows using the following model: 
 
Yijklmno = mu + UBNi + Parcatj + Lactationweekk + Yearl + Seasonm + Permanentn + 
Animalo + eijklmno  (model 1) 
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where Yijklmno is the dependent variable; mu is the mean of the dataset; UBNi is the 
fixed effect of farm at first parity (728 levels); Parcatj is the fixed effect of category 
of parity (3 levels; parity 1, 2, and 3 or higher); Lactationweekk is the fixed effect of 
week of lactation (60 levels); Yearl is the fixed effect of year of calving (7 levels; 2010 
- 2016); Seasonm is the fixed effect of season of calving (4 levels; December – 
February, March – May, June – August, and September - November); Permanentn is 
the random permanent environmental effect of animal (~ N (0, Iσ2PE)) with incidence 
matrix I and phenotypic variance σ2PE; Animalo is the random additive genetic effect 
of animal (~ N (0, Aσ2A)) with additive genetic relationship matrix A and additive 
genetic variance σ2A (the pedigree contained 411,864 animals); and eijklmno is the 
random error effect (~ N(0, Iσ2E)) with incidence matrix I and residual variance σ2E. 
 
5.2.5.2 Fertility traits 
Variance components of the fertility traits were estimated on a dataset with 239,812 
observations of 109,496 cows using the following model: 
 
Yijklmn = mu + UBNi + Parityj + Yeark + Seasonl + Permanentm + Animaln + eijklmn 

 (model 2) 
 
where Yijklmn is the dependent variable; mu is the mean of the dataset; UBNi is the 
fixed effect of farm at first parity (731 levels); Parityj is the fixed effect of parity (3 
levels; parity 1, 2 and 3); Yeark is the fixed effect of year of calving (10 levels; before 
2007, 2007 - 2014, after 2014); Seasonl is the fixed effect of season of calving (4 
levels; December – February, March – May, June – August, and September - 
November); Permanentm is the random permanent environmental effect of animal 
(~ N (0, Iσ2PE)) with incidence matrix I and phenotypic variance σ2PE; Animaln is the 
random additive genetic effect of animal (~ N (0, Aσ2A)) with additive genetic 
relationship matrix A and additive genetic variance σ2A (the pedigree contained 
411,864 animals); and eijklmn is the random error effect (~ N(0, Iσ2E)) with incidence 
matrix I and residual variance σ2E. 
 
5.2.5.3 Genetic parameters 
Repeatabilities of the test-day production and fertility traits were calculated as 
follows: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝜎𝜎𝐴𝐴2  +  𝜎𝜎𝑃𝑃𝑃𝑃2

𝜎𝜎𝐴𝐴2 +  𝜎𝜎𝑃𝑃𝑃𝑃2  +  𝜎𝜎𝑃𝑃2
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where σ2A is the additive genetic variance,  σ2PE is the permanent environmental 
variance, and σ2E is the residual variation. The heritabilities (h2) of the test-day 
production and fertility traits were as follows: 
 

ℎ2 =  
𝜎𝜎𝐴𝐴2

𝜎𝜎𝐴𝐴2 +  𝜎𝜎𝑃𝑃𝑃𝑃2  +  𝜎𝜎𝑃𝑃2
 

 
where σ2A is the additive genetic variance, σ2PE is the permanent environmental 
variance, and σ2E is the residual variation.  
 
5.2.5.4 Correlations of CH4 phenotypes with production and fertility traits 
Bivariate analyses were used to calculate the correlations of, on the one hand, sensor 
measured CH4 phenotypes and milk MIR predicted CH4 phenotypes, and, on the 
other hand, test-day milk production and fertility traits. Fixed effects for test-day 
milk production were the same as in model 1 and for fertility traits the same as in 
model 2. The permanent environmental effect was removed from these two models 
for the bivariate analyses. Fixed effects for sensor measured CH4 phenotypes were 
farm of measurement (11 levels) and week of lactation (59 levels). Fixed effects for 
milk MIR predicted CH4 phenotypes were week of lactation (60 levels) and MPR (17 
levels).  
Phenotypic correlations (rp) of sensor measured CH4 phenotypes and milk MIR 
predicted CH4 phenotypes with test-day milk production traits were calculated. 
Phenotypic correlations with fertility traits were not calculated as phenotypic 
correlations require observations taken at the same time and this was not the case 
for fertility traits. The rP were calculated as follows: 
 

𝑟𝑟𝑝𝑝 =  
𝜎𝜎𝑃𝑃1,𝑃𝑃2

�(𝜎𝜎𝑃𝑃12 ∗  𝜎𝜎𝑃𝑃22 )
 

 
where σP1,P2 is the phenotypic covariance between trait 1 and trait 2, and σ2P1 and 
σ2P2 are the phenotypic variances of trait 1 and 2. The genetic correlations (rA) of CH4 

phenotypes (sensor measured and milk MIR predicted) with test-day milk production 
and fertility traits were calculated as follows: 
 

𝑟𝑟𝐴𝐴 =  
𝜎𝜎𝐴𝐴1,𝐴𝐴2

�(𝜎𝜎𝐴𝐴12 ∗  𝜎𝜎𝐴𝐴22 )
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where σA1,A2 is the genetic covariance between trait 1 and trait 2, and σ2A1 and σ2A2 
are the genetic variances of trait 1 and 2. 
 
5.3 Results 
 
5.3.1 Repeatabilities and heritabilities 
The repeatabilities and heritabilities of the test-day milk production and fertility 
traits are presented in Table 5.1. Repeatabilities for milk production traits ranged 
between 0.18 and 0.52, and were higher than repeatabilities of fertility traits, which 
ranged between 0.04 and 0.17. The standard errors (s.e.) of the repeatabilities were 
small (0.001 - 0.004). Like the repeatabilities, heritabilities for test-day milk 
production traits were higher ranging between 0.10 and 0.43 than heritabilities for 
fertility heritabilities ranging between 0.02 and 0.09. The s.e. of the heritabilities 
were also low (0.002 - 0.007).  
 
Table 5.1 Descriptive statistics and genetic parameters of test-day milk production and fertility 
traits1,2 

 
Traits N Mean SD Repeatability Heritability 
Test-day production traits      
Milk yield (kg) 1,561,011 28.9 9.4 0.42 (0.002) 0.18 (0.005) 
Fat percentage 1,545,020 4.43 0.71 0.52 (0.002) 0.43 (0.005) 
Fat yield (kg) 1,545,459 1.25 0.37 0.34 (0.002) 0.14 (0.004) 
Protein percentage 1,544,059 3.63 0.40 0.52 (0.002) 0.42 (0.005) 
Protein yield (kg) 1,546,685 1.03 0.29 0.39 (0.002) 0.12 (0.005) 
Lactose percentage 1,541,066 4.54 0.19 0.50 (0.002) 0.37 (0.005) 
Lactose yield (kg) 1,546,603 1.32 0.44 0.41 (0.002) 0.17 (0.005) 
Somatic cell score 1,540,937 1,605 177 0.37 (0.002) 0.10 (0.004) 
Urea (mg/100 g milk) 1,484,254 22.0 5.9 0.18 (0.001) 0.13 (0.003) 
Fertility traits      
Number of inseminations 235,248 2.0 1.4 0.08 (0.003) 0.02 (0.003) 
Non return at 56 days 203,921 57.9 49.4 0.04 (0.003) 0.02 (0.002) 
Calf insemination interval 
(days) 

217,576 81.9 30.5 0.17 (0.003) 0.09 (0.006) 

Between calf interval (days) 155,219 400.8 61.7 0.17 (0.004) 0.07 (0.007) 
1 Descriptive statistics shown in this table are number of observations (N), mean, standard 
deviation (SD) of each trait. 
2 Genetic parameters shown in this table are repeatability calculated as (σ2A + σ2PE )/ (σ2A + σ2PE 

+ σ2E) and heritability (h2) calculated as σ2A / (σ2A + σ2PE + σ2E) with the respective standard 
error in parentheses.    
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5.3.2 Phenotypic correlations between methane phenotypes and test-
day production traits 
The phenotypic correlations (rp) between CH4 phenotypes (sensor measured and 
milk MIR predicted) and test-day production traits are presented in table 5.2. Most 
of these correlations were weak, with some exceptions. Correlations of test-day milk 
production traits with sensor measured CH4 phenotypes were weak, ranging 
between -0.06 and 0.10 (s.e. = 0.01 – 0.04). Correlations of test-day milk production 
traits with milk MIR predicted CH4 phenotypes were also weak to moderate (rp = -
0.34 – 0.64, s.e. = 0.02 – 0.03). Correlations between CH4 phenotypes and SCS and 
urea were, thus, also weak. The strongest correlations were found between CH4 yield 
and fat percentage (rp = 0.64), CH4 intensity and fat yield (rp =-0.34), and CH4 intensity 
and protein percentage (rp = 0.52).   
 
5.3.3 Genetic correlations of methane phenotypes with test-day 
production and fertility traits  
The genetic correlations (rA) of CH4 phenotypes (sensor measured and milk MIR 
predicted) with test-day production and fertility traits are presented in Table 5.3. 
Genetic correlations of sensor measured CH4 phenotypes and milk MIR predicted 
CH4 emission with test-day production traits were weak to moderate (rg = -0.47 – 
0.65, s.e. = 0.06 – 0.45). Correlations of CH4 phenotypes with SCS ranged between -
0.61 and -0.04 (s.e. = 0.06 – 0.38) and correlations with urea ranged between -0.12 
and 0.44 (s.e. = 0.08 – 0.53). Correlations with sensor measured CH4 phenotypes 
outside the range of -0.30 to 0.30 with s.e. lower than 0.20 were found for CH4log 
and Ratiolog with milk yield (rA = 0.32 and 0.51), for CH4log and Ratiolog with fat yield 
(rA = 0.37 and 0.65), for CH4log and Ratiolog with protein yield (rA = 0.34 and 0.53), 
and for CH4log and Ratiolog with lactose yield (rA = 0.32 and 0.53). Correlations with 
milk MIR predicted CH4 phenotypes outside the set range were found for CH4 yield 
with fat percentage (rA = 0.63), and for CH4 yield with lactose percentage (rA = 0.50).  
Genetic correlations between sensor measured CH4 phenotypes and fertility traits 
were weak to moderate ranging from -0.32 to 0.38 (s.e. = 0.12 – 0.68). Genetic 
correlations with milk MIR predicted CH4 phenotypes were not reported as their s.e. 
were large ranging between 0.25 and 17.73. Genetic correlation between sensor CH4 
phenotypes and fertility traits outside the range of -0.30 to 0.30 with s.e. lower than 
0.20 was found for Ratiolog with calf-insemination interval (rA = 0.38). 
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Table 5.3 Genetic correlations (w
ith their standard errors in parentheses) betw

een test-day production and fertility traits, on the one hand, and 
m

ethane (CH
4 ) em

ission m
easured w

ith sensors in autom
atic m

ilking system
s and CH

4  em
ission predicted w

ith m
ilk m

id-infrared (M
IR), on the other 

hand 1  
  1 Genetic correlations w

ere calculated  as σ
2A1,A2  / √(σ

2A1  * σ
2A2 ) w

ith their respective standard error in parentheses. 
2 Sensor m

easured CH
4  em

issions are log
10 -transform

ed. 
3 U

nits of m
ilk M

IR predicted CH
4  phenotypes are gram

s per day (CH
4  production), gram

s per kg of dry m
atter intake (CH

4  yield), and gram
s per kg 

of fat- and protein corrected m
ilk (CH

4  intensity). 
4 U

nits are days. 
  

Sensor m
easured CH

4  em
ission

2 
M

ilk M
IR predicted CH

4  em
ission

3 

 
CH

4 log 
CO

2 log 
Ratiolog 

CH
4  production 

CH
4  yield 

CH
4  intensity 

Test-day production traits 
 

 
 

 
 

 
M

ilk yield (kg) 
0.32 (0.06)  

0.19 (0.06)  
0.51 (0.08)  

-0.24 (0.30)  
-0.47 (0.24)  

0.24 (0.31)  
Fat percentage 

-0.05 (0.06)  
-0.06 (0.06)  

-0.01 (0.08)  
0.27 (0.20)  

0.63 (0.11)  
-0.02 (0.29)  

Fat yield (kg) 
0.37 (0.07)  

0.18 (0.07)  
0.65 (0.07)  

0.01 (0.37)  
0.27 (0.29)  

0.27 (0.45)  
Protein percentage 

-0.06 (0.06)  
0.00 (0.06)  

-0.23 (0.08)  
-0.21 (0.21)  

0.10 (0.19)  
0.05 (0.27)  

Protein yield (kg) 
0.34 (0.06)  

0.20 (0.06)  
0.53 (0.08)  

-0.42 (0.32)  
-0.36 (0.26)  

0.15 (0.36)  
Lactose percentage 

0.06 (0.06)  
0.00 (0.06)  

-0.04 (0.19)  
0.36 (0.22)  

0.50 (0.19)  
0.04 (0.29)  

Lactose yield (kg) 
0.32 (0.06)  

0.18 (0.06)  
0.53 (0.08)  

-0.15 (0.30)  
-0.33 (0.25)  

0.21 (0.32)  
Som

atic cell score 
-0.12 (0.06)  

-0.04 (0.06)  
-0.28 (0.08)  

-0.06 (0.36)  
-0.12 (0.32)  

-0.61 (0.38)  
U

rea (m
g/100 g m

ilk) 
0.10 (0.08)  

0.00 (0.08)  
-0.12 (0.32)  

0.30 (0.40)  
0.44 (0.36)  

0.08 (0.53)  
Fertility traits 

 
 

 
 

 
 

N
um

ber of insem
inations 

-0.04 (0.20)  
0.00 (0.19)  

-0.12 (0.24)  
- 

- 
- 

N
on return at 56 days 

-0.19 (0.38)  
-0.32 (0.45)  

-0.08 (0.68)  
- 

- 
- 

Calf insem
ination interval 4 

0.02 (0.12)  
-0.12 (0.12)  

0.38 (0.15)  
- 

- 
- 

Betw
een calf interval 4 

0.09 (0.16)  
0.03 (0.16)  

-0.03 (0.40)  
- 

- 
- 
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5.4 Discussion 
 
5.4.1 Repeatability and heritability 
To our knowledge, repeatabilities of the production and fertility traits have not been 
reported in literature, but their heritabilities have been reported (Stoop et al., 
2008;CRV, 2015a;b). The production traits showed lower heritabilities for yields than 
for percentages. Furthermore, these heritabilities were lower than reported in 
literature and this might be explained by the fact that farm was added to the model 
as fixed and not as random. In the study of Stoop et al. (2008), herd was found to 
explain substantial variation in milk production traits. The found difference in 
heritabilities between yields and percentages are in line with literature (Stoop et al., 
2008;CRV, 2015a). Fertility traits were reported to have in general lower 
heritabilities compared to the production traits. The heritabilities for fertility traits 
in our study ranged between 0.02 and 0.09, and are in line with the range of 
heritabilities of 0.016 to 0.099 reported in literature (CRV, 2015b). Agreement with 
literature indicates that the datasets used for this study were a good representation 
of the Dutch dairy population. 
 
5.4.2 Phenotypic and genetic correlations between methane 
phenotypes and test-day production traits 
The phenotypic correlations between CH4 phenotypes and test-day production traits 
were weaker than the genetic correlations estimated in this study. Weaker 
phenotypic correlations compared to genetic correlations were also found by Kandel 
et al. (2017) for milk MIR predicted CH4 emission and milk, fat and protein yield. The 
phenotypic correlations had smaller s.e. (0.01 – 0.04) than the genetic correlations 
(0.06 – 0.53). These large standard errors of genetic correlations are due to the 
relatively small datasets for CH4 phenotypes that were used to estimate these 
correlations on.  
Phenotypic correlations of CH4 phenotypes with fertility traits were not estimated in 
this study. Phenotypic correlations require that observations on both phenotypes 
are taken close in time. Methane phenotypes can be linked to a short time-span of 
several days whereas fertility traits cannot as they occur over a longer time period. 
For example, calving interval describes the fertility of a cow over a long period of 
time and, thus, cannot be linked to 1 CH4 phenotype.  
A relationship between CH4 emission and milk yield is anticipated. Cows that produce 
more milk are expected to have a higher feed intake, and a higher feed intake is 
expected to result in a higher CH4 production. Production of CH4 occurs namely 
during feed fermentation in the rumen and feed intake could, thus, be used to 



5 Relationship methane, production, and fertility 

 
 

86 
 

predict CH4 emission (De Haas et al., 2011). In our study, the genetic correlations 
between CH4 emission and milk yield were positive for sensor measured CH4 
emission, and both positive and negative for milk MIR predicted CH4 emission. The 
correlations between sensor measured CH4 emission and milk yield are in line with 
the hypothesis that higher milk yield results in a higher CH4 emission. The negative 
genetic correlations with milk yield were with CH4 production and CH4 yield.  
Neither correlation between milk yield and CH4 phenotypes was strong positive or 
negative. Milk yield has been used to predict CH4 emission, though the predictive 
power of milk yield was low (Ellis et al., 2010). Milk yield was also not part of the CH4 
prediction equations for CH4 yield or CH4 intensity reported by Van Lingen et al. 
(2014). These studies are based on feeding trials and indicate that the expected 
relationship between CH4 emission and milk yield is positive, but might not be very 
strong. The strength of this relationship might be weaker as in feeding trials cows are 
feed restricted. Most genetic correlations reported in this study, however, follow this 
line as neither is strong positive or negative.  
Moreover, the phenotype used for CH4 emission influences the relationship between 
milk yield and CH4 phenotypes. CH4 production is indeed expected to increase when 
milk yield increases, but CH4 yield and CH4 intensity are expected to decrease. Cows 
with higher milk yield are expected to not only have a higher feed intake, but also to 
be more efficient. High-productive cows are, thus, expected to need a smaller part 
of their daily intake for maintenance (Yan et al., 2010). Therefore, CH4 emission per 
day is expected to increase, but CH4 per kg of fat and protein corrected milk is 
expected to decrease. Furthermore, a higher intake could lead to a shorter rumen 
retention time which could lead to a lower CH4 production per unit of feed (Hegarty, 
2004). 
Genetic correlations of milk yield with milk MIR predicted CH4 production were 
reported by Kandel et al. (2017). The genetic correlation between CH4 production 
and milk yield was -0.19 and between log-transformed CH4 intensity and milk yield 
was -0.68. The correlation between CH4 production and milk yield was , like in our 
study, negative, and might be caused by the feeding regime applied by the farmers. 
In the study of Kandel, cows with a milk yield above 30 kg were fed higher amounts 
of concentrates, and these concentrates are known to result in less CH4 production 
compared to roughage. In our dataset high productive cows were fed more 
concentrates compared to their low productive herd mates. This feeding practice will 
result in lower CH4 production and, thus, an even lower CH4 intensity for high 
productive cows. This might explain the negative correlation between milk yield and 
CH4 production found in this study. Based on these results and on literature, there 
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are no indications that selective breeding for lower CH4 emission will have a large 
impact on milk production. 
The relationship between CH4 emission and major milk components might be 
influenced by milk yield. Cows that had a higher genetic merit for milk yield had lower 
percentages for milk fat and protein compared with cows with a lower genetic merit 
(Bobe et al., 2007). Yields of fat and protein, however, were higher for high merit 
cows compared with low merit cows (Bobe et al., 2007). In this study, genetic 
correlations of sensor measured and milk MIR predicted CH4 phenotypes with major 
milk components (fat, protein and lactose) were found to be weak to moderate. 
Sensor measured CH4 emission showed mostly negative correlations with 
percentage traits and positive correlations with yield traits, in line with the 
hypothesis. Milk MIR predicted CH4 emission did not show negative correlations with 
percentage traits and positive correlations with yield traits, though these 
correlations were mostly weak and had large standard errors.    
The relationships between CH4 emission and the major milk components fat and 
protein  reported in literature were different for the individual studies and different 
CH4 phenotypes (Lassen and Løvendahl, 2016;Kandel et al., 2017;Negussie et al., 
2017). Weak correlations of milk MIR predicted CH4 production with fat and protein 
yield were reported by Kandel et al. (2017). In the same study, moderately negative 
correlations between milk MIR predicted CH4 intensity (g/kg milk) with fat and 
protein yield were reported. Moderate to strong positive correlations of sensor 
measured CH4 phenotypes with fat and protein percentage were reported by Lassen 
and Løvendahl (2016). Some of the correlations reported in literature were in line 
with the hypothesis made in the previous paragraph whereas others were not in line. 
The hypothesis, however, is based on milk yield which is not strongly related to CH4 
emission in this study. Moreover, the review by Negussie et al. (2017) indicated that 
major milk components are a weak proxy for CH4 emission and, thus, the correlation 
between them is expected to be weak. Moderate correlations, however, were found 
in this study between milk MIR predicted CH4 yield and percentages of fat and 
lactose, and between sensor measured CH4 emission and yield traits (yields of fat, 
protein and lactose). Although neither correlation is strong, selection for reduced 
CH4 emission might result in a lower content of fat and lactose, or a lower yield for 
fat, protein, and lactose. 
 
5.4.3 Genetic correlations between CH4 emission and somatic cell 
score 
Somatic cell score is a health parameter that is used to determine the presence of 
mastitis in lactating dairy cows. Mastitis is known to be the most costly production 
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disease in cattle that is linked with treatment costs as well as a loss in milk yield 
(Veerkamp et al., 2012; Bell et al., 2013). Furthermore, cows with mastitis need to 
be replaced earlier than cows without mastitis (Cha et al., 2014), leading to a higher 
total CH4 production per herd. The correlations between SCS and CH4 emission found 
in this study were negative and weak to moderate.   
The relationship between CH4 emission and SCS has not been studied before and 
might be via milk yield. Cows with a high milk yield have a higher risk for clinical 
mastitis (Nielsen, 2009). However, the relationship between SCS and milk yield 
varied within and across lactations (Jamrozik et al., 2010). These studies suggest that 
the expected relationship between CH4 emission and SCS is weak. The relationship 
between CH4 emission and SCS found in this study was in line with this hypothesis. 
The negative correlations between CH4 emission and SCS suggest an unfavourable 
response in SCS when selecting on CH4 emission. As the correlations were not strong 
and had large standard errors, selective breeding for reduced CH4 emission is 
expected not to result in a higher SCS or higher incidence of mastitis. 
 
5.4.4 Genetic correlations between CH4 emission and urea 
The urea content of milk is influenced by the protein content of the feed and by feed 
intake (Spek et al., 2013) and might, thus, be correlated to CH4 emission. Increased 
DMI might be linked with a higher nitrogen consumption, leading to an increased 
milk urea content. Reduction of milk urea content is wanted as it is linked to 
ammonia emissions (Spek, 2013). To our knowledge, no studies have investigated 
the relationship between milk urea content and CH4 emission. In this study the 
correlations between urea and CH4 emission were found to be weak. The expectation 
is that selective breeding for lower CH4 emission will have no impact on milk urea 
content.    
 
5.4.5 Genetic correlations between CH4 emission and fertility 
The direct relationship between sensor measured CH4 phenotypes and fertility traits 
has not been studied before. From a biological point of view, fertility might be linked 
with CH4 emission via milk production and feed intake. Cows that have a high milk 
yield are also expected to have a higher feed intake and, thereby, produce more CH4. 
High-productive cows are also reported to have a lower fertility (Windig et al., 2006). 
Weak correlations between milk yield and fertility traits were found in literature with 
a positive correlation between number of inseminations and milk yield (Berry et al., 
2003). Furthermore, no relationship of CH4 yield and CH4 intensity with profitable 
lifetime index based on fertility traits was found (Dong et al., 2015). The correlations 
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found in literature are confirmed in this study with the weak correlations ranging 
between -0.32 and 0.38. These results indicate that selective breeding for lower CH4 
emission is, thus, not expected to reduce fertility of dairy cows.  
Genetic correlations between milk MIR predicted CH4 phenotypes and fertility traits 
could not be estimated accurately. The genetic correlations had large standard errors 
ranging between 0.25 and 17.71. The large standard errors are due to the relatively 
small dataset that was used to estimate these genetic correlations on and the large 
number of missing values in the fertility dataset (see Table 5.1). Therefore, we 
decided not to show these genetic correlations.  
 
5.4.6 Breeding for lower CH4 emission 
In this study we estimated the correlations between CH4 emission and test-day 
production and fertility traits currently used as breeding goal traits for selective 
breeding in dairy cows. The current breeding goal reduces CH4 emission per kg of 
milk, but increases CH4 emission per cow per year (Bannink et al., 2011;van 
Middelaar et al., 2014). The effect of adding CH4 emission to the breeding goal will 
be influenced by the genetic correlations between CH4 emission and the other 
breeding goal traits. Most genetic correlations between CH4 emission and 
production and fertility traits were either weak or moderate. Moderate correlations 
between milk MIR predicted CH4 yield and percentages of fat and lactose, and 
between sensor measured CH4 emission and yield traits (yields of fat, protein and 
lactose) were found in this study. The percentage of fat and lactose and the yields of 
fat, protein and lactose might decrease when selecting for reduced CH4 emission. 
However, the potential change in milk composition is expected to be small because 
genetic correlations with CH4 emission are weak to moderate. Therefore, the results 
of this study show that inclusion of CH4 emission in the breeding goal is expected to 
have a minor negative impact on the other breeding goal traits.  
 
5.5 Conclusions 
 
The relationships between, on the one hand, sensor measured and milk MIR 
predicted CH4 emission and, on the other hand, test-day production and fertility 
parameters are weak to moderate. The results of this study suggests that the impact 
of adding CH4 emission to the breeding goal for dairy cows is expected to be small.   
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6.1 Introduction 
 
The main aim of this thesis was to investigate whether there is genetic variation in 
methane (CH4) emission by dairy cows. To estimate genetic variation in CH4 emission, 
a large number of records on CH4 emission of individual cows are needed. The 
‘golden standard’ for measuring CH4 emission by dairy cows is the climate respiration 
chamber (CRC), a closed system in which the amount of gasses produced by cows 
can be measured precisely. The use of CRC, however, is labour intensive and costly 
(Johnson and Johnson, 1995; Storm, 2012) and can, therefore, not be used on large 
number of cows. Therefore, the use of CRC measurements to determine the genetic 
variation in CH4 emission is practically not feasible. 
In this thesis, three different indicators for CH4 emission were used to quantify 
genetic variation in CH4 emission. The first indicator was CH4 emission predicted 
based on milk fatty acids (FA) which were measured using gas chromatography 
(chapter 2). Different FA based CH4 prediction equations were used and 12 to 44% 
of the variation was due to the genetic differences between cows. The second 
indicator was CH4 emission measured with breath sensors. The breath of cows was 
analysed during milking in an automatic milking system (AMS)(chapter 3). Genetics 
explained 3 to 12% of the total variation in this CH4 indicator. Data of these breath 
sensors will hereafter be called sensor data. The third indicator was CH4 emission 
predicted based on milk mid-infrared (MIR) spectroscopy (chapter 4). Of this 
indicator, between 17 and 21% of the total variation could be attributed to genetic 
factors. The correlations between sensor measured CH4 emission and milk MIR 
predicted CH4 emission were low, with phenotypic correlations ranging between 
0.03 and 0.16. Correlations of sensor measured CH4 emission and milk MIR predicted 
CH4 emission with breeding goal traits (production and fertility traits) were low to 
medium (chapter 5). Phenotypic correlations between CH4 emission and production 
traits ranged between -0.34 and 0.64. Genetic correlations between CH4 emission 
and production traits ranged between -0.61 and 0.65, and genetic correlations 
between CH4 emission and fertility traits ranged between -0.32 and 0.38.  
The main aim of this general discussion is to get a better understanding of CH4 
emission on a genomic level based on these three indicators and study their potential 
for selective breeding. The general discussion is structured in three parts. In the first 
part, the genetic background of CH4 emission indicators is studied based on genome-
wide association. In the second part, selection index theory is used to study selection 
to reduce CH4 emission based on sensor measured CH4 emission, milk MIR predicted 
CH4 emission and on the combination of these two sources of information. In the 
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third part, possible consequences of selection for reduced CH4 emission for other 
breeding goal traits was evaluated.  
 
6.2 Genome-wide association studies 
 
In this thesis three indicators for CH4 emission have been investigated which can be 
used for selective breeding in order to reduce CH4 emission by dairy cows. These 
three indicators are indicative for true CH4 emission but not necessarily identical to 
true CH4 emission. The use of these different indicators for CH4 emission in selective 
breeding might have different effects on the reduction of true CH4 emission. Two of 
the three indicators are based on milk and the other is based on breath 
measurements using sensors, and all three indicators use different information 
sources to predict CH4. These differences might be reflected in the genetic 
background of predicted CH4 emission based on these indicators. Estimated 
correlations between sensor measured and milk MIR predicted CH4 emission are low 
ranging between 0.03 and 0.16 (standard errors (s.e.) = 0.03, chapter 4). These low 
correlations suggest that different parents will be selected to produce the next 
generation based on milk MIR predicted CH4 emission than based on sensor 
measured CH4 emission. Moreover, these correlations suggest that the indicators 
have a different genetic background. I would like to get a better understanding of 
predicted CH4 emission based on these indicators and know whether there are genes 
with large effects underlying CH4 emission determined via these three indicators. 
Therefore, I have performed genome-wide association studies (GWAS) on CH4 
emission determined via these three indicators. The results of a GWAS show whether 
there are genes with large effects influencing these CH4 indicators and whether there 
is overlap between these genes. This overlap can be used to study the genetic 
background of these three CH4 indicators.  
A description of the data, phenotypes, and models (to which a SNP effect was added) 
used for the GWAS can be found in chapters 2, 3, and 4. In short, GWAS were 
performed on milk FA predicted CH4 emission traits (Methane1, Methane2, and 
Methane3; Chapter 2) expressed in g/kg dry matter intake (DMI), sensor measured 
CH4 emission traits (CH4log, CO2log, and Ratiolog; Chapter 3) expressed in ppm, and 
milk MIR predicted CH4 emission traits (CH4 production, CH4 yield, and CH4 intensity; 
Chapter 4). CH4 production is expressed in g/day, CH4 yield in g/kg DMI, and CH4 

intensity in g/kg fat and protein corrected milk (FPCM). The prediction equations for 
milk FA predicted CH4 emission were as follows: 
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Methane1 (in g/kg DMI) = 24.60 + 8.74 * C17:0 anteiso – 1.97 * C18:1 trans-10+11 – 
9.09 * C18:1 cis-11 + 5.07 * C18:1 cis-13 
 
Methane2 (in g/kg DMI) = 28.60 – 1.13 * C4:0 + 0.36 * C18:0 – 2.57 * C18:1 trans-
10+11 – 9.29 * C18:1 cis-11 
 
Methane3 (in g/kg DMI) = 27.13 – 3.04 * C4:0 + 2.71 * C6:0 – 1.63 * C18:1 trans-
10+11 
 
Data for the GWAS on milk FA predicted CH4 emission where milk fat composition 
was determined via gas chromatography were available for approximately 1,900 
dairy cows. Data of sensor measurements taken during AMS visits of approximately 
1,500 dairy cows were available for the GWAS on sensor measured CH4 emission. 
Most of these dairy cows also had data from milk production recording (MPR) and 
resulting milk MIR spectra were used for the GWAS on milk MIR predicted CH4 
emission. Genotype information was available for most of these dairy cows. An 
overview of the numbers of phenotypes, animals with phenotypes and genotypes, 
and single nucleotide polymorphisms (SNP) per trait can be found in Table 6.1. A 50K 
SNP panel was used in the GWAS for milk FA predicted CH4 emission while a 30K SNP 
panel was used in the GWAS for sensor measured and milk MIR predicted CH4 
emission. SNP that were present on the 50K panel were not present on the 30K 
panel. 
To perform the GWAS, a single SNP effect was added as a fixed effect to the models 
as described in chapters 2,3, and 4. For the GWAS of sensor measured CH4 emission, 
the DayAMS effect was included as random instead of fixed. The number of SNP used 
for the GWAS (Table 6.1) was the amount after editing. The SNP for the GWAS of 
milk FA predicted CH4 emission were edited as described in Stoop et al. (2009). The 
SNP for the GWAS of sensor measured CH4 emission and milk MIR predicted CH4 

emission were edited by removal of monomorphic SNP, SNP with a call rate below 
90 %, and SNP with genotype classes with less than 10 observations. Furthermore, 
SNP deviating from Hardy Weinberg equilibrium with a p-value of 0.001 or lower 
were removed. To correct for multiple testing, the R-package ‘q-value’ was used to 
calculate the false discovery rate (FDR) per SNP. SNP with a FDR below 0.10 were 
declared significantly associated with the trait.  
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Table 6.1 Overview of the number of phenotypic observations per trait (N phenotypes), 
number of animals with phenotypic and genetic observations (N animals), and number of 
single nucleotide polymorphisms (N SNP) used as data for the genome-wide association study 
of methane (CH4) emission based on three different indicators. The three indicators are CH4 
emission predicted with milk fatty acids (FA) determined via gas chromatography, CH4 
emission measured with sensors in automatic milking systems, and CH4 emission predicted 
with milk mid-infrared (MIR) spectra 
 
CH4 emission phenotype N phenotypes N animals N SNP 
Milk FA predicted CH4 emission    
Methane1 (g/kg DMI) 1 1,651 1,651 44,470 
Methane2 (g/kg DMI) 1 1,704 1,704 44,563 
Methane3 (g/kg DMI) 1 1,704 1,704 44,563 
Sensor measured CH4 emission    
CH4log (ppm) 2 71,160 819 22,052 
CO2log (ppm) 2 71,160 819 22,052 
Ratiolog (ppm) 2 71,160 819 22,052 
Milk MIR predicted CH4 emission   
CH4 production (g/day) 763 763 22,052 
CH4 yield (g/kg DMI)1 763 763 22,052 
CH4 intensity (g/kg FPCM) 3 763 763 22,052 

1 DMI = Dry matter intake. 
2 Sensor measured phenotypes were log10-transformed. 
3 Fat and protein corrected milk (FPCM) was calculated as FPCM = milk (in kg) * (0.337+ (0.116 
* fat percentage) + (0.06 * protein percentage)). 
 
6.2.1 Results of genome-wide association studies 
The Manhattan-plots of the associations between the SNP and milk FA predicted CH4 
emission (Methane1, Methane2, and Methane3) are given in Figure 6.1. No 
significant associations (FDR < 0.10) were found for Methane1. Significant 
associations were found for Methane2 and Methane3 on chromosome 14, and for 
Methane3 on chromosome 19. The Manhattan-plots of the associations between 
the SNP and sensor measured CH4 emission are given in Figure 6.2. No significant 
associations were found for sensor measured CH4 emission. The Manhattan-plots of 
the associations between the SNP and milk MIR predicted CH4 emission are given in 
Figure 6.3. No significant associations were found for CH4 intensity, whereas CH4 
production and CH4 yield showed significant association on chromosome 14.  
Significant associations for milk FA and milk MIR predicted CH4 emission were 
detected on the beginning of chromosome 14. The most significant SNP for milk FA 
predicted Methane2 and Methane3 were ULGR_SNP_AJ318490_1c and 
ULGR_SNP_AJ318490_1b. These SNP are known to be the SNP coding for the  
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Figure 6.1 Manhattan-plot of associations found between SNP and milk fatty acids (FA) 
predicted methane (CH4) emission. Dotted lines represent the false discovery rate (FDR) of 
0.10 for each trait  
 

 

Figure 6.2 Manhattan-plot of associations found between SNP and sensor measured methane 
(CH4) emission 
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Figure 6.3 Manhattan-plot of associations found between SNP and milk mid-infrared (MIR) 
predicted methane (CH4) emission. Dotted lines represent the false discovery rate (FDR) of 
0.10 for each trait 
 
diacylglycerol O-acyltransferase 1 (DGAT1) K232A polymorphism (Bouwman et al., 
2011). The effects of the two most significant SNP on milk FA predicted CH4 emission 
are presented in Table 6.2. The most significant SNP for CH4 production and CH4 yield 
was BovineHD1400000188 (rs134892687). This SNP is located close to the DGAT1 
K232A polymorphism (just over 200,000 base pairs distance). It is likely that this SNP 
is in high linkage disequilibrium with the DGAT1 K232A polymorphism as it has a 
similar effect on fat percentage (data not shown). The effects of this significant SNP 
on milk MIR predicted CH4 emission are presented in Table 6.2. 
The sizes of the effects of the significant SNP for both milk FA and milk MIR predicted 
CH4 emission were moderate to large. The effect of the DGAT1 polymorphism on 
milk FA predicted CH4 emission ranged between 8.3 and 37.2 % of the respective 
variance (Table 6.2). The effect of the most significant SNP for milk MIR predicted 
CH4 emission was 3.4% of the variance of CH4 production and 125.3 % of the variance 
of CH4 yield.  
Significant association was found for Methane3 on chromosome 19 with the most 
significant SNP being ULGR_MARC_10099_486 and ULGR_BTA-45788. The lead SNP 
(ULGR_MARC_10099_486) had a -log10(p-value) of 10.27. The effect of the SNP was  
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Table 6.2 Significance and size of the effect of the DGAT1 K232A polymorphism on methane 
(CH4) predicted with milk fatty acids (FA) determined via gas chromatography and of the most 
significant SNP (BovineHD1400000188) on CH4 predicted with milk mid-infrared (MIR) 
spectra. Effect size as percentage of the variance1 

 
Trait Variance AB BB -log10(p-value) Effect size 
Milk FA predicted CH4 emission     
Methane1 (g/kg DMI) 2 1.38 0.02 0.11 0.46 8.3% 
Methane2 (g/kg DMI) 2 1.23 0.23 0.46 7.66 37.2% 
Methane3 (g/kg DMI) 2 0.82 0.25 0.25 9.91 30.6% 
Milk MIR predicted CH4 emission     
CH4 production (g/day) 342.86 -7.84 -11.72 5.47 3.4% 
CH4 yield (g/kg DMI) 2 0.95 -0.65 -1.19 22.29 125.3% 
1 AA genotype is set to zero, DGAT1 K allele is B allele in table. 
2 DMI is dry matter intake. 
 
-0.275 for the AG genotype and -0.314 for the GG genotype, with the AA genotype 
set to zero. The size of the effect was 38.3 % of the variance in Methane3. 
 
6.2.2 Genetic background of CH4 emission  
The genetic background of CH4 emission has been studied before in beef and dairy 
cattle (De Haas et al., 2011; Manzanilla-Pech et al., 2016). No specific regions of the 
genome were found to be significantly associated in the GWAS on CH4 emission 
predicted with feed intake in 665 dairy cows (De Haas et al., 2011). The GWAS on 
CH4 emission of 1,020 beef cows measured in CRC gave significant associations with 
regions of the genome associated with body weight (Manzanilla-Pech et al., 2016). 
These results suggest that genes associated with body weight might have an impact 
on CH4 emission as measured in CRC. These associations, however, are reported on 
beef cattle and different genes might regulate CH4 emission in dairy cattle 
(Manzanilla-Pech et al., 2016).  
The results of the GWAS of this general discussion show that there are two regions 
of the bovine genome linked with predicted CH4 emission: chromosome 14 and 
chromosome 19. Regions that gave significant associations with CH4 production in 
beef cattle that were linked with genes for body weight included chromosome 14 
(Manzanilla-Pech et al., 2016). The association with chromosome 14, however, was 
not significant for CH4 production in dairy cows, but was significant for DMI and body 
weight (Manzanilla-Pech et al., 2016). The specific region or genes that had a 
significant association with chromosome 14 were not mentioned in the article, 
though, like our results, the association seems to be on the beginning of 
chromosome 14.  
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The production of CH4 in the rumen is the result of complex mechanisms that involve 
rumen microbiota and is partially regulated by the genes of the host. The impact of 
the genetics of the host on the processes in the rumen and its microbiota is not yet 
fully known and understood. The genetic background of CH4 emission might be 
linked with DMI or body weight as suggested by Manzanilla-Pech and colleagues. In 
this part I will explore the relationship between the significant regions on 
chromosomes 14 and 19, predicted CH4 emission and true CH4 emission. 
The two lead SNP of chromosome 14 were located in the DGAT1 K232A 
polymorphism that has been linked to milk production and composition in previous 
studies (e.g. Winter et al., 2002; Schennink et al., 2007; Bovenhuis et al., 2015)). 
DGAT1 mediates the final step of triglyceride synthesis (Winter et al., 2002) and 
around 98% of the fat in milk is present in the form of triglycerides (Jensen, 2002). In 
clinical studies, DGAT1 was found to play an important role in fat absorption with a 
possible impact on gut hormones (DeVita and Pinto, 2013). Moreover, DGAT1 knock 
out mice showed more resistance to diet induced obesity, increased sensitivity 
towards insulin and leptin, and increased energy expenditure (Chen, 2006; DeVita 
and Pinto, 2013).  
The lead SNP of chromosome 19 (ULGR_MARC_10099_486) was located in the 
regulatory associated protein of mTOR complex (RPTOR). The mTOR complex 
coordinates eukaryote cell growth and metabolism which affects processes like 
protein, lipid, and nucleotide synthesis (Saxton and Sabatini, 2017). The same region 
on chromosome 19 was also found to be related to fat content and composition 
(Bouwman et al., 2014).  
Figure 6.4 gives a schematic overview of the relationship between true CH4 emission, 
milk predicted CH4 emission, and sensor measured CH4 emission. Significant 
associations on chromosome 14 and 19 were identified only for milk predicted CH4 
emission (II) and not for sensor measured CH4 emission. The associations identified 
either relate to area A or to area B (Figure 6.4). These associations with CH4 emission 
could relate metabolic processes in the rumen that affect the production or emission 
of CH4, to milk composition, or both. When the associations relate to area A, 
associations relate to true CH4 emission and are, thus, likely to be related to 
metabolic processes. When the associations relate to area B, associations relate to 
milk composition and are, thus, likely to be related to the prediction equation of milk 
predicted CH4 emission.  
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Figure 6.4 Schematic overview of the relationships between true methane (CH4) emission (I), 
milk predicted CH4 emission (II), and sensor measured CH4 emission (III)  
 
When the associations relate to milk composition (area B), selection based on milk 
predicted CH4 emission might favour cows with a certain DGAT1 genotype as parents 
for the next generation. There is no indication that current selection strategies favors 
one of the DGAT1-alleles as the A-allele had a frequency of 0.6 in the Dutch dairy 
population (Schennink et al., 2007). Results from previous studies show that the A-
allele of the DGAT1 polymorphism is associated with higher milk yield and lower fat, 
protein, and lactose percentages compared to the K-allele (Schennink et al., 2007; 
Bovenhuis et al., 2015). Moreover, saturation level of milk fat is also influenced by 
the DGAT1 polymorphism with the A-allele associated with lower levels of C10, C12, 
C14, and C16 unsaturated fatty acids and higher levels of C18 unsaturated fatty acids 
(Schennink et al., 2008). In this study, the A-allele of the DGAT1 polymorphism was 
associated with lower CH4 emission (Methane2 and Methane3). The use of milk 
predicted CH4 emission in selective breeding could result in higher milk yield and 
decrease fat, protein, and lactose percentages.  
When the associations relate to metabolic processes in the rumen (area A) and, thus, 
affect CH4 production and emission, CH4 emission measured in CRC should be 
affected by the DGAT1 genotype. The impact of the DGAT1 polymorphism on CH4 
emission by dairy cows has been studied by Van Gastelen et al. (2017). The results 
of that study show no significant effect of the DGAT1 K232A polymorphism on CH4 
emission measured in CRC (Van Gastelen et al., 2017).The impact of the DGAT1 
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K232A polymorphism on predicted CH4 emission is expected to be moderate to large 
as suggested by the effect sizes found in the GWAS. The impact of the DGAT1 K232A 
polymorphism on true CH4 emission is expected to be smaller, as predicted CH4 
emission does not explain all variation in true CH4 emission. The variation explained 
by milk predicted CH4 emission was limited as the coefficients of variation (CV) of 
milk predicted CH4 emission were low. Although the DGAT1 K232A polymorphism 
might explain a moderate to large part of the variation in predicted CH4 emission, 
the impact on true CH4 emission is smaller. The number of animals in the study of 
Van Gastelen and colleagues (n = 24) may have been too small to pick up the 
relatively small effect anticipated.  
No definite statement can be made whether the associations with milk predicted CH4 
emission are due to the impact of these association on metabolic processes, on milk 
composition, or both. Sensor measured CH4 emission, however, did not show 
significant associations and effects of the DGAT1 K232A polymorphisms were not 
confirmed in the CRC. It is most likely that the associations relate to milk composition 
which impacts milk predicted CH4 emission via the prediction equations.  
 
6.3 Selection indexes 
 
Selective breeding for reduced CH4 emission could be implemented using the 
different indicators of CH4 emission. In chapter 4 the relationship between CH4 
emission predicted with milk MIR spectra was compared to CH4 emission measured 
with breath sensors. The phenotypic correlations between milk MIR predicted CH4 
emission and sensor measured CH4 emission ranged between 0.03 and 0.16. The 
genetic correlations ranged between -0.89 and 0.71, and had large standard errors 
(s.e.) ranging between 0.27 and 0.87. The results of chapter 4 suggest that the two 
indicators for CH4 emission provide relatively independent information on true CH4 
emission. Combining information from these two sources was suggested in chapter 
4 as a useful next step for selective breeding for reduced CH4 emission.  
To study the effect of combining information for selective breeding for reduced CH4 
emission, I calculated the accuracy of estimated breeding values (EBV) for CH4 
emission. The accuracies were calculated for the EBV based on both indicators for 
CH4 emission separately and combined. The accuracy of an EBV indicates how close 
it is to the true breeding value (TBV) of an animal. A higher accuracy of EBV implies 
that we can better distinguish genetically superior animals from average or inferior 
animals. Therefore, an interesting question is: what is the accuracy of the EBV when 
based on one of the two sources of information (i.e. one of the two indicators for 
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CH4 emission)? Another interesting question is will the accuracy of the EBV improve 
when information from these two sources is combined, as compared to using them 
separately?  
To answer these questions, selection index theory was used to calculate the 
accuracies of estimated breeding values (EBV) based on the different sources of 
information, i.e. both indicators for CH4 emission. The breeding goal is to select for 
reduced true CH4 emission and, therefore, you would like to know the genotype for 
true CH4 emission (H), the breeding goal. This genotype is based on breeding goal 
trait (A) that is CH4 emission as measured in CRC:  
 
H = ACRC 

 

CRC measured CH4 emission is seen as the ‘golden standard’ (Storm, 2012; Hill et al., 
2016). Advantages of CRC measurements of CH4 emission are that the environment 
is stabilized and controlled (Johnson and Johnson, 1995; Storm, 2012). The 
measurements of CH4 emission can also be taken accurately and include the small 
portion of CH4 that is emitted from the rectum (Johnson and Johnson, 1995). 
Disadvantages of CRC measurements of CH4 emission are that the measurements are 
labour intensive and costly (Johnson and Johnson, 1995; Storm, 2012). Furthermore, 
the measuring capacity of CRC is low and the circumstances in the CRC might be 
artificial as animal movement and feed intake are restricted (Johnson and Johnson, 
1995; Storm, 2012; Hill et al., 2016). It could be that CRC measurements of CH4 
emission do not capture all possible variation present in true CH4 emission as the 
environment is artificial. Of all methods available, however, I expect that CRC 
measured CH4 emission comes closest to true CH4 emission and, thus, should be used 
as the breeding goal trait (A).  
Breeding for reduced true CH4 emission, however, requires data on many individual 
dairy cows. This is difficult to acquire for the breeding goal trait CRC measured CH4 
emission. Therefore, an indicator trait (X) can be used for selective breeding instead 
of the breeding goal trait. One or multiple indicator traits can be combined into a 
selection index (I). The selection index is used to estimate the breeding goal trait. 
Three different selection indexes will be used. In scenario 1 only information from 
sensor measured CH4 emission was assumed to be available for each daughter of a 
test bull: 
 
I1 = bsensor * Xsensor 
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where b is the regression coefficient of sensor measurements and X is the sensor 
measurements. In scenario 2 only information from milk MIR predicted CH4 emission 
was assumed to be available for each daughter of a test bull: 
 
I2 = bMIR* XMIR 

 

where b is the regression coefficients of milk MIR measurements and X is the milk 
MIR measurements. In scenario 3 information from both indicators was assumed to 
be available for each daughter of a test bull: 
 
I3 = bsensor * Xsensor + bMIR * XMIR 

 
In all three scenarios the accuracy of the EBV was calculated for 1 bull with 50 (half-
sib) daughters. The phenotypes used in the three different scenarios were CH4log 
(measured with sensors, chapter 3) and CH4 production (predicted with milk MIR 
spectra, chapter 4). As suggested in chapter 3, in scenario 1 and 3 I assumed that 
each daughter had 10 days of data on sensor measured CH4 emission available. These 
10 days of data would result in 25 repeated observations on sensor measured CH4 
emission per daughter. In scenario 2 and 3, I assumed that each daughter had 10 
repeated milk MIR predicted CH4 emission observations available. Cows that take 
part in the MPR participate every 3 to 6 weeks, resulting in approximately 10 MPR 
observations per cow per lactation. 
An overview of the variances and genetic parameters used in the selection index 
calculations can be found in Table 6.3. The phenotypic correlation between the two 
indicators was 0.15 (s.e. = 0.03; chapter 4) and the genetic correlation was 0.09 (s.e. 
= 0.36; chapter 4). The coefficient of determination (R2) between the indicators and 
CRC measured CH4 emission was used as a basis for the phenotypic and genetic 
correlations between the indicators and CRC measured CH4 emission. The 
phenotypic and genetic correlation between sensor measured CH4 emission and CRC 
measured CH4 emission were assumed to be the same and equal to 0.50, as the R2 
was 0.25 (chapter 3). The phenotypic and genetic correlation between milk MIR 
predicted CH4 emission and CRC measured CH4 emission were assumed to be the 
same and equal to 0.55, as the R2 was 0.30 (chapter 4). 
 
6.3.1 Results of selection index scenarios  
The accuracy of the EBV of the bull with 50 half-sib daughters based on sensor 
measured CH4 emission information (scenario 1) is 0.46. The accuracy of the EBV  
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Table 6.3 Overview of parameters used for the selection index theory 
 

Parameters Value 
CRC measured CH4 emission  
Phenotypic variance 2905.21 
Heritability 0.20 
Sensor measured CH4 emission  
Phenotypic variance 0.04 
Heritability 0.11 
Repeatability 0.27 
Milk MIR predicted CH4 emission  
Phenotypic variance 342.86 
Heritability 0.17 
Repeatability 0.27 

 
using only information on milk MIR predicted CH4 emission (scenario 2) is 0.51. The 
difference between both accuracies can be explained by the assumed genetic 
correlation between the indicator traits and the breeding goal trait and the 
heritabilities of the indicator traits. The genetic correlation between sensor 
measured CH4 emission and CRC measured CH4 emission (0.50) was slightly lower 
than the assumed genetic correlation between milk MIR CH4 emission and CRC 
measured CH4 emission (0.55). The heritability of sensor measured CH4 emission (h2 
= 0.12) was slightly lower than the heritability of milk MIR predicted CH4 emission (h2 
= 0.17). This resulted in a lower accuracy for scenario 1 compared to scenario 2. 
Combining information from both sources increases the accuracy to a value of 0.66 
(scenario 3).  
Several assumptions have been made for calculating the accuracies of the EBV in 
scenarios 1 to 3 and these assumptions influence the estimated accuracies. One of 
the assumptions is the number of daughters for which the bull has information on. 
In all three scenarios this number was fixed at 50 daughters. The impact of the 
number of daughters on the accuracy of the EBV in scenario 1 is illustrated in Figure 
6.5. The accuracy of the EBV of the bull improves when information on more 
daughters becomes available. However, the increase is not linear: adding 
information of 1 extra daughter improves the accuracy more when only information 
of a small number of daughters is available (<10) compared to when the number of 
daughters is larger (>80). Increasing the number of daughters to more than the 50 
chosen for this general discussion seems to have a minor impact on the accuracy of 
the EBV.  
Another assumption that affects the accuracy of the EBV is the number of repeated 
observations per daughter. The impact of the number of repeated observations 
available for scenario 1 and 2 on the accuracy of the EBV is shown in Figure 6.6. Like  
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Figure 6.5 Accuracy of the estimated breeding value (EBV) of a bull based on 25 sensor 
measured methane (CH4) emission records per daughter 
 

 
Figure 6.6 Accuracy of the estimated breeding value (EBV) of a bull based on 50 daughters 
with either observations on sensor measured methane (CH4) emission (black) or observations 
on milk mid-infrared (MIR) predicted CH4 emission (light grey) 
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the number of daughters, increasing the number of observations per daughter 
improved the accuracy of the EBV of the bull. This improvement is also not linear: 
the improvement is larger when the number of observations increases from 1 to 2 
compared with an increase from 20 to 21 observations. Increasing the number of 
observations to more than the numbers chosen for this general discussion (25 for 
sensor measured CH4 emission and 10 for milk MIR predicted CH4 emission) would 
result in only a minor increase in the accuracy of the EBV of the bull.  
Another assumption that affects the accuracy of the EBV is the genetic correlation 
between CRC measured CH4 emission and the two indicators. In scenarios 1 to 3 it 
was assumed that these equalled the square root of the R2 as reported in chapters 3 
and 4. The relationship as described by the R2 is likely to be only partially due to 
genetics, and the genetic correlation might thus be lower or higher than assumed in 
scenarios 1 to 3. In alternative scenario 3A, I have adapted scenario 3 to test the 
influence of a lower genetic correlation between the breeding goal trait and the 
indicators. The R2 of sensor measured CH4 emission was reduced from 0.25 to 0.15, 
resulting in a genetic correlation of 0.39 between CRC measured CH4 emission and 
sensor measured CH4 emission. The R2 of milk MIR predicted CH4 emission was 
reduced from 0.30 to 0.20, resulting in a genetic correlation of 0.45 between CRC 
measured CH4 emission and milk MIR predicted CH4 emission. The accuracy of the 
EBV of the bull based on alternative scenario 3A is 0.53 and, thus, lower than in 
scenario 3. A lower genetic correlation between CRC measured CH4 emission and the 
two indicators would also reduce the accuracies in scenarios 1 and 2. 
Alternative scenario 3A shows that the EBV of the bull has a lower accuracy when 
the information sources of the selection index explain less of the variation in true 
CH4 emission as measured in CRC. As the two indicators of CH4 emission explain less 
of the variation in true CH4 emission, the relationship between the EBV based on 
these indicators and the TBV decreases. In Figure 6.7 this effect can be seen as the 
overlap between the indicators and true CH4 emission being smaller as compared 
with scenario 3.  
Another assumption that affects the accuracy of the EBV is the genetic correlation 
between sensor measured CH4 emission and milk MIR predicted CH4 emission. The 
genetic correlation between the two indicators was estimated to be 0.09 with a 
standard error of 0.36. Based on this estimation, the true genetic correlation can 
deviate considerably from the estimate. Therefore, in alternative scenario 3B I have 
adapted scenario 3 and set the genetic correlation between sensor measured CH4 
emission and milk MIR predicted CH4 emission to 0.45 (0.09 + 0.36). The accuracy of 
the EBV of the bull in alternative scenario 3B is 0.58 and, thus, lower than in scenario 
3. In alternative scenario 3C I have adapted scenario 3 and set the genetic  
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Figure 6.7 Schematic overview of the assumptions and their influence on the accuracy of the 
breeding value estimation with I being the variation in the true breeding value (methane (CH4) 
measured in the climate respiration chamber); II being the variation in sensor measured CH4 
emission; and III being the variation in milk mid-infrared (MIR) predicted CH4 emission. This 
figure illustrates three scenarios: A) original scenario 3; B) alternative scenario 3A (lower R2 of 
sensor measured and milk MIR predicted CH4 emission ); C) alternative scenario 3B (higher 
genetic correlation between sensor measured and milk MIR predicted CH4 emission)  
 
correlation to -0.27 (0.09 – 0.36). The accuracy of the EBV in alternative scenario 3C 
is 0.79 and, thus, higher than in scenario 3. 
In scenario 3, the genetic correlation between sensor measured and milk MIR 
predicted CH4 emission was 0.09. This correlation indicates that the variation in 
either indicator is not explained by the other indicator. The increase in the accuracy 
of the EBV when combining both indicators depends partially on the overlap 
between the indicators. When the two indicators explain more of the same variation 
of the TBV, i.e. larger overlap between indicators, the increase in the accuracy when 
combining the indicators will be smaller (see Figure 6.7). In alternative scenario 3B, 
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this overlap between both sources of information increases and, therefore, the 
accuracy decreases compared to scenario 3. In alternative scenario 3C, the accuracy 
increases compared to scenario 3 as both sources of information are systematically 
not overlapping due to their negative genetic correlation. Combining sources of 
information will improve the accuracy of the EBV of the bull when their genetic 
correlation is not 1. 
 
6.3.2 Combining sources of information 
Combining information from sensor measured CH4 emission with milk MIR predicted 
CH4 emission increases the accuracy of the EBV. It was estimated that combining 
information from two indicators would improve accuracy with 15 to 35% compared 
to using only one indicator (Negussie et al., 2017). I estimated an increase in the 
accuracy of the EBV of 15 to 20% in line with Negussie et al. (2017). The accuracy 
when using both sources of information is 0.66, meaning that the EBV could explain 
44% of the variation in the TBV. There is no minimum for the accuracy of an EBV 
before it can be implemented in selective breeding, but higher accuracies will lead 
to more genetic improvement (Falconer, 1960).  
Combining information will not only increase the accuracy of the EBV, it will also give 
a better estimation of true CH4 emission (Negussie et al., 2017). Ranking animals for 
their genetic potential is likely to result in a different ranking for each of the two 
indicators as the genetic correlation between the indicators is low. Ranking of 
animals based on combined information of both indicators is expected to be closer 
to the ranking for true CH4 emission. Selective breeding on combined indicators, 
however, requires cows with information on both indicators. Information on milk 
MIR predicted CH4 emission is readily available from the milk production recording. 
Information on sensor measured CH4 emission, however, is currently not available 
and sensor and sensor measurement protocol need to be developed further before 
these measurements can be taken on all farms. Although sensor measurements are 
not available, using two indicators is recommended, because a shortcoming in one 
of the indicators can be overcome by the other indicator (Negussie et al., 2017). 
Therefore, I recommend combining information from sensor measured CH4 emission 
with milk MIR predicted CH4 emission when breeding for reduced CH4 emission. 
 
6.4 Correlations between estimated breeding values 
 
The discussion in this thesis so far has focussed on breeding for reduced CH4 emission 
by taking CH4 emission as the only breeding goal trait. Breeding for reduced CH4 
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emission will in practice always be combined with selection for other traits. Before 
adding CH4 emission to the breeding goal, it is important to understand the 
relationship between CH4 emission and the other breeding goal traits. These 
relationships give an indication of the potentially unfavourable responses in other 
breeding goal traits when selecting for reduced CH4 emission.  
Part of the correlations between CH4 emission and current breeding goal traits have 
been studied in chapter 5. In chapter 5 correlations between on the one hand CH4 
emission measured with sensors and predicted with milk MIR spectra, and on the 
other hand, test-day production and fertility traits were calculated. These genetic 
correlations were estimated to be low to moderate, but they also had large standard 
errors. This indicates that true correlations might differ from the reported estimates. 
These estimates could get closer to the true correlations when more data is available 
for the calculation of these correlations. Furthermore, the traits studied in chapter 5 
are not all traits that are part of the current breeding goal. Additional data that might 
be interesting are estimated breeding values (EBV) of breeding goal traits of sires 
with daughters with CH4 emission phenotypes. To get a better understanding of what 
might happen when CH4 emission is added to the breeding goal, correlations 
between EBV for breeding goal traits and EBV for CH4 emission were calculated.  
Data on EBV of bulls with at least 5 daughters with either sensor measured CH4 
emission or milk MIR predicted CH4 emission were made available by the cooperative 
cattle improvement organization CRV (Arnhem, the Netherlands). In total, data were 
available on 70 bulls with daughters with sensor measured CH4 emission and 63 bulls 
with daughters with milk MIR predicted CH4 emission. These bulls also had EBV on 
current breeding goal traits available of which I selected six that were expected to 
have a relationship with CH4 emission: milk yield, body weight, dry matter intake 
(DMI), longevity, udder health, and fertility. An overview of the descriptive statistics 
of these EBV are shown in Table 6.4. Three of the six breeding goal EBV (body weight, 
udder health, and fertility) are standardized EBV (mean of 100 and a standard 
deviation of 4) whereas the other EBV are not. Values above 100 of the standardized 
EBV means a positive effect on that trait. For example, an EBV for fertility above 100 
means a better fertility than the average cow. 
These EBV are estimated and, thus, not the true breeding values (TBV). The accuracy 
(correlation between the EBV and TBV) of the EBV for sensor measured CH4 emission 
and milk MIR predicted CH4 emission was estimated in the previous part of the 
general discussion. The reliabilities of the EBV (squared accuracy (VanRaden and 
Wiggans, 1991)) from CRV were estimated as described in Liu and colleagues (2004). 
The reliabilities as shown in Table 6.4 were a rough estimate of reliabilities of an  
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Table 6.4 Descriptive statistics of estimated breeding values (EBV) of bulls with at least 5 
daughters with either sensor measured methane (CH4) emission or milk mid-infrared (MIR) 
predicted CH4 emission1  
 
Trait Mean sd Minimum Maximum Reliability 
Sensor measured CH4 emission     
CH4log (ppm) 2 -0.03 0.05 -0.18 0.08  
CO2log (ppm) 2 -0.02 0.04 -0.14 0.08  
Ratiolog (ppm) 2 0.00 0.01 -0.03 0.02  
Milk MIR predicted CH4 emission     
CH4 production (g/day) -1.37 3.94 -10.12 9.20  
CH4 yield (g/kg DMI) 3 -0.03 0.25 -0.58 0.77  
CH4 intensity (g/kg FPCM) 4 -0.10 0.31 -0.07 0.95  
Current breeding goal traits      
Milk yield 204.6 473.6 -718 1525 >0.95 
Body weight 102.0 3.9 93 110 0.80 
Dry matter intake 38.7 71.0 -108 252 0.60 
Longevity 157.0 223.0 -194 765 0.70 
Udder health 101.0 3.8 91 109 0.80 
Fertility  101.0 4.5 90 109 0.80 
1 Descriptive statistics are the mean, standard deviation (sd), minimum, maximum, and 
reliability (on a scale of 0 to 1) of the EBV.  
2 Sensor measured CH4 emissions are log10-transformed. 
3 DMI is dry matter intake. 
4 Fat and protein corrected milk (FPCM) was calculated as FPCM = milk (in kg) * (0.337+ (0.116 
* fat percentage) + (0.06 * protein percentage)). 
 
average bull of CRV. The most reliable EBV was for milk yield and the least reliable 
EBV was for dry matter intake. 
The correlations were estimated in R (R Core Team, 2017) and are reported in Table 
6.5. The correlations found between the EBV of the CH4 indicators and the EBV of 
the six breeding goal traits were low to medium ranging between -0.44 and 0.09 for 
sensor measured CH4 emission. Moreover, correlations with milk MIR predicted CH4 
emission were also low and range between -0.30 and 0.31.  
 
6.4.1 Correlations between EBV for CH4 and milk yield 
A relationship between CH4 emission and milk yield is anticipated via feed intake; 
cows that have a higher milk yield are expected to have a higher feed intake and, 
thereby, have a higher CH4 emission. Correlations calculated in this general 
discussion between the EBV for CH4 and the EBV for milk yield were low. All 
correlations were negative for both sensor measured CH4 emission and milk MIR 
predicted CH4 emission. This suggest that adding CH4 emission to the breeding goal 
would result in a favourable response in milk yield.  
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Table 6.5 Correlations between the estimated breeding values (EBV) of 70 bulls with at least 
5 daughters with sensor measured methane (CH4) emission and six breeding goal traits, and 
correlations between EBV of 63 bulls with at least 5 daughters with milk mid-infrared (MIR) 
predicted CH4 emission and six breeding goal traits1 

 
Breeding goal trait KGM BW DMI LON UDH FER 
Sensor measured CH4 emission      
CH4log (ppm) 2 -0.23 -0.28 -0.44 -0.11 -0.27 -0.05 
CO2log (ppm) 2 -0.26 -0.26 -0.44 -0.15 -0.29 -0.10 
Ratiolog (ppm) 2 -0.01 -0.25 -0.25 0.09 -0.06 -0.11 
Milk MIR predicted CH4 emission      
CH4 production (g/day) -0.29 0.04 -0.08 0.06 0.16 0.29 
CH4 yield (g/kg DMI) -0.24 0.31 0.21 0.04 0.20 0.24 
CH4 intensity (g/kg FPCM) 3 -0.19 -0.30 -0.25 -0.20 -0.09 0.01 

1 Breeding goal traits: milk yield (KGM), body weight (BW), dry matter intake (DMI), longevity 
(LON), udder health (UDH), and fertility (FER). 
2 Sensor measured CH4 emissions are log10-transformed. 
3  Fat and protein corrected milk (FPCM) was calculated as FPCM = milk (in kg) * (0.337+ (0.116 
* fat percentage) + (0.06 * protein percentage)). 
 
The relationship between CH4 emission and milk yield is also presented in chapters 
4 and 5. In chapter 4 the phenotypic correlations with milk yield were low, ranging 
between -0.16 and 0.11 for milk MIR predicted CH4 emission and between 0.17 and 
0.22 for sensor measured CH4 emission. In chapter 5 the phenotypic correlations 
with milk yield were also low, ranging between -0.21 and 0.03 for milk MIR predicted 
CH4 emission and between 0.06 and 0.09 for sensor measured CH4 emission. The 
genetic correlations were low to medium, ranging between -0.47 and 0.24 for milk 
MIR predicted CH4 emission and between 0.19 and 0.51 for sensor measured CH4 

emission.  
The relationship between CH4 emission and milk yield has been discussed in chapter 
4 and 5. The main conclusions from these discussions were that the relationship 
between CH4 emission and milk yield depends on the CH4 emission phenotype, but 
was expected to be moderately positive (higher milk yield resulting in higher CH4 
emission). The correlations between the EBV for CH4 emission and the EBV for milk 
yield are in line with the correlations reported in chapter 4 and 5, even though they 
are negative. Based on the literature and the previous chapters, it can be anticipated 
that selective breeding for reduced CH4 emission will lead to an increase in milk yield.  
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6.4.2 Correlations between EBV of CH4, body weight, and dry matter 
intake 
Feed fermentation in the rumen drives the production of CH4 and a higher DMI is 
expected to result in higher CH4 emission. A relationship between CH4 emission and 
body weight is anticipated via DMI, heavier cows are expected to be larger with a 
larger rumen and, thus, might have a higher DMI. The correlations between the EBV 
for CH4 emission and body weight were weak, ranging between -0.28 and -0.25 for 
sensor measured CH4 emission and between -0.30 and 0.31 for milk MIR predicted 
CH4 emission. Moreover, the correlations between the EBV for CH4 emission and DMI 
were moderate to weak, ranging between -0.44 and -0.25 for sensor measured CH4 
emission and between -0.25 and 0.21 for milk MIR predicted CH4 emission. Most 
correlations were negative, suggesting that adding CH4 emission to the breeding goal 
would result in a higher DMI (unfavorable) and heavier cows.  
Although the direct relationship between body weight and CH4 emission in dairy 
cows was not studied, this relationship was studied via DMI in literature. In the study 
of De Haas et al. (2011), body weight and DMI were used to predict CH4 emission in 
dairy cows. This predicted CH4 emission had a high phenotypic correlation with DMI 
(rp = 0.99). Furthermore, body weight and DMI were used to predict CH4 emission (in 
MJ/day) per kg of gross energy intake in dairy cows with a R2 ranging between 0.50 
and 0.63 (Yan et al., 2010). Methane emission measured in climate respiration 
chambers was also found to be highly correlated (r = 0.77) with DMI in sheep 
(Moorby et al., 2015). Body weight, however, was indicated in the same study to be 
a poor indicator for CH4 emission with correlations ranging between 0.39 and 0.50 
for different pasture types (Moorby et al., 2015). Based on these studies a moderate 
to strong relationship between DMI and CH4 emission is expected and a weak to 
moderate relationship between body weight and CH4 emission.  
The correlations between the EBV for CH4 emission and body weight were in line 
with literature as they were weak to moderate. Correlations between the EBV for 
CH4 emission and DMI, however, were lower than expected. The EBV for CH4 
emission had a low accuracy and the EBV for DMI had a low reliability (accuracy 
squared). The EBV for CH4 emission were determined on a small dataset of 1,508 
dairy cows with sensor measured CH4 emission and 1,302 dairy cows with milk MIR 
predicted CH4 emission. The EBV for DMI was also based on a small dataset as DMI 
of cows is not normally measured. The low accuracy of both EBV might explain why 
the correlation between these two EBV is lower than anticipated.  
The correlations as calculated in this general discussion suggest that adding CH4 
emission to the breeding goal will result in a higher DMI and higher body weight. The 
impact of the inclusion of CH4 emission in the breeding goal gives an unfavourable 
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response in DMI. The impact of the inclusion of CH4 emission in the breeding goal on 
body weight is neither favourable nor unfavourable. Body weight of cows has been 
increased in the past to enable high milk production, but there is currently no need 
to either increase or decrease the weight of cows.  
 
6.4.3 Correlations between EBV for CH4 and longevity 
A relationship between CH4 emission and longevity is expected via feed intake and 
milk yield. Cows that have a higher milk yield are expected to have a higher feed 
intake and CH4 emission and are expected to have a lower longevity (Haworth et al., 
2008). The correlation between the EBV for longevity and the EBV for sensor 
measured CH4 emission were low ranging between -0.15 and 0.09. The correlations 
with the EBV for milk MIR predicted CH4 emission were also low, ranging between -
0.20 and 0.06. This suggest that adding CH4 emission to the breeding goal would 
result in a favourable response in longevity.  
To the best of my knowledge, no other studies have reported direct correlations 
between CH4 emission and longevity. An indirect relationship between the profitable 
life index, an index which includes parameters like milk yield, fertility, and longevity, 
and CH4 emission has been reported (Dong et al., 2015). That study showed that CH4 
emission was not significantly affected by the profitable life index. Another indirect 
relationship between CH4 emission and longevity was studied by Grandl and 
colleagues (2016). That study showed that CH4 emission increased during the first 
three lactations, and decreased thereafter, likely due to changes in fibre digestibility 
(Grandl et al., 2016). The literature suggests that a longer productive life is expected 
to have a favourable impact on CH4 emission. The correlations estimated in this 
general discussion are in line with this suggestion, showing that selective breeding 
for reduced CH4 emission is likely to have a minor, favourable impact on longevity.  
 
6.4.4 Correlations between EBV for CH4 and udder health 
The EBV for udder health is based on the EBV of subclinical mastitis combined with 
the EBV of clinical mastitis (CRV, 2016). Mastitis is one of the most costly production 
diseases in dairy cattle and is associated with a loss in milk yield (e.g. Bell et al., 2013). 
Because of milk yield an indirect relationship between udder health and CH4 
emission is expected. Cows that have a higher milk yield and a higher CH4 emission 
could have a higher incidence of mastitis (Shook and Schutz, 1994). The correlations 
between the standardized EBV for udder health and the EBV for CH4 emission ranged 
between -0.29 and 0.20. Most correlations were negative, suggesting that adding 
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CH4 emission to the breeding goal would result in a favourable response in udder 
health.  
Correlations between udder health and CH4 emission that have been reported in 
literature and in chapter 5 were low (Bell et al., 2013; Yin et al., 2015). In the study 
of Yin and colleagues, CH4 emission predicted with either body weight and milk 
production or feed intake gave low phenotypic and genetic correlations with clinical 
mastitis. The study of Bell et al. (2013) modelled that a decrease in somatic cell count 
(SCC; indicator for mastitis) resulted in a decrease in CH4 emission on whole herd 
level. In chapter 5 the phenotypic and genetic correlations between somatic cell 
score (SCS; based on SCC) and CH4 emission were low. Phenotypic correlations 
between SCS and milk MIR predicted CH4 emission ranged between -0.01 and 0.08 
(s.e. = 0.03) and genetic correlations between -0.61 and -0.06 (s.e.= 0.32 – 0.38). 
Phenotypic correlations between SCS and sensor measured CH4 emission ranged 
between -0.06 and -0.01 (s.e. = 0.02) and genetic correlations between -0.28 and -
0.04 (s.e.= 0.06 – 0.08). The correlations reported here are in line with literature and 
chapter 5, suggesting that selective breeding for reduced CH4 emission is likely to 
have a minor favourable impact on udder health.  
 
6.4.5 Correlations between EBV for CH4 and fertility 
The EBV of fertility consists of the EBV for interval between first and last insemination 
and calving interval during the first three parities (CRV, 2015). A relationship 
between the EBV for CH4 emission and the EBV for fertility is expected via feed intake 
and milk yield. Cows that have a higher milk yield are expected to have a higher feed 
intake and CH4 emission and are expected to have lower fertility (Berry et al., 2003; 
Veerkamp et al., 2003). The correlations between the standardized EBV of fertility 
and the EBV of CH4 emission were low ranging between -0.11 and 0.29. The 
correlations between the EBV for sensor measured CH4 emission and fertility were 
negative, suggesting that adding CH4 emission to the breeding goal would result in a 
favourable response in fertility. The correlations between the EBV for milk MIR 
predicted CH4 emission and fertility were positive, suggesting an unfavourable 
response.  
Correlations between CH4 emission and fertility traits can be found in chapter 5 and 
in literature (Bell et al., 2013; Yin et al., 2015). In the study of Yin and colleagues 
(2015), CH4 emission predicted with either body weight and milk production or feed 
intake had high genetic correlations at the end of the lactation with fertility traits. 
These correlations indicated that breeding for reduced CH4 emission would lead to a 
favourable response in fertility. Bell et al. (2013) modelled that a decrease in fertility 
resulted in a decrease in CH4 emission on whole herd level. The correlations reported 
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in chapter 5 between sensor measured CH4 emission and fertility traits ranged 
between -0.32 and 0.38 (s.e. = 0.12 – 0.68).  
The correlations reported here are in line with chapter 5 and are partially in line with 
literature. The correlations with sensor measured CH4 emission are in line with 
literature, though they are weak. The correlations with milk MIR predicted CH4 
emission are not in line, but are also weak. The strength of the correlation between 
CH4 emission and fertility as reported in Yin et al. (2015) varied substantially over the 
lactation. This could indicate that the impact of inclusion of CH4 emission in the 
breeding goal might be limited. Moreover, in chapter 5 the estimates of these 
correlations had large standard errors. These numbers indicate a possible favourable 
response in fertility when CH4 emission is included in the breeding goal, though the 
response is expected to be minimal.  
 
6.4.6 Selective breeding on reduced methane emission 
Globally, agriculture is responsible for 24% of the greenhouse gas emissions (IPCC, 
2014) of which 40% is CH4 produced via enteric fermentation by ruminants (FAOstat, 
2014). The Paris agreements signed by 195 countries have a clear focus on the 
reduction of greenhouse gas emissions from agriculture. Furthermore, the Dutch 
government agreement of 2017 shows that also in the Netherlands politicians have 
a clear focus on reduction of greenhouse gas emissions from agriculture. Although 
CH4 emission has no economic value at the moment, penalties for emitting CH4 
emission might be installed in the future. Selective breeding for reduced CH4 
emission will be the ‘license to produce’ for the future of the dairy sector. 
This thesis shows that there is a possibility to use selective breeding to reduce CH4 
emission. The correlations estimated as part of this general discussion show that 
inclusion of CH4 emission in the breeding goal is anticipated to have a minor impact 
on the six breeding goal traits studied. The minor impact that is anticipated for the 
breeding goal traits is favorable towards including CH4 emission in the breeding goal 
with an eye on the future. 
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Summary 
 
Dairy products are important food sources which contain nutrients that are essential 
for human development and healthy ageing. The demand for dairy products is 
expected to increase in the future as the human population is growing. The 
production of dairy products, however, also has a negative impact on the 
environment as during its production greenhouse gasses (GHG) are being formed. 
Global milk production is responsible for 2.9% of the total anthropogenic GHG 
emissions of which methane (CH4) emission by dairy cows is the single largest source. 
Methane is a harmful GHG that is 28 times more harmful than carbon dioxide (CO2) 
over a time period of 100 years. A reduction in CH4 emission by dairy cows is 
therefore wanted.  
A reduction in CH4 emission could be achieved by using different CH4 mitigation 
strategies like management, feeding, microbial, and breeding strategies. 
Management strategies focus more on the reduction of CH4 emission on the whole 
farm level rather than on individual animal level. Feeding strategies are a proven 
method to reduce CH4 emission, but their reduction has been found to be short-term 
or costly to maintain. Microbial strategies have not been found to give a consistent 
and long-term reduction of CH4 emission. Breeding strategies have the advantage 
that they are cost-effective to implement and could give permanent and cumulative 
reduction in CH4 emission.  
The influence of the genetics of the host on CH4 production could be utilized by 
selective breeding for reduced CH4 emission. Breeding for reduced CH4 emission by 
dairy cows, however, requires individual CH4 emission of many dairy cows. As 
measuring CH4 in climate respiration chambers (the ‘golden standard’) is impractical 
and expensive for many dairy cows, the use of indicators for CH4 emission as a 
phenotype that could be used in selective breeding has been proposed.  
This thesis focuses on three different types of indicators for CH4 emission: 1) 
indicator based on milk fat composition; 2) indicator based on milk mid-infrared 
(MIR) spectra; 3) indicator based on CH4 and CO2 concentrations measured in the 
breath of the cow. Indicators based on milk composition utilize the relationship 
between microorganisms present in the rumen, CH4 emission, and milk fat 
composition. Methane emission is linked through the VFA produced in the rumen 
with milk fat composition. Cows producing high or low levels of CH4 have different 
microorganisms, but also show a distinction in VFA produced by these 
microorganisms. Most of the VFA produced will be absorbed from the rumen and 
some will be transported to the mammary gland where they are used for de-novo 
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synthesis of milk fatty acids (FA). Indicator based on sensor measurements of CH4 

and CO2 concentrations in the breath of the cow during automatic milking system 
(AMS) visits are a direct indicator for CH4 emission. Methane emitted during an AMS 
visit is measured and this is an indicator of CH4 emission during a full day.  
In chapter 2, indicators of CH4 production based on milk fatty acids (FA) have been 
used to predict CH4 emission. The milk fat composition of 1,905 first lactation Dutch 
Holstein-Friesian cows was used to investigate three different predicted CH4 yields 
(in g/kg DMI): Methane1, Methane2, and Methane3. The first indicator (Methane1) 
was reported in literature and applied to our dataset. A second prediction equation 
(Methane2) was derived excluding FA that were present in relatively different 
concentrations (difference between datasets larger than 40 %) in our dataset 
compared to the one used to develop Methane1 on. A third prediction equation 
(Methane3) was derived excluding FA with relatively different concentrations and 
FA with concentrations < 1 g / 100 g fat in our dataset. Predicted CH4 yields were 
demonstrated to be heritable traits, with heritabilities between 0.12 and 0.44. 
Breeding can, thus, be used to decrease methane production predicted based on 
milk fatty acids. 
In chapter 3, genetic variation of CH4 emission by Dutch Holstein Friesian cows 
measured using infrared sensors installed in automatic milking systems (AMS) was 
estimated. Measurements of CH4 and carbon dioxide (CO2) on 1,508 Dutch Holstein 
Friesian cows were available. Phenotypes per AMS visit were the mean of CH4 
(CH4mean), mean of CO2 (CO2mean), CH4mean divided by CO2mean (Ratiomean). 
Ratiomean was included in chapter 3 because it was reported in other studies and 
can be used to quantify methane production. CH4mean and CO2mean are the 
underlying traits to Ratiomean. The residuals of these traits were not normally 
distributed and, therefore, phenotypes were log10-transformated into CH4log, 
CO2log, and Ratiolog. The repeatabilities of the log10-transformated CH4 phenotypes 
ranged between 0.14 and 0.31. The heritabilities of these phenotypes ranged 
between 0.03 and 0.12. Breeding can, thus, be used to decrease methane production 
predicted based on breath sensor measurements in AMS. The use of CH4log for 
selection instead of Ratiolog would be expected to give a greater reduction of 
methane emission by dairy cows as Ratiolog had a lower repeatability and heritability 
than CH4log. Furthermore, It is important to account for farm, AMS, day of 
measurement, time of day, and lactation stage when estimating genetic parameters 
for methane phenotypes. Moreover, increasing the amount of sensor measurements 
increases the repeatabilities of the methane phenotypes. Therefore, It is 
recommended to measure CH4 and CO2 on at least 10 consecutive days to maximize 
repeatabilities of the methane phenotypes.  
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In chapter 4, genetic parameters of milk mid-infrared (MIR) predicted CH4 emissions 
and their relationship with CH4 measured with sensors in AMS. Milk production and 
CH4 data on 1,302 cows were available with three milk MIR predicted CH4 
phenotypes: CH4 production (g/day), CH4 yield (g/kg DMI), and CH4 intensity (g/kg fat 
and protein corrected milk) and three sensor measured phenotypes (chapter 3). The 
heritabilities of the milk MIR predicted CH4 phenotypes ranged between 0.17 and 
0.21. Correlations between milk MIR predicted CH4 phenotypes and sensor 
measured phenotypes were weak with phenotypic correlations ranging between 
0.03 and 0.16. This indicates that milk MIR predicted CH4 phenotypes provide 
information that is independent of sensor measured phenotypes. Combining 
indicators could overcome some of their shortcomings and is useful when indicators 
contain information that is independent of each other. Combining the information 
from the two types of CH4 phenotypes could be a useful next step. Moreover, the 
amount of variation explained by the milk production traits was moderate for CH4 
yield and CH4 intensity (R2 = 0.45 and 0.63, respectively), whereas the R2 for CH4 
production and sensor measured phenotypes were low (0.01 – 0.13). The variation 
that is not explained by these production traits (1-R2) is indicative for the additional 
information provided by the CH4 phenotypes.   
Incorporating CH4 emission into the breeding goal could result in unfavourable 
responses in other breeding goal traits. Therefore, the relationship between CH4 
emission and other breeding goal traits needs to be studied. In chapter 5, the aim 
was to estimate the correlations between CH4 emission indicators and test-day milk 
production and fertility traits. CH4 emission was either sensor measured or predicted 
based on milk MIR spectra. Most genetic correlations between CH4 emission and 
test-day milk production traits and fertility traits were either weak or moderate. 
Moderate correlations between milk MIR predicted CH4 yield and percentages of fat 
and lactose, and between sensor measured CH4 emission and yield traits (yields of 
fat, protein and lactose) were found in this study. The percentage of fat and lactose 
and the yields of fat, protein and lactose might decrease when selecting for reduced 
CH4 emission. The results show that inclusion of CH4 emission in the breeding goal is 
expected to have a minor negative impact on the other breeding goal traits.  
To get a better understanding of predicted CH4 emission based on these indicators, 
I have performed genome-wide association studies (GWAS) on CH4 emission 
determined via the three indicators of this thesis (chapter 6). The DGAT1 K232A 
polymorphism on chromosome 14 was found to be significantly associated with milk 
predicted CH4 emission indicators and has been linked to milk production and 
composition in previous studies. Furthermore, significant association was found for 
Methane3 on chromosome 19 of which the lead SNP was located in the regulatory 



Summary 

 
 

127 
 

associated protein of mTOR complex (RPTOR). These associations with CH4 emission 
could relate metabolic processes in the rumen that affect the production or emission 
of CH4, to milk composition, or both. When the associations relate to milk 
composition, selection based on milk predicted CH4 emission might favour cows with 
a certain DGAT1 genotype as parents for the next generation. When the associations 
relate to metabolic processes in the rumen and, thus, affect CH4 production and 
emission, CH4 emission measured in CRC should be affected by the DGAT1 genotype. 
No definite statement can be made whether the associations with milk predicted CH4 
emission are due to the impact of these association on metabolic processes, on milk 
composition, or both. It is most likely that the associations relate to milk composition 
which impacts milk predicted CH4 emission via the prediction equations. 
Combining information from sensor measured CH4 emission with milk MIR predicted 
CH4 emission was suggested in chapter 4 as a useful next step for selective breeding 
for reduced CH4 emission. To study the effect of combining information for selective 
breeding for reduced CH4 emission, the accuracy of the estimated breeding value 
(EBV) when based on one of the two sources of information (i.e. one of the two 
indicators for CH4 emission) was calculated. The accuracy of the EBV based on sensor 
measured CH4 emission information is 0.46. The accuracy of the EBV using only 
information on milk MIR predicted CH4 emission is 0.51. Combining information from 
both sources increases the accuracy to a value of 0.66. Although sensor 
measurements are not available in practice currently, using multiple indicators is 
recommended as shortcoming in one of the indicators can be overcome by the other 
indicator.  
The relationship between CH4 emission and the other breeding goal traits could give 
an indication of the potentially unfavorable responses in other breeding goal traits 
when selecting for reduced CH4 emission. The correlations found between the EBV 
of the CH4 indicators and the EBV of the six breeding goal traits were low to medium 
ranging between -0.44 and 0.09 for sensor measured CH4 emission. Moreover, 
correlations with milk MIR predicted CH4 emission were also low and range between 
-0.30 and 0.31. The correlations estimated show that inclusion of CH4 emission in the 
breeding goal is anticipated to have a minor impact on the breeding goal traits 
studied. 
This thesis shows that there is a possibility to use selective breeding to reduce CH4 
emission. Correlations between milk MIR predicted CH4 phenotypes and sensor 
measured phenotypes were low. This indicates that milk MIR predicted CH4 
phenotypes provide information that is independent of sensor measured 
phenotypes. Using multiple indicators is recommended as shortcoming in one of the 
indicators can be overcome by the other indicator. The correlations estimated in this 
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thesis show that inclusion of CH4 emission in the breeding goal is anticipated to have 
a minor impact on milk composition and on the breeding goal traits. The minor 
impact that is anticipated for the breeding goal traits is favorable towards including 
CH4 emission in the breeding goal with an eye on the future. 
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Samenvatting 
 
Zuivelproducten zijn een belangrijke voedselbron voor mensen en bevatten 
voedingsstoffen die essentieel zijn voor de ontwikkeling en het gezond ouder 
worden van mensen. Zo zijn zuivelproducten rijk aan eiwitten en bevatten ze 
mineralen, zoals calcium, die belangrijk zijn voor humane gezondheid. De 
verwachting is dat de vraag naar melk en andere zuivelproducten verder zal 
toenemen in de toekomst, omdat de wereldbevolking aan het groeien is. Daarnaast 
heeft deze groeiende bevolking een steeds hogere levensverwachting. Ouderen zijn 
gebaat bij de consumptie van zuivelproducten en zodoende zal de vraag naar zuivel 
groeien.  
De productie van zuivel levert helaas ook een negatieve bijdrage aan het klimaat, 
omdat er broeikasgassen vrijkomen tijdens de productie van melk. Broeikasgassen 
dragen bij aan het broeikaseffect en zorgen voor een opwarming van de aarde, wat 
bijdraagt aan klimaatverandering. De productie van melk is wereldwijd 
verantwoordelijk voor 2,9% van de broeikasgassen geproduceerd door toedoen van 
mensen. De grootste bron van deze broeikasgassen is methaan (CH4) geproduceerd 
door melkkoeien. Methaan wordt gevormd in de pens, een van de vier magen van 
een koe, om daarna opgerispt en uitgeademd te worden. Om de negatieve bijdrage 
van zuivelproductie aan het klimaat te verminderen is het belangrijk om de uitstoot 
van methaan door melkkoeien te verminderen.  
In dit proefschrift heb ik gekeken of het mogelijk is om deze methaanuitstoot te 
verminderen door middel van fokkerij. Het gebruik van fokkerij om de 
methaanuitstoot te verminderen heeft als voordeel dat het kostenefficiënt is. 
Daarnaast is de mogelijke vermindering van methaan permanent en cumulatief. Dat 
wil zeggen dat de lagere methaanuitstoot kan worden doorgegeven van generatie 
op generatie en dat deze vermindering niet tijdelijk is.   
Er zijn een aantal randvoorwaarden voordat fokkerij gebruikt kan worden om de 
methaanuitstoot van koeien te verminderen. Er is een verschil in methaanuitstoot 
tussen koeien nodig dat gedeeltelijk bepaald wordt door het DNA van de koeien. Als 
alle koeien evenveel methaan uitstoten (geen variatie in methaanuitstoot) kan door 
middel van fokkerij de methaanuitstoot van koeien niet verlaagd worden. De variatie 
tussen koeien kan ontstaan door de omgeving van de koe (bijvoorbeeld, het voer van 
de koe) of door het DNA van de koe (het genetische materiaal van de koe). Als de 
verschillen tussen koeien in methaanuitstoot alleen ontstaan door verschillen in de 
omgeving van de koe, kan door middel van fokkerij de methaanuitstoot van koeien 
niet verlaagd worden.  
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In hoofdstuk 2, 3, en 4 heb ik met behulp van drie verschillende methodes gekeken 
naar de variatie in methaanuitstoot tussen koeien. In hoofdstuk 2 heb ik gekeken 
naar de samenstelling van het melkvet en heb ik door middel van voorspelformules 
de methaanuitstoot voorspeld. In hoofdstuk 3 heb ik een ademsensor in 
melkrobotten gehangen en op deze manier de methaanuitstoot tijdens het melken 
gemeten. In hoofdstuk 4 heb ik de methaanuitstoot voorspeld met behulp van 
voorspelformules gebaseerd op infraroodspectra van de melk. Uit dit onderzoek 
blijkt dat er inderdaad variatie is tussen melkkoeien in methaanuitstoot. 
Om het gedeelte van de variatie in methaanuitstoot dat wordt bepaald door het DNA 
te kunnen vergelijken tussen de verschillende methodes is de erfelijkheidsgraad 
berekend voor elke methode. De erfelijkheidsgraad laat zien hoeveel van de totale 
variatie bepaald wordt door het DNA van de koe. Als alle variatie in een kenmerk 
bepaald wordt door het DNA dan is de erfelijkheidsgraad 100% en als alle variatie 
bepaald wordt door de omgeving is de erfelijkheidsgraad 0%. Bij de meeste 
kenmerken wordt alleen een gedeelte van de variatie bepaald door het DNA. 
Bijvoorbeeld, als de variatie in een kenmerk voor 20% bepaald wordt door het DNA 
is de erfelijkheidsgraad van dat kenmerk 20%.  
Uit hoofdstuk 2, 3, en 4 blijkt dat een gedeelte van de variatie tussen koeien in 
methaanuitstoot bepaald wordt door het DNA van de melkkoeien. Op basis van 
melkvet (hoofdstuk 2) varieerde de erfelijkheidsgraad tussen de 12 en 44%. Op basis 
van sensormetingen (hoofdstuk 3) varieerde de erfelijkheidsgraad tussen de 3 en 
12%. Op basis van de infraroodspectra (hoofdstuk 4) varieerde de erfelijkheidsgraad 
tussen de 17 en 21%. Deze resultaten laten zien dat het inderdaad mogelijk is om te 
fokken op verminderde methaanuitstoot door melkkoeien.  
De erfelijkheidsgraad van de meeste methaankenmerken was vrij laag (<30%). 
Ondanks de lage erfelijkheidsgraden van methaanuitstoot heeft het wel degelijk nut 
om te fokken op verminderde methaanuitstoot. In de praktijk zien we dat zelfs met 
het fokken op kenmerken met hele lage erfelijkheidsgraden (<5%) zoals 
vruchtbaarheid en mastitis mooie resultaten behaald worden.  
Naast de erfelijkheidsgraad van methaanuitstoot is het ook belangrijk om de relaties 
tussen methaanuitstoot en andere kenmerken van de koe te onderzoeken. Een 
aantal voorbeelden van voor melkkoeien belangrijke kenmerken zijn melkproductie, 
vetgehalte van de melk, uiergezondheid, en vruchtbaarheid. Deze zogeheten 
fokdoelkenmerken zijn onderdeel van het huidige fokprogramma van melkkoeien en 
vertegenwoordigen een bepaalde economische waarde. Verder zijn deze kenmerken 
van belang voor het welzijn van de koeien. Fokken op een verminderde 
methaanuitstoot, door het toe te voegen aan het fokprogramma, zou dus geen grote 
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negatieve invloed moeten hebben op de andere kenmerken van het fokprogramma 
en de algemene gezondheid van de koe.  
Om deze relaties te onderzoeken zijn de correlaties tussen methaanuitstoot en 
huidige fokdoelkenmerken berekend (hoofdstuk 5 en 6). Een correlatie kan variëren 
tussen de -1 en 1. Wanneer de correlatie dichtbij de nul ligt is er (bijna) geen relatie 
tussen methaanuitstoot en fokdoelkenmerken. Wanneer de correlatie dichtbij de -1 
of 1 ligt is er een zeer sterke relatie tussen methaanuitstoot en fokdoelkenmerken. 
De meeste correlaties tussen methaanuitstoot en fokdoelkenmerken waren vrij laag 
(tussen de -0,3 en 0,3), dit betekent dus dat er een zwakke relatie is tussen 
methaanuitstoot en fokdoelkenmerken. Er zijn matige correlaties (tussen de -0,5 en 
-0,3 of tussen de 0,3 en 0,5) gevonden tussen methaanuitstoot en de percentages 
van vet en lactose in de melk. Ook zijn er matige correlaties gevonden tussen 
methaanuitstoot en de totale opbrengst van vet, eiwit, en lactose uit de melk.  
De relatie tussen methaanuitstoot en de samenstelling van de melk is dus matig. Dit 
betekent dat de melksamenstelling mogelijk een klein beetje kan veranderen 
wanneer methaanuitstoot wordt toegevoegd aan het fokprogramma. Daarom is het 
belangrijk om dit in de gaten te houden.  
Concluderend, dit proefschrift laat zien dat er inderdaad verschillen zijn tussen 
koeien in methaanuitstoot. Deze verschillen worden voor een gedeelte bepaald door 
het DNA van melkkoeien. Zodoende is methaanuitstoot geschikt om toegevoegd te 
worden aan het fokprogramma van melkkoeien. Wanneer methaanuitstoot wordt 
toegevoegd kan de samenstelling van de melk een beetje veranderen, wat goed in 
de gaten moet worden gehouden. Het fokken van melkkoeien met een verminderde 
methaanuitstoot kan een bijdrage leveren aan het verminderen van de hoeveelheid 
broeikasgassen geproduceerd door de zuivelindustrie.  
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