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A B S T R A C T

A current bottleneck of state-of-the-art machine learning methods for image segmentation in agriculture, e.g.
convolutional neural networks (CNNs), is the requirement of large manually annotated datasets on a per-pixel
level. In this paper, we investigated how related synthetic images can be used to bootstrap CNNs for successful
learning as compared to other learning strategies. We hypothesise that a small manually annotated empirical
dataset is sufficient for fine-tuning a synthetically bootstrapped CNN. Furthermore we investigated (i) multiple
deep learning architectures, (ii) the correlation between synthetic and empirical dataset size on part segmen-
tation performance, (iii) the effect of post-processing using conditional random fields (CRF) and (iv) the gen-
eralisation performance on other related datasets. For this we have performed 7 experiments using the Capsicum
annuum (bell or sweet pepper) dataset containing 50 empirical and 10,500 synthetic images with 7 pixel-level
annotated part classes. Results confirmed our hypothesis that only 30 empirical images were required to obtain
the highest performance on all 7 classes (mean IOU=0.40) when a CNN was bootstrapped on related synthetic
data. Furthermore we found optimal empirical performance when a VGG-16 network was modified to include à
trous spatial pyramid pooling. Adding CRF only improved performance on the synthetic data. Training binary
classifiers did not improve results. We have found a positive correlation between dataset size and performance.
For the synthetic dataset, learning stabilises around 3000 images. Generalisation to other related datasets proved
possible.

1. Introduction

1.1. Research aim

In this paper we investigated a methodology to reduce the de-
pendancy on manually annotated datasets for plant part segmentation
in agriculture when applying state-of-the-art deep learning methods,
e.g. convolutional neural networks (CNN) for semantic segmentation.
CNNs were bootstrapped by a synthetic dataset and fine-tuned on a
small manually annotated dataset. Additionally, our aim was to further
specify CNN and data requirements for this task and therefore we in-
vestigated (i) the correlation between synthetic dataset size and per-
formance, (ii) the minimum required amount of fine-tuning data, (iii)
explicit improvements for this task by training part classes separately in
binary classifiers, (iv) the effect of post-processing using conditional
random fields (CRFs) and (v) the generalisation power to related da-
tasets differing in acquisition distance and hardware.

Currently state-of-the-art computer vision methods for semantic
segmentation are dominated by supervised machine learning such as
CNNs (Everingham et al., 2015; Zhao et al., 2016; Wu et al., 2016).
With the advent of these methods comes the requirement of large and
detailed annotated datasets (Najafabadi et al., 2015). Although this
depends on the model’s number of free parameters and the problem
complexity, it has already been shown that dataset size and classifica-
tion performance are positively correlated (Banko and Brill, 2001;
Brants et al., 2007). Specifically for deep learning methods, this cor-
relation holds given sufficient model size, training iterations and reg-
ularisation (Erhan et al., 2010; Srivastava et al., 2014).

Unfortunately, the lack of annotations frequently imposes a new
bottleneck for learning. Annotating per pixel class labels is labour in-
tensive, which can become infeasible for large sets with a multitude of
classes. Particularly computer vision in domains like agriculture, with a
high amount of occlusions and high object and environmental com-
plexity (Gongal et al., 2015), obtaining detailed annotated datasets that

https://doi.org/10.1016/j.compag.2017.11.040
Received 14 July 2017; Received in revised form 23 October 2017; Accepted 30 November 2017

⁎ Corresponding author at: Wageningen University & Research, Greenhouse Horticulture, P.O. Box 644, 6700 AP Wageningen, The Netherlands.
E-mail addresses: ruud.barth@wur.nl (R. Barth), joris.ijsselmuiden@wur.nl (J. IJsselmuiden), jochen.hemming@wur.nl (J. Hemming), eldert.vanhenten@wur.nl (E.J. Van Henten).

Computers and Electronics in Agriculture xxx (xxxx) xxx–xxx

0168-1699/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

Please cite this article as: Barth, R., Computers and Electronics in Agriculture (2017), https://doi.org/10.1016/j.compag.2017.11.040

http://www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2017.11.040
https://doi.org/10.1016/j.compag.2017.11.040
mailto:ruud.barth@wur.nl
mailto:joris.ijsselmuiden@wur.nl
mailto:jochen.hemming@wur.nl
mailto:eldert.vanhenten@wur.nl
https://doi.org/10.1016/j.compag.2017.11.040


capture all image variance often proved to be insurmountable. One
solution is to perform large-scale crowd-sourcing (Kavasidis et al.,
2014; Everingham et al., 2010a; Russell et al., 2008), though this can
remain costly. Another popular and successful solution is to bootstrap
(or pre-train) machine learning models with synthetic data (Ros et al.,
2016; Shotton et al., 2013; Cordier et al., 2016).

To investigate this solution and its boundary conditions in the do-
main agricultural computer vision, we report on deep learning experi-
ments that used the Capsicum annuum (bell or sweet pepper) dataset
(Barth et al., 2017) containing 8 classes (7 plant parts plus background
class) annotated both in empirical images (50) and corresponding
synthetic images (10,500). The dataset provides a demarcated scope for
semantic part segmentation, comparable to datasets like The Penn-
Fudan face part dataset (7 classes) (Wang et al., 2007), Labeled Faces in
the Wild (3 classes) (Learned-Miller et al., 2016), Caltech-UCSD Birds-
200-2011 bird part dataset (3 classes) (Wah et al., 2011) and the Pascal-
Person-Part dataset (6 classes) (Chen et al., 2014, 2016a).

The need for object and part recognition on a per-pixel level in this
domain arises from requirements in harvest robotics (Bac et al., 2013),
phenotyping (van der Heijden et al., 2012) and disease detection
(Polder et al., 2014), which require precise object classification and
localisation. For example in harvest robotics, obstacle maps for motion
planning need to have a resolution up to the plant part level (Bac et al.,
2014a, 2016).

1.2. Hypotheses

Our main hypothesis was that only a small manually annotated
empirical fine-tuning dataset would remain required for optimal and
successful empirical learning after bootstrapping a convolutional neural
network (CNN) with related synthetic data, as compared to other
training methods.

To gain further insights in the dataset size requirements for
learning, our additional hypothesis was that segmentation performance
increases with larger synthetic or empirical dataset size, though will
level out at a certain order of magnitude.

During the experiments we developed further additional hypotheses
and tests for causes of certain segmentation results, e.g. the training of
binary classifiers to circumvent skewed class learning and the addition
of CRFs to improve local class segmentation boundaries.

Finally, we hypothesise that a empirically fine-tuned model can
robustly generalise to related datasets, due to the distributed and
hierarchical representation learning of CNNs. We define related data-
sets as images of the same crop, though under different conditions such
as illumination, acquisition hardware or imaging distance.

Although previously we have provided brief evidence for our main
hypothesis as a perspective towards future research (Barth et al., 2017),
in this paper we will expand on that work. We affirm our earlier ex-
periments with a more advanced CNN architecture and place the results
in a broader context in this paper.

1.3. Requirements

Regarding our main hypothesis, we require a quantification of the
small empirical dataset size. Although this number is arbitrary, we aim
for a supervised machine learning methodology that needs no more of a
manual annotation effort than 2 days. Given an average previously re-
ported annotation time of 30min per image in the used dataset (Barth
et al., 2017), this translates to an upper bound of 30 images.

For optimal learning, we require that no other learning scheme that
includes combinations of synthetic, empirical, other related and/or
unrelated data for bootstrapping and/or fine-tuning has a higher per-
formance on the empirical test set.

We define successful learning as the recognition of all classes, pre-
ferably with a low performance variance amongst classes. Success itself
is quantified using the intersection-over-union measure, stated in Eq. 1.

However, because the extent of success is highly task dependent, we do
not define hard requirement values. We can however indicate that for
tasks such as detection, a relatively low (IOU⩾ 0.5) is sufficient because
it is not the precise overlap that counts, but partial recognition suffices.
However, for tasks such as phenotyping the measure is required to be
high (IOU⩾ 0.9), since exact dimensions and morphology are of in-
terest.

1.4. Contributions

Our work provides the field of computer vision in agriculture a
pioneering methodology for state-of-the-art segmentation, whilst si-
multaneously reducing the constraints on labour intensive manual an-
notations. Results are a key part in the next leap of robotization in
agriculture to keep up with the increasing demand of productivity and
quality whilst decreasing the pressure on resources required (Bac et al.,
2014b).

1.5. Research context

The use of synthetic image data is emerging as a powerful tool in the
computer vision community to generate training data for bootstrapping
machine learning models. Such models can either be co-trained or fine-
tuned with empirical data (Dittrich et al., 2014; Kondaveeti, 2016), on
which the models are also deployed. Examples that show improved
object recognition performance can be found in multiple domains, e.g.
3D human pose estimation from depth images (Shotton et al., 2013)
and multi-modal magnetic resonance imaging for pathological cases
(Cordier et al., 2016). Other notable examples for urban scene classi-
fication showed that synthetic images alone were sufficient as training
data for a model applied to real scenes (Hattori et al., 2015), though
accuracy was increased when combined with real training data (Ros
et al., 2016).

To a certain extent, synthetic training and empirical fine-tuning can
be seen as a form of soft transfer learning (Caruana, 1995; Bengio,
2011; Bengio et al., 2011), where a model can be successfully applied to
a different task and domain. However, since in our case not only the
task is equal but also the data is highly similar, we therefore adhere to
the term bootstrapping.

The challenge of semantic segmentation in computer vision can be
described as to dividing an image into non-overlapping meaningful
regions, ultimately determining the object (part) class on a per-pixel
level. Historically, semantic segmentation has been performed mainly
supervised, although weakly or non-supervised approaches have also
been successful for certain problems (Wehrens, 2010; Zhu et al., 2016).
Compared to other methods that only generate a single high-level label
description per image, semantic segmentation has the benefit of loca-
lisation in the image plane. This advantage is useful for applications
such as robotics where object manipulation and navigation is depen-
dent on accurate positional information, e.g. autonomously driving cars
(Shapiro, 2016; Badrinarayanan et al., 2017), warehouse order picking
robots (Zeng et al., 2016) or agricultural robots (Bac et al., 2013, 2016).

Specifically for agricultural robotics, per-pixel level annotations are
either required or will improve performance as opposed to using coarse
localisation methods (e.g. bounding box detection). We see the main
applications in (i) crop handling, (ii) phenotyping and (iii) disease
detection.

Regarding crop handling, harvesting robotics requires precise end-
effector placement at the target fruit (Bac et al., 2016; Li et al., 2016) or
near the fruit such as a peduncle (Sa et al., 2017; Henten et al., 2009) or
to avoid obstacles during that motion (Bac et al., 2013). Per-pixel class
segmentations can provide the information to allow this precise end-
effector placement when registered depth can be inferred by using 3D
sensors, e.g. stereo imaging (Bac et al., 2014a) or time-of-flight cameras
(van der Heijden et al., 2012). Other crop tasks, such as open field
weeding, also require to differentiate on a per-pixel level where the

R. Barth et al. Computers and Electronics in Agriculture xxx (xxxx) xxx–xxx

2



crop and weeds are (Milioto et al., 2017a,b) to allow for precise
spraying (de Soto et al., 2016) or dutch hoeing (Hemming and Rath,
2001). Also for the task of leaf picking, per-pixel labels might be ben-
eficial regarding precision over current bounding box approaches
(Ahlin et al., 2016).

Regarding automated phenotyping, where the task is to correlate
plant parameters with their underlying genetics to guide plant
breeding, the localisation of plant parts in the image is a hard re-
quirement (Araus and Cairns, 2014). Plant parameters such as leaf size
(van der Heijden et al., 2012), stalk thickness (Vijayarangan et al.,
2017) or spikelet counts (Pound et al., 2017) are to be estimated with
high precision. Per-pixel segmentation is a key development for this
domain. However, also for this task a registration with depth in-
formation is required to infer real world dimensions from the image
coordinates that the segmentation provides.

For plant disease detection, the task is not only to determine which
plant is healthy or diseased but moreover where on the plant the in-
fection is present (Phadikar and Sil, 2008) to allow local automated
treatment (Oberti et al., 2013) or to map the phase or size of the in-
fection in the crop to guide crop management (Lu et al., 2017).

Previously successful semantic segmentation methods were based
on manually crafted features as input for shallow learning models such
as support vector machines or random forests (Johnson et al., 2013;
Fulkerson et al., 2009). For other computer vision tasks, similar
methods were recently superseded by convolutional neural networks
(Everingham et al., 2015). However, initially such methods could not
perform semantic segmentation due to the convergent nature of the
networks’ architectures. Convolutional neural networks start with
global information that is compressed in an increasingly spatially in-
dependent hierarchy of features, forming a distributed representation of
the input whilst losing locality information. However, for semantic
segmentation preserving the locality information is key.

At first, solutions for the locality problem appeared by learning
additional objectives like coarse bounding boxes that represented the
location of the object in the image (Uijlings et al., 2013; Pont-Tuset
et al., 2015). Although often still preferred for speed or annotation
costs, the downside of bounding box methods is the lack of segmenta-
tion detail. Later approaches tried merging classifications from multiple
levels in the network’s hierarchy combined with super-pixel pre-seg-
mentation (Farabet et al., 2013). Recently, a novel architecture was
presented using fully convolutional neural networks (Papandreou et al.,
2015; Chen et al., 2015), differing from other networks by replacing the
fully connected layers with convolutional ones and adding dense pre-
dictions using the à trous algorithm (meaning with holes, also reported
as atrous) (Mallat, 1999). Furthermore, not uncommon with previous
approaches, an integrated layer was added for applying a CRF as post-
processing to refine the lost locality of the segmentation.

To further expand the challenge of object localisation, efforts were
made to localise parts within those objects (Felzenszwalb and
Huttenlocher, 2000, 2005), later also contrived for semantic segmen-
tation (Wang and Yuille, 2015; Tsogkas et al., 2015). Although this
refinement can be considered as merely increasing the number of
classes, this would neglect the strong spatial correlations between ob-
ject parts. Some methods applied compositional models and high-level
information to include these relationships and improve on object part
segmentations. With convolutional neural networks however, the dis-
tributed hierarchical representation of objects and their features facil-
itates learning these correlations.

This paper will first describe the research materials in Section 2. The
general methodology across experiments is then described in Section 3.
In the sections that follow, each experiment is reported separately with
their own introduction, method, results and discussion section. A gen-
eral discussion is provided in Section 11 and we conclude the paper in
Section 12.

2. Materials

2.1. Dataset description

The Capsicum annuum, sweet- or bell pepper image dataset (Barth
et al., 2017) consists of 50 empirical images of a crop in a commercial
high-tech greenhouse and 10,500 corresponding synthetic images,
modelled to approximate the empirical set visually and geometrically.
The synthetic images were generated to reflect the empirical situation
by rendering random 3D meshes of plants. These meshes were ran-
domly generated using 21 empirically measured plant parameters. To
create realistic images, the greenhouse growing architecture was
modelled as well as similar camera and illumination settings for ren-
dering.

In both image sets, 8 classes were annotated on a per-pixel level,
either manually for the empirical dataset or automatically for the
synthetic dataset. In Fig. 1 examples of images of the dataset are shown.
The dataset was publicly released at: http://dx.doi.org/10.4121/
uuid:884958f5-b868-46e1-b3d8-a0b5d91b02c0.

2.2. Convolutional neural network architectures

For our experiments we used the publicly available fully convolu-
tional neural network (CNN) architectures of DeepLab (Papandreou
et al., 2015; Chen et al., 2015) implemented on top of Caffe (Jia et al.,
2014). Although other deep learning implementations were being re-
searched for semantic segmentation (Shelhamer et al., 2016; Mostajabi
et al., 2014; Long et al., 2015), those were not yet available for ver-
ification at the time of our research. DeepLab models can either be
trained with weakly semi-supervised learning (e.g. bounding boxes) or
with strong supervision (e.g. per-pixel labels). For our approach, the
detailed annotated dataset allowed training strong supervision models,
resulting in more localised labeling as compared to bounding boxes.

The underlying architecture for the CNN models was based on VGG-
16 (Simonyan and Zisserman, 2014) as depicted in Fig. 2. VGG-16 was
originally intended for global object detection. To adjust it for semantic
segmentation, 2 changes were made to the architecture (Papandreou
et al., 2015). First the fully connected multi-layered perceptron at the
end of the network was replaced by fully convolutional layers (Long
et al., 2015); hence the network was applied in a convolutional manner
on the input image at its original resolution which resulted in per-pixel
labels. However, given the used stride of the convolutions this resulted
in down-sampled prediction. Therefore the second adjustment was

Fig. 1. Examples of empirical (top) and synthetic (bottom) color images (left) and their
corresponding ground truth labels (right). Class labels: background, leafs, pep-
pers, peduncles, stems, shoots and leaf stems, wires and cuts where pepper
where harvested. (For interpretation of the reference to colour, the reader is referred to
the web version of this article.)
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made by implementing the à trous algorithm; by upscaling the filters
with filler zeros, predictions at the original resolution could be made
(Chen et al., 2016a). Although potentially a better performing RESNET-
101 implementation for DeepLab also exists (Chen et al., 2016a), we
were not able to train such network due to GPU memory constraints.

To the base model DeepLab-Vanilla (Papandreou et al., 2015), the
following additional adjustments to the architecture were previously
made to explore the effect on segmentation performance on the PASCAL
VOC 2012 dataset (Everingham et al., 2010b).

1. Increasing the field-of-view (DeepLab-LargeFOV). Adjusted
input stride to 12 and using a kernel size of 3× 3 at the first fully
convolutional layer, the receptive field was doubled in comparison
to DeepLab-Vanilla whilst having a third of the number of free
parameters (Chen et al., 2015).

2. Addition of multi-scale predictions (DeepLab-MSc). Improved
segmentation accuracy at the boundaries of objects, the final feature
map layer receives 5 additional feature maps convoluted from in-
termediate layers in the network (Chen et al., 2015).

3. Combination of the former two adjustments (DeepLab-MSc-
LargeFOV) (Chen et al., 2015).

4. Addition of an attention model on multiple scales (DeepLab-
Attention). The input image was resized to several scales and used
for training both a network and an attention model. The attention
model weighed each image scale and each feature thereof for the
final segmentation (Chen et al., 2016b).

5. Addition of à trous spatial pyramid pooling (ASPP) (Deeplab-
v2). ASPP included image context at multiple scales by convolu-
tional feature layers with different fields-of-view (Chen et al.,
2016a; He et al., 2014).

For each model, pixels were independently classified without

considering label agreement across the image. Applying a fully con-
nected CRF (Krähenbühl and Koltun, 2011) can include long-range
object dependencies and reduces label noise while refining part edge
details. The CRF takes the CNN pixel prediction as the unary potentials
and maximises label consistency by encouraging the assignment of lo-
cally similar labels that have similar properties. The DeepLab models
can be extended with such a CRF as an extra integrated layer, although
its parameters cannot be trained by back-propagation and should be
found separately.

2.3. Hardware

Experiments were run on a NVIDIA DevBox system with 4 TITAN X
Maxwell 12 GB GPUs, Intel Core i7-5930 K and 128 GB DDR4 RAM
running Ubuntu 14.04. As a dependancy for the DeepLab V2 Caffe
version, the archived version of CUDA 7.5 was installed. Training a
single model took 24 h on average (using a batch size of 10 cropped
images of 300× 300 pixels per GPU and 30,000 iterations). Testing on
a single 800× 600 pixel image took around 200ms.

3. Methods

We performed Experiments I through VII, each consisting of sub-
experiments by varying dataset composition and/or model architecture.
In Fig. 3 an overview of the main experiments is presented. Not all
permutations of models, hyper-parameters, dataset types and sizes were
explored due to the infeasible combinatorial computational cost. For
this reason, the best performing model architecture was selected first by
evaluating Experiment I, which was then further used for Experiments
II-VII.

For each experiment, the same range of images was selected for the
train, validation or test phase to make sure unique synthetic plant

Fig. 2. Convolutional neural network archi-
tecture of Deeplab Vanilla model, based on the
VGG-16 composition. All models used in this
paper are modified versions of this architecture.
Color encodes layer type: cropped input image,

convolutional layer +rectified linear unit,
pool layer and fully connected layers trans-
formed to fully convolutional ones. Dimensions
indicate feature map width× height× number
of feature maps. (For interpretation of the refer-
ences to colour, the reader is referred to the web
version of this article.)

Fig. 3. Overview of performed main experiments I through VII, with sub-experiments A through G. Model architectures (rectangles) were trained, validated, tuned or tested with dataset
types empirical (diamond), synthetic (circle) or different but related datasets (hexagon) with the number of image samples displayed within. A subscript indicates that only a single
specific class was used.
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models or empirical plants were separated in the different phases and
equal between experiments. The synthetic dataset consisted of 6 scenes
of 1750 images (10,500 total), with each scene containing unique
plants (Barth et al., 2017). To ensure separation between unique
images, the first 5 scenes with images 1–8750 were used as synthetic
training images whereas the remaining scene were used for validation
images (8851–8900) and test images (8751–8800). Similarly, for the
empirical dataset, images 1–30 of unique plants were used for training
and the remainder images 31–40 for validation and 41–50 for testing.

The hyperparameters of the network were manually optimised using
the validation dataset and a combination of models and dataset con-
figurations as suggested by (Goodfellow et al., 2016; Bengio, 2012).
Specifically, we searched for a learning rate that reduced the loss on the
validation set gradually over the iterations towards zero. For the solvers
Stochastic Gradient Decent, AdaDelta, Adaptive Gradient Descent,
ADAM, Nesterov, and RMSprop, learning rates of 0.1, 0.01, 0.001 and
0.0001 were explored. We noted that none of the models overfitted on
the validation set, though IOU performance differed between solvers
and learning rates.

The hyperparameter search resulted in the choice of Adaptive
Moment Estimation (ADAM) (Kingma and Ba, 2014) with

= = = −β β ε0.9, 0.999, 101 2
8 and a base learning rate of 0.001 for

30,000 iterations with a batch size of 4. These chosen hyper-parameters
were found to be consistently optimal for multiple experiments with
different datasets and therefore we fixed them across all experiments.
To each model, an adjustment was made in the layer weight in-
itialisation procedure. We updated the models to using MSRA weight
fillers (He et al., 2015; Mishkin and Matas, 2015). Furthermore, the
dropout rate (Srivastava et al., 2014) was adjusted to 0.50 to improve
generalisation.

As a performance measure the intersection-over-union (IOU) was
used, as described in (He and Garcia, 2009; Everingham et al., 2010a;
Barth et al., 2017) which is also known as the Jaccard Index similarity
coefficient. The IOU can be determined per class or as an average over
all classes. The measure as an average over all classes is defined in Eq.
(1), where for each class their IOU equals the intersection of the se-
mantic segmentation and the true labels divided by their union. To
derive the measure, first a pixel-level confusion matrix C is calculated
first for each image I in dataset D, where S p( )gt

I is the ground truth label
of pixel p in image I and S p( )ps

I is the predicted label. This implies that
Cij equals the count of pixels with ground truth label i and prediction j.

∑=
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=
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L

C
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Hence Gi denotes the total number of pixels labeled with class i in
the ground truth and Pj the total number of pixels with prediction j in
the image.

Apart from quantitative evaluation, qualitative evaluation of the
segmented images was performed to assess differences in segmentation
style (e.g. course versus fine). Albeit two different models can achieve
equal IOUs, the underlying distributions can be distinctive.
Furthermore, the emergent classification property of the spatial dis-
tribution of the true and false positives can be determined this way.

Aside from previously mentioned regularisation methods, over-
fitting for each experiment was prevented by selecting the optimal
model by periodically checking the performance on the validation set.
This method of early stopping requires to select a point where perfor-
mance either stabilised or decreased. This was done manually by
evaluating the IOU per class over the iterations. In this research, the

early stopping point found for each model was at 30.000 iterations.

4. Experiment I

CNN model architecture is a key factor to classification performance
(Bengio, 2009). Proven base architectures are often modified with new
insights to validate the enhancements on a range of benchmark data-
sets. To investigate how a set of model architecture modifications relate
to part segmentation performance for our use-case, we compared 6
deep learning architectures in Experiments I-A through I-F, ordered by
increasing expected performance according to previously obtained re-
sults by their authors. From these experiments we selected the best
performing model for further Experiments II-VII. Assuming that the
largest dataset for training results in optimal performance on the test set
(Soekhoe et al., 2016), (a hypothesis we aimed to verify for our case
with Experiment III) the full synthetic training dataset of 8,750 images
was used to train each model in Experiment I. We did not use empirical
data for Experiment I since we assumed performance and behaviour of
the different architectures would be ranked similarly given comparable
domain images, close on the same manifold.

4.1. Methods

The following experiments were run using synthetic images 1–8750
for training, validation images 8851–8900 and testing images
8751–8800; I-A: DeepLab-Vanilla, I-B: DeepLab-MSc, I-C: DeepLab-
LargeFOV, I-D: DeepLab-MSc-LargeFOV, I-E: DeepLab-Attention and I-
F: DeepLab-V2.

The performance was compared quantitatively by evaluating mean
IOUs over the test set images and over each class. Furthermore, the final
segmentations were assessed qualitatively. The primary requirement for
a model to be selected for future experiments was the ability to re-
cognise all classes. The secondary requirement was high IOU perfor-
mance relative to the other models.

4.2. Results

In Fig. 4 the performances of model I-A through I-F are shown. For
qualitative investigation, an example segmentation for each model with
corresponding color and ground truth image is shown in Fig. 5. Fur-
thermore, the underlying per class probability heat maps are presented
to provide insight into the raw output of the CNN.

Fig. 4. Results of Experiment I, displaying mean test set IOU over each class for each
model architecture I-A through I-F.
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4.3. Discussion

In Fig. 4 we observed that all of the implemented modifications to
the base model (DeepLab-Vanilla) improved the mean IOU results, ex-
cept for adding 5 feature maps convoluted from intermediate layers in
the final feature map (MSc) (Chen et al., 2015). Evaluating Fig. 5, the
models fail to learn the uncommon classes or darker areas in the image,
e.g. wires and cuts. The commonality in the datasets was determined as
the percentage of ground truth pixels (in decreasing order): back-
ground, leafs, peppers, shoots and leaf stems, main stems, wires, ped-
uncles and cuts. This is further supported with results provided in
Appendix A), where the IOU per class on the validation set can be
observed over the training time for each model.

Fig. 5 shows the qualitative performance differences between
models. DeepLab-MSc had the desired property of sharp segmentation
boundaries, though failed to cope with pixels lacking distinct color in
the outer area of the image. Furthermore, combining MSc with Lar-
geFOV resulted in the neglect of uncommon classes, as can be observed
in I–D in Appendix A. The other models appeared coarse around the
plant parts, providing more true positive detections.

In Fig. 5 the per class probability maps by DeepLab-V2 for a syn-
thetic example image is shown. These distributions gave insight in the
underlying learned class probabilities. It shows that the stem and wire
classes were highly overlapping and the final segmentation of the wires
was often overruled by the stem class. Furthermore, although leaf stems
and side-shoot segmentations were sparsely present in the final seg-
mentation, the model appeared to learn the individual probability
distributions quite well. Plausibly, learning binary classifiers for these
classes should improve IOU performance, which we investigated in
Experiment V.

Overall, the most recent proposed modification DeepLab-V2; the
addition of à trous spatial pyramid pooling (Chen et al., 2016a), had the
highest IOU. Moreover, it is being able to learn all plant parts (see
Appendix Appendix A) hence meeting one of our requirements. We
therefore selected the DeepLab-V2 model for Experiments II-VII.

Future research is suggested of adding the beneficial DeepLab-MSc
sharp edge properties to DeepLab-V2, without suppressing the un-
common classes.

Fig. 5. Results of Experiment I. The top two rows show segmentation results of Experiments I-A through I-F. Class labels: background, leafs, peppers, peduncles, stems,
shoots and leaf stems, wires and cuts. The bottom two rows show per class probability maps of DeepLab-V2 for the synthetic color image from which the final segmentation was
derived by selecting per pixel the class with the highest value of all maps. (For interpretation of the references to colour, the reader is referred to the web version of this article.)
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5. Experiment II

We hypothesise that synthetic bootstrapping and fine-tuning with a
small empirical dataset can improve performance over other learning
strategies. Previously we explored this briefly using the DeepLab-
Vanilla model (Barth et al., 2017). In this paper we try to further va-
lidate those results and expand on that work. We ran the following 5
experiments, using the DeepLab-V2 model.

5.1. Methods

The motivation for each experiment is given below and the used
image indices are shown between brackets. To evaluate the perfor-
mance, the mean IOU over the test set images and over all classes for
each experiment was obtained.

II-A DeepLab-V2. Train: synthetic (1–8750). Test: synthetic (8751–8800).
This experiment was run to obtain a baseline performance of the
model when having access to a large and detailed annotated da-
taset for this domain. Assuming performance increased with da-
taset size until the model’s complexity was saturated (Zeiler and
Fergus, 2014), this experiment provides insight into the theoretical
upper bound of the performance of all experiments in II. This as-
sumption was further tested in Experiment III.

II-B DeepLab-V2. Train: synthetic (1–8750). Test: empirical (41–50).
Determines to what extent a synthetically trained model can gen-
eralise to a similar set in the same domain (e.g. empirical images)
without fine-tuning. If performance would approximate the per-
formance obtained in I-F, this is evidence against the aspect of our
main hypothesis that fine-tuning improves performance.

II-C DeepLab-V2. Train: empirical (1–30). Test: empirical (41–50).
Investigates if the model can learn with only a small empirical
dataset. If performance would approximate results of Experiment I-
F, this is evidence against the aspect of our main hypothesis that a
large dataset for bootstrapping would be required for improved
performance.

II-D DeepLab-V2. Train: PASCAL VOC. Fine-tune: empirical (1–30). Test:
empirical (41–50).
Compares the effect of bootstrapping with a non-related dataset. If
the performance approximate the performance obtained in I-F, this
is evidence against the aspect of our main hypothesis that a related
dataset of the same domain is needed for improved performance.

II-E DeepLab-V2. Train: synthetic (1–8750). Fine-tune: empirical (1–30).
Test: empirical (41–50).
Assesses the performance of bootstrapping with a related dataset
and fine-tuning with a small empirical set. Given our main hy-
pothesis, this experiment is expected to achieve best performance
on empirical data.

5.2. Results

The IOU results for each experiment are shown in Fig. 6 and were
split into per class IOUs in Fig. 8. Segmentation results for the best
performing model on synthetic data II-A and empirical data II-E are
shown in Fig. 7.

5.3. Discussion

From the quantitative results in Fig. 6 we derived the following:

II-A This model indicated a benchmark or baseline of optimal perfor-
mance when the model had access to a large dataset with perfect
ground truth. We assumed a positive correlation between dataset
size and classification performance (Banko and Brill, 2001; Brants
et al., 2007), to be further validated in Experiment III.

II-B Without fine-tuning, the synthetically bootstrapped model could

not generalise properly to empirical data.
II-C When training a model using only a small empirical dataset, the

performance of the most common classes approached the baseline
performance of II-A, as can be seen in Fig. 8 and Appendix A.
However, the model failed to discriminate the uncommon classes.
It appeared the model only learned the most color discriminative
classes.

II-D A model bootstrapped with a non-related dataset (PASCAL-VOC)
that was fine-tuned with empirical data, resulted in increased
performance on empirical data compared to the former experi-
ments II-B and II-C where no fine-tuning was used. This implies
fine-tuning on a bootstrapped network was beneficial. Any CNN
network requires training time and a large dataset to converge to
an effective feature distribution. Bootstrapping provides a stable
starting point, from which the fine-tuning can quickly converge to
a new optimum of the new dataset.

Fig. 6. Results of Experiment II-A through II-E. The mean IOU over the test set images and
over all classes for each experiment is displayed.

Fig. 7. Example segmentation results for synthetic test set from experiment II-A (left
column) and empirical test set from experiment II-E (right column). Color images (top
row), ground truth (middle row) and classification segmentation (bottom row) are shown.
Class labels: background, leafs, peppers, peduncles, stems, shoots and leaf
stems, wires and cuts. (Forinterpretation of the references to colour, the reader is
referred to the web version of this article.)
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II-E The best IOU performance on empirical data and inclusion of all
classes (see Appendix A) was achieved when bootstrapping on
related synthetic data, confirming our hypothesis that a synthetic
bootstrapping using synthetic data and fine-tuning with empirical
data results in optimal learning.

When evaluating the results qualitatively in Fig. 7 we observe very
high quality results in plant part recognition in both dataset types.
Furthermore, although the IOU for some classes seems relatively low
(IOU< 0.3) and segmentations were therefore not completely over-
lapping with the ground truth, we do observe good recall for each part
nonetheless.

Note that for the empirical segmentation, parts in the image were
detected that were not annotated manually in the ground truth due to
dark regions, but were present in the image. Hence these were eval-
uated as false positives, although they would be true positives if human
annotation was perfect. Hence this annotation bias resulted to a lower
reported mean IOU.

For both segmentations it holds that elongated parts were not
connected. This was likely due to the à trous algorithm that upscales a
sparse low resolution input feature map (Chen et al., 2016a). Post
processing with CRF might solve this issue, as investigated with Ex-
periment VI in Section 9.

6. Experiment III

This experiment investigated the hypothesis of the positive corre-
lation between segmentation performance and dataset size for our use-
case, given a model with sufficient learnable parameters (Soekhoe
et al., 2016; Zeiler and Fergus, 2014).

6.1. Methods

The DeepLab-V2 model was trained with logarithmically increasing
synthetic dataset size, with image ranges III-A: 1-101.0, III-B: 1-101.5, III-
C: 1-102.0, III-D: 1-102.5, III-E: 1-103.0, III-F: 1-103.5 and III-G 1-103.942 (≈
8750).

6.2. Results

In Fig. 9 the results for Experiment III are shown. For the underlying
IOU distribution per class and over time, refer to Appendix A.

6.3. Discussion

Observing Fig. 9, the segmentation performance increased with
dataset size though seemed to settle around 3,500 training images. As
can be seen in Appendix A, the performance increase was mainly due to

the rising correct classification of uncommon classes.
These results confirms our hypothesis that dataset size positively

correlates with performance, in line with previous research of others
(Zeiler and Fergus, 2014; Soekhoe et al., 2016). Additionally, it pro-
vided us the upper bound requirement for synthetic dataset size, as
more synthetic training images do not further increase performance.
However, the cause of the performance stabilisation might be twofold.
First, our synthetic plant models may only capture a realistic but lim-
ited variation within the implemented plant parameter bounds. Hence,
although each plant and scene was randomised (Barth et al., 2017),
there should be an upper limit where generating new images merely
adds redundant information. Therefore, if the synthetic models would
improve on the variance similarity with the empirical situation, i.e.
incorporating the wider range of plant parameters to increase diversity
in the model, the performance might keep increasing further with da-
taset size.

Second, it might also be the case that the learning ability of the CNN
model was saturated, meaning all weights could already be exploited
and therefore the network was not able to absorb more information. A
possible solution would be to raise the network’s complexity, e.g. by
increasing the number of feature maps and layers, whilst looking out for
the overfitting pitfall using proper regularisation (Goodfellow et al.,
2016).

7. Experiment IV

Until now the experiments investigated (i) which model would
likely to be most suitable for our domain, (ii) whether it was possible to
empirically fine-tune a synthetically bootstrapped model and (iii) how
much synthetic data was required to bootstrap a model. As posed in
Section 1.2, our main hypothesis is that only a small manually anno-
tated dataset would be required for (ii). Experiment IV aims to further

Fig. 8. Results of Experiment II. For each class, the mean test set IOU per class is displayed for each model II-A through II-E.

Fig. 9. Results of Experiment III: for an increasing synthetic dataset training size n, the
mean IOU over the test set images and over all classes is displayed.

R. Barth et al. Computers and Electronics in Agriculture xxx (xxxx) xxx–xxx

8



specify the dataset size requirements as evidence for this hypothesis by
evaluating how much empirical images are required to fine-tune a
synthetically bootstrapped model.

7.1. Methods

We fine-tuned the DeepLab-V2 model that was synthetically boot-
strapped with images 1–8750 with an increasing empirical dataset
ranges of: IV-A: 1–5, IV-B: 1–10, IV-C: 1–15, IV-D: 1–20, IV-E: 1–25 and
IV-F: 1–30. The performance was compared quantitatively by evalu-
ating the mean IOU over the test set images and over all classes for each
experiment.

7.2. Results

Results of Experiment IV is shown in Fig. 10.

7.3. Discussion

In Fig. 10 we observed that already with 5 empirical fine-tune
images a reasonable performance can be achieved when a model is
bootstrapped synthetically with related images (IOU=0.306). This
provides insight into the lower bound of manual annotated data re-
quired for fine-tuning, although this remains highly dependent on the
IOU needed of a specific task. Results confirm our hypothesis only a
small annotated dataset is sufficient for successful learning and meets
our requirement of up to 30 annotated images.

From the figures in Appendix A we derived that fine-tuning settles in
a minimum rapidly and furthermore overfitting was likely to occur
when the training was not stopped prematurely.

Again the hypothesis was confirmed that an increase of dataset size
improves performance. In our case a relative increase of 32% was
achieved using 30 images as opposed to 5. Additionally, performance
increase did not yet seem to settle, indicating that the small dataset did
not yet cover all empirical variance and more empirical data is likely to
further increase performance.

8. Experiment V

During the experiments we noted that common classes were better
classified than uncommon classes.

A possible explanation could be in the nature of CNN weight
learning. The weights of a convolutional neural network classifier move
over the error landscape on the direction of the average gradient of the
mini-batch. In the DeepLab architectures, a single training example
consists of a cropped image of 300×300 pixels, assuming a batch size
of 1. However, this image does not count as a single training example;
instead the error of each pixel is used to determine the gradient. Given
that the weights update in the average direction of the error, the gra-
dient might therefore be biased towards common classes.

A possible solution is to normalise the per class error during the loss
function computation. However, initial experiments where the loss was
normalised by the number of each label present (as opposed to sum-
ming the loss) did not yield a significant difference in performance for
any class.

We hypothesised further that the performance of individual part
classes could be boosted by an aggregation of dedicated binary CNN
models, one for each class. By applying this learning strategy, the error
landscape is assumed to be simplified and therefore easier to learn with
a bias to a single class.

8.1. Methods

Experiment V trained binary DeepLab-V2 models per plant part. To
compare performance with the non-binary V2 model, the binary seg-
mentations were aggregated by overlaying the output in descending
order of IOU performance. The mean IOU over the test set images and
over all classes of the aggregation was then compared to that of
Experiment III-G, because those results were obtained using DeepLab-
V2 without binary training.

8.2. Results

In Fig. 11 results are shown for the regular and binary models. In
Appendix A the per class IOU performance can be observed.

8.3. Discussion

In Fig. 11 the results show that performance decreased relatively
with 17% when training binary, as opposed to our hypothesis that this
would improve results. Specifically the Cuts class underperformed sig-
nificantly, as can be seen in Appendix A.

Although this experiment used a different training scheme, the
underlying availability bias of each class remained equal. To cope with
this difference, we suggest to balance the training data by cropping or
masking the input proportionally to the class distributions presented in
(Barth et al., 2017).

As each binary classifier was initialised with equal color normal-
isation parameters, based on the average color distribution over all
classes, the data for each binary classifier was not zero-centered and
normalised. However, attempts to normalise the data accordingly did
not yield significant results.

9. Experiment VI

DeepLab models that were previously enhanced by adding fully

Fig. 10. Results of Experiment IV: for an increasing empirical fine-tuning dataset size n,
the mean IOU over the test set images and over all classes is displayed.

Fig. 11. Results of Experiment V. The mean IOU over the test set images and over all
classes plotted for the DeepLab-V2 and aggregated binary DeepLab-V2 models.
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conditional random fields (Krähenbühl and Koltun, 2011), showed
improved segmentation performance for the PASCAL-VOC dataset
(Chen et al., 2015, 2016a). In the previous Experiments I-V without
CRF, the final classification for each pixel was determined by taking the
maximum from all softmax class prediction layers. However, this ap-
proach disregards local and global label agreement, as similar labels
tend to be clustered together and some labels co-occur more frequently
than others. Applying a CRF can introduce local and global label
agreement, usually resulting in a refinement of segmentation accuracy
around the label edges.

9.1. Methods

Experiment VI optimised a CRF for the output of a synthetically
trained model (1–8750) that was applied on synthetic data
(8751–8800) (VI-A) and that was fine-tuned (1–30) and applied to
empirical images (41–50) (VI-B). The optimisation of the CRF com-
prised of a selection of hyper-parameters, as described in (Krähenbühl
and Koltun, 2011). To obtain the CRF parameters, we performed a
coarse to fine grid search over a subset of possible parameters with
values of [0 10 20 40] on the validation sets, similar to (Chen et al.,
2015). The following values provided maximum IOU on the validation
set of the synthetic data: w1 =0.4, w2 =1.6, σα =0.1, σβ =0.04 and
σγ =9 and on the empirical data: w1 =0.2, w2 =0.5, σα =0.15,
σβ =0.04 and σγ =5.

The performance was compared quantitatively by evaluating the
mean IOU over the test set images and over all classes before and after
applying the CRF. Furthermore, the final segmentations were assessed
qualitatively to evaluate how the CRF influenced the segmentation.

9.2. Results

Post-processing the class probability maps output (see Fig. 5) of the
DeepLab-V2 model using CRF resulted in an average IOU increase of
1.51% on the synthetic set but yielded marginal performance increase
of 0.01% on the empirical set. To provide insight in qualitative im-
provement on the synthetic set, Fig. 12 displays an exemplary seg-
mentation result with and without CRF as compared to the ground
truth.

9.3. Discussion

Post-processing with CRF improved segmentation performance on
the synthetic dataset both qualitatively as quantitatively with a relative
+1.51%. The improvements were comparable to previously obtained
results in other datasets (+3%) (Chen et al., 2015). Qualitatively we
observed in Fig. 12 that disconnected circular class regions were con-
nected and smoothed with sharp edges.

Unfortunately these results were not duplicated for the empirical
dataset. Hence our hypothesis that the addition of CRFs improves local
class segmentation boundaries only partially holds. Extended parameter
search for the CRF did not provide better results. A possible explanation

could be the small empirical test set size (10) as compared to the syn-
thetic test set data size (50).

10. Experiment VII

To test the DeepLab-V2 bootstrapped and fine-tuned model on
generalisation power and robustness, we applied it to different but re-
lated datasets. Results provide insight in how applicable a model will be
to new conditions. In turn this gives an estimate of the required addi-
tional annotation efforts when image acquisition conditions or scenes
change.

10.1. Methods

In Experiment VII-A we deployed the model to datasets with equal
empirical conditions but with different acquisition distances of 30, 20
and 10 cm from the crop. In Experiment VII-B we tested on a previous
sweet-pepper image database obtained with different acquisition
hardware. This dataset differed in artificial illumination, camera ex-
posure settings, color calibration and crop season.

Due to the absence of a ground truth for these datasets, performance
was compared qualitatively by evaluating the final segmentations.
Specifically, we looked at the recognition of all classes and qualitatively
at true and false positives.

10.2. Results

Example segmentation results are shown in Fig. 13.

10.3. Discussion

Evaluating the exemplary results in Fig. 13, we observed that the
generalisation capability of an empirically fine-tuned CNN to other

Fig. 12. Qualitative result of Experiment VI on a cropped image. The segmentation of the
DeepLab-V2 model (middle) as compared to the ground truth (left) and with CRF post-
processing (right). (For interpretation of the references to colour, the reader is referred to
the web version of this article.)

Fig. 13. Example segmentation results (right column) of the synthetically trained, em-
pirically fine-tuned DeepLab-V2 model to images (left column) taken from 15 cm (row 1),
10 cm (row 2) and using different illumination hardware, exposure settings, color cali-
bration and season (row 3). Class labels: background, leafs, peppers, ped-
uncles, stems, shoots and leaf stems, wires and cuts. (For interpretation of the
references to colour, the reader is referred to the web version of this article.)
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datasets was quite successful.
Images with similar hardware on closer distances were segmented

similarly as the training set distance, although the number of false
positive segmentations seemed to increase. Furthermore, not all classes
seemed to be recognised (e.g. cuts).

Images from the different hardware, illumination conditions and
color calibration and season, were still segmented fairly well, though
mostly in the centered region of the image. Around the edges the
probability for false positives seemed to increase, most probably due to
relatively darker edges as compared with the empirical dataset on
which it was trained.

The results suggest that empirical dataset fine-tune images do not
necessarily have to be equal to the target image situation during de-
ployment, as certain generalisation of the model can be expected.
However, some performance degradation can be seen. Hence small
additional manual annotation efforts are likely to be required. We
partially confirmed our hypothesis that empirically fine-tuned CNNs
can be applied robustly to related datasets.

11. General discussion

We compared our work to previously reported True Positive (TP)
rates for plant part image segmentation in sweet-pepper (Bac et al.,
2013) that used classification and regression trees (CART) on multi-
spectral data. Performance differs as shown in Table 1. However, the
previously reported measure in itself did not take into account other
measures such as False Positives (FP). Furthermore, because TP rates
can be maximised at the expense of increased FP rates, the overall
performances of the methods were not directly comparable. However,
as opposed to their conclusion (Bac et al., 2013), we hypothesise our
segmentation results would be usable as reliable input for an obstacle
map, because we obtained an empirical stem part IOU≈0.5. Further-
more, we observed qualitatively a low amount of false positive detec-
tions that might obfuscate a obstacle map.

In previous research by others, pursuing a comparable goal of seg-
menting plant species using synthetic image data (Cicco et al., 2016),
similar results were obtained. Whilst training only on synthetic data
and testing on empirical data, one of the models IOU performance for
leaf class was 60.2, whereas when fine-tuned with empirical data the
performance increased with 23% to 74.1. In our case, using the same
training and testing methodology, the leaf class performance increased
with 75% from an IOU of 0.4 to 0.7 (see Appendix A). However, we
must note that the results were not directly comparable due to the
difference in number of classes in each approach and the differing
amount of empirical training data (30 vs 900). The authors do conclude
similarly that a synthetic dataset can improve segmentation perfor-
mance over the use of solely empirical images.

Although we aimed for a comprehensive set of experiments to ob-
tain observations for our hypothesis and search for dataset require-
ments, we understand that our exploration was not exhaustive.
However, we think our results show a clear direction of how important
factors such as synthetic bootstrapping, architecture and dataset size
and type influence part segmentation performance. Results showed
state-of-the-art performance, given a minimal amount of manually an-
notated empirical fine-tuning data.

The results of Experiment III raised an important question we could
not capture in our experiments. It remains unclear to what extent the

complexity of the plant model and synthetic images influences the
performance of bootstrapping. To answer this, the dataset complexity
should be varied. However, this resided outside the scope of this paper
and we suggest this as future research.

Related to this direction, would be informative to investigate the use
of generative adversarial networks (GAN) to improve synthetic images
towards the feature distribution of the empirical data (Shrivastava
et al., 2016; Goodfellow et al., 2014).

Currently the DeepLab models do not differentiate between in-
stances of parts. Future research on instance aware segmentation (Dai
et al., 2016) could further improve the usability of the segmentations by
discriminating between individual parts, for example by the MASK R-
CNN architecture (He et al., 2017).

The difference between IOU performance of VOC and related da-
taset bootstrapping (II-D and II-E), was shown to be 15% relative and
0.05% absolute. It might be argued that related synthetic bootstrapping
might not be worthwhile over bootstrapping with unrelated commonly
available datasets. However, when we evaluated Fig. 8 and Appendix A,
it shows that unrelated bootstrapping fails to recognise uncommon
classes such as peduncles and cut peduncles. Our approach with related
synthetic bootstrapping shows best performance and did recognise all
classes.

Although there is a tradeoff measured in time investment between
creating a synthetic dataset (Barth et al., 2017) and manually anno-
tating additional empirical data, our results show that when empirical
dataset size is a constraint and uncommon parts are required to be re-
called, synthetic bootstrapping can provide a solution. Moreover, when
a synthetic model is created formerly, it can be quickly used to generate
synthetic data under a broad set of new application conditions whilst
minimising the manual annotation requirement.

12. Conclusion

In this paper we showed a methodology to reduce the current bot-
tleneck of the reliance on manually annotated images that state-of-the-
art machine learning requires. We provided evidence for our hypothesis
that only a small manually annotated empirical fine-tuning dataset is
still needed for optimal and successful empirical learning after boot-
strapping a convolutional neural network (CNN) with related synthetic
data. Our results show only 30 empirical training images were sufficient
to obtain a mean IOU performance over all classes of 0.40.
Furthermore, our method approached the synthetic baseline perfor-
mance with a mean IOU over all classes of 0.53. Regarding our re-
quirements, our method was (i) unique in ensuring the recognition of
all classes, (ii) was optimal compared to other learning strategies and
(iii) was evaluated qualitatively successful and had desired quantitative
results for tasks such as part detection.

Experiments confirm our hypothesis that performance is positively
correlated with dataset size both for the synthetic and empirical data-
sets, although there was an upper limit of synthetic data where per-
formance stabilises. We suggested further research to further improve
performance by increasing model complexity or synthetic data var-
iance.

Of the VGG-16 model architectures that were investigated, the ad-
dition of à trous spatial pyramid pooling proved to be most effective.
The post-processing by conditional random fields yielded a small per-
formance boost in the synthetically trained networks, though failed to
improve in the same amount on the empirical data. Training binary
classifiers to improve uncommon class performance did not yield im-
proved results. The generalisation capability to images under different
conditions was demonstrated as feasible, though not equal in perfor-
mance as when fine-tuned.

Our work provides the field of computer vision in agriculture a
pioneering methodology for state-of-the-art segmentation performance,
whilst simultaneously reducing the reliance on labour intensive manual
annotations. Results are a key part in the next leap of robotization in

Table 1
True Positive rates of CART on part detection in hyperspectral sweet-pepper images and
our CNN model.

Leafs Peppers Peduncles Stems

CART (Bac et al., 2013) 73.6 54.5 49.5 40.0
DeepLab-V2 78.5 34.5 78.6 21.6
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agriculture to keep up with the increasing demand of productivity and
quality whilst decreasing the pressure on resources required.
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Appendix A

Fig. A.14. Detailed overview of IOU results of Experiments I through VII. For each model within those experiments A through F, the mean test set IOU, split by class, over the number of
training iterations is displayed. Hence, figures show performance per class over time and the spread between all classes. (For interpretation of the references to colour, the reader is
referred to the web version of this article.)
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.compag.2017.11.040.
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