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Propositions 

1. Mathematically optimal solutions in path planning for
floor egg collection in poultry houses are not practical.
(this thesis)

2. Though robots are based on deterministic logic, they
behave unpredictably in real-life environments.
(this thesis)

3. Humans should not be used as gold standard in
Artificial Intelligence systems.

4. The impact of science is not in the mean of the results,
but in the variation.

5. Explaining scientific research by means of a pictorial
book says more than 55115 words, 11 equations,
12 tables and 41 figures.

6. Just like in Precision Livestock Farming, society in general
should apply discrimination by default.
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1 | Introduction

1.1 Historical developments in poultry production
Although keeping poultry as a farming activity already existed for ages, 

during the 20th century it became a real profession. In the course of that 
century, poultry farming underwent several major revolutions in which the 
production system was drastically changed. 

In the beginning of the 20th century, hens were kept in small-sized flocks 
in the back yard of farms where hens had the freedom to exert their natural 
behaviour (Ketelaars 1992). A first intensification of production and specia-
lisation of farming was possible when dedicated small poultry houses were 
introduced, surrounded by pasture. These so-called loose housing systems 
allowed for a higher number of hens per farm with increased flock density. 
As hens foraged in the pasture and on a litter floor in the houses, this led to 
problems with parasites and diseases transmitted through the faeces on 
the floor (Hilbrich 1985). To prevent the hens from accessing their faeces, 
housing systems with slatted or wired floors were introduced. The use of 
these systems, however, led to other problems like hysteria, cannibalism 
and feather pecking (Prip 1976). 

The next major development was the introduction of battery cage 
systems, with the first commercial cages appearing in the 1930’s in the USA 
(Arndt 1931). From the 1960’s onwards they became also common practice 
in Western Europe (Ketelaars 1992, Bell 1995), and contributed to a further 
increase in flock size per farm. Improved control over animal behaviour, 
animal health and environmental conditions as well as more intensive use 
of space resulted in more efficient and economic production. Compared 
to the earlier loose housing systems, the labour conditions improved and 
labour requirements decreased due to mechanised egg collection. This 
yielded more clean eggs and alleviated the mandatory and physically 
demanding gathering of eggs that hens used to lay on the floor of the 
loose housing systems. Also, the introduction of chain- and belt systems for 
frequently occurring tasks like feeding and manure removal contributed 
to a further savings on human labour (Hoenson 1983, Muenchmeyer 1984, 
Rietveld - Piepers 1987, Ketelaars 1992, Sandilands and Hocking 2012). At 
the end of the 20th century 99% of the hens in the developed countries 
(such as the EU, the USA, and Australia) were kept at large scale farms, with 
buildings housing tens of thousands of birds in cages. Clearly, compared to 
earlier systems, in these battery cage systems the freedom of behaviour of 
the hens had been largely reduced. 

Concerns with respect to animal welfare in these caged production 
systems emerged in time, becoming explicit with the publication of Ruth 
Harrison’s book Animal Machines (Harrison 1964) and the Brambell report 
(Brambell 1965). This led to European legislation safeguarding animal 
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welfare (European Commission 1976) by stipulating specific requirements 
on the housing system. In response, improvements of traditional loose 
housing systems (single floor systems with partly slats and partly litter) were 
evaluated (Scholtyssek 1987, Froehlich and Oester 2001), and welfare-
enhancing modifications of the battery cage system were proposed (the 
so-called enriched cages) (Elson 1976, Elson 1981). As these modified systems 
could not directly meet the demands of poultry practice, research came 
up with a new type of loose housing system with a multi-story interior: the 
multi-tier aviary (Instituut voor Pluimveeonderzoek “Het Spelderholt” 1988). 
The combination of more behavioural freedom for the hens with higher 
stocking densities and increased mechanisation was the strong point of 
this system, thus making it both more animal welfare friendly as well as eco-
nomically viable. Still, a substantial amount of research and development 
on both design and managing practices proved necessary before these 
systems were ready to be adopted at a large scale by poultry farmers. 
During the eighties of the previous century, Switzerland and Sweden were 
front running countries in the development and adoption of those systems 
(Maartensson and Lundqvist 1991, Tauson, Jansson et al. 1992, Abrahamsson 
and Tauson 1998, Gunnarsson, Keeling et al. 1999, Tauson, Wahlström et 
al. 1999, Froehlich and Oester 2001). Later on, also other West-European 
countries like the Netherlands and the UK followed (Appleby, Duncan et al. 
1988, Tauson, Jansson et al. 1992, Blokhuis and Metz 1995, van Niekerk and 
Reuvekamp 1997, Cooper and Albentosa 2003, van Emous and Fiks-van 
Niekerk 2003, Tauson 2005). However, it was the EU-wide ban on conventi-
onal cages (European Union 1999) that induced the further development 
and large scale adoption of loose housing systems and enriched cages for 
laying hens in Europe. In 2013, so after the completed transition of housing 
systems that resulted from this ban, about 85% of the Dutch laying hens 
were housed in non-cage systems, whereas for the EU flock this was about 
42% (Windhorst 2015). Recently, similar legislation and guidelines that aim 
to ban traditional cages were introduced in both Australia and the USA 
(Van Horne and Achterbosch 2008, California 2009, Michigan 2009, Mench, 
Sumner et al. 2011). As a result, in the coming decades traditional cages 
will world-wide be replaced more and more by alternatives like furnished 
(enriched) cages or multi-tier loose housing systems. Since the non-cage or 
loose housing systems already have a substantial share in Europe’s laying 
hen housing, and are expected to be used on a larger scale in other 
regions as well, we will investigate these systems in more detail. 
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1.2 The multi-tier aviary house
The multi-tier aviary house is currently the most commonly used non-cage 

or loose housing system in the Netherlands. Such a system consists of 
multiple rows of multi-story, i.e. multi-tier, housing elements. Optionally, the 
house can have a covered or outdoor run with automated access control, 
offering hens more space to roam during the day.

A cross-section of a multi-tier aviary house is given in Figure 1.1, while 
Figure 1.2 contains a picture taken inside such a house. Both figures show 
the rows of a multi-tiered housing interior, providing living space for the 
animals and containing the laying nests. Both the elevated floors and 
laying nests are equipped with conveyor belts, to facilitate easier manure 
removal and egg collection, respectively. Furthermore, the housing interior 
contains perches for the hens on which they can roost, as well as chain 
feeders and automatic drinking lines to nourish the hens. The floor area is 
covered with a loose layer of litter to allow scratching and dustbathing. 
In time this litter will become mixed with droppings. Sometimes, the floor 
contains roughage bins or pecking blocks enriching the environment and 
providing the hens with additional activities.

Figure 1.1: Example of the cross-section of a multi-tier aviary house. All open space 
is accessible to the animals, including the floor area below most housing elements. 
This house measures 17 meters wide and 100 meters long, and is longitudinally 
divided into 6 compartments.
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In a multi-tier aviary, the hens will use the perches to sleep on at night 
and to rest on during the day. In the morning, they will visit the nest to 
lay their egg, while during the afternoon they are frequently found on the 
floor, roaming around or taking a dust bath in the litter. In between these 
activities, hens visit the tiers to gather their daily ration of feed and water. 
All in all, aviary houses are quite densely populated with animals. 

The multi-tier housing elements are made of steel, and the design is to 
a large extend based on the dimensions and capabilities of the animal. 
As a result, in this system the vertical free space between and below tiers 
is mainly determined by the size of the hens, and can be as small as 0.5 
meter. Furthermore, these housing elements can be over 2 meters wide 
and 2.5 meters tall, and fill more than half of the available floor space. 
Walking alleys between the rows with tiers are needed for inspection and 
management by the farmer. In the longitudinal direction, an aviary house 
is divided in several compartments, to separate the animals in smaller 
groups. Doors in the mesh wire walls provide the farmer access to neigh-
bouring compartments.

Given the fact that the entire infrastructure is not really designed to 
accommodate humans, an aviary house constitutes a challenging working 

Figure 1.2: Interior of a commercial aviary poultry house (different from Figure 1.1), 
where the hens have full freedom in their behaviour. On the left and right hand 
side are the interior rows, providing the animals with perches, feeders, drinkers and 
laying nests. On the floor, a loose layer of litter is visible which the animals use to 
dustbathe and scratch. The black box is a roughage bin for foraging.
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environment, also because of high concentrations of dust, water vapour 
and ammonia in the air. These conditions also provide a challenge for 
existing and envisioned technical systems. With all the steel construction 
elements in place, the amount of obstacle-free open space in the house 
is limited, and to a large extend occupied with animals moving around at 
free will.

1.3 Daily farm work and bottlenecks
In today’s aviary farming a significant part of the daily animal care 

is mechanised or automated, like feeding, nest egg collection, manure 
removal and climate control. As these tasks contain limited complexity 
and variation, they are fulfilled using conveyor belts and simple control 
logic. 

But properly running an aviary house still requires good stockmanship, 
with intensive monitoring and awareness of animal behaviour and inter-
actions as well as proper management and conscientiously performing 
of the daily tasks (van Emous and Fiks - van Niekerk 2003, Niebuhr, Zaludik 
et al. 2006). For instance, the freedom and opportunities to interact with 
flock mates (Blokhuis and Metz 1995, Claeys 2007) can have undesired side 
effects, such as laying eggs on the floor or cannibalistic pecking toward 
conspecifics (Gunnarsson, Keeling et al. 1999, Haas 2014). To make sure the 
hens exhibit the desired behaviour at the correct locations, such as roosting 
on perches at night and laying their eggs in the nest, hens can and need 
to be trained properly which requires considerable attention of the farmer, 
especially during rearing and at the start of the laying period (Appleby 
1984, Tauson 2005). Still, eggs get mislaid and need to be collected at least 
once a day and retrieval of dead hens is a frequently recurring task as well. 
All these tasks are complex and challenging and on current farms they 
largely rely on human labour. 

Tasks like inspection of animals and collection of floor eggs account for 
about 20 to 40% of the daily work (Blokhuis and Metz 1995, Claeys 2007). As 
parts of the daily tasks are closely linked to animal behaviour throughout 
the day, there is not much room for flexibility in the work schedule. Floor 
egg collection, for example, has to be done mainly in the morning. At the 
same time, these tasks are physically demanding with postures that lead 
to an increase of back problems (Drost, Meijs et al. 2002, Claeys 2007). 
Besides, the climate inside the aviary poultry house poses a clear threat 
to the health and wellbeing of the workers. The air quality in the house 
is negatively affected by animals foraging and dustbathing in the litter 
on the floor. This increases concentrations of airborne dust, micro-orga-
nisms and ammonia in the air. Reported values are at least several times 
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higher compared to cage houses and were shown to exceed legal limits 
(Drost and van der Drift 1993, Blokhuis and Metz 1995, Claeys 2007, Winkel, 
Mosquera et al. 2009). Recent research in the USA (e.g. Shepherd, Zhao et 
al. 2015, Zhao, Shepherd et al. 2015a, Zhao, Shepherd et al. 2015b, Zhao, 
Zhao et al. 2016) on aviary, enriched cage and cage houses showed 
similar results, confirming these conditions still exist in current systems. 

Unfavourable working conditions negatively affect the availability of 
labour as people are less and less interested to work in poultry farming 
(Zeijts, Eerdt et al. 2007). Unfavourable working conditions also negatively 
affect labour costs. In the Benelux, direct labour accounts for some 10% of 
the total production costs, with labour prices being 3 times higher than in 
countries like Brazil or India (Claeys 2007). As the costs of labour will continue 
to rise, this will negatively affect the competitive position of poultry farmers 
in North-West Europe on the world market. 

But there is more. In the current poultry production systems, management 
is mostly applied at flock level, with limited attention for the individual 
animal. As the number of animals per worker is continuously increasing 
(Fernhout and Lei 2013), attention for the individual hens has drastically 
decreased. With the application of Precision Livestock Farming (Wathes, 
Kristensen et al. 2008) farmers try to counteract this development, by using 
automated monitoring to give more attention to the individual animal, 
to improve its wellbeing and health, and also the production efficiency. 
Although this has improved labour efficiency for monitoring, and several 
automated control options also exist, human labour is still frequently 
required to implement corrective actions in the production system. 

And last but not least, nowadays consumers demand more attention of 
and care from the farmer for the well-being of his animals (Eurobarometer 
2016). Also, recent or upcoming legislation related to animal welfare, such 
as the ban on electrical fences and the trimming of beak tips, will further 
increase the amount of labour needed for flock management. 

Therefore, for poultry farming to remain a viable business in the future, 
changes are desired such that the labour requirements can be reduced, 
while at the same time more attention can be given to the health and 
welfare of the animals. 
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1.4 Possible strategies for supporting or replacing 
human labour

To deal with the challenges of the labour demand in aviary housings, 
various strategies exist. The housing system and working methods can be 
modified, such that animal behaviour can be managed more easily and 
the related labour demand decreases, while working conditions improve. 
Also, the farmer can be supported in his daily work, by providing him with 
mechanical or automated tools that assist him in or take over time-consu-
ming or undesirable daily tasks like monitoring of the animals and floor egg 
collection.

Reducing labour demand resulting from managing undesirable hen 
behaviour, such as feather pecking and floor egg laying, can be achieved 
by applying design improvements to current housing systems. By fine-tuning 
the layout of the interior towards animal needs and capabilities the 
incentive for undesirable behaviour is reduced. Elements can be added 
to provide new activities, such as roughage bins or pecking stones. Also 
mechanical systems can be introduced, like a manure scraper to remove 
excessive litter (JPE 2015) and an air blowing system that reduces trooping 
of animals in corners (Schippers 2015). 

A more rigorous alternative is using disruptive design methods such as 
“Reflexive Interactive Design” (RIO) (Bos and Groot Koerkamp 2009) to 
develop completely new housing concepts meeting the requirements 
of all stakeholders, i.e. farmer, animals and market. An example of such 
a design is the Roundel house (in Dutch: Rondeel). The Roundel delivers 
improved functionality for the farmer while undesired animal behaviour 
like floor laying and feather pecking is less likely to occur, thus reducing the 
amount of labour needed to handle the consequences of this behaviour 
(Wageningen UR projectteam ‘Houden van Hennen’ 2004, Groot 
Koerkamp and Bos 2008). 

Assistance can be provided to the farmer, both in the execution of 
daily tasks and in the collection of information for management purposes. 
Several simple tools are already common, such as a collection stick or small 
rake for floor egg collection. More complex systems have been proposed, 
such as a mechanised rake system to remove  floor eggs (Fiks-van Niekerk, 
Reuvekamp et al. 2003) or the ‘Chicken Trolley’ inspection system (Bijleveld 
and Geens 2014), but these are not yet common in practice.

Sensor systems are commonly found in livestock farming, and used for 
example to monitor climate conditions or animal behaviour (Quwaider, 
Daigle et al. 2010, Qi, Brookshaw et al. 2013, Dolecheck, Silvia et al. 2015). 
Camera systems for online monitoring the behaviour of a broiler flock are 
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already available on the market, such as the EyeNamic system of Fancom 
(Fancom 2016). Using such automated sensor systems for monitoring 
tasks saves time and has several advantages over manual monitoring by 
humans. These systems can be active 24/7 offering a continuous supply 
of information. The quality of the collected information is potentially more 
constant, as these systems do not suffer from the performance limitations 
of human observers. They allow for simpler comparison of current data 
against past results and established standards, with the opportunity of 
faster and better detection of potential problems. Given there is sufficient 
information in the data and proper data processing is available, this also 
opens up the way for the application of methods for individual treatment 
of the animals. However, since sensor systems lack the ability to perform 
actions, human labour is still required to transform the collected information 
into control measures. 

Autonomous robotic systems in the animal house are the next level in 
support or replacement of human labour. These systems can combine 
sensing and acting into one single system. Potential tasks include sensing 
of climatic properties such as temperature, humidity, and dust levels 
and animal status and behaviour. The actuation components of these 
systems offer opportunities for tasks like floor egg collection, removal of 
dead animals, cultivation of wet litter spots to improve floor conditions and 
reduce emissions, or to manage animal behaviour by dispersing trooping 
animals or spreading grains in the house.

Robotics is a trend in agriculture. For field applications, this started with 
the development of autonomous navigation systems based on vision and 
GPS in the 1990’s (among many others: Tillett 1991, Hague, Marchant et 
al. 2000, Keicher and Seufert 2000, Ehrl, Stempfhuber et al. 2004) which are 
nowadays common technology on farm equipment and resulted in the 
recent introduction of a range of small-scale autonomous robots, such as 
Deepfield’s BonïRob and Naio’s Oz (Deepfield Robotics 2016, Naio Tech-
nologies 2016). In livestock applications, robotic milking was the first major 
application for autonomous robots, for which development started back 
in the 1980’s. Since the 1990’s, these systems are commercially available, 
and have seen a wide-spread usage on commercial farms since the 
end of that decade (John, Clark et al. 2016). After the introduction of 
autonomous milking systems, which are stationary in the barn, also mobile 
systems were developed for other daily tasks such as manure scraping, 
feeding and feed pushing, and which are now commonly found on dairy 
farms (Lely 2015, JOZ 2016, and many others). In more intensive livestock 
production systems, the use of mobile robots is still hardly seen, with only 
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a few examples for pig feeding or house cleaning. For poultry production 
systems, such as aviary housings for laying hens, no autonomous robots 
were available at the start of this research.

1.5 Hypothesis
One of the first use-cases of mobile robots in poultry houses was 

presented in Vroegindeweij (2009), proposing that a mobile robot for 
floor egg collection offers interesting perspectives. As this task of floor egg 
collection still demands significant amounts of time and unhealthy physical 
labour from the farmer, it is considered worthwhile to further investigate this 
concept. Therefore, focussing on the application of mobile robots in laying 
hen houses, it is hypothesized that:

“Automation and robotics can have significant benefits when 
taking over tasks from humans in a poultry house. For a labour-

intensive task like the collection of floor eggs, using an autonomous 
mobile robot improves the quality of floor egg collection and 

prevents an increase in floor laying.”

To prove this hypothesis, however, a mobile robot with proper hard- and 
software is required that is able to perform such tasks, and it was the aim 
of this research to generate such a robot. The next sections review the 
required functionality and the suitability of available methods. Based on 
this analysis and review, the objective and research questions for this thesis 
are defined. 

1.6 Required functionality
To have mobile robots perform more complex tasks in observation and 

control in a poultry house, as proposed in Section 1.5, they need to be 
flexible and autonomously adaptive to changing conditions. This limits the 
use of simple approaches and fixed or random paths. Instead, they require 
freedom in mobile robot behaviour, while not only being aware of their 
environment, but also able to interact with it and respond to changing 
conditions. Irrespective of their final application, whether it is measuring the 
environmental climate, collecting floor eggs or interacting with animals, 
all systems require some form of mobility to enable their functioning, 
thus indicating the need for advanced mobile robots. More specifically, 
these robots demand capabilities such as localisation, path planning, 
detection and recognition of objects in the environment. Furthermore, 
changing conditions should be explicitly dealt with in these elements, as 
well as exploiting the variation present when executing tasks. Finally, these 
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capabilities should be brought together with actuation methods and a 
navigation component in a functioning proof of principle, to show their 
suitability under practical conditions. 

As these capabilities are similar to those required for advanced robot 
applications in domestic environments, it is likely that research has already 
resulted in a number of suitable options to fulfil these functions. Therefore, 
first the specific requirements for localisation, path planning, object 
recognition and system integration are reviewed with respect to the task 
indicated in our hypothesis, the collection of floor eggs in a poultry house. 
Next, existing methods for these tasks are judged on their applicability and 
if necessary, indications for adaptation or improvement are given. The ma-
nipulation required for collecting floor eggs is not considered in detail in 
this review, as it was not considered a key component in the development 
of the robot. However, it was included as one of the elements for which 
further analysis and method selection was done in the system integration 
step (Section 1.6.4).

1.6.1  Localisation
First, localisation, being able to locate oneself within your surroundings, 

is often the only way to make the activities one is performing possible 
and useful (Lingemann, Nüchter et al. 2005). Having an answer to “Where 
am I?” allows relating observations and actions to a known location in 
the environment. Furthermore, it is an absolute necessity for advanced 
activities like mission control and path planning. To provide sufficient detail 
in the registration of floor egg locations, a localisation method should 
have an error of less than 1 meter for 95% of the time. To properly perform 
actions, a higher accuracy is desired, with an error of less than 0.1m for 95% 
of the time.

General localisation algorithms for wireless sensor networks and 
autonomous vehicles exist already for years, but have a limited indoor ap-
plicability as they mostly incorporate information from Global Navigation 
Satellite Systems. Other methods were developed for indoor localisation, 
mostly by measuring the distance between sender and receiver using light 
or radio communication and reaching centimetre-level accuracies (Mautz 
2010). However, the dense (metal) poultry house interior limits the use of 
such methods. For mobile robots, also fixed beacons and dead reckoning 
are commonly used. Both systems might have reduced performance 
due to the loose litter on the floor. Placement of beacons also requires a 
significant installation and maintenance job.

A common alternative used in autonomous vehicles is the combination 
of odometry data and inertial sensing with data from laser range finders or 
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cameras in a probabilistic framework (Thrun, Burgard et al. 2005, Siegwart, 
Nourbakhsh et al. 2011) This approach has several advantages for mobile 
robots in poultry farming: 

1. It implicitly allows fusion of data from multiple sensors;
2. It explicitly deals with uncertainties present; 
3. It does not rely on any additional equipment outside the robot 

platform.
Experiments with these probabilistic methods were already done in en-

vironments comparable to poultry houses, like museums (Burgard, Cremers 
et al. 1999, Thrun, Beetz et al. 2000) and airports (Triebel, Arras et al. 2015). 
However, their functioning in environments with a highly repetitive structure 
and few unique elements, such as orchards or an aviary house is still barely 
known, with Hiremath (2013) being the only known example at the start of 
this research. Thus, the suitability for using probabilistic localisation methods 
on a poultry house robot has to be investigated, including the use of various 
sensor data and model settings.

1.6.2  Path Planning
Second, to perform actions in a meaningful way, a certain amount of 

planning is required, for example to find a proper path through the house 
(path planning). This can be done in a heuristic-based ‘at random’ manner, 
but for more sophisticated activities, a purpose-oriented approach is 
desired that answers the question “Where do I go?”, making planning a 
core component for every activity (LaValle 2006). The path planning task 
for floor egg collection, our example case, is a high-level task that can be 
done beforehand to produce a global path, and is separated from the 
lower-level tasks like navigation, which determines the actual movements 
based on its current target and the local conditions. For floor egg collection, 
the path to be planned should ensure full coverage of the area, to avoid 
eggs remaining in the house for more than 24 hours, as their locations are 
unknown in advance. Preferably, floor eggs are collected faster, to reduce 
additional floor egg laying. Reducing the number of floor eggs present in 
the house and the time they are present on the floor both contribute to 
this. Thus, multiple visits are required to locations where the probability on 
floor eggs is higher.

Existing path planning methods commonly use an optimisation criterion 
like minimum time, travelled distance or effort for a single execution of the 
path, and can be divided into 2 main categories. The first is finding the way 
from start to goal, like in car path planning or network navigation (Choset 
2005, LaValle 2006). The second category aims to cover a full area, like in 
lawn mowing or floor cleaning (Choset 2001, Galceran and Carreras 2013). 
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Although floor egg collection requires the second category of path 
planning methods, it also requires some components from the first category, 
as specific locations in the area should be visited more than once in a hete-
rogeneous manner. Therefore, a different optimisation criterion is required 
which is related to task performance instead of the path properties. Other 
problems contain similar characteristics, such as floor cleaning in buildings 
or security observations. However, algorithms that can provide such 
behaviour within a single path again and again, instead of just repeating a 
simple path, are only scarcely reported in literature, and most of them focus 
on the theoretical aspects of such problems and/or the use in multi-robot 
applications (for example: Ahmadi and Stone 2005, Ahmadi and Stone 
2006, Elmaliach, Agmon et al. 2009). Since no algorithm is yet fully suited for 
practical application to such problems, a new algorithm is desired to plan 
a floor egg collection path. 

1.6.3  Object recognition
To guarantee safe and proper behaviour, the mobile robot should be 

aware of the objects that are present in its surrounding (observation), which 
leads to the question “What do I encounter on the way to my goal?”. With 
such awareness, the robot can properly respond to the changing conditions, 
thus enabling safe operation in the highly dynamical environment of a 
poultry house. However, the application of existing methods for sensing 
and perception in the agricultural environment, contains some interesting 
challenges as in comparison with industry the agricultural environment is 
unstructured and has a high degree of complexity and variability (van 
Henten 2006, Nof 2009, Bac, van Henten et al. 2014). Furthermore, the 
amount of background noise, the uncontrolled and adverse environmen-
tal conditions such as dust and low light levels, and the unpredictable 
animal behaviour complicates the use of technology to do proper obser-
vations (Frost, Schofield et al. 1997, Sergeant, Boyle et al. 1998).

In general, camera or vision systems offer opportunities to create the 
desired environmental awareness, even in the presence of variation and 
uncertainty, as they have the potential to identify a wide range of objects 
in varying conditions (Szeliski 2010). The downside, however, is that usually 
significant processing and advanced methods are required to determine 
image features and identify the objects present, which might limit their ap-
plicability on a mobile robot. More simple approaches rely on shape or 
colour features, but are also frequently limited in performance as a result of 
varying conditions and occlusion of objects (Kapach, Barnea et al. 2012). 
On the other hand, for the floor egg collection application, there are only 
four object classes considered most relevant for proper operation: eggs 
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needing collection, hens as moving obstacles, housing as fixed obstacles 
and litter as it indicates free space to drive. Furthermore, if about 80% of 
the image pixels are classified correctly, this might already be sufficient to 
determine which objects are present in the vicinity of the robot. 

For classification problems in agriculture that attempt to create situational 
awareness, such as separating leaves from cucumbers or discrimination 
of plant species, spectral features were used (van Henten, Hemming et 
al. 2002, Piron, Leemans et al. 2008, Nieuwenhuizen, Hofstee et al. 2010). 
As the spectral responses can be determined beforehand for different 
object categories and tend to be object-specific, their use might also 
be an interesting approach for the discrimination of most of the relevant 
objects around a mobile robot in a poultry house. Some information on 
the spectral response of hens and eggs was already published by Prescott 
and Wathes (1999) and De Ketelaere, Bamelis et al. (2004) and showed 
promising differences between object categories. Still, it is unclear which 
spectral features should be used, and what the performance of this method 
will be. Thus, a more detailed investigation is needed, both focussing on the 
selection of features and the assessment of performance that is possible 
when using this method for object recognition and discrimination in an 
aviary poultry house. 

1.6.4  Integration
Fourth, even if the previous questions are answered and suitable 

methods for these functions are available, they still have to be integrated in 
the mobile robot to be able to answer the question “How do I perform”. For 
this, first a vehicle or hardware platform is needed to integrate sensing and 
actuation. Next, the information on the robot’s position and the desired 
path should be coupled with the environmental awareness and translated 
into movements (navigation) and actions (egg collection), all within the 
environment of the poultry house. Finally, a tool is required to collect the 
eggs, as this is the ultimate task of the robot. The robot that results from this 
integration step, should be able to avoid collisions with housing obstacles 
or hens, while collecting at least 90% of the eggs present in the house.

For each of these elements (vehicle, navigation, egg collection), 
already a number of methods are available. For example, a first idea for 
floor egg collection was already presented at the Field Robot Event in 
2007 (Anonymous 2007). For navigation, a range of methods exist, such as 
the Dynamic Window Approach (Fox, Burgard et al. 1997) and the Vector 
Field Histogram methods (Borenstein and Koren 1991, Ulrich and Borenstein 
1998, Ulrich and Borenstein 2000). However, it is unclear to what extent 
they match the requirements for a poultry house robot, so the available 
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options have to be reviewed and a suitable method should be selected. 
This is followed by an integration step where all selected components are 
brought together in a single robot. 

Once an integrated system is available, it is interesting and relevant 
to see if the proposed concept indeed functions as proposed. An experi-
mental evaluation of the robot’s performance is therefore desired, to test 
the concepts and to test the validity of the initial hypothesis. Furthermore, 
as the presence of a robot in the animal environment also influences the 
behaviour of the hens, their response to the robot has to be investigated to 
make sure there are no negative effects on animal welfare.

1.7 Objective, research questions and thesis  
 outline

The main objective of this thesis was 
“To develop an autonomous mobile robot running in a poultry 

house environment, capable of performing tasks such as floor egg 
collection, and test it in a proof of principle experiment”.

In line with this objective, research questions were formulated addressing 
the main functional components of the robotic system: localisation, path 
planning, object recognition and integration. The research questions in 
bold indicate the major elements of this thesis, and are dealt with in the 
research chapters. The research questions were:

1. “Where am I?” - How suitable and accurate are probabilistic 
methods for indoor localisation of a mobile robot in a poultry house? 
Chapter 2 assesses the capabilities of modern probabilistic loca-
lisation methods in the context of an empty aviary poultry house. 
Also, the suitability of different data sources such as wheels and a 
motion sensor and the selection of model settings and parameters 
are described. In Chapter 5, an extension of this work is described to 
perform localisation in a poultry house with animals.

2. “Where do I go?” - How can a floor egg collection path be planned, 
which minimizes the number of floor eggs and the time they are 
present on the floor? In Chapter 3, existing knowledge on floor laying 
behaviour of hens is exploited in the planning of an adaptive floor 
egg collection path. For this, the new Non-Uniform Area Coverage 
(NURAC) path planning algorithm was developed, and compared 
to the conceptually simpler path of the farmer. The underlying sub 
question; "How are floor eggs in an aviary poultry house distributed?", 
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was analysed in a conference paper (Vroegindeweij, Van Henten et 
al. 2013). 

3. “What do I encounter on the way to my goal?” - How suitable
and accurate are spectral features for the discrimination between
various objects in a poultry house? To answer this question, Chapter
4 investigates the spectral properties of relevant object categories
a mobile robot might encounter in the poultry house environment.
Based on these properties, images at a specific wavelength were
acquired and pixel classification was applied. Also, the effect of
varying the detection thresholds on the method’s performance
is described. In Chapter 5, an extension of this method is used to
detect the presence of eggs on the floor.

4. “How do I perform?”- What is the performance of an autonomous
vehicle that integrates these methods? For this, Chapter 5 describes
the integration of these components in the PoultryBot, together with
additional methods for navigation and egg collection. Several sub
questions were defined to guide the selections of suitable methods
for other tasks, such as for navigation and egg collection, and the
evaluation of animal response on PoultryBot. Selecting a navigation
method for PoultryBot and investigating the effect of PoultryBot
on the hens, is described in student reports such as (Boots 2013,
Schopman 2015). The development and evaluation of the egg
collection device was published as conference paper in (Vroegin-
deweij, Kortlever et al. 2014). Furthermore, Chapter 5 describes
the experiments done to evaluate PoultryBot’s performance in a
small-scale poultry house with hens. Navigation and egg collection
were evaluated separately, and the results obtained are used to
discuss also integrated performance.

5. “How to continue?” - What is required to convert the results of this
research into a reliable and economic viable product for the poultry
farmer? The General Discussion in Chapter 6 reflects on used me-
thodologies, major findings and final achievements. It also indicates
what went well in respect of the application requirements, which new
requirements and functions emerged and where more attention is
needed. Furthermore, Chapter 6 also addresses several components 
not yet considered in detail, such as vehicle design and handling
animal behaviour. Although the research focussed on the technical
challenges of a mobile poultry house robot, also indications are
given on non-technical topics that are of relevance for successful
commercialisation of this idea, such as its impact on animal welfare
and its acceptance by poultry farmers and society in general.
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Abstract

One of the problems in loose housing systems for laying hens is the laying 
of eggs on the floor, which need to be collected manually. In previous 
work, PoultryBot was presented to assist in this and other tasks. Here, pro-
babilistic localisation with a particle filter is evaluated for use inside poultry 
houses. A poultry house is a challenging environment, because it is dense, 
with narrow static objects and many moving animals. Several methods and 
options were implemented and tested on data obtained with PoultryBot 
in a commercial poultry house. Although no animals were present, the 
localisation problem is still challenging here because of the repetitive 
nature of the poultry house interior, with its many narrow obstacles. 
Different parameter configurations were systematically evaluated, based 
on accuracy and applicability of the results. Estimated paths were quan-
titatively evaluated based on the Euclidian distance to a ground-truth 
determined with help of a total station. The presented system reached an 
accuracy of 0.37m for 95% of the time, with a mean error of 0.2m, making 
it suitable for localising PoultryBot in its future application.

2.1 Introduction
Over the last decades, poultry housing in Europe has moved from 

traditional cage systems to systems with more freedom for the animals, 
under the influence of EU directive (European Union 1999). This resulted 
in more manual labour, such as collecting floor eggs under unfavou-
rable conditions (Blokhuis and Metz 1995, Claeys 2007). A poultry house 
robot (PoultryBot) was introduced in previous work, to assist in such tasks 
or take them over entirely (Vroegindeweij, van Willigenburg et al. 2014). 
The previous paper presented a path planning approach for the robotic 
collection of floor eggs. In order to execute the planned paths, the robot 
needs to localise itself in its working environment, an aviary poultry house. 
This is the focus of this paper. 

2.1.1  Problem background
The modern aviary poultry house, as described in Blokhuis and Metz 

(1995) and Sandilands and Hocking (2012) and visualised in Figure 2.1, 
can be characterised by the following aspects that are relevant for robot 
localisation. First, metal construction elements provide facilities to the 
animals that live there. Second, the resulting structure of the house is highly 
repetitive, and contains very few unique elements. Third, the metal con-
struction poles are thin and hence hard to detect. Fourth, the remaining 
free space is occupied by tens of thousands of animals that move around 
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at will. Fifth, the air contains high concentrations of dust, and vapour. These 
five aspects all limit line of sight. Finally, the floor is covered with an uneven 
layer of loose litter.

Figure 2.1: PoultryBot driving among hens in a poultry house. This picture shows that 
the floor occupancy is high and a substantial number of construction elements are 
present in the environment.

2.1.2  Requirements
In order to be successful in path following, PoultryBot (shown in Figure 2.1) 

requires a localisation accuracy of less than 1m, for 95% of the time and 
preferably less than 0.1m. In terms of localisation problems, this means 
that at least position tracking should be achieved, i.e. estimating the 
robot’s position while knowing from where it started, which is considered 
the simplest problem in mobile robot localisation (Thrun, Beetz et al. 2000, 
Thrun, Burgard et al. 2005). The capability of global localisation is desirable 
but also more complex, as the starting pose is no longer known. Other re-
quirements on the final robot are a short installation time with a minimum 
adaptation to the housing and the ability to fit and work inside different 
types of housing.

2.1.3  Mobile robot localisation
The properties and requirements mentioned above limit the applicabi-

lity and accuracy of most available localisation methods. Thus, more so-
phisticated methods capable of handling uncertainty and ambiguities in 
both sensor data, environment and position estimates are required. Proba-
bilistic methods might be suitable for this, and are commonly used for loca-
lisation and control in mobile robotics (Thrun, Burgard et al. 2005, Siegwart, 
Nourbakhsh et al. 2011), especially in GNSS-denied environments. This was 
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shown, for example, by Thrun, Fox et al. (2001) who used a Monte Carlo 
method in a museum environment. Other applications where Monte Carlo 
methods were successfully tested are office corridors and campus terrains 
(Howard and Roy 2003, Lingemann, Nüchter et al. 2005, Kümmerle, Triebel 
et al. 2008, González, Blanco et al. 2009), but also in fish tracking (Xydes, 
Moline et al. 2013) and in autonomous cars (Levinson, Askeland et al. 2011, 
Stiller, Puente León et al. 2011).

2.1.4  Our approach
As both museums and poultry houses have a similar static environment 

with dynamic obstacles and limited physical changes to the environment 
are allowed, it is expected that Monte Carlo methods can successfully 
perform robot localisation in poultry houses. Thus, we used a particle filter 
approach for the localisation of PoultryBot, which uses a set of particles to 
represent the pose estimate (position and orientation). Furthermore, this 
approach allows the use of raw sensor data, so no explicit handling or 
removal of noise in sensor measurements is required. 

A processing cycle in the particle filter consists of three phases: prediction, 
update, and resampling. In the prediction phase, each particle’s pose is 
moved based on a control input (e.g. odometry data) with additional 
noise. In the update phase, measurement data (e.g. from a laser scanner) 
is used to determine the particle likelihoods (e.g. by comparing the laser 
scanner data to a corresponding sensor model and map). In the resampling 
phase, likely particles are selected to be used in the next cycle more often 
than unlikely particles. Optionally, random new particles can be added. As 
input data, a map of the poultry house is used, combined with proven and 
simple sensors: wheel encoders, an Xsens MTi (combining a compass and 
an inertial measurement unit – IMU), and a laser scanner.  

Still, some challenges related to the usage of these sensors remain. First, 
Qi, Brookshaw et al. (2013) indicated inaccuracies of 10% for an IMU and 
odometry in a poultry house alike environment. Second, compass data 
is known to be influenced by metal objects. Third, laser scanners might 
suffer from the mixed pixel problem (Ye 2008), where sensor readings 
are corrupted by combining reflections from object and background 
within one pixel. As our environment contains many small obstacles, this 
might have a negative impact on the quality and accuracy of the laser 
scanner data. Fourth, the presence of animals at the same height as the 
laser scanner can negatively influence the results, as they occlude static 
obstacles. Placing the laser scanner such that it is facing a “free zone” 
might solve this problem (Mastrogiovanni, Sgorbissa et al. 2005). Because 
the laser scanner height is constrained by the housing interior, looking over 
the animals is possible to a limited extent only.
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2.1.5  Open questions and contributions
Thus, it remains unclear whether using a particle filter using information 

from odometry, Xsens MTi and a laser scanner is suitable for localisation in 
poultry housings. In this work, our approach is presented and assessed on 
its applicability and accuracy for localisation of Poultrybot. For each of the 
stages in the particle filter, various methods are presented in literature and 
text books (like Thrun, Burgard et al. 2005, Doucet and Johansen 2009, Li, 
Sun et al. 2014). However, it is unclear which methods and settings are most 
suitable for use on PoultryBot. Thus, several alternatives were selected for 
the various models and settings used in the particle filter, to assess which 
choices are the most suitable given our application. As detailed quantita-
tive information on the effects of various choices is scarce in literature, the 
effect of our choices is also quantitatively reviewed. 

Data from PoultryBot was gathered in a single experiment, separately 
from the location estimation. The localisation method was evaluated 
afterwards in a separate offline processing step. Thus, they were not 
limited by computation time and the effect various settings could be 
evaluated. The experimental data used for the evaluation was gathered 
in a commercial poultry house without animals, to simplify the problem. 
The localisation problem is still challenging here because of the repetitive 
nature of the poultry house interior, with its many narrow obstacles. Animals 
will be present in future experiments, which can be achieved by filtering 
the laser data or using additional sensors.

Paper outline
Section 2.2 describes the materials and methods used, consisting of the 

robot platform (PoultryBot), the localisation algorithm, the data collection, 
and the evaluation methods. The results are presented and discussed in 
Section 2.3, followed by a general discussion on the methods in Section 2.4. 
Finally, the conclusions are provided in Section 2.5.

2.2 Materials & Methods
This section described the materials and methods used in this research. 

First, our experimental platform PoultryBot is described (Section 2.2.1). 
Next, a location estimator was developed based on a particle filter, using 
different sensor models (Section 2.2.2). To develop and evaluate the 
location estimator, data and ground-truth were collected in a commercial 
aviary poultry house (Section 2.2.3). The evaluation procedure for the loca-
lisation estimator is given in Section 2.2.4. 
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2.2.1  PoultryBot
PoultryBot (Figure 2.1 & Figure 2.2) was based on the Eyesonic field robot 

used in the Field Robot Event of 2008 and 2009 (Wageningen University 
2009). The design used three independently driven wheels to avoid slip, 
with an actively steered front wheel. For the experiments in this paper, 
PoultryBot was still remotely operated while gathering sensor data for 
offline processing at a later stage. The total height of the robot was limited 
to 0.45m by the poultry house interior.

2.2.1.1  Coordinate system
When addressing the localisation problem in the horizontal plane, 

the pose of the robot consists of a 3 state vector containing x, y, and i,
attached to the house coordinate frame. Orientation i is defined as the 
counter-clockwise rotation with respect to the house coordinate frame’s 
x-axis (in radians). The origin of the robot OR is located in the centre of the
rear axle. The coordinate system uses SI standard units.

Figure 2.2: PoultryBot, in the configuration used during the experiments. Indicated 
are the various sensors used: 1-3) driven wheels with encoders, 4) Xsens MTi, 5) laser 
scanner, 6) camera, 7) prism for ground-truth measurement with the total station, 
8) tracking crayon to physically register the path on the floor. The robot height was
limited to 0.45m by the poultry house interior.
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2.2.1.2  Sensing systems
During the experiments, several sensing systems were installed on the 

robot, which are indicated in Figure 2.2. All three wheels were driven by a 
DC motor (maxon motor RE 35) via a gearbox (maxon motor GP32C), and 
controlled using Roboteq AX3500 motor controllers. An optical encoder 
(HEDS 5540) was directly attached to the motor shaft to measure rotation 
and thus wheel displacement. Steering was performed by another DC 
motor connected to the front wheel with a belt. Direct feedback on the 
steering angle was obtained through a potentiometer (Vishay P11L). 
Deviations from the applied steering angle were immediately corrected, 
so the real steering angle was always close to the applied steering angle. 

An Xsens MTi on top of the robot was used to register the robot’s 
orientation i. A Sick LMS 111 laser scanner at the front of the robot registered 
a 20m deep and 270° wide view, centred on the driving direction in a 
horizontal plane 0.37m above the ground. Finally, a Unibrain Fire-i digital 
camera above the robot captured images of the area in front of it. The 
camera was used for visualisation purposes only, and not used in the 
location estimation.

For data collection during the experiments, all sensors were connected 
to a PC with a Core i7 chipset inside the robot, running LabVIEW 2013 under 
Windows 7. The PC passed on the remote control signals from the operator  
to the motor controllers and gathered the sensor data from the sensors 
described above. All data was captured and logged at 10 Hz. 

2.2.2  Location estimation algorithm
The localisation method used a particle filter, containing a distribution 

of N particles to represent the estimated robot pose and the variations 
therein. Each particle p represented a possible pose of the robot ([x, y, i]). 
Thus, using more particles will better represent the distribution of possible 
poses, but its effect on the estimation result was unclear and therefore in-
vestigated in the evaluation. Data from the sensors was off-line processed 
by the particle filter as visualized in Figure 2.3, with each cycle containing 
the steps described in Sections 2.2.2.2 through 2.2.2.6 below. All data 
processing steps to perform location estimation were implemented in 
Matlab 2012b. 

2.2.2.1  Initialisation and settings
M particles were initialized by randomly assigning each particle a pose 

[x ± 0.5, y ± 0.5, i ± 0.25 r], where x, y and i are given by the starting 
pose in the ground-truth data. To evaluate whether global localisation was 
possible in our conditions as well, initial particle distribution can also be over 
a larger area and angle, with x and y distributed through the whole poultry 
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house and i in the range [r, r] as the extreme case. It was expected that 
this works only to a certain extent, as result of repetitions in the housing 
interior. To avoid particle spreading when the robot is not moving, the steps 
for prediction, update, weighing, and resampling were only executed if 
the front wheel has moved more than 0.001 meter. 

2.2.2.2  Prediction
A control input was applied to each particle, representing the 

expected robot movement dx, dy, and di estimated by the odometry 
data. The predicted pose 

 

x y, ,θ  for each particle was then generated 
by adding random noise (as a percentage of movement) to increase the 
particle spread and account for the inaccuracy of the odometry data. A 
filtering step was applied here to remove sensor readings with a displace-
ment larger than 10m or a rotation larger than 2.5 radians within 100ms, 
thus avoiding the prediction to have impossible large displacements or 
rotations.

As a tricycle with limited steering angle (±45°) was used, rotation on 
the spot was not possible, so a simple motion model using translation and 
rotation was sufficient, instead of using the more complex model in Thrun, 
Burgard et al. (2005). Two types of odometry data were tested to see which 
one was most suitable in our conditions: 1) using the front wheel encoder 
(sensor 1 in Figure 2.2) and the Xsens MTi orientation data (sensor 4), and 2) 
using the two back wheel encoders (sensors 2 and 3). The amount of noise 

Figure 2.3: Process flow of the particle filter implementation. Diamonds represent 
data and rectangles represent process steps. Sections refer to the sections below. 
Sensors 1 through 5 are visualized in Figure 2.2.
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to be applied was varied during the evaluation. It was expected that both 
sets of prediction data provide similar results, and more noise would lead 
to less accurate results.  

2.2.2.3  Update
In the update, each particle’s likelihood was determined using the laser 

scanner data from sensor 5. This was done for each ray by matching the 
measured distance with the expected distance, which was derived from 
the particle’s predicted pose   x y, ,θ , a model of the laser scanner, and a 
map of the poultry house. The results of matching the individual laser rays 
were then combined into the particle likelihood. As a likelihood is used 
instead of a fixed true or false indication, this allows for implicit handling 
of measurement noise. In this case, measurements with noise still have 
a likelihood that corresponds to an object in the map, although their 
likelihood is lower compared to that of a noise-free measurement with 
an exact match to an obstacle. Two different models describing the laser 
scanner behaviour were implemented for this purpose: the Beam model, 
which is based on the behaviour of a range finder beam and described 
in Section 6.3 of Thrun, Burgard et al. (2005), and the Field model, which 
only uses the endpoint of a range finder beam, as described in Section 
6.4 of Thrun, Burgard et al. (2005). Specific parameters for the Beam model 
and the Field model were learned from training data (which consists of 
raw measurement data) with a maximum likelihood estimator (given by 
Thrun, Burgard et al. (2005) in Table 6.2), thus implicitly including the effects 
of sensor noise and map errors. This procedure was adapted for the Field 
model by taking out the parameters for readings shorter than expected, as 
these are not included in this model. 

For both models, some (dis)advantages apply given our conditions. The 
Beam model can be beneficial with a large number of unexpected objects 
(like chickens) in the surrounding, as it explicitly deals with short-range 
measurements. However, it is also computationally expensive due to 
the required raycast operation and it lacks spatial smoothness. The Field 
model on the other hand, is much smoother in the spatial domain, as it only 
considers scan endpoints by relating them to the nearest known obstacle. 
By pre-calculating the likelihood map based on all obstacles, it is also a 
fast method, but at the cost of limited handling of unexpected obstacles 
and treating the sensor as if it can see through walls. 

Thus, both methods have their (dis)advantages, and it was unclear 
which one was the most suitable given our conditions, as described 
in Section 2.1. Furthermore, they contained several parameters that 
influence the likelihood determination. The initial values were learned 
by expectation maximisation or preliminary testing, and were expected 
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to give the best results. However, it was unclear if and to what extend 
the estimation accuracy decreased if these values were changed. Using 
higher resolution laser data was expected to improve results, but at the 
cost of more calculations, so knowing the estimation accuracy using 
various laser data resolutions was desired. An improvement of results was 
also expected for including obstacles that were suspended from the 
housing interior, although they influenced the laser data unpredictably. 
These effects were all investigated in the evaluation.

2.2.2.4  Weighing
A transformation was applied to the particle likelihoods, by raising the 

likelihoods to a power α = 1
2 , which was indicated to work well in Liu (2001). 

This transformation is further discussed in Section 2.4.4. After modifying 
the likelihood distribution, the particle likelihoods were normalized into 
weights and placed in a cumulative weight vector W adding up to 1. 
The purpose of this step is to balance the particle likelihoods between the 
need for diversity (keeping different options alive) and the need for focus 
(eliminating samples with low likelihoods) (Liu 2001).

2.2.2.5  Resampling
Particles to be used in the next cycle were sampled according to their 

weights, so that heavy-weighted particles were more likely to survive and 
multiply, whereas light-weighted particles were more likely to disappear. 
During resampling, N particles were drawn with replacement from the 
weighted proposal distribution, to create the posterior distribution repre-
senting the pose estimate. Two methods were implemented for this step: 
importance sampling and low variance sampling. Importance sampling 
draws a random value U  between 0 and 1 for each particle, and matches 
this to the cumulative weight vector W to obtain the index of the new 
particle. Low variance sampling starts with a random number V between 
0 and 1⁄N. Then, it adds a constant offset 1⁄N  to V for each next particle. 
Here too, the value of V is matched to the cumulative weight vector W to 
obtain the index of each new particle. 

Although importance sampling is more intuitive and truly random (all 
samples are based on an independent random number), it is also slower. 
Low variance sampling is more efficient, but as its name indicates, it 
contains less variation, with the ultimate effect that if all particles have 
equal weight, the posterior distribution is the same as the proposal distribu-
tion. To see whether resampling with less variation decreases the accuracy, 
both methods were compared to see which one is favourable. 
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2.2.2.6  Estimation
The pose estimate  was determined as the mean of the sampled 

particles. This is straight-forward for x and y, but requires attention for the 2π 
wrap in i. Thus, the sine and cosine were calculated for each value of i, 
and their sums were converted back into an angle with the atan2 function. 

2.2.3  Collection of experimental data
To evaluate the estimation algorithm and test the effect of various 

settings, data was collected in a commercial poultry house with help of 
PoultryBot. 

2.2.3.1  Poultry house
The poultry house1 from ‘Het Anker B.V.’ at Opheusden, The Netherlands, 

was equipped with 5 rows of the Farmer Automatic Aviary housing system 
(model year 2003, Farmer Automatic GmbH & Co. KG, Germany), and 
was longitudinally divided into six sections by mesh wire fences. For this 
research, only the first section of the house was used, and no hens were 
present at the time of the measurements, to simplify the problem. Still, the 
environment remained challenging and the effect of animal presence will 
be tested in future experiments.  

A top view of the house can be found in Figure 2.4, whereas a cross-sec-
tion is given in Vroegindeweij, van Willigenburg et al. (2014). The origin OH  
was defined in the North-West corner, at the front wall of the first section, 
located lower-left in Figure 2.4, with the x-axis pointing right and the y-axis 
pointing upwards. The various types of objects present are indicated with 
capital letters, and further explained in the caption of Figure 2.4. Below 
rows A and E, the floor area was not accessible. The free height below the 
elevated tiers was 0.9 m for the middle row C, and 0.45 m for rows B and 
D. Below rows B and D, light tubes and construction bars were present, 
which are indicated by lines and referred by the letter L. These are special 
types of obstacles, hanging below the elevated tiers and are close to 
the laser scanner height. As result of beam divergence, they show up in 
the laser readings only if they are more than several meters away from 
the robot. This is visualized in Figure 2.5, which displays a measurement of 
the laser scanner on top of a map of the housing. Here, some of these 
Type-L obstacles are completely ignored, especially if they are close to the 
laser scanner. Others that are more in front of the robot and further away, 
do give a response, although in some cases even other objects that are 
below the housing interior are detected. A clear example of this is seen at 

1 This house is also used/discussed in work by Vroegindeweij, Van Henten et al. (2013), 
Vroegindeweij, van Willigenburg et al. (2014) and Winkel, Mosquera et al. (2009).
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coordinates [13.8, 10.6] and [18.4, 10.6] were other objects on the side of 
the interior row are detected. Furthermore, the clutter originating from the 
small poles and the difference between walls and doors (which can be 
open) is seen in the laser response.

Figure 2.4: Top view of the first compartment of the poultry house. The x-axis in lon-
gitudinal direction matches with a north-south orientation, whereas the y-axis can 
be found along the west-east orientation. The origin of these axes is placed at the 
lower-left point of the first compartment. Letters A to E indicate rows with elevated 
tiers which provide facilities for eating, drinking, laying and resting to the animals. 
P are poles supporting the tiers, W are walls or wall-like obstacles, O is the human 
observer, T is the Total Station and V the video camera. L indicate light tubes and 
construction bars below rows B and D. Lines around row C indicate the paths driven 
by PoultryBot in the experiment.
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2.2.3.2  Approach
Data was collected while manually controlling the robot to follow the 

desired path, which was either moving down the corridor (solid straight 
lines between rows C and D in Figure 2.4), driving a rectangular trajectory 
(dashed lines around row C), or following an advanced trajectory with 
multiple turns in both clockwise and counter clockwise directions (not 
shown). At all trajectories, forward speed was manually controlled and 
kept as constant as possible. For straight trajectories, steering corrections 
were applied only if a collision with housing interior was about to occur. 
For rectangular trajectories, a limited number of steering commands was 
issued to keep the robot on the desired track. Advanced trajectories were 
driven by crossing below one or more interior rows in multiple directions, 
such that the robot passes these rows and corridors multiple times at 
varying locations. In case the ground-truth estimate (explained below) was 
lost, the robot was halted until the ground-truth measurement regained an 
estimate of the robot position. All sensors were logged at 10 Hz. 

Figure 2.5: Plot of laser scanner measurement (in green) on top of the housing map. 
Clearly visible are the consequent  responses by walls, door and poles, as well as 
the varying effects of Type-L obstacles. 



40

2 | Localisation

2.2.3.3  Ground-truth measurement
Ground-truth measurements were performed with a Trimble S6 total 

station.  When driving, an active Trimble MultiTracker prism was mounted 
on the robot, and the total station was set to record a position each 
second or every 10 cm, whichever came first. Also, a crayon was mounted 
below the robot centre point to physically register the path of the robot 
on the concrete floor. Afterwards, the driven path as drawn by the crayon 
was registered by walking along the line and periodically registering the 
location using the total station and a second prism. Furthermore, a video 
camera (Sony DCR-SR78) was positioned at the end of the corridor to 
register the behaviour of the robot and to log comments made during the 
experiment. Also, an observer was present to note reference information 
and observations made during the experiment. To make the data suitable 
for evaluation of the position estimator results, a rotation and translation 
were applied to transform the ground-truth data into the house coordinate 
frame.

2.2.3.4  Adding time-stamps to the ground-truth
As the ground-truth data missed time information, timestamps were 

added to allow quantitative evaluation of results, using the following 
information: 1) two recordings of the same trajectory (odometry data and 
ground-truth measurements); 2) one of them containing timestamps; 3) 
both of them contained data relating to position; 4) had exactly the same 
start- and endpoint; 5) with a limited amount of noise in time and position. 
Both recordings were matched based on the fraction of the total distance 
travelled, which should be the same in both recordings for any given point 
in time. As a result, for each matched position, a timestamp could be 
retrieved by a lookup operation from the recording containing timestamps. 
This approach scales to any situation where timestamps are missing from 
one of the recordings, given the required information is available (points 1 
through 5 above). When all data is noise and lag free, this procedure will 
not decrease accuracy. However, some delay or mm-level inaccuracies 
might be present at both recordings, resulting in an expected maximum 
error of 2 cm on the matched results. 

2.2.4  Evaluation of the position estimator
Based on the data collected in the experiment, various settings of the 

position estimation algorithm were evaluated on their performance. As 
processing was done off-line, real-time computation was not required. In 
this section the methods and settings for this evaluation are described.
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2.2.4.1  Specific adaptations for our situation 
Before the experimental sensor data could be used in the evaluation 

runs, some corrections had to be applied to the sensor data. First, as the 
Xsens MTi orientation measurements exhibited clear non-linear behaviour 
as a result of housing characteristics that influenced the compass readings, 
their values needed a systematic correction. Second, separate conversion 
factors were derived for each wheel to convert the pulse counts into 
displacement in meters, to correct for differences in wheel properties. 
Furthermore, part of the laser data was missing, and a value of -0.001m 
was used in those cases indicating an impossible negative sensor reading, 
which in turn was ignored in the position estimation. Finally, all sensor 
data was converted into the robot coordinate frame according to trivial 
coordinate transformation rules, like those given in Craig (2005).

2.2.4.2  Evaluation approach & settings
In a 3-stage evaluation procedure, different values were applied to 

9 particle filter settings, to assess their influence on the applicability and 
accuracy of the estimator results. For each setting, an initial value and 
several alternatives were given based on parameter learning, preliminary 
experimenting or an educated choice. Various combinations of settings 
(called configurations) were evaluated and results were analysed with the 
methods described in Sections 2.2.4.3 and 2.2.4.4. 

All configurations received a code referring to the choices applied. 
The first digit indicated the evaluation stage, the next 2 digits the chosen 
combination of settings and the final letter represented the use of either the 
Beam or the Field model in the update. Thus, configuration 205B indicates 
stage 2, the 5th combination of settings, and tested with the Beam model. 

In each stage, trajectories with and without turns were used to include 
the effect of changing direction on the estimation results. Furthermore, the 
number of trajectories increased per stage, to enhance the (statistical) 
power of the evaluation as settings became established. An overview of 
the trajectories used per stage can be found in Table 2.1. All trajectories 
were used in one stage only, so in total 21 trajectories were used. After a 
certain configuration had been evaluated, the most promising result was 
used for the subsequent evaluation stages, except for the update model, 
where both options were always used (Beam and Field model). 



42

2 | Localisation

Table 2.1: Distribution of available trajectory data over training and evaluation sets. 
All trajectories were used in one stage only, so in total 21 trajectories were used.

Trajectory / 
Set Straight

Rectangular 
Clockwise

Rectangular 
Counter 

Clockwise Advanced

Training 2 1

Stage 1 1 1

Stage 2 2 1 1 1

Stage 3 6 2 1 2

In the training stage, the parameters for the Beam and Field models 
were learned based on the combined data of 3 trajectories. Furthermore, 
this data was used to select the minimal distance type-L obstacles (like 
light tubes underneath the housing interior) had to be away from the robot 
before they were included in the raycast. 

In the first evaluation stage, the settings for which a limited effect was 
expected or which value had to be determined in an early stage were 
assessed on a small dataset (see Table 2.1). The Beam and Field model 
were both tested, to find the most suitable one. The settings evaluated 
in this stage were setting 1: the resampling method, setting 2: the sensors 
used in the prediction step, setting 3: the laser scanner resolution, and 
setting 8: the inclusion of type-L obstacles in the Beam model. Setting 8 was 
evaluated for the Beam only, as choosing whether type-L obstacles have 
to be included is less relevant for the Field model. The Field model searches 
the closest obstacle in the map. Thus, including type-L obstacles by default 
results in their use when relevant, while they were ignored otherwise. 

The exact configurations used are given in Table 2.2 (page 44). Due to 
the stochastic nature of the algorithm, each configuration was repeated 
30 times per trajectory to investigate the number of repetitions required 
to allow statistical testing of the results. Based on the data collected in 
stage 1, the required sample size for doing statistical inference could be 
calculated (Ott and Longnecker 2001). As result, it was determined that 30 
repetitions were required for the Beam model, and 15 for the Field model 
to have a reasonable accuracy of the estimated mean. 

In the second stage, 5 trajectories (see Table 2.1) were used to evaluate 
5 settings for which a larger influence was expected, again on both the 
Beam and Field model. These were setting 4: the number of particles used 
in the estimation, setting 5: the amount of noise added in the prediction 
step, setting 6: the update parameters, setting 7: the grid size of the Field 
model, and setting 8: the inclusion of type-L obstacles in the Beam model. 
The configurations used in this stage are given in Table 2.3 (page 45).
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In the third stage, the final evaluation of both the Beam and Field 
update model were done based on the best-performing settings and 10 
trajectories (see Table 2.1). The 11th (advanced) trajectory missed over 25% 
of the laser data, and was used as stress test for the estimator performance 
with missing data. Furthermore, the performance for setting 9: Global Lo-
calisation, was assessed. Detailed information on the configurations used 
is given in Table 2.4 (page 46).

2.2.4.3  Performance measure
To evaluate the results of the estimation procedure, the Euclidian 

distance was used. It is considered the most accurate measure indicating 
how far the estimate deviates from the real position at a given point in 
time. However, it can only be calculated if a time-stamped ground-truth 
measurement is available which matches the estimate. Thus, the Euclidian 
distance was calculated only for those estimates where a time-matched 
ground-truth existed. Resulting data was grouped per configuration to 
calculate the distribution over all replicates and locations within this con-
figuration, and mean and median values were determined. Furthermore, 
the 95 percentile was calculated, to give an upper bound on the accuracy 
that was achieved for 95% of the time. This value also allows comparison 
against the required accuracy for this problem, which was set to be less 
than 1m for 95% of the time, and should preferably be less than 0.1m.

2.2.4.4  Statistical inference
Next, statistical testing was applied in GenStat 16 for the data of each 

evaluation stage, to determine whether the various configurations result 
in different mean accuracies. First, an initial ANOVA was applied on the 
Euclidian distance, with configurations as treatment. If the means of the 
configurations proved to be different, and clear outliers (with a mean 
more than twice the grand mean) could be observed, this procedure was 
repeated while omitting the configurations which caused these outliers. 
Next, if difference of means was proven at 95% confidence, a Tukey HSD 
test was applied to pairwise compare the means of the configurations, 
with a significance level of 0.05. 

However, it cannot be guaranteed that the underlying assumptions 
for this procedure (independent identically distributed data) really hold, 
as the positions along a trajectory (and thus also the resulting estimates) 
relate to each other. Furthermore, the distribution of the results might 
vary between configurations, and is probably not normally distributed. 
Therefore, a relatively strict test was chosen for pairwise comparison, which 
was considered the best available at varying sample sizes and to produce 
confidence intervals of the results. Also, using independent random values 
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Table 2.2: Overview of the configurations used in evaluation stage 1. Bold numbers 
in brackets indicate the code of this configuration, where 100 was the default 
setting for this stage and the others were alternatives. All configurations were 
applied on both the Beam and Field model, and repeated 30 times. 

Setting Default value Alternative values
1) Resampling 

method

importance 

sampling (100)

low variance 

sampling (101)

2) Sensors used in the 

prediction step

front wheel and 

Xsens MTi (sensors 

1 and 4) (100)

rear wheel 

(sensors 2 and 

3) (102)

3) Laser scanner 

resolution

each 20th ray 

(100)

each ray (103) each 5th ray 

(104)

each 10th 

ray (105)

4) Number of 

particles used in the 

estimation

300 (100)

5) Amount of noise 

added in the 

prediction step

20% on displace-

ment and 50% on 

rotation (100)

6) Parameter values 

used for the update 

step (Table 2,5)

learned 

parameter values 

(100)

7) Grid size of the 

Field model (Beam 

model n/a)

0.1m (100)

8) Inclusion of type-L 

obstacles (Field 

model n/a)

no (100)

yes, using each 

5th laser ray, 

for distances 

greater than 

5.5m (106)

yes, using 

each 20th 

laser ray, for 

distances 

greater than 

5.5m (107)

9) Global localisation no (100)

in the estimation, a fraction of the estimates in the evaluation and the large 
number of data points, reduce the effect of violating these assumptions. 
Although caution should still be paid when interpreting the results of 
statistical inference, applying these methods gives deeper insight and was 
regarded valuable in this context. Finally, if a stable solution is found, the 
distribution of the Euclidian distance remains similar if trajectory lengths go 
to infinity, or widens if serious drift in the estimate is observed.
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Table 2.3: Overview of the configurations used in evaluation stage 2. Bold numbers in brackets indicate the code of this confi-
guration, where 200 was the default setting for this stage and the others were alternatives. All configurations were repeated at 
least 30 times for the Beam model and at least 15 times for the Field model.

Setting Default value Alternative values

1) Resampling method importance sampling 
(200)

2) Sensors used in the 
prediction step

front wheel and Xsens 
MTi (sensors 1 and 4) 
(200)

3) Laser scanner resolution each 5th ray for the 
Beam model; each 1st 
ray for the Field model 
(200)

4) Number of particles used 
in the estimation

300 (200) 100 (201) 1000 (202)

5) Amount of noise added 
in the prediction step

 20% on displace-ment 
and 50% on rotation 
(200)

10% on displace-
ment and 25% on 
rotation (203)

40% on displace-ment and 
100% on rotation (204)

6) Parameter values used 
for the update step (Table 
2.5)

learned parameter 
values (200)

manual variation 
with wider distribu-
tion of hits (205)

manual variation with 
narrower distribution of hits 
(206)

7) Grid size of the Field 
model (Beam model n/a)

0.1m (200) 0.01m (207) 0.01m and update 
parameters from 205 
above (208)

0.01m and update parameters 
from 206 above (209)

8) Inclusion of type-L 
obstacles (Field model n/a)

no (200) yes, for distances 
greater than 4.8m  
(210)

yes, for distances greater 
than 4.8m and update 
parameters from 205 
above (211)

yes, for distances greater than 
4.8m and update parameters 
from 206 above (212)

yes, included for 
distances greater 
than 6.5m (213)

yes, for distances greater 
than 6.5m and update 
parameters from 205 
above (214)

yes, for distances greater than 
6.5m and update parameters 
from 206 above (215)

9) Global localisation no (200)
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Table 2.4: Overview of the configurations used in evaluation stage 3. Bold numbers in 
brackets indicate the code of this configuration, where 300 was the default setting 
for this stage and the others were alternatives. All configurations were repeated at 
least 30 times for the Beam model and at least 15 times for the Field model.

Setting Default value Alternative 
values

1) Resampling method importance sampling 
(300)

2) Sensors used in the
prediction step

front wheel and Xsens MTi 
(sensors 1 and 4) (300)

3) Laser scanner
resolution

each 5th ray for the Beam 
model; each 1st ray for 
the Field model (300)

4) Number of particles
used in the estimation

1000 for the Beam model; 
300 for the Field model 
(300)

5) Amount of noise
added in the prediction
step

20% on displacement and 
50% on rotation (300)

6) Parameter values
used for the update step
(Table 2.5)

narrower hit distribution for 
the Beam model; learned 
parameter values for the 
Field mode (300)

7) Grid size of the Field
model (Beam model n/a)

0.1m (300)

8) Inclusion of type-L
obstacles (Field model
n/a)

no (300)

9) Global localisation no (300) yes, in area of 
6 by 4 meter 
around the 
robot and i 
within 0.5 r 
around the 
starting pose 
(301)

yes, over 
the full 
compart-
ment and i 
in range ± r  
(302)
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Table 2.5: Values of the parameters used in the update models, as explained in 
Chapter 6 of Thrun, Burgard et al. (2005). The initial values were learned on the 
training data (containing raw measurement data), while the values for wider 
and narrow hit distribution were at a manually selected offset from the learned 
values, to evaluate how a wider or narrower distribution of hits around an obstacle 
changes the results. W-values indicate weight factors for various probabilities, while 
v and m are parameters of the probability distributions.

Beam model whit wshort wrandom wmax vhit mshort

Learned 0.478 0.247 0.275 0.000 0.190 0.258

205B Wider 0.6 0.2 0.2 0 0.4 0.16

206B Narrower 0.35 0.3 0.35 0 0.1 0.36

Field model whit wshort wrandom wmax vhit mshort

Learned 0.900 n/a 0.101 0.000 0.206 n/a

205F Wider 0.95 n/a 0.05 0 0.4 n/a

206F Narrower 0.85 n/a 0.15 0 0.1 n/a

2.3 Results and Discussion
This section presents the results of the position estimator, and discusses 

them per evaluation stage, both in a qualitative and a quantitative manner. 

2.3.1  Evaluation stage 1
In stage 1, settings for which a minor influence on the results was 

expected or which had to be determined in an early stage, were applied 
on a small dataset consisting of 1 straight and 1 rectangular trajectory. 
Evaluated here were the resampling methods (setting 1), the sensors used 
in the prediction step (setting 2), the laser scanner resolution (setting 3), 
and the inclusion of type-L obstacles in the Beam model (setting 8). See 
Table 2.2 for details.

2.3.1.1  Qualitative results
When looking at the estimated paths in stage 1, it seemed that the 

Field model showed very consistent results indicating good robustness, 
whereas the Beam model had more variation, with one configuration 
where all estimates lose track of the path. For some configurations, part 
of the replicates showed reasonable performance, like configuration 106B 
in the left part of Figure 2.6. Another part showed difficulty in tracking or 
even gets lost, commonly in the 2nd half or at the end of the trajectory.  
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Also, in several cases the particle filter reduced deviation from the ground-
truth, indicating its capability of correcting errors. A clear example of such 
results can be observed in the right half of Figure 2.6 with configuration 
105F, where an offset of 1m is completely corrected after two turns (top), 
which is confirmed by the evaluation results (bottom). Furthermore, it was 
observed that turns sometimes resulted in a deterioration of the result, but 
in most cases in an improvement of the accuracy. From this, it is assumed 
that additional information and uniqueness brought into the model by the 
turns is in general beneficial to the results. In general, the estimate was 
close to the ground-truth, and no clear offset in a particular direction could 
be observed. 

2.3.1.2  Quantitative results
General picture 
For each evaluation run in stage 1, the Euclidian distance was calculated 

as performance measure, and the results are summarized in Figure 2.7. 
Already in this stage, most configurations comply with the requirement that 
the Euclidian distance should be less than 1m for at least 95% of the time. 
This is shown by the horizontal blue bars (top ones), that are below the 
blue dashed line at 1m. Only the best cases, however, approximate the 
desired value of 0.1m (lower dashed line). For several configurations, the 
mean is far from the median, indicating that a large number of outliers 
are present here. Looking slightly further, it is observed that the Field model 
(all mean values below 0.21m) clearly outperformed the Beam model (all 
mean values at least 0.3m). Results for configuration 103B, and to a lesser 
extent also configurations 102B and 105B, were clearly affected by several 
cases where the estimator failed or had difficulty to track the path. 

Evaluating the various options for the settings
Changing the resampling method (setting 1) to low variance sampling 

(configurations 100 and 101 in Table 2.2) showed a very small but not 
significant improvement, whereas changing the sensors used for prediction 
(setting 2) to the rear wheels clearly affected the results. Here, several 
replicates provided good estimates, while others performed worse. For the 
Beam model, 4 occasions gave a lost robot, mainly at the straight trajectory. 
When examining the estimated paths more closely, especially the Beam 
model seems not able to fully correct for errors in the prediction stage, 
resulting in drift of the estimate. Considering the laser scanner resolution in 
the likelihood determination (setting 3), a trend was observed, especially 
for the Field model, in that more data provided better results (see configu-
rations 103 to 105 in Figure 2.7). Configuration 103B is the exception here, 
as in this case individual observations are too dependent. Combined with 



49

W
h

e
re

 a
m

 I?

2

Figure 2.6: Visual representation results of several estimation runs in stage 1, with the estimation result on top and the evaluation 
resulton in the bottom. Coloured bar indicates time in seconds. Left: configuration 106B with very nice tracking of the trajectory. 
Right: configuration 105F showing a nice correction of offset in the estimation, and finally resulting in a good tracking of the 
trajectory.
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a small rotational offset this might lead to large errors in the update. Also, 
results for 105B (using each 10th ray) are somewhat surprising, as it had 
larger errors than 100B (using each 20th ray). This might be explained by a 
difficulty to detect turns correctly and thus having a number of estimates 
lost. When considering the inclusion of type-L obstacles (setting 8), the 
differences in performance are not significant nor can clear improvement 
be seen, making it difficult to assess the effect. At each 5th ray (106B) it 
seems that results improved, while at each 20th ray (107B) they got worse. 
When observing the paths, in both cases replicates are found where the 
estimator gets lost, thus providing a possible explanation for these results.  

Figure 2.7: Boxplot of results of stage 1, showing the distribution of Euclidian distance 
per configuration, over all data available for each configuration. Also indicated 
are the mean (green bars), median (red bars), and 95 percentiles for each confi-
guration. Blue horizontal lines represent the required and desired accuracy for 95% 
of the time. Same letters inside the graph indicate no statistical difference between 
configurations at p=0.05. Indices refer to the configurations, which are explained 
in Table 2. Configuration 100 was the default, and the others contained variations 
of the settings. 
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Choices for the next stage
As low variance sampling was considered to have some practical 

advantages (like more uniform resampling) over importance sampling, 
and no significant difference was found, it was selected to be used in 
the next stage. The selection of the front wheel and Xsens MTi data for 
prediction was based on the more constant results observed. Considering 
the number of laser rays used for the likelihood determination, the best-
performing ones were selected, being each ray for the Field model and 
each 5th ray for the Beam model. The effects of using type-L obstacles 
(106B & 107B) were unclear, so they were not included by default in the 
runs of stage 2. Instead, the effect of changing the distance from which 
they were included was evaluated there as well. 

2.3.2  Evaluation stage 2
In this stage, settings for which a larger influence was expected were 

applied on a dataset consisting of 2 straight, 2 rectangular, and 1 advanced 
trajectory. Evaluated were the number of particles used in the estimation 
(setting 4), the amount of noise added in the prediction step (setting 5), 
the parameter values used for the update step (setting 6), the grid size of 
the Field model (setting 7) and the inclusion of type-L obstacles at various 
distances (setting 8). See Table 2.3 for details.

2.3.2.1  Qualitative results
Most configurations provided good results, where in general the Field 

model was better than the Beam model, showing a nice match and good 
robustness under almost all configurations, whereas the Beam model seems 
more prone to changes and errors. The quality and robustness of the Field 
model is seen, for example, when changing the number of particles, where 
the Beam model needed 1000 particles (configuration 202B) to approach 
the results of the Field model at 100 particles (configuration 201F). The 
Beam model being more error-prone becomes clear at the path in Figure 
2. 8D (configuration 201B), where a strong deviation is observed before the 
first turn, caused by deviating compass data. Using the same data in the 
Field model resulted in far less deviation of the real trajectory (not shown), 
indicating the Beam model being less capable of correcting prediction 
errors. As deviating compass data occurred more often, especially in 
longer straight parts in x-direction of the house, this seems a frequent cause 
of deviations from the real trajectory. Examples are shown in the top-left 
part of Figure 2. 8D and the top-middle part of Figure 2. 8B (configuration 
205B). Thus, in future work a better calibrated compass or more accurate 
prediction data from fusing multiple sources is desired. 
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In general, on simple straight trajectories the estimation results were 
good and no large differences were observed, except for some wrong 
initial orientations. As trajectory complexity increases by including turns, 
shorter segments and a larger total length, differences between configu-
rations became clearer. Here, turning often allowed the estimator either to 
correct errors or caused it to get lost. Thus, these paths are most interesting 
for both the evaluation (to discriminate between configurations) and the 
method itself (to discriminate between particle likelihoods). Clear examples 
of this are shown in Figure 2. 8A (207F) with accurate tracking and in Figure 
2. 8B where an initial tracking failure is corrected nicely after 100 seconds. 
Thus, if configurations are robust, estimation quality remains constant with 
increasing complexity of trajectories, whereas less robust configurations 
show deterioration of the results (Figure 2. 8C), although correction remains 
possible (Figure 2. 8B). Furthermore, the Field model gave more constant 
results for a given configuration and trajectory. For both the Beam and 
Field model, clear differences in performance exist between trajectories. 

Offsets between estimate and ground-truth generally occurred at path 
segments in the x-direction of the house, showing an error in the y-direction. 
As result of housing characteristics, dimensions in x-direction were very strict. 
In y-direction more variation might be present, as for example the distance 
between two adjacent rows was not strictly defined. Also, interior elements 
acting as wall (rows A and E), were not exactly straight in vertical direction. 
This might have caused a small mismatch in y-coordinate between reality 
and map, thus explaining some of the offset of the estimate. Under similar 
conditions, type-L obstacles were not always present in laser readings, but 
showed up only now and then. This might be caused by their location close 
to, but above, the laser scanner height. Small variations therein, combined 
with a non-level robot and a diverging laser beam, made it hard to predict 
their presence reliably and thus include them in the Beam model with clear 
benefits. 

2.3.2.2   Quantitative results
General picture
At first sight, improvements in results between stage 1 (Figure 2.7) and 

stage 2 (Figure 2.9) seem small, although the latter contains more variation 
in trajectories. Therefore, mean Euclidian distance was also calculated per 
combination of input trajectory and configuration (not shown), to enable 
analysis in more detail. Higher mean errors per configuration were generally 
caused by failure of properly tracking rectangular and advanced trajec-
tories, while low values indicate good performance also at these trajec-
tories. About half of the time, results on the advanced trajectory slightly 
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Figure 2. 8: (A-D, left-right, top-down) Visual representation of some estimation results in stage 2. Coloured bar indicates time 
in seconds. A) Configuration 207F showing a good estimation on a clockwise rectangular path. B) Configuration 205B showing 
a block pattern trajectory where the estimate quickly drifts off, captures the correct path around halfway, and keeps tracking 
until the end. C) Configuration 205B with a case where the estimate gets lost completely. D) Configuration 201B showing the 
deviations as results of compass error at the end of the straight parts in the trajectory. 



54

2 | Localisation

outperformed those on the rectangular trajectories, like for configurations 
202B, 204B and 204F. Possibly, the shorter path segments and more turns 
in the advanced trajectory allowed the estimator to correct more easily. 
The mean Euclidian distance per configuration was below 0.25m for the 
Field model, while the Beam model had values up to 0.5m. Estimates losing 
track contributed to this accuracy loss, with several Beam configurations 
having 10 to 30 lost estimates, versus the Field model having at most 2 lost 
estimates (except configuration 203F). Furthermore, this mainly happened 
at rectangular and advanced trajectories, containing more data points 
and thus having greater influence on the mean value per configuration. 

Evaluating the various options for the settings
Evaluating the number of particles used (setting 4, configurations 

200 through 202 in Table 2.3), showed the expected response with more 
particles improving the results, and clear differences between Beam and 
Field model (see Figure 2.9). The Field model gave reasonable results with 
100 particles (configuration 201F). Using 1000 particles (202F) had no clear 
advantage over 300 particles (200F). The Beam model failed more often at 
100 particles (201B). Using 1000 particles (202B) had a clear advantage over 
300 particles (200B). Changing the amount of noise in the prediction step 
(setting 5), showed that less noise (configurations 203B & 203F) produced 
large errors in the estimation, with many replicates being lost. More noise 
slightly improved the results for both the Field model (204F) and the Beam 
model (204B), although the mean of the latter was affected by outliers 
from rectangular and advanced trajectories. This indicates that a certain 
amount of noise was required to capture the variation present in the 
prediction data, especially for rotation. However, too much noise made 
the estimate more sensitive to the repetitive nature of the environment. 
Furthermore, requiring these amounts of noise (20% of the displacement) 
raises the question whether the filtering in the update step is not too strong 
and a higher value of a should be used.  

Deviating the parameter values for the update (setting 6) from those 
learned by expectation maximisation reduced accuracy as expected, 
except for configuration 206B and simple trajectories. Improvements 
observed in configuration 206B with lower values for vhit  and whit  (less 
likely to hit obstacles) might be explained from the larger share for random 
and short range readings, giving more room to account for unexplained 
data. When changing grid size of the Field model (setting 7), results did 
not differ significantly for the learned parameter values. With other values 
of the update parameters (configurations 208F & 209F) an improvement 
was observed with respect to the results of configuration 205F and 206F, 
which have a larger grid size. This might be attributed to a more accurate 
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model representation, especially for the many small obstacles (poles) 
present. Including type-L obstacles at other distances (setting 8) seemed 
to improve the results with learned update parameters (210B & 213B), 
although effects were less evident at advanced trajectories. When also 
deviating the update parameters, results became worse, where especially 
the wider update option (211B & 214B) gave clear problems.

Choices for the next stage
Most changes in stage 2 did not gave a clear improvement, except for 

the Beam model where more particles (202B) and a narrower hit distribution 
in the update (206B) seemed to have an advantage. As result, only these 
settings were changed, whereas the others were kept the same. Including 

Figure 2.9: Boxplot of results of stage 2, showing the distribution of Euclidian 
distance per configurations, over all data available for each configuration. Figure 
is clipped at 2m. Also indicated are the mean (green bars), median (red bars), and 
95 percentiles for each configuration. Blue horizontal lines represent the required 
and desired accuracy for 95% of the time. Same letters inside the graph indicate 
no statistical difference between configurations at p=0.05. Indices refer to the con-
figurations, which are explained in Table 3. Configuration 200 was the default, and 
the others contained variations of the settings. 
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type-L objects tended to improve the results with initial update parameters 
(200B vs 210B & 214B), but not for adapted update parameters. As the latter 
will be used, type-L obstacles were not included in stage 3. More details on 
the settings used in stage 3 are given in However, it cannot be guaranteed 
that the underlying assumptions for this procedure (independent identically 
distributed data) really hold, as the positions along a trajectory (and thus 
also the resulting estimates) relate to each other. Furthermore, the distri-
bution of the results might vary between configurations, and is probably 
not normally distributed. Therefore, a relatively strict test was chosen for 
pairwise comparison, which was considered the best available at varying 
sample sizes and to produce confidence intervals of the results. Also, using 
independent random values in the estimation, a fraction of the estimates in 
the evaluation and the large number of data points, reduce the effect of 
violating these assumptions. Although caution should still be paid when in-
terpreting the results of statistical inference, applying these methods gives 
deeper insight and was regarded valuable in this context. Finally, if a stable 
solution is found, the distribution of the Euclidian distance remains similar if 
trajectory lengths go to infinity, or widens if serious drift in the estimate is 
observed..

2.3.3   Evaluation stage 3
In stage 3, the final selection of settings was evaluated on a large 

dataset (11 trajectories) to determine the final accuracy of both the Beam 
and Field model. A stress test was added to evaluate the handling of 
missing data. Also, the capabilities for global localisation were assessed 
by widening the initial particle distribution (setting 9). Details on the con-
figurations used are given in However, it cannot be guaranteed that 
the underlying assumptions for this procedure (independent identically 
distributed data) really hold, as the positions along a trajectory (and thus 
also the resulting estimates) relate to each other. Furthermore, the distri-
bution of the results might vary between configurations, and is probably 
not normally distributed. Therefore, a relatively strict test was chosen for 
pairwise comparison, which was considered the best available at varying 
sample sizes and to produce confidence intervals of the results. Also, using 
independent random values in the estimation, a fraction of the estimates in 
the evaluation and the large number of data points, reduce the effect of 
violating these assumptions. Although caution should still be paid when in-
terpreting the results of statistical inference, applying these methods gives 
deeper insight and was regarded valuable in this context. Finally, if a stable 
solution is found, the distribution of the Euclidian distance remains similar if 
trajectory lengths go to infinity, or widens if serious drift in the estimate is 
observed.
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Figure 2.10: (A-D, left-right, top-down) Visual representation of some of the estimation results in stage 3. Coloured bar indicates 
time in seconds. A) Neat tracking of the path, with small sideward offset at part of the path (configuration 300B). B) Global 
localisation, with nice capturing of the path, although shifted from the real path (configuration 302B). C) Global localisation 
resulting in a mirrored path (configuration 302B). D) Results of stress test with more than 25% of laser data missing (configuration 
300F). 
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Figure 2.11: Boxplot of results of stage 3, showing the distribution of Euclidian 
distance per configuration. From left to right, for the Beam model (green) and the 
Field model (blue) the evaluation on a large dataset, the stress-test with missing 
data, and global localisation in a small and a large area. Indexes refer to the con-
figurations, which are explained in table 4. Figure is clipped at 2m. Also indicated 
are the mean (green bars), median (red bars), and 95 percentiles (blue bars). Blue 
horizontal lines represent the required and desired accuracy for 95% of the time. 

2.3.3.1  Qualitative results
In general, the estimation algorithm produced good results by nicely fol-
lowing the ground-truth on short straight and longer rectangular and ad-
vanced trajectories. Small errors in the start pose were in general nicely 
captured and corrected, as well as deviations that occurred along the 
path, as shown in Figure 2.10A. For the stress test, with part of the laser data 
missing, the correct path could be captured in most cases, although larger 
deviations were observed, especially at locations where data was missing 
(Figure 2.10D, showing a good result). When performing global localisa-
tion, clear effects from the repetitive environment were seen. If the initial 
spread was limited (configuration 301B and 301F), the correct starting point 
was found or errors were corrected most of time. If particles were spread 
over the whole compartment (302B & 302F), the repetitive nature of the 
area caused problems. As result, sometimes the correct starting point and 
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path structure were found, possibly in a mirrored version (like Figure 2.10C), 
but in most cases, the estimate failed to find or track the path. Also, the 
correct path structure was captured frequently, but then from a wrong 
starting pose. 

Calculation times were about 15 to 20 seconds per frame for confi-
guration 300B, and on average 2.5 seconds per frame for configuration 
300F. Thus, for future real-time implementation a speed improvement with 
a factor 10 to 100 is desired. As a single-core Matlab-implementation was 
used, this seems possible with help of a more low-level implementation and 
using multi-core processing. 

2.3.3.2  Quantitative results
From the results for configurations 300B and 300F in Figure 2.11, it shows 

that the mean Euclidian distance over 10 input trajectories was equal for 
both models, being 0.192m for the Beam model and 0.199m for the Field 
model. In the distribution of the data and the 95 percentile (0.424m and 
0.374m for Beam and Field respectively), more variation can be observed. 
Here, the Field model had a more consistent but a slightly less accurate 
mean result compared to the Beam model. When examining the data 
in more detail (not shown), straight trajectories gave even better results 
(means between 0.1 and 0.15m), while the longer rectangular and 
advanced trajectories had means around 0.2m. 

For the stress test, the Field model gave better results, but errors clearly 
exceed the requirement, with mean values of 2.99m for 300B-stress and 
1.38m for 300F-stress, and 95% levels of 11.29m and 4.74m respectively. In 
part of the estimates, the error remained within several meters, especially 
for the Field model. In another part, the estimates got lost, leading to an 
unbounded error. Using less laser data in the Beam model (not shown) 
also seems to improve the results, probably because missing data has less 
impact in this case. 

When performing global localisation, numerical results show a large 
spread. Thus, exact discussion of values is less relevant here, but under 
some conditions reasonable results (maximum errors within 1 or 2 meter) 
can be achieved. 

2.4 General Discussion

2.4.1  Ground-truth
In this work, the problem of localizing a mobile robot in a commercial 

poultry house was addressed. A total station provided ground-truth of the 
robot trajectory, providing theoretical accuracies up to mm-level, even 
when moving (Kirschner and Stempfhuber 2008, Stempfhuber 2009). In our 
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work, vehicle motion, the number of obstacles present and applied trans-
formation of coordinate frames might affect this, resulting in an accuracy 
of 2 cm. Adding time stamps to ground-truth was based on matching 
the closest available point, which, in combination with small inaccura-
cies in time and space, might affect ground-truth accuracy. As result, a 
maximum error of 0.05m in ground truth is expected, which remains below 
the average estimation accuracy. Furthermore, having time-referenced 
data was considered more valuable than small improvements in ground-
truth accuracy.

2.4.2  Prediction
In the final application, flooring conditions are expected to have 

a negative influence on the quality of the odometry and IMU data (Qi, 
Brookshaw et al. 2013), which were used as input for the prediction stage. 
Thus, a priori filtering on this data might be desirable, to have the estimated 
displacement better match the real displacement. Initial tests with a 
Kalman filter on combining data from multiple sensors (control input, front 
wheel, rear wheels and Xsens MTi) indicate that the error in the prediction 
data could be reduced by more than 50%. However, currently 20% noise 
was added in the prediction stage to have sufficient distribution of the 
particles, so this might have limited use. 

2.4.3  Update
Under current conditions, the reliability of laser data was relatively high. 

With presence of animals however, about 50 to 75% of the laser readings 
might reflect animals’ presence instead of housing objects. Not all readings 
represent animals, as the laser scanner is mounted such that only animal 
heads and tails are in view, and not their full body. Thus, identifying more 
likely particles can become difficult. Various approaches can be used to 
overcome this. Levinson, Askeland et al. (2011) and Burgard, Cremers et al. 
(1998) mention filtering laser data, to discriminate between relevant and 
irrelevant data to extract only readings which are likely to correspond to 
housing interior. This increases the Signal to Noise Ratio and also reduces 
computational load in the update step. Kootstra and de Boer (2009) 
indicate and evaluate a number of solutions to deal with low numbers of 
distinct features. Furthermore, information from other sources like cameras 
can be added or combined in the determination of particle likelihood. 

2.4.4  Weighing and resampling
Before resampling, the particle distribution was corrected by raising 

the weights to the power a, set to ½. This modification was evaluated for 
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other values of a as well, using the effective sample size (ESS) as given by 
(Doucet and Johansen 2009). The ESS is a measure of the likelihood distri-
bution, with a higher ESS representing a more useful distribution. 

As there was considerable variation within a trajectory, different values of 
a were desired for different parts of a trajectory. In several cases, however, 
even small values of a were not sufficient to get a high ESS. In cases with 
a low ESS, more particles might be required to keep enough alternative 
options alive. This variation in desired values of a made it difficult to select 
a correct value, and a lower value than ½ might be desired, especially 
given the amount of noise that was added in the prediction stage. 

To cope with the estimate loosing track or containing high uncertain-
ties, also random particles can be added. For this, locations within several 
meters around the current or last reliable estimate seem most useful, as in 
those cases the estimate will generally be in the neighbourhood of the real 
position.

2.4.5  Calculation considerations
Choosing each 5th ray for the Beam model, had a large computatio-

nal effect by quadrupling the calculation times compared to the original 
configuration (using each 20th ray), as result of the raycast required. 
Although this has limited impact in the current study, which uses off-line 
position estimation, it might be relevant for future applications were 
real-time processing is required. Thus, also using each 10th ray was initially 
evaluated in Stage 3, showing that a mean Euclidian distance of .25m 
could be reached (vs 0.19m for each 5th ray) while halving the compu-
tational burden. Also reducing or adaptively changing the number of 
particles could provide additional benefits here, as computational time is 
linearly related to the number of particles, while evaluation results indicate 
that uncertainty is less affected. 

2.4.6  Future application
Our performance is slightly worse compared to (Fox, Burgard et al. 1999, 

Thrun, Fox et al. 2001), which might be explained partly by less accurate 
input data, as well as more small obstacles that were present, which made 
a correct obstacle detection more difficult. Improved calibration and 
online updating of the map are possibilities to further improve the results. 
As long as the original path is tracked relatively well (deviations of less than 
1 meter), the high repetitivity of the environment causes no problems. 
If deviations are larger, multiple options with equal likelihood arise, and 
the estimate can become shifted compared to the real location. Still, 
the algorithm’s current performance is suitable for future application in a 
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poultry house. After finishing the work for this manuscript, an online (and 
real-time) version of the algorithm was implemented in PoultryBot, and 
found to be successful in online localisation. Results obtained in this stage 
were considered outside the scope of the current paper. 

2.5 Conclusions & Recommendations
In this work, a particle filter based localisation method was evaluated 

for application on PoultryBot, a mobile robot for use in poultry houses, for 
example to collect floor eggs. It was shown that in a poultry house without 
hens and after proper selection of parameters and settings, for 95% of the 
time an accuracy of 0.42m could be reached using the Beam model, or 
0.37m using the Field model. This is well below the required accuracy of 
1.0m at 95% of the time, and the achieved mean value of 0.2m approaches 
the desired level of 0.1m. Furthermore, the method proved capable of 
correcting for errors and handling missing data, and to a certain extent it is 
capable of performing Global localisation. It is concluded that a particle 
filter is indeed a suitable method for localisation of PoultryBot. 

In an evaluation procedure, various settings and choices were 
compared, to see how these influenced the accuracy and applicability 
for our application. Varying the choices for the resampling method, the 
sensors used in the prediction step and the grid size of the Field model 
showed no clear differences. Increasing the laser scanner resolution and 
using more particles in the estimation improved the result, except when 
data became too dependent in the Beam model, as this is sensitive to 
small errors. Both changes lead to an increase of the computational load, 
but at some point this no longer outweighs the improvement of the results. 
Learned parameter values for the update step performed in general 
better than the alternatives. In some cases, other values allowed more 
room for unexplained measurements, and thus gave small improvements 
in the results. Relatively large amounts of prediction noise (20% of displa-
cement) were required to handle sensor uncertainty and maintain particle 
spread. The effect of including type-L obstacles in the update stage on the 
estimation results remained unclear. 

To allow application of this method in a commercial poultry house, 
attention should be paid to the quality and usability of the sensor data for 
prediction and update, and the prediction uncertainty used. More inves-
tigation is required on data filtering and the optional integration of other 
information sources in the update stage, to ensure correct functioning 
when animals block the laser scanner view. 
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Abstract
A problem in loose housing systems for laying hens is the laying of eggs 

on the floor; these eggs need manual collection. This job is heavy and 
time-consuming and automated collection is desired. For collection using 
a robot, a collection path is required. A novel path planning algorithm 
is introduced for non-uniform repetitive area coverage (NURAC) paths 
and evaluated based on information about floor egg  probability. Firstly, 
a spatial map was developed that describes the potential for floor eggs 
at each location in a poultry house. Next, paths for floor egg collection 
are planned with a dynamic programming approach that covers the 
house floor area and frequently revisits locations with a high potential on 
floor eggs. These paths are compared with the paths used for floor egg 
collection by a farmer and evaluated with help of a simulated set of floor 
eggs. With respect to the average time eggs are present on the floor, 
paths planned for a robot are compared to two collection rounds of a 
farmer. With respect to the structure of the path and the number of visits 
to locations with a high potential, the robot paths outperform the farmer. 
Although optimality of the path is not guaranteed, the presented results 
are promising for the use of a robot to collect floor eggs, and will result in 
a reduction of the demand for manual labour. Extending the floor egg 
model with feedback information could further improve the results. 

Nomenclature

µ Mean
a Instance of length index
b Instance of width index
Ck Contribution at stage k
c1 – c4 Constants controlling the incentive function
Egg time Time an egg is present on the floor, h
f Factor controlling the yield increase
I Number of cells in length of the house
i Cell index in length direction
J Number of cells in width of the house
j Cell index in width direction
k Index of cell transition or stage
L Total set of locations
Li,j Location i,j, with i=1:I,  j=1:J
N Number of cell transitions
O Optimisation criterion
Pi,j Floor egg potential at location i,j 
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Pi(k),j(k) Floor egg potential at location i,j at stage k
Ri,j Incentive at location i,j 
Ri(k),j(k) Incentive at location i,j at stage k
Tk State transition at stage k
t Time, h
tcollection Time of collection of an egg, h
tlay Time of lay of an egg, h
U Set of possible transitions or decisions
uk Decision at stage k
Vk Value function at stage k
X Width direction of the house
xk State at stage k
Y Length direction of the house
Yi,j Yield at location i,j 
Yi(k),j(k) Yield at location i,j at stage k
Ymax Maximum yield
σ Variance

3.1 Introduction

3.1.1  Floor eggs
Based on the increasing concerns of the public about the welfare of 

production animals, the EC issued a ban on egg production in traditional 
battery cages by 2012 (European Union 1999). Since the 1980’s, this led 
to a search for alternative systems, categorised as enriched cages or 
colony systems and loose housing systems. The basics of the latter type are 
centuries old but to comply with modern farming practice improvements 
in scale and productivity were necessary. As a result, the aviary system was 
developed (see Blokhuis and Metz 1995, Sandilands and Hocking 2012) 
which increased productivity while maintaining freedom of behaviour for 
the animal. In these systems hens are trained and expected to lay their 
eggs in the nests; However, a significant portion can be found at other 
places such as elevated tiers and the floor (either litter or slatted floors) and 
these eggs are called ‘mislaid eggs’.

Laying of eggs outside the nests is induced by factors such as the 
inability of the hen to reach the nest, unfamiliarity with laying (especially at 
a younger age), conceptual mismatch between the properties of the nest 
and the expectation of the hen and presence of other eggs outside the 
nest (Appleby 1984, Zupan, Kruschwitz et al. 2008). Eggs laid in the litter on 
the floor are considered to be a problem in poultry farming. They have a 
lower quality due to contamination by the litter and they induce additional 
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floor laying. Thus frequent collection of floor eggs is required (Appleby 1984, 
Abrahamsson and Tauson 1998, van Emous, Reuvekamp et al. 2001, van 
Emous and Fiks - van Niekerk 2003). Research has been done on measures 
to reduce the laying of floor eggs. This has led to specific adaptations of 
the housing systems and a series of management and control measures 
used by farmers. None of them has proven to be completely successful 
(Appleby 1984, Cooper and Appleby 1996b, Cooper and Appleby 1996a, 
Abrahamsson and Tauson 1998, Gunnarsson, Keeling et al. 1999, Lundberg 
and Keeling 1999, van Emous and Fiks - van Niekerk 2003, Tauson 2005, 
Zupan, Kruschwitz et al. 2008). One of the key control measures taken is the 
frequent manual collection of floor eggs. This is a physically demanding 
job under harsh environmental conditions and it can take up to 37% of 
the work time of the farmer (Drost and van der Drift 1993, van den Top, 
Akkermans et al. 1994, Blokhuis and Metz 1995).

3.1.2  Egg collection
To ease this collection task, for instance, a gripper stick, an automated 

collection system with a rake (Fiks-van Niekerk, Reuvekamp et al. 2003) 
and the Chicken Trolley (Anonymous 2010) have been proposed. 
However, despite the enormous progress already made, it is expected that 
the problem of floor laying will remain with current systems, as a result of 
variations between flocks and the specific preferences of the hens with 
respect to their nesting places.

Another alternative is to use an autonomous multi-functional robot 
platform for the collection of floor eggs. It could also be used for the 
monitoring of indoor climate, identifying dead hens, monitoring animal 
behaviour and carrying out other welfare-related tasks thereby alleviating 
the work of the farmer, without the need for a fixed installation in the 
poultry house. This idea builds on a robotic platform that was constructed 
for the Field Robot Event competition of 2007 (Anonymous 2007). In the 
freestyle task of that competition, an autonomous robot with a collection 
device demonstrated the collection of floor eggs (Kool, Vroegindeweij et 
al. 2007). The basic idea was well received in agricultural practice in The 
Netherlands (Bijleveld 2007).

As a result a research project started in 2011 at Wageningen University 
focusing on the development of such an autonomous multi-functional 
platform. To ensure safe and correct functioning of such a platform, 
essentially, the following functions need to be implemented (Bechar 
2010), 1) mobility, steering and control, 2) sensing, 3) path planning and 
navigation, 4) manipulators and functional devices to deal with products, 
and 5) intelligence and autonomy.
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3.1.3  Path planning methods
This paper addresses the path planning for such a platform focusing on 

floor egg collection. The path planning algorithm had to take into account 
that floor eggs are non-uniformly distributed with respect to space (the 
location in the aviary house) and time (the moment the eggs are laid). 
Given these characteristics, key requirements for the path planner were: 
1) the time that eggs lie on the floor should be  minimised to prevent loss 
of quality; 2) the robot should cover the whole aviary house in 24 h; 3) the 
robot should be able to exploit the non-uniform distribution of floor eggs 
in the poultry house; 4) during the ovipositioning period the robot should 
frequently (re-)visit locations with a higher probability on floor eggs and 
pay less visits to locations where the potential for floor eggs is lower.

The second requirement suggests a solution in the direction of coverage 
path planning (Zelinsky, Jarvis et al. 1993, Choset 2001). However, such 
algorithms commonly focus on a uniform coverage of an area and tend to 
limit as much as possible revisits to a location. The current problem is more 
related to the field of (security) sweeping. The latter, also known as patrolling, 
is defined by Elmaliach, Agmon et al. (2009) as: “travelling around an area 
to supervise it”. With this approach, locations can be visited multiple times, 
but in general, this approach attempts to have a uniform visiting frequency 
for all locations. This can for example be done by planning a Hamiltonian 
cycle along all locations, and repeatedly covering this path, either by a 
single or multiple robots (Elmaliach, Agmon et al. 2009). 

For a quite similar kind of problem, autonomous floor cleaning and 
trash collection in a large building, Ahmadi and Stone (2005) proposed a 
method that accounted for a non-uniform distribution and, consequently, 
a frequent revisit to regions of interest. Their approach relied on a world 
model which is based on on-line event registration and learning, followed 
by a greedy search algorithm for generation of the path. It is worth noting 
that, to the best of our knowledge, in the domain of deliberative robot 
path planning (LaValle 2006), the algorithm of Ahmadi and Stone (2005) 
is the only example of a path planning approach explicitly dealing with 
frequent non-uniform revisits of regions of interest. In the current paper, we 
follow a more or less similar approach but for floor egg collection. Main 
differences are that here path planning will be based on a map containing 
the potential for floor eggs for each location in the aviary house. Addition-
ally, path planning will be use a dynamic programming (DP) approach so 
as to assure close to optimal behaviour and enable global search.
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3.1.4  Objective and paper outline
Our objective is to automate the collection of floor eggs with a robot. 

Here, a novel path planning algorithm is presented for non-uniform 
repetitive area coverage (NURAC) paths. However, firstly we present the 
a priori knowledge for the algorithm, including a model describing the 
potential on floor eggs, then, we introduce the path planning algorithm. 
In a model case study, the path generated by the newly developed 
algorithm is compared with manual floor egg collection by the farmer. The 
paths will be evaluated in qualitative terms by looking at the structure of 
the path. It will also be evaluated in quantitative terms by the average 
time eggs spent on the floor and the number of visits to each location.

3.2 A priori knowledge as input for the path 
 planner

In this section, the approach of the NURAC path planning system 
together with the information that is used as a priori knowledge for the 
path planner is presented. This contains a description of the reference 
aviary house that was used as starting point and a short description of the 
floor egg model with underlying literature that was used.

3.2.1  Coverage path planning for automatic floor egg 
collection

For coverage path planning to collect floor eggs autonomously the 
procedure as shown in Figure 3.1 is envisioned. Based on a priori knowledge 
of floor egg laying and a map with information on the housing and elevated 
tiers, a map is constructed which contains the location specific potential 
on the presence of floor eggs. This potential is related to the number of floor 
eggs that can be expected at each location. Next, a collection path for 
the robot is planned. Eggs in the aviary house are collected by following this 
path. During this process, information is collected about actual locations 
of floor eggs found. Based on this information, the floor egg potential map 
can be updated for the collection round on the following day, increasing 
the potential at locations where floor eggs were found and lowering the 
potential at locations where no floor eggs were found, as indicated by the 
feedback loop in Figure 3.1. This updated map is then available for (re-)
planning of the coverage path for next day. As a result, the distribution is 
initially the same for all sections in the house, but distributions will start to 
diverge once the first eggs have been found.

In this paper, the focus is on a part of this procedure, namely the 
generation of a map with the potential on floor eggs as well as the 



73

3

W
h

e
re

 d
o

 I g
o

?

Map with 
probabilities 
on floor eggs

A 
Priori 

Knowledge

Planned 
collection path 

for robot

Planning a 
collection 

path

Collecting 
floor eggs 

and 
registering 
information

Map with 
housing 

information

Real locations 
of found eggs

Relation / Dataflow
Information Action

Knowledge

Constructing 
the floor egg 

model

Possible relation

Figure 3.1: General model of the path planning approach.
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generation of a collection path. The performance of the resulting path 
is evaluated in a simulation setting and referenced to the collection 
behaviour and performance of a farmer. 

3.2.2  The commercial aviary house used in this case study
To have a reference situation for our model and to enable comparison 

of the results with practical experiences, research was based on an aviary 
house operated by the commercial farm ‘Het Anker B.V.’ at Opheusden, 
The Netherlands. The house accommodated 36,000 laying hens and 
was equipped with 5 rows of the Farmer Automatic Aviary (model year 
2003, Farmer Automatic GmbH & Co. KG, Germany). A cross-section of 
the house is shown in Figure 3.2. On the four outer rows (A, B, D and E), 
Van Gent group laying nests (Van Gent International BV, The Netherlands) 
were provided. The front of the house was opposite to the wall where the 
ventilation fans were placed. The housing was longitudinally divided into 
six sections by mesh wire fences. The Winter Garden was not considered in 
this research as hens only got access to the Winter Garden after laying. The 
width direction (X) is defined along the cross section of the house, while 
length direction (Y) is defined along the aviary rows.

EW

VV

P P

WW

A B C D E

Figure 3.2: Cross-section of the reference poultry house (along X-direction). On both 
sides of the housing a Winter Garden (W) was present, accessible via pop holes (P). 
In the aviary house, rows with elevated tiers (indicated A to E) with feeding lines, 
drinkers, perches and laying nests were present. The whole floor was covered with 
litter for scratching and dust bathing, except for the rows on the outside (A and E), 
below which the floor area was not accessible. The free height below the elevated 
tiers was 0.9 m for the middle row C, and 0.45 m for rows B and D.
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3.2.3   Generation of a floor egg potential map
Since experimental data on floor egg distribution were not yet available, 

a map was constructed containing a location specific potential on the 
presence of floor eggs. The resolution of this map was 0.1 by 0.1 m, and 
such an area was called a location. This location is expected to contain 
maximally 1 egg at a time. For each location on the map, a potential (P)
between 0 (never a floor egg) and 1 (every day a floor egg) was calculated. 
The map was generated with MATLAB® 2012a. Appearance of floor eggs 
in space and time is generally influenced by the following aspects: 1) 
hens tend to have a preference for particular locations in the house when 
laying floor eggs, 2) egg laying and thus floor egg appearance during the 
day is correlated with the natural laying behaviour of hens on a diurnal 
basis, 3) the overall number of eggs and thus also the number of floor eggs 
produced during a day depends on the time in the production cycle, 4) 
laying behaviour depends on the particular type of hen. Hereafter, the 
first three aspects will be described in more detail. The effects related to a 
particular type of hen (originating from breed, strain and flock), will not be 
considered in this research.

3.2.3.1   Location specific aspects
Literature indicates that hens tend to lay eggs near the front wall and 

to a lesser extent near the rear wall of the house (Niekerk and Reuvekamp 
1997, van Emous and Fiks - van Niekerk 2003). It is also indicated that hens 
prefer enclosed locations, like close to walls and corners and below and 
near construction elements (Appleby 1984, Lundberg and Keeling 1999). 
Darker locations also show a higher probability on floor eggs (Ellen, van 
Emous et al. 2007). 

Floor egg potential, as a function of distance to a wall or fence, was 
described with an exponential decay function. For each of the four corners 
in a compartment these functions were combined, to form the potential 
map for a single compartment. A higher weight was given to the corners 
at the front side of the compartment. Also, a correction was made for the 
walkways between the aviary system and the border of the housing. It is 
known from practice that they contain less floor eggs, probably due to a 
lower animal density, draught from the pop holes to the winter garden and 
the fact that these areas are used by the hens as a transit from the house 
to the winter garden. The floor egg potential was modified in two steps. 
Firstly, the potential was increased depending on the height of construc-
tion elements above the floor. In case this height was zero, the potential 
was set to zero. Construction elements close to the floor, but accessible for 
the hens, led to a higher increase in potential than construction elements 
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more elevated over the floor. Secondly, the potential was increased for 
locations close to construction elements or walls, with an increase that was 
inversely proportional to the distance. 

Figure 3.3 shows the resulting map with the location specific potential 
on floor eggs in the house, in which blue indicates a low potential and dark 
red indicates a high potential.  This represents an initial situation, and can 
be updated based on the locations of the collected floor eggs, as stated 
earlier. This map was to a limited extent validated with floor egg data from 
practice and the results showed a qualitative agreement (Vroegindewe-
ij, Van Henten et al. 2013). Also, the map was shown to two farmers and 
they confirmed the general trends in the location specific potential distri-
bution of floor eggs based on their practical experience. Therefore, it was 
considered to be a good starting point for generation and evaluation of 
robot paths. For the path planning, the resolution of the map was changed 
from a single-resolution grid of 0.1 by 0.1 m into a multi-resolution grid of 
0.4 by 0.4 m in open areas, and smaller grid sizes to accommodate the 
presence of interior elements. This was done by summing the potential 
of the single-resolution cells which were combined into one cell in the 

Figure 3.3: Initial yield map for the path planning which equals the summed floor egg 
potential. Blue indicates a low potential and dark red indicates a high potential. 
The horizontal dark blue lines refer to rows A and E in Figure 3.2, indicating areas 
that cannot be accessed by the robot or the hens. Purple dots indicate the starting 
points for the robot paths with their specific coordinates. The purple bars represent 
the robot passage ways between the sections.
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multi-resolution grid, so that the cells in the multi-resolution grid could take 
values between 0 and 16. The multi-resolution grid is only used to adapt 
the map to the presence of interior elements, in that it remains possible to 
preserve specific features in the potential yield map. For the path planning 
algorithm, this is of no relevance, as all cells are treated equally irrespec-
tive of their size. 

3.2.3.2  Diurnal aspects
Joly and Alleno (2001) studied the diurnal egg laying pattern. They 

found that egg laying in time followed a logistic pattern that was closely 
correlated to the ‘lights out’ moment the previous day. Based on these 
data, a logistic function was fitted that matched the laying behaviour of 
the flocks at the example farm studied in this research. The resulting curve 
is shown in Figure 3.4.

Figure 3.4: Cumulative (floor) egg production over a single day, based on the 
total production of eggs within a single day (Joly and Alleno 2001). Lighting was 
switched off around 22:00h the previous day.

3.2.3.3  Seasonal aspects
The number of floor eggs laid during a production cycle depends on: 

1) the daily production level, and 2) the fraction of eggs laid on the floor. 
Egg production data were obtained from ISA Poultry (2008) for the breeds 
Isa Brown, Hisex Brown and Bovans Brown. These data were averaged on a 
daily basis. The fraction of eggs laid on the floor was based on data of van 
Emous et al. (2001, 2004). These fractions are also known to vary in time. 
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Usually, the number of eggs laid outside the nest is high in the beginning of 
the production cycle. Proper management and hen learning usually results 
in a decreasing number of eggs laid outside the nest. Additionally, during 
the first part of the production cycle, mislaid eggs are usually found on the 
‘system tiers’. Later on, more eggs are found on the floor. As there is day to 
day variation in the number of eggs laid by flock, a random component is 
added from a normal distribution with µ = 0 eggs and σ = 10 eggs, based on 
observations in the reference poultry house. Figure 3.5 shows a realisation 
of a time series of the daily number of floor eggs produced by a flock of 
36,000 hens during a single production cycle, as used in this research. 

3.3 Coverage path planning with non-uniform  
 frequency of revisits to hot-spots

The solution of the coverage path planning problem is based on an 
approximate cell decomposition of the aviary house (Choset 2001) and an 
algorithmic approach closely related to dynamic programming. The cell 
decomposition yields a set of locations L. In this example, each location  
Li,j is indicated by the indices i = 1,2,...,I and j = 1,2,...,J that are related to 
the location of the cell along the width and the length of the aviary house, 
given as X and Y respectively in Figure 3.3. For the path planning, the 
aviary house was decomposed into cells of 0.4 × 0.4 m resulting in around 
11,000 cells. A robot having an assumed speed of 0.2 m.s-1 will be able to 
traverse such a cell in 2 s. As hens will start laying floor eggs some 7 to 10 h 
after lights-out, the robot will start sweeping the aviary house around 6:00 
in the morning. It is assumed that approximately 13.5 h of operation will 
be sufficient to remove all floor eggs. Given these preliminaries, the robot 
has to make about 24,000 cell transitions during its operation period on a 
day. Then the objective of the coverage path planning is to find a path 
through the aviary house consisting of N=24,000 cell transitions that satisfies 
the following requirements:

1. It should minimise the time eggs lie on the floor,
2. It should completely cover the whole aviary house, i.e. all 11,000 

cells,
3. Repeated visits are allowed, preferably to locations with a high 

potential on floor eggs,
4. It should stimulate visits to locations with a high potential on floor 

eggs in the beginning of the laying period and, vice-versa, it should 
stimulate visits to areas with lower potential later on the day.
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Objective one is hard to accommodate since it is unknown when 
exactly an egg has been laid and therefore, under practical conditions, 
the time that eggs have spent on the floor, the so-called egg time, cannot 
be assessed. In a simulation, this egg time can be assessed, but this 
is of limited use as the algorithm ultimately has to work under practical 
conditions as well. Therefore, it does not make sense to use this objective 
as objective function for the path planning procedure. As an alternative, 
it was decided to maximize the yield of floor eggs collected per day while 
traversing the aviary house. As indicated in Section 3.2.3, the distribution 
of floor eggs, and thus the yield per cell, is related to the potential for floor 
eggs in each cell, the time on the day and the day within the production 
cycle. Thus the objective was defined as to find a path such that this yield 

 O Yi k j k
k

N

= ( ) ( )
=
∑ ,

1
  (1)

is maximised. Here indices i (k), j (k) specify the location visited at instant 
k, while N is the total number of visited locations. Yi,j is the yield  at location 
i, j  given by:

 Y Pi j i j, ,=  (2)

Figure 3.5: Simulated daily number of floor eggs, produced during a single 
production cycle by a flock of 36,000 hens.
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with Pi,j the potential on floor eggs at location Li,j as defined in the floor egg 
potential map. Pi,j  takes values in the range [0,16], which relate to a range 
of 0 to 16 eggs per cell. Cells containing a wall, fence or interior elements 
that cannot be accessed by laying hens and robots have a value of the 
potential Pi,j = - 3 .

It can be shown that a dynamic programming solution maximizing 
the objective of Eq. (1) given the yield function of Eq. (2) will result in a 
shortest path solution to the location with the highest potential on floor 
eggs reachable within the available number of cell transitions N. Then, 
oscillatory motions will occur between this location and the neighbour with 
the next highest yield. To make sure that the robot will cover the whole 
aviary house, including locations with lower potential on floor eggs, the 
yield function was modified to account for the effect of egg collection 
according to second requirement stated above. When the robot has 
visited a location, it has gathered all the eggs in this location which means 
that, immediately after the visit, the yield should be equal to zero. Then, 
after the visit, the yield to be acquired in that location was considered to 
grow again due to the fact that hens will continue laying eggs also at the 
locations already visited by the robot. For locations that have not yet been 
visited, the yield function of Eq. (2) was used. However, for locations visited 
by the robot a modified yield function was used. In that case the yield was 
defined as

 Y P k
N

fi k j k i j( ) ( ) = ( ) ⋅ ∆ ⋅, ,

2
 (3)

with Pi,j  the potential on floor eggs at location Li,j  as defined in the floor 
egg potential map, Δk is the number of cell transitions between the 
current visit and the previous visit and f  is a factor. In this research a value 
f = 0.1 was used which ensured that for locations with a high potential after 
0.5N cell transitions the yield was equal to the original yield. The modified 
yield function guaranteed that for locations with a high potential on floor 
eggs, the yield will grow faster than for locations with a lower potential on 
floor eggs. This represents the situation as encountered in practice, and 
complies with the third requirement stated above.

The fourth requirement was accommodated by introducing an 
incentive function that takes high values for cells with a high yield during 
the beginning of the search period and that gives an increasing reward for 
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cells with a lower yield during the final stretch of the search period. For this 
purpose the objective function of Eq. (1) was extended to 

 O Y Ri k j k
k

N

i k j k= ⋅( )( ) ( )
=

( ) ( )∑ , ,
1

2
 (4)

in which R i(k),j(k) is the incentive function defined as
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in which Ymax is the maximum value of Yi,j = Pi,j taken over all i and j, and 
c1  to c4 are empirically determined parameters having values c1 = 1.3, 
c2 = 0.9, c3 =1.5  and c4 = 1.5. The first exponential promotes a high potential 
at the beginning of the path, while the second exponential promotes a 
lower potential towards the end of the path. Each exponential contains a 
component for time and one for reward. 

With the objective function defined as above, the path planning 
problem was solved using a dynamic programming (DP) approach 
(Bertsekas 1995). In DP, optimisation problems are usually defined in terms of 
the stage k, the state xk, a decision or control variable uk, a state transition 
Tk(xk,uk ), an objective function Vk and the contribution Ck(xk,uk ) of a state 
transition to the objective function.

In the current problem the state of the system xk represents the location 
of the robot Li,j in the environment at stage k. A motion of the robot, i.e. 
a change of the state from xk to xk+1, constitutes a transition from a cell 
to one of its neighbours. This transition is considered to be the decision 
variable uk ϵ U. For every xk the set of possible transitions U consists of 
{(1,1),(1,0),(1,-1),(0,-1),(-1,-1),(-1,0),(-1,1),(0,1)}. Then, the state transition 
function is Tk(xk,uk) = uk and the transition is xk+1 =xk+uk. For example if 
xk =Li(k),j(k) = 5,2 and uk = -1,1 then xk+1 = Li(k+1),j(k+1) = 4,3. The contribution to 
the objective function of a decision uk yielding a transition from state xk to 
xk+1 is Ck = Ck (xk,uk) = Yi(k),j(k) (Ri(k),j(k))

2 with Yi(k),j(k) dependent on whether or 
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not a cell has been previously visited or not as defined in Eq. 2 and 3. The 
value function is defined as 

 
V C x uk u u k k k

k

N

k N

= ( )
( )∑max ,

,...,
 

(6)

It represents the optimal cost of travelling from the state xk to the final 
state xN. Then V0 (x0) indicates the optimal value of the objective function 
while traveling from state x0 to state xN. Furthermore, VN (xN) = 0, because 
the robot stops at instance N and therefore no additional reward is to be 
obtained.

When the system satisfies the so-called Markovian property (future 
and past states are independent when the current state is known), the 
principle of optimality indicates that “whatever the initial state and 
decision are, the remaining decisions must constitute an optimal policy 
with regard to the state resulting from the first decision” (Bellman 1957). 
The Markovian property requires that current and future decisions 
cannot have any effect on past system behaviour (Larson and Casti 
1978). Then, a recursive equation for the value function can be derived: 
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This equation is usually solved in reverse order from k = N to k = 1.

The current problem does not satisfy the Markovian property (decisions 
from the past do effect future costs in our problem) and therefore DP 
will not provide an optimal solution. The reason lies in the fact that the 
expected future yield Yi,j = Pi,j changes depending on past visits to Li,j. The 
following example illustrates why DP does not provide an optimal solution. 
It also describes the way we try to remedy this problem. 

DP recursively computes the solution backward in time from k = N to k =1. 
Assuming that at k = 20 the optimal decision is to let the robot visit location 
Li(20),j(20) = La,b. Then during further computation of the solution, backward in 
time, it might happen that at k = 10 an optimal decision would also result in 
a visit to Li(10),j(10) = La,b. In that case at k = 20 an erroneous unchanged yield 
value was used, as the yield Ya,b needs to be adapted, because as the 
robot will move forward in time, it will first visit La,b at k =10 and return to this 
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location at k = 20. Then the yield associated with location La,b at k = 20 is 
not determined in the correct way, and in this solution procedure it cannot 
be changed, yielding a potentially sub-optimal solution. Instead, the yield 
value associated with location La,b at k = 10 is modified using Eq. (3). 

The modified DP algorithm described above is used to calculate 
suboptimal solutions. The algorithm has the following structure:

k = N-1
While k > 1
 FOREACH Li,j
  Determine all admissible uk
  FOREACH uk 
   IF Li,j is visited between k and N THEN
    Determine Δk 
    Calculate Yi(k) , j(k) taking into account Δk
   ELSE
    Determine Yi(k) , j(k) 
   ENDIF
   Determine Vk+1 (xk+1)
   Determine Ri(k) , j(k) 
   Calculate Ck (xk , uk) from Yi(k) , j(k) and Ri(k) , j(k) 
   Calculate Vk (xk ,uk) from Ck (xk ,uk) and Vk+1 (xk+1) 
  END FOREACH uk 
  Select the uk with the highest Vk (xk ,uk)
  Store this uk  and Vk (xk) for this Li,j  at this k
  Copy the list of visited x from xk+1 to xk
  Add xkto the list of visited x
 END FOREACH Li,j  
k = k-1
END WHILE

Executing this code, for a given problem situation, results in a matrix 
containing the best successive location for each location at each moment. 
Specifying a starting location and –time then automatically results in a 
collection path for the robot. 
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3.4 Simulation based performance evaluation of  
 (automated) egg collection

3.4.1  Simulation of a daily production of floor eggs
In the evaluation procedure, the quality of the found strategy or path 

was compared with the collection method used by a farmer, based on 
data about location and moment of lay of the floor eggs. As this data 
was not available from practice, it was obtained by making a realisation 
of the floor egg potential map described in Section 3.2.3. To produce this 
realisation (resembling a daily production of floor eggs), 3 components 
were required: 1) the spatial distribution of floor eggs in the housing, 
given by the floor egg potential map in Figure 3.3; 2) the distribution of 
egg-laying within a day, given by Figure 3.4; 3) the number of floor eggs 
per day (depending on age of animals), given by Figure 3.5. Based on this 
information, the number of floor eggs for the current day was determined. 
Next, for each floor egg, a location and a moment of lay were randomly 
selected and stored. This procedure was run for 450 days in a row (covering 
an animal age between 17 and 82 weeks). For each day, it was repeated 
200 times to investigate and rule out random effects, resulting in 90,000 
realisations of a daily production. In each realisation, on average 198 eggs 
were present. In total, this resulted in a set of 17.8 million eggs, with for each 
egg a location and a moment of lay. 

3.4.2  Assumptions and choices with respect to the collection  
 paths

Next, robot collection paths were generated to evaluate the path 
planning strategy. These paths were defined by selecting a starting time 
and position. For t=0 five starting locations were selected to retrieve five 
collection paths. These five starting locations (and paths) were selected to 
investigate influences of the starting point on collection quality and were 
distributed over the housing area (Figure 3.3). It was assumed that the 
robot covered a single cell at a time and detected and collected all floor 
eggs present solely in this cell.

The collection path of the farmer was based on and is largely similar 
to the path as used in practice. As the farmer only can reach below the 
housing interior but not pass through or below it, he is bound to follow the 
pathways in the house. For reasons of simplicity, it was assumed that the 
collection round of the farmer is completed infinitely fast at the start time, 
and thus collects all floor eggs present in all cells at the same time. In the 
comparison, 1 to 4 collection rounds per day were used. The start times are 
given in Contribution at stage k. 
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In the evaluation, only the area between rows A and E in Figure 3.2 
was taken into account, as only this area was accessible for the robot. 
Furthermore, it was assumed that the robot could change between 
compartments only through specific corridors in the middle of the house 
(indicated by purple bars in Figure 3.3) and that the full path was completed 
without stops.

Table 3.1: Start time of farmer’s collection rounds

Start time of round

Name Rounds 1 2 3 4

Farmer 1 1 11:00

Farmer 2 2 10:00 14:00

Farmer 3 3 9:00 11:00 15:00

Farmer 4 4 7:00 9:00 11:30 15:00

3.4.3  Determination of the results
Performance of collection paths of the robot was compared with the 

performance of the collection paths of the farmer based on four indicators: 
1) Calculation of the objective function for both situations; 2) Calculation of
the time eggs are present in the housing; 3) Visit frequency on each location,
in combination with the potential on this location; 4) Visual inspection of
the collection path, with respect to visiting frequencies, visiting moments
and coverage. For indicator 2, each path was evaluated on the complete
set of production realisations, being 450 consecutive days with each 200
repetitions of, on average, 198 eggs.

The objective function in indicator 1 was the same as Eq. (4). Robot 
paths were planned based on this value, and farmer paths were assessed 
on the same indicator. Since the problem was formulated as a maximisa-
tion problem, a higher value of this indicator was regarded as beneficial.

The calculation of the (total) time eggs are present in the housing as 
used in indicator 2 was:

Egg time egg t tcollection lay ( ) = − (8)

where tcollection is the moment of collection and tlay the moment of lay of
each individual floor egg. The total is calculated by summing the egg time 
for all individual eggs. This indicator is related to the original objective of 
the path planner: the requirement that egg should be collected as soon 
as possible after laying, since egg quality decreases with time on the floor. 
Thus, a lower value indicates a more useful collection path. 
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In indicator 3, the visit frequency for each location and potential was 
determined. More visits on a location with a higher potential on floor eggs 
is likely to have a higher preventive value and is thus regarded more useful. 

With indicator 4 the behaviour of the collection paths was assessed in a 
qualitative way. In this method, the visiting behaviour was inspected on: 1) 
the first and last moment of visit for each location, to see which locations 
were visited early and which were visited only later on the day; 2) the 
number of visits on a specific location, as more visits will lead to a shorter 
egg time and decrease the chance on (additional) floor laying; 3) the visit 
frequency in the neighbourhood of a location, as increased visits have 
a preventive effect by disturbing birds in the surrounding of the location 
visited. Based on this information, a general practice-based opinion was 
formulated on the usefulness of a certain path. 

To test statistical difference between the quantitative results of indicator 
2, an ANOVA test was applied in Genstat 15. For this, egg times from 
individual eggs were used, and the percentiles (5, 25, 50, 75 and 95%) 
of their distribution were determined for every 14th day from day 7 to 441 
(n=32) and every 10th repetition (n=20). Variation was analysed for effects 
of collection method.

3.5 Results

3.5.1  Inputs for the path planning strategy
The main input for the path planning strategy was the yield map 

containing the initial yield Yi,j = Pi,j for each location Li,j, which is shown in
Figure 3.3. In this figure, purple dots indicate the starting points of the robot 
with their coordinates, while the purple squares indicate the robot passage 
ways between sections. 

3.5.2  Resulting path
The resulting path for starting point 1 is shown for part of the house in 

Figure 3.6. The structure of the path shown is representative for the rest of 
the house. An animation showing the path in more detail is given in Movie 1. 
It can be observed that the path was only able to access the inner part of 
the house (some 7,200 locations) and that it traverses this area in an unst-
ructured way. The density of lines was highest in corners, indicating that the 
robot path visited these locations more often compared to the middle part 
of the house where line density was low. Furthermore, some locations with 
very low yield in the middle of the housing remained unvisited. 

The path of the farmer is shown in Figure 3.7, indicated by a green line. 
The house interior dictated that he followed the corridors (as passing below 

ground-truth existed. Resulting data was grouped per configuration to calculate the distribution over all replicates and locations within this configuration, and mean and median values were determined. Furthermore, the 95 percentile was calculated, to give an upper bound on the accuracy that was achieved for 95% of the time. This value also allows comparison against the required accuracy for this problem, which was set to be less than 1m for 95% of the time, and should preferably be less than 0.1m. 
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Figure 3.7: Farmer’s egg collection path, indicated by the green line. 

Figure 3.6: Detailed robot egg collection path 1, resulting from the path planning 
procedure, in part of the house and starting at starting point 1. The purple line 
indicates the path, which started from the top left corner. The structure of the path 
shown is representative for the rest of the house.

the housing interior like the robot did, was not possible) and thus traversed 
the house longitudinally. As he used a gripper stick to collect the eggs, he 
was able to cover all locations that were lying within 1 m from the path. 
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Table 3.2: Results for indicators 1 and 2. Significantly different egg times (P<0.001) 
are indicated with superscript letters (a – e), and were found between the robot 
paths and the farmer, as well as among the egg times of the farmer. 

Indicator 1 Indicator 2

Objective function (-) Egg time (h)
Mean Sd

Path 1 37,282 2.39a 0.32
Path 2 37,283 2.38a 0.32
Path 3 37,279 2.39a 0.32
Path 4 37,279 2.38a 0.32
Path 5 37,277 2.38a 0.32
Farmer 1 24,418 3.49b 0.43
Farmer 2 28,450 2.21c 0.25
Farmer 3 32,147 1.59d 0.18
Farmer 4 33,768 1.20e 0.14

3.5.3  Evaluation of resulting paths
The results for indicators 1 and 2, the objective function and the egg 

time, are given in Table 3.2. The starting point of the robot path seemed 
to have no influence on the results (yields are around 37,280 for all robot 
paths), but repeated collection by the farmer had a clear advantage, 
both on the objective function (yield between 24,400 and 33,800) and 
the egg time (between 1.2 and 3.5 h). Variance analysis showed that 
egg times were similar between robot paths (around 2.4 h) and proved 
a difference between robot collection and farmer collection, as well as 
between multiple farmer visits (P<0.001). It can be observed that the robot 
path outperformed the farmer on indicator 1, the objective function, with 
at least a 10% difference. With respect to indicator 2, however, the robot 
paths were comparable to 2 collection rounds from the farmer. 

The results of indicator 3, the visit frequencies, are shown in Figure 3.8. 
It can be seen that the farmer visited all locations with equal frequency, 
while the robot adapted its visit frequency to the potential. Locations with 
a low potential were on average visited a little over once, while locations 
with a high potential reached an average of 14 visits. The point of equal 
visits by farmer and robot was found at a potential of 5, when both visit a 
location 4 times. When the farmer performs less collection rounds, and thus 
visits location less frequently, the advantage of the robot is greater. 

When assessing the paths according to indicator 4, we observed that 
the path first focused on areas with a high potential, which were visited 
within 1,800 cell transitions (1 h). Soon, the path also started to cover areas 
with little lower potential, and after some 10,000 cell transitions (about 
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5.5 h after the start), the path also visited areas with a low potential, like 
the middle of the housing. During this period, the path kept re-visiting 
the locations with higher potential, with a frequency depending on the 
potential. The path itself lacked a clear structure, and showed some 
random behaviour. It should be noted that areas (containing multiple 
locations) with a high potential will be fully covered only after several visits. 
By repeatedly visiting these areas, all locations were given attention and 
the chance on (additional) floor laying was decreased. Locations with a 
high potential were visited up to 17 times, while the number of visits to an 
area with high potential was even higher. The choice of the starting point 
only affected the first few hundred cell transition since the remainder of the 
paths were the same. 

3.6 Discussion

3.6.1  Model assumptions
The map describing the distribution of floor eggs only contains an initial 

situation, which is the best guess given current knowledge. However, 
adaptability to practical conditions (including animal behaviour) is most 
likely improve the quality of the map. With respect to the path planning, 
the results under such conditions are expected to be at least as good 
as those presented in this paper. Furthermore, by updating the map 
using information about the locations of the floor eggs found during the 
collection round, this basic representation can be adjusted to the specific 
situation for the particular housing situation and flock present. This is also 
indicated by the feedback loop in Figure 3.1. In this way, an adaptive path 
planning system can be constructed that reacts actively to (changes in) 
animal behaviour.

DP was chosen as the method for solving the path planning problem 
as it was expected to outperform other graph-based methods like A* 
(Hart, Nilsson et al. 1968) on aspects such as sensitivity for local optima, 
relative efficient calculation with a fixed time to an (optimal) solution and 
the availability of feedback data. These assumptions, however, were not 
yet verified, and modifications required to make dynamic programming 
approach suitable for our application might have affected its performance 
with respect to the other methods. It might be interesting to compare the 
current approach with other methods to see whether the advantages of 
DP remain in our approach.

The chosen path planning approach enabled us to limit the number of 
calculations necessary to come up with a feasible path for the collection 
procedure by considering only optimal future trajectories. However, the 
adaptations made to the original yield function and objective function 



90

3 | Path Planning

led to violation of the Markov-property. This means that optimality can no 
longer be guaranteed for the current implementation. A workaround to 
this problem is possible, by including the complete future trajectory into 
the formulation of the current state (Sniedovich 1986), but the required 
calculation effort will be larger. Furthermore, the need for an optimum can 
be questioned, as the underlying model as well as reality has a certain 
degree of uncertainty that limits the value of an optimal solution. 

3.6.2  Choice of parameters 
In section 3, values were given for robot speed and collection period. 

These numbers were estimated based on common sense and intuition 
and seemed realistic. As this paper contains the first description of the 
algorithm and its practical application, we consider the current selection 
to be sufficient. In future work, it might be interesting to do further analysis 
on this part.

The type and values of the objective function, the incentive and their 
parameters were chosen empirically, based on the desired behaviour of 
the resulting paths. These functions were not varied nor were their values 
optimised in any sense. Such optimisation might well give somewhat better 
results, but is not expected to be substantially different from the current 
results, as the non-optimality of the applied method also influenced the 
results. 

Figure 3.8: Distribution of the average number of visits to a location within a specific 
potential interval. Farmer visits remain equal over the potential, while the robot visits 
increase with potential, and can reach 14 visits for locations with a high potential. 



91

3

Where do I go?

The algorithm did not consider the effect of (sharp) turns during the 
path planning procedure. This resulted in a path that contains quite a 
number of sharp turns, of which the turning angle can be more than 135°. 
Such turns are physically hard to complete. Also, Choset (2001) indicates 
that lowering the number of turns is beneficial in both the time required to 
complete the path and reduction of errors. Thus, an adaptation of the cost 
function that results in a path with a reduced number and smaller angles 
of the turns might be necessary to make the calculated paths feasible for 
a real robot in practice. 

The quantitative evaluation of the paths was based on 198 floor eggs 
per day, on average. This number is sensitive to variation under practical 
conditions. Such variation was briefly tested with the varying number of 
floor eggs over time and did not result in large differences in eggtime, 
except for some cases with very few floor eggs (less than 10 floor eggs) 
where missed eggs had large influence on the results. 

Finally, the robot speed was currently set on a low value (0.2 m.s-1). If 
a higher speeds turns out to be feasible, more locations can be visited in 
the same period. This will assure a faster collection of the floor eggs and 
probably also full coverage of the area, thereby further improving the 
results of the floor egg collection. 

3.6.3  Results
The resulting robot paths fulfilled the third and fourth requirements (on 

the visiting behaviour of the path) as stated in the introduction, so the 
procedure can be considered as being suitable for the type of problems 
introduced. Prevention of floor egg laying is covered by the frequent 
revisiting of locations, especially those with a high potential on floor eggs. 
The revisiting of such locations throughout the whole day, while locations 
with lower potential are visited only at the end of the day, can be attributed 
to the incentive function, as DP alone will visit high yields in the end and 
lower yields in an earlier stage. If more or different control on the behaviour 
of the path is desired, this can be achieved by changing the incentive 
function or its parameters. 

The currently planned paths do not reach full coverage of the area 
(second requirement), nor are they able to guarantee the lowest possible 
egg time (first requirement). This is not a major issue with respect to 
coverage, as the amount of unvisited locations is small (66 out of 7,200 
accessible locations) and the risk for floor eggs being laid there is very low. 
Also, the neighbouring locations were visited at least once a day, so if eggs 
were present, their collection in a future situation can be assured with a 
good detection system, which detects and collects eggs also outside the 
path. In fact, the current results represent a worst-case scenario, in which 
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the robot collects only eggs in the currently occupied cell whereas the 
farmer collects all eggs present in a reachable neighbourhood. Thus, an 
improvement in the detection and collection method to collect also eggs 
outside the current cell will clearly benefit the robot in the comparison with 
the farmer. Although the egg time results were not the lowest possible, they 
were still comparable with the egg time values of the farmer. Lower values 
are only possible if the number of visits is increased further or when the 
location of the eggs is more accurately known so eggs can be collected 
faster. For the latter, adaptation of the potential map and thus the resulting 
paths to current practical conditions might be a good solution. Also, an 
increase of the robot speed (in this research 0.2 m s-1) might lower the egg 
time. 

For the collection procedure of the farmer, full coverage was assumed. 
In practice, obstructions from animals and interior elements in the field of 
view will lower the effectiveness of the farmer. As a result, eggs will be missed 
in the collection, leading to a longer egg time and weakening the results 
for the farmer. Furthermore, as the farmer is currently considered to collect 
all eggs at the same time, the practical egg time for the farmer might be 
somewhat higher as he collects part of the eggs at a later moment. Again, 
such a change will benefit the robot in the comparison with the farmer. 

The moment of lay for a single floor egg is currently based on a logistic 
curve. As this curve has a little different shape in reality with more eggs laid 
early on the day, this might benefit the robot by a fast collection of eggs 
on spots with a high potential. On the other hand, for locations with a lower 
potential, egg time might increase and the farmer has an advantage from 
his full coverage of the area during each collection round. 

So, when the generated collection path is applied under practical 
conditions and compared with the presented data, it can be expected 
that the results for the farmer are somewhat overestimated. The results for 
the robot on the other hand will be better than presented in this work. 
This is still considered a fair comparison, as it takes a conservative point of 
view, and thus helps to clarify the benefits of using a robot for floor egg 
collection. Taking all these aspects into account, it can be stated that the 
performance of the robot paths is at least comparable with the collection 
performance of the farmer, and that the structure of the robot paths offers 
a clear advantage. 

3.6.4  Opportunities
Irrespective of their performance, the generated paths are needed 

and useful when taking over manual activity by robots. This is especially 
worthwhile for the collection of floor eggs, as this is perceived as a physically 
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demanding job under harsh environmental conditions (Blokhuis and Metz 
1995). In a similar situation, the introduction of automatic milking systems, 
it was shown that limited technical capabilities are already sufficient to 
enable the introduction of automatic systems that take over manual work 
(Sonck 1996). As a result, this research opens up possibilities for further 
development of a robot for the collection of floor eggs, and to extend this 
concept for other tasks.

With respect to the general applicability of the presented method, it 
can be indicated that DP as discussed in this paper (although not in its 
optimal form) is a good method to solve the type of problems at hand, 
and provides useful results. This problem type considers all cases in which 
(only) some form of a priori knowledge about the occurrence of an event 
is available, and in which there is a need for continuous spatial coverage 
with non-uniform revisiting of locations. It can be strengthened by the fact 
that the presented method applied is not limited to a certain size, shape or 
formatting of the area that needs to be covered, except for the requirement 
that all parts should be reachable. As such, the proposed method is suitable 
for any kind of (poultry) housing system, from traditional floor housing up 
to future concepts like Rondeel, Windstreek and Eggsphere (Wageningen 
UR projectteam ‘Houden van Hennen’ 2004, Janssen, Nijkamp et al. 2011, 
Weeghel, Groot Koerkamp et al. 2011). Use of this method, however, is not 
limited to applications in poultry or agriculture but can be extended to all 
sorts of applications where non-uniform coverage is desired and some a 
priori information about the phenomena of interest is available. Examples 
of other applications are surveillance tasks, collection of objects or the 
cleaning of large buildings and the removal of trash, like indicated for 
Continuous Area Sweeping by Ahmadi and Stone (2005, 2006). 

A next research step would be to compare the presented method 
against other methods or an extreme bound, to gain more insight in the 
capabilities of the current algorithm. When doing so the sensitivity of the 
assumptions on parameters like robot speed and path length can be in-
vestigated, as well as the resulting paths in terms of egg time or number 
of visits to a location. Such analysis was considered out of scope for the 
current work, but remains an interesting field for further work.

3.7 Conclusions
A novel path planning method based on DP was presented for 

non-uniform repetitive coverage of areas. It was applied and tested by 
generating robot paths for the collection of floor eggs in a non-cage 
poultry house. In a quantitative evaluation, the resulting paths were 
comparable to a standard situation from practice with 2 collection rounds 
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of the farmer. The paths clearly outperformed the farmer with respect to 
revisiting specific areas and the general structure of the path, by having 
frequent revisits to locations with a high probability. Although optimality of 
the results could not be guaranteed, the method and resulting paths are 
still considered suitable for the type of problems described. Extending the 
underlying model with feedback information will create an adaptive path 
planner that tracks also changes over time. The presented results are very 
promising for the use of a robot to collect floor eggs, and will result in a 
reduction of the demand for manual labour.
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Abstract
For handling surrounding objects, PoultryBot, our autonomous poultry 

house robot, needs to discriminate between various object types present 
in a poultry house. A simple and robust method for image pixel classifica-
tion based on spectral reflectance properties is presented. Of four object 
categories most relevant for PoultryBot, eggs, hens, housing elements and 
litter, spectral reflectance distributions were measured between 400 and 
1000 nm. Based on these spectral responses the wavelength band with 
lowest overlap between all object categories was identified, and found 
around 467 nm. Overlap was 16% for hens vs. eggs, 12% for housing vs. litter, 
and less for other combinations. Subsequently, images were captured in a 
commercial poultry house, using a standard monochrome camera and a 
band pass filter centered around 470 nm. On 87 images intensity thresholds 
were applied to classify each pixel into one of four categories. For eggs, 
the required 80% correctly classified pixels was almost reached with 79.9% 
of the pixels classified correctly. For hens and litter, 40 to 50% of the pixels 
were classified correctly, while housing elements had lower performance 
(15.6%). Although the imaging setup was designed to function without 
artificial light, its optical properties influenced image quality and resulting 
classification performance. To reduce these undesired effects on the 
images and to improve classification performance, the use of artificial 
lighting and additional processing steps are proposed. The presented results 
indicate both the simplicity and elegance of applying this method and are 
a suitable starting point for implementing egg detection on PoultryBot.

Nomenclature

TP True Positive, i.e. correctly classified as object

TN True Negative, i.e. correctly classified as non-object

FP False Positive, i.e. incorrectly classified as object

FN False Negative, i.e. incorrectly classified as non-object

TPR True Positive Ratio, ratio of TP divided by TP + FN
FPR False Positive Ratio, ratio of FP divided by FP + TN
T1 Threshold 1, separating litter and housing

T2 Threshold 2, separating housing and hens

T3 Threshold 3, separating hens and eggs

GT Ground Truth
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ROC Receiver Operating Characteristic

R Measured spectral reflectance after correction

I Measured spectral intensity

B Black reference, relates to sensor noise 

W White reference, relates to full exposure of sensor

FWHM Full-Width Half Maximum, property of spectral filter

FPS Frames per second, speed of camera shutter

F-number Relative aperture of lens

4.1 Introduction
In current poultry production systems in Western Europe, and more and 

more in other parts of the world, laying hens in commercial farms have 
more freedom to move around in their living environment. Compared to the 
previously used cage housing this requires more advanced management 
and more human labour under unfavourable conditions, for example for 
the collection of floor eggs (Blokhuis and Metz 1995, Claeys 2007). In earlier 
work (Vroegindeweij, van Willigenburg et al. 2014), a poultry house robot 
(PoultryBot) was introduced that will assist the farmer in such tasks. For this 
robot, path planning and localisation methods were previously presented 
and evaluated (Vroegindeweij, van Willigenburg et al. 2014, Vroeginde-
weij, IJsselmuiden et al. 2016). Next to knowing its location and following 
a desired path, PoultryBot should also be aware of objects in its surroun-
dings, especially those objects that affect its functioning, such as hens, 
poultry house elements and eggs. As the required response to such objects 
differs between object types, objects should not only be detected but also 
be classified into different categories. In robotics, vision-based methods 
are commonly applied for such detection and discrimination of objects 
(Ekvall, Kragic et al. 2007, Pillai and Leonard 2015, Ball, Upcroft et al. 2016, 
Bac, Hemming et al. 2017). Thus, the aim of this research was to investigate 
if vision based methods are suitable for creating environmental awareness 
for PoultryBot.

A poultry house constitutes a challenging environment for a robotic 
system with sensing based on camera vision. For details on the layout and 
properties of aviary poultry houses refer to e.g. Blokhuis and Metz (1995), 
Sandilands and Hocking (2012), and Vroegindeweij, IJsselmuiden et al. (2016). 

Using camera vision based methods in poultry houses for laying hens is 
challenging as these houses are in general rather dark, with light intensities 
varying between 5 and 30 lux (Prescott and Wathes 1999, Ellen, van Emous 
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et al. 2007). In general fluorescent or LED sources provide white light with 
a fairly flat spectral distribution. However, as light colour is used to control 
animal behaviour, light sources with different colours are used as well, and 
light colour can change in the poultry house within a single production 
cycle (Lewis and Morris 2000, Ellen, van Emous et al. 2007).

An additional challenge for camera vision is the fact that the aviary 
poultry house is densely populated with metal housing objects that offer 
various facilities to the animals. The remaining free space is occupied by 
tens of thousands of animals that move around at will. Finally, the ambient 
air contains high concentrations of dust and vapour. All of this reduces 
clear and free sight and leads to continuous variation in image content. 

As a first step in the development and evaluation of a vision system 
for this application, detection and classification of objects at pixel level 
was aimed for. For the image classification and object detection, a simple 
method was preferred that would require limited computing power 
for image processing and would not require additional light to avoid 
undesirable effects on animal behaviour. As an initial target, pixels should 
be correctly classified for 80%. Correctly classifying 80% of the pixels means 
that all objects are at least partially classified correctly, which is expected 
to be sufficient for operating PoultryBot.

A relatively simple way to detect and identify objects in an agricultural 
scene is to exploit the differences in spectral reflection properties of the 
various objects present in the scene. Based on prior acquired reflection 
properties of the most common objects in such a scene, common and 
cheap monochrome cameras can be equipped with suitable filters 
providing an image that may require less processing for object detection 
and classification.

In agriculture, this method has been used for example to distinguish 
between various kinds of green plants (Piron, Leemans et al. 2008, Nieu-
wenhuizen, Hofstee et al. 2010) and to distinguish between fruits, leaves 
and stems in cucumber harvesting (van Henten, Hemming et al. 2002). 
A literature review revealed that spectral reflection properties have been 
investigated before in poultry farming. Prescott and Wathes (1999) have 
presented an extensive review of reflective properties of poultry, their 
housing and the light characteristics therein. They presented results of 15 
hen species, of which several are closely related to current commercial 
hybrid species. Furthermore, they showed spectral properties of various 
materials present in commercial poultry houses, which turned out to be 
distinct from the spectral properties of hens. Spectral characteristics of hen 
eggs were used mainly for transmission measurements to determine the 
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quality of shelled eggs (De Ketelaere, Bamelis et al. 2004, Mertens, Vaesen 
et al. 2010). Less work has been done on spectral reflectance of eggs. In 
Prescott and Wathes (1999), only the spectral reflectance of a brown egg 
was reported. Gloag, Keller et al. (2014) presented also work on other egg 
colours, although from a different bird, but with similar results.

This paper describes the development of a vision system for pixel based 
classification of objects in a laying hen house as a two-stage approach. 
First, the spectral features of objects that are common in poultry houses 
were sampled and analysed. Next, a method for imaging and pixel clas-
sification based on these spectral features is proposed. Furthermore, the 
performance of this method was evaluated using images taken in a 
commercial aviary poultry house. For this, the image pixels were classified 
into several object categories relevant for the operation of PoultryBot in a 
modern aviary poultry house, such as eggs, hens and housing.

The following section presents the approach used. Next, the laboratory 
stage is explained in Section 4.3, describing the preliminary analysis that 
was required before the proposed classification method could be applied 
under practical conditions. The application and verification in the practical 
environment of a poultry house is the topic of Section 4.4, starting with the 
poultry house conditions and the properties of the imaging setup. It also 
describes the image processing method and an analysis of performance. 
Section 4.5 reflects on the choices made, and indicates what changes 
are desired for future implementation on PoultryBot. Conclusions and 
indications for future work are given in Section 4.6.

4.2 A two stage development approach
The approach used to develop and test the method for pixel classifi-

cation based on spectral features consists of 10 steps, separated into 2 
stages, hereafter referred to as laboratory stage and application stage. 
The laboratory stage leads from the selection of relevant objects (step 1) to 
the selection of the most discriminating wavelength for object separation 
(step 4), all executed under lab conditions. The application stage uses the 
laboratory results as input for evaluation of proposed pixel classification 
method under practical circumstances, i.e. in a commercial poultry house. 
This starts with the selection of a suitable wavelength filter (step 5) and ends 
with a performance evaluation (step 10). Furthermore, steps 7 to 9 allow 
for additional image processing to improve classification, for example by 
filtering image noise. An overview of the individual steps in each stage is 
given below, while they are described in more detail in the next sections. 
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A. Laboratory stage
1. Define which object categories in a poultry house are relevant

to create environmental awareness for PoultryBot.
2. Measure the spectral reflection for each object category at all

wavelengths relevant for application in a poultry house.
3. Determine for each object category the distribution of all

measured reflectance values at a given wavelength. Do this for
each combination of wavelength and object.

4. Identify the wavelength with the largest discriminative power,
i.e. the one with the least overlap in reflection between the
object categories of interest.

B. Application stage
5. Select a suitable band pass filter for the wavelength found in

step 4.
6. Acquire images in a commercial poultry house, using the

selected band pass filter and a standard monochrome camera.
7. Find for each object category the distribution of pixel intensity

values in these images.
8. Use this information to define threshold values for classification

of pixel intensities.
9. Classify the image pixels using thresholds defined in step 8.
10. Evaluate pixel classification performance.

4.3 Laboratory stage
In the laboratory stage, the spectral reflectance of several object 

categories relevant for operation of PoultryBot in a commercial aviary 
poultry house was determined. Based on the sampled spectral reflectance, 
the reflectance distribution for each object category was estimated at the 
sampled wavelengths, and used to select the most suitable wavelength 
for discriminating between the object categories measured. In this section, 
details of the approach used in the laboratory stage are described, the 
results are presented, and their suitability is discussed.

4.3.1  Materials tested
In step 1, four main object categories were found that are relevant for 

the functioning of PoultryBot inside the poultry house, as they represent the 
majority of the objects present. These were: 1) eggs, being target objects 
that have to be collected, 2) hens, being moving obstacles that can be 
ignored while driving, because they move voluntary away from the robot, 
3) housing, being static obstacles that should be avoided, like metal poles
and walls, and 4) litter, covering the floor area and indicating the driveable
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surface. As representatives of these categories, white eggs, feathers of 
white hens (Dekalb White), galvanized steel, and a litter sample from a 
poultry house were used. In step 2, spectral reflection of these objects was 
measured using the setup described below. For each measurement, 1 or 
more objects were placed on a white cardboard plate, which was then 
put into the measurement setup. Subsequently, spectral reflectance of 
these objects was measured by performing a single scan over the area 
within the setup.

4.3.2  Spectral measurement setup
The spectral reflection data was collected using a hyperspectral 

line scan setup, similar to the one described in Polder and Young (2003) 
and Polder, Pekkeriet et al. (2013). The setup is shown in Figure 4.4.1, and 
consisted of an ImSpector V10E spectrograph (Spectral Imaging Ltd.) with 
a slit size of 30 µm, attached to a Photonfocus MV1_DV1320 camera and 
a 25 mm lens. In the ISAAC2 software that controlled the imaging setup, 
the acquired reflectance data was binned by 2 cells spatially and 4 cells 
spectrally, and outside spectral cells were removed as they contained 
no relevant data. Thus, each scan contained a line of 656 pixels with 192 
spectral bands between 400 and 1000 nm. As light source two tungsten 
halogen lamps of 150 W with a fibre and a rod lens were placed below 
the camera. The wavelength range of these lamps was similar to those 
commonly found in poultry houses. The camera, spectrograph and the 
light source were driven by a stepper motor, moving them over the object 
with a fixed step size of 0.5 mm over a length of 150 mm. As result, an area 
with a length of 150 mm and a width of about 300 mm was measured. 
Camera and light source were on for at least 20 minutes before measu-
rements to avoid start-up effects. Furthermore, the experiment was done 
in a dark room to avoid influence from ambient light. Also, the ISAAC2 
software automatically normalized the reflectance of the object R from 
the measured intensity I to correct for influences from light source and 
background light. Reflectance was corrected for the background noise B, 
and expressed as fraction of the white reference W using

 
R= I - B

W - B  
(1)

which is based on Polder and Young (2003). Both references were acquired 
at the start of the measurement. The background noise B was acquired 
using a covered lens, while the white reference W was acquired using a 
98% reflecting white plate (X-rite ColorChecker White Balance).
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Figure 4.1: The hyperspectral imaging setup used for the experiments in step 2. On 
the left, the full setup is shown, with an indication of the linear motion of the camera 
(blue arrow) and the scan line (red triangle). The blue box is used to place the 
sample upon, in this case a brown egg on wood shavings. On the right, a close up 
of the moving construction for the camera, spectrograph and light source.

4.3.3  Processing spectral data
Processing of the acquired spectral reflectance data was performed 

using Matlab. For pixel selection, colour images were reconstructed from 
the hyperspectral data. As these were only used for visual inspection and 
to allow manual identification of the objects for ground truth generation, 
no effort was put in correct representation of the colours in these images. 
For each object category, between 38000 and 45000 pixels were manually 
selected from the acquired spectral data, by taking rectangular areas 
within the objects. From these samples, the reflectance distribution over 
all selected pixels was determined at each wavelength band (step 3). 
Next, a normal distribution was fitted to these samples, as a smoother re-
presentation of the data. In step 4, at each of the 192 wavelength bands 
the percentage of overlap was calculated per combination of object 
categories. For the measured distributions, this was done by applying 
Riemann integration on the overlapping area between the distributions 
of two object categories at a single wavelength band, while trapezoidal 
integration was used for the fitted distributions. The overlap percentage 
was calculated by dividing the overlapping area by the area under the 
distribution of the second object category. Next, the total amount of 
overlap per wavelength band was calculated by summing the overlap 
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percentages of all object categories for that wavelength. Based on this, 
the wavelength band with the lowest sum of overlap between the four 
object categories was selected as the most discriminative wavelength for 
classification of the objects considered.

4.3.4  Results
For each of the four object categories selected in step 1, eggs, hens, 

housing and litter, spectral reflectance data was acquired. The hyper-
spectral imaging (step 2) created for each pixel in a 2D frame a stack of 
192 wavelength bands with the associated reflectance. From the hyper-
spectral data, pictures like the one shown in Figure 4.2 (left) were made 
to visually inspect the results before further processing. Figure 4.2 shows on 
the left side a colour image containing the four main object categories. 
This image was reconstructed from the wavelength bands for display 
purposes only, and no effort was put in creating a correct representation 
of the colours. On the right hand side, the spectral responses at locations 
indicated in the left image are given. It shows that eggs had the highest 
reflectance, followed by hens and then housing and litter, although the 
latter two change place when it comes to the amount of reflectance 
above 615 nm. Furthermore, the difference between litter and both eggs 
and hens was large at lower wavelengths, but declined with increasing 
wavelengths. For housing and litter, the difference was initially small, but it 
increased at larger wavelengths.

Figure 4.2:  Results of hyperspectral imaging for the four object categories. On the 
left side a colour image is given, reconstructed from the spectral data for display 
purposes only, on the right side the spectra that correspond to the locations 
indicated on the left image. 
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In step 3, between 38000 and 45000 pixels for the same object category 
were selected to estimate the distribution of the reflectance. For the four 
object categories and two wavelength bands the resulting reflectance 
distributions are shown in Figure 4.3, together with normal distributions fitted 
to these data (step 3). Clear differences were found in the reflectance 
distributions of the various object categories. Litter and housing had 
narrower distributions than hens and eggs. In addition, there was some 
overlap between litter and housing, as well as between feathers and eggs. 
Furthermore, this overlap turned out to be different between the various 
wavelength bands.

Figure 4.3: Distribution of reflectance for the 4 main object categories, at the 467 
nm (top) and 663 nm (bottom) wavelength bands. Points indicate measured data, 
while lines represent the fitted distributions.
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In step 4, overlap between all combinations of object categories was 
quantified for each wavelength band to identify the wavelength with the 
most discriminative power for the objects considered. The least overlap 
was found for wavelength bands between 430 and 515 nm, with the 467 
nm band showing the lowest overlap. Based on the measured distributions, 
the percentage overlap of the measured distributions is given in Table 4.1 
for the most discriminating wavelength band (467 nm, least overlap) and 
an arbitrary one with much more overlap, especially for housing and 
litter (663 nm). Data in Table 4.1 correspond to Figure 4.3. There were 
clear differences in overlap between both wavelength bands and the 
various object categories. At the 467 nm band the overlap was quite 
evenly distributed over the categories, with the largest overlap between 
eggs and hens (16.2%) and housing and litter (11.5%), and some overlap 
between hens and housing. At 663 nm, most overlap was found between 
housing and litter (78.1%), while also the overlap between eggs and hens 
was higher (from 16.2% to 23.0%). The combinations eggs and housing, 
eggs and litter and hens and litter contained hardly any overlap. 

Table 4.1: Results of wavelength selection, showing the percentage of overlap 
between various object categories. Data is presented for the measured distribu-
tions, at the most discriminating wavelength band (467 nm) and a less suitable 
wavelength band (663 nm) with more overlap. Overlap percentage is calculated 
by dividing the overlapping area by the area under the reflection curve for the 
second object category.

Overlap between 467 nm 663 nm
eggs and hens 16.2% 23.0%

eggs and housing 1.7% 1.0%

eggs and litter 0.0% 0.3%

hens and housing 6.9% 2.7%

hens and litter 0.2% 0.8%

housing and litter 11.5% 78.1%

4.3.5  Discussion
In general, the measured spectral reflectance (step 2) matched the 

ones reported by Prescott and Wathes (1999). In the presented results, 
significant variation can be observed at the ends of the measured spectra. 
Prescott and Wathes (1999) indicate similar findings from their measure-
ments, especially around 400 nm, which is the spectral band of UV. They 
did not indicate whether this originated from technical limitations of their 
setup or whether it was a specific feature of the sample measured. As in 
our experimental setup the light source emitted hardly any UV light (around 
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400 nm), this seems a plausible explanation for the effects seen at the 
lower end of the acquired spectra. Combined with limited sensitivity of the 
camera chip at the ends of its spectral range, this can result in reflectance 
values that are largely determined by sensor noise (Polder and Young 
2003). As the amount of UV light available in a poultry house is limited and 
adding artificial UV light might have undesirable consequences for animal 
welfare, further investigating this spectral band seems of limited use for the 
application considered. 

Especially for housing material, the obtained spectral reflectance 
was based on relatively clean materials, providing a rather constant 
response throughout the spectrum. In the poultry house, however, it can 
be expected that there is contamination with dust and poultry droppings. 
As housing objects are mainly made from metal with rather shiny surfaces, 
the angles between light source, object and imaging device influence 
the measured reflection. The spectral response of housing objects under 
practical conditions might therefore be different in shape and intensity. As 
the spectral response forms the basis for the discrimination between object 
categories, this might affect correct separation of housing elements from 
other object categories.

For the selection of the most discriminative wavelength band (step 4), 
the overlap between each combination of object types was weighted 
equally and the minimum in the sum of overlap percentages was used to 
identify the most suitable wavelength.  For practical applications, however, 
it might also be relevant to apply different weight factors, to allow better 
discrimination of object categories that have higher importance. Failing to 
detect a housing element, for example, might have more impact on robot 
functioning than misclassifying litter as hens. Furthermore, more advanced 
statistical methods, like principal component analysis (PCA) or linear discri-
minant analysis (LDA) might provide better identification of the most discri-
minative wavelength.

 Also, using multiple spectral bands simultaneously seems promising 
for improving the classification results. For example, by selecting 
separate wavelength bands for different object categories, differences 
in reflectance can become more distinct. When using the 437nm band 
for separating hens and eggs and the 940nm band for housing and litter, 
overlap reduces from 16.2% to 15% for hens and eggs, and from 10% to 4% 
for housing and litter. For brown hens and eggs (data not reported) the 
overlap is reduced by more than 50% when using two wavelength bands 
instead of one. Alternatively, the responses at different wavelengths can 
be combined arithmetically, for example by considering the ratio of the 
responses at separate wavelength bands. A disadvantage of using multi-
spectral imaging, however, is that a more complex optical setup is required. 
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4.4 Application stage
In the application stage, the effectiveness of the chosen wavelength 

band for pixel classification was evaluated under the conditions found in 
a commercial poultry house. To this end, images were acquired with a 
monochrome camera using a wavelength filter around the most discrimi-
nating wavelength, and intensity-based pixel classification was performed 
and evaluated. This section describes the approach followed and the 
results obtained.

4.4.1  Experimental environment 
Images were acquired in a commercial poultry house of Het Anker 

BV at Opheusden, the Netherlands, with animals of the same breed as 
used for the collection of the spectral data (Dekalb White). The house 
contained 6 interior rows (Big Dutchman, model year 2014) and was split 
into 7 compartments, each housing some 6000 hens, being 76 weeks old 
at time of measurement. Unfortunately, the hens were rather anxious, and 
thus kept clear distance from the measurement setup. Original ambient 
light intensities were measured using a Voltcraft MS-1300 photometer, and 
ranged between 5 and 15 lux at floor level. For the experiment, ambient 
light settings were increased from their normal value of about 30% of full 
intensity to 100% of full intensity for HF tube lights (Aura Light T8 Universal, 
Cool White) between rows and LED strips within interior rows (Big Dutchman 
FlexLED, Warm White colour) and to 80% of full intensity for LED strips below 
interior rows (Big Dutchman FlexLED). All light sources appeared white to 
the human eye.

4.4.2  Image acquisition
For image acquisition (step 6), a standard monochrome camera 

and a band pass filter at the selected wavelength band were used. In 
step 5 a band pass filter was selected with its centre wavelength at 470 nm 
(MidOpt BN470, 45 nm FWHM), as being the one closest to 467 nm, which 
is the wavelength with the lowest amount of overlap between categories. 
This filter was fitted in front of a lens with 5 mm focal distance (KOWA 
LM5JCM10M), attached to an extra sensitive DMK 23UX174 monochrome 
camera. Camera settings were set to resemble application on a mobile 
robot, with a frame rate of 30 fps to avoid blur resulting from camera and 
animal movements. Furthermore, the diaphragm was fully opened (F1.8) 
and a fixed gain of 33.7 dB was applied at image read-out inside the 
camera to have sufficiently exposed images. For practical reasons, the 
camera was placed on a tripod at a height comparable to the mount on 
the robot (approximately 38 cm above floor level). The tripod was moved 
and rotated by hand while capturing images. Images and related camera 
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and system settings were registered using a dedicated application in NI 
LabVIEW 2013. In total, 87 images were collected, covering most of the 
environmental variation that was present in the poultry house. In Adobe 
Photoshop CS6, corresponding ground-truth images were obtained by 
manually labelling the pixels in each image that belonged to one of the 
four indicated object categories: eggs, hens, housing, and litter. A fifth 
category ‘other’ contained all pixels from other objects, such as pecking 
blocks, or that were too dark to be reliably assigned to a category. The 
built-in magic-wand tool in Adobe Photoshop was used to handle groups 
of pixels at the same time, to allow faster annotation. 

4.4.3  Image processing
Image processing in steps 7 through 9, but also the performance 

evaluation in step 10, was done using Matlab R2015b. The images 
contained clear intensity distortion, which resulted from the optical 
components, and was visible in the images as a vignette effect. To correct 
for this phenomenon, first the distortion was estimated using the method of 
Zheng, Yu et al. (2008), based on a set of 12 images of the grey concrete 
floor specifically obtained for this purpose in the front of the poultry house. 
These images were captured using similar camera settings as used during 
the remaining image collection. From the distortion estimated for each 
of these 12 images, an average correction for the vignette effect was 
calculated, which was subsequently applied to each image collected in 
the house. To set appropriate thresholds for intensity-based pixel classifica-
tion, for each image collected in the poultry house, the intensity distribu-
tion within each object category was estimated based on the associated 
ground-truth (step 7). Next, these distributions were averaged over all 87 
images in the set to get an average intensity distribution for each object 
category (eggs, hens, housing and litter). Using these average intensity dis-
tributions, a single set of thresholds was defined for intensity-based pixel 
classification of all 87 images (step 8). In fact, steps 7 and 8 repeated steps 
3 and 4 in the laboratory stage, but now for placing thresholds on pixel 
intensities to facilitate proper object classification, instead of selecting the 
wavelength band that allows for the best discrimination based on object 
reflectance as was the case in steps 3 and 4. Here, threshold T1 was used 
to separate litter and housing, threshold T2 separated housing and hens, 
and threshold T3 separated hens and eggs. Ideally, the selected thresholds 
T1 through T3 are located between the intensity peaks for the various 
object categories, to minimize overlap between object categories. Thus, 
their position was determined by taking the intensity peaks of the object 
categories to be separated, and selecting the middle between these 
peaks as threshold value. The last step in the image processing used the 
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selected threshold values for the pixel classification of the images into four 
object categories: litter, housing, hens and eggs (step 9). 

4.4.4  Performance evaluation method
In step 10, the result of the classification step was compared on pixel 

level with the ground-truth image to determine classification performance. 
This resulted in a confusion matrix indicating for each ground-truth 
category how many pixels were classified as each of the four object 
categories. Various performance metrics were then calculated for each 
object category. First, the values for True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN) were determined in a 1 vs. all
approach. Based on this, the True Positive Rate (TPR) and False Positive
Rate (FPR) were calculated per object category and image by

TPR TP
TP FN

=
+

(2)

FPR FP
FP TN

=
+

(3)

Furthermore, confusion matrix values were expressed as a fraction of the 
number of ground truth pixels for this category. To represent the quality of 
the classification results over the full dataset, the calculated performance 
metrics and confusion matrices were averaged over all images. 

Finally, by varying the values used for thresholds T1 through T3, also the
sensitivity of the classification performance for changes in the threshold 
values was evaluated. This evaluation was done in a brute force manner, by 
testing all possible combinations of thresholds T1, T2 and T3 that complied
with the requirement T3>T2>T1. Used values ranged between 3 and 24
for T1, between 8 and 30 for T2 and between 15 and 45 in steps of 2 for T3.
Based on these results, TPR and FPR were calculated for each combination 
of object category and threshold setting, and were then used to create 
plots showing the Receiver Operating Characteristic (ROC) to indicate the 
change in classification performance. As the pixels in the ‘other’ category 
had no reliable ground-truth annotation (i.e. in reality they might or might 
not belong to one of the first four object categories), they could not be 
classified correctly and therefore were ignored when varying thresholds 
and determining the resulting performance. Thus, with eggs as example, 
TP pixels are defined as pixels which have a ground-truth annotation (GT)
as eggs and are also classified as eggs. FP pixels are defined as pixels with
housing, hens or litter as GT, which are classified as eggs. FN pixels are
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defined as pixels with eggs as GT, which are classified as housing, hens or 
litter. TN pixels have housing, hens or litter as GT, and are also classified in
one of these groups. 

4.4.5  Application results

4.4.5.1  Imaging
After investigating the spectral behaviour of the relevant objects in 

the laboratory stage of the research, the use of this information for image 
classification was tested in the application stage. Image acquisition in the 
poultry house (step 6) using the selected wavelength filter (step 5) resulted 
in 87 images covering most of the variation present in the environment. 
One of these images is shown in Figure 4.4. In this figure the top row contains 
the original image, while the bottom row shows the results after vignette 
correction. On the left, the original brightness is used, while on the right the 
brightness is increased by 75% for presentation purposes only.

In Figure 4.4 it can be seen that the original image has clear differences 
in image intensity in the radial direction due to optical properties of the 

Figure 4.4: Image resulting from the application of the selected 470nm wavelength 
filter and a monochrome camera for imaging in a poultry house. The original image 
is shown top-left, while in the top-right image a correction of +75% on brightness 
was applied for presentation purposes. In the bottom-left image a correction was 
applied to compensate the vignette effect, while in the bottom-right image also 
the +75% brightness correction was applied for presentation purposes. 
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lens.  Corners and image side borders did not receive light at all, as result 
of the optical diameter of the lens being smaller than the diagonal of 
the camera chip. Correcting for the vignette effect strongly reduced the 
radial intensity differences, as shown in the images in the bottom row, 
although some minor variation remained. As expected from the laboratory 
results at this wavelength, eggs were the brightest objects, followed by the 
hens. Between housing and litter no clear difference in intensity can be 
observed in this image. The hens being rather far away from the camera 
and operator might be due to the anxious behaviour of this particular 
flock, as this was not observed while testing among other flocks. Also, the 
hens in the image contain several bright spots, as a result of being close 
to the light sources in the poultry house, which resulted in variation in the 
observed intensity for this object category. On the floor level, however, the 
images have a rather equal distribution of ambient light. 

4.4.5.2  Setting thresholds
Based on the associated ground truth, the intensity distributions for each 

object category could be determined for each image. In Figure 4.5 (top) 
the intensity distributions for each object category are shown for the image 
in the lower-one of Figure 4.4, and as the mean over all 87 images in the set 
(bottom). In theory, these distributions should be comparable to those in 
Figure 4.3 (top), as they describe similar objects at the same wavelength. 
However, as result of the intensity variation within the images, the distri-
butions in Figure 4.5 show more overlap of the categories. This overlap 
is especially present for housing and litter, which limits the correct discri-
mination of these object categories, whereas for hens and eggs correct 
separation seems still possible based on these distributions. Threshold values 
for image classification (step 9) were placed in the middle between the 
peaks of the mean intensity distributions, and are indicated by the dashed 
vertical lines in the bottom graph of Figure 4.5. Threshold T1, separating
the categories litter and housing, was placed at 11.5, while threshold T2,
separating the categories housing and hens, was set to 14.5. Threshold T3,
separating the categories hens and eggs, was set to 28.

4.4.5.3  Pixel classification
Based on these thresholds, pixel classification was applied on the 

collected images. Average classification results over all 87 images are 
given in Table 4.2, as percentage of the number of pixels in the related GT 
category. For each element, also the performance range is indicated by 
the lowest and highest values found. Furthermore, the classification results 
on two of the acquired images are shown in Figure 4.6, together with the 
original image and the associated ground truth (GT) image.
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For hen pixels, on average 41.5% were classified correctly (Table 4.2), 
with values ranging between 25 and 55%, while on average 79.9% of the 
egg pixels were classified correctly, with a number of images also reaching 
more than 90% (not shown). Incorrectly classified hen pixels were mostly 
mistaken as eggs and most of the incorrectly classified egg pixels were 
considered to be hens, thus indicating the clear overlap between these 
categories as shown in Figure 4.5. This is also visible in the images in Figure 
4.6 where the hens have varying brightness and part of the hen pixels 
are therefore incorrectly classified, mostly as eggs, but also sometimes 

Figure 4.5: Intensity distributions per object category, after correction for the 
vignette effect. The top graph corresponds to the lower-left image in Figure 4.4, 
while the right one shows the mean distribution over all 87 images. Vertical dashed 
lines in the right graph indicate thresholds T1, T2 and T3 going left to right. As the 
images hardly contained pixels with intensities higher than 100, the x-axis omits the 
range between 100 and 255.
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as housing or litter. Similarly, the border pixels of the eggs are somewhat 
darker and therefore incorrectly classified as hens. Incorrect classification 
of eggs as housing or litter occurred less frequently. 

With respect to housing pixels, classification performance was rather 
poor, with on average only 15% of the pixels classified correctly and overall 
values did not exceed 30%. Although some pieces of the housing poles 
were classified correctly, many parts (up to 80%) were classified as litter, 
such as the pole in the right image in Figure 4.6. Misclassification as hens 

Figure 4.6: Results of pixel classification on two images. Values are set to 11.5 for 
T1, 14.5 for T2, and 28 for T3. The top row contains the original images (brightness 
increased by 75%), the middle row the classified images, while the bottom row 
contains the associated manually generated ground truth.
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Percentage of GT classified as:

GT 
category Hens Eggs Housing Litter

Number of 
pixels in GT

Hens 41.5%
(25.7% - 54.5%)

41.3%
(17.8% - 68.3%)

8.6%
(4.1% - 17.2%)

8.5%
(2.0% - 21.7%)

109,831
(0 - 226,168) 

Eggs 16.5%
(1.1% - 67.1%)

79.9%
(23.2% - 98.9%)

2.2%
(0.0% - 11.9%)

1.4%
(00% - 17.4%)

4,817
(0 - 21,090) 

Housing 31%
(7.1% - 53.7%)

8.2%
(0.8% - 54.8%)

15.5%
(4.9% - 29.1%)

45.2%
(3.8% - 80.1%)

71,569  
(10,924 - 
320,914) 

Litter 25%
(9.2% - 53.9%)

1.1%
(01% - 6.7%)

21.5%
(9.3% - 26%)

52.3%
(19.5% - 79.4%)

1,921,486
(1,305,161 - 
2,116,129) 

Other 46.3%
(16.3% - 58.5%)

8.6%
(1,1% - 28%)

17.4%
(10.4% - 21.1%)

27.6%
(8.5% - 67.9%)

196,297
(55,913 - 
686,343)

Table 4.2: Classification results averaged over all 87 images, represented as 
percentage of the average number of pixels in each ground-truth (GT) category. 
Numbers between brackets indicate the lowest and highest values found. Diagonal 
values indicate correct classifications or True Positives (TP). False Positives (FP) for a 
given category are the sum of the remaining values in the column of the corres-
ponding TP value, while False Negatives (FN) are the sum of the remaining values 
in the row of the corresponding TP value. True Negatives (TN) consists of the sum of 
all remaining values.

also occurred in up to half of the cases, mainly with objects more towards 
the borders of the image, like on the poles on the left image in Figure 4.6. 
The litter scraper, visible as the horizontal thin blue line in the GT in Figure 4.6, 
is partly classified as egg. Thus, the difference in spectral behaviour of 
housing elements under practical conditions, as indicated in Section 4.3.5, 
indeed seems to affect the performance here. 

Litter pixels showed similar classification performance as hens, as over 
50% of the litter pixels were classified correctly (Table 4.2) but also misclassifi-
cation as housing or hens was observed. On average, 20 to 25% of the litter 
pixels were classified in each of these categories, although misclassifying 
up to 50% of the litter pixels as hens also occurred. From Figure 4.6, it seems 
that this mostly happened at locations under the housing interior (visible in 
the top half of the images), probably as result of higher light intensities in 
that area. Furthermore, the structure and uneven distribution of the litter 
seemed to influence the reflection of ambient light. Especially areas with 
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visible patterns or variation in the litter structure were incorrectly classified as 
housing or hens, as can be seen from the middle of the left image in Figure 
4.6. Similarly, hen feathers present in the litter were frequently assigned to 
the egg category.

During ground truth annotation, on average about 10% of the pixels 
remained unclassified, mainly at the image borders, and were therefore 
assigned to the ‘other’ category. The classification procedure indicated 
that these pixels tended to belong to hens or litter, but this could not 
be verified, as most of them were too dark to be reliably assigned to a 
category in the ground-truth annotation. 

The radial rings showing up in the classified images in Figure 4.6 most 
likely originate from internal reflections in the optical setup used, resulting 
in varying intensities spanning multiple object categories. Furthermore, the 
bright spots from ambient light observed in Figure 4.4 are also present in 
the classification result, which together with the radial rings, seem at least 
a partial cause for the limited overall classification performance and large 
variation in the results. Another explanation, especially for the moderate 
performance seen for housing, litter and hens, might be the relatively 
large distance hens kept to the camera. As result, spatial variation in 
ambient light intensity is more likely to affect image intensity, leading to 
wider and potentially overlapping intensity distributions for the individual 
object categories in the acquired images. Close range imaging, on the 
other hand, is expected to yield less variation in object intensity and an 
improved classification performance. In the final application, i.e. with the 
camera mounted on PoultryBot operating in the poultry house, this is likely 
to happen, as hens get used to the robot rather quickly (Vroegindeweij, 
Boots et al. 2014), and thus also remain closer to the camera. 

4.4.6  Performance evaluation results
To see how the threshold settings affect classification, values for all 

three thresholds were varied and classification performance was assessed. 
Results are presented for each threshold separately, using the True 
Positive Rate (TPR) and False Positive Rate (FPR), as average value over 
all 87 images. After that, interaction effects will be discussed shortly. As 
the ‘other’ category contained no reliable information on pixel content, 
i.e. pixels in reality might or might not belong to one of the four object
categories, these pixels were ignored in processing and excluded from the
performance results shown below.

The expected difficulty to separate between litter, housing and hens 
as result of overlapping intensity distributions (Figure 4.5) is confirmed by 
the limited performance for these objects in both ROC plots in Figure 4.7. 
The singular datapoints in the figures indicate performances for the object 
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categories that are not affected by the threshold varied, and thus remain 
stationary. As a 4-category problem is considered, performance for ran-
dom-guess classification into 4 categories (blue dotted line) was added 
for comparison. Since each threshold separates only 2 categories, also 
random-guess classification into 2 categories is shown (red dotted line), as 
this might be a more representative benchmark. 

In the left half of Figure 4.7, a ROC curve is shown with the effect of 
varying threshold T1, which separates litter and housing, between 3 and 
24, with T2 set to 19 and T3 to 25. The result for the lowest threshold value 
(T1=3), is indicated here by the filled diamonds. In general, performance for 
litter outperformed random-guess classification, whereas that for housing 
was at the level of random-guess classification in 2 groups. Increasing T1 
led to more litter pixels being detected correctly, while the number of false 
positives increased at a lower rate, showing a performance improvement 
for litter. At the same time, classification performance for housing pixels 
decreased, both for TPR and FPR, although for FPR at a faster rate.  This 
indicates that while litter might be detected properly, for housing elements 
this method has limited added value. 

Figure 4.7: Left: Effect of changing threshold T1 between 3 and 24, which separates 
Litter and Housing pixels. Values for the other thresholds were set to T2 = 19 and T3 
= 25; Right: Effect of changing threshold T2 between 8 and 30, which separates 
Hens from Housing pixels. Values for the other thresholds were set to T1 = 8 and T3 
= 37. Filled diamonds () indicate the result for the lowest threshold value used. As 
baseline, random-guess classification into 2 groups is shown by the red dashed line 
and random-guess classification into 4 groups by the blue dash-dot line. Singular 
datapoints indicate performance for the object categories not affected by this 
threshold.
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The right half of Figure 4.7 shows the effect of varying T2, which separates 
housing and hens, between 8 (results indicated by filled diamonds) and 30, 
with T1 set to 8 and T3 to 37. Increasing the value for T2 gave higher TPR for 
housing, but also increased FPR, such that performance slightly increased 
but remained between binary and 4-class random-guess classification. As 
T2 separated housing and hens, increasing correct classification of housing 
pixels likely reduced correct classification of hen pixels, which is visible from 
the mirrored behaviour of the curves. The perceived upper limit for correct 
classification of hen pixels originates from the setting of T3, as this threshold 
influenced the classification performance for hens by separating hens 
and eggs. As result, changing T2 allows for proper detection of hens, while 
performance for housing can hardly be improved over a random-guess 
classification. 

The separation between hens and eggs by threshold T3, ranging 
from 15 to 45 in steps of 2, with T1 set to 8 and T2 set to 15, is shown in 
Figure 4.8. Here, a similar trend as for T2 is seen, since lowering T3 led to 
better egg detection with higher TPR, at the cost of proper recognition 
of hens (decreasing TPR). Egg FPR remained rather constant until egg TPR 
approached 0.8, indicating reasonable performance for egg detection. 
Beyond this point, hens were also considered as egg, thus increasing 
the egg FPR. The position of the ROC-curve for hens on the FPR axis was 
determined by the setting of T2. This also explains the cut-off point at an FPR 
of 0.25, as the T2 setting limited the amount of False Positives at the lower 
end of the distribution of hen pixels. Except for the two lowest threshold 
values, classification for both hens and eggs clearly outperformed the 
random-guess alternatives. For both categories reasonable performance 
can be achieved, although there was a clear trade-off as result of overlap 
between the intensity distributions of both categories. Thus, proper clas-
sification of hens could be done, but only when missing part of the eggs. 
Alternatively, eggs could be detected rather well, but this also included a 
number of false positives on hen pixels. 

Varying multiple thresholds at the same time did not affect the ROC 
curves given for litter and eggs, as they were dependent on T1 or T3 only 
and changing the settings for other thresholds did not affect the results. 
For hens and housing however, there was a clear effect of varying the 
combination of threshold settings. For hens, the line moved either left/right 
(T2, Figure 4.7 - right) or up/down (T3, Figure 4.8) but did not really change 
its shape. For Housing, similar behaviour was observed, but now with T1 
and T2, while also some changes in the shape of the performance curve 
were visible. The low performance and overlapping distributions render 
further investigation of these effects of limited use.
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4.5 Discussion

4.5.1  Effects of imaging approach
Avoiding the use of artificial light sources as part of the imaging setup 

in the application stage created a number of new challenges, which are 
discussed below. As poultry houses in general are rather dark, with a light 
intensity between 2 and 20 lux (Prescott, Wathes et al. 2003), an extra 
sensitive camera was selected to avoid the need for artificial lighting. 
This seemed beneficial, as artificial lighting might affect image quality 
through uneven light distribution and requires additional electrical power 
to be supplied and carried by the future robot. Lens selection was also 
affected by this choice. The low light conditions required a very translucent 
lens with a large diameter and short focal distance. For this research the 
best available option as indicated by the supplier was selected, with a 
minimum F-number of 1.8 and 5mm focal distance. Still, its diameter was 
not large enough to allow sufficient exposure on all areas of the camera 
chip, leading to unexposed areas in the corners of the image. Light intensity 
was further reduced by the wavelength filter. Next, the spherical shape of 

Figure 4.8: Effect of changing threshold T3, which separates pixels into Hens and 
Eggs, between 15 and 45 in steps of 2. Values for the other thresholds were T1 = 8 
and T2 = 15. Filled diamonds () indicate the result for the lowest threshold value 
used. Random-guess classification into 2 groups is shown by the red dashed line and 
into 4 groups by the blue dash-dot line. Singular datapoints indicate performance 
for the object categories not affected by this threshold.
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the lens combined with the wavelength filter led to radial distortion that is 
visible in the images as radial intensity fall-off and concentric rings. This is 
most likely caused by rays of light being reflected or refracted between 
the filter and the convex lens. Thus, avoiding the use of an artificial light 
source led to a suboptimal imaging setup, which turned out to have clear 
influence on the classification results. This choice may need to be reconsi-
dered and possibly investigated in future research.

For practical application of this object discrimination method, sufficient 
illumination at the selected wavelength band is required. If this is not the 
case, there is clear influence of ambient light on the imaging results, of 
which an example was seen during testing in another poultry house. Here, 
the used wavelength of 470 nm was abundantly available from the white 
lights in the corridors in the rear part of the image in Figure 4.9, but hardly 
present below the interior rows (front part of the image) where illumination 
was done by orange LEDs. This leads insufficient illumination or shading in 
the front part of the image, as shown in Figure 4.9, with very low signal 
to noise ratios in the shaded areas and a need for different classificati-
on thresholds in each region. Thus, for the presented method to function 

Figure 4.9: Image captured in another poultry house, showing clear shading effect 
as result of ambient light. In the front part of the image, the ambient light was 
orange-coloured and missed wavelengths around 470 nm, while in the rear part, 
there was white light that did include these wavelengths and thus showed higher 
intensities.



124

4 | Object detection

properly in a poultry house, it is required that the wavelengths used are suf-
ficiently present in the ambient light and have an equal spatial distribution.

As ambient light plays a role in both problems, including ambient light 
conditions in the selection of the most suitable wavelength (step 5) might 
be a possible solution. Also, light conditions in the house could be adapted 
to better match the needs for image acquisition. However, as this might 
lead to problems with animal behaviour and can involve considerable 
costs, this approach seems less desirable. Alternatively, using artificial 
lighting as part of the imaging setup might be reconsidered, to avoid or 
reduce adverse effects from both the imaging setup and the housing 
conditions, while having only a limited influence on animal behaviour. In 
preliminary research (Vroegindeweij, van Hell et al. 2015), artificial lighting 
was already added to have sufficiently illuminated images, of which results 
are shown in Figure 4.10.

Compared to the images in Figure 4.4 and Figure 4.6, using an 
additional light source results in a more equal light distribution but also 
creates shading effects due to the directed beam of the light source. Such 
shading results in more variation in the observed reflection within object 
categories, leading to wider distributions. Thus, more overlap between dis-
tributions will be observed, which will complicate intensity-based classifi-
cation.  Proper selection of the illumination system and calibration of the 
setup might avoid such undesirable illumination effects, and still result in a 
more even distribution of light over the area. As result, the intensity distribu-
tions for the object categories are expected to be more distinct, allowing 
for better separation using intensity thresholds under practical conditions. 
As the classification results in this case are likely to improve beyond those 
presented in this paper, it seems worthwhile to reconsider this approach in 
future experiments. 

4.5.2  Processing methods
In the image processing all labelled image data, i.e. all labelled pixels, 

were considered. Alternatively, a region of interest (ROI) can be used, to 
exclude pixels at specific locations in the image from the analysis. This allows 
image regions that were prone to adverse effects of using a suboptimal 
imaging setup (such as the image corners) or unequally illuminated areas 
(as seen in the top of the images) to be excluded from the data. Most likely, 
classification results will then improve, since part of the data that is difficult 
to classify correctly is then ignored. Preliminary investigations showed 
that using an ROI focussing on the centre of the image could improve 
performance by 2.5% for hens and 8.6% for litter. Using an ROI during clas-
sification, however, requires that only the ROI area is of relevance for robot 
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operation and other pieces of the image can safely be excluded because 
they will not affect the operation of the robot. This is the case, for example, 
when the excluded parts of the image will be handled at a later moment, 
when the robot is closer to these objects. As PoultryBot moves through 
the house, this seems indeed a feasible approach, and thus should be 
considered in continuation of this work.

Furthermore, current processing was based on a number of fixed 
intensity thresholds, using only information from the individual pixel in 
a specific spectral band. This made the method rather simple, while still 
offering reasonable performance. Other thresholding methods have also 
been evaluated such as manually varying the threshold values per image 
or auto-defining them using Otsu’s method (Otsu 1979), but found to be 
harder to apply or less suitable for the current dataset. This was mainly 
caused by the overlapping intensity distributions of object categories 
and variations within the images. Using an improved imaging setup might 
reduce these effects. To further improve classification results, and allow 
for object detection using this method, other processing methods should 
be added to the processing pipeline, especially around steps 8 to 10 
that deal with classifying the images. For example, adding filtering steps 
such as a median filter that can be used to reduce image noise. Also, 
eggs and housing elements have a specific shape that can be used in 
image processing and classification using morphologic image processing 
methods like erode, dilate and shape filtering. As such methods include 

Figure 4.10: Preliminary classification results, as presented in (Vroegindeweij, van 
Hell et al. 2015). Top and bottom show 2 example images. From left to right: original 
image (brightness increased by 100% for presentation purposes), classification 
result, ground truth.
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specific object properties, they will potentially lead to better classification 
results, especially when moving from pixel to object level.

Alternatively, a completely different approach can be taken, by 
replacing steps 8 to 10 with a more advanced method that considers 
adjacent pixels or other features for the classification process. This might 
reduce the problems with individual intensity values, and connects better 
to the current state of the art in machine vision. For example, Yang, Chao 
et al. (2010) used fuzzy classification to classify hens in a processing facility 
based on measurements in specific spectral bands, achieving over 95% 
correct classification. Also, the use of various advanced methods, such as 
Conditional Random Fields, Support Vector Machines and Neural Networks 
are nowadays a common methods for image classification and semantic 
segmentation (Giacinto and Roli 2001, He, Zemel et al. 2004, Abe 2005). 
Then, the image is segmented into superpixels based on specific image 
features such as intensity or texture. Next, for each superpixel a vector 
containing a range of features like intensities, size, and texture is generated. 
After training a classifier system using a labelled dataset, this method can 
subsequently classify the superpixels. Although such methods can be used 
on the current data, they might be even more suitable for use on colour 
images, as they use 3 instead of 1 spectral band and might contain a 
wider range of features. However, these methods require extensive training 
using dedicated datasets, and have clear computational demands and 
constraints. Thus, these methods might provide more possibilities for image 
classification, but at the cost of more complex and demanding implemen-
tations, which in turn might limit their current applicability in mobile robotics 
for livestock applications. Still, as availability of computational power keeps 
increasing, these algorithms are an interesting option for future investiga-
tions.

4.5.3  Performance versus requirements
In this work, an approach was presented for a pixel based classifica-

tion method that discriminates between various objects in a poultry house 
based on their spectral reflection properties. Although this approach 
requires a complex hyperspectral imaging setup in the laboratory stage 
for development, in its final application standard hardware components 
and simple processing methods can be used. For imaging, a monochrome 
camera with a wavelength filter and no additional light are sufficient, while 
the classification method is based on intensity thresholds only. 

As the choices made in the implementation of this approach mainly 
depend on the properties of the objects considered, the presented method 
and results are largely insensitive to changes in environmental properties. 
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Thus, if the method is to be applied in a different environment, but with 
the same type of objects (white hens and eggs, regular litter and housing 
elements), only the setting of the thresholds in the classification step might 
need some fine-tuning as result of different ambient light conditions. If 
different object types are present, such as brown hens and eggs, or different 
material is used for litter or housing elements, their spectral reflectance has 
to be determined first. This requires re-running the laboratory stage, to see 
which wavelength band is in this case the most suitable one for discrimi-
nation of these objects. Initial investigations for brown eggs, for example, 
indicated that a different one should be selected. 

When comparing the achieved performance of this approach, as 
shown in Section 4.4.5, against the stated performance requirements, 
quite reasonable results were achieved using manually defined thresholds. 
For eggs, the requirement of 80% correctly classified pixels was almost 
reached, with on average 79.9% of True Positives.  For hens and litter, on 
average about 40 to 50% of the pixels were classified correctly, thus not 
yet reaching the requirement of 80% of the pixels being classified correctly.  
Modification of the vision setup is needed to remove undesired side effects, 
as well as extending the processing with other methods based on adjacent 
pixels or object shape. This seems a very feasible way to reach the desired 
level of 80% correctly classified pixels for hens and litter, and is expected 
to also improve the results for eggs. For housing, such adaptations are 
definitely required, but given the amount of overlap between the intensity 
distribution for housing and the intensity distributions for litter and hens, it is 
not sure whether the desired level can be reached at all. As alternative, 
image data might be combined with additional data sources such as a 
map or a laser scanner to properly identify housing elements.

 Thus, the current method is clearly suitable for implementing egg 
detection on PoultryBot, and with some improvements it is also likely to be 
able to provide information on the presence of hens and the availability 
of free driving space. Even more, as long as objects can still be recognized 
correctly, also the performance of the current system might already be 
sufficient for the functioning of PoultryBot, especially when this is combined 
with information from other sensors to create a high level of environmental 
awareness. In that case, the requirement of 80% correctly classified pixels 
serves merely as a performance guideline, instead of being a lower limit on 
the acceptable performance. With these results, the desire for a universal 
solution using simple methods for object detection as basis for creating 
environmental awareness for PoultryBot is clearly met by this approach, 
although the use of artificial light might be reconsidered in future. 
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4.6 Conclusions
In this work, a simple pixel based classification method based on spectral 

reflectance properties was presented. This method is characterized by its 
simplicity in the application stage, where a wavelength filter is applied on 
a standard monochrome camera for image acquisition. For classifying the 
pixels of the acquired images into multiple object categories, the use of 
multiple intensity thresholds is sufficient. Based on the results presented, it 
can be considered as a first step in discriminating between various object 
categories present in an aviary poultry house, to generate environmental 
awareness for PoultryBot. 

In the development stage, the spectral reflectance of four object 
categories that are relevant for PoultryBot (eggs, hens, housing and 
litter) was investigated in the range between 400 and 1000 nm. Clear 
differences could be observed in the amount of reflectance between 
object categories, and overlap was lowest around 467 nm, being 16% for 
hens and eggs, 12% for litter and housing, and lower for the other combi-
nations.

In the application stage, 87 images were taken in a commercial poultry 
house, using a standard monochrome camera and a band pass filter 
around 470 nm. On these images, pixel classification into the four object 
categories was evaluated. For eggs, the requirement of 80% correctly 
classified pixels was almost reached (on average 79.9% True Positives). For 
hens and litter, 40 to 50% of the pixels were classified correctly, thus not 
yet matching the requirement of 80% correct classification. For housing, 
performance was rather low with 15.6% of the pixels classified correctly. 
Effects of threshold settings were evaluated using ROC curves, displaying a 
clear relation between the performance for the various object categories.

As the imaging setup relied on ambient light only, collected images were 
influenced by both the ambient light conditions and the optical properties of 
the setup. Thus, object intensities in the acquired images overlapped more 
than in lab conditions which made discrimination difficult. This influenced 
classification results, limiting the performance for pixel classification in this 
research. Still, simplicity and elegance in the application stage remain a 
major advantage. With about 80% of the egg pixels classified correctly, this 
method seems a feasible starting point for implementing egg detection 
on PoultryBot. A further increase in performance is expected from using 
additional processing of the images, or replacing the processing of the 
acquired images with more advanced computer vision methods.



129

4

What do I encounter on the way to my goal?

4.7 Acknowledgments
Fonds Pluimveebelangen is acknowledged for their financial support 

of this work. Furthermore, the authors like to thank Gerrit Polder from 
Wageningen UR Greenhouse Horticulture for the use of their hyperspec-
tral imaging facilities, 'Het Anker BV' for offering access to their houses to 
acquire the images used in this research and preliminary experiments, and 
Marleen Hermelink, Wicher Aantjes and Sander Bouwknegt for their work in 
annotating the images. 

References
Abe, S. (2005). Support vector machines for pattern classification, Vol. 2. 

London: Springer.

Bac, C. W., J. Hemming, B. A. J. van Tuijl, R. Barth, E. Wais and E. J. van 
Henten (2017). “Performance Evaluation of a Harvesting Robot 
for Sweet Pepper.” Journal of Field Robotics: 34(6):1123-1139.

Ball, D., B. Upcroft, G. Wyeth, P. Corke, A. English, P. Ross, T. Patten, R. 
Fitch, S. Sukkarieh and A. Bate (2016). “Vision-based Obstacle 
Detection and Navigation for an Agricultural Robot.” Journal of 
Field Robotics: 33(8):1107-1130.

Blokhuis, H. J. and J. H. M. Metz (1995). Aviary housing for laying hens. 
Wageningen.

Claeys, D. (2007). Socio-economische gevolgen van verschillende huis-
vestingssystemen in de leghennenhouderij. Merelbeke-Lem-
berge, Instituut voor Landbouw- en Visserijonderzoek, Eenheid 
Landbouw & Maatschappij. Mededeling 20.

De Ketelaere, B., F. Bamelis, B. Kemps, E. Decuypere and J. De Baerde-
maeker (2004). “Non-destructive measurements of the egg 
quality.” World’s Poultry Science Journal 60(03): 289-302.

Ekvall, S., D. Kragic and P. Jensfelt (2007). “Object detection and 
mapping for service robot tasks.” Robotica 25(02): 175-187.

Ellen, H. H., R. A. van Emous and J. W. Kruit (2007). Kunstlicht in de pluim-
veehouderij = Artificial light in poultry. Rapport 61.

Giacinto, G. and F. Roli (2001). “Design of effective neural network 
ensembles for image classification purposes.” Image and Vision 
Computing 19(9): 699-707.

Gloag, R., L.-A. Keller and N. E. Langmore (2014). Cryptic cuckoo eggs 
hide from competing cuckoos. Proceedings of the Royal Society 
B 281: 20141014



130

4 | Object detection

He, X., R. S. Zemel and M. Á. Carreira-Perpiñán (2004). Multiscale 
conditional random fields for image labeling. Proceedings of the 
2004 IEEE computer society conference on, Computer vision and 
pattern recognition.

Lewis, P. and T. Morris (2000). “Poultry and coloured light.” World’s Poultry 
Science Journal 56(03): 189-207.

Mertens, K., I. Vaesen, J. Loffel, B. Kemps, B. Kamers, C. Perianu, J. 
Zoons, P. Darius, E. Decuypere, J. de Baerdemaeker and B. 
de.Ketelaere (2010). “The transmission color value: A novel egg 
quality measure for recording shell color used for monitoring the 
stress and health status of a brown layer flock.” Poultry Science 
89(3): 609-617.

Nieuwenhuizen, A. T., J. W. Hofstee, J. C. van de Zande, J. Meuleman 
and E. J. van Henten (2010). “Classification of sugar beet and 
volunteer potato reflection spectra with a neural network 
and statistical discriminant analysis to select discriminative 
wavelengths.” Computers and Electronics in Agriculture 73(2): 
146-153.

Otsu, N. (1979). “A Threshold Selection Method from Gray-Level 
Histograms.” IEEE Transactions on Systems, Man, and Cybernetics 
9(1): 62-66.

Pillai, S. and J. Leonard (2015). “Monocular slam supported object 
recognition.” arXiv preprint arXiv:1506.01732.

Piron, A., V. Leemans, O. Kleynen, F. Lebeau and M. F. Destain (2008). 
“Selection of the most efficient wavelength bands for discrimina-
ting weeds from crop.” Computers and Electronics in Agriculture 
62(2): 141-148.

Polder, G., E. J. Pekkeriet and M. Snikkers (2013). A Spectral Imaging 
System for Detection of Botrytis in Greenhouses. Proceedings 
of the EFITA-WCCA-CIGR Conference Sustainable Agriculture 
through ICT innovation, 23-27 June, 2013, Turin, Italy.

Polder, G. and I. T. Young (2003). “Calibration and characterisation of 
imaging spectrographs.” Journal of Near Infrared Spectroscopy 
11(3): 193-210.

Prescott, N. B. and C. M. Wathes (1999). “Reflective properties of 
domestic fowl (Gallus g. domesticus), the fabric of their housing 
and the characteristics of the light environment in environmen-
tally controlled poultry houses.” British poultry science 40(2): 
185-193.



131

4

What do I encounter on the way to my goal?

Prescott, N. B., C. M. Wathes and J. R. Jarvis (2003). “Light, vision and the 
welfare of poultry.” Animal Welfare 12(2): 269-288.

Sandilands, V. and P. M. Hocking (2012). Alternative systems for poultry: 
health, welfare and productivity. Wallingford [etc.], CABI.

van Henten, E. J., J. Hemming, B. A. J. van Tuijl, J. G. Kornet, J. Meuleman, 
J. Bontsema and E. A. van Os (2002). “An Autonomous Robot for 
Harvesting Cucumbers in Greenhouses.” Autonomous Robots 
13(3): 241-258.

Vroegindeweij, B. A., N. M. Boots and E. A. M. Bokkers (2014). Chickens 
don’t care about robots: The behaviour of hens towards a 
mobile robot. Wias science day 2014, Wageningen.

Vroegindeweij, B. A., J. IJsselmuiden and E. J. van Henten (2016). “Proba-
bilistic localisation in repetitive environments: Estimating a robot’s 
position in an aviary poultry house.” Computers and Electronics 
in Agriculture 124: 303-317.

Vroegindeweij, B. A., S. van Hell, J. IJsselmuiden and E. J. van Henten 
(2015). Object segmentation in poultry housings using spectral 
reflectivity. IROS Workshop on Agri-Food Robotics, Hamburg.

Vroegindeweij, B. A., L. G. van Willigenburg, P. W. G. Groot Koerkamp 
and E. J. van Henten (2014). “Path planning for the autonomous 
collection of eggs on floors.” Biosystems Engineering 121(0): 
186-199.

Yang, C. C., K. Chao, M. S. Kim, D. E. Chan, H. L. Early and M. Bell (2010). 
“Machine vision system for on-line wholesomeness inspection of 
poultry carcasses.” Poultry Science 89(6): 1252-1264.

Zheng, Y., J. Yu, S. B. Kang, S. Lin and C. Kambhamettu (2008). Single-
image vignetting correction using radial gradient symmetry. IEEE 
Conference on Computer Vision and Pattern Recognition, 2008. 



132132



133

5

How do I perform?

Chapter 5
Performance evaluation of 

PoultryBot, an autonomous mobile 

platform for poultry houses 

Bastiaan A. Vroegindeweij1,2

Sam K. Blaauw2

Joris IJsselmuiden2 
Eldert J. van Henten2

1 Livestock Robotics, Ochten, 4051 DB, the Netherlands
2 Farm Technology Group of Wageningen University, Wageningen, 
  6708 PB, the Netherlands. 

Chapter submitted for publication in Biosystems Engineering



134

5 | Evaluation

Abstract
Observations of animal status, house conditions and manually collecting 

floor eggs are major daily tasks of poultry farmers. To assist the farmer in 
these tasks, PoultryBot, an autonomous mobile robot for use in poultry 
houses is proposed. In previous work, several components of PoultryBot 
were discussed in more detail. Here, component integration is described 
and performance of PoultryBot is evaluated under practical conditions. 
For navigation, different paths were used to assess PoultryBot’s navigation 
performance for various tasks, like area sweeping and surveying close to 
walls. PoultryBot proved capable of navigating autonomously through the 
area over more than 3000m, while avoiding obstacles and dealing with the 
hens present. The robustness of the navigation performance was tested 
by confronting PoultryBot with obstacles on different positions with respect 
to its path and using different settings of the navigation parameters. Both 
factors showed clear influence on PoultryBot’s driving behaviour.

For floor egg collection, performance in detection and collection of 
eggs was assessed on 5 predefined egg positions lateral to the robot path. 
Over 300 eggs were tested, of which 46% were collected successfully, 
37% were not collected successfully, and 16% were missed completely. 
The most observed failure was the collection device being placed just 
next to the egg, which can be solved by improving the control algorithm. 
These results clearly prove the validity of the PoultryBot concept and 
the possibility of autonomous floor egg collection in commercial poultry 
houses. Furthermore, they indicate that application of smart autonomous 
vehicles in dense animal environments is possible. 

5.1 Introduction
In an era where automation and the use of robots keep growing, op-

portunities arise also to take over dull or dirty tasks in livestock farming. One 
of the major daily tasks of every (poultry) farmer, is observing and checking 
the health and well-being of the animals, and making sure all housing and 
control systems function properly. Due to an increase of farm scale, time 
available per animal for observational tasks decreased. At the same time, 
the behavioural freedom for the animals increased. This led to an increased 
need for flock observation and management, as animal status now has 
a larger impact on the production results. Having a mobile platform that 
moves autonomously among the animals all day long provides the poultry 
farmer with more and potentially more objective information about the 
animals and their environment. 

Besides information gathering, there is a growing interest for automation 
of floor egg collection in modern animal-friendly loose housing systems for 
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laying hens. Floor eggs originate from animals that prefer to lay their eggs 
on some other place than the provided nest space, such as the housing 
floor. Based on extensive research (like Blokhuis and Metz 1995, van Niekerk 
and Reuvekamp 1997, Froehlich and Oester 2001, farm management 
improved a lot in recent decades. Combined with improved animal 
training, this greatly reduced the number of floor eggs. 

When proper animal training and management of the farmer are 
applied, these floor eggs still account for 0.1 to 2 percent of the daily 
production. In extreme cases, the number of floor eggs can even increase 
to 5 or 10 percent of total egg production. In all cases, the required manual 
collection of these eggs puts a significant load on the daily activities of the 
farm’s staff (Blokhuis and Metz 1995, Claeys 2007).

In the project Automation for Poultry Production at Wageningen 
University, PoultryBot, the first autonomous poultry house robot, was 
developed to aid the poultry farmer in his daily work in the modern aviary 
poultry house. More specifically, floor egg collection was used as an 
example case in the development and evaluation of PoultryBot. For floor 
egg collection, PoultryBot should move freely throughout the whole poultry 
house, while being aware of its location in the poultry house and nearby 
obstacles. Furthermore, the robot should be able to detect and collect 
floor eggs, regardless of their location in the poultry house. 

Several other applications exist where robots were freely acting in a 
complex environment, including interaction with dynamic objects such as 
humans, animals or plants. For example, Rhino and Minerva acted as tour 
guide in musea (Burgard, Cremers et al. 1999, Thrun, Beetz et al. 2000), 
while Spencer guided passengers in an airport terminals (Triebel, Arras 
et al. 2015). Also in the agricultural domain, which is characterized by its 
complexity and limited structure (Nof 2009), significant effort was spent on 
autonomous robots for field work (Bakker 2009, Hiremath, Evert et al. 2012, 
Deepfield Robotics 2016) but also in orchards or greenhouses (Bac, van 
Henten et al. 2014, Bayar, Bergerman et al. 2015, Shalal, Low et al. 2015a, 
Shalal, Low et al. 2015b). Several of the methods used in these robots can 
also be considered useful for PoultryBot, such as the particle filter for lo-
calisation and the vision approaches used for fruit detection in horticul-
ture (van Henten, Hemming et al. 2002, Bac, Hemming et al. 2013). Their 
applicability in the challenging environment of an aviary poultry house, 
however, still had to be proven.

With respect to livestock farming, some applications of (simple) 
autonomous vehicles with fixed paths are used in dairy husbandry (Lely 
2015). In the domain of intensive animal production, a few research 
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activities exist, such a student project at KU Leuven (Aertsen, Bauweleers 
et al. 2012), some preliminary investigations on a mobile monitoring robot 
from Australia (Qi, Brookshaw et al. 2013, Qi, Zhou et al. 2013) and a project 
on monitoring animal health and well-being using mobile and aerial robots 
at Georgia Tech. PoultryBot differentiates itself from previous examples by: 
1) having more advanced systems for localisation and navigation, such
that it can move freely and goal-driven throughout its environment; 2)
being able to detect and interact with objects of interest; 3) a test of the
whole integrated system in a real poultry house.

Previous work introduced the concept of PoultryBot, and described 
and evaluated several of its main features. In Vroegindeweij, IJsselmuiden 
et al. (2016), a localisation system based on the particle filter approach 
(Thrun, Beetz et al. 2000, Thrun, Burgard et al. 2005) that originated from 
museum robot Minerva, was described and evaluated in a poultry house 
without hens. Vroegindeweij, van Willigenburg et al. (2014) addressed the 
problem of path planning for the collection of floor eggs by presenting a 
new algorithm for non-uniform repetitive area coverage, as to the best of 
our knowledge, no such method existed at that time. Based on the use 
of multispectral features for fruit detection in harvesting robots from hor-
ticulture (van Henten, Hemming et al. 2002, Bac, Hemming et al. 2013), 
in (Vroegindeweij, van Hell et al. 2018), an approach was presented and 
tested for the discriminating between the various object types in the poultry 
house that are relevant for the functioning of PoultryBot. Finally, in Vroegin-
deweij, Kortlever et al. (2014), a description and evaluation of an actuator 
for floor egg collection is given. While individual aspects of this robotic 
system have been tested, to really prove that the proposed concept and 
methods work, they have to be tested in an integrated manner under 
(near) practical conditions. 

The objective of the current paper is to describe the integration of the 
required components and to evaluate the performance of PoultryBot. 
As an initial performance benchmark, a number of requirements for a 
future implementation of PoultryBot in commercial poultry houses can be 
indicated. First, the robot should be able to operate autonomously, such 
that human intervention of the farmers are hardly required. To achieve this, 
it should drive collision-free through the poultry house, while being capable 
of handling various path types, such as traversing large areas to move 
from spot to spot or driving close to a wall to reduce floor laying in these 
areas. Furthermore, as object density in the poultry house is high and floor 
eggs can be found close to obstacles, PoultryBot should be able to closely 



137

5

How do I perform?

approach obstacles without colliding with them. As PoultryBot’s given 
path is task-oriented, this path should be followed as much as possible, 
with the freedom to avoid obstacles when required for safe navigation. 
Regarding its localisation result, an error of less than 0.1 meter for 95% of the 
time is desired to match the collected information to the correct physical 
location for mapping purposes. For floor egg collection, PoultryBot should 
detect at least 95% of the eggs present in its vicinity, with less than 5% of 
its detections being a false positive. Furthermore, all detected eggs within 
1 meter from PoultryBot should be collected, irrespective of their location. 

To determine to which degree PoultryBot could comply with these requi-
rements, PoultryBot’s capabilities were evaluated under real-life conditions 
(including the presence of live animals) in a test environment similar to a 
poultry house. Besides PoultryBot’s performance, also the limitations and 
bottlenecks of the current approach were investigated. The remainder of 
this publication is organized as follows. Section 5.2 describes PoultryBot and 
its components. In Section 5.3 the experimental environment is detailed. 
In the first part of the evaluation, Section 5.4, autonomous navigation in a 
poultry house was tested, as core capability of PoultryBot. In the second 
part, Section 5.5, autonomous egg collection was evaluated as application 
of PoultryBot. Section 5.6 combines the observations of Sections 5.4 and 5.5 
and adds a more general interpretation of the results. Section 5.7 draws 
conclusions and gives indications for future work.

Figure 5.1: PoultryBot among hens in the test environment
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5.2 Robot configuration
This section describes the configuration of PoultryBot used during the 

experiments. This also includes a description of the core methods used 
for localisation, path planning, object detection and navigation. Finally, 
the resulting behaviour of PoultryBot for navigation and egg collection is 
described. PoultryBot itself is shown in Figure 5.1, while present in the test 
environment among the hens.

5.2.1  PoultryBot platform
PoultryBot (Figure 5.1) is based on the EyeSonic and SmartTrike field 

robots (Wageningen University 2009, Aelfers, van Esbroeck et al. 2015, 
SmartTrike 2015), and is about 1.1 m long, 0.45 m high. PoultryBot’s width 
varies between 0.3 at the rear end and 0.55 m at the front and is not 
symmetrical around its length axis. For stability and to overcome uneven 
and loose surfaces, PoultryBot has 3 driven pneumatic wheels, of which 1 
is also steered, all controlled by 2 Roboteq AX3300 motor controllers. For 
registering the robot’s behaviour and its environment, sensors including 
the HEDL 5540 wheel encoders, an Xsens MTi-300 motion tracker, a DMK 
23UX174 camera, and a Sick LMS 111 laser scanner were mounted on 
the platform. The laser scanner was placed at 0.37m above the ground. 
This position reduced the number of detections representing hens while 
at the same time the overall height of the platform remained within the 
height limitation of 0.45m imposed by the poultry house interior. Power was 
supplied by a set of batteries, with a 12 volt pack for the electronics and 
sensing and a 24 volt pack for the motors.

As the main task of PoultryBot is collecting floor eggs, a bended helical 
spring was mounted in front as collection device (see Figure 5.1). A detailed 
explanation and performance evaluation of this device (with over 95% of 
the eggs successfully collected) is given in (Vroegindeweij, Kortlever et al. 
2014). A drive motor was added to rotate the collection device, to both 
improve the collection results and to facilitate unloading. To increase ma-
noeuvrability, a lifting mechanism was included to lift the collector when 
no eggs had to be collected. The collection device itself was controlled 
using a Roboclaw 2x15A motor controller. 

The on-board PC, running Windows 7 and NI LabVIEW 2013, was used 
to communicate with all peripherals, process incoming data and issue 
control commands. A distributed architecture performed all acquisition, 
processing and sending of information in parallel, and always made the 
most recent data available. Some computationally intensive operations 
(like the raycast in the localisation method) were performed using a C++ 
library. Data acquisition and processing speed was set to 10 Hz for most 
components, except for those having a safety-critical task which ran faster, 
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namely at 20 Hz. Furthermore, all data from all sensors was logged at 10 Hz, 
together with data like the estimated location and the speed commands 
for the wheels.

5.2.2  Localisation method
Localization of PoultryBot was done using a particle filter (Vroegindeweij, 

IJsselmuiden et al. 2016), which was based on (Thrun, Burgard et al. 2005). 
In a particle filer, the pose of the robot is represented by a set of particles in 
the environment, with each particle containing a possible value for location 
and orientation of the robot. In each iteration of the algorithm, for each 
particle first a new position is predicted using information on the robot’s dis-
placement. This is followed by an update step, which evaluates for each 
predicted pose the correspondence between an actual measurement of 
the robot’s environment applied to the predicted pose and a map of the 
robot’s environment. Using the degree of correspondence as a measure 
of the likelihood of each particle’s pose, a new set of particles is sampled 
from the current set of particles, which then describes the new pose 
estimate of the robot.

In our implementation, the prediction step used a combination of the 
best available information from odometry (encoder) data of all 3 wheels 
and the orientation data from the Xsens MTi 300. Data from all sources 
was checked on availability and reliability, and the most reliable source 
was selected. If multiple reliable sources were present, a Kalman Filter on 
displacement and rotation was used to fuse all reliable data into a single 
displacement prediction. During testing, this approach proved robust 
against internal communication failures and significant slip of individual 
wheels. The update step incorporated data from the Sick LMS 111 laser 
scanner. Data from the laser scanner were matched to a raycast on a 
pre-defined map of the poultry house containing all fixed obstacles in 
the environment. As this method explicitly accounted for the possibility of 
random and shorter-than-expected distance readings, the presence of 
hens in the environment did not cause any problems. For the update step, 
the settings for the ‘beam model’ from Vroegindeweij, IJsselmuiden et al. 
(2016) were used. Despite these settings were based on a situation without 
hens in the environment, they showed the best performance during initial 
testing in the experimental environment with animals, and were therefore 
used in this research as well. 

5.2.3  Path planning
In Vroegindeweij, van Willigenburg et al. (2014), a method was described 

for coverage path planning for the collection of floor eggs. The resulting 
path consists of a set of waypoints. As this path planning method did not 
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account for the kinematics of the robot, the resulting paths contained 
waypoints 0.4 m apart, some of them connected by sharp turns. Initial 
tests under practical conditions showed PoultryBot had severe difficulty in 
following such paths, and thus it was decided to use simpler, (manually 
defined) paths for the experiments in this work. These also consisted of 
waypoints, but now placed further apart while avoiding sharp turns. 
Adapting the method in (Vroegindeweij, van Willigenburg et al. 2014) and/
or post-processing the path for this purpose is expected to produce paths 
the robot is capable of following and is a topic for future work. Detailed on 
the paths used in the experiments are given in the description of the expe-
rimental evaluation, in Sections 5.4.1.1, 5.4.2.1, and 5.5.1. 

5.2.4  Object detection
Detection of objects relevant for the functioning of PoultryBot was 

done at multiple levels, depending on the purpose. For navigation, (large) 
objects surrounding the robot were registered by the laser scanner. Subse-
quently, their locations were fed into the navigation algorithm, and used in 
determining speed and steering commands, as described in section 5.2.5. 
For floor egg detection, a DMK 23UX174 monochrome camera with a 470 
nm band pass filter attached to a lens with 5 mm focal distance was used. 
The image processing pipeline was based on (Vroegindeweij, van Hell et al. 
2018). Additional filtering on object shape and size was added to improve 
the performance for egg detection. Using calibration images, first the 
vignette effect originating from the combination of lens and wavelength 
filter was corrected, using the method of (Zheng, Yu et al. 2008). Next, pixels 
likely to correspond to eggs were selected using a threshold, as they had 
the highest intensity values. Using multi-stage morphological processing 
on size, shape and position, blobs expected to represent eggs were 
segmented from the image. Finally, for each blob found its global position 
in the environment was determined using the pose estimate of the robot 
and a calibration of the camera based on the homography matrix (Wang, 
Hu et al. 2004, Dubrofsky 2009). For each detected egg, its estimated 
global position was used to control the egg collection, by adding special 
waypoints for navigation during egg collection.

5.2.5  Navigation and driving
To convert the globally planned path (consisting of waypoints) into 

motions while accounting for all obstacles present, the navigation method 
as described by Schlegel (1998), was implemented. This method allows 
for close approximation of obstacles as it uses the exact robot contour, 
instead of the commonly used circular approximation. Furthermore, it 
considers both forward and backward movements and allows for online 
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adaptation of the goal position when new target locations like waypoints 
for egg collection emerge. Since PoultryBot is a relatively large and rectan-
gular-shaped robot operating in a dense environment, such a method is 
needed for proper manoeuvring through narrow passages and collection 
of eggs at all possible locations (including corners and next to obstacles). 

In the method of Schlegel, each combination of robot speed and 
steering angle that is allowed from a kinematic perspective is converted 
into a curvature that describes the related robot trajectory. Next, a 
robot-based obstacle grid is used to pre-calculate the available free 
space for each possible combination of obstacle location and allowable 
curvature. For each iteration of the navigation algorithm, the obstacle grid 
is filled with the current location of obstacles with respect to the robot. As 
the obstacle grid can be filled from any source, combining information 
from a map and distance sensors becomes a trivial task. For PoultryBot, the 
information on pre-defined map obstacles and the most recent reading of 
the laser scanner were used to fill the obstacle grid. 

Next, from all curvatures that were allowed given the current obstacle 
presence, vehicle speed, and driving direction, the most suitable control 
option was selected using a heuristic. This heuristic weighed for each 
allowed control option the normalized values for free distance ahead, 
heading towards the goal position, the closeness to obstacles and goal 
position, and speed. The highest weight was for “heading towards goal” 
(which was thus favoured most), followed by “free space” and “avoiding 
obstacles”, while speed and goal approximation were less important. 
The result was a driving behaviour that tended to steer PoultryBot quite 
directly towards the target position, but sometimes had difficulty to avoid 
obstacles, especially if the target position was further away. 

5.2.6  PoultryBot’s driving behaviour
Combining the elements for localisation, path planning, navigation, 

and object detection into PoultryBot led to a driving behaviour that can 
be described as follows. After switching to autonomous mode at its start 
position, PoultryBot drove from waypoint to waypoint, which had to be 
passed within a given distance and in a specified direction. While driving, 
PoultryBot tried to avoid the obstacles present, based on mapped locations 
of fixed obstacles and distance readings towards obstacles from the laser 
scanner. Given its current position, the next waypoint and the information 
on obstacles positions, Poultrybot searched for the direction towards its 
goal which could be followed for the longest period of time. Although 
obstacles should be avoided, PoultryBot was allowed to approach them 
closely if they were densely present in the direction of target waypoint, 
as long as no collisions occurred. PoultryBot stopped driving at the last 
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waypoint if no more waypoints were available, or when manually halted. 
A flowchart of this behaviour is shown in the left half of Figure 5.2.

For egg collection, the same driving behaviour was used, but with 
additional steps for egg collection integrated into the driving behaviour, 
as shown in the right half of Figure 5.2. If an egg was detected at a new 
location, two new waypoints were inserted to the waypoint list: one before 
and one after the egg. When PoultryBot reached the waypoint before 
the egg, driving was halted and the collection device was lowered. Next, 
PoultryBot slowly drove towards the waypoint after the egg, while rotating 
the collection device and attempting to collect the egg. If the waypoint 
after the egg was reached, driving was halted again and the collection 
device was lifted. Then, navigation was continued as before, until another 
egg was found. If eggs were close together or new waypoints were near 
existing waypoints, the waypoints controlling their collection were fused to 
simplify driving. 

This behaviour does not cover all situations in practice, such as auto-
nomously stopping or reversing direction if a collision is about to happen. 
In the experiments, these situations were handled by switching to remote 
control (a human operator controlling the robot) in case of a collision, and 
retracting PoultryBot a small distance, while applying a steering correction 
when required. After that, control was switched back to autonomous mode, 
allowing PoultryBot to continue the planned path by itself. If necessary, this 
procedure was repeated several times until PoultryBot moved around the 
obstacle, or in case PoultryBot could not resolve this situation, it was moved 
away from the obstacle by remote control. 

5.3 Experimental environment
PoultryBot’s functional environment, a commercial aviary poultry house, 

has a number of specific characteristics relevant for correct function of 
a mobile robot. First, metal construction elements provide facilities to the 
animals that live there, and act as a densely distributed but fixed set of 
obstacles, with elements sometimes no more than 1.2 m apart. Second, the 
housing interior is designed with the size of the animal in mind. Free space 
below interior elements exists and is used as living area for the animals. This 
constrains the free height above the floor to less than 0.5 m. Third, the 
uneven layer of loose litter on the floor hampers smooth driving. 

Fourth, enrichment objects like roughage bins or pecking blocks are 
obstacles scattered around. Fifth, remaining free space is cluttered by 
tens of thousands of animals that move around at will. All this will clearly 
influence PoultryBot’s sensing systems and navigation behaviour. Sixth, 
the air contains high concentrations of dust, vapour and ammonia. All 
these might adversely affect the functioning of both robot hardware and 
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Figure 5.2: Flowchart of PoultryBot’s driving behaviour. On the left, general driving 
behaviour is shown. On the right half, driving behaviour for egg collection is 
displayed.
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sensing methods. The interior of a real poultry house is shown in the left part 
of Figure 5.3.

Although PoultryBot has to work in a commercial poultry house and 
several tests also were done there, it was decided to perform the final tests 
and evaluation described here in a smaller and more open environment. 
This environment simplified testing and experimental evaluation of Poul-
tryBot’s performance as settings and conditions could be varied more 
easily, while allowing a better view on PoultryBot’s behaviour and easier 
assessment of error situations. In an area of 10 x 7 m, surrounded by 3 
concrete walls and 1 wooden fence, 2 rows of housing interior were 
simulated with a wooden construction. In this area, 150 white laying hens 
(Dekalb White) were housed. Four feeder bins were placed, distributed 
over the area. Two drinker lines were placed on one of the interior rows, 
about 1m away from the wall. Furthermore, below one end of this row, a 
laying nest was constructed. A picture of this environment is given in the 
right half of Figure 5.3, while a schematic overview can be found in Figure 
5.4. Of the six challenging characteristics mentioned above, the first five 
were present:

• Main housing features like construction poles and walls, 
• Scattered objects like feeder bins, 
• Limited free height from the floor,
• Floor conditions were similar, with a layer of straw and litter on the 

floor,
• Animals (freely) occlude area, but at a lower density. Still, as they 

were used to the robot and eager to approach it, they clearly 
affected PoultryBot’s behaviour.

Figure 5.3: Left: Interior of a commercial poultry house. Right: model of poultry house 
interior uses as experimental environment for testing and evaluating PoultryBot.
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As a result, the conditions in this environment were representative for a 
commercial poultry house, especially from a robot’s point of view.

5.4  Evaluating autonomous navigation
First, autonomous driving capabilities of PoultryBot were evaluated in 

two experiments, to test navigation durability and navigation heuristic 
properties. For this, robot performance was registered by logging robot 
data, such as position and speed, at a frequency of 10 Hz. Furthermore, an 
observer noted all relevant events, conditions and observations on driving 
behaviour. Each event or human intervention was given a reference 
number and its location, a description of the event (wall collision, hit pole) 
and the remotely controlled corrective action applied (continued driving, 
retracted and steered away) were noted. A human operated video 
camera (Sony DCR-SR78) was used to follow and record the behaviour of 
the robot, and it also registered all occurring events and comments made. 
Both the camera and observer were located on an elevated platform 
to provide a better overview of the scene, while the robot operator was 

Figure 5.4: Sketch of the test environment. Yellow circles indicate feeder bins. Blue 
blocks + lines indicate water supply and drinker lines, while the hatched area indicates 
the laying nest. The brown squares and lines indicate poles and housing bars.
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present in the test environment. Based on this information, performance 
could be evaluated in detail and causes and possible solutions for current 
problems or bottlenecks could be identified.

5.4.1  Experiment 1: Navigation durability
In the first experiment, the navigation capabilities of PoultryBot were 

tested over an extended period of time. Purpose of this experiment was to 
see how well the navigation performed under different conditions such as 
driving along a wall or traversing a large area, what kind of errors occurred, 
and if long-term application would lead to a change of behaviour. To excite 
and evaluate the behaviour of PoultryBot, path segments with different 
shapes and structures were applied. Furthermore, these path segments 
were repeatedly applied to see changes over time. It was expected that 
different conditions would show different robot performance with respect 
to the amount of control actions needed and the need for human inter-
ventions, but that this performance would remain constant over time. 

5.4.1.1  Experimental outline
To identify changes due to long-term application, a closed tour was 

driven for a prolonged period of time, such that each path segment was 
traversed several times, with the duration of the experiment only being 
limited by available battery power. Since two sets of batteries were 
available, this experiment was executed twice, and the results will be 
referred to as the first and second tour. Each tour took about 1.5 hours to 
complete and consisted of 12 full cycles of the given path. The given path 
was constructed by placing 30 waypoints and connecting these using 
straight lines. It contained 5 clearly different segments, each representing 
a specific type of condition encountered in practice: Segment 1. Border 
navigation along the house wall (Blue); Segment 2. Diagonally traversing 
the house (Red); Segment 3. Sweeping the area, in lateral direction 
(Green); Segment 4. Diagonally traversing the house (Purple); Segment 5. 
Sweeping the area, in longitudinal direction (Yellow). The given path with 
the individual segments are indicated with the bold straight lines in Figure 
5.5. Total length of the given path, measured as the Euclidian distance 
between the waypoints for a single cycle, was 94.2 meter.  For proper 
referencing in this experiment, PoultryBot’s location was also tracked using 
a Trimble S6 Total Station, to assess the accuracy of the localization method 
under these conditions. As using different path segments over extended 
timespans potentially increases the chance of failure, the accuracy of the 
localisation observed in this experiment also serves as upper limit for the 
localisation accuracy.
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5.4.1.2  Analysing performance
The navigation performance of PoultryBot was analysed based on 

the observations of collisions and human interventions. All events were 
registered by the observer and divided into one of the following five 
categories to indicate the type of the intervention needed: 

• Continued driving autonomously while touching an object;
• Human intervention using remote control, to retract PoultryBot 

once after a collision;
• Human intervention using remote control, to steer PoultryBot away 

from the obstacle once, such that it was set free after a collision;
• Human intervention using remote control, to retract and steer away 

once, to set PoultryBot free after a collision;
• Repeated human interventions using remote control to handle a 

collision.
Furthermore, the robot log data was used to calculate several performance 
metrics, including: 

• Path length, measured by the sum of the Euclidian distance 
between the robot’s consecutive position estimates;

• Rotation, measured by the absolute sum of the differences in 
consecutive robot orientation estimates;

• The number of steering events, defined by the number of changes 
in the steering angle issued to the motor controller;

• Operational time, given by the amount of time PoultryBot was in 
autonomous mode or in remote control mode (e.g. controlled by 
a human operator).

In this experiment, PoultryBot’s behaviour was evaluated at path 
segment level. To allow fair comparison between path segments, all 
performance metrics (except for distance) and interventions were divided 
by the autonomously driven distance in that segment averaged over all 
cycles. Statistical inference was done using an Anova test, followed by a 
multiple comparison step using Fisher’s protected LSD method in GenStat 
18.1 to investigate differences between path segments.

5.4.1.3  Results and interpretation
Each cycle of the given path took between 6 to 8 minutes to complete, 

and covered a distance of around 100 meters, which is longer than 
the Euclidian distance between the waypoints in the given path. For 
readability, Figure 5.5 shows a subset of the position estimates obtained 
during the first tour. From this tour, every 10th position estimate is shown for 
2 consecutive cycles to illustrate the driving behaviour of PoultryBot. Also 
the shortest path connecting the waypoints is displayed by straight lines. 
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Figure 5.5 shows that PoultryBot drove quite well from waypoint to 
waypoint, especially when sweeping in longitudinal direction (segment 
3, yellow) and driving along the outside border (segment 1, blue). It can 
also be seen that occasionally, PoultryBot deviated clearly from the 
given path, such as in the lower-middle part of the area. Here, PoultryBot 
properly deviated from the given path to avoid a collision with the pole 
present there, and after negotiating this obstacle returned to its given 
path. Also around segment 2 (in red), such behaviour was observed to 
avoid a collision with the feeder bin that was present on the first part of this 
segment. Also passing through narrow passages, such as between poles 
and walls at the left and right side of the area, did not present any difficulty 
for PoultryBot. Such actions indicate the ability of PoultryBot to handle the 
presence of obstacles and variation in the environment. Furthermore, all 
path segments could be handled by PoultryBot, indicating its capability 
of dealing with the various types of conditions encountered in practice, 
as indicated in the introduction of this section. From the observations, the 
hens present in the environment seemed to have only a small effect on 
PoultryBot’s driving behaviour. They sometimes showed up in the laser data 
as obstacles, thereby causing PoultryBot to avoid them by steering away 
from the hens, but without large changes in driving behaviour. In general, 
behaviour remained similar over time, suggesting long-term application 
will not lead to an increase of navigation errors. 

The localisation accuracy was evaluated over both tours (ground 
truth not shown). The Euclidian difference between positions estimated 
by PoultryBot and the reference measurement from the Total Station had 
a mean value of 0.127 m, with a 95 percentile of 0.319 m. The deviation 
in Euclidian distance was less than 0.1 m for 63% of the time. This is an 
improvement on the results in Vroegindeweij, IJsselmuiden et al. (2016), 
and also indicates that the desired accuracy indicated in that paper (<0.1 
m for 95% of time) is within reach. 

Logged human intervention and robot data are given in Table 5.1, as 
the mean value with standard deviation over all 24 cycles of the path. 
Values are separated into the 5 path segments, and all metrics except 
for distance were corrected for the average distance driven to allow 
fair comparison. Also here, having driven distances larger than waypoint 
distances is not necessarily bad, as they might indicate that PoultryBot 
deviated from its given path to avoid the obstacles present, although they 
can also result from poor path tracking. Robot speed was similar for all 
segments (about 0.28m/s) and not included in Table 5.1. 

Length of given path differed between segments, with the diagonal 
traversals (segments 2 and 4) being the shortest (7.3 and 14.8 m) and 
the border navigation (segment 1) the longest. Compared to this, driven 
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distance was less than the length of the given path for the border navigation 
(26.1 vs. 26.3 m), while for other segments it was up to 10% longer than 
the given path. This difference might relate to the structure of the border 
navigation segment, where turns are always in the same direction 
and with a limited need to avoid obstacles. Thus a slightly shorter path 
was used here, in contrary to the other segments, which contained more 
turns and obstacle-avoidance manoeuvres. For the first diagonal traversal 
(segment 2), the distance driven by remote control was highest (0.8 m) 
compared to both the segment length and the other paths. Also the 
second diagonal traversal (segment 4) and the lateral sweeping (segment 
5) had higher remotely controlled distance (0.6 m), which indicates that 
stronger human interventions were needed on these segments. The largest 

Figure 5.5: Result of two cycles from the first tour of experiment 1. The triangles 
indicate each 10th estimated robot position, with the colour relating to the path 
segments. Blue is segment 1 with border navigation, orange and purple are 
diagonal traversals (segments 2 and 4), and green and yellow are longitudinal and 
lateral sweeping (segments 3 and 5). The straight lines indicate the shortest lines 
between the waypoints, with each colour representing a different path segment. 
TS indicates the position of the total station, V and O the positions of video camera 
and observer on the elevated platform.
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platform rotations were observed while sweeping longitudinally (segment 
5, 0.71 rad m-1) and laterally (segment 3, 0.72 rad m-1), followed by the 
second diagonal traversal (segment 4, 0.66 rad m-1). A clear relation with 
path structure can be seen, as the given path also contained the largest 
rotations (0.5 rad m-1), and the resulting rotation is only 30 to 40% higher 
than the rotations required to fulfil the given segment. When considering 
actual platform rotations compared to the required rotation for the given 
path, segment 2 has most rotations, being almost four times higher than 
needed for the given path. This high level might be attributed partly to the 
presence of a feeder bin on the beginning of this segment.  In the number 
of steer events, no relation with path segment type is visible, indicating that 
larger rotations were more likely the result of distinct turns than of frequent 
small steering corrections. 

Most interventions took place in the diagonal traversal (segments 2 and 
4 with totals of 114.8 and 64.6 interventions per 1000 m), while the longitu-
dinal sweeping (segment 3) had fewest interventions (20.0 interventions 
per 1000 m). This was most likely the result of the waypoints in segment 3 
placed in between the housing poles, such that the path was merely ob-
stacle-free, while the diagonal traversals required the explicit avoidance 
of obstacles. When excluding the ‘Continue’ events, the lateral sweeping 
(segment 5, 43.9 interventions per 1000 m) performed similar to the second 
diagonal traversal (segment 4, 56.8 interventions per 1000 m), while the 
border navigation (segment 1, 22.35 interventions per 1000 m) showed 
similar behaviour as the longitudinal sweeping (segment 3, 18.5 interven-
tions per 1000 m). Also here, the larger need for intervention at segments 
4 and 5 compared to segments 1 and 3 might be related to the number 
of obstacles that were encountered by PoultryBot on these segments. 
Minor interventions like ‘Continue’ (keep driving while hitting obstacles) or 
‘Steering away’ were most seen during the border navigation segment 
(segment 1, 25.5 and 4.8 interventions per 1000 m respectively), possibly 
as result of collisions with the wall. Stronger interventions, like ‘Retract and 
steer away’, were mainly found at diagonal traversals (segments 2 and 
4), while ‘Retract’ actions were also found more in the lateral sweeping 
(segment 5) but with substantial variation between cycles. The most serious 
cases, where ‘Multiple’ interventions were required to solve collisions, were 
mainly seen at the first diagonal traversal (segment 2, 47.0 interventions per 
100 m, p<0.000), which also had by far the highest number of interventions 
(114.8 interventions per 1000 m). 

This high number of interventions can be explained from the navigation 
algorithm, where reaching the goal had a higher weight and thus obtained 
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Table 5.1: Quantitative results of experiment 1, testing long-term navigation performance. Numbers are average values over 24 
cycles of the given path, with standard deviation in brackets. Measured values are as given, rotation data and interventions 
are expressed respectively per meter and per 1000 meter autonomously driven path length. Different superscripts indicate 
statistical difference at p<0.05 using Fisher’s protected LSD.

Measured distance, as mean with SD Rotations per meter, as mean  with SD

Path segment
Waypoint 
distance (m)

Autonomously 
driven(m)

Remotely 
controlled 
driven(m)

Waypoint 
rotation 

(radians)
Rotation 
(radians) Steer events

1 Border navigation 26.3 26.1 (0.3) 0.2 (0.3) 0.27 0.56 (0.04) b 12.5 (1.0) c

2 Diagonal traversal 7.3 8.0 (0.6) 0.8 (0.8) 0.13 0.13 (0.08) a 11.7 (1.7) bc

3 Lateral sweeping 21.8 23.7 (0.8) 0.6 (0.6) 0.52 0.52 (0.05) d 12.1 (1.0) c

4 Diagonal traversal 14.8 16.1 (0.5) 0.6 (0.7) 0.40 0.66 (0.05) c 10.8 (1.3) a

5 Longitudinal sweeping 25.2 27.0 (1.1) 0.3 (0.6) 0.53 0.71(0.04) d 11.2 (0.8) ab

# Interventions per 1000 meter, as mean with SD

Path segment
Continue 

Driving Retract Steer
Retract +  

Steer

Multiple  
Interven-

tions Total
Total except  

Continue
1 Border navigation 25.5 (37.8) b 11.2 (20.6) ab 4.8 (12.7) a 6.4 (18.1) a 0.0 (0.0) a 47.9 (48.5) b 22.3 (26.9) a

2 Diagonal traversal 5.2 (25.0) a 31.3 (54.2) bc 0.0 (0.0) a 31.3 (65.2) b 47.0 (60.6) b 114.8 (108.0) c 109.6 (97.8) c

3 Lateral sweeping 8.8 (21.0) a 33.3 (34.3) c 0.0 (0.0) a 8.8 (21.0) a 1.8 (8.4) a 52.6 (42.5) b 43.9 (41.2) ab

4 Diagonal traversal 7.7 (27.2) a 28.4 (35.7) bc 0.0 (0.0) a 20.7 (34.3) ab 7.7 (20.5) a 64.6 (52.1) b 56.8 (47.1) b

5 Longitudinal sweeping 1.5 (7.4) a 6.2 (17.4) ab 1.5 (7.4) a 3.1 (10.2) a 7.7 (23.8) a 20.0 (30.2) a 18.5 (30.2) a
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more attention than avoiding obstacles. This frequently led to collisions, 
especially if an obstacle was close-by on the robot’s path to a waypoint 
further away. Such conditions were indeed present at the start of the first 
diagonal segment, with an obstacle (feeder bin) being present in the 
most likely path of PoultryBot towards its next waypoint at the other end 
of the test environment. Alternatively, if obstacles were further away from 
the lines that connected the waypoints, navigation was fairly easy and 
both collision occurrence and the need for human intervention was lower. 
Also the field-of-view of the obstacle sensor played a role here, since in a 
number of cases obstacle collisions were observed just after the object 
has left the detection area. The presented results indicate that PoultryBot 
could handle various path types, but that path structure, especially the 
placement of waypoints with respect to obstacles, influenced the results. 

5.4.2  Experiment 2: Heuristic effects
In experiment 1, obstacles placed on the shortest line between Poultry-

Bot’s position and its target waypoint frequently led to collisions. The second 
experiment therefore tested whether this relationship between obstacle 
location and waypoint placement indeed existed, by testing the effect 
of changing obstacle positions on the driving behaviour of PoultryBot. 
Furthermore, it was investigated if changing the settings of the navigation 
heuristic (as explained in Section 5.2.5), especially for the “heading to 
goal” behaviour, would lead to fewer collisions. 

5.4.2.1  Experimental outline
A straight path A (green, see Figure 5.6) was defined by placing 2 

waypoints in the longitudinal direction of the test environment, with con-
struction elements on either side of the path (at a lateral distance of about 
0.7m to the path). To see if driving behaviour changed when the path 
was closer to, and thus conflicted more with, these construction elements 
(obstacles), two additional paths  B (orange) and C (red) were defined, 
also shown in Figure 5.6. To realize this, the waypoints were moved twice, 
in steps of 0.4m, towards the poles on one side of the path. In these cases, 
it was expected that either the robot would steer more to avoid the poles, 
or that the number of collisions would increase. Additional waypoints were 
used to allow autonomous return of the robot from the end point to the 
starting position thus allowing repeated execution of the path. This path is 
indicated by the purple line in Figure 5.6. 

Next to moving the waypoints, also the weight factor for “heading 
to goal” (as defined in Section 5.2.5) in the heuristic was varied in this 
experiment. As all other weight factors ranged between 0.001 and 0.5, 



153

5

How do I perform?

changing the “heading to goal” weight factor from its original value of 
3 to 1 and 2 was expected to lead to more steering and better collision-
avoidance by PoultryBot. For “heading to goal” weight factor values 2 and 
3, each path was repeated 6 times. For a weight factor value of 1, each 
input path was repeated only 3 times, as during the experiment no clear 
reduction in the need for human interventions was seen with respect to 
results obtained when using a weight factor value of 3. Performance was 
evaluated only for the track between the first and last interior poles in lon-
gitudinal direction, which were 8.07m apart. Performance evaluation was 
done in a similar fashion as described for experiment 1, Section 5.4.1.2. 

Figure 5.6: Paths for experiment 2, to evaluate the effects of obstacle locations 
with respect to PoultryBot’s path on the driving behaviour of PoultryBot. Waypoints 
(purple circles) were placed on varying positions A, B, and C with respect to 
the interior elements. The green, orange and red lines indicate the shortest path 
between Start and End along the waypoints for trajectories A, B and C. The purple 
line indicates the path used by PoultryBot for autonomous return from the end-point 
to the start-point. 
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5.4.2.2  Results and interpretation
An overview of the results is given in Table 5.2, showing the mean and 

standard deviation of all data obtained from the robot’s log file, grouped 
by weight factor and path. In Table 5.3, the type and number of interven-
tions are given per combination of weight factor setting and given path.

Positioning the robot path such that it conflicted more with obstacles 
and thereby becoming more complex, increased path length and time 
required for path completion up to 20 percent (e.g. from 8.16 for path A to 
9.74m for path C when using weight factor 3, Table 5.2). Also the amount of 
steering increased, independent of the weight factor for the “heading to 
goal”-behaviour. This is visible in Table 5.2 for paths B and C showing more 
platform rotations and more steering events than path A for all values of 
the navigation weight factors. For the driven distance, this increase is also 
clearly significant, when comparing path A to B (p=0.002) or C (p=0.009), 
for all settings of the “heading to goal” weight factor. Furthermore, the 
number of interventions due to collisions increased clearly (Table 5.3), 
from 1 to 11 for weight factor 3 and from 6 to 13 for weight factor 2, if the 

Table 5.2: Autonomous driving results of experiment 2, evaluating the effect of 
changing the weight factor for “heading to goal”-behaviour and the obstacle 
placement with respect to PoultryBot’s path on the navigation performance of 
PoultryBot. Data are presented per combination of given path and heuristic setting, 
and expressed as average with standard deviation over all repetitions.

Autonomous driving
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Steer events 

(#)
Time  

(seconds)

mean SD mean SD mean SD mean SD
More 
goal-
oriented

3 A 6 8,16 0,05 2,97 0,39 116,3 12,5 26,7 0,5

3 B 6 8,31 0,10 3,62 0,61 110,8 11,0 28,0 0,9

3 C 6 9,74 1,38 5,68 0,93 144,3 37,5 37,7 8,8

2 A 5 8,74 0,60 4,80 1,50 122,6 6,0 32,0 6,0

2 B 6 8,60 0,66 3,96 1,20 117,8 11,7 30,3 4,0

2 C 6 9,28 0,44 5,29 0,83 128,5 19,8 35,3 5,2

Less 
goal-
oriented

1 A 3 9,09 0,95 5,97 2,55 110,3 5,7 28,8 1,0

1 B 3 9,99 1,72 7,21 1,02 160,7 46,6 35,9 8,9

1 C 3 10,70 1,67 6,29 1,47 151,3 21,0 41,0 8,9
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obstacles were positioned more into the robot path. In the type of inter-
ventions no clear change can be observed, indicating the interventions 
to resolve collisions did not become more complex when obstacles were 
positioned more into the robot path. All of this matches with expectations 
and the results of the previous experiment, as obstacles on the way of 
PoultryBot will force it to steer around them, thus increasing time, distance 
and steering required, as well as the risk for collision. Furthermore, obstacles 
closer to the robot contour showed only a limited effect, whereas obstacles 
present in the middle of the robot path caused clear changes in results.

When modifying the weight factor for “heading towards goal” in the 
heuristic, a decrease of the weight factor seemed to produce longer 
robot paths (Table 5.2), although effects were smaller compared to that 
of changing the path. Already with no obstacles (except for hens) present 
in front of the robot (path A), path length increased with 10 to 15 % when 
changing the weight factor, e.g. from 8.16 to 8.74 m for a weight factor 
change from 3 to 2. The total rotation of PoultryBot (in radians) also showed 
a similar increase, whereas effects on the number of steer events and the 

Table 5.3: Intervention results of experiment 2, evaluating the effect of changing 
the weight factor for “heading to goal”-behaviour and the placement of obstacles 
with respect to PoultryBot’s path on the navigation performance of PoultryBot. In-
terventions are presented per combination of given path and heuristic setting, and 
given as total over all repetitions. 
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More 
goal-oriented

3 A 6 0 0 0 0 1 1

3 B 6 0 1 1 0 0 2

3 C 6 2 1 2 2 4 11

2 A 5 3 1 0 1 1 6

2 B 6 3 0 2 0 0 5

2 C 6 4 1 6 2 0 13

Less 
goal-oriented

1 A 3 3 0 1 0 0 4

1 B 3 1 0 3 0 1 5

1 C 3 3 0 3 1 0 7
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required time were found to be less clear. Such behaviour seems logical, as 
with a lower weight for “heading to goal” driving will be less target-orien-
ted, and thus searches more for available free space between objects 
such as construction elements and hens present in PoultryBot’s vicinity. 
If obstacles were present in the robot path (like path C), the effect of 
changing the weight factor was smaller and sometimes even opposite, 
as this path already required more steering. Still, a significant difference 
in path length was found between a weight factor of 3 and a weight 
factor of 1 (p=0.006) and 2 (p=0.016) for the “heading to goal”-behavi-
our. In terms of interventions (Table 5.3), it can be seen that lower weights 
lead to more detours, where PoultryBot instead of passing between the 
poles, drove around them. Also, lower weights seemed to require less in-
terventions, especially for the ‘multiple’-case. However, this trend was not 
consistent and sometimes an increase in the number of interventions was 
seen, so no hard conclusions can be drawn here.

These results showed that the position of obstacles on the path and 
the setting of weight factors for the heuristic had a clear influence on the 
driving behaviour of PoultryBot. Moving the robot path closer to obstacles 
increased both path length and steering behaviour and led to more 
collisions. Changing the heuristic settings to less goal-oriented behaviour 
led to longer paths with more steering and a tendency of having fewer 
collisions with obstacles. This indicates that further tuning of the navigation 
heuristic can be useful to improve the navigation performance of 
PoultryBot.

Furthermore, attention is needed for handling obstacle collisions. 
Currently, these were handled using remote control by the operator, but for 
autonomous operation these collisions either have to be avoided or solved 
autonomously. This requires for instance the implementation of automated 
collision detection and reverse driving behaviour, and possibly also 
adaptation of the navigation behaviour. Once such solutions are added, 
this will likely solve most or all of the cases that currently required human 
intervention, bringing PoultryBot close to fully autonomous operation. 

5.5 Evaluating egg collection performance
After testing PoultryBot’s navigation capabilities in the previous section, 

also the egg collection performance was evaluated. In previous work 
(Vroegindeweij, Kortlever et al. 2014) the collection device itself was 
evaluated in detail. This experiment assessed the egg collection capability 
of PoultryBot. As previous research indicated that the collection device had 
difficulty to collect eggs in corners, those locations were not considered in 
this experiment. 
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 During egg collection, a video camera (Sony DCR-SR78) was positioned 
in line with the robot’s path, to register PoultryBot’s behaviour. Furthermore, 
a GoPro camera mounted to the robot registered a close-up of the egg 
collection device. In the measurement notes, all egg detections and 
collection operations were registered. Subsequently, the egg’s location 
(if known) was registered, together with detection and collection results. 
Furthermore, relevant information like start time of a run, camera and 
algorithm settings, and specific behaviours and observations were noted 
as well. All this information was used to evaluate performance of detection 
and collection in more detail, but especially to indicate causes and 
possible solutions for current problems or bottlenecks. 

5.5.1  Collection procedure
For the evaluation of floor egg collection, a repeatable procedure was 

used, based on a given path along one of the walls in the test environment. 
Each collection run was made along the wall in the longitudinal direction 
of the area, and consisted of 2 parts. In the first part, the wall was to the 
left of the robot, while in the second part the robot changed direction and 
had the wall on its right side. Between the two parts, the robot was turned 
around while driving using remote control by the operator. In each part 
of the collection run, 2 eggs were present, with the first one (longitudinal 
locations A and A’) between the wall and the second pole, as seen from 
the start of this part, and the second one (longitudinal locations B and B’) 
between the wall and the open space between the 3rd and 4th pole. To 
create a collection path that was similar for all eggs, the waypoints before 
and after each egg were placed in a straight line at about 0.7 m next to 
the wall and more than 1 m away from the egg.

Eggs were placed on a line perpendicular to this path, and five egg 
locations in lateral direction were individually tested: in front of the robot, 
on the robot’s edges or outside the robot contour and close to the wall 
or poles. These lateral locations were numbered 1 to 5 when going from 
the wall to the pole. In each part of the run, both longitudinal locations (A 
and B) and a single lateral location were evaluated. Each combination 
of longitudinal and lateral location (indicated by a combination of the 
letter A or B and a number between 1 and 5) was repeated for at least 20 
correctly detected eggs. In Figure 5.7, an overview of the experiment is 
given, showing the waypoints, the egg’s longitudinal (A or B) and lateral (1 
to 5) locations, and the expected driving pattern of PoultryBot. 

In preliminary research, egg orientation prior to collection showed 
limited effects on collection success, as the egg rotates during collection 
under influence of floor structure and the collection device. Therefore, egg 
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orientation was fixed with the egg’s major axis aligned with the direction of 
PoultryBot’s given path and their minor end towards the robot. As the hens 
present during the experiment exhibited egg-eating behaviour, hard-boiled 
eggs were used to reduce egg eating in case of egg breakage. 

Weather conditions outside the building influenced the light intensity in 
the experimental area, making the use of a single fixed setting of the camera 
and detection method impossible. Thus, before each measurement series, 
camera and detection parameters were adapted to the amount of light 
present at that moment. In this way, the effect of ambient light on the 
detection and collection results was prevented as far as possible.
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Figure 5.7: Egg locations and waypoints used in the egg collection evaluation. The 
numbers 1 to 5 indicate the egg locations in lateral direction, while capitals A and B 
indicate the location of an egg in longitudinal direction. O indicates the location of 
the observer, V indicates the location of the video camera used for observation of 
the experiments. Green circles indicate waypoints in the first part of the run, going 
from the starting point at the right (S) to the end point on the left (E), with eggs 
located at A and B. The green dashed line indicates the expected robot behaviour 
for collection at lateral location 1. The second part of the run (not indicated) goes 
from S’ to E’, with eggs located on A’ and B’. 
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5.5.2  Data registration and processing
During the egg collection experiments, results were registered 

separately for egg detection, collection operation, and collection failure. 
Egg detection potentially yielded one of the following results: 

• False negative (FN), i.e. the egg was not detected, and therefore 
no collection operation was performed;

• False positive (FP), i.e. detected something else than an egg. A 
collection operation was started, but failed due to the absence of 
an egg;

• True positive (TP), i.e. egg correctly detected, and egg collection 
was started.

True negatives (TN) were not registered, as this would include every 
non-egg object seen by the robot. For an egg collection operation 
performed on correctly detected eggs (TP), the following options were 
considered as collection result: 

• egg collected correctly;
• collection failure: collection started correctly, but the egg was not 

collected;
• wrong location of collection (robot was clearly off);
• no start of collection.

In case egg collection failed, one of the following causes for failure was 
assigned: 

A. the collection device ran over the egg without collecting it;
B. the egg was broken by the collection device;
C. the egg left the collection device after collection;
D. the collection device was located just next to the egg;
E. the collection device was lifted before actually reaching the egg;
F. the collection device was lowered after passing the egg;
G. switched to remote control by the operator, as result of a collision 

with an obstacle.
If the collection operation was ended manually, an asterisk was added 

to the collection result, independent of the collection result itself. All results 
were registered by the observer during the experiment, and analysed 
afterwards as described below. 

After the measurements, data from runs that produced unreliable 
responses due to an unsuitable combination of detection algorithm settings 
and varying ambient light conditions (see the last paragraph of Section 
5.5.1) were excluded from further analysis, and results were clustered per 
longitudinal location (A or B) and lateral location (1 to 5). As false positives 
(FP) in detection could not be related to a specific egg or location, they 
were only assessed in relation to the number of eggs present. Based on 
this data, the following performance indices were calculated, which are 
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similar to those used in fruit harvesting robots (Bac 2015, Bac, Hemming et 
al. 2017):

• Egg detection success (%): the occurrence of a correct detection 
(TP) as percentage of the total number of eggs present (TP+ FN);

• False discovery rate for egg detection (%): the number of objects 
falsely detected as eggs (FP), as percentage of the total number 
of eggs present (TP + FN); 

• Collection success rate (%): the occurrence of each collection 
result as percentage of the number of correctly detected eggs (TP);

• Collection failure rate (%): the occurrence of each failure type as 
percentage of total collection failures.

Statistical inference on the results (both raw data and performance 
indices) was done using an Anova test, followed by a multiple comparison 
using Fisher’s protected Least Significant Difference test in GenStat 18.1 to 
investigate differences in performance between locations.

Cycle time was not investigated, as it was determined by the fixed 
driving speed of the robot and the time required for lowering and raising 
the collection device. It hardly varied in the experiment and/or as result of 
actual conditions. For each egg, a single collection operation was done. 
The number of eggs tested varied between 25 and 40 per combination of 
longitudinal and lateral location, and is indicated in the results in Figure 5.8. 
Egg damage rate was already investigated in earlier research (Vroegin-
deweij, Kortlever et al. 2014), and not investigated in detail here as it was 
hardly dependent on operation of the device.

5.5.3  Detection performance
Results for egg detection, given in Figure 5.8, show that the majority 

of the eggs were properly detected by PoultryBot, although results were 
dependent on the lateral location of the egg. For clustered longitudinal 
locations A and B, Figure 5.8 suggests that B-locations (even bars) have 
slightly more (p=0.21) eggs detected correctly compared to A locations 
(odd bars). As B-locations were more in the middle of the area and light 
intensity was slightly higher than at the A-locations, this might have positively 
affected detection rate. 

Clear differences in performance can be observed between the lateral 
locations 1 to 5. In front of the robot (location 3) more than 90% of the 
eggs were detected correctly, whereas only 65 to 85% of the eggs further 
to the sides of the robot (locations 1 and 5) were detected correctly. 
Correct detection at location 5 indeed proved different from locations 
2 to 4 (p-values between 0.000 and 0.039), and A1 shows similar results 
(p-values around 0.05), while difference for B1 could not be proven. When 
combining data for A and B locations, locations 2 and 3 had significantly 
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more correct detections than locations 1 (p=0.04 and 5 (p<0.000), while 
results for location 4 seem closer to results for location 1 (p=0.13) but they 
still differed from results obtained at location 5 (p<0.000). 

These results indicate that PoultryBot had more difficulty to detect eggs 
correctly if they were further towards the side of the robot, such as on lateral 
locations 1 and 5. The lower detection rate seen for these locations might 
be explained by the egg being present more towards the boundaries of 
the camera view. As result of optical properties of the imaging setup, the 
images contained a radial intensity fall-off, such that eggs further from the 
image centre appeared darker and therefore were not always detected 
correctly. For more details on this matter, see (Vroegindeweij, van Hell et al. 
2018). Also, if eggs were located further away from PoultryBot, there was a 
greater chance that a hen blocks the view towards the egg. The effect of 
lateral location on detection performance is relevant for future application, 
as this affects the scanning range of PoultryBot. From the current results, it 
can be concluded that about 75% of the eggs within 0.5 meter from the 
PoultryBot can be correctly detected. However, as locations in a poultry 
house will be visited multiple times a day and this allows for detection at a 
later moment, the effect of occasionally not detecting an egg is reduced. 
In these cases, however, eggs will remain longer in the poultry house, which 
might still induce undesired effects like additional floor laying and egg 
eating.   

Figure 5.8: Detection results as percentage of the number of the eggs present, 
expressed per location. Letters A and B indicate the first and second longitudinal 
location, while numbers 1 to 5 indicate the lateral location, which was perpendicu-
lar to robot path. Total number of eggs considered is given above each bar. False 
positives are not indicated, as they could not be related to a specific position.
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False positives could not be related to specific locations and are thus not 
shown in Figure 5.8. The calculated False Discovery Rate per lateral location 
(1 to 5) ranged from 21% to 43%. As the false discovery rate varied between 
0% and 57% for individual runs, numbers serve as indication only with no 
clear trends visible. False positive occurrence seemed to be dependent 
on ambient light levels and camera settings, as there appeared to be a 
correlation between brighter light conditions and animals close to robot 
being mistaken for eggs (see Vroegindeweij, van Hell et al. (2018) for more 
details). As fixed intensity thresholds were used for egg detection, and 
ambient light conditions varied between runs due to variation in outdoor 
weather, this might explain a large part of the false positives. Furthermore, 
spots from sunlight, white paint on the wall or feathers on the floor were 
frequently mistaken as egg by PoultryBot. In commercial poultry houses, 
these effects are expected to be smaller, as under poultry house conditions 
both the amount of ambient light and light intensities are much lower. 

5.5.4  Collection performance
In general, if eggs were detected, the collection operation started 

in the neighbourhood of the egg, and more than half of the eggs were 
immediately collected successfully. Some form of collection failure (i.e. 
starting the collection operation correctly, but failing to collect the egg) 
occurred in most other cases, and seems almost complementary to 
successful collection. Other collection results (clearly wrong location of 
collection or collection not starting at all) occurred only a few times for 
correct detections. This is as expected, since eggs won’t disappear or 
move away easily. Cases that did occur, might relate to either a detection 
error or acting incorrectly during the collection operation, such as the 
robot passing both waypoints around the egg faster than the control 
system could respond. 

For each correct detection (TP), also collection performance was 
assessed. Results are given in Figure 5.9, as percentage of the number 
of correctly detected eggs. For false positive detections, a collection 
operation was made resulting in ‘no egg present’. As no location was 
known for these cases, they were excluded from the results shown. As 
shown in Figure 5.9, between 40 to 70% of the correctly detected eggs 
were collected at once, but clear variation in collection performance 
can be observed. For statistical comparison of lateral locations 1 through 
5, data from longitudinal locations A and B was combined. Eggs in front 
of the robot (lateral location 3) seemed to be collected correctly more 
often than eggs at robot edges (locations 2 and 4, p=0.03). The number 
of correct collections at location 1 was also lower than at location 3 
(p=0.08), but not really different from locations 2 and 4 (p>0.7). Location 5, 
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at the other side of PoultryBot, shows a further decrease in performance, 
especially compared to location 3 (p<0.001). 

These results might be explained by the behaviour of the robot, as eggs 
located further away from the initial path required more steering over a short 
distance to correctly approach the egg. If this was not accomplished in time, 
the risk of collection failure increased, mainly from incorrectly approaching 
the egg. The most likely explanation for the results at lateral location 1 being 
different from those at location 5 is that at location 1 the robot collided with 
the wall and ending up in front of the egg, such that chances for correct 
collection increased. This was already observed during the experiments, 
and can be confirmed when looking at the causes for failure, as shown in 
Figure 5.100. Here, location 1 has a high amount of human interventions as 
result of wall collisions, which are not seen at the other locations.

Also between longitudinal locations A and B variation was observed. On 
locations aside from the robot contour (lateral locations 1 and 5), collection 
results for the longitudinal locations B (more free space) were clearly worse 
compared to the A-locations (close to a pole). On the other hand, for 
lateral locations 2, 3, and 4 (more in front of the robot) the results for longi-
tudinal locations B were slightly better compared with A-locations. This was 
most explicit for location 4 with p=0.08. Although no clear explanations 

Figure 5.9: Results of the collection operations as percentage of correctly detected 
(TP) eggs, expressed per location. Letters A and B indicate the first and second 
longitudinal location, while numbers 1 to 5 indicate the lateral location, which 
was perpendicular to robot path. Total number of eggs considered is given above 
each bar. 
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could be identified for this effect, it might be that the driving behaviour of 
PoultryBot for collecting the egg at the A-location influenced the collection 
performance on the B-location. Also, in a number of cases at location A5, 
the collection operation was ended manually due to collisions with the 
pole of the interior construction. Based on these results, the location of the 
egg with respect to obstacles such as a construction pole seems to have 
limited effect on the collection results. However, waypoint placement and 
driving behaviour do need improvement here, to make sure no collisions 
with construction elements occur during or after egg collection. 

5.5.5  Collection failures
As up to 60% of the collection operations showed some collection 

failure, also failure causes were investigated based on observations of the 
collection operation. Results as percentage of the total number of failures 
for each location are shown in Figure 5.100. Statistical inference did not 
show any difference in failure between locations (p-values >0.25), except 
for the expected difference in obstacle collisions at lateral location 1. 

The most frequent failure cause for lateral locations 2 to 5 was the 
collection device being placed just next to the egg at the start of collection. 
This occurred less often at location 1, as wall collisions ensured that the robot 
was directed towards the egg. Frequently, these collisions also resulted in 
human intervention during the collection operation. Together, these causes 
account for more than half of the failures, most likely due to a combination 
of several reasons. First, in the placement of waypoints for egg collection 
PoultryBot’s steering behaviour or obstacle presence were not accounted 
for. Next, although the navigation method did account for the collection 
device’s position on the robot, steering effects from the heuristic close to 
the waypoint might still have led to a wrong orientation of the collection 
device when reaching the egg. As a result, PoultryBot’s front wheel might 
be oriented correctly towards the egg, but the collection device may still 
have been just next to the egg. Finally, steering corrections applied during 
collection operation may not always have resulted in the desired move of 
the collection device, as it had some freedom of movement and frictional 
forces limited the required lateral shift. Improving the navigation method 
by better waypoint placement, changing the behaviour of the navigation 
heuristic and including not only the next waypoint, but also the one after 
that in the navigation control, are therefore all considered to be desirable. 
This is likely to reduce these problems and thus improve overall collection 
performance. 

Other failures that occurred frequently, were the egg leaving the 
collection device after collection (as result of collection device shape), 
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or the collection device being lowered after passing the egg. Lifting the 
device before actually reaching the egg, moving over an egg without 
collecting it or breaking the egg during collection happened as well, but 
was not seen frequently. As loosing eggs mainly occurred on the rear side 
of the collection device, improving the design of the collection device 
is expected to resolve this failure cause. Reducing failures like moving 
over or breaking eggs during collection was more difficult, but their lower 
occurrence made this also less important. The cases of lowering the 
collection device after passing the egg, lifting it before actually reaching 
the egg, or missing the waypoint after the egg and not stopping the 
collection operation at all, might all have to do with the processing speed 
of the control method. Improving and speeding up this method would have 
allowed PoultryBot to respond faster to new observations and changes in 
position, and thus would have made the navigation and collection control 
more accurate. 

Finally, in some cases the collection operation was not ended auto-
matically such that human intervention was required. As egg collection 

 Figure 5.10: Causes for collection failure as percentage of the number of failures, 
expressed per location. Letters A and B indicate the first and second longitudinal 
location, while numbers 1 to 5 indicate the lateral location, which was perpendicu-
lar to robot path. Total number of eggs considered is given above each bar. Results 
for not stopping the collection operation in time could exceed 100% score, as an 
egg could be successfully collected but the collection operation was not ended 
automatically.
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went fine in most of these cases, this explains why these cases exceed 
100% of collection failures. This happened especially at location A5 due 
to collisions with a construction pole, and at lateral location 1 due to 
collisions with the wall. For the cases that occurred on locations 2 and 3, 
no direct explanation other than a control error could be identified. To 
avoid these situations, the navigation method needs improvements in 
handling obstacles. Furthermore, adding a strict time or distance limit on 
the collection operation seems useful to assure the collection operation 
stops in time. 

5.6 Combining navigation and egg collection  
 performance 

In the previous sections, PoultryBot’s capabilities for navigation and 
egg collection were evaluated in separate experiments. This section gives 
an integrated reflection on PoultryBot’s performance by summarizing the 
main findings and comparing them with the performance requirements 
stated in the introduction. Furthermore, it indicates limitations of the current 
system for application in commercial poultry houses, as well as suitable 
directions for further development. 

5.6.1  Navigation performance overview
The first experiment in Section 5.4 evaluated the long-term navigation 

capabilities of PoultryBot. Here, PoultryBot proved capable of handling the 
various path types tested, ranging from border surveying via area sweeping 
to traversing large areas. Furthermore, it showed its ability to pass through 
narrow spaces by closely approaching obstacles, but also to deviate from 
the specified path if this was required to avoid obstacles. As the results 
of experiment 1 indicated that the occurrence of collisions might relate 
to the presence of obstacles on PoultryBot’s path and the settings of the 
heuristic used, this was investigated in more detail in experiment 2. Obstacle 
position with respect to PoultryBot’s desired path indeed influenced 
driving behaviour, with more steering and an increased prevalence of 
collisions. Also, an indication was found that changing the settings of the 
navigation heuristic could improve navigation results. During navigation, 
PoultryBot was able to localise itself with mean accuracy of 0.13 meter, 
which remained below 0.1 meter for 63% of the time. This approaches 
the required accuracy of less than 0.1 meter for 95%, but some improve-
ments are still desired in obstacle mapping and handling reference mea-
surements. Although these results sound promising in terms of the require-
ments stated in the introduction, full autonomous operation of PoultryBot 
for navigation tasks in commercial poultry houses is not yet possible. Main 
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reasons for this are the number of obstacle collisions observed and Poultry-
Bot’s inability to resolve these collisions autonomously. 

5.6.2  Obstacle detection and awareness 
For achieving the desired operational autonomy of PoultryBot, the first 

step is to improve its obstacle awareness. In the experiments, several cases 
were observed were PoultryBot collided with an obstacle just after it had 
left PoultryBot’s field-of-view and was therefore no longer considered in the 
navigation. Adding or replacing sensors, such that the total field-of-view 
increases, might solve this problem as obstacles will then remain in sight even 
after PoultryBot passed them. Also for back-up  manoeuvres, additional 
sensing on the rear side of PoultryBot might be required. Alternatively, a 
short-term obstacle history can be kept for navigation purposes, which still 
considers detected obstacles for a certain time after they have left the 
view of PoultryBot. This approach also allows for a different treatment of 
so-called hard and soft obstacles (Bac 2015), as for example their retention 
time or relative importance can now be varied. In that case, PoultryBot 
should avoid hard obstacles such as construction elements, while soft 
obstacles such as hens still allow for a certain amount of interaction. Such 
an approach seems useful, as it was observed that the presence of hens 
in the environment also influenced the navigation behaviour of PoultryBot. 
Thus, improving awareness of obstacles in the vicinity of PoultryBot, as well 
as taking their properties into account, is desirable for further development 
of PoultryBot. Furthermore, as a collision detection method was missing, this 
still has to be added to PoultryBot.

5.6.3  Navigation components 
Next to improving obstacle awareness, also some navigation 

components have to be added or improved before PoultryBot can 
function fully autonomous. For example, PoultryBot’s inability to autono-
mously stop or reverse direction directly influenced current performance, 
as such manoeuvres are required for autonomous collision resolving. 
Although the method of Schlegel (1998) does allow for such actions, this 
was not yet implemented properly in the navigation system of PoultryBot, 
and needs therefore to be added. In case collisions occur, not only 
additional navigation behaviours such as reversing direction of motion 
are required, but also more high-level reasoning that considers adding or 
moving waypoints to resolve such situations. For example, when during 
egg collection PoultryBot reaches a dead end or has to collect an egg in a 
corner, this requires several additional waypoints for a back-up manoeuvre 
and the indication of a suitable follow-up path. In path planning for 
car-like robots, methods for defining such manoeuvres already exist (Kiss 
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and Tevesz 2014, Csorvási, Nagy et al. 2015), which might also be suitable 
for PoultryBot. If these missing components are implemented as well, 
PoultryBot is likely able to autonomously handle (potential) collisions, as 
well as entering corners and dead ends for egg collection. 

If these navigation components are added, also the navigation heuristic 
requires an update, as already suggested from the results of experiment 2. 
This can be an improved static tuning of weight factors, but it might also be 
that different conditions require different settings. For example, conditions 
with an increased risk on collisions might need more obstacle-avoidance 
behaviour, whereas for traversing an open area more goal-oriented 
behaviour is desired. Also, handling collisions or backing up might require 
different settings of the weight factors. Thus, a system where weight factors 
in the heuristic are made dependent on the desired behaviour under 
specific driving conditions, might be a suitable improvement for proper 
functioning of PoultryBot. 

5.6.4  Egg collection performance
Next to PoultryBot’s navigation capabilities, also its performance in egg 

detection and collection was determined, and showed a dependency 
on the egg’s location with respect to the robot. In front of PoultryBot, 
about 90% of the eggs were detected, while more towards the side this 
decreased to about 65%. On average, some 75% of the eggs within 0.5 
meter of PoultryBot were detected. Regarding false positive detections, 
a range between 0 and 57% was observed, with results being dependent 
on ambient light conditions. As the images also contained some radial 
intensity fall-off, improving the optical setup is likely to increase detection 
performance, as also indicated in Vroegindeweij, van Hell et al. (2018). 
Having more constant ambient light, which is expected to be the case in 
commercial poultry houses, will also benefit detection performance. With 
that, the performance comes close to the desired level of detecting 95% 
of the eggs present, although reaching the maximum 5% false positive 
detections might still be challenging. If the current detection method 
does not provide sufficient room for performance improvement, it might 
also be worthwhile to consider more advanced methods like Conditional 
Random Fields (He, Zemel et al. 2004) for detecting eggs and other objects 
in images. 

In terms of egg collection performance, about 40 to 70% of the eggs 
could be collected at once. If collection failed, this was mainly due to 
incorrect positioning of the collection device. The improvements for the 
navigation method proposed above can already solve part of this, but for 
egg collection some more improvements of the collection operation are 
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recommended. First, when placing the waypoints used for egg collection, 
more attention should be given to the robot’s current pose, how to 
approach the egg and the presence of nearby obstacles. Instead of taking 
the shortest straight line from the current pose towards the egg, a smoother 
path is desired that can also be followed accurately by PoultryBot, while 
at the same time avoiding obstacle collisions. Next, the vehicle navigation 
strategy should be improved further, so that also the orientation of the 
collection device at the start of collection is included. Finally, the speed of 
the control loop should be higher, such that the steering actions applied are 
also performed in time. Next to collection control, also design of collection 
device needs attention, as part of the eggs escaped after collection. 
Placing a barrier can easily solve this problem, while adapting the settings 
of the collection device might also reduce the occurrence of breaking 
or moving over eggs. With these improvements on collection control and 
collection device, it is likely that almost all eggs will be collected properly, 
and the requirement on collection performance can be reached as well.  

Still, indicating a dependency between navigation behaviour and 
collection performance remains complex, for various reasons. First, the 
robot path contained 2 waypoints between the eggs, to ensure the 
first and second eggs were approached from a similar direction, but 
driving behaviour was also subject to animal presence. Thus, paths were 
never exactly the same and effects of driving behaviour on collection 
performance varied between experiments. Second, the detection 
method proved sensitive to the variations in ambient light, leading to more 
false positives in these cases. As these also lead to collection operations, 
this affected driving behaviour and egg collection as well. Finally, floor 
conditions and egg properties do influence collection results but were 
subject to changes from natural variation, even between subsequent runs. 
Despite these difficulties, the presented result still provide a good indication 
of the future possibilities for applying autonomous robots for the collection 
of floor eggs in commercial poultry houses. 

5.6.5  Wrap-up
By improving PoultryBot’s obstacle handling and navigation behaviour 

as indicated above, it will be able to cover all accessible areas of a poultry 
house. Furthermore, PoultryBot already has large flexibility in its search 
path, which can contain both long-distance movements, local search 
actions and other movements, in any combination. These features make 
PoultryBot capable of handling a wide range of physical environments, 
path characteristic and navigation behaviours. Furthermore, the obtained 
localisation accuracy is sufficient to map climate conditions or to register 
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the location of the eggs found, thereby allowing to use this information 
to inform the farmer on house conditions or for planning PoultryBot’s next 
day’s collection path.

 By also improving the egg collection operation, PoultryBot will be able 
to collect almost each egg that is detected and physically reachable. 
In that case, the exact position of the egg within the poultry house 
and the position of the egg with respect to PoultryBot’s pose will be of 
limited influence on performance. Given the results from the presented 
experiments, in the current configuration already more than 40% of the 
eggs was collected successfully at once, with improper control being the 
major cause for failure. Using an improved control method likely leads 
to more than 80% of the eggs properly collected at first encounter, thus 
approaching the performance requirement on egg collection as stated 
in the introduction.

All these capabilities make the presented concept a suitable 
candidate for automating tasks in poultry houses, such as monitoring the 
animal environment or collecting floor eggs. However, problems or tasks 
with similar characteristics and requirements can also be found in many 
other applications, such as cleaning buildings, weed removal or security 
patrolling. Also here, the flexibility and robustness present in PoultryBot 
for functioning in dense environments can be a great advantage when 
creating autonomous applications. 

5.7 Conclusion
This work presented PoultryBot, the world’s first autonomous mobile robot 

platform for application in a modern aviary poultry house. PoultryBot was 
tested under real-life conditions, and proved capable of moving autono-
mously through this environment. For this, various path types were used, 
while PoultryBot handled both fixed and moving obstacles during more 
than 3000 meters of autonomous driving. Egg collection was tested on 
more than 300 eggs, of which about 46% was successfully collected, while 
for about 37% of the eggs present some collection failure occurred and 
only 16% of the eggs was completely missed. The most observed failure 
cause was the collection device being placed just next to the egg, which 
can be solved by improving the control algorithms used for navigation and 
egg collection. These results prove the validity of the PoultryBot concept 
and indicate that application of smart autonomous vehicles in dense 
animal environments is possible. Still, improvements on obstacle handling 
and navigation, the collection method and the reliability of components 
are required before commercial application of this idea comes within 
reach.
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6.1 Conclusion
The central topic of this thesis, as expressed by the objective in Chapter 

1, was “To develop an autonomous mobile robot running in a poultry house 
environment, capable of performing tasks such as floor egg collection, and 
test it in a proof of principle experiment to achieve TRL 6” (See Chapter 1 
for a definition of the TRL levels). In chapters 2 through 4 and in Vroeginde-
weij (2014) subsystems for localisation, path planning, object recognition 
and actuation were developed and tested. In Chapter 5, these parts were 
integrated in a mobile platform called PoultryBot, which was subsequently 
demonstrated and extensively tested in a poultry house environment with 
hens. 

For localisation, in Chapter 2 a particle filter was evaluated in an empty 
poultry house. By explicitly accounting for uncertainty in sensor data and 
location estimates, a localisation accuracy was achieved of at least 0.4m 
for 95% of the time. The particle filter also proved robust against errors and 
missing values in input data, such that for the localisation system TRL 5 was 
achieved after Chapter 2. In Chapter 5, multiple odometry data sources 
were combined to provide the input for the prediction step of the particle 
filter, and the system was tested and demonstrated successfully in an 
environment with hens, thereby achieving TRL 6. 

For path planning, in Chapter 3 the NURAC path planner was developed, 
based on a dynamic programming approach and a map containing the 
probability of floor egg occurrence. Evaluating the resulting paths using 
an extensive set of simulated floor eggs revealed that the average time 
between laying and collecting a floor egg was 2.4 hours. This is comparable 
to a farmer making 2 collection rounds per day, although the robot 
path visited locations with higher expected presence of floor eggs more 
frequently, with up to 15 visits per day. These results meet the indicated 
requirements regarding frequent revisiting of highly suspected floor egg 
locations to reduce floor egg presence, and the NURAC path planner 
achieved TRL 4. The resulting paths did not account for the kinematics 
of PoultryBot, and contained waypoints 0.4 m apart. Preliminary tests of 
these paths in a poultry house showed they were unsuitable for actual 
driving by PoultryBot, because waypoint  density was too high and some 
of them were connected by sharp turns. As alternative, in the evaluation 
in Chapter 5 manually generated paths were used. These also consisted of 
similar path structures, but with waypoints further apart and without sharp 
turns. As result, the path planning subsystem remained at TRL 4.

For object recognition, Chapter 4 presented a simple and efficient 
method based on spectral reflectance properties. This method discrimi-
nated between relevant objects for PoultryBot’s functioning, such as hens, 
eggs and litter, with the aim of correctly classifying at least 80% of the pixels. 
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Using intensity thresholds on monochrome images from a commercial 
poultry house, which were taken at the most discriminating wavelength 
(467nm), in the evaluation about 80% of the egg pixels and 40 to 50% of 
the hen and litter pixels were found to be classified correctly. With this 
performance, for eggs the object recognition system achieved TRL 5, while 
for hens and litter technology readiness remained at TRL 4. In Chapter 5, 
this method was augmented with filtering on size, shape and position of 
the identified objects to detect floor eggs. With more than 90% of the floor 
eggs in front of PoultryBot being detected correctly during evaluation and 
demonstration, the object recognition system achieved TRL 6 for eggs. No 
attempt was made to improve classification performance for hens and 
litter, nor was their detection implemented in PoultryBot, thereby the object 
recognition system remained at TRL 4 for these object categories. 

In Chapter 5, also components for egg collection, autonomous 
navigation and control were added to PoultryBot. For floor egg collection, 
a bended helical spring was used. This device was previously evaluated 
in commercial poultry houses (Vroegindeweij, Kortlever et al. 2014), where 
it achieved TRL 5. For autonomous navigation, the method of (Schlegel 
1998) was used, who indicated robust performance of this method in 
various environments. For system control, all elements were implemented 
as separately running software nodes, and a finite state machine was used 
to control PoultryBot’s behaviour. Subsequently, PoultryBot’s performance 
was evaluated for navigation and floor egg collection. The following was 
achieved: 

• autonomous navigation in a (complex) poultry house environment 
for over 3000 meter, including various driving conditions and active 
obstacle mitigation, and 

• autonomous floor egg collection of over 300 eggs, from which 46% 
was collected successfully, for 37% the collection attempt failed 
and 17% were missed completely. 

Limitations in the vision setup and the implementation of the navigation 
and control approach prohibited PoultryBot to reach the required level 
of collecting 90% of the floor eggs present. Lack of attention for the robot 
kinematics in the path planning method required the use of simpler, 
manually generated paths with a similar structure as the algorithm-gene-
rated paths. The vision setup not recognizing hens and housing elements 
was circumvented by using the laser scanner for obstacle detection, 
which proved sufficient for basic navigation, but prohibited distinguishing 
between these object types. Although path planning and recognition of 
hens and housing remained at TRL 4 in this research, the presented results 
indicate that with modifications of these components in place PoultryBot 
as a complete robotic system could function at TRL 6.
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With these results, an answer was found for each of the first four research 
questions stated in the introduction, summarized as “Where am I”, “Where 
do I go”, “What do I encounter” and “How do I perform”. Also, it can be 
concluded that the objective of this research was achieved, as PoultryBot, 
an autonomous mobile robot for a poultry house environment, was 
developed and demonstrated to be capable of floor egg collection in a 
commercially relevant environment. Furthermore, the technical feasibility 
of such a robot was demonstrated to the research supervisory board, pro-
fessional media and the general public on various occasions.

6.2 Reaching TRL 7: improvements, additional 
functions and requirements

As PoultryBot can achieve TRL 6, this leads to the fifth research question: 
“How to continue?” - What is required to advance from the results of this 
research to the next level on the TRL scale? At TRL 7, a systems prototype 
is capable of continuous or long-term reliable operation, which is demon-
strated in the operational environment with a prototype that is close to 
the planned operational system. If TRL 7 is achieved, this also means that 
the prototype can be used for testing of the hypothesis from Chapter 1, to 
prove the benefits of using mobile robots in a poultry house. In the sections 
6.2.1 through 6.2.6, the required functionality and performance for TRL 7 
will be explained in more detail for PoultryBot as a whole and for each of 
the subsystems. Furthermore, it contains a short reflection on the suitability 
of the current methods and the underlying concepts for reaching TRL 
7. Section 6.3 will then reflect on PoultryBot as part of a larger poultry
production system.

6.2.1  Missing functionality and new requirements
Based on the experiences and results so far, a set of missing functio-

nalities can be indicated for PoultryBot and the various subsystems. 
Furthermore, there exist a number of additional requirements that have 
to be met. On a more general systems level, they can be defined by two 
core elements: 1) having a reliable and application-oriented design that is 
modular and maintainable, and 2) use methods that are robust in dealing 
with variation and uncertainty. The first element deals with the initial design 
of the system’s hard- and software, such that it is adapted to application 
requirements, but also make sure that all elements operate reliable indi-
vidually and in combination, and can also be maintained properly. The 
second element focusses more on the selection of data processing and 
control methods, such that they are explicitly able to handle the variation 
in data and situations that result from applying a mobile robot in a poultry 
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house. As both elements have direct implications on the subsystems, 
missing functions and additional requirements will be given for each of the 
subsystems separately. 

6.2.2  Vehicle and system design 
For autonomous operation, several hardware functions have to be 

added to the design, such as a charging facility, collision checking and 
egg transport and storage. In the development of PoultryBot, limited 
attention was given to vehicle design and component selection, as mainly 
already available components were used and emphasis was on proof-of-
principle tests. However, this also introduced some legacy in the hard- and 
software design of PoultryBot. 

Thus, for the next prototype, a new design of both hard- and software 
has to be created, which fits  poultry house applications such as floor egg 
collection. This requires the dimensions of PoultryBot to be adapted to 
those of the poultry house environment. It should also be modular, such 
that single components can be replaced and new functionality can be 
added. From a safety perspective, the egg collection device has to be 
integrated more into the robot. Also, the outer shell of the robot has to be 
smooth and cover all robot parts, such that it does not hurt the animals 
and can be cleaned and disinfected easily. 

For dealing with uncertainty in the conditions, also PoultryBot’s environ-
mental awareness should increase. This requires not only maximizing the 
view coverage around PoultryBot, but also introducing redundancy in 
sensing to avoid PoultryBot functioning improperly due to failure of a single 
sensor (Murphy and Hershberger 1996). In both the design of PoultryBot 
and the selection of individual components, also future commercialisation 
of PoultryBot should be considered, to avoid choosing components that 
are unsuitable for commercial production of the system in later stages. 

The current approach and methods used for development of the control 
software were focussed on ease of use by students with limited training. 
In later stages of the project, this turned out to have some significant 
limitations, so improvements in design and robustness of the control 
software are required. First, all processing tasks should become separate 
software instances with limited interdependency that all run concurrently, 
such that failing elements can be isolated and restarted without affecting 
other elements. Second, the used code should be modular and maintai-
nable, also for complex elements, to allow tracing of changes in the code 
and adaptation of individual elements without breaking code elsewhere. 
This accommodates adding of new processing elements and functionality 
in later stages. Finally, attention should be paid to the execution speed of 
individual processing tasks, to ensure they fit application on a mobile robot 
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with limitations on available computing power and that processing tasks 
that are critical for safe operation can finish their calculations in time. 

To achieve the desired improvements in the design of PoultryBot and 
its control system, using a structured design approach like (Siers and van 
den Kroonenberg 2004, Cross 2008) is recommended. For a more reliable 
control architecture, the Robot Operating System (ROS)(Quigley, Conley 
et al. 2009) seems a suitable candidate.

6.2.3  Localisation
For localisation, the initial high-level requirement was to have robust lo-

calisation in environments with a repetitive structure and a large number 
of moving objects, such as found in poultry houses. The particle filter used 
for localisation explicitly accounted for uncertainty in measurements and 
data, and proved successful for localisation of PoultryBot in Chapters 2 
and 5. More general, this explicit accounting for uncertainty (as done 
with probabilistic approaches) seems very suitable for use in autonomous 
systems that operate in highly dynamic environments with an higher level 
of uncertainty. However, there exists no standard approach for selecting 
the methods and parameter values for individual processing steps in pro-
babilistic methods, which also take into account requirements from the 
application and the environment at hand. As a result, a trial and error 
approach is still required when implementing such methods, thereby 
consuming significant amounts of time and resources. For speeding up the 
integration of such probabilistic methods, it would be helpful if robotics 
research publishes also algorithm settings and calculation results with more 
quantitative details. 

During such a trial-and-error based evaluation process, as was applied 
in Chapters 2 and 5, also new requirements emerged. For example, the 
large number of animals around the robot likely introduces more noise 
from moving obstacles in the data used for updating the particle filter. As 
result, increasing the fraction of information related to fixed obstacles in the 
data used for the update step is required. This includes a need for fusing 
data from multiple sensing sources for both the prediction and update 
step of the particle filter. Next, in the current implementation, the filtering 
step strongly reduces the spread in the particles. As this negatively affects 
localisation performance and demands introducing more noise in the 
prediction step, it is required that this algorithm step is improved. Although 
not required for reaching TRL 7, also the addition of Simultaneous Localisa-
tion and Mapping (SLAM) functionality (Lu, Hu et al. 2009) is desired. Given 
the repetitive structure of the environment, the currently used house design 
drawings can easily be used and seem reliable enough for reaching TRL7 
and application in practice. However, for quick introduction to new envi-
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ronments, especially for testing purposes, and to allow the robot to detect 
and learn changing conditions, having SLAM functionality is desired. 

To remove part of the sensing uncertainty resulting from hen presence, 
filtering or preselection can be applied (Burgard, Cremers et al. 1998, 
Levinson, Askeland et al. 2011), but also fusing laser data with information 
from other sensors like ultrasound sensors or cameras (Rivera-Rubio, Alexiou 
et al. 2015) seems interesting. To retain more particle spreading in the filtering 
step, a stronger correction of particle weights or making the correction 
dependent on the effective sample size (Doucet and Johansen 2009) can 
be used. Also, more adaptive algorithm behaviour can be implemented 
by using Adaptive MCL with  KLD-sampling (Fox 2003) or Augmented MCL 
(Fox, Burgard et al. 1999). 

6.2.4  Path planning
For path planning, the initial high-level requirement was to have a floor 

egg collection path that reduced the time floor eggs were present at 
the floor of the poultry house. As this time is unknown in practice, several 
secondary requirements were derived, such as frequent revisiting of 
locations with a high probability on floor egg occurrence and covering 
the whole house each day. Furthermore, the method had to be capable 
of handling narrow passages between separate housing sections (i.e. 
local minima) and generate new paths overnight, so it can account 
for yesterday’s floor egg production. Especially these features (frequent 
revisits of highly suspected floor egg locations, handling narrow passages, 
and a guarantee on finding a path with relatively efficient calculations) 
determined the suitability of the NURAC method. Whether or not the 
calculated result was truly optimal (which was one of the initial reasons for 
choosing a DP approach) proved of less importance, as the underlying 
problem of floor egg occurrence features intrinsic variation and uncertainty. 
In that case, using a truly optimal solution includes the risk of making the 
system unsafe or unstable under practical conditions while a non-optimal 
solution is likely to be more robust in a practical application.

Although the results of the NURAC planner seemed promising in a 
simulation setting, applying the resulting paths on PoultryBot showed that 
these paths could not be executed, mainly as result of sharp turns and 
high waypoint density. To solve this issue, also the kinematic properties of 
PoultryBot have to be accounted for in the planning procedure, to ensure 
that the paths resulting from the NURAC planner can also be executed 
by PoultryBot. To adapt PoultryBot’s path to the actual locations where 
floor eggs are found, also the feedback loop between floor egg collection 
and the floor egg model used by the NURAC path planner (as proposed 
in Chapter 3) should be closed. This will increase operational effective-
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ness further, such that PoultryBot “improves both the quality of floor egg 
collection and prevents an increase in floor laying”. Finally, experimen-
tal evaluation of the paths calculated by the NURAC on PoultryBot is still 
required to see if they indeed have the desired effects on animal behaviour. 

To remove sharp turns in the paths that result from the NURAC planner, a 
cost criterion that accounts for the kinematic properties of PoultryBot can 
be added to the planning algorithm. Initial tests with increased costs for 
larger turning angles reduced the number of sharp turns (> 45 degrees) by 
70%, while using larger distances between waypoints also seemed to have 
a positive effect (Langerwerf 2017). Alternatively, a 2-step approach using 
a generic planner to visit floor egg suspected locations combined with 
local sweeping actions can be used.  

6.2.5  Object recognition
For problems like object recognition for the control of a mobile robot, 

where performance criteria like calculation time, energy supply and robust 
implementation are relevant, using simple methods seemed an interesting 
approach. In Chapters 4 and 5, such a method was applied for PoultryBot, 
where it turned out that this approach resulted in more problems than 
initially expected when dealing with the complex conditions and inherent 
variation of a poultry house. For example the distribution of ambient light 
within the image varied considerably, causing a reduction in performance 
of the method tested and thereby compromising it’s suitability for PoultryBot. 
Thus, to create environmental awareness for PoultryBot, significant impro-
vements in performance of the object recognition system are required, 
together with the addition of some new functionalities.

First, the object recognition system should be able to deal with the 
variation in light distribution that is present within a poultry house, without 
compromising detection performance. Next to that, it should also be 
capable in handling the variation in conditions between houses, such as in 
housing interior, lighting types and animal breeds. Second, the number of 
object types recognized and the detection performance should increase. 
For hard obstacles like housing interior, the number of false negatives 
should be close to zero, to avoid collisions. For soft obstacles like hens and 
target objects like eggs, a low number of false positives is desired to reduce 
unnecessary actions and increase PoultryBot’s performance. Also objects 
that are currently ignored in the recognition approach, such as roughage 
bins, pecking stones and stray objects, have to be detected by PoultryBot. 

To achieve this, a shift from pixel classification to more state of the art 
methods for object recognition and labelling might be a suitable step. For 
example, Faster R-CNN (Regional Convolutional Neural Networks) (Ren, 
He et al. 2015) can be used for object detection using bounding boxes, 
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while Mask R-CNN (He, Gkioxari et al. 2017) can also add semantic seg-
mentation on pixel level. For training such methods, data-driven feature 
learning (like Zeiler, Taylor et al. 2011, Shao, Liu et al. 2014) seem preferable 
over using knowledge-based, hand-crafted features like colour, texture 
and shape. Furthermore, the training data used for the object recognition 
method should sufficiently cover all variation that PoultryBot will encounter 
in practical applications. 

Next to its direct application for robot control, the object recognition 
system can also be used to obtain information on house and animal status, 
which the farmer can use for management purposes. For this, the require-
ments on calculation speed are less strict as this can also be done off-line, 
but they might require a higher reliability of the results. Furthermore, this 
application requires the handling of a wider range of objects and object 
parts and a greater level of detail in the detection results. With respect to 
system development, it would be beneficial if the methods used to create 
environmental awareness of PoultryBot are also capable of this task. 
However, if this leads to comprising performance for at least one of the 
applications, it might be better to use separate approaches or processing 
elements for this. 

6.2.6  Navigation and control
The first requirement for navigation and control to achieve long-term 

reliable operation, is to improve obstacle awareness, as part of the 
navigation errors in Chapter 5 were caused by incorrect sensing. This 
requirement was already indicated in Section 6.2.2 on vehicle and system 
design, by stating that sensor coverage and redundancy should be 
increased. If done so, multiple sensing sources will provide data on the 
same objects, which requires proper sensor fusion to merge this data. 
Furthermore, for navigation purposes this information should remain in 
memory for some time after the object disappeared from the sensor’s 
view as a result of robot movement, as they can still impact the navigation 
behaviour. Also, attention should be paid to failure detection, such that 
incorrectly functioning sensors are detected and their data can be 
excluded from usage by PoultryBot.

Next, the implementation of the navigation method should be improved, 
by adding the ability to drive backwards. In planning and performing 
special manoeuvres, such as floor egg collection, more attention should 
be paid to the presence of obstacles along the robots trajectory. Instead of 
hard-coding these special manoeuvres, an online local planner should be 
added to deal with special conditions that are unknown beforehand, such 
as handling collisions or approaching eggs in corners or near obstacles. 
In this planner, kinematic properties of the robot should explicitly be 



186

6 | General discussion

accounted for. Furthermore, as a significant part of the failures of floor egg 
collection could be attributed to the speed and accuracy of the control 
system, a faster execution of all operation-critical elements is required, to 
ensure PoultryBot responds in time to changing conditions. 

Also the behaviour of the hens requires attention in the navigation 
method. In general, PoultryBot can ignore the presence of hens while 
driving, as they are expected to move away if PoultryBot gets close by. 
However, when they regard PoultryBot as a rooster, or are ill or dead, this is 
not the case. To allow PoultryBot to continue its journey safely while gua-
ranteeing animal welfare, such cases have to be detected correctly and 
in time, and should be followed by a proper response from PoultryBot. 

For handling the increased amount of obstacle information that results 
from the required sensing improvements, a more probabilistic or time-based 
approach is desired. For example, a single obstacle map can be used 
that contains not only location of the obstacle, but also the detection 
source, time and reliability of the information. Approaches like the Vector 
Field Histogram-methods (Borenstein and Koren 1991, Ulrich and Borenstein 
1998, Ulrich and Borenstein 2000), the Curvature Velocity Method (Simmons 
1996) and the Dynamic Window Approach (Fox, Burgard et al. 1997) seem 
able to do so, but might have limitations in handling more complex vehicle 
shapes. To deal with animal presence close to PoultryBot and create 
space for PoultryBot to drive, it might be useful to implement some form 
of ‘nudging behaviour’ in the robot control (Daley, Joffe et al. 2017). Al-
ternatively, animals can be lured towards other areas of the hen house, 
for example by spreading additional feed, to create sufficient space for 
PoultryBot to operate.

6.3 PoultryBot as part of a larger system
Next to the more technical developments discussed above, also some 

non-technical topics require attention when advancing the current results 
to TRL 7. As PoultryBot is continuously present among the laying hens in 
the poultry house and actively interacts with them, also their response to 
PoultryBot should be considered in the development process. Furthermore, 
since technological innovations relating to animals and food production 
face on-going attention from society, this topic should be addressed 
properly in the continuation of the developments as well. Finally, the 
commercial feasibility should be considered, as well as potential implicati-
ons of this concept on the design and management of poultry farms.

6.3.1  Animal response to PoultryBot
Regarding animal behaviour in response to a mobile robot, initial 

research by Vroegindeweij, Boots et al. (2014) indicated hens had not 
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much fear for and quickly got used to a robot in their environment. Similar 
results were found by Usher, Daley et al. (2014). Also during technical 
tests of PoultryBot in a commercial poultry house the hens initially kept 
some distance, but within several hours after PoultryBot’s introduction 
their avoidance behaviour decreased clearly. They returned to normal 
behaviour, only avoiding the robot when it approached them very closely 
(within 0.5 meter) (Boots 2013). 

In the experimental environment used in Chapter 5, this behaviour was 
more pronounced, with hens losing all fear for PoultryBot (and also for 
the humans present during the proof of principle tests). Frequently, also 
curious behaviour was observed, with the hens closely following PoultryBot 
while driving. At stand-still, they immediately approached it, followed by 
pecking at and jumping on top of it. Sometimes, they remained on top 
when PoultryBot started to drive again, but as the smooth cover hampered 
their stability they jumped off after a while. These observations are positive 
from an animal welfare perspective, as there is no fear or abnormal 
behaviour observed from the laying hens. PoultryBot can even be seen 
as an enrichment of environment and animal welfare, as it stimulates the 
intrinsic curiosity of the laying hens. 

6.3.2  Societal acceptance of PoultryBot
Acceptance by society and adoption by farmers are crucial to make this 

development successful. This does not start after the technical development 
is finished, but is preferably integrated in the whole development process. 
Excellent examples of such integration of societal stakeholders in technical 
developments are given by the development of innovative housing systems 
like Rondeel, Windstreek and Eggsphere (Projectteam Houden van Hennen 
2004, Janssen, Nijkamp et al. 2011, Weeghel, Groot Koerkamp et al. 2011). 

Acceptance by farmers and society also achieved attention in the 
development of PoultryBot, although on a smaller scale. First, the research 
described in this thesis was guided by a supervisory board consisting of 
representatives from poultry practice, related suppliers and engineering 
companies. They ensured that the research outcomes were not only scien-
tifically relevant, but also suitable for uptake by poultry practice. This was 
done by the board providing valuable feedback on ideas and application, 
as well as indicating the need for demonstrating the project outcomes both 
in a lab and under practical conditions. Secondly, the outcomes of the 
project were widely communicated, not only in the scientific community 
but also to society during and after the project. From 2011 until 2017 9 
videos of PoultryBot were published on YouTube, PoultryBot appeared 
more than 10 times in professional poultry press, 6 times on regional and 
national radio and television, 3 times in newspapers (including 1 national 
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front page appearance) and was present on more than 10 trade shows 
and networking events, next to a range of appearances in other publica-
tions. So far, only positive reactions regarding the idea of PoultryBot and its 
applications were received from the public. 

Although this sounds very promising in terms of societal acceptance, 
involving all relevant stakeholders in the continuation of this development 
still needs significant attention. This starts with keeping poultry practice and 
technology partners involved, to ensure the development results have 
a feasible application on commercial poultry farms. Next, society and 
animal welfare organisations should be consulted on their ideas regarding 
the use of robots in animal houses. Although from a technical perspective 
not crucial for reaching TRL 7, societal acceptance of robot technology 
for livestock production is a prerequisite to make this development 
successful. Thus, the response of both society and animal welfare organi-
sations towards PoultryBot and its successors should be actively sought for. 
Organising focus group sessions (Barbour and Kitzinger 1999, Greenbaum 
1999) in which these stakeholders actively reflect on this matter, seem parti-
cularly useful for this. The resulting opinions and ideas should be included in 
the development of PoultryBot’s successors and their market introduction, 
to ensure also society accepts this development. 

6.3.3  Commercial feasibility of PoultryBot
To make PoultryBot a success, also the commercial perspective of the 

concept should be evaluated. Already in 2012, representatives of the 
poultry business were consulted on the commercial feasibility of PoultryBot, 
and assessed the initial ideas on floor egg collection. This was followed 
by a first analysis on the financial costs and benefits of PoultryBot by 
Boots (2013), indicating a break-even for a single robot at an investment 
price €29.000 using an economic lifetime of 5 years and including time 
and costs needed for maintenance. Based on these results and input 
from poultry practice and technical experts, the commercial feasibility of 
PoultryBot was evaluated in more detail. This showed that continuation of 
this development into a commercial product could be profitable within 
5 years and would require a total investment of about 2.5 million euro. To 
assess the market demand, in spring 2016 a study was done by Livestock 
Robotics and Wageningen Livestock Research  (Timmerman, van Emous 
et al. 2017). Financial feasibility calculations indicated a savings potential 
of €0.29 per animal place per year which equals about €11.700 for a flock 
of 40.000 hens. In a separate internet survey, farmers indicated they were 
willing to invest on average €1.04 per animal place with an expected 
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payback time of 4 years (Timmerman, van Emous et al. 2017). These results 
indicate the commercial feasibility of PoultryBot. 

6.3.4  Implications of PoultryBot on design and management  
 of poultry farms

Additional to the application of mobile robots for floor egg collection, 
there exist a wider range of applications in the livestock domain (and beyond 
that) for such autonomous systems. After years of reduced attention for 
the individual animal, the continuous presence of a mobile robot among 
the animals allows again for more intensive monitoring of animal health 
and welfare (up to 24/7), but also measuring climate conditions at animal 
level and checking the technical status of the house. Based on that, a 
range of new actuation tasks may be added, such as using manipulation 
of the litter to control its quality, dead bird retrieval, and even performing 
interactions with individual animals to increase their welfare. Even more, 
if robots take over the daily activities that require human presence in the 
livestock house, current designs that explicitly allow human presence are 
no longer needed. This opens up the possibility for a complete redesign of 
the housing interior, such that the livestock house can be adapted even 
further towards the animal needs. 

6.4 Concluding notes
With these technical and non-technical reflections, an answer is provided 

to the fifth research questions, “How to continue?”. Together with Chapters 
2 to 5, this indicates that the objective from Chapter 1, “To develop and test 
an autonomous mobile robot for a poultry house environment” is reached 
and the underlying research questions are all answered. By implementing 
the proposed improvements, PoultryBot will reach TRL 7, which then allows 
the evaluation of the hypothesis posed in Chapter 1, “Automation and 
robotics can have significant benefits when taking over tasks from humans 
in a poultry house. For a labour-intensive task like the collection of floor 
eggs, using an autonomous mobile robot improves the quality of floor egg 
collection and prevents an increase in floor laying.” Also, a new range of 
applications around monitoring of animal and house state emerges then. 

Thus, with the development and performance evaluation of PoultryBot, 
the world’s first autonomous mobile robot for poultry houses, not only the 
objective of this thesis is reached, but it also contributes to opening up a 
completely new field in the domain of agricultural robots: that of Smart 
Mobile Livestock Robots. 
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Summary
In the Netherlands, laying hens are nowadays mostly housed in aviary 

housing systems. Here they have the freedom to express their natural 
behaviour, such as nesting, dust bathing and perching. In these aviary 
systems, a significant part of the daily work for the care of the animals is 
mechanised or automated. Still, a number of activities continue to require 
human labour, such as inspection of animals, retrieval of dead hens and the 
collection of floor eggs. These tasks account for about 20 to 40% of the daily 
work time-budget, and have to be executed under physically demanding 
conditions with limited flexibility in work schedule. For poultry farming to 
remain a viable business in the future, improvements in labour quality and 
sensing opportunities are required. Nowadays, the use of automation and 
robots to replace undesired labour and improve sensing opportunities in-
creasingly gains attention, also in agriculture. In line with these trends, the 
use of an autonomous robot for tasks like floor egg collection was proposed 
at the start of this thesis. Such an autonomous robot needs to be flexible 
and adaptive to changing conditions. This demands full freedom in mobile 
robot behaviour, while it also needs to be aware of its environment and 
have the ability to interact with it. Irrespective of the final application, this 
requires a mobile robot to have capabilities like localisation, path planning 
and object recognition, but also navigation and actuation. No proof of 
concept of the required mobile robot capabilities for poultry house appli-
cations was available at the start of the research and therefore, the main 
objective of this thesis was identified as: 

“To develop an autonomous mobile robot running in a poultry 
house environment, capable of performing tasks such as floor 
egg collection, and test it in a proof of principle experiment 

to achieve TRL 6”.

The steps required to fulfil this objective form the main line of this thesis. 

Chapter 1 starts with providing a more detailed review of the 
background and approach of the research. The following chapters review 
existing methods for several core elements, to see if they were suitable for 
use in a poultry house environment. If necessary, also new methods were 
developed and tested. 

The question Where am I?” plays a central role Chapter 2, where proba-
bilistic localisation using a particle filter was evaluated for use inside poultry 
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houses. Localisation in this environment requires a method being capable 
of handling uncertainty and ambiguities in sensor data, environment and 
position estimates. Being commonly used in mobile robots, a particle filter is 
well capable of doing so, and can also combine data from various sensing 
sources. 

Literature review describes multiple options for each processing step 
of the particle filter, and multiple alternatives were implemented and 
evaluated. For testing their suitability and performance in a poultry house 
environment, data obtained by driving PoultryBot in a commercial poultry 
house without animals was used. Using a 3-stage evaluation procedure, 9 
particle filter settings were evaluated on 21 trajectories. After each stage, 
a qualitative and quantitative comparison was done to select the most 
suitable settings. 

As a result of this procedure, it was found that using 300 particles 
combined with the Field update model with learned parameters could 
reach an accuracy of 0.37m for 95% of the time, with a mean error of 
0.2m. Although performance was slightly worse (0.42m) for the alternative 
approach using a Beam model in the update, this difference was not 
significant. As this is well below the required accuracy of 1.0m for 95% of 
the time, a particle filter can be considered suitable for localising PoultryBot 
in its future application. Furthermore, insight was gained into the behaviour 
of the methods and the effect of parameter settings, such that the most 
suitable methods and settings could be selected for future implementa-
tion. 

Chapter 3 aims to answer the question “Where do I go?”, especially with 
respect to the collection of floor eggs. When using a robot, a dedicated 
collection path is required that minimizes the time eggs are present on 
the floor. This translates into frequently revisiting locations where floor eggs 
are laid, but also assuring that at the end of the day the whole house is 
covered so no eggs remain in the house for more than 24 hours. 

As existing path planners could not provide this functionality, a novel 
path planning algorithm was introduced to generate non-uniform 
repetitive area coverage (NURAC) paths, based on floor egg probabili-
ties. First, a spatial map was developed that describes the probability of 
floor egg occurrence at each location in a poultry house. Using this map, 
paths for floor egg collection were planned with a dynamic programming 
approach that covers the complete house floor area and frequently revisits 
locations with a high potential on floor eggs. These paths were compared 
with the paths used by a farmer for floor egg collection, and both methods 
were quantitatively evaluated with help of a simulated set of floor eggs. 
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With respect to the average time eggs were present on the floor, the 
robot path resulted in an average of 2.2 hours, which is comparable to the 
2.4 hours of a farmer collecting floor eggs twice a day. With respect to the 
structure of the path and the number of visits to locations with a high floor 
egg potential, the robot paths outperformed the farmer with up to 15 visits 
per location. Using different starting locations for the path did not influence 
collection performance.

The presented results are promising for the use of a robot to collect 
floor eggs, and will result in a reduction of the demand for manual labour. 
Extending the floor egg model with feedback information, i.e. by updating 
the floor egg probabilities based on the locations where floor eggs are 
actually found, could further improve the results. 

Chapter 4 deals with the environmental awareness of PoultryBot to 
answer the question “What do I encounter on the way to my goal?”. 
The required response of PoultryBot differs between the various object 
categories that are present in a poultry house, as floor eggs need collection, 
housing elements should be avoided and hens can initially be ignored. A 
correct detection of and discrimination between these object categories is 
therefore required. For this, a simple and robust method for pixel-wise clas-
sification of images based on differences in spectral reflectance properties 
was presented. 

First, of four relevant object categories, hens, eggs, housing elements 
and litter, the spectral reflectance was measured at wavelengths between 
400 and 1000 nm. The resulting distribution of reflectance values was 
determined for each combination of object category and wavelength 
band measured. Next, the wavelength band with lowest overlap between 
all object categories was selected around 467 nm, with 16% overlap for 
chickens vs. eggs, 12% overlap for housing vs. litter, and lower overlap for 
other combinations. 

Subsequently, images were taken in a commercial poultry house, using 
a standard monochrome camera and a band pass filter around 470 nm 
without additional lighting. After pre-processing, each pixel was assigned an 
object category based on its intensity, and classification performance was 
evaluated. Based on pixel-wise evaluation on 87 of the acquired images, 
the requirement of 80% correctly classified pixels was almost reached for 
eggs. For hens and litter, 40 to 50% of the pixels were classified correctly, 
while for litter performance was rather low with 15.6% of the pixels classified 
correctly. Unequal distribution of ambient light led to overlapping intensity 
distributions, which influenced performance. Still, this seemed a feasible 
starting point for implementing egg detection on PoultryBot. Improving 
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light distribution in the images, using a region of interest and including mor-
phological processing are all likely to further improve these results.

In Chapter 5, the components from the previous chapters were 
integrated in PoultryBot, together with a navigation method and an 
egg collection device. In this way, a functioning proof of principle of this 
technology was created, and subsequently evaluated under practical 
conditions, to answer the question “How do I perform?”. 

PoultryBot’s navigation performance was assessed using different paths, 
like area sweeping and surveying close to walls. By confronting PoultryBot 
with obstacles on different positions with respect to its path, also obstacle 
handling was investigated. PoultryBot proved capable of navigating au-
tonomously through the area covering a total path length of over 3000 
meter, while avoiding obstacles and dealing with the hens present. The 
placement of obstacles on different positions with respect to PoultryBot’s 
path and the setting of navigation parameters showed clear influence on 
PoultryBot’s driving behaviour. Path length and steering actions increased 
if obstacles were closer to the path and/or if navigation parameters were 
set to less goal-oriented behaviour.

For floor egg collection, performance of detection and collection of 
floor eggs was assessed on 5 predefined egg positions off to the robot 
path. Over 300 eggs were tested, and in front of the robot, over 90% of 
the eggs were detected correctly, while towards the sides of the robot 
this number reduced to 65% of the eggs present. From all eggs tested, 
46% were collected successfully, 37% were not collected successfully as 
result of collection failure, and only 16% were missed completely. The most 
observed failure was the collection device being placed just next to the 
egg. 

By improving the obstacle awareness of PoultryBot and adapting 
the control algorithms for navigation, obstacle handling and floor egg 
collection, the performance for both navigation and egg collection 
can be increased even further. With these adaptations, it is expected 
that PoultryBot will be able to cover all accessible areas of the poultry 
house, while collecting almost all eggs that are detected and physically 
reachable.

The final question that remains is “How to continue?”. Thus, Chapter 
6 summarizes the results and benchmarks them against the Technology 
Readiness Levels (TRL’s) as defined in Chapter 1. From that, it is concluded 
that with some modifications in place for path planning and recogni-
sings hens and housing, PoultryBot as a complete robotic system could 
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function at TRL 6, in which a prototype system is demonstrated in a relevant 
environment. With this, also the objective from the introduction, “to develop 
a proof of principle of an autonomous poultry house robot”, was achieved. 
By reflecting on current performance, also missing functionalities and re-
quirements are indicated for advancing to TRL 7, in which continuous or 
long-term reliable operation of a near-final prototype is achieved. 

To proceed beyond a proof of principle test at TRL 6, two main requi-
rements demand further attention on a systems level: 1) having a reliable 
and application-oriented design that is modular & maintainable, and 2) 
use methods that are robust in dealing with variation and uncertainty. 
To achieve this, a new design of PoultryBot is required, which includes 
currently missing elements like autonomous charging, increases sensing 
opportunities, and has a more modular layout of the control software. By 
explicitly accounting for uncertainty, the particle filter for localisation fits 
well to the application of PoultryBot, but some small improvements are 
desired on the update and filtering methods for the particles. In simulation, 
the NURAC path planner results seem promising, but require inclusion 
of robot kinematics before they can be tested in practice. The object 
detection method, that was characterized by its simplicity, requires more 
significant improvements, especially for dealing with variation in ambient 
light and the recognition of multiple object categories. For navigation 
and control, improved obstacle awareness and navigation behaviour are 
required, also to guarantee safe and reliable operation in the interaction 
with animals. Investigating the animal response on PoultryBot’s presence, 
the commercial potential of the PoultryBot concept and the responses 
from the general public on the application of PoultryBot all had positive 
results. This clearly proves the possibility of smart mobile robots in dense 
animal environments, and the PoultryBot concept for autonomous floor 
egg collection in commercial poultry houses in particular. 

With that, an answer is provided to the fifth research questions, “How 
to continue?”, and is indicated how PoultryBot can reach TRL 7. With that, 
not only the objective of this thesis, “To develop and test an autonomous 
mobile robot for a poultry house environment”, is reached, but it also 
contributes to opening up a completely new field in the domain of agricul-
tural robots: that of Smart Mobile Livestock Robots.





201

Dankwoord
Met dit dankwoord komt er een voorlopig einde aan een wetenschap-

pelijk traject, dat bijna 11 jaar geleden begon. Hoewel ik blij ben dat mijn 
proefschrift nu klaar is, voelt dit ook erg dubbel, omdat ik een erg leerzame 
en interessante periode in mijn leven nu toch echt moet gaan afsluiten.  In 
deze tijd is heel veel gebeurd op technisch en wetenschappelijk gebied, 
met onder andere de PoultryBot als een mooi resultaat.  Ook in mijn per-
soonlijke leven heb ik in deze tijd mogen groeien. Hoewel het onmogelijk 
is om iedereen die hieraan een bijdrage geleverd heeft te bedanken, 
wil ik toch een poging wagen om de belangrijkste personen even in het 
zonnetje te zetten.

Het eerste idee voor de PoultryBot ontstond toen ik met een 3-tal mede-
studenten (Harmen Wollerich, Theo van der Zwaag en Tim Kool) deelnam 
aan het Field Robot Event van 2007. Een van de opdrachten was het 
bestrijden van onkruid, voorgesteld door gele golfballen. Na de eerste 
ideeën over spuiten en schoffelen, is er vervolgens een golf-ballen-opraap-
wagen in elkaar geknutseld (jongens: bij deze krijgen jullie de credits voor 
het idee!). Op basis daarvan ontstond, dankzij een losse opmerking in de 
gang, het idee voor het oprapen van grondeieren in pluimveestallen. Met 
wat snelle aanpassingen van de software bleek dit simpel te demonstre-
ren, wat resulteerde in een 2e prijs voor de Freestyle opdracht. Daarmee 
was het niet klaar, maar begon voor mij het avontuur pas echt, met een 
optreden op de Agritechnica 2007 (“Die Holländer sammeln Eier”) en een 
artikel in vakblad Pluimveehouderij als eerste hoogtepunten.

De volgende fase in de ontwikkeling van de PoultryBot was het 
verder uitwerken van dit idee binnen mijn masterthesis. Onder de goede 
begeleiding van Gerard van Willigenburg en Peter Groot Koerkamp heb 
ik daarin de eerste stappen mogen zetten. Eerst is een model opgezet 
voor de verspreiding van grondeieren, op basis van bestaande kennis 
van het gedrag van kippen. Vervolgens is hiermee ook een routeplanner 
ontwikkeld voor het verzamelen van grondeieren. Samen vormen deze 
elementen de basis van hoofdstuk 3 uit deze thesis. 

Nadat ik in juni 2010 door Eldert van Henten mijn MSc-diploma uitgereikt 
had gekregen, meldde Peter Groot Koerkamp bij de borrel dat hij zojuist 
akkoord had gekregen om mij aan te stellen als tijdelijke medewerker bij 
FTE. Daarbij boden jullie mij niet alleen een aantal erg leerzame onder-
wijstaken aan, maar ook de mogelijkheid om het idee van de PoultryBot 
verder uit te werken, wat uiteindelijk resulteerde in dit promotieonderzoek. 
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Nu was mijn insteek vooral praktisch (ik wil een robotje maken), en niet 
meteen gericht op een wetenschappelijk onderzoek. Jullie hebben mij 
dan ook flink moeten coachen en sturen richting het eindresultaat dat 
er nu ligt. Dat was voor mij niet altijd makkelijk, en het heeft me af en toe 
best wat moeite gekost om mijn meer pragmatische en praktijkgerichte 
aanpak te laten varen voor een wetenschappelijke benadering. Toch 
denk ik dat dat dankzij jullie goede sturing uiteindelijk heel aardig gelukt is, 
en ik wil jullie dan ook heel erg bedanken voor alle moeite, tijd en energie 
die jullie in mijn persoonlijke ontwikkeling hebben willen steken! 

Zelf mag ik daar nu de vruchten van plukken, met name omdat ik 
dankzij jullie heb geleerd niet alleen naar mijn eigen toepassing te kijken, 
maar problemen en vraagstukken ook op een hoger niveau te analyseren. 
Daarbij moet ik zeggen dat ik het doen van onderzoek en het verkennen 
van de grote lijnen voor de toekomstige ontwikkelingen steeds leuker ben 
gaan vinden. Meer praktisch hebben we op jullie aandringen binnen dit 
onderzoek ook een breder perspectief rondom de PoultryBot uitgewerkt. 
Nu ik bezig ben met het opbouwen van mijn startup Livestock Robotics 
blijkt dit een duidelijke meerwaarde te hebben, omdat op basis hiervan 
een veel groter plaatje geschetst kan worden. Ook jullie blijvende onder-
steuning bij de verdere ontwikkeling van PoultryBot door Livestock Robotics 
is voor mij van grote waarde. 

Eldert, bedankt voor de praktische begeleiding, met name bij het 
schrijven van de papers en uiteindelijk deze thesis. Dankzij jouw scherpe 
oog en goede analyse heb ik daarin een flinke leerslag mogen maken, 
en is de kwaliteit van het resultaat flink verbeterd. Ook van jouw ervaring 
in het omgaan met mensen, variërend van afstudeerder tot journal-editor, 
heb ik veel kunnen en mogen leren. Peter, jij keek vaak wat meer vanaf 
de zijlijn mee, en juist daarmee zorgden jouw reflecties op de grote lijnen, 
gecombineerd met een soms wat meer pragmatische aanpak en een 
goede kennis van de pluimveesector voor een mooie aanvulling. Het 
resultaat werd daarmee niet alleen wetenschappelijk sterker, maar bleef 
tegelijkertijd ook toepasbaar voor de pluimveepraktijk. 

Ongeveer halverwege het promotietraject, in januari 2014, kwam Joris 
IJsselmuiden erbij als dagelijkse begeleider. Joris, hoewel het misschien niet 
allemaal werkte zoals we vooraf verwachtten, hebben jouw ondersteu-
ning en de wat kortere lijntjes zeker hun vruchten afgeworpen. Niet alleen 
voor het schrijven van mijn teksten, maar ook op het gebied van software-
code, algoritmes en methoden heb ik het nodige van jou geleerd. Vooral 
het werken met Git als versiebeheermethode is iets waar ik nog alle dagen 
profijt van heb! 
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Sam Blaauw, als IT en robot-specialist binnen FTE heb je ook aan dit 
project een onmisbare bijdrage geleverd. Dat begon met het vervullen 
van speciale IT wensen die ik had voor mijn padplanning uit hoofdstuk 
3 en de uitgebreide simulaties voor de plaatsbepaling in hoofdstuk 2. Jij 
richtte de binnenkant van de PoultryBot op een nette en gestructureerde 
manier in, zodat we daarmee nog een aantal jaren door konden. Ook 
gaf je uitgebreide ondersteuning bij het uitvoeren van experimenten in 
de werkplaats, de kippenstal en uiteindelijk ook ‘ons’ eigen stalletje op 
Droevendaal. Zonder jouw kennis, ervaring en gestructureerde manier van 
werken, met aandacht voor zowel grote lijnen als details, was de ontwik-
keling van de PoultryBot nooit zover gekomen. Zelfs nu nog maak je jezelf 
onmisbaar, door mij binnen Livestock Robotics te ondersteunen met jouw 
IT-vaardigheden, technische kennis en scherp en kritisch inzicht. Bedankt 
ook dat je mijn paranimf wilde zijn!

Ehud Wais, I owe special thanks to you, for your great work on the design 
of the egg collection device. The result proved very valuable in the further 
development and evaluation of PoultryBot, and is still recognized by many 
as a great invention!

Andries Siepel, en met jou ook de andere medewerkers van Unifarm die 
onze teststal mogelijk hebben gemaakt: bedankt voor jullie goede zorgen 
en betrokkenheid, of het nu gaat om het opbouwen van een opstelling, 
het omvormen hiervan tot kippenstal, of het zorgen voor de kippen, zonder 
jullie werk en aandacht hadden we dit resultaat niet kunnen bereiken! 

Dat geld ook voor Johan van de Kolk, als mijn praktische aanspreek-
punt bij Het Anker, en zijn personeel.  Dankzij jullie kregen we alle ruimte om 
de nodige meetdata te verzamelen in een echte kippenstal. Ook stond je 
altijd klaar om mijn vragen te beantwoorden, die varieerden van kippen-
gedrag en jouw mening over de robot tot het type van de lampen in de 
stal. Hoewel een video-opname voor Klokhuis je wat te ver ging, blijf jij in 
mijn verhalen toch echt boer Johan die zo goed mogelijk voor zijn kippen 
wil zorgen, maar wel last krijgt van zijn rug. Ik hoop nog vele jaren op deze 
manier van jouw kennis en ervaring gebruik te mogen maken!  

De ontwikkeling van PoultryBot, en daarmee ook deze thesis, was niet 
mogelijk geweest zonder de bijdrage van een grote groep studenten. 
In verschillende stadia van hun loopbaan hebben zij ideeën uitgewerkt, 
onderdelen ontwikkelt, aangepast en getest en resultaten gepubliceerd. 
Dit gebeurde niet alleen in de vorm van een BSc of MSc thesis aan de 
WUR of later als afstudeerder bij Livestock Robotics, maar ook in groeps-
opdrachten, onderwijsprojecten, door het op de achtergrond laten 
draaien van mijn simulaties op hun afstudeer-pc, of zelfs als bijbaantje 
naast hun studie. Hun werk uitgebreid benoemen wordt teveel, maar 
wordt daarom niet minder gewaardeerd: Arjan Verduijn, Bas van Kooten, 
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Bastiaan Vergouw, Bernard Russchen, Bram Overbeek, Dini Ras, Elbert 
van Leeuwen, Elianne van Esbroeck, Emiel Bergwerff, Ernst-Jan de Vries, 
Gerco Schopman, Jacob-Jan Boonzaaijer, Jan-Willem Kortlever, Joris van 
Rodijnen, Jort Schutte, Heleen ten Have, Koen Vermue, Lars Flikweert, 
Maaike Vollering, Marleen Hermelink, Marnix van Koeveringe, Matthijs van 
Haperen, Natasja Boots, Ragnar Groot Koerkamp, Reamon Langerwerf, 
Rick van Essen, Rik Aelfers, Rob van Olst, Roel Dohmen, Roy Raedts, Sander 
Bouwknegt, Sander van Leijsen, Sergey Kleymenov, Sjoerd van Wijk, Steven 
van Hell, Thijs van Beers, Tijn van den Aker, Tim Rijssemus, Tom van de Ven, 
Wiger Aantjes, Wilco Verhoijsen, en Yeb Andela: BEDANKT!!! 

Het Fonds Pluimveebelangen heeft met hun financiering een sub-
stantiële bijdrage geleverd aan dit onderzoek en de ontwikkeling van 
de PoultryBot, waarvoor ik hen zeker wil bedanken. Ook alle deelnemers 
aan de klankbordgroep-bijeenkomsten wil ik bedanken, omdat met hun 
inbreng niet alleen de PoultryBot is ontwikkeld, maar er ook een resultaat 
ligt waarmee we straks de pluimveepraktijk in kunnen. 

As a PhD you are never alone, and usually share your office space (and 
a lot of your time and daily troubles) with a number of PhD-colleagues and 
visitors that come and go over time. All of you: thanks for the great time 
we had together, whether it was by having short daily talks, helping each 
other out with smaller or larger issues or having one of our PhD-dinners to 
get to know each other’s culture. Mariana, your drawings are awesome!

Datzelfde geldt ook voor de collega’s van FTE  en natuurlijk de mensen 
van Tyker. Jullie bedankt voor alle goede koffiepauzes die we hadden, met 
daarin tijd voor pittige discussies, lastige puzzels of gewoon de dagelijkse 
beslommeringen. Ook jullie ondersteuning op inhoudelijk en praktisch vlak 
maakte dat ik een bijzonder leuke en leerzame tijd heb gehad bij FTE.  

Sinds ik in 2016 begonnen met mijn startup Livestock Robotics, is mijn 
werkplek verschoven van de universiteit naar de ondernemerswereld van 
de StartHub. Iedereen van en in de StartHub wil ik dan ook graag bedanken 
voor de leuke plek die zij me in de afgelopen jaren gegeven hebben. 
Dankzij jullie heb ik niet alleen kennis gemaakt met een hele diverse groep 
mensen, maar ook veel kunnen leren over het ondernemerschap en alles 
wat daarbij komt kijken. Ik hoop op nog veel mooie momenten samen!

Naast het wetenschappelijke werk is er natuurlijk ook ontspanning 
nodig. Die vond ik onder andere bij het aannemersbedrijf van de familie 
Tilleman en hun personeel. Heel veel dank voor de mooie en leerzame 
jaren die ik bij jullie mocht hebben. Het praktisch en toegepast bezig zijn 
met techniek en machines was voor mij een welkome afwisseling, en heeft 
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me ook veel nieuwe kennis en vaardigheden gebracht. Daarbij moet ik 
echt zeggen dat ik het werk bij jullie nog best weleens mis! 

Tieners van de kerk in Ochten (en zij die dat ooit waren): Dank jullie wel 
voor alle mooie avonden die we met elkaar mochten hebben: soms lekker 
gek bezig zijn, soms met hele serieuze gesprekken. Voor mij zijn het in ieder 
geval momenten om nooit meer te vergeten, en ik hoop dan ook dat jullie 
deze ervaringen mee mogen nemen. Datzelfde geldt natuurlijk ook voor 
alle anderen die ik op verschillende plekken (VBW, jeugdwerk, gemeente-
activiteiten) bij de kerk in Ochten heb mogen leren kennen. Dank voor 
jullie aandacht: met elkaar mogen we Gods familie zijn!

Oma, dank voor alle mooie momenten die we met en bij u op de 
boerderij mochten beleven! Ooms en tantes, neven en nichten: bedankt 
voor alle aandacht voor mijn werk, maar zeker ook de ontspanning die 
jullie gegeven hebben. Of dat nu op een familiebijeenkomst, rondom het 
werk of gewoon ergens tussendoor was, ik heb ervan genoten. Bas en 
Dikkie, ik hoop dat we samen nog vele bomen klein mogen maken!

BAT04, als techneuten waren en blijven we een hechte groep, waarin 
we al bijna 14 jaar de mooie en minder mooie kanten van het leven met 
elkaar mochten delen. Ons jaarlijkse weekendje weg (ook al was ik er niet 
altijd bij) blijft daarbij toch wel een hoogtepunt, zeker gezien alle goede 
gesprekken en mooie discussies die dan gevoerd worden. 

Vrienden, bedankt voor alle gezelligheid, avondjes samen en 
weekendjes weg. Samen is altijd beter dan alleen, en dat geldt met jullie 
zeker. Mogen er nog velen volgen!

Dennis, al sinds 2004 trekken we samen op, en daarmee kennen wij 
elkaar langer dan dat we onze vrouwen kennen. We begonnen in periode 
1 (en volgens mij ook al tijdens een meeloop-dag) met het samen maken 
van wiskunde-opgaven, wat werd gevolgd door groepsopdrachten, een 
Almanakcommissie en een project voor Martin Gauss waarin we samen-
werkten. Ook onze BSc-thesis deden we bij dezelfde begeleider. In 2008 
belandden we in hetzelfde afstudeerhok en hebben we, met een paar 
korte onderbrekingen, tot voorjaar 2016 in hetzelfde kantoor gezeten. 
In die tijd hebben we samen van alles meegemaakt, met gezamenlijk 
onderwijs, gebruik van elkaars code en kennis en goede gesprekken 
over ons scherm heen. Ook daarbuiten we zagen elkaar, bijvoorbeeld bij 
klus- en verbouwactiviteiten en weekend-bezoekjes, maar ook op elkaars 
bruiloft mochten we een rol vervullen. Bedankt ook dat jij paranimf wilde 
zijn. De laatste jaren is ons contact door alle veranderingen in ons beider 
leven (andere banen, gezinsuitbreiding) helaas wel iets minder geworden, 
dus het afronden van deze thesis lijkt me een goede reden om elkaar weer 
eens vaker op te zoeken. 
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Uiteraard verdient ook mijn familie een plek in dit rijtje. Pa en Ma, jullie 
wil ik allereerst bedanken voor jullie opvoeding, en het meegeven van wat 
voor jullie belangrijke normen en waarden zijn. Ook voor de ruimte, moge-
lijkheden en ondersteuning die jullie daarin boden om mijn eigen keuzes 
te maken heb ik altijd erg gewaardeerd. Dankzij jullie achtergrond is mijn 
interesse voor landbouw en techniek al vroeg ontstaan, met deze thesis als 
één van de mooie resultaten. Fijn dat jullie huis nog altijd een warm nest is 
waar we op terug mogen vallen!

Ma, bedankt voor alle goede zorgen in al die jaren en al het praktische 
werk wat je voor mij hebt gedaan! Hoewel je de nodige ervaring hebt 
in DTP-werk, blijkt het vormgeven van een PhD-thesis toch van een hele 
andere orde, en daarmee een flinke kluif. Bedankt dat je dit ondanks alles 
toch hebt willen doen! Ik hoop dat we de lijst met klussen die we samen 
hebben mogen doen nog veel langer kunnen maken.

Pa, jij bedankt voor je ondersteuning en feedback vanuit je achtergrond 
als pluimveehouder en ondernemer. Dit gebeurde soms heel praktisch, 
maar vaker in onderlinge gesprekken of door mij de juiste richting te wijzen. 
Deze hulp heeft niet alleen dit project flink verder geholpen, maar ook mijn 
eigen ontwikkeling en nu ook Livestock Robotics. Je rustige, nadenkende 
en weloverwogen manier van doen zal voor mij altijd een voorbeeld 
blijven, en ik hoop er langzaam steeds iets meer van over te nemen.

Matthijs, ook al zijn we soms behoorlijk verschillend, toch was je altijd erg 
benieuwd naar waar ik mee bezig was en hoe het daarmee ging. Hoewel 
ik dat misschien niet altijd liet blijken, bij deze bedankt voor je belangstel-
ling en je meedenken!

Mark*, helaas komt dit proefschrift voor jou een klein jaar te laat om nog 
mee te kunnen maken. Wat was je een geweldige broer, met je humor 
en droge streken. In Livestock Robotics hadden we ook echt iets samen: 
ik een praktisch idee en de technische kennis, en jij de kennis en ervaring 
om hier een bedrijf van te maken. Ondanks je drukke leven vond je het 
leuk om je hiervoor in te zetten, en was je ook gedreven om er iets moois 
en goeds van te maken! Helaas kwam jouw einde veel te vroeg om de 
resultaten daarvan te zien…

Jos, jij was altijd het kleine (en vroeger vaak lastige) broertje. Toch 
bedankt voor alle leuke afleiding, maar ook de praktische hulp die je 
gegeven hebt. Erg mooi om te zien hoe ook jij je ontwikkelt, en nu steeds 
meer je eigen interesses gaat ontdekken. Je stort je daarbij vol op je studies 
Artificial Intelligence en Informatica, iets waardoor onze raakvlakken ook 
steeds sterker worden. Wie weet waar we in de toekomst nog samen mee 
aan de slag zullen gaan…
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Gerrit, Janny en Coralie, aan jullie veel dank voor het opnemen van mij 
als schoonzoon en zwager in de familie en de vele gezellige momenten 
die we met elkaar hebben mogen beleven. Ik hoop dat we daar nog 
slechts een klein deel van gehad hebben!

Marieke, al vele jaren ben je mijn steun en toeverlaat. Samen hebben 
we veel mooie dingen mogen doen en beleven, maar hebben we ook 
een aantal moeilijkere periodes moeten doormaken. Gelukkig zijn we 
daar samen alleen maar beter uitgekomen. Al doe je soms alsof je maar 
een ‘simpele’ kleuterjuf bent, je probeert toch altijd zo goed mogelijk te 
begrijpen waar ik allemaal mee bezig ben. Ook jouw support (en soms 
kritische houding) als het eens een keer wat minder ging waardeer ik 
daarom des te meer! Bedankt ook voor alle keren dat je mij m’n gang liet 
gaan omdat ik zo nodig weer eens voor m’n thesis (of Livestock Robotics) 
langer door wilde werken, en jij dus je planning maar aan moest passen en 
zelf voor de kinderen zorgen! Hopelijk heb ik de toekomst weer iets meer 
tijd om daar ook mijn aandeel aan te leveren…

Sara, Boaz* en Mees, gedurende dit promotieonderzoek kwamen jullie 
er ook bij in ons gezinnetje. Niet allemaal op het tijdstip en de manier die 
we vooraf verwachtten, maar daarmee zeker niet minder geliefd. Door 
jullie heeft mijn leven (en werk) een extra dimensie gekregen. Ik hoop 
nog vele jaren van jullie aanwezigheid, levenslust en nieuwsgierigheid te 
mogen genieten! 

Boven alles hoort daar een dank-U-wel bij aan God de Vader, die mij in 
goede en minder goede tijden nabij is geweest met Zijn kracht, leiding en 
ondersteuning. 
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Curriculum Vitae
Bastiaan Abraham Vroegindeweij was born on the 19th of November 

1986 in Lienden, the Netherlands, as son of a poultry farmer. Between 
1988 and 1995 he lived on one of his family’s farms, where he had his first 
experiences with poultry farming and agricultural technology. During his 
secondary school (1998-2004) and university studies (2004-2010), he was 
active on his family’s farms in various jobs, ranging from executing daily 
work to maintenance activities and managing a farm site during holiday 
periods. Furthermore, he worked at 2 contracting companies in agriculture 
and construction, where he gained a wide practical experience in using 
and maintaining all kinds of machinery. 

In 2004, he started with the BSc programme in Agrotechnology at 
Wageningen University, from which he graduated in 2008. In 2007, he 
participated with 3 fellow students in the Field Robot Event, where his 
team received an overall 3rd price. Furthermore, they received the 2nd 
price for their freestyle task, presenting a concept of robotic floor egg 
collection, which eventually turned out to be the starting point of this thesis. 
Bastiaan continued his MSc in Agricultural and Bioresource Engineering 
at Wageningen University, which he completed in 2010 (cum laude). In 
his major thesis at the Systems and Control Group, he developed a path 
planning algorithm for a floor egg collection robot, which was nominated 
for the 2010 KIVI NIRIA control engineering price, awarded the 2010 NVTL 
thesis price and forms the basis of Chapter 3 in this thesis. His minor thesis 
at the Farm Technology Group was on designing a user interface for herd 
health control, while he was also involved in a project on localisation of 
animals. Furthermore, he did an internship at Moba on the detection of 
internal defects in eggs.

After graduation, he started working as a Research and Teaching 
Assistant at the Farm Technology Group of Wageningen University, 
where he contributed to the preparation of and teaching in the courses 
Engineering Design, Biosystems Design, Greenhouse Technology and 
Livestock Technology. Furthermore, he continued his work on a mobile 
robot for poultry houses. This led to the start of the PhD project Automation 
for Poultry Production at the beginning of 2012. In the context of this 
project, the development of the PoultryBot was executed and this thesis 
was written.
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After the employment of Bastiaan with Wageningen University ended 
at the end of 2015, he started in 2016 the spin-off company Livestock 
Robotics to continue the development of PoultryBot into a commercially 
viable product. Livestock Robotics’ mission is to “Improve life, for Farmer 
and Animal”, by providing the farmer automated assistance in his daily 
tasks, such as the collection of floor eggs and observing the status of his 
animals. The expected result of using such technology is a reduction in 
undesired labour for the farmer and improved awareness of and care for 
the well-being of the animal. 
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