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Abstract

This paper introduces the group-wise partial least squares (GPLS) regression.
GPLS is a new sparse PLS technique where the sparsity structure is defined in
terms of groups of correlated variables, similarly to what is done in the related
group-wise principal component analysis. These groups are found in correla-
tion maps derived from the data to be analyzed. GPLS is especially useful for
exploratory data analysis, because suitable values for its metaparameters can be
inferred upon visualization of the correlation maps. Following this approach,
we show GPLS solves an inherent problem of sparse PLS: its tendency to con-
found the data structure because of setting its metaparameters using standard
approaches for optimizing prediction, like cross-validation. Results are shown
for both simulated and experimental data.
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1 INTRODUCTION

Modern studies are characterized by the generation of large quantity of data such as in the case of genomics, proteomics,
and metabolomics experiments.1 However, it is widely recognized that usually only a limited number of variables or of
groups of variables are relevant to the problem being studied.1 The challenge is to isolate the informative variables from
the noninformative part, the latter consisting of variables showing random variation, not relevant systematic variation or
accounting for technical variability such as sampling and measurement error.

Exploratory data analysis plays a critical role in the analysis of large data sets. One of the most used tools for data
exploration is certainly partial least squares (PLS) regression2,3 given its ability for dealing with those situations where the
number of variables is much larger than the number of observations, which are often encountered in modern experiments.
However, in PLS all variables are included in the model, and this complicates model interpretability.

One possible solution is to use a PLS approach where some of the model parameters (such as the regression coefficients)
are forced to zero. This is the realm of sparse methods, first introduced in the context of multiple linear regression.4 This
idea was later incorporated in PLS regression, usually by filtering out variables from the model obtained from the full
data or imposing some sort of penalty (such as the LASSO) on model parameters while building the model. However, the
sparsity induced by these approaches is closer in philosophy to variable selection than to exploratory data analysis: the
main goal is to improve prediction performance by discarding a subset of predictor variables.
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Because of its definition and fitting strategy, sparse PLS (SPLS) presents several shortcomings that, to the best of our
knowledge, have not been discussed elsewhere. First, SPLS shares with PLS a fundamental limitation that complicates
the interpretation of the model: The same latent variable (LV) may include several sources of variability while the same
source of variability may span the subspace of several LVs.5 This same problem motivated the introduction of rotation
methodologies in principal component analysis (PCA). Second, a purely prediction-driven calibration while imposing
simplicity may oversimplify the structure in the data, yielding a model where some predictors related to the response
are in fact discarded. We will show these problems in the experimental part of this paper. As a result, when the goal is
data exploration, sparse methodologies may not be the best choice. This is particularly relevant in biological applications
where, for instance, the interest is into retrieving groups of variables (as genes or metabolites), which are related to a
given phenotypic trait with the aim of gaining knowledge into molecular mechanisms rather than optimizing prediction
performance.

The idea of group-wise simplicity was adopted in the so-called simplivariate models,6,7 which aim to describe informa-
tive variation, under the assumption that a given biological or biochemical problem is not represented by all measured
variables but only by a few variables or subsets of variables. These models aim to retain the comprehensiveness of a mul-
tivariate model together with the simplicity of interpretation of a univariate one. Related extensions of SPLS to group
penalties, like the group LASSO, have also been defined.8 In this approach, the penalties apply to predefined groups
of variables, so that solutions are found that activate or deactivate all variables in the groups. From a similar perspec-
tive, group-wise principal component analysis (GPCA)9 was recently proposed as an exploratory tool. In GPCA, sparsity
is defined in terms of groups of correlated variables found in correlation maps obtained from the data to be analyzed.
Each component contains nonzero loadings for a single group of correlated variables, which simplifies the interpre-
tation according to the previous definition of group-wise simplicity. GPCA differs from equivalent group lasso PCA
variants in the fact that only one group of variables can be active in a single LV and in the way metaparameters are
tuned. Camacho et al9 showed the advantages for data interpretation of this approach over sparse and group sparse
PCA variants.

In this paper we propose the group-wise PLS, an extension of GPCA in the PLS setting. Group-wise partial least squares
(GPLS) aims to model data under a group-wise simplicity approach where every component account for a group of cor-
related variables that are related with the response. This approach is especially suitable for exploratory data analysis.
Like other chemometrics approaches aimed at improving data interpretation, for instance, multiblock10,11 or orthogonal12

extensions of PLS, GPLS is not defined to improve the prediction performance of PLS (or SPLS). However, there is a
non-negligible link between the prediction capability of a regression model and our confidence on its appropriateness.
For this reason, while not the main goal, we study the prediction performance of GPLS in comparison to that of PLS and
SPLS in the supplementary materials attached to the paper.

The rest of the paper is organized as follows. We begin in Section 2 with a motivation example to illustrate the concept
of group-wise sparsity. In Section 3 we introduce the GPLS approach. Section 4 describes the materials and methods used
in the experimental sections. The performance of the methods is assessed by means of simulations and on experimental
data in Sections 5 and 6, respectively. Section 7 presents the conclusions of the work.

2 A MOTIVATING EXAMPLE

As a motivating example we consider a simulated data set where the response y is related only to a subset of highly
correlated predictors in X, specifically the 5 first variables (denoted as X1−5 in Equation 1), while the remaining predictors
are not related to the response:

X1−5 = 0.1 · Δ + x115

y = 0.1 · 𝜹 +
5∑

i=1
xi

(1)

where values in Δ and 𝜹 are drawn following a normal distribution with 0 mean and variance 1 and 15 is a vector of ones
of size 1 × 5.

This is a simple case of group-wise sparsity that is commonly encountered: think for example of NMR spectra where
different peaks, corresponding to the same molecule, are expected to exhibit a correlated behavior or when only a small
subset of metabolites or genes is related to a phenotypic trait.
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The simulated data sets are generated using the simuleMV algorithm,13 which allows the simulation of data matri-
ces with different level of correlation among the predictor variables. Specifically, the algorithm allows the generation of
data with a randomly generated covariance/correlation matrix. For each simulation scheme, data were simulated with
low, medium, and high correlation level among the predictor variables (correlation level in simuleMV of 5, 7, and 9,
respectively). We restricted ourselves to simulate 20 × 100 data sets for the predictor variables, which is a typical size in
chemometrics data sets. The correlation maps with low, medium, and high correlation among predictors variables are
shown in Figure 1. A subset of highly correlated variables formed by the first 5 variables is present in the 3 correlation
maps, but the overall correlation structure among the predictors is different in the 3 cases. In the case of low correla-
tion (Figure 1A) only the first 5 predictor variables are correlated, while in the high correlation case (Figure 1C) the
variables in the group are correlated with many other predictor variables which in turn will be correlated with the
response, following a more complex model than the one actually expressed in Equation 1.

Let us focus on the low correlation data set. When a standard PLS regression model with 1 LV is fitted to the data,
all variables contribute to the prediction (see Figure 2, top). The application of a sparse PLS approach (in this case the
sparse PLS method by Lê Cao,14 see Section 4.1) greatly simplifies the regression coefficients (see Figure 2, bottom). This
sparse PLS model has also greater prediction ability than the standard PLS model (Q2 = 0.74 versus Q2 = 0.46 of the
normal PLS model), which complies with the dogma that introducing in the model variables that are not relevant to the
response reduces the predicting power of the model. This difference in prediction cannot be corrected by considering
more components in the PLS model (not shown).

This example illustrates that (i) even in very sparse data PLS introduces spurious information in the model and that
(ii) because sparsity is pursued with the aim of enhancing prediction, this can oversimplify the real structure in the data.
Because the first 5 variables in the X-block are highly correlated, only one of them may constitute a good prediction model.
In this specific case, because of random variability induced in the data set, the SPLS model with one prediction variable
even outperforms a model with the 5 true predictors. However, for data exploration this behavior is not desirable because

FIGURE 1 MEDA maps for the motivating example (see Equation 1) with different levels of correlation in the X-block. (A) low
correlation, (B) medium correlation, and (C) high correlation. See text for more details

FIGURE 2 Weights for the first latent variable for the partial least squares (PLS) and sparse PLS (SPLS) regression models for simulated
data in the motivating example with low correlation. See Equation 1 and Figure 1A for the corresponding MEDA map
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relevant information is left out the model and this is may also be crucial when biochemical or biological interpretation is
pursued.

To overcome this limitation we introduce here the GPLS where sparsity is introduced in terms of groups of correlated
predictor variables related to the response.

3 GROUP-WISE PARTIAL LEAST SQUARE REGRESSION

The group-wise PLS takes as input a set of K (possibly overlapping) groups S1, S2, … Sk, … SK of correlated variables that
are obtained from an M × M correlation map M computed from the data. In principle, M can be any square symmetric
matrix describing mutual relationships among the M variables. In the GPLS algorithm we use a missing-data approach to
construct this matrix, which has the advantage of reducing the noise in the computation of the correlations. Details are
given in Section 3.2; the mij elements of M are given by Equation 5.

The S1, S2, … Sk, … SK groups of correlated variables are determined using the group identification algorithm (GIA)
proposed in Camacho et al9 and available in the missing-data for exploratory data analysis (MEDA) toolbox.15 Briefly, let
be mi,j ∈ [−1, 1] the i, j-th element of M and |𝛾| < 1 a threshold on the correlation values. The group Sk is built in such a
way that all variables in Sk satisfy the conditions

∀ i, j ∈ Sk → |mij| > 𝛾 (2)

∀ j ∉ Sk ∕ ∃ i ∈ Sk → |mij| ≤ 𝛾 (3)

and indicating that if the j-th variable is not in group Sk, it has a correlation magnitude ≤ 𝛾 with at least one of the other
variables in the group. This is equivalent to define groups of variables with maximum cardinality where all variables
within the group present a correlation larger than 𝛾 in absolute value.

3.1 The GPLS algorithm
The GPLS algorithm consists of a set of nested PLS models together with a suitable deflation procedure. Given the
data matrices X(N × M) and Y(N × O), the procedure is based on the first kernel PLS algorithm proposed in Dayal and
MacGregor,16 which makes use of matrices X and XTY and only deflates the latter:

Step 1 Initialize
C = XTY

B = I

where I is the identity matrix.
Step 2 For each latent variable (LV) a from 1 to A

Step 2.1 For each group Sk in the set of groups S

Step 2.1.1 Create Ck from C setting elements out of Sk to zero.

Ck = C
ck

lm = 0, ∀l ∉ Sk

Step 2.1.2 Compute wk, the first eigenvector of (Ck)TCk.
Step 2.1.3 Compute the corresponding scores as

rk = Bwk

tk = Xrk

Step 2.2 Choose the coefficients of latent variable a from the group capturing the most correlation with Y.

k∗ = arg max
k

(corr(tk,Y))

wa = wk∗
, ra = rk∗

, ta = tk∗
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Step 2.3 Perform the deflation steps:
qa = (ra)TC∕((ta)Tta)

pa = (ta)TX∕((ta)Tta)

C = C − pa(qa)T((ta)Tta)

B = B(I − wa(pa)T)

Step 3 Obtain the regression coefficients:
BGPLS = RA(QA)T

The GPLS algorithm first computes the weights and scores of K PLS models of 1 LV, each of them considering only
the set of variables corresponding to one of the groups S1, S2, … Sk, … SK . From these, it chooses the one capturing the
largest correlation with Y, discarding the rest. Using the coefficients of this LV, XTY is deflated and B recomputed.

3.2 Defining the correlation map
As discussed, we first apply GIA to a given correlation map and then compute the GPLS model using the previous
algorithm. Following Camacho et al,9 we use a technique referred to as the MEDA5 to construct the map. MEDA con-
sists in a postprocessing step after the PLS factorization to infer the relationships among variables using missing data
imputation.17,18 The elements of the MEDA map M can be expressed as19

mij =
{

2xT
i xj − (xA

i )
TxA

j

}
·

abs
{
(xA

i )
TxA

j

}
𝜎2

xi
𝜎2

xj

(4)

where 𝜎2
xn

stands for the variance of the n-th variable in X and

xA
i = xiRAPA

and RA(M × A) and PA(M × A) are the coefficients of a standard PLS model with A LVs. This equation can be simplified
considering that (

xA
i
)TxA

j = xT
i xA

j

with the advantage of a more straightforward interpretability:

mij =

{
xT

i xj + (eA
i )

TeA
j

}
· abs

{
xT

i xj −
(
eA

i

)TeA
j

}
𝜎2

xi
𝜎2

xj

(5)

where eA
i is the vector of residuals for the i-th variable in the PLS model for the A LVs.

This approach has the substantial advantage of filtering out the noise in the computation of correlations, reducing the
risk of including spurious or chance associations among variables as often is the case in high-dimensional data.7,20

3.3 Metaparameter selection
To obtain a GPLS model, suitable values for the number of LVs, A, in the MEDA step and for parameter 𝛾 in GIA need to
be determined. If the goal is exploratory data analysis, 𝛾 and A can be obtained by visual inspection of the MEDA map,
following the GPCA approach,9 which is consistent with the exploratory data analysis philosophy. Some hints on how
to do this are included in Section 6. This is a main difference with sparse approaches like SPLS, where metaparameter
selection is driven by prediction optimization.

However, if the goal is to obtain a GPLS predictive model and assess its performance, the metaparameters A and 𝛾 can
be selected using a double cross-validation approach. In this case, GPLS is a simple variant of SPLS, but it might provide
good predictive results when the structure of the data is sparse in the sense of a GPLS model, ie, when data present one or
more groups of correlated predictor variables related to the response. We stress here that GPLS is not proposed for increase
prediction, but to enhance data understanding and interpretation. However, these 2 different goals can be considered to
be interrelated: a number of experiments where the prediction performance of GPLS is compared to that of SPLS and PLS
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can be found in the Supporting Information. We intentionally did not present and discuss these results in the main body
of the paper to avoid the misleading message that the GPLS algorithm is introduced to achieve better prediction models.

It should be noted that the number of LVs in the final GPLS model can be different to A in MEDA and larger than the
number of groups identified by GIA, because the data corresponding to each of the groups may be of rank higher than
one. In this paper, we assume GPLS has A LVs for both interpretation and prediction results.

4 MATERIAL AND METHODS

4.1 Sparse PLS
Given its excellent performance we choose the sparse PLS algorithm by Lê Cao et al as a representative of SPLS in this
paper. The algorithm starts by solving the PLS problem using singular value decomposition.21 Given X and Y, the matrix

C = XTY (6)

of rank r can be written as
C = GDUT

where the matrices G (N × r) and U (L × r) are orthonormal and D is r × r diagonal containing the sk singular values
with k = 1, 2, … , r. In this setting the loading vectors pk and qk for X and Y are the first singular vectors gk and uk of
G and U, respectively. Because the loadings can be interpreted as a measure of the relative importance of the variables
in the model,22 variable selection is performed by penalizing both loadings vectors pk and qk as in sparse PCA.23 The
optimization problem to arrive to the sparse PLS solution is

arg min
p,q

||C − pqT||2F + 𝜆1||p||1 + 𝜆w||q||1 (7)

where the solution is found by the soft-thresholding g𝜆(x) = sign(x)(|x| − 𝜆)+ applied to the current (nonpenalized) least
squares estimates.

The SPLS according to Equation 7 needs the optimization of 2 metaparameters: 𝜆1 and 𝜆2. However, a more practical and
equivalent alternative is to select the number of nonzero components of the loadingsx andy.14 In this paper we restrict
ourselves to set x, so that only loadings in the x-block are sparse. Consistently with PLS practice,24 the optimal number
of latent variables A and the number of on nonzero loadings x is selected using a double cross-validation approach. The
goodness-of-prediction index used is

Q2 = 1 −
PRESSA,x

PRESS0
(8)

where PRESSA,x
is the prediction error computed when x and A LVs are considered in the SPLS model.

4.2 Experimental data sets
The performance of GPLS and SPLS was investigated using 2 publicly available experimental data sets.

Slurry-Fed Ceramic Melter. This data set provided with the PLS-toolbox25 consists of 450 observations on 21 variables
corresponding to a vitrification process. The first 20 variables correspond to temperatures collected in two vertical ther-
mowells. Variables 1 to 10 are taken from the bottom to the top in thermowell 1, and variables 11 to 20 from the bottom
to the top in thermowell 2. Variable 21 is the level of molten glass.

NMR data (NMR). This data set contains NMR spectral profiles (noisy experiments, 416 bucketed spectral variables
at 0.02 ppm width) measured on the plasma samples of 206 subjects together with HDL (high-density lipoproteins)
independently measured with a biochemistry assay. The data are described in previous studies26,27 and available at
www.ebi.ac.uk/metabolights/MTBLS147.

4.3 Software
The group-wise PLS algorithm is available in the MEDA Toolbox15 at github.com/josecamachop/MEDA-Toolbox.
PLS has been performed through the kernel implementation.16 Sparse PLS has been performed using the approach of Lê
Cao et al,14 with the algorithm implementation used in Szymańska et al.28
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All mentioned routines and corresponding single and double cross-validation algorithms can be found in the MEDA
Toolbox for proper reproducibility of results. The code to reproduce the simulation results is given as Supporting
Information.

5 PERFORMANCE OF GROUP-WISE PLS ON SIMULATED DATA

We go back to the motivation example introduced in Section 2 and presented in Figure 1: Figure 1A shows the MEDA
map (see Equation 5) calculated for this simulated data set, where the group of 5 highly correlated variables is evident.
To select that group of variables and analyze it with the GPLS approach, we only need to set 𝛾 (see Equations 2 and
3) to the appropriate value, which can be done upon inspection of the MEDA map consistently with the philosophy
of exploratory analysis. For this particular case we set 𝛾 = 0.4, and by doing so we are able to select that particular
group of variables of interest. Together with this group the GIA procedure may select other groups of variables, in this
case of cardinality one because some variables may show a variance higher than 𝛾 . This defines a set of S1, S2, … , Sk
possibly overlapping groups of variables that are then passed to the GPLS algorithm. In this case we fit the model
with 1 LV. The corresponding weights are shown in Figure 3. The GPLS algorithm is able to fully recover the origi-
nal data structure avoiding the oversimplification introduced by the SPLS approach in Figure 2. In GPLS the sparsity
is controlled by setting the threshold on the strength of the relationship among variables rather than by setting a pri-
ori the number of nonzero elements as in SPLS. Because we can select the correlation threshold upon inspection of the
map, this approach is more coherent with the goal of data exploration. On the contrary, in SPLS we need to relay on
the metaparameter that minimizes the prediction error, and this has the risk of confounding part of the structure in
the data.

In Figure 4 we repeat the same experiment for high correlation, with the map in Figure 1C. Recall that in this case there
are many variables that are correlated with the subset of predictor variables and therefore to the response. Again, SPLS
oversimplifies the structure while GPLS includes those many more variables, offering a more accurate representation
of the data structure. In this example, PLS presents a good result in terms of prediction. In general, as shown in the
Supporting Information, we expect sparse methodologies to outperform common PLS only in the low correlation setting.13

FIGURE 3 Weights for the first latent variable in the group-wise partial least squares (GPLS) regression model for simulated data with low
correlation in the motivating example. See Equation 1 and Figure 1A for the corresponding MEDA map

FIGURE 4 First latent variable from partial least squares (PLS), sparse PLS (SPLS), and group-wise group-wise partial least squares
(GPLS) regression models for simulated data with high correlation in the motivating example. See Equation 1 and Figure 1C for the
corresponding MEDA map
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6 PERFORMANCE OF GROUP-WISE PLS ON EXPERIMENTAL DATA

Let us start with the Slurry-Fed Ceramic Melter data. Figure 5A presents the MEDA map of 4 LVs from these data showing
how some temperatures of both thermowells are correlated. Also, as expected, there is specific correlation within each
thermowell for close sensors. Upon the inspection of the correlation map we select 𝛾 = 0.6 as plausible value to decide
on the number and size of the possibly overlapping sets of correlated variables.

The resulting GPLS model with 4 LVs is compared (weights and regression coefficients, 𝛽) to a 4 LVs SPLS model (where
the number of nonzero loadings is selected by double cross-validation) in Figure 6. In the GPLS model, each LV is restricted
to a single source of variability: LVs 1 to 3 capture the intercorrelation between thermowells while LV 4 is restricted to the
intracorrelation in one of the thermowells. On the contrary, SPLS provides a model that is sparse but where everything is
mixed: each LV contains information from different sources of variability; this also makes the regression coefficients of
SPLS to be less sparse than those of GPLS. This shows that fitting model metaparameters to optimize prediction implies the
risk of confounding the true structure in the data. Both models, however, yield similar performance in terms of prediction,
as shown in Figure 7A where a scatter plot of the predicted vs measured response is presented.

Now let us investigate the sensitivity of GPLS to the metaparameters. In Figure 8 we can see 3 examples of inadequately
chosen metaparameters: Panel (A) shows the case when the number of LVs A is underestimated when defining the MEDA

FIGURE 5 MEDA maps for the experimental data sets. (A, B) Slurry-Fed Ceramic Melter data for 4 latent variables and 1 latent variable.
(C) NMR-HDL data

FIGURE 6 Weights for the first 4 latent variables (LVs) and regression coefficients (𝛽) for the (A) sparse partial least squares (PLS) and (B)
group-wise PLS models for the Slurry-Fed Ceramic Melter data
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FIGURE 7 Predicted vs measured values of the response for the sparse partial least squares (PLS) and group-wise PLS models for the (A)
Slurry-Fed Ceramic Melter data and (B) NMR data

FIGURE 8 Weights (first 4 latent variables [LVs]) and regression coefficients (𝛽) for the group-wise partial least squares (GPLS) model for
the Slurry-Fed Ceramic Melter data obtained using different model parameters. (A) corresponds to a model using 1 LV to define the MEDA
map and 𝛾 = 0.6. (B) and (C) correspond to a model using 4 LVs to define the MEDA map and 𝛾 equal to 0.2 and 0.9, respectively

map and 𝛾 is maintained to 0.6. The corresponding MEDA plot is shown in Figure 5B. We can see that part of the correla-
tion structure in the data is missing in the MEDA plot because of the underestimation, but this does not affect the resulting
GPLS model in this example. In general, we may consider that the overestimation of A is less harmful than the underes-
timation, see detailed results in Camacho.5 In Figure 8 panel (B) we show the case when A = 4 but 𝛾 is underestimated.
The resulting GPLS model is less sparse, but still we maintain one source of variability per LV. However, in other exam-
ples, the underestimation of 𝛾 may lead to include several sources of variability in a single LV. To avoid this problem, the
analyst should always check that the resulting loadings are coherent with the structure seen in the MEDA plot. In panel
C of Figure 8 we show the opposite case, when 𝛾 is too high. Then, the GPLS misses part of the structure that we can see
in the original MEDA plot. Again, by inspecting the MEDA plot we can always check whether the choice of 𝛾 is adequate.

As a second example we consider the NMR-HDL data set. Here the problem is to predict the HDL concentration in
blood from the full NMR spectra while selecting for HDL-related NMR peaks. The MEDA map for this data set is shown
in Figure 5B. Upon inspection of the map we select 𝛾 = 0.9 as input for the GPLS algorithm. Also in this case SPLS model
parameters are set by double cross-validation. The regression coefficients for the PLS, SPLS, and GPLS models are given
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FIGURE 9 Regression coefficients (𝛽) for the first 3 latent variables for partial least squares (PLS), sparse partial least squares (SPLS), and
group-wise partial least squares (GPLS) regression models on the NMR-HDL data set. The NMR intensity profile (in arbitrary units [au] is
given as a reference; peaks are normalized to the maximum intensity for visualization

in Figure 9. GPLS produces a sparser model than SPLS and selects only variables belonging to the region relevant for HDL
signals in the NMR spectrum, with variables corresponding to ppm in the region 0.45 to 1.00, 1.13 to 1.45, 1.51 to 1.69,
and 1.87 to 2.2 as reported in previous publications.26 In particular the larger regression coefficient correspond to 0.84
ppm bucket comprising the LDL CH3 signal. Both models yield similar performance in terms of prediction, as shown in
Figure 7B.

7 CONCLUSIONS

We have presented here a new algorithm for sparse PLS modeling referred to as group-wise PLS, which is a PLS extension
of the recently proposed GPCA. GPLS is based on 2 steps: (i) identification of groups of correlated variables in correla-
tion maps obtained from the data and (ii) fitting of group-wise models where each LV corresponds only to one group of
variables. The main advantage of GPLS in comparison to other sparse variants is that the choice of metaparameters can
be decided upon data visualization. This approach is more coherent with exploratory data analysis than using techniques
to optimize prediction, which are the state-of-the-art in the PLS setting. This makes the group-wise PLS algorithm well
suited for data exploration avoiding problems arising in standard PLS and other sparse variants.
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