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Chapter 1

Introduction

The continuously decreasing cost of sequencing genomes is promoting the generation
of vast amounts of sequence data. In consequence, the need to develop automated
methods of analysis for this kind of data is on the rise. A first step towards inferring
a protein’s function is to know its subcellular location. Being able to reliably do so
from just the amino acid sequence would be a powerful method to automatically label
unannotated sequence data. As such, protein subcellular location prediction has re-
ceived a great deal of attention from the bioinformatics field [27, 28]. Several methods
have been developed to tackle the issue. These can be classified in three main groups
of approaches:

e Prediction by recognizing the actual sorting signals i.e. signal peptides [26] or
transmembrane a-helices [24]. Using knowledge about the sorting signals, these
methods look for them in the sequences. The main disadvantage is that they can
only detect those signals that have been previously annotated. In consequence,
they do not work for compartments whose sorting signals are yet to be discov-
ered.

e Prediction by sequence homology. When trying to predict the function of an
unknown protein, the standard procedure is to look for homologue sequences
and then infer that they share functional annotations. Likewise, it is expected
that closely related proteins stay in the same subcellular compartment [25]. This
has been exploited in a variety of tools [6, 22].

e Prediction based on global properties of the proteins, such as their amino acid
composition and features derived from them. The main advantage to using these
kind of approaches is that they can be used for poorly annotated sequences or
subcellular compartments for which the sorting signals are unknown. Most de-
veloped tools of this type use machine learning based methods [31, 13].

Machine learning is a field inside the discipline of artificial intelligence based on the
concept that machines should be able to learn, adapt, and improve through experi-
ence. Machine learning methodologies have been widely used in several domains
of bioinformatics [18]. Deep learning [19, 32], a branch of machine learning, con-
sists of approaches that use deep neural networks in order to transform a series of
inputs/features into the desired outputs. This is done via propagation of the data
through a series of layers that represent different transformations of the original in-
puts. Deep learning approaches have proved to almost always be able to perform at
the same or better level as state-of-the-art methods on specific tasks. One of the main
advantages of neural networks is that they act as universal approximators: given any
relationship between some input features and an output, there is a neural network that
can capture it [12]. The fact that such a network exists, though, does not mean that it is
easily achievable to unveil its architecture, nor its proper hyperparameters. That is one
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of the main drawbacks and points of criticism that neural networks and deep learning
receive: while their ability and potential to predict complex and abstract relationships
among features is extremely powerful, the time to fine tune its hyperparameters and
architecture make it a tedious and non-trivial task. Another issue that is specially rel-
evant in the context of bioinformatics is the need for large amounts of labeled training
data, which is typically difficult to find and expensive to generate. Given the complex-
ity and non-linearity of deep learning algorithms, they usually require larger amounts
of training data to fully exploit their predictive capabilities compared to simpler ma-
chine learning approaches.

The use of deep learning in bioinformatics [23], while not as extended as in the fields
of natural language processing, image processing or speech recognition, has been suc-
cessfully implemented in areas such as genomics, proteomics, or biomedical signal
processing. Several efforts for using combinations of neural network architectures
[40, 21] in order to predict protein function have been made with good results.

Neural networks look like a promising method to predict the subcellular location of
proteins based on just their amino acid sequence. The ability to capture and learn pat-
terns in the data ought to make them detect the sorting signals without the need to
guide them to do so. Hence, a well-enough built and trained neural network model
should be able to combine the best of the methods that include the sorting signals data
in their predictions while only using the raw sequence data. Some work with neural
networks has already been successfully applied for this purpose [37, 21].

The main barrier that prevents deep learning approaches to be fully implemented
and more widely used in most fields is the fact that they act like black boxes, achieving
great performances but doing so in an indecipherable way. While this might not be
a major issue in some cases, it becomes crucial in applications where interpretability
is essential. In the biomedical field, for instance, it is hard for a doctor to diagnose
a patient based on some model that, even if apparently performs greatly, he cannot
interpret nor fully understand. In the context of subcellular location prediction, an
interpretable model would be one that not only has a good prediction performance,
but that provides insights about the learned features and could potentially lead to the
discovery of new sorting signals. As such, there is a growing interest in developing
methods to open the black box that neural networks represent in many fields [34, 30,
29] and specifically in bioinformatics [36, 17].

The aim of this project is to (i) apply deep learning to predict protein subcellular lo-
calization and (ii) "open the black box" i.e. use the resulting models to learn which
properties of sequences influence subcellular localization. In order to do so, several
neural networks comprising different architectures have been built and trained. In
an attempt to extract meaningful conclusions from the trained models, methods have
been either created or adapted so as to interpret them.
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Materials & Methods

2.1 Framework

The whole project has been written in Python 2.7, with the code available in:
https:/ /github.com/AlFontal/ Thesis.

The TensorFlow [1] library has been extensively used both for building, training and
evaluating the NN models.

2.2 Dataset

The dataset used is the MultiLoc [11] Dataset. This dataset was obtained by extract-
ing all animal, fungal and plant protein sequences from the SWISS-PROT database
release 42, using the keywords Metazoa, Fungi or Viridiplantae in the organism classifi-
cation field. These proteins were assigned to 1 of 11 possible subcellular localizations
based on the annotation in the CC (comments) field.

Plant proteins can be localized in the chloroplast, cytoplasm, endoplasmic reticulum,
extracellular space, Golgi apparatus, mitochondrion, nucleus, peroxisome, plasma
membrane and vacuole. Fungal cells share the same subcellular localizations as plant
cells, except that they lack the chloroplast. Finally, animal cells share all localizations
with fungal cells, but have lysosomes instead of vacuoles.

TABLE 2.1: Number of sequences for each localization

Localization Complete Reduced

CH 730 449
CY 2768 1411
ER 328 198
EC 1124 843
GG 244 150
LS 164 103
MC 872 510
NC 1040 837
PX 278 157
PM 2115 1238
vC 98 63
Total 9761 5959

A total of 9761 sequences were extracted, with no restrictions on the level of homol-
ogy at this point. In order to train prediction models, using datasets containing way
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too high similarity will lead to recognition of nearly identical sequences. This could
therefore inflate the accuracy estimations, disrupting the proper optimization of the
model via the loss function. Consequently, a homology-reduced dataset was created
by removing proteins from the original dataset until it contained no sequences with
a pairwise similarity >80% using the ClustalW [41] algorithm. The reduced dataset
ended up containing 5959 sequences. The specific class distribution can be seen in
Table 2.1.

2.3 Data Processing

2.3.1 Sequence Length

In order to make the sequences a valid input for the TensorFlow models, they all need
to be of the same length. The specific sequence length was left as one hyperparame-
ter more of the models, which could be tuned to the specific needs of each of them.
However, in order to trim the sequences longer than the desired length and pad the
shorter ones, a position in the sequence needed to be chosen. Since it is known that
most sorting signals are located near the C- and N- terminus of the protein sequences
[7], it was decided to either pad or trim the sequences in the middle. For a desired
sequence length of n and a sequence length of /, the process would be the following;:

o If | > n, the sequence is trimmed in the middle, only keeping /2 amino acids
from each of the ends of the sequence.

o If | < n, the sequence gets added n — I X’s at position [ /2.

The X’s are defined in order to contain no signal.

2.3.2 Sequence to Tensor Transformation

The encoding of the sequences into tensors was done using variations of the methods
used in [40] and [37]. The standard input of the models was a 3D tensor of the follow-
ing shape: [minibatch_size, sequence_length, aa_features].

minibatch_size is the amount of sequences introduced in the network at each train-
ing step and is considered a hyperparameter. sequence_length is the length of the
processed sequences. aa_features is the number of features which are encoded for
each of the amino acids of the sequence. 3 variations were used:

e A one-hot vector with 20 components (one for each of the amino acids). In a one-
hot vector all components are zero except the one identifying the amino acid in
question.

e Amino acid properties. 6 components describing chemical properties of the
amino acids: charge, hydrophobicity and the binary attributes isPolar, isAromatic,
hasHydroxyl and hasSulfur.

e The values for each amino acid in the BLOSUMBS80 substitution matrix [9]. This
accounts for 20 more features

X'’s are defined as a vector of aa_features zeros. Combinations of these three compo-
nents were used in order to transform each amino acid position in the sequences into a
vector. Each of the sequences can therefore be visualized as a matrix of sequence_length
columns and aa_features rows.
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2.3.3 Training and Test Sets

Before training every model, 80% of the sequences are assigned to the training set
which is used to train the network and the 20% remaining sequences are used to test
its performance. Given the huge class imbalance present in the dataset, this 80/20
proportion was not left totally randomized but constrained in order to keep the real
balance of the classes in both sets. That is, the 80/20 division in the assigning is done
in a class per class basis, thus keeping the same class distribution in train and test sets.

In the same way that overfitting can occur for the weights and biases of the network
for the training set, the optimization of the hyperparameters of the network can over-
fit for the test set. In order to avoid this, a validation set which is not used to opti-
mize the hyperparameters can be used so as to validate the actual performance of the
model without any kind of bias. This methodology works greatly with large datasets,
however, given that the used dataset was rather small, it was decided to not use a
validation set. With the aim to avoid hyperparameter overfitting for a certain test set,
though, randomization of the test/train selection is done before the training of every
new model, thus ensuring no bias in this setting.

2.4 Neural Networks’ Set-up

All the predictive models built consisted of variations of neural network architectures,
in particular using fully-connected (FC), convolutional (CNN) and long short-term
memory (LSTM) layers. Before explaining details about these architectures (sections
2.4.1 to 2.4.3) general characteristics of the neural networks are introduced.

Loss Function

All neural networks need to compute how well they perform. This value, called the
cost or loss function, is the value that is optimized via gradient descent by tuning all
the weights(W) and biases(B) in the network. The loss function chosen is the most
commonly used in classification tasks, the cross entropy. The cross entropy can be
considered a measure of the difference between two probability distributions.

Formally, if C denotes the number of classes, S the network score and N the mini-

batch size: .
1 "

Y 9i(—log yij) + (1 —9)(—log (1 —y;;))

=1

Mz

Il
—_

l

Where §;; is the experimental probability (so either a 0 or a 1) of the jy, class of the iy,
sequence in the mini-batch while y;; is the predicted probability of the jg, class of the
i, sequence in the mini-batch.

Softmax Transformation

The neural networks used for classification tasks apply a series of transformations
to an input (X) which can be expressed as a highly non-linear function f(X). This
provides a vector P containing a probability for each of the classes in the model. If
not forced, f(X) will not output a vector of probabilities P but just an output vector
O with values without any kind of constraint. In order to transform the output vector
O into the probabilities vector P, the Softmax function is used. Assuming that O is
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a one-dimensional vector with K values, the Softmax transformation consists of the
following;:

exp(O]-)
Y1 exp(Oy)

P can then be used to compute the cross entropy.

P = Softmax(0O) — P; =

Optimizing Algorithm

The algorithm used to iteratively update the weights and biases of the network in or-
der to minimize the loss function is the Adam optimizer [15]. It was chosen instead of
the classical stochastic gradient descent (SGD)[20] given its computational efficiency
and adaptability. While classical SGD maintains a single learning rate for all weight
updates which does not change during training, Adam keeps a different learning rate
for each of the parameter and specifically adapts it as the training advances. While an
initial learning rate must be defined, given its adaptability of the algorithm it becomes
drastically easier to fine tune this hyperparameter.

Dropout

In order to reduce the amount of overfitting, dropout [39] is used in certain layers
during the training of the networks. Essentially, the use of dropout addresses the
problem of overfitting by randomly generating thinned versions of the total network
where certain nodes and its connections are "dropped", so not used, at each train step.
Effectively, the complete network is in a certain way an averaged model of all the
thinned networks used along the training steps. This introduces noise and reduces
the capability of the network to adapt too much to the training data, thus decreasing
the overfitting.

Activation Functions

All the units in a neural network layer need to use a certain activation function in
order to transform their inputs into a reasonable output. Three different activation
functions are used in the prediction models built in the project:

1
1+4+e X

B 2
Cl4e ™

e Leaky ReLU: f(x) =axforx <0; xforx >0 (a=0.1)

e Logistic (Sigmoid): o(x) =

e Hyperbolic Tangent: tanh(x)
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24.1 Fully Connected Network

The final fully connected Network, whose structure can be seen in Figure 2.1, is com-
posed of the following architecture:

e The input consists of a sequence with a fixed length of 500 amino acids with
one-hot encoding + properties as features, yielding 26 features for each one of
the 500 amino acids.

e The input is fed to a first fully connected layer of 200 units with a Leaky Relu
with « = 0.1 as activation function. This layer used 40% dropout during training.

e The output of the first fully connected layer is fed to a second fully connected
layer of 11 units and Leaky ReLu with & = 0.1 as activation function. This layer
did not use dropout.

e The output of the second fully connected layer is transformed via Softmax to a
vector of probabilities for each of the classes.

The initial learning rate was 0.02 and the mini-batch size was 500.
The output from each of the fully connected layers is calculated by the following equa-

tions:
13000
Out(fc, ;) = LeakyReLu( xi- Wiij+ b1,i> iin [1,200]

j=1

200

O; = LeakyReLu Out(fey j) - Waij+ by | iin[1,11]
j=1
Input FC, FC, (0] P

Softmax

[500, 26] [200, 13000] [11, 13000] [11] [11]

FIGURE 2.1: Structure of the final FC model
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2.4.2 Convolutional Network

The final convolutional neural network, whose structure can be seen in Figure 2.2, is
composed of the following architecture:

e The input consists of a sequence with a fixed length of 300 amino acids with
one-hot encoding + properties as features, yielding 26 features for each one of
the 300 amino acids.

e The first layer is a convolution layer consisting of 75 units or filters. 25 of these
filters are of shape [6, 261,25 of shape [10, 26] and 25 of shape [15, 26]. All
of them with a stride of 1 and "SAME" padding. Leaky ReLu with a = 0.1 is
used as the activation function.

e The second layer is a Max Pooling layer which only outputs the maximum value
on a window of 5 positions along the tensors. The stride used is 5 and "SAME"
padding. This reduces by a factor of 5 the dimensionality of the output tensors.

e The outputs of the pooling layer are concatenated and fed to a fully connected
layer with 100 units with a Leaky Relu with @ = 0.1 as activation function. This
layer used 40% dropout during training.

e The output of the first fully connected layer is fed to a second fully connected
layer of 11 units and Leaky Relu with « = 0.1 as activation function. This layer
also used 40% dropout during training.

e The output of the second fully connected layer is transformed via Softmax to a
vector of probabilities for each of the classes.

The initial learning rate was 0.02 and the mini-batch size 500.

o
oftmax

[100,4500]  [11, 100] [11]
[3, 25, 300] [3, 25, 60]

FIGURE 2.2: Structure of the final CNN model

[11]
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2.4.3 Long Short-term Memory Network

The final model built was a bidirectional LSTM [10] network. The basic cells which
make up the LSTM layers consist of the following structure:

X

X
E Z
=

FIGURE 2.3: Structure of LSTM cells

As seen in Figure 2.3, each LSTM cell receives 3 inputs (x;, C;—1 and h;_1) and yields 2
outputs (C; and k). C is the long term memory cell and is responsible for keeping the
relevant information along the whole sequence. # is the short-term output of each cell,
and in the implemented model, the values of & in the last cell of each LSTM layer are
the outputs fed to the deeper layers. x is the input corresponding to the current step.

At each LSTM cell, the output of the previous cells #;_; and the information from
the step t, x; are combined and go through the forget gate ’f’, the input gate ’i’, the input
modulation gate’g” and the output gate o’ First, the output from the forget gate is applied
to the memory cell 'C" coming from the previous cell, C;_1, deleting certain information
from it. After that, new information from combining the input and input modulation
gates is added to it. After this modification, the memory cell is ready to be outputted to
the following cell. A combination of the memory cell at this point and the output gate o’
will yield the short-term output '%; for this cell. The equations that control each one of
these gates are the following;:

it = o (xr - Wy + b1 - Wy + bi)
fr = o(xp - Wyp + b1 - Wyp + by)
gt = tanh(x; - Wyg + hy 1 - Wyg + bg)
0 = 0 (xt - Wyo + 1 - Wio + by)
G=fiOc1+irOg
hy = o4 ® tanh(cy)
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(® : Elementwise multiplication ¢ : Sigmoid activation function)

The fully connected layers used the same units as the ones from the previous models.
The architecture of the network consists of the following layers:(Figure 2.4):

e The input consists of a sequence with a fixed length of 750 amino acids with
one-hot encoding + properties as features, yielding 26 features for each one of
the 750 amino acids.

e The first layer is the forward LSTM layer, which takes the input in the N — C
direction. The input is divided in 750 steps (each amino acid is taken as one
step), each of them consecutively fed to the 750 unrolled LSTM cells. This layer
consists of 100 units, which means that a total of 750 x 100 = 75000 unrolled
LSTM cells are used.

e In parallel, the input goes through a backwards LSTM layer equal to the forward
one but taking the input sequence in the C — N direction.

e The outputs of the last cell two LSTM layers are concatenated and fed to a fully
connected layer with 250 units with a Leaky Relu with « = 0.1 as activation
function. This layer used 20% dropout during training.

e The output of the first fully connected layer is fed to a second fully connected
layer of 11 units and Leaky Relu with « = 0.1 as activation function. This layer
also used 20% dropout during training.

e The output of the second fully connected layer is transformed via Softmax to a
vector of probabilities for each of the classes.

The initial learning rate was 0.02 and the mini-batch size 500.

Forward Backward

— LSTMj,

e l N
@» LSTM,
. . L AN

l3 |
LSTMWSO] [ LSTMy,;

\ 3
\

[750, 26] [26,100]  [26, 100] [200] [250, 200] [11, 250] [11] [11]

FIGURE 2.4: Structure of the LSTM network
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2.5 Model Evaluation

2.5.1 Prediction Performance

In order to assess the performance of the prediction models, mainly 3 measures are
evaluated:

Correct Predictions

e Classification Accuracy: Total Predictions

e - P
e Class-Specific Precision: D = P
Class-Specific Recall: P
[ ] ass- peCI C ecall: m

2.5.2 Convolutional Filters Representation

The networks whose filters were saved and plotted only used one-hot encoding so
as to be able to represent all features as PSSM-logos. The visualization of the convo-
lutional filters was based on the methodology used in [37]. The convolutional filters
are represented as a matrix of filter_width columns and aa_encoding rows. So as
to visualize the relative importance of each of the positions in the filter, each of them
is rescaled in a way that the height of the highest column is 1. After this transforma-
tion, each filter can be visualized as a PSSM logo where the position importance is
proportional to the height of the column and the height of each letter is proportional
to the importance of the amino acid in that position. Seq2logo [42] is used in order
to generate the PSSM-logo plots. The Seq2Logo default amino acid colour coding is
used: negatively charged (DE) residues are red, polar uncharged residues (NQSGTY)
are green, positively charged (RKH) residues are blue and the remaining are black.

2.5.3 Signal Masking Approach

This method was developed along the course of the project in order to evaluate the
effect of removing the signal from certain regions of the input sequences. It is a way
of assessing, for a trained model, which parts of the input sequence have a higher
importance to determine the final classification. This assessment is performed in the
following manner:

1. A sequence S is fed as input to a trained NN model. The output layer O (before
the Softmax transformation), containing a vector of K values, one for each class,
is extracted.

2. The vector O is transformed to a vector of probabilities P via Softmax with a
scaling parameter w:

Oi~w

e .
with w =

P=—
YK 0w max(0)

The scaling is performed in order to make the final layer of probabilities more
variable and allow for comparison of even subtle changes.

3. The cross entropy of vector P with itself is calculated. Since P is identical to itself,
H(P,P) = H(P), so the entropy of P is calculated.
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4. Sequence S is modified by substitution of a certain number of amino acid posi-
tions by X’s, removing any signal from that part of the sequence. This is done
for window sizes ws = 5 and ws = 15. If §; is the amino acid on position 7 of
sequence S with length /, a modified sequence S* with a span from S} to S},

containing only X’s is generated, with a total of | — ws modified sequences per

original sequence.

5. Each of the modified sequences S* is fed to the trained NN model and their re-
spective output vectors O* are extracted and transformed into a vector of prob-
abilities P* via the same Softmax transformation with scaling weights used for
the original sequence.

6. The cross entropy between P and each P* is computed, and the difference be-
tween this value and the entropy of P is stored.

H(P,P*) = H(P) + Dgr(P || P*), so by calculating this difference we are actu-
ally computing the Kullback-Leibler divergence (Dk1) [16] of P* from P, which
is a measure of divergence between two probability distributions. This value is
calculated for each of the modified sequences S*, providing a position-specific
score profile.

This approach was used to assess the trained models by calculating an average score
for all sequences belonging to each class. The result is a profile which can be used to
evaluate the importance of certain regions of the sequences in each of the classes in
each of the models.

2.5.4 Class Optimization

This approach, first developed for image classifying CNNs [35] and later adapted to
genomic sequences (Deep Motif [17]), consists on the following;:

Given a trained classification NN and a class of interest C;, the objective is to obtain
the input X which maximizes the classification score S; for class C;. In other words,
the approach tries to find the optimal input for a certain class, thus providing valuable
information about what features the NN has learned for that specific class.

In the case of the NN trained in this project, where the inputs are protein sequences
encoded as one-hot vectors, the optimized inputs lose the one-hot vector encoding but
can be forced to behave as a Position Probability Matrix (PPM) which can then be rep-
resented as a motif.

Formally, the following equation, where S; is the score (defined as the unscaled values
for class C; pre Softmax transformation) and X is the input sequence, is optimized:

arg max S;(X) +A || X |3

A is the regularisation parameter. The L2-regularization term is introduced in order to
minimize the number of significant amino acids per position in the optimized input se-
quence. The score used is the value of the pre-Softmax layer because the post-Softmax
value can be maximized by just minimizing the scores of the other classes, and the
objective is to get an ideal input for the desired class, not an input modified to score
low in the remaining classes.
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The optimization is done via Adam [15] changing only the values of the input se-
quence. Initial values are all set as 1/20 to give equal probability to each amino acid in
each position. A = 0.00005. At the end of each optimization step, the values are forced
to stay withing a realistic range:

o Negative values are converted to 0.

e The values for each position are standardized in order to make the total sum
equal to 1.

After a certain number of optimization steps, the final sequence is recovered and rep-
resented as a motif logo using Seq2Logo [42].
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Chapter 3

Results & Discussion

The results of this project can be divided in two main phases or sections:

1. The building and fine tuning of neural networks to predict subcellular localiza-
tion of proteins.

2. The analysis of the trained models, in an attempt to open the black box that neural
networks are in regards to its interpretability.

3.1 Subcellular Localization Prediction Models

Throughout the length of the project, over 500 models with different sets of hyperpa-
rameters and NN architectures were trained. Apart from obtaining increasingly accu-
rate models over time, comparing the results obtained among them already provides
some insight regarding the behaviour of the learning process.

3.1.1 Input Features

While only the protein sequence is used to make the predictions, the input features
and the exact transformation to a numeric tensor was not a trivial decision.

Sequence Length

Since the input tensors of TensorFlow models need to be of a fixed length, assessing
the effect of the sequence length on the model’s ability to predict the subcellular lo-
calization of the protein was a necessary step. First of all, observing the distribution
of the length of the sequences in the dataset (Fig 3.1) allows us to infer the degree of
the effect of the processing of the sequences. Ideally, we would like to keep as much
information as possible without adding noise.

50% of the proteins in the dataset consist of < 393 amino acids and 80% of them consist
of < 800 amino acids. Choosing a short sequence length would mean trimming and
losing information from most sequences, while adding little to no noise. Choosing a
long sequence length, on the other hand, would imply a barely null loss of informa-
tion combined with the addition of a significant degree of noise. Longer sequences
also translate into more complex models, with higher computational times for train-
ing and assessing tasks. The information contained in the sequences is most likely not
equally distributed along the whole sequence. Hypothesizing that the most relevant
information about the subcellular localization is located near the ends of the protein
sequences [7] means that trimming the sequences in the middle would minimize the
loss of information caused by this modification.
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FIGURE 3.1: Distribution of length of sequences in MultiLoc Dataset

In order to assess the previous hypothesis, a series of models with different input se-
quence lengths were trained with the same hyper parameters: 2 fully connected layers
with 100 and 11 units respectively, 40% dropout during training and input features
containing 1-hot vector + properties. Two processing methods were used: the first
keeps only the ends of the sequences, while the second keeps only the center of the se-
quences. The test accuracies obtained with each of the models for sequences of lengths
from 2 to 100 amino acids are represented in Fig 3.2. The maximum test accuracies for
both kinds of models were achieved at a sequence length of 100: 62.5% for those that
kept the sequence ends compared to a 38% for those models that only kept the center
of the sequences.

The hypothesis of the most relevant information in the sequence being located near
the C- and N- terminal ends of the sequences seems to be supported by this results.
The models which used the center of the sequences performed worse than the ones
keeping the ends at every sequence length, barely increasing their performance with
longer sequence lengths.

For the models which kept the ends of the sequences, the performance was drasti-
cally better: with a sequence length of 20 amino acids (that is, the first 10 and the
last 10 of the whole sequence) the trained models were able to achieve a test accu-
racy of over 50%. Given that the largest class, cytoplasm, accounts for a 23.7% of the
total sequences, the results obtained cannot be explained by the model classifying all
sequences as cytoplasmic sequences. It is then rather surprising to find that a test ac-
curacy of over 40% is already achieved with a sequence length of just 10 amino acids.
Larger sequence lengths (up to 1000) were tested for this configuration, but no strong
improvement was detected after sequences of 100 residues long. The best performing
model achieved a 63.87% with a sequence length of 500 residues.
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FIGURE 3.2: Test Accuracy obtained at different input sequence lengths

Although these results seem to indicate that most of the signal contained on the se-
quences are indeed located near the C- and N- terminal ends, the fact that a fully-
connected neural network is unable to learn extra information from longer sequences
does not mean that more complex networks containing convolutional or RNN layers
will not be able to extract valuable information from other regions.

Sequence Preprocessing

Three options were tested in order to transform the amino acid sequences into suitable
tensors to be used in TensorFlow. The main idea was to use one-hot encoding to repre-
sent each amino acidic position in the sequence, but inspired by [37, 40], the inclusion
of more features such as chemical properties of the amino acids and the BLOSUMS80
substitution matrix values was also considered.

Table 3.1 shows the average test accuracies obtained with each of the different combi-
nation of sequence transformations after multiple runs of trained NN models (Input
Sequence length of 500, 2 fully connected layers, with 400/300/200/100 and 11 units
respectively, and with 0/20% /40% dropout).
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One-Hot
+ Properties
+ BLOSUMBSO0 (46)

50.9% 57.2% 62.5% 56.4%

One-Hot

Properties (6) One-Hot (20) + Properties (26)

Average Test
Accuracy

TABLE 3.1: Average test accuracy for different input types
Between parentheses: Number of features per position

The best performing models were those which had an input consisting of a one-hot
vector of the amino acids plus the chemical properties (62.5% average test accuracy).
The amino acids one-hot vector alone was the second best input type at a 57.2% aver-
age test accuracy. The addition of the BLOSUMS0 substitution matrix values did not
seem to provide any useful information to the networks, making them perform even
worse (56.4% average test accuracy) than the one-hot vector alone, probably due to
the effects of high redundancy of the features.

The conclusion derived from these results was to use the one-hot vector + properties
input for further improving the prediction models based on the consistent improved
performance shown compared to the other options. However, models built simply
with a one-hot vector for the amino acid alphabet, albeit potentially less accurate,
provide a higher degree of interpretability, and were therefore also used in further
experiments with the objective of unveiling the black box (Section 3.2).

3.1.2 Prediction Performance

The main objective of this section is to compare the performance of the different neu-
ral network architectures used. In order to do so, the metrics used will be the global
test accuracies and the class-specific precision and recall. It is important to note that
comparing performance among different neural network models can be rather unfair.
A mediocre model which has undergone an extensive and successful hyperparameter
optimization process could outperform a better suited model with less finely-tuned
hyperparameters. As such, it is wise to be careful at stating that one model is better
than the other given that, when differences are small, it is rather hard to distinguish
whether the improvement in performance is originated in an actually better suited
model or just a better tuned model.

The hyperparameter optimization process can be rather time consuming, more so
when the architecture of the model is considered a hyperparameter by itself. In conse-
quence, and since the objective was not just to get the best performing model but also
to develop some methods to interpret it, this process was done more exhaustively for
the simpler models (the fully-connected networks) than for the later ones. It is there-
fore quite likely that the performances of the LSTM and convolutional models could
be further improved if they underwent a more extensive hyperparameter search.

Fully Connected Networks (FC)

The FC networks, given their simplicity in comparison to the other type of networks,
allowed for a longer fine-tuning of its parameters given their short training time.
While this is an advantage towards training, the fact that it does not take into account
the sequential nature of the inputs also means that, often, the FC networks cannot
perform at the level the other architectures can.
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FIGURE 3.3: Accuracy progression during FC model training
For the best performing FC model, as Figure 3.3 depicts, the training process only
took about 100 steps (= 9 epochs) until the training accuracy increased over 98%. The
maximum test accuracy, which was of 63.87%, was achieved at the last training step.
There is a clear divergence between the training ant test accuracies that is visible from
the 20th step and only increases until the end of the training process.
TABLE 3.2: Confusion matrix for fully connected model
TL / PL CH LS NC MT ER vC PX GG EC PM CY Recall
CH 69 0 0 10 0 0 0 0 0 5 6 76.7%
LS 1 5 1 1 1 0 0 0 2 10 0 23.8%
NC 2 0 79 0 0 0 0 0 1 7 78 47.3%
MT 16 1 9 47 0 0 0 0 2 3 24 46.1%
ER 0 1 1 2 19 0 0 1 6 7 3 47.5%
vC 1 0 0 0 1 1 0 0 2 5 3 7.7%
PX 2 0 4 1 0 0 1 0 1 6 16 3.2%
GG 1 0 2 1 0 0 0 13 3 7 3 43.3%
EC 0 0 5 3 0 0 0 1 126 23 11 74.6%
PM 3 0 7 4 3 0 0 2 14 192 23 77 4%
CY 7 0 41 7 0 0 1 0 4 12 210  74.5%

Precision 67.6% 71.4% 53.0% 61.8% 79.2% 100.0% 50.0% 76.5% 783% 69.3% 55.7% 63.9%

The classes that this model seems to be able to distinguish the best are chloroplast,
extracellular, plasma membrane and cytoplasm, all of them with recalls between 70 and
80%. There is a second group that consists of the classes nuclear, mitochondrial, endo-
plasmic reticulum and Golgi, which the model classifies with recalls between 40 and
50%. Roughly 50% of the nuclear sequences are classified as cytoplasmic, while ~ 20%
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of the cytoplasmic sequences are classified as nuclear. Finally, the model specially strug-
gles at classifying sequences from the smaller labels: lysosome, vacuole and peroxisome,
which have recalls of 23.8%, 7.7% and 3.2%, respectively.

Convolutional Neural Networks (CNNs)

CNNs, given that they take into account the spatial relationships of the data, seem like
a potentially powerful tool to evaluate protein sequences.
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FIGURE 3.4: Accuracy progression during CNN model training

The CNN model needed the longest to train, achieving its best test accuracy, 73.9%,
at around step 550 (= 46 epochs). The training and test accuracies are on par until
around step 100, at 50% accuracy, when the divergence between train and test accura-
cies starts. After that, both accuracies increase but at a different rate.



Chapter 3. Results & Discussion 20

TABLE 3.3: Confusion matrix for CNN model

CH LS NC MC ER vC PX GG EC PM CY Recall

CH 74 0 1 3 0 0 0 0 0 1 11 82.2%
LS 0 1 0 2 0 0 1 1 7 9 0 4.8%

NC 2 0 95 3 0 0 1 1 0 4 61 56.9%
MC 4 0 3 85 0 0 0 0 0 1 9 83.3%
ER 0 0 0 0 20 0 0 3 5 10 2 50.0%
vC 1 0 1 1 0 1 0 1 5 2 1 7.7%

PX 0 0 5 0 0 0 3 2 1 1 19 9.7%

GG 1 0 0 0 1 0 0 22 2 4 0 73.3%
EC 0 0 2 2 1 0 0 3 133 22 6 78.7%
PM 2 0 2 3 0 0 0 2 8 218 13 87.9%
CY 6 0 35 3 1 0 1 0 2 4 230 81.6%

Precision 82.2% 100.0% 66.0% 83.3% 87.0% 100.0% 50.0% 62.9% 81.6% 79.0% 65.3% 73.9%

The CNN model performs better with the chloroplastic, mitochondrial, plasma membrane
and cytoplasmic sequences, all of them classified with recalls >80%. However, it is
barely able to detect lysosomal, vacuolar and peroxisomal sequences, all of which are
classified with recalls <10%.

Long Short Term Memory Neural Networks (LSTM)
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FIGURE 3.5: Accuracy progression during biLSTM model training

The ability of LSTM networks to capture long term relationships in the data while
treating it like a sequence looks like the ideal way to recognize the signals present in
a protein sequence. Taking into account that the input data is just the the primary
sequence, with no information of the tridimensional structure of the proteins, LSTM'’s
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faculty to recognize distantly connected patterns in sequences could fill in the gaps
that the data is not providing.

For the LSTM model, as Figure 3.5 depicts, train and test accuracies appear to increase
at the same rate during training until the step 300, where the test accuracy hits the 80%
threshold and barely improves at all after that. After that, the model overfits for the
training data, achieving a training accuracy of >98% at step 460, where the training is
stopped. The maximum test accuracy recorded is of 81.4%, at step 400 (=~ 33 epochs).

TABLE 3.4: Confusion matrix for bidirectional LSTM model

TL / PL CH LS NC MT ER VvC PX GG EC PM CY Recall
CH 82 0 1 5 0 0 0 0 0 0 2 91.1%
LS 0 9 0 0 0 1 0 2 5 4 0 42.9%
NC 2 0 119 1 0 0 0 0 3 2 40 71.3%
MT 3 0 1 92 0 0 1 0 0 0 5 90.2%
ER 0 1 0 1 25 1 0 2 7 3 0 62.5%
vC 0 0 0 0 2 1 0 1 6 3 0 7.7%
PX 2 0 3 1 0 0 15 0 0 1 9 48.4%
GG 0 0 0 0 2 0 1 20 2 5 0 66.7%
EC 0 9 0 0 1 0 0 1 153 4 1 90.5%
PM 2 0 0 0 2 1 0 4 6 230 3 92.7%
CY 4 1 43 5 0 0 3 0 0 1 225 79.8%

Precision 86.3% 45.0% 71.3% 87.6% 781% 25.0% 75.0% 66.7% 84.1% 90.9% 789% 81.4%

This model excels at classifying chloroplastic, mitochondrial, extracellular and plasma
membrane sequences: all of these classes have a recall over 90%. In the case of nu-
clear and cytoplasmic sequences, both large classes, they have recalls over 70% and the
model seems to find it hard to distinguish among the two of them, since over 20% of
the nuclear sequences are classified as cytoplasmic and vice versa.

Models Comparison

After seeing the results of the best performing models of the different architectures, it
is quite clear that the LSTM model is the better at the task of accurately predicting the
subcellular localization of the proteins. The reason why it performs better, though, is
not a trivial matter.

In table 3.5 a dissected comparison of the class-specific precision and recall results

is shown.
TABLE 3.5: Comparison of precision, recall and accuracy results (%)

Class Precision FC Recall FC | Precision CNN Recall CNN | Precision LSTM Recall LSTM
CH 67.6 76.7 82.2 82.2 86.3 91.1
LS 714 23.8 100 4.8 45.0 429
NC 53.0 47.3 66.0 56.9 71.3 713
MC 61.8 46.1 83.3 83.3 87.6 90.2
ER 79.2 47.5 87.0 50.0 78.1 62.5
vC 100 77 100 77 25.0 77
PX 50 3.2 50.0 9.7 75.0 48.4
GG 76.5 43.3 62.9 73.3 66.7 66.7
EC 78.3 74.6 81.6 78.7 84.1 90.5
PM 69.3 774 79.0 87.9 90.9 92.7
CY 55.7 74.5 65.3 81.6 789 79.8

Accuracy 63.9 73.9 81.4
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While there is a clear progression in the accuracy of the networks in the FC — CNN —
LSTM direction, the class-specific performance does not follow such a clear pattern:

e The lysosomal class appears to be hardly detectable by the CNN model, where its
has just a 4.8% recall with a 100% precision. The FC model performs better, with
a 23.8% recall, and the LSTM tops it with a 42.9%. These results seem to indicate
that the signal present in lysosomal sequences [38] is lost during the convolution
step.

e None of the models is able to properly predict the location of vacuolar sequences.
The fact that only 63 out of the total 5959 sequences belong to that class is prob-
ably the main reason why this happens. Increasing the class size would most
likely help to improve the performance.

e Both the FC and the CNN model are unable to classify the peroxisomal proteins,
with recalls of 3.2% and 9.7%, respectively, and with a 50% precision. The LSTM
model, however, drastically improves the performance in this area, achieving
a 48.4% recall with an even better precision of 75%. These results look rather
counter-intuitive at first glance, since it is known that one of the peroxisomal
targeting signals is usually located at the carboxy terminus of proteins and con-
sists of no more than 12 amino acids [8]. Theoretically, CNNs should be able to
detect this signals with ease, but it has not been the case with our model. An ex-
planation on why the LSTM shows such a drastic improvement in performance
for this class could be the fact that a motif present in peroxisomal membrane
proteins, the mPTS motif, might consist of discontinuous subdomains [33] that
could be better captured by the LSTM model due its ability to extract informa-
tion from non-consecutive signals.

e All in all, the performance in the rest of the classes improves steadily in the FC
— CNN — LSTM direction, except the Golgi and cytoplasm classes, which are
slightly better classified in the CNN model. The fact that CNNs are specially
useful to extract short and consecutive signals might give them the edge over
the rest for these classes.
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3.2 Opening the Black Box

3.2.1 Convolutional Filters

PSSM-logo representations for the learned filters of all CNIN models trained with one-
hot encoding as input were generated, which resulted in a high amount of plots. The
examples shown here belong to the best-performing CNN model which only used
one-hot encoding as input. All the hyperparameters were exactly the same as the ones
for the CNN model described in section 2.4.2 but without including the amino acid
properties in the encoding. The performance of this model was slightly lower, achiev-
ing a 70.5% test accuracy.

A total of 75 filter representations were generated for this model. The majority of
them seem to not only search for certain amino acids but also negatively select for a
big number of residues. The following examples illustrate the nature of the generated
representations:

Relative Importance

C

Greated by Seq2Logo

(A) (B)

FIGURE 3.6: Examples of learned convolutional filters of width 5

The filter in Figure 3.6a seems to detect charged residues (mainly red and blue amino
acids appear in the positive side) except in the last position where it strongly nega-
tively selects for aspartic acid. The filter in Figure 3.6b, however, seems to only search
for stretches of alanine while it negatively selects most other residues.

Created by Seq2Logo
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FIGURE 3.7: Examples of learned convolutional filters of width 10

C
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In the case of the filters of width 10, the negative selection was even more prominent,
with most residues falling in the negative side and very few residues on the positive
side. The filter in Figure 3.7a captures stretches of aspartic acid with cystein in the
middle positions. The filter in Figure 3.7b is does not capture stretches of residues but
searches for certain amino acids in specific positions, it basically captures a motif with
the defining sequence 'X[WH][QA]YxxxSRQ'".
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FIGURE 3.8: Examples of learned convolutional filters of width 15

Relative Importance

The learned convolutional filters of width 15 are rather diverse. Some of them are
of similar nature as the ones of width 10 (Figure 3.8a), finding a specific pattern of
residues for certain positions. Others, not so much. For instance, the example in Fig-
ure 3.8b captures stretches of non-charged residues with alanine in positions 8 and 13.
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Created by Seq2Logo
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All in all, this method of representing the learned features of convolutional layers
applied to protein (or DNA) sequence data looks like a perfect way to portray the in-
herently complicated parameters of the convolution steps. A follow-up work which
could shed some light into this results would be to search the motifs generated in mo-
tif specialized databases to see if they represent already known protein motifs. If that
were the case, it would possibly validate the use of this method as a motif-discovery
tool.

3.2.2 Signal Masking Approach

The results of the signal masking approach for both the CNN and LSTM models show
not only differences among the classes in each model, but also between the models.
Visualizing the impact that removing a part of the input signal has on the final layer
of the neural network helps to estimate each of this regions” importance.

Convolutional Neural Network

In Figure 3.9, the results for the CNN model are shown. The first aspect to note is
the scale of the divergence between the different classes. Lysosomal sequences showed
about an order of magnitude higher KL divergence than the other classes. Mitochon-
drial and vacuolar sequences displayed maximal divergences around 0.15 while the rest
stayed between 0.035 and 0.07.

All the classes showed maximum divergence when the signal from the N-terminus
was removed, indicating that probably the model picks the signal from the signal pep-
tides located in that region and its classification capability is strongly affected when
it is removed. The removal of the C-terminal region also displayed a strong effect in
most classes, although not as strong as that of the N-terminal one.

Nuclear, cytoplasmic and peroxisomal sequences have a practically identical pattern of
divergence among the whole sequence, which is to be expected given the fact that
the CNN model had a hard time distinguishing this classes among themselves (most
peroxisomal sequences were classified as either nuclear or cytoplasmic too). The three
classes show a slight increase in divergence when removing the regions about 100
positions before the C-terminal end, which could indicate the presence of some im-
portant sorting signal. Cytoplasmic and nuclear proteins are not secreted and thus
lack N-terminal signal peptides. It is then rather surprising to find that they still show
the maximum divergence in this region. The reason behind this could lie in the fact
that signals specific to nuclear/cytoplasmic sequences might also happen to be located
near the N-terminal end.

Golgi and plasma membrane sequences showed the smallest effect: Both of them are
groups of transmembrane proteins known to possess signal anchors further away
from the N-terminus [11]. This could mean that they possess a less localized and
more distributed sorting signal which would be less affected by a local disruption of
5 or 15 amino acids. The pattern and scale of the effect shown by lysosomal sequences
might be the most difficult to explain. As shown in 3.1.2, the CNN model was the
worst at classifying lysosomal sequences, with a 4.8% recall. The classification of these
sequences was probably so unstable that changes at any region of the sequence have
a strong effect in the final layer.
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The way the sequences were processed, padding with X’s the middle of the shorter
sequences, also makes the comparison unfair, since the average effect of the central
regions is brought down by those sequences padded with X’s for which there is no
effect. A better design of this experiment would not take into account the regions pre-
filled with X’s when calculating the averages and would allow for a fairer comparison.
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Bidirectional LSTM Neural Network

The results for the biLSTM model can be seen in Figure 3.10. Given the longer input
sequence length (750 aa) and the fact that the only visible effects were concentrated on
the ends of the sequences, only 125 amino acids of the N-terminal end and 125 of the
C-terminal end are shown to enhance the visualization.

The first noticeable detail is the magnitude of the KL divergence in some of the classes.
The lysosomal class is again the one showing the highest effect, reaching almost a KL
divergence of 12 at its maximal point. The pattern that it displays along the sequence,
though, is now way less erratic than in the CNN. Extracellular, Golgi and ER sequences
also show strong effects, reaching KL divergence values ranging from 5 to 10. All of
these, together with the vacuolar sequences, belong to the secretory pathway and con-
tain N-terminal signal peptides, strong signals that the forward LSTM layer probably
picks at the first time steps and propagates until the end. The way the information is
propagated in the LSTM layers might be responsible for the increase in KL divergence
when removing the signal of the N-terminal ends. It is also specially remarkable the
strength of the divergence in the C-terminal end of the ER sequences, indicating a rel-
atively important presence of sorting signals in the region.

The lysosomal sequences improved from a 4.8% test accuracy in the CNN to a 42.9% in
the biLSTM model. That means that some of the signals that were not picked by the
CNN are being captured in this biLSTM model. Lysosomal proteins are known to con-
tain sorting signals in their cytosolic domains [5], but the results obtained here suggest
that only those in the N-terminal end are being picked and the cytosolic domains are
not being recognized by the network, which would explain the 57.1% error rate for
this class.

Another striking feature is the divergence pattern shown by the peroxisomal sequences.
It is the sole class with a higher divergence when removing the signal from the C-
terminal end than when doing so in the N-terminal end. Whilst the CNN did not
show this feature, it only classified peroxisomal sequences with a 9.7% accuracy, so it
barely learned any feature from this class. The biLSTM model, however, achieves a
48.4%. The results obtained here suggest that mainly the targeting signals located at
the C-terminal end of proteins [8] mentioned in 3.1.2 are the ones being learned by the
biLSTM and responsible for its increase in accuracy.

In general, all the classes for this model showed minimal to null KL divergence when
removing the signal of every region but the C- and N-terminal ends. This could mean
that either the directional nature of the LSTM layers confers way more importance to
the beginning and the end of the sequences or that the increase in accuracy compared
to the CNN model comes from the increase in signal recognition from the ends, which
makes the whole prediction more resilient to changes in other regions.
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3.2.3 Class Optimization

The class optimization approach was attempted for both the CNN and biLSTM mod-
els. The optimization of the input of the CNN model, however, did not appear to
converge for any of the classes even after >5000 optimization steps. For that reason,
only the results of the biLSTM model are shown and discussed.

nuclear

extracellular
vacuolar
lysosomal
chloroplast

ER

cytoplasmic
mitochendrial
plasma_membrane
peroxisomal

Golgi

0 250 500 750 1000 1250 1500 1750
Optimization Steps

FIGURE 3.11: Score progress during optimization in biLSTM model

After 2000 optimization steps, all classes appear to have nearly converged at scores
ranging from 500 (cytoplasmic) to 4500 (endoplasmic reticulum) (see Figure 3.11). There
is no way to tell whether the process is stuck at local maxima or these are actually
the optimal sequences for each of the classes. With the objective of assessing how
well this optimized inputs rank when comparing them with the scores of the real se-
quences, the score distributions for the sequences of each of the classes are shown in
Figure 3.12. Each class follows a rather different distribution of scores, but none of the
real sequences has a score higher than 20 in any class. The optimized input sequences
score 20 to 200 times better than the best-scoring real sequences. Of course, the fact
that the real sequences are limited to contain only one-hot vectors hinders their ability
to obtain the high scores that the optimized inputs, which can distribute their values
with way less constraints, achieve. It was also checked with success whether the score
of the optimal sequences for the other classes was smaller than the score they had for
their own. Given that this was not an optimization criterion, it was necessary to add
this step in order to be sure that the increase in score was localized in the desired class
and not just a consequence of an increase of the order of magnitude of the overall
scores.

Nonetheless, the obtained optimized inputs can be interpreted as a representation of

2000
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the features that the model has learned for each of the classes. If certain positions in
the sequences strongly point towards a specific residue/group of residues it is likely
that they are important towards the classification of the sequence to its class. As such,
this method could potentially lead to the discovery of new sorting signal motifs.

chloroplast lysosomal nuclear
012 L 0 H
==+ Median Score =1.25 a | ==+ Median Score =5.59
0200 ! 020 !
010 0175 !
I
0.08 0.150 015 :
oLz - dian 5 438
0.06 edian Score =
0100 010 :
0.04 0075 :
I
0.050 005 1
002 1
0025 :
0.00 0.000 0.00 !
-40  -30 -20 -10 0 10 0 -25 00 25 50 75 100 125
mitochondrial ER vacuolar
1 0.040 : ]
025 ==+ Median 5core =3.79 ==+ Median 5core =2 68 0.30 1 ==+ Median Score =6.01
0.035 : 1
0.20 0.030 I 025 :
1 1
0025 1 0.20 I
0.15 : :
0.020
: 015 :
0.10 0.015% 1 i
! 0.10 !
0010 ] ]
0.05 I X
0.005 1 0.05 i
1 1
0.00 0.000 ! 0.00 !
o 2 4 & B 10 12 14 -175 -150 -125 -100 -75 -50 -25 1] 4 & B 10
peroxisomal Golgi extracellular
' ' '
012 —=- Median Score =4.1 0.25 == Median Score =4.15 i —= Median Score =4.1
0.25 |
110 1
010 0.20 1
0.20 [
0.08 i
0.15 1
015 1
0.06 |
1
0.10 i |
0.04 010 :
I
0.02 005 0.05 :
1
0.00 0.00 0.00 !
=30 —20 =10 o 10 o 2 4 & ] 10 12 0o 25 5.0 75 10.0 12.5 15.0
plasma_membrane cytoplasmic
' '
035 ——- Median Score =2.93 035 == Median Score =4.31
030
i
0.25 |
|
020 ]
i
015 I
1
0.10 1
i
0.05 |
1
0.00 !
5

-75 -50 -25 00 2 5.0 75 100 25 50 75 00 125 150

FIGURE 3.12: Score distribution among classes for real sequences

An analysis and a motif search for the obtained optimized inputs has not been per-
formed given the time constraints of the project, but it would definitely be an interest-
ing line of further research. Nevertheless, the representation of the results and some
interpretation of them can already be done.

In Figures 3.13 and 3.14, the C-terminal end of the optimized input for the peroxiso-
mal class and the N-terminal end of the optimized input for the extracellular class can
be seen. The results suggest that sequences ending with stretches rich in phenylala-
nine or glycine will score highly for the peroxisomal class. A leucine in position 736
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also seems to be specially important. Similar conclusions can be extracted from the N-
terminal end of the extracellular input: A valine in first position and lysines/arginines
along the following positions will guide the model to predict the input sequence as
belonging to the extracellular class.

il

012 3 4567

FIGURE 3.14: N-terminal end of the optimized extracellular input
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Of course, these are just two examples of the many that could be shown, and further
validation of the actual findings would be required to extract any meaningful conclu-
sion.

3.3 General Discussion and Conclusion

Models training and performance

Comparing the performance achieved by the models trained with state-of-the-art meth-
ods is rather tricky given the fact that most employ their own metrics to assess per-
formance and use different datasets to do so too. Also, comparing this method, which
only uses protein sequence data as input, with methods that include multiple sources
of metadata or homology data is quite unfair.

When comparing with methods only using the same kind of input data, the biLSTM
model, with 81.4% accuracy performs better than SVM-based MultiLoc [11] (75% ac-
curacy) but is still far from the Convolutional biLSTM ensemble model trained in [37]
(90.2% accuracy). With similar datasets, but adding metadata as input too, Multiloc2
[4] improves to a ~89% accuracy. SherLoc2 [6] goes even further and uses 7 subclas-
sifiers which look up different sources to build the input features, achieving a striking
93% classification accuracy.

With little fine tuning, the biLSTM model quickly achieved comparable performances
at the classification task to state-of-the-art techniques, though still at some distance
from the best. This indicates that with more hyperparameter search it could probably
achieve even better accuracies. One thing that might have hampered the performance
of the biLSTM models is the zero-padding (addition of X’s) in the middle of the shorter
sequences. Taking into account that most of the signal is located in the ends, fully con-
nected networks benefit from this kind of padding, since they have position-specific
weights and padding in the middle aligns the ends of the sequences in the same posi-
tions. CNNs do not directly have position-specific weights, but the structure of the se-
quence is maintained post-convolution and is then fed to fully connected layers whose
parameters are again position-specific. With LSTM’s, however, the flow of informa-
tion is totally different. The LSTM layers treat the data on a sequential manner, and
they share the weights of their four gates along all the steps, so they do not benefit
from padding the sequences to have the ends aligned. In fact, having a gap without
signal in the middle probably disrupts the sequential flow of the information. While
the long-term memory information is kept, the short-term information is completely
lost when it is propagated through the stretch of X’s. Since only the output of the fi-
nal step of both forward and backward LSTM layers is propagated, a sensible approach
would be to pad the sequence with X’s at the beginning for the input of the forward
layer and at the end for the input of the backward layer.

One of the characteristics of the dataset used for training (as a consequence of the
actual distribution of proteins in cells) is the huge class imbalance. The trained mod-
els are barely able to predict the extremely infrequent classes. This is more likely
due to the scarce number of examples they are shown to learn in comparison to the
more frequent classes, and the fact that in the way the loss function is defined, it is
cheaper to misclassify infrequent classes than the frequent ones. This is a good pro-
cedure if the main interest is to achieve the highest possible global accuracy, but in
that case we might as well remove the most infrequent classes and focus on the ones



Chapter 3. Results & Discussion 33

well enough represented. If we take into account the fact that we would like to be able
to extract some conclusions from the learnings of the model, increasing the weight
that the small classes have during the training steps could be helpful. A modification
of the cost function as the one used in [40], where the misclassification of infrequent
classes has a higher cost than the misclassification of the more frequent ones, could
be used. Manually assigning different costs to different kinds of errors, making mis-
classifications between more similar classes less costly, could also help guiding the
optimization process in a better way. Some variation of curriculum learning [2] would
also be an interesting feature to be tried. Roughly, curriculum learning is based on the
idea of training the models on stages of increasing level of difficulty, making the net-
work learn from the easier examples in the beginning and progressively add the more
difficult examples to the training set. This is supposed to help speed up the conver-
gence of training towards the global minimum (on convex criteria) or find better local
minima (on non-convex criteria) while also having a regularizing effect. In the context
of subcellular location prediction, the easy examples could be defined as those belong-
ing to the classes with a previously recorded high success of classification whereas the
difficult ones could be those belonging to the classes with a low success of classifica-
tion. Another option would be to group the classes by similarity at the beginning (e.g.
secreted-intracellular) and progressively separate them until the final 11.

In all cases of the three architectures, during training, the model ends up with an
almost perfect accuracy for the training sets. Contrary to the expectation, though, this
does not hinder the test performance, and when the test and train accuracies start to
diverge, the test accuracies either stay the same or just keep getting better at a lower
rate. While at first glance the differences in performance between the train and test
sets seem to point towards a problem of overfitting, this appears not to be the case.
Overfitting is usually defined as the phenomenon that occurs when models memorize
the training set, achieving very good performance with it but losing its ability to gen-
eralize for any new data. The ability to generalize does not seem to be lost given the
performance seen in the test sets, and therefore, what happens during the training of
these models cannot be called overfitting. This means that, for some reason, the pat-
terns specific to the training set that the model learns after the training performance
starts to diverge do not harm the ability it has to generalize for new data.

Models interpretation

The challenging part of the project was to actually interpret and extract meaningful
conclusions from the trained neural network models. The PSSM-logo representations
of the learned filters are the most straightforward and realistic way to display the fea-
tures learned by a convolution layer applied to sequence data. The fact that the con-
volution is done from left to right of the sequence implies that the output layers still
keep the relationship to the original input amino acids, and filter representations of
deeper convolution layers could still be done. A deeper convolutional network (with
more convolution and pooling steps) could be represented and although the deeper
levels would be harder to interpret they could shed some light about what are the
more complex feature relationships that the network is able to learn.

Regarding the signal masking approach, several modifications could be applied. The
first and more obvious is, as mentioned before, to not take into account the parts of
the sequences which are already pre-filled with X’s when calculating the average KL
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divergence per position. Another feature to add would be to implement a way to ac-
tually weigh properly the changes in the output layer of the model. A slight change
in the score for two classes might change the final decision of the model, and big
changes among the scores of multiple classes might not influence the final decision of
the model. The KL-divergence does not take this into account and it just measures the
change of the whole probability distribution. An alternative way to measure the im-
portance of each position of the input sequences would be to obtain the saliency maps
[17, 35]. These are weighted maps of the influence of each position of a sequence in the
final class score of a classification task. It has shown good results in image and DNA
sequence data. On another note, variability of the KL-divergence for all sequences in
a class has not been accounted for. It would be wise to take some measurement of
variability for this at the class level, since it would provide useful information. For
instance, specially high variability in the patterns shown by the sequences inside a
class could be an indicator of different subgroups of sequences with distinct relevant
regions.

The class optimization method is a great way to generate representations of what the
network has learned from the examples used to train it. In some way, it shows what is
its idea of each of the classes. Depending on the situation it could (i) help understand
why some classes are being wrongly classified (if the optimal class input contradicts
already validated knowledge about that class, for instance) or (ii) lead to the discovery
of not yet known features of the classes. The latter usage is one of the main advan-
tages and exciting characteristics of machine learning approaches, the ability to find
new patterns in the data without (relatively) any guidance.

On a conceptual level, the three approaches used to attempt to open the black box work
quite differently and at different levels:

e The representation of the convolutional filters is just a visual representation of
the transformations that the data faces when it goes through a convolution step.
It is possible to do this given the nature of the data (sequential) and of the trans-
formation (convolution).

e The signal masking approach is an attempt to obtain an estimation of the im-
portance of the input features. Feature selection [3] is rather straightforward
with simpler machine learning algorithms like decision trees. It is useful both
to select relevant input features and determine the importance of each of them.
Deep learning algorithms lack an easy feature selection process, and that is the
gap that approaches like the signal masking approach or the mentioned saliency
maps try to fill. In this case, it was not used to select features but to determine
the importance of each region of the sequences for the different classes.

e The class optimization is a portrayal of the general idea that the network has
learned for each of the classes. An even better use for this approach in the context
of subcellular location prediction would be to couple it with one of the feature
importance methods. The class optimization provides information about what
the optimal residue is for each position while the other methods yield the relative
importance of each of the positions. Combining the two of them could render a
faithful representation of what the network expects and looks at for each of the
classes. The relevant stretches could then be used to search for known domains
or motifs which could be linked to that specific class.
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All in all, the application of deep learning approaches to biological sequence data is
on the rise [14, 23], and the interest to find ways to decipher the black box that these
represent will most certainly lead to several interesting attempts in the near future.
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