NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE43832 Query DataSets for GSE43832
Status Public on Jan 29, 2013
Title Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity
Organism Rattus norvegicus
Experiment type Expression profiling by array
Summary Aims/hypothesis: While lipid deposition in skeletal muscle is considered to be involved in obesity-associated insulin resistance, neutral intramyocellular lipid (IMCL) accumulation per se does not necessarily induce insulin resistance. We previously demonstrated that overexpression of the lipid droplet coat protein perilipin 2 augments intramyocellular lipid content while improving insulin sensitivity. Another member of the perilipin family, perilipin 5 (PLIN5), is predominantly expressed in oxidative tissues like skeletal muscle. Here we investigated the effects of PLIN5 overexpression – in comparison with effects of PLIN2 – on skeletal muscle lipid levels, gene expression profiles and insulin sensitivity. Methods: Gene electroporation was used to overexpress PLIN5 in tibialis anterior muscle of rats fed a high fat diet. Eight days after electroporation, insulin-mediated glucose uptake in skeletal muscle was measured by means of a hyperinsulinemic euglycemic clamp. Electron microscopy, fluorescence microscopy and lipid extractions were performed to investigate IMCL accumulation. Gene expression profiles were obtained using microarrays. Results: TAG storage and lipid droplet size increased upon PLIN5 overexpression. Despite the higher IMCL content, insulin sensitivity was not impaired and DAG and acylcarnitine levels were unaffected. In contrast to the effects of PLIN2 overexpression, microarray data analysis revealed a gene expression profile favoring FA oxidation and improved mitochondrial function. Conclusions/interpretation: Both PLIN2 and PLIN5 increase neutral IMCL content without impeding insulin-mediated glucose uptake. As opposed to the effects of PLIN2 overexpression, overexpression of PLIN5 in skeletal muscle promoted expression of a cluster of genes under control of PPARα and PGC1α involved in FA catabolism and mitochondrial oxidation.
 
Overall design Rats received a high fat diet for 3 weeks; 2 weeks after start of the diet intervention Plin5 (OXPAT) or Plin2 (ADRP) were overexpressed in either the right or left tibialis anterior muscle. One week later pooled tibialis anterior muscle samples were analysed on microarrays.
 
Contributor(s) Bosma M, Sparks L, Hooiveld G, Jorgensen J, Houten S, Schrauwen P, Kersten S, Hesselink M
Citation(s) 23353597
Submission date Jan 28, 2013
Last update date Nov 06, 2013
Contact name Guido Hooiveld
E-mail(s) guido.hooiveld@wur.nl
Organization name Wageningen University
Department Div. Human Nutrition & Health
Lab Nutrition, Metabolism & Genomics Group
Street address HELIX, Stippeneng 4
City Wageningen
ZIP/Postal code NL-6708WE
Country Netherlands
 
Platforms (1)
GPL6247 [RaGene-1_0-st] Affymetrix Rat Gene 1.0 ST Array [transcript (gene) version]
Samples (3)
GSM1071843 Muscle_EmptyVector
GSM1071844 Muscle_ADRP
GSM1071845 Muscle_OXPAT
Relations
BioProject PRJNA187510

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE43832_RAW.tar 12.3 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap