Groundwater

System

Identification






Groundwater System Identification
through

Time Series Analysis






motto:

Kees gaf de ruimte,
Jos nam de tijd






Groundwater System Identification
through

Time Series Analysis

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft;
op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben;
voorzitter van het College voor Promoties

in het openbaar te verdedigen op maandag 5 maart 2012 om 15.00 uur

door Jost-René VON ASMUTH

ingenieur in de biologie
geboren te Eindhoven



Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr.ir. T.N. Olsthoorn
Prof.dr.ir. M.F.P. Bierkens

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr.ir. T.N. Olsthoorn, Technische Universiteit Delft, promotor
Prof.dr.ir. M.F.P. Bierkens, Universiteit Utrecht, promotor
Prof.dr.ir. F.C. van Geer, Universiteit Utrecht

Prof.dr.ir. AW. Heemink, Technische Universiteit Delft

Prof dr.ir. N.C. van de Giesen, Technische Universiteit Delft
Prof.dr.ir. S.Uhlenbrook, Technische Universiteit Delft

Prof. K.W. Hipel, University of Waterloo

Dr.ir. C. Maas, KWR Watercycle Research Institute

Dr.ir. C. Maas heeft als begeleider in belangrijke mate aan de totstandkoming van het
proefschrift bijgedragen.

Groundwater System Identification, through Time Series Analysis
Ph.D. thesis Delft University of Technology

Cover design by : Wendy Grootscholten & Laurens Schaap
(www.schaapontwerpers.nl)

Cover photo by . Danish Khan

Printed by : Optima Grafische Communicatie

KWR 2012.001
ISBN 978-90-5155-079-5

The research was financially supported by KWR Watercycle Research Institute, with
the aid of a WBSO grant by the Ministry of Economic Affairs, Agriculture and
Innovation. Its completion was supported by the Dutch Province of Overijssel.

Copyright ©2012 by :  J.R. von Asmuth
e-mail . jos.von.asmuth@gmail.com
website D www.gw-system-id.nl

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and retrieval system,
without written permission from the publisher.



Acknowledgements

As a long time has passed since the start of this research, people have come and gone,
and contributed to different phases of it. There is, coming to think of it, only one
person that was really there at the start, and will be so at the finish. That person, of
course, is Kees Maas. Kees, your farewell speech at KWR made me realize again how
much our work has been interwoven over the last years, also for you. You asked me
and KWR to treat Menyanthes as your baby too, and to take good care of it. To me,
however, Menyanthes is more an attempt to show the world the power and beauty of
the equations and ideas, which | think are your true babies (or crown jewels, as | once
called them). Through these babies, one may see the beauty of the world itself, which
perhaps is a necessity for an ecologist to devote so much time to them. Thanks for all
the things | could learn from you, and for your unquestioning support in better and
lesser times. At this point, | must also not forget André Jansen, as it was his
impassioned plea (and way of acting later on) that convinced me of taking on this task
in the first place.

My thanks is also due to (the rest of) my advisory board, who guided me in my first
years. These are Ab Grootjans, Evert-Jan Lammerts, Ella de Hullu, Jan Hoogendoorn,
and of course Cees van den Akker, initially my promotor, and Marc Bierkens, who is
my second promotor. Whereas the subject of this thesis is partly physically oriented,
the other part has its basis in stochastics and statistics, and is much indebted to
Marc's guidance and inspiration. Again, | want to express my apologies to the
ecologists in my advisory board (including myself), for the lack of ecology in my
research. | hope that in spite of this, the ecological applications and cooperation in
later (and hopefully also coming) years can partly make up for this. My thanks also go
to Harry Rolf of the Provincial water supply company of North-Holland, who initiated
me in his ‘down to earth’ viewpoint on ARMA time series models, which results from
many years of experience.

Next, | want to thank my colleagues at both the Delft University of Technology and
KIWA or KWR Watercycle Research Institute for their cooperation and support,
including Ed Veling, Frank Smits, Huub Savenije, Hanneke de Jong, Christophe
Obergfell, Gijsbert Cirkel, Jan Willem Kooiman and Arthur Meuleman. This also
includes Arjen Kruithof, Otto de Keizer, Danneke Bakker, Vanessa Sternitzke, Marieke
Eeuwe, Geerte van der Meijden, Harm Brinkhof and Arend Terluin, who contributed
as MSc students to my work. Theo Olsthoorn, thanks for the flexibility in adopting me
as a Ph.D. Student, after the superannuation of Cees van den Akker, and for your
enthousiasm and support on every level. Mark Bakker, thanks for the fruitful
cooperation and the unfailing acuteness of your judgment (and the joy whenever Ajax
gets beaten!). Peter Hesen, thanks for cooperating, having the patience and sharing
the pleasure in making a businesslike success out of Menyanthes too. In this respect,
also the support and faith of Ron van Megen, whenever it was needed, was highly
valued and has been crucial. Frans Schaars, thanks for teaching me all the tips and
tricks, and primarily the fun in using Matlab. Hopefully, we may again join forces one



day. Inke Leunk, thanks a.o. for the firm way in which you kept Menyanthes and its
helpdesk going, especially during my leave. Although not being a colleague literally, |
also want to thank Martin Knotters for his colleague-like cooperation through the
years (and unparalleled sense of scientific humor). Thomas de Meij, | consider your
assignment that allowed me to spend another seven months in Delft and finish this
thesis, to be sort of a miracle. Thanks for thinking along the way you did (at this and it
seems all other occasions).

Logically, these final words are for my friends and family. How naive can one be?
Many years ago, | started this research with the intention to treat it as just another job,
experienced as project manager and determined to work disciplined. Why then go
into the trouble of extensively thanking those that are closest, as all other thesis
acknowledgements seem to do? But clichés are of course never without cause, and
perhaps it is impossible to avoid a struggle in one way or another when pushing
oneself to the limit, in relative isolation and over such a long period as in a Ph.D.
research. Thanks to everyone who supported me and my little family in this period! |
hope to find everybody still alive, when | soon finish this chapter in my life and look
out the window again. Special thanks go to Laurens and Wendy, for the beautiful
representation of an ‘impulse response’ on the cover. Thanks, Daniel, for cooperating
in Menyanthes as well as being a brother. Miep, you are the best grand parent in the
world! And | end here with deeply thanking my wife Karen, and my kids Hannah and
Abel, for everything. Hopefully, in near future, | can somehow and somewhat correct
the image that | am married to my research and have Menyanthes as a child.

Woerden, January 17" 2012 Jos von Asmuth



Contents

Acknowledgements
Symbols and notation

1 General introduction
1.1 Initial objectives and scope
1.2 Contributions and outline of thesis

2  General background, methods and theory

2.1 Facets of the system approach
On the system concept
The ultimate system versus the elementary volume scale
Simple behavior versus complex structure (equifinality)
Time series analysis, signal processing and system identification
Hydrologic applications and physical insight

NN N NN
s Wik

2.2 Statistical, ‘black box’ viewpoint
2.2.1  ARMA models as linear regression equation
2.2.2  Effects of noise and noise model
2.2.3 Limitations of ARMA models

2.3 Physical, ‘white box’ viewpoint

2.3.1 AR models as linear reservoir system

2.3.2  Differential equations and convolution

2.3.3  Evaluation of a convolution integral

2.3.4  Impulse responses and their characteristics

2.3.5 Responses of elementary groundwater systems
2.3.5.1 Recharge on a system with a uniform internal head
2.3.52  Recharge on a system with a one-dimensional head gradient
2.3.5.3  From infiltration to recharge in the unsaturated zone
2.3.5.4  Convolution of response functions
2.3.5.5  Other situations and excitations

2.4 Distribution functions as response models
2.4.1  The skew-Gaussian convolutional limits
2.4.2  The Pearson type lll, scaled gamma and generalized moving Gaussian
distribution
2.4.3  Matching temporal moments with spatial models

7

13

15
16
17

21
22
22
25
27
28
31

33
33
36
38

40
40
44
45
48
50
50
51
54
57
58

59
59

62
65



3

Time series modeling using continuous response functions
3.1 Introduction
3.2 Methods and theory
3.2.1  The discrete ARMA TFN model
3.2.2  The continuous time PIRFICT model
3.2.3  Evaluation, parameter estimation and diagnostic checking
3.2.4  Summary of method
3.3 Example application
3.3.1 Set-up and data set
3.3.2  Single series
3.3.3  Multiple series and validation study
3.3.4 A small simulation study
34 Discussion and conclusions

A continuous noise model for autocorrelated data of irregular
frequency
4.1 Introduction
4.2 Methods and theory
4.2.1 Irregular data and the AR(1) model
4.2.2 The combined AR(1) model and ‘degenerate’ Kalman filter
4.2.3  The Ornstein-Uhlenbeck based model
4.2.4  Parameter estimation and SWSI criterion
425 Summary of method
4.3 Example application
4.3.1 Set-up and data set
4.3.2  Comparison of the likelihood function and the SWSI criterion
4.3.3 A check on the innovation variance function
4.4 Discussion and conclusions

Modeling groundwater head series subjected to multiple stresses
5.1 Introduction
52 Methods and theory
5.2.1  From asingle to a multiple input model
5.2.2  Response functions for different types of stresses
5.2.3  Parameter estimation
5.2.4  General modeling procedure
5.3 Example application
5.3.1 Single series
5.3.2  Multiple series
5.4 Discussion and conclusions

69
70
72
72
74
77
81
81
81
82
85
87
88

91
92
94
94
96
98
99
102
103
103
105
107
108

11
112
113
113
115
117
118
120
120
124
128



6

8

9

Characterizing groundwater dynamics based on response
characteristics
6.1 Introduction
6.2 Methods and theory
6.2.1  Meteorologic characteristics
6.2.2 Response characteristics
6.2.3  Combination into GD-characteristics
6.2.4  Summary of method
6.3 Example application
6.3.1 Set-up and data set
6.3.2 Comparison of MxGL statistics and GD-characteristics
6.3.3  GD-characteristics and fluctuations of non-annual frequency
6.4 Discussion and conclusions

Menyanthes: software for groundwater head data
7.1 Introduction
7.1.1  Time series models: their strong points and limitations
7.1.2  Recent developments and use of physical insight
7.1.3  Scope and outline of paper
7.2 Methods and theory
7.2.1  Differential equations, impulse responses and convolution
7.2.2  Methods of constructing response functions
7.2.3  The PIRFICT method and use of distribution functions
7.3 Software architecture
7.3.1  Why Menyanthes?
7.3.2 Information systems hierarchy and data management
7.3.3  Data analysis and visualization
7.3.4  Main screen and modeling tools
7.3.5 Simultaneous time series analysis
7.3.6  Menyanthes versus alternative software
7.4 Example application
7.4.1  Time series decomposition
7.4.2  Impact of hydrologic measures in a Dutch dune area
7.5 Discussion and conclusions

Summary and conclusions

Samenvatting en conclusies

Derivations

References

Publications

Curriculum vitae

130
132
134
134
135
138
139
140
140
142
144
147

151
152
152
153
154
155
155
156
157
159
159
159
160
161
162
163
164
164
165
170

173

183

195

205

217

223






Symbols and notation

In this thesis, the symbols and notation of related literature is followed where possible.
On the other hand, the equations in this thesis should of course be unambiguous,
every symbol having a clear and unique meaning. In some cases, both objectives
proved to be incompatible and some overlap is allowed. Examples are ¢ for both the
Dirac delta function and autoregressive parameters of ARMA models, and » for both
radius and recharge. Where this is the case, the meaning of symbols is clear from or
clarified in the text.

Space and time Statistics
t . time, either discrete (e N, [-]) | N : number

or continuous (¢t e R, [T]) O set of observations
Y : year[T] v set of parameters
D : Julian day [T] P probability
& . frequency [T N . log likelihood
7 phase shift [T] J . Jacobian matrix
A . amplitude C covariance matrix
xyz : Cartesian coordinates [L] R? coefficient of determination
r : radius [L] s? sum of weighted squared
L . length [L] innovations
A area[l’]
C  : relative position or centrality [-] | X average of x

X deviates of xfrom x

Operators and special functions % prediction of x (deterministic,
2 : summation operator or in time update)
IT : product operator X prediction of x (in
E . expectation operator measurement update)
B  : backward shift operator
d : differential operator M, : temporal moment of order n
0 . partial differential operator ¢
A difference operator M, centralized temporal moment
V  : gradient vector U mean
I' : gamma function o - variance
K, : modified Bessel function of the | |

second kind and zeroth order e skewness
d(¢) : Dirac delta function 2 _
H(¢) : Heaviside step function y kurtosis




ARMA approach

Vi

=

=

L

% 280

|S

nr

ns

np

ng

b

. explained variable

. explanatory variable

. error or residual series [L]

. discrete white noise process [L]
. transfer function

: noise response function
. transfer moving average

parameter

. transfer autoregressive

parameter

. noise moving average parameter
. noise autoregressive parameter

: number of @'s in an ARMA

model

. number of &'s in an ARMA

model

: number of @'s in an ARMA

model

: number of @’sin an ARMA

model

. dead or delay time [-]

PIRFICT approach

o) :
0@) :
Q) :
(1) :
: noise impulse response function
W(t):

9(t)

v(?)
f
d

impulse response function
block response function
step response function
frequency response function

continuous white noise (Wiener)
process [L]

. innovation series [L]
. evaporation factor [-]
. local drainage level [L]

A,a, b n,a, B,y,0 : parameters in

various response functions

Physical processes

h(t)

P
e(?)
q(t)
r(t)

s(t)
b(t)

. groundwater head [L]
p()
. precipitation amount [L]
. evaporation [LT]

. specific discharge [LT"]

. specific recharge [LT"]
w(t) :
. surface water level [L]

. barometric pressure [L]
m(t) :
H() -
R(1):

precipitation intensity [LT]

groundwater withdrawal [L'T]

hydrologic interventions [-]
volumetric water content [-]
value of stress i

Phy5|cal parameters

c
S
H
K
KH
D

v

. drainage resistance [T]

. storativity [-]

. saturated thickness [L]

. permeability [LT"]

: transmissivity [L°T"]

. effective diffusion-dispersion

coefficient [L* T"]

. effective propagation velocity

(LT']
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Von Asmuth, J.R., and K. Maas (2001)

The method of impulse response moments: a new method
integrating time series-, groundwater- and eco-hydrological
modelling.

in: Impact of Human Activity on Groundwater Dynamics, edited
by Gehrels, J.C., Peters, N.E., Hoehn, E., Jensen, K., Leibundgut,
C., Griffioen, J., Webb, B., and Zaadnoordijk, W.J., IAHS Press,
Centre for Ecology and Hydrology, Wallingford, 51-58.




1.1  Initial objectives and scope
As perhaps is not uncommon in

PhD research, the initial objectives Groundwater
differ rather strongly from the modelling
final results presented in here. In
the original proposals [Maas,
1995, Von Asmuth, 2000], the

primary objective was to improve Time Eco
eqo-hydrologic modeling methods series of the -hydrological
with respect to the way in which modelling IR-function modelling

the relationship between

groundwater dynamics and the . ) ,
vegetation composition in figure 1.1: Overview of the method of impulse response

groundwater dependent moments, showing the three fields of modeling from which
ecosystems was modeled. At that moments can be derived and be mutually exchanged [Von

. Asmuth and Maas, 2001].
time but also to date, common

methods to present and characterize groundwater level fluctuations are the so-called
duration lines [e.qg.,Tixen, 1954, Grootjans, 1985, De Haan, 1992], regime curves and
overall characteristics like MxGL statistics [Van der Sluijs and De Gruijter, 1985]. Such
methods, however, have two important drawbacks:

e Statistics based on groundwater level series over limited periods are sensitive
to long term variation in the driving forces [Knotters and Van Walsum, 1997,
Bartholomeus et al., 2008].

e Graphs or lines are essentially vectors, and less convenient for data storage,
(spatial) presentation, analysis and modeling purposes than scalars. Overall
statistics, on the other hand, only capture certain aspects of the dynamics
[Von Asmuth and Knotters, 2004].

Because of these drawbacks, it was hypothesized that an alternative route based on
the so-called impulse response function (see section 2.3.4) could improve
ecohydrologic modeling methods. In this alternative, a key notion is that spatial
differences in groundwater level dynamics are mainly determined by spatially variable
system properties, while temporal dynamics are mainly driven by spatially less variable
meteorologic dynamics. Consequently, it was hypothesized that spatial differences in
vegetation could be modeled more accurately using system properties alone, or in
other words by ‘filtering out’ temporal, meteorologic dynamics. To be more specific,
the use of time series models was proposed for inferring impulse response functions
from series of groundwater level observations, and in turn to characterize these by
their moments (see section 2.3.4). Moments are scalars and constants in linear, time-
invariant systems, and together with the spatially less variable driving forces, they
completely characterize the (deterministic part of the) dynamics at a certain location.
As an additional advantage, moments can also be simulated directly and spatially
using distributed groundwater models (see section 2.4.3).



All'in all, the initial scope of this research encompassed three fields of modeling, i.e.
time series, groundwater and eco-hydrologic modeling. These fields of modeling
together constitute the method of impulse response moments, from which moments
can be derived and be mutually exchanged (figure 1.1). The three ‘leaves’ in this
research led to naming the computer program which was to be developed after
Menyanthes trifoliata, the scientific name of the Marsh trefoil or Bogbean. As the
natural habitat of Menyanthes trifoliata is on the verge of ground and surface water,
as it is threatened by anthropogenic influences and also is one of the wonderful
flowers in such areas, it serves as the natural ambassador for the initial objectives of
this research.

1.2  Contributions and outline of thesis

Although it was envisaged that the link between time series models and groundwater
models would be a subject in its own right, at the time the existing ARMA time series
models were thought to be well developed and be usable without modification. As it
turns out, however, most of the contributions of this thesis are in the field of time
series analysis. The main reasons for this are:

e The practical limitations of ARMA models described in section 2.2.3. These
are especially problematic when having to process large numbers of time
series of irregular frequency, as would have been necessary considering the
initial objectives of this research.

e From a continuous time viewpoint, the transfer functions of ARMA models
are block responses (see chapter 3). Inferring moments of continuous time
impulse responses using ARMA models at least would have required a
transformation of their results and the development of a continuous time
framework.

e Asenvisaged in [Maas, 1995], making moments from time series models
comparable to those generated by a groundwater model is not
straightforward. This is a.0. due to a difference in scale and due to effects of
the unsaturated zone. This of course requires insight and work on the
groundwater modeling part, but also on the methods, accuracy and principles
of inferring moments from time series.

e In principle, the possible number of parameters in an ARMA transfer function
is infinite (see section 2.2.1). Consequently, ARMA transfer functions cannot
be determined uniquely from a limited number of moments. This is required
when aiming to create time series models from moments generated by a
groundwater model, as was envisaged in the method of impulse response
moments.

¢ Moments are not, or not always, uniguely and directly usable for eco-
hydrologic modeling (see section 8.5). The methods developed in chapter 6
can serve as an alternative, but require a direct link between moments and



the actual groundwater level fluctuations, which in turn requires the use of a
response function with a limited number of parameters (see previous point).

What followed from these ascertainments was a process of improving and adapting
time series analysis methods to the needs set by the initial objectives of this research
(but not limited to that). As such, one of the contributions of this thesis is that it
brings together different viewpoints, methods and aspects related to (geohydrologic)
time series and time series analysis. In an introductory fashion, these different
viewpoints and methods are treated in the next sections (the systems approach in
section 2.1, statistical time series analysis in section 2.2, the physical viewpoint in
section 2.3, use of distribution functions in section 2.4). The views and methods
presented are united in a consistent, continuous time framework, together referred to
as groundwater system identification. By combining aspects of all methods, a new
method of time series analysis was developed and named the PIRFICT method. This
method has several advantages over the ARMA method. Perhaps most importantly, it
allows for the application of time series analysis methods on a large scale and in a
standardized, less knowledge and labor intensive fashion. Within the PIRFICT method,
physically-based, analytic solutions to geohydrologic problems can be used, which
enhances the physical insight in the model. Distribution functions of skew-Gaussian
nature, like the scaled gamma distribution, prove to fit the behavior of a wide range
of systems quite well. As for application in practice, an important step is that a user
friendly computer program named Menyanthes was developed, which contains most
of the methods presented. By using the methods and tools developed, the effects,
impulse responses and moments of different driving forces can be effectively inferred
from a given data set and be separated. Simply put, this thesis provides methods and
tools that are better put up to the original tasks set for it.

In the next chapters, the different steps taken and peer reviewed papers published'
are presented. In chapter 3, the PIRFICT method of time series analysis is presented. Its
practical advantages are discussed, and its structure and performance are compared
to those of ARMA models. In chapter 4, the noise part of the PIRFICT model is
presented and its methods and criteria for parameter optimization are discussed.
Furthermore, it is compared to (the pure prediction form of) the Kalman filter, to
which it is related. In chapter 5, the methods behind the PIRFICT model are extended
to cover the complex situations that occur in real world, where multiple factors
generally influence groundwater heads simultaneously. In this chapter, also the
modeling procedure and methods for interpreting and checking model results are
discussed. In chapter 6, the relationship between moments and groundwater level
characteristics is discussed, by regarding the dynamics and response of systems in the
frequency domain. It is shown that the commonly used MxGL-statistics have some
important drawbacks, as they filter out the low-frequency dynamics of a system and
mix-up annual with higher frequencies. In chapter 7, the computer program
Menyanthes is presented and a synthesis of the methods developed and results

' Some relatively minor changes were made to the text that was published. First, the
symbols and notation were made uniform and are now summarized at the beginning
of this thesis. Also, the terminology was harmonized.



obtained is given, while specifically focusing on the interface between data-based and
physically-based methods. Finally, chapter 8 contains the general conclusions on and
summary of the methods and results presented in this thesis.



Abstract:

Appreciating the contents of this thesis requires some knowledge of its background, i.e.
the methods and theory on (geohydrologic) time series analysis and system
identification. In this chapter, a basic introduction is given, and different views on the
subject are presented. First, some thought is given to the systems approach in general,
as to date, most (geo)hydrologist are less familiar with system identification methods
than with e.qg., spatially-distributed groundwater models. In short, the system viewpoint
can be characterized by the fact that in essence it is top-down. The system viewpoint treats
agroundwater system first as a ‘whole' and not bottom-up, as an aggregate of cells, layers
and/or elements, which is still the mainstream viewpoint. Having said this, also from the
systems perspective, there are different ways in which a groundwater system, or any
system for that matter, can be perceived, modeled and/or analyzed.

Time series analysis is a method that originates from the statistical sciences. In principle, it
does not require any knowledge of the physical functioning of the system under
consideration. In its basics, it can be seen as a variant of simple, linear regression, and the
coefficients in the regression equation, either autoregressive or moving average
parameters, do not have a physical meaning a priori. From a physical point of view, on the
other hand, a central concept is the so-called impulse response function, as it completely
characterizes the functioning of a linear time-invariant system at a certain point in space.
Impulse response functions can be inferred from a data set through time series analysis,
but also using 'purely’ physically-based methods, either analytic or numeric (in case of
linear systems). This means that impulse response functions can also be derived from the
differential equation and boundary conditions that belong to a certain geohydrologic
system and its schematization.

In this thesis, a 'mix' between both worlds is developed and presented. In this approach,
the time series analysis problem is formulated in a continuous time domain. It allows for
the use of (continuous) distribution functions that have a statistical origin, as well as
physically-based analytic response functions. Distribution functions of skew-Gaussian
nature, like the scaled gamma distribution, prove to fit the behavior of a wide range of
systems quite well. Next to that, a further link between the physically-based world of
groundwater modeling and time series analysis is established using moments of impulse
response functions, as these can also be generated directly and spatially using moment-
generating differential equations, implementable in any standard groundwater model.
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2.1  Facets of the system approach

211  On the system concept

As it is a widely used term in and System
outside the scientific community,

‘system’ can have many different

meanings. Originally, system

stems from the Greek word Input
ovotnpa, which translates as ‘a
whole compounded of several
parts or members’ or
‘composition’ [Perseus Digital
Library]. Being a central concept I—

in some disciplines, there have

been several attempts to give a

formal definition of system and figure 2.1: Schematic representation of an open, physical
related terms [see e.qg., Marchal,  system. The boundary separates the system from the
1975, Willems, 1991, Backlund, environment, with which it exchanges matter, energy
2000, Klir, 2001]. From his review, and/or information.

Backlund concludes that previous

definitions of system are imprecise. He argues that only via a definition based on the
constituting parts and their formal interrelationships, it is possible to unambiguously
define what is part of a system and what is not (e.g., what are external stimuli), or
what are actually two systems in stead of one. In short, only such a definition would
define what is a system, and what is not. For our purposes, however, we prefer a
more general usage of the term, as does [Ljung, 1999] who defines a system in loose
terms as '...an object in which variables of different kinds interact and produce
observable signals’. In a physical or thermodynamic context, system has a technical
meaning and simply refers to the portion of the physical universe chosen for the
analysis. What is inside and outside a system is not fixed by some objective, formal
definition, as attempted by Backlund, but is in contrast a free choice, generally made
to simplify the analysis. Everything outside the system is then referred to as the
environment, which is ignored in the analysis except for its effects on the system.
Albeit the fact that it is a very general concept, physical systems share common
characteristics. In general, systems for instance have (figure 2.1):

boundary

Output

Behavior

£
:

e aboundary (defining what is part of a system and what is environment)

e structure  (defined by the internal components and their composition,
determining the operation)

e Dbehavior  (involving the (linear or non-linear) response to inputs of matter,
energy and/or information)

In a system identification or time series analysis context, it is common practice to
denote forcing variables as ‘input’ and forced variables as ‘output’. Variables related
to systems, however, do not necessarily represent something physically entering it or
coming out. The ‘output’ may for instance well be the evolution of a certain



parameter or ‘state variable’ that describes a condition in or of the system itself. In
simple mechanical systems, position coordinates and their derivatives are typical state
variables. Knowing these and the external forces, it is possible to determine their
future state (which is a central concept in the so-called state space representation of
dynamical systems). Other terms that are used to denote input and output are
independent and dependent variables, forcing and forced, stresses, excitations and
stimuli for the input, or explanatory and explained variables in a general statistical
context. Furthermore, in stead of behavior, terms like operation, processing, transfer
or response are used. The diversity in terminology reflects the diversity in sciences in
which theory related to systems has been parallelly applied and developed (see section
2.1.4). See also [Willems, 1991] for a more general, formal and mathematical
framework of systems theory, in which behavior is a central concept and variables are
either latent or manifest (i.e. forcing or forced), analogous to the usage of these terms
in other sciences. Behavior, however, is used by Willems in a more general sense, as
the ensemble of input, response and output. Here we choose to use behavior to
denote the way in which the systems responds or ‘behaves’ when it is stimulated.
Depending on their relationships with the environment, systems can be classified as:

e open (exchange of energy and matter)
o closed (exchange of energy, not matter)
e isolated (no exchange)

Systems can furthermore be:

e time-varying
e time-invariant

depending on whether or not their structural properties change over time. In case of
linearity, this means that their response or transfer function is time-invariant also. This
is not be confused with the issue of stationarity, which is a property of a signal or a
stochastic process. Stationarity indicates whether different observations have the same
joint probability distribution (strong or strict stationarity) and/or the same mean and
covariance (weak stationarity). A non-linear system, for instance, can be time-invariant
but at the same time harbor a non-stationary process. Last but not least, the
operation of systems can be (approximated as being):

e linear
e non-linear

In the first case, the output is simply a sum of the effects of all individual events and
inputs, whereas in the latter case, it is not. The issue of linearity has large practical
implications, as linearity allows for the use of powerful linear algebra. Although there
are solutions for modeling non-linear groundwater systems (e.g., the threshold or
TARSO approach, which is also incorporated in the computer program Menyanthes
described in chapter 7), this thesis exclusively deals with linear (or linearized) systems.
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In that case, the operation of a system in response to a single stimulus can be
described by a single response function.

21.2 The ultimate system versus the elementary volume scale

To date, the mainstream approach for modeling the dynamics of hydrologic systems,
or any physical system for that matter, is based on an appropriate partial differential
equation for the process under consideration (see also section 2.3.2). Generally, the
differential equation is based on continuum mechanics and applies to a so-called
Representative Elementary Volume (REV). If no direct analytic solution is available, the
system is modeled by dividing space into cells, elements and/or layers, and defining
their dynamically relevant properties. After setting the initial and boundary conditions,
the differential equation is then solved using the finite difference or finite element
method. As a final step, the match between model predictions and available
observations is optimized using some automated optimization routine. For hydrologic
processes, this approach or ‘blueprint for a physically-based, digitally-simulated
hydrologic response model (figure 2.2)" has been laid down by [Freeze and Harlan,
1969]. Although the accomplishments of this approach are vast and undisputed, there
also has been strong and increasing criticism. In short, the main problems with the
REV-scale approach boil down to two points:

e  First, complete physical determination of the properties of complex systems is
not only a practical, but also a fundamental impossibility. To start with, the
continuum approach already neglects the variability below the REV-scale, e.g.,
consisting of pores and grains in a soil, or molecules on an even lower scale.
Laws and properties that apply to the REV-scale are therefore in essence
some average or statistical outcome of the underlying lower scale processes,
as described by statistical mechanics. Volume properties that are generally
considered to be physical can in fact only be derived empirically. Next to that,
methods for directly determining these properties are inherently invasive.
When the REV-scale approach is applied to environmental systems, complete
determination of all physical properties would mean mining out the entire
region being modeled, as pointed out by, e.g., [Oreskes et al., 1994]. For use
in @ model, the REV-scale physical properties that were determined at
individual locations have to be extrapolated to the scale of the cells in the
model, and those in turn to layers or other elements. In this step, based on
the necessarily limited data, much of the heterogeneity above the REV-scale is
also lost, and the remainder is the result of correlations, extrapolations and
assumptions. As a consequence, these larger scale properties are almost
never effectively derived from physical data alone. Alternatively, they are
estimated as model parameters through calibration or inverse modeling.
Because of the ubiquitous simplifications and errors in the model, generally
the parameters thereby loose their direct physical meaning.

e Second and building on the first point, inverse modeling methods using
observations on state variables are in most cases neither sufficient to uniquely
determine the ‘physical’ properties or parameters. Generally there are more
degrees of freedom in a model than that there is independent information in



the observations, and/or not every model parameter contributes meaningfully
and independently to the solution. In technical terms, the inverse modeling
problem is said to be mathematically ill-posed [Hadamard, 1902]. In light of
this problem, there has been discussion on the amount of complexity that can
be warranted in a model [e.g., Jakeman and Hornberger, 1993, Young et al.,
1996]. As a possible solution, there were calls for a revival of simpler, larger
scale and/or more strongly data based models [e.g., Young, 1998, Savenije,
2001, Kirchner, 2006, Kirchner, 2009]. As models that start bottom-up at the
REV-scale almost inherently invite the incorporation of all detail above it, it
has lead some to the prophecy that the Freeze and Harlan blueprint will be
abandoned in future, and/or to the design of alternative blueprints on larger
aggregation scales [e.g., Reggiani et al., 1998, Reggiani et al., 1999, Beven,
2002]. Next to that, there have been pleas for treating multiple model
structures and parameter sets as equally acceptable or equifinal (see next
section).

The problems mentioned above have lead some to the somewhat philosophical
conclusion that environmental models are in essence scientific hypotheses. Like these
[Popper, 1959], they can not be verified or validated, only invalidated [Konikow and
Bredehoeft, 1992, Oreskes et al., 1994]. Being as it may, models are in practice
indeed almost never invalidated, but only adjusted to better fit newly available data,
which of course has also been a dispute with regard to scientific theories in general
[Kuhn, 1962]. As opposed to the ‘physical hydrology’ or REV-scale approach of figure
2.2, which in essence is bottom-up, we can also approach a system top-down and
firstly as a whole. This is perhaps a direct consequence of the definition and usage of
the term system, and the ‘holistic’ nature of systems theory is often stressed (while
trying to avoid the common and negative association of holism with metaphysics [e.qg.,
Von Bertalanffy, 1950]). In figure 2.2, the term ‘system investigation’ primarily refers
to unit hydrograph and linear theory of hydrologic systems [e.g., Sherman, 1932,
Nash, 1958, Dooge, 1973], primarily applied to surface water hydrology. Such
methods were common at the time, and they are highly comparable to the more
modern, more general and statistically better developed fields of time series analysis
and system identification (see section 2.1.4). Whereas [Freeze and Harlan, 1969]
characterize their approach with the term ‘physically-based’, unit hydrograph and
other large scale methods are often denoted by terms like ‘lumped’, ‘conceptual’,
‘data-based’ or ‘black-box’. Response functions, however, may be equally directly
derived from physical laws and principles (see section 2.3), whereas ‘physically-based’
models may be equally strongly calibrated on available data. We therefore consider
the distinction made to be primarily an issue of scales, whereas by definition ‘system’
may be regarded to be the ultimate scale in a scientific problem. Furthermore, the
modeling approach followed can start top-down from the system-scale, or bottom up
from the REV(or any other)-scale. Also, models can be distinguished that only describe
the temporal behavior of systems from those that (also) describe their spatial structure.
An important advantage of the top-down system viewpoint is that it naturally leads to
a parsimonious approach to modeling. Time series models come with relatively few
assumptions, as in principle they do not require any information on the physical
structure or properties of systems. Because of this, they are easy to construct and at



the same time they generally show a higher model fit than spatially distributed models.
As both the system and REV-scale approach have their own advantages and

limitations (see also section 2.2.3), their integration could be a means to advance
hydrologic response modeling methods. We therefore consider the distinction made
by [Freeze and Harlan, 1969] on the highest level of 'hydrologic simulation’ to be non-
fundamental or gradual, and this thesis aims to contribute in bridging the gap.

21.3 Simple behavior versus complex structure (equifinality)

At many occasions and in many different forms, scientists have noticed that different
physical systems can exhibit behavior that is to a large extent comparable. In fact,
different physical processes like conduction of heat, flow of water and electric
currents are governed by laws that are remarkably equivalent in a mathematical sense.
This equivalent behavior of physically very different systems has led to an attempt to
formulate a science of systems in general at a higher level of abstraction, named
general systems theory [Von Bertalanffy, 1950, Skyttner, 2005]. One of the outcomes
of general systems theory that is still used today is the concept of equifinality. Von
Bertalanffy defines equifinality as the fact that in open thermodynamic systems, the
same final state can be reached irrespective of the initial conditions. In such cases, the
final state is determined only by the inflow and outflow of the system and the
constants of reaction. The term equifinality was adopted for the environmental
modeling context by Keith Beven [e.g., Beven, 1993, Beven, 2006]. Equifinality is used
by Beven in a broader sense, as the expectation that the same acceptable model
prediction might be achieved in many different ways, i.e. with many different model
structures or parameter sets. If the same behavior can be produced by systems of
different structure, inversely the structure of a system can logically not be determined
uniquely from its behavior. In other words, the notion of equifinality implies that the
underlying, complex structure and properties of hydrologic systems can not be
determined from time series of observations on state and forcing variables alone
(given that the state can only be partially observed). Beven’s primary conclusion out
of the concept of equifinality is a plea against the assumption of a single optimal
model and for allowing multiple representations of a system (inputs, model structures,
parameter sets and errors) to be equally acceptable or ‘behavioral’, in the sense of
being consistent with the observations. This approach forms the basis of the
Generalized Likelihood Uncertainty Estimation (GLUE) methodology of [Beven and
Binley, 1992]. Beven, however, also notices that hydrologic systems often show
relatively simple response characteristics and that ...various parametric models with
all their potential for equifinality and different process interpretations, are just
different attempts to simulate the same response characteristics’ [Beven, 2006, see
also Young et al., 1996]. He furthermore identifies the problem of model
dimensionality reduction as an important area for further research.

Parallel to the above, also in the field of solute transport modeling it has been
recognized that mere agreement between observed and predicted output is not
sufficient to test the validity of a model [e.g., Beck, 1987; Jury and Roth, 1990;
Sanchez-Vila and Carrera, 2004]. Jury and Roth consider it a curious phenomenon
that physically-based laws like the convection-dispersion equation became commonly
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accepted merely because experiments have shown that its
solution could be manipulated into matching the shape of the
outflow concentrations. In fact, [Jury, 1982] and also [Maas,
1994] go one step further, and suggest the use of statistical
distribution functions for modeling the transfer of solutes
through soil. When using such distribution functions (discussed
are the lognormal, gamma and Pearson type Il distribution) the
temporal behavior of a system is explicitly defined, but the exact
physical or spatial structure is not. In [Jury and Roth, 1990] it is
shown that the shapes of the lognormal and gamma
distributions have a striking similarity with that of an impulse
response solution to the convection-dispersion equation (see also
section 2.3.5.3). As a consequence, Jury and Roth state that the
main difference between statistical distribution functions and the
convection-dispersion equation is that in the latter, also the
relationship between the shape of the transfer function and
distance is defined. However, they also point out that many
experiments have shown that the convection-dispersion equation
is not completely adequate at this point, as the dispersion
coefficient is not constant but increases with distance [see also
the review by Gelhar et al., 1985]. Jury and Maas independently
suggested the use of moments to characterize the properties of
transfer or response functions, as is common practice for
distribution functions in statistics (and was also proposed for unit
hydrographs in [Nash, 1959]). Although these authors do not
refer to the transfer function noise models discussed in section
2.1.4, their choice for describing the temporal behavior of
systems with functions in which no explicit physical structure is
assumed, is in fact equivalent to what is common practice in the
field of statistical time series analysis (see next sections).
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214 Time series analysis, signal processing and system
identification

The theory on dynamic systems can be seen as a branch of
systems theory. As dynamic systems are ubiquitous in our
(natural and man-made) environment, they form the subject of
many different scientific disciplines. In spite of the large
differences in the type of system addressed, their physical
functioning, the available data and the problem to be solved, the
theory and techniques used for analyzing and modeling collected
time series data are, however, often remarkably similar. If we

figure 2.3: Back

L : : of the textbook by
focus on the analysis of separate time series here, and exclude the ‘founding
spatially-distributed models, we may distinguish two main fathers’ of time
approaches in dealing with and presenting the problem, in line series analysis,
with the general distinction made in sections 2.2 and 2.3. The Box and Jenkins.

viewpoint in the first approach is primarily statistical and the
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emphasis lies on the properties of the data
itself. The second approach in itself is more

diverse, but it shares the notion of and stronger S
emphasis on the physical system that YSTEM

generated the observations. IDENTIFICATION

PTR PRENTICE HALL INFORMATION AND SYSTEM SC! €S SERIES
The ailath, Series Editor

In the first approach, generally referred to as ThEOI‘y
time series analysis, a time series is simply FOR THE
defined as a set of observations of a certain [Js€r

variable that is arranged chronologically. As
such, time series are primarily regarded as data
sets and methods are presented for analyzing
and modeling their statistical properties. The
application of time series analysis methods
developed rapidly after the publication of the

comprehensive text book by Box and Jenkins LENNART

(1970, figure 2.3]. The so-called ARIMA LR
(AutoRegressive Integrated Moving Average)

time series models described in this book, or figure 2.4: Textbook on system
models having a related structure, are still identification by Ljung, former vice

popular in many fields of science like statistics, ~ president of IFAC (International
econometrics or social sciences. Such sciences ~ Federation Of Automatic Control).

have in common that the behavior of the systems that are studied cannot (or cannot
easily) be described by physical laws, and/or their physical properties are largely
unknown. Moreover, it is often not the functioning of the system that is of primary
interest, but the state and behavior of the variable itself. In econometrics, for instance,
a classical problem rests in adequately predicting the course of currencies, stock prices
and the like, in order to optimize the return on investments. The relationship between
the explained variable and other variables like consumer trust may be of primary
importance in that respect, because of its predictive capabilities. In typical time series
literature [e.g., Box and Jenkins, 1970, Hipel and McLeod, 1994], much attention is
paid to exploratory data analysis, model identification, parameter estimation, the
modeling of errors and uncertainties and the diagnostic checking of model results.
Furthermore, various types of statistical behavior of time series are identified (e.g.,
periodic, seasonal, long memory, series with interventions or external stimuli), and
models are presented for dealing with each one of them. The underlying system and
various physical processes generating the observations, however, generally receive
little attention. An exception to this are studies on the physical justification of time
series models and/or the use of physical knowledge for identifying the appropriate
model order in certain cases [see e.g., Klemes, 1978, Parlange et al., 1992, Knotters
and Bierkens, 2000]. Furthermore, as digital records contain discrete observations,
usually discrete-time mathematics are used and little reference is made to sampling or
frequency issues, or to the often continuous time processes occurring in real world.

Second, there are the kindred disciplines of system identification, control engineering,

signal processing and filtering, which, as stated before, have a stronger physical
orientation. System identification, a term that has been coined by [Zadeh, 1956], deals
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with the problem of building mathematical

models of dynamic systems based on observed
data. In general, system identification methods
are applied when a purely physical model g
would be overly complex or impossible to i Fourth Edition

obtain in reasonable time, due to the complex / «SIGNALS

nature of many systems and processes.

Foremost advocate of the system identification : &X SYSTEMS

INTERNATIONAL EDITION

viewpoint is Lennart Ljung. Ljung is also main Continuous and Discrete
author of the perhaps leading (and one of the
few) software tools for time series analysis, i.e. .
Matlab’s system identification toolbox [Ljung, Rodger E. Ziemer
1999, figure 2.4]. Control engineering or Vellians H. Tranter

D. Ronald Fannin

cybernetics, on the other hand, is a discipline
that is very close to system identification.
Control engineering not only deals with the
behavior of dynamic systems, but an additional
issue here is that systems also have a desired
behavior or output, called the reference. An
archetypical problem in control engineering is
how to manipulate the inputs into a system, to
obtain the desired effect on its output. In signal processing, as in time series analysis,
the focus primarily lies on the signal itself. The term signal, however, implicitly
acknowledges the presence of a system, and may be defined as a function of time
that represents a physical variable associated to it. As such, signal processing is
primarily an area of communication theory and electric engineering. In the theory on
signals and systems [e.q., Ziemer et al., 1998, figure 2.5], attention is for instance paid
to several transformations and representations of signals (e.g., Fourier, Laplace, State-
variable representation) and the difference in continuous and discrete-time systems
comes naturally. Filtering, last but not least, can be seen as a branch of both system
identification, signal processing and control engineering, as in all these disciplines
separation of the useful signal from the corrupting noise is essential. Filtering in short
can mean removing some frequencies from a signal and allowing others to pass, in
order to suppress interfering signals. Here, the frequency domain representation and
frequency response of a filter is a central issue. A second approach to filtering takes a
statistic or stochastic viewpoint. In that approach, an optimal filter is sought whose
output would come as close to the original signal as possible, by minimizing some
error or performance criterion, or maximizing the likelihood. Well known examples are
the Wiener and Kalman filter, of which the latter allows for the distinction between
system and measurement noise and can also be used for adaptive filtering (see also
section 2.2.2).

figure 2.5: Textbook by Ziemer et al.,
representative of the signal processing
viewpoint.
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21.5 Hydrologic applications and

physical insight
As discussed in the previous section, ARIMA- nmmpME“Ts I"
type i i lysi thods have b
around for quite some time now Athough [ L1 [ A4 (R4

took a while before the methods and principles
were picked up in the hydrologic sciences, this
was amply compensated by the publication of
the comprehensive book by [Hipel and McLeod,
1994, figure 2.6]. In this book, not only several
applications can be found, but also extensions
to the ARIMA models of Box and Jenkins. Here,

specific models are published and discussed for TIME SERIES MODELLING
dealing with several aspects commonly found OF WATER RESOURCES AND

in hydrologic and environmental time series,
like long memory systems or periodic influences. ENVIRDNMENTAL SYSTEMS
In the Netherlands, time series analysis methods
were adopted relatively early and were applied
on a relatively large scale, with an emphasis on ELSEVIER
groundwater level series [e.g., Van Geer et al.,
1988, Rolf, 1989, Gehrels et al., 1994, Van de
Vliet et al., 2000]. More recently, attention is
paid to the fact that the transfer function of
time series models, which describes the response of systems through time, should

have a physical basis, at least when applied to physical phenomena like groundwater
level fluctuations (this, however, was already one of the propositions in [Van Geer,
1987)). In the process of incorporating physical insight in the use of time series models,
the following approaches can be distinguished:

K.W. HIPEL AND A.l. McLEOD

figure 2.6: Comprehensive textbook by
Hipel and McLeod, devoted to hydrologic
and environmental time series.

e When applying ARMA models, the so-called model order or number of
parameters in het model has to be defined (see section 2.2.1). As a first
approach, which is called data-based mechanistic modeling, physical
knowledge is used to select the correct model order using results from a set
of candidates a posteriori. Here, selection is based on the question whether
the results and transfer functions found are plausible from a physical-
hydrologic perspective or not [Young and Beven, 1994, Young, 1998, Price et
al., 2000]. A simple example is precipitation, which of course should lead to a
rise and not a lowering of the water level.

e Asecond approach is the reversal of this process. Here, the model order is
selected a priori based on a physical-hydrologic analysis of the system. In their
paper, [Knotters and Bierkens, 2000] selected the AR(1) model (which is
equivalent to an exponential response function) for modeling groundwater
level series, based on an analysis of the functioning of a simplified soil column
(see also section 2.3.5.1).



e As a third approach, in this thesis the statistically oriented ARMA model
structure is abandoned and replaced by a model structure in which
continuous time response functions are used (see chapter 3). By doing so,
more complex, analytic solutions to geohydrologic problems can be used as
response function. The physical functioning of a system, in response to a
specific excitation, can in principle thus be imposed on the model. In the
computer program Menyanthes (see chapter 7), Hantush’ well formula is for
instance used for modeling the effects of pumping (see section 2.3.5.5), but
more general distribution functions may be used also (see section 2.4.1).

Because of the increasing physical orientation, also in the hydrologic sciences the
focus thus shifts from time series analysis to system identification, or from analyzing
the correlations in and between time series to identifying the key parameters in a
system and the effects of excitations imposed to it. Time series analysis, as such, then
becomes a tool in the more general area of system identification (analogous to the
way it is presented in e.g., [Dooge, 1973]). In the next sections, first the statistical or
black-box viewpoint on time series models is treated. Second, the physical viewpoint
and response of several elementary groundwater systems are discussed. Third a ‘mix’
between these worlds is presented, which involves the use of (distribution) functions
that do not have an apparent physical meaning or whose physical meaning is relaxed.



2.2 Statistical, ‘black box’ viewpoint

221 ARMA models as linear regression equation

From a statistical viewpoint, a time series model can be regarded as a variant of linear
regression. The equation defining a simple regression line can be written as:

y=wox+pu+n 2.D

where

: observations of the explained variable (e.g., groundwater head)
: observations of the explanatory variable (e.g., recharge)

: parameter defining the slope of the regression line

: parameter defining the intercept with the y-axis

- error or residual term

SN

For now, we will ignore the residual term, on which we will elaborate in the next
section. Of course, linear regression can be applied to all sorts of variables, including
time series. In the latter case, the available observations are indexed with time #[-],
which gives the following dynamic regression equation:

y,=ox, +u (2.2)
In many dynamic systems, however, the T
effect of one variable onto the other is il
not (or not only) instantaneous. In such o w, w,

cases, the system is said to have a t w

memory. The rise in water level in an
arbitrary hydrologic system caused by a
rain shower, for instance, will not
disappear immediately when the rain H%

o

stops. Consequently and vice versa, the
current water level in hydrologic systems
is a function of present 4nd previous
rainfall events. Mathematically, the
effects of previous states of the
explanatory variable can be simply added figure 2.7: Transfer function of a hypothetical
to the regression equation in the MA(4) system.

following manner:

YV =@yX, + O X, ... t @, X,_, + U (2.3)

The parameters @, are known as moving average (MA) parameters (as (2.3)

resembles the calculation of a weighted moving average of x), and the resulting
model is said to have order MA(ns ). If we plot @ versus ns (figure 2.7), the result



shows what is known as the transfer or impulse response function of the system
under consideration, which we denote by ©, . The name impulse response function
stems from the fact that, after a sole ‘impulse’ of unit value of xat time ¢, ywill
respond with the subsequent values of @ if we move forth in time. Please note,
however, that what is taken to be an impulse of x,in discrete-time notation, oftenis a
mathematical abstraction of continuous time reality in which x, is perhaps a sample,

time average or sum of x(¢) . Because of that, we will avoid the term ‘impulse

response’ when discussing discrete-time mathematics and use ‘transfer function’ in
stead. In theory, the number of steps ns with which we can look back in time in this
way may be infinite. In practice, however, we cannot deduce an infinite number of
parameters from a finite data set. Therefore, especially when the time steps are small
as compared to the response time of the system, the direct use of equation (2.3) as a
regression model has practical limitations.

A second option for dealing with memory is to model a variable as a function of its
value at a previous time step, in the following manner:

Y, = u=0(y, — 1)+ ox, (2.4)

Here, ¢'is known as an autoregressive (AR) parameter, and the model is referred to as
having order AR(1). If we look at the transfer function of such a system (figure 2.8),
we find that it shows exponential decay, given by:

0, = wd' (2.5)

back in time and add more AR terms to
equation (2.4). By doing so, the transfer
function will take the shape of a mixture
of exponentials (see section 2.3.1).
Summarizing, a limitation of using MA
terms in dynamic regression equations is
the fact that they can only model the .
response of a system for a limited period w1

back in time. An advantage of MA |_| |_|m _wt"

4 5 6

Also here, we can choose to look further T

9[ wbd
wd

3

wd

parameters is that they can take on any 0 2 3
value, so the shape of the transfer

function is free in the MA part. A ) ) ,
limitation of using AR terms, on the figure 2.8: Transfer function of a hypothetical
other hand, lies in the fact that they limit AR(1) system.

the shape of the transfer function to one or more exponentials. A logical solution to
this problem is to use both AR and MA terms in one model, which results in the
general equation of a transfer function model of order (nr,ns):

t —



yt —H— 51 (yt—l - :u) T 5nr (yt—nr - :u) = a)Oxt + a)lxt—l +..t a)nsxt—ns (26)
When we introduce the backward shift operator B, defined by:
B" Y, =V, 2.7)

and autoregressive and moving average operators of order nr and ns, defined
respectively by:

5(B)=1-6,B-6,B*~...-5, B"
(2.8)
oB)=1+o,B+w, B*+..+ o, B”
equation (2.6) can be written more economically as:
o0(B)y, = w(B)x, 2.9
or. delay  free (MA) part exponential (AR) part
< et o S
7, =67 (B)w(B)x, (2.10) T
where y, are deviates of y, from u, o -
and ’ u
®(B) ="' (B)w(B) (2.11)
is the transfer function. When a system
has a delayed response, or dead time of |_|
duration b, the transfer function 0 I 2 3 4 s ¢
becomes: ¢ >
B figure 2.9: Transfer function of a hypothetical
eB)=0o I(B)W(B) B’ (2.12)  ARMA(1,2) system with delay 1.

Alternatively, (2.10) may be written as a so-called discrete convolution product (see
also section 2.3.2):

t 0
V= Z 0% = z@)ixz—i =6(B)x, =(©*x), (2.13)

i=—o0 i=0

where @, is the transfer function (figure 2.9). ARMA transfer function models can

serve as close approximations for many quite complicated dynamic systems. Apart
from the ARMA structure, however, two basic assumptions are made. The first is the



fact that transfer function models assume that the system is linear, or can be
linearized. In short, this implies that the effects of all pulses and explanatory variables
can be added, regardless of the state of the explained variable. Second, the model
assumes the transfer function to be time-invariant or remain constant over time.

2.2.2  Effects of noise and noise model

If we look at the real world, there are several reasons why mathematic equations will
never be able to match observations from dynamic systems exactly. Observations are
bound to be affected by noise, if only because of errors and uncertainties in the
measurement process. One of the main problems in signal processing or system
identification is to separate the signal or useful information from the noise or
disturbances in a given time series. When creating a model of a dynamic system,
possible sources of noise, each with a different character and effect, are in general
(figure 2.10):

e Errors in input measurements

e Errors in model concept or parameters
e Unknown system disturbances

e Errors in output measurements

In model terms, the output of the (deterministic part of the) equations is called the
model prediction. The differences between model predictions and the observed
output form a time series of their own, called the ‘residuals’. In general, a residual
series cannot simply be modeled or taken to be a set of independent Gaussian
deviates. System disturbances, model errors and errors in the input will, just as the
input itself, have an effect that is not or not only instantaneous. Because effects linger
on, the value of a model residual at a certain point in time will be correlated with its
value at previous times. This phenomenon is called autocorrelation. Autocorrelation
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figure 2.10: Sources and effects of noise in models of (linear, open) systems.



causes individual residuals to be colored or have a lesser, non-unigue information
content, depending on the observation frequency and the response time of the
system. If it is not properly taken into account, it causes parameter estimation
algorithms to be inefficient and the parameter covariance matrix to be
underestimated.

The fact that the response of a system introduces autocorrelation creates the
possibility of regarding the residual series as the outcome of a stochastic process.
Because the autocorrelation is accounted for by the (stochastic part of the) system,
the stochastic input ‘causing’ the residuals can be modeled as uncorrelated or white
noise (figure 2.11). The noise model used in traditional transfer function-noise (TFN)
models follows this concept. Explicit modeling of the behavior of model residuals can
have several purposes:

e First, when a noise model is fitted to the residuals, it can be used for
stochastic simulation. This is especially useful in case one is interested in the
probability of extremes, as such probabilities are underestimated when only
the deterministic model is used [e.g., Knotters and Van Walsum, 1997]).

e Second, because of the autocorrelation in the signal, the noise model can
also be used to yield predictions of the residuals at unobserved time steps,
either for smoothing, forecasting or updating purposes. Such applications are
widely used in the meteorologic sciences and are often referred to as data
assimilation [McLaughlin, 1995, Kalnay, 2002]. They make optimal use of
both model prediction and observations and can significantly improve the
accuracy of the predictions of the combined model.

e Third, correlations between the input, predicted output and the residual
series hamper an independent estimate of the model parameters, whereas
autocorrelation in the residuals causes the variance of the parameters to be
underestimated. ‘Whitening’ of the residuals with a noise model can thus
improve estimates of the parameters of transfer and other deterministic
models and their covariance [Bryson and Henrikson, 1965, Te Stroet, 1995].

In the ARMA-type TFN models as introduced by [Box and Jenkins, 1970], the sources
that contribute to the noise in observations of the explained variable are modeled
together as a single ARMA process. If the response of the system to noise is assumed
to be the same as the deterministic response (e.g., situations where the effect of
errors in the input series are dominant) equation (2.10) becomes:

3, =67 (B)oB)(x, +a,) (2.14)

where a, is white or uncorrelated noise which is assumed to be normally

independently distributed with mean zero and variance of, abbreviated as NID( O, of).

Several tests, however, are available and recommended for testing if these
assumptions hold. Equation (2.14) is known as an ARMAX model (ARMA model with
eXogenous variable). If however, the response to noise is different, and there is also a
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figure 2.11: Scheme of a combined single input, transfer function-noise model.

delay, we arrive at the general equation of a combined transfer function and noise
model:

7, =6 (B)o(B)B’ x, + (B) ' 8(B)q, (2.15)

where @(B) and @(B) are the autoregressive and moving average operators for the
noise process, with orders np and ngq respectively. A more general solution to this

problem is provided by the so called Kalman filter [Ka/man, 1960]. The Kalman filter
allows for the distinction between system or correlated and measurement or
uncorrelated noise, and can even be used for what is called adaptive filtering, when
the system parameters are allowed to change over time. ARMA-type transfer
functions and noise models can be embedded in a Kalman-filter [e.g., Bierkens et al.,
1999, Berendrecht, 2004], which serves as a solution to the limitation of ARMA-
models of handling irregular data (see also next section).

2.2.3 Limitations of ARMA models

In spite of the general applicability, wide spread use and often accurate predictions of
ARMA-type time series models, there are also several limitations to their use. Perhaps
foremost important, the literature and theory on time series analysis have a strong
statistical focus and use a specific mathematical notation, jargon and viewpoint.
Consequently, it takes a long time for scientists, engineers and others who mostly
received intensive training in their own discipline, but not in statistics let alone time
series analysis, to understand the ins and outs. Once the theory is adopted, however,
there are still several practical limitations and difficulties to overcome:



First of all, there is the problem of l
identifying the correct model order. As

follows from the theory addressed in Model Identification | +
short in sections 2.2.1 and 2.2.2, a
time series modeler has to identify the l

so called model order or value of

[nr, ns, np, nq, b], i.e. the number Parameter Estimation
of parameters in the autoregressive

and moving average parts of the l

transfer and noise model respectively,

and the delay time, before the actual Diagnostic Checking | __
parameter values can be estimated

from the data. Next to that, a modeler l

has to apply a suitable degree of

differencing to the data to induce figure 2.12: Iterative model identification
stationarity on non-stationary series procedure as proposed by Box and Jenkins.

(e.g., series that do not remain in

equilibrium about a constant mean or show a trend). Also, an appropriate
model frequency has to be selected in real time, as time in ARMA models is
dimensionless. [Box and Jenkins, 1970] devised a specific iterative procedure
for this task based on statistical criteria, known as the model identification
procedure (figure 2.12). A general disadvantage of this procedure, however,
is that its results can be ambiguous [Hipel and MclLeod, 1994] and the
process itself is rather heuristic and can be very knowledge and labor
intensive [De Gooijer et al., 1985]. Those who have experience with manual
model calibration will probably also know to what task a modeler is up when
he has to manually identify six or seven parameters at the same time from a
given data set.

Second, there is the matter of handling irregular or high-frequency data. In
traditional time series literature, relatively little attention is paid to the fact
that time is a continuous phenomenon. ARMA models are specified in
discrete-time mathematics, and it is implicitly assumed that data are available
without restrictions at the mostly unspecified but fixed frequency used in
practice. For applications in for instance electro-engineering, this does not
pose a serious problem, as the frequency of the measuring equipment can be
easily adapted. In hydrologic practice however, the analyst will often have to
make do with the often messy data available. Time series of groundwater
levels, for example, are often collected manually and will tend to be non-
equidistant and have missing records, as the observer will probably not work
in weekends and is ill occasionally. In such cases, the fact that ARMA models
can not deal with missing records and a varying frequency poses a serious
problem. Furthermore, when the data and model frequency are high as
compared to the response time of the system, the duration of the MA-part of
the transfer function is limited in real time (see figure 2.9) so the model order
is in practice restricted effectively to AR(nr ). High frequency data can also
cause numeric problems as AR-parameters asymptotically approach the value



of one when the frequency increases, in which case the autocorrelation in
subsequent values of the output will also be very high.

Third, there is the problem of extrapolating results. Because of the data-based
nature of time series models, and for any model for that matter, there is a risk
in extrapolating time series analysis results to situations for which no data are
available. Care has to be taken in this respect with scenario analysis, in which

the level of one or more inputs or the output reaches unprecedented values.
Even more problematic, and without additional knowledge even impossible,
is extrapolation of results to situations where the system itself is changed and
the assumption of time-invariance no longer holds. Another variant of this
problem is extrapolation of results to other points in space, for which no data

are available.

e Fourth, ARMA models are generally over-parameterized. When a system is
affected by many inputs, when the input(s) do not change much over time
and/or are cross-correlated, it will generally be difficult to separate the
different effects and get correct, reliable and unique parameter estimates.
The fact that the MA-part of ARMA models is parameter-inefficient, especially
when dealing with high-frequency data, adds to this problem.

In light of all the above mentioned problems, i.e. whenever purely statistical methods
fail, a possible solution is to use physical knowledge on the functioning of a specific
system, or the type of systems addressed in general. Therefore, we will focus on the
physical basis of time series models in the next sections.
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In [Box and Jenkins, 1970], the example
of a series of water reservoirs (figure
2.13) is used to illustrate the fact that
ARMA models can be regarded as
models of physical systems that obey a
temporal difference equation. Here, two
linear reservoirs are considered with

water volumes y,(¢) and y,(¢), and a

zeroth reservoir whose volume x,(¢) is

manipulated and drives the others.
Volumes are used in stead of levels to
allow for systems with a zeroth moment
or gain (see section 2.3.4) that differs

Physical, ‘white box” viewpoint

AR models as linear reservoir system

X(2) yi(9) 20

L S

figure 2.13: Series of coupled, linear reservoirs
according to [Box and Jenkins, 1970].

from one. Also, xis used for denoting the volume of the zeroth reservoir because that
is the forcing or explanatory variable (or in hydrologic terms the boundary condition).
By doing so, the notation is kept comparable to that of section 2.2.1, where ARMA
models were introduced as linear regression models.



In a steady state situation, logically the level in all reservoirs is the same. In that case,
the relationship between the levels is:

A
Vi :—’xo (216)

4,

where i denotes the reservoir number and 4; its basal area. As the levels are equal, it
is the ratio between the basal areas that determines the gain. If the levels are not in

equilibrium, the difference in level is 2o _ iy case of linear reservoirs, the rate of

flow through the connecting pipe is proportional to the difference in level. For the
first reservoir, this yields the following differential equation:

d 1 x 1
d_ylz_(_o_&)__(&_&) (2.17)
t ¢ A4 A4 ¢, A4 A4,

where ¢, and c, are the resistances [T] of the respective pipes. For the second
reservoir, the differential equation is given by:

4y, 1 2, (2.18)

dt ¢, 4 A4,
Solving (2.18) for y, yields:

dy, 4
=4c,—++-L 2.19
N 1274, A2y2 ( )

Next, eliminating y, from (2.17) using (2.19) yields:

d’y, :_(A1+A2)C1+Azcz dy, 1 y, + 1
de? A Acc, dt  AAycc, ? Ay4icc,

X, (2.20)

A second order temporal differential equation like (2.20) can be written as a temporal
difference equation in discrete time, and in turn as an AR(2) model. See [Box and
Jenkins, 1970, page 343] for details in this respect. Please note, however, that the
second term on the right side of equation (2.17) is forgotten by Box and Jenkins,
when they take the step of deriving their second order temporal differential equation.
They place the differential equation of the third reservoir in that of a two reservoir
system, resulting in equations with erroneous coefficients onwards.



Equation (2.20) can be solved by applying a Laplace transform, under initial condition
»,(0)=0. However, especially for higher order systems, matrix differential calculus is

more convenient. We may combine equations (2.17) and (2.18) in one matrix
equation as:

Y Ay (2.21)
dt 4,
where:
1 1 1
+ —
y= i A= a4y o4 4, (2.22)
V2 _ 1 1
C 4 4,

If the input x is stationary and equals:

|1 223
X—O (2.23)

and we use as initial condition:

0—0 2.24
y()—O (2.24)

the solution to (2.21) will yield a vector of step response functions y . Next, we write
(2.21) as:

dz
—=—-Az 2.25
4 (2.25)
where:
Z=Yy - A'x (2.26)
a4,

The solution to (2.25) is:

z = exp(—Ar)z(0) (2.27)



or:

y— A7'x = exp(—A?){y(0) - A'x} (2.28)
G G
Using (2.24), this reduces to:
1 -
y= {I—exp(—A?)}A™x (2.29)

G

where I is the identity matrix. By definition, the derivative of the step response
functions y to ¢ is a vector of impulse response functions 0, which equals,using

(2.23):

1 1
0= = exp(-A 2.30
i o exp( t)m (2.30)

The exponential in (2.30) is a so-called matrix exponential that can be evaluated using
a program like Matlab. In case of identical reservoirs, the solution or impulse response
of the individual reservoirs is (see appendix A):

nr

D eye,,; exp(=A;1) (2.31)

Ay o

6]‘:

where i is the position of the reservoir, nr is the number of reservoirs and e, the i"
value in eigenvector jwith eigenvalue 4. In case of non-identical reservoirs, the
solution reads (see appendix A):

0, ZLZ%‘ exp(=4;1) (2.32)
j=1

ady =

where the a 's weigh the exponential functions. In [Sahuquillo, 1983], a method is
presented for solving the groundwater flow differential equation using a related
approach [see also Sloan, 2000, Pulido-Velazquez et al., 2005, Bidwell, 2005]. In case
of linearity, the cells in a finite difference or finite element model can be considered to
be linear reservoirs. Based on this, impulse response functions (or influence functions
in Sahuquillo’s terms) can be derived directly from the matrix of cells in a groundwater
model (1, 2 or 3D), and be stored for simulation purposes. In this way, the solution to
the differential equation is exact in the time domain, and it is not necessary to solve
the entire matrix for every time step. Next to the fact that this method is useful in
itself, especially when results from only a few locations are needed, it also nicely



shows that an AR model (or a sum of exponential functions) in principle can form a
solution to an entire groundwater model.

2.3.2 Differential equations and convolution

In the previous section, we have regarded AR models as temporal difference equation
of a set of linear reservoirs. The driving forces and state variables in groundwater
systems, however, are a function of both time and space, and space is not explicitly
defined in an ARMA model. In order to gain better insight into the physical meaning
of time series models and response functions, here we start from the beginning. The
construction of a physically-based model for the dynamics of an arbitrary variable
starts with the derivation of an appropriate mathematical expression, commonly a
differential equation, for it. Differential equations are derived from two types of
equations [e.qg., Bear, 1972]:

e The continuity equation(s)
e The constitutive equation(s)

For groundwater, the continuity equation is found by applying the principle of mass
conservation (while in other cases, also other conservation laws may apply, like those
for energy or momentum). In simple words, this principle states that no mass can
disappear without reason and it is valid for all types of masses. In case of water, it is
also known as the water balance equation. The constitutive equation specifies a
property of the specific type of mass under consideration, which in case of
groundwater is Darcy’s law. This equation treats a representative elementary volume
(REV) of a porous medium as a continuum, thereby disregarding the spatial variability
below this scale (consisting of grains and pores, or molecules on an even smaller scale).

A standard technique for solving differential equations of linear dynamic systems
exactly is to determine their solution for a Dirac delta function 6(¢) [Dirac, 1947] (not

to be confused with &, the autoregressive parameters of ARMA models) as
input p(t) . The delta function has the following properties:

8(t) =0,  t#0

j S(t)dt =1 (233)

and can be seen as the limit of (for instance) the Gaussian distribution function with
mean zero and a variance that also approaches zero (which, in mathematical terms, is
a way of ‘mollifying’ 8(¢)). In words, the delta function is an instantaneous pulse or

impulse of unit area. The impulse response (IR) function 6(¢)is then defined as the
effect of 8(¢) asinput p(¢) on the state A(¢) of a system, i.e. the deviation in time
from an otherwise steady state d . In terms of groundwater head and precipitation,



6(t) can be thought of as the response to a very short shower of unit height, when

the head is otherwise constant or equals the local drainage base. In mathematical
terms, 6(¢) is defined by the following conditions:

0(t) = h(t)—d
h(t)=d, <0 (2.34)
p(t)=25(2)

If 6(¢) and d are known, A(¢) can be obtained for an input p(¢) that varies arbitrarily
in time through convolution (Duhamel’s principle [Duhamel, 1833]):

h(t)—d = j 0(t—7)p(r)dr= j O()p(t —7)dz = (0% p)(¢) (2.35)
—0 0

Equation (2.35) implies that the dynamics of an arbitrary, linear dynamic system at a
certain location are completely governed by the dynamics of the input and the
impulse response function. The impulse response function completely characterizes
the dynamically relevant, physical properties of the system at that location, and is as
such an integral property thereof.

2.3.3  Evaluation of a convolution integral

Of course, the first step in applying a model is evaluation of the equations. For
evaluating the convolution integral in (2.35), first the input data has to be
transformed to continuous time, as most data are discrete due to the observation and
digital storage process. In case of groundwater systems, common excitations are
either levels (surface water or other groundwater levels) or fluxes (precipitation,
evaporation, pumping). For fluxes, the discrete data may often be regarded as
changes in the primitive function of the underlying continuous flux or intensity, as is

the case with precipitation amount series P,[L]:
I
P, = P(t,) - P(t, - At) = j p(2)d7 (2.36)

1A

Of course, the continuous precipitation intensity series p(¢) [LT"] cannot be

reconstructed exactly, but it can be approximated by assuming that the flux is
constant over the time step Af and equals the average. Equation (2.36) may then be
written as:

Rov)

~, L—At, <r<t (2.37)
f.

1

p(r)=

e
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figure 2.14: Transformation of input to output in case of an exponential impulse response and three
block pulses of different height and duration.

The higher the observation frequency, the smaller the time step and the better (2.37)
will approximate p(t) . For stresses that are levels, we simply assume that the level is
constant over the time step. Note that the error made by these assumptions will vary
in time when input series with an irregular frequency are used, which will cause the
model residuals to have a varying variance. When the time steps are not too large
and irregular, however, this effect is small as compared to the other sources of model
error and will therefore be neglected.

The transformation described above results in continuous input series that take the
shape of consecutive series of blocks. As a next step, we can evaluate the effect of a
single block pulse using the block response function @(¢) . The block response is
obtained when the impulse response is convoluted with a block pulse of unit height
over a period At , which equals:

at,At) = j O(r)dr (2.38)

=Nt

The block response function is equivalent to a discrete-time transfer function when it
is divided by Atin order to scale it to the effect of a discrete instantaneous input of
unit height. In case of an irregular frequency, however, the block response isn't

constant but a function of the time step A¢, . Because convolution is a linear operation,
its result or groundwater level A(¢) may be obtained by adding the responses to all
individual blocks of the input series. The transformation of input to output is

illustrated in case of an exponential impulse response and three block pulses of
different height and duration in figure 2.14. Because ©(¢) and p(¢) are continuous
functions, this procedure results in a definition of A(¢) that is continuous also. In
contrast to the equations of ARMA models, no explicit reference is made to a model



or data frequency. Problems related to the frequency, such as handling irregular or
high-frequency data, are consequently circumvented. In continuous time, there is no
such thing as a gap or ‘missing’ observation of A(¢) .

In the convolution integral of equation (2.35), time starts at minus infinity. As a
consequence, we have to define an initial value for the input series from ¢t =—o to

t =0, the time of the first available observation, in order to be able to evaluate it. For
stresses that are stationary or in general fluctuate around some average level, like
precipitation, we can define the initial value p to be the temporal average of the
available observations (a historical average, if available, may also be used). For non-
stationary stresses, e.g., a pumping well that was constructed in a certain year and
gradually increased in rate, the temporal average is inappropriate as initial value. In
that case, the initial value can either be taken to be zero before pumping started, or
to be some average historic rate prior to the first available recorded discharge. Also, a
run-in period is needed from ¢t =0 to ¢ =¢,, the start of the calibration period or time
of the first groundwater level observation, to obtain a reasonable estimates of the
groundwater levels at early time. The actual outcome of the convolution integral is
the sum of the effect of the initial value and the available observations of the input
series, in both the run-in and calibration period. Together with local drainage base d ,
this yields a prediction for A(¢) that can be compared with the available observations

(figure 2.15).
Convolution is a very practical method that unfortunately is missing in many textbooks

on groundwater hydrology [Olsthoorn, 2008]. It can not only be used for time series
analysis, but also for efficiently generating high-resolution time series using response
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figure 2.15: Role of the initial value, run-in and calibration period in the evaluation of a convolution
integral.




functions obtained from more computationally demanding deterministic models
[Sahuquillo, 1983].

2.34 Impulse responses and their characteristics

In groundwater hydrology, a typical
impulse response takes the shape of a
skewed distribution function (figure
2.16). In the field of statistics,
distribution functions are commonly
characterized by their moments. Here,
we also use the concept of moments to
characterize the properties of impulse

response factor (-)

responses. The n™ -order temporal
moment M, of an impulse response
function is defined by:

u time (days)

M, = J. t"0(t)dt (2.39)  figure 2.16: Skewed impulse response function

—00

) . 2
with mean W and variance o~ .

Higher order moments are generally scaled by the zeroth moment (although for
frequency or probability distributions by definition M, =1, so there it does not make
a difference) and centralized about their mean . Consequently, central moments are
given by:

j "0t — p)dt
M,==—— (2.40)
j 0(t)dt

The zeroth through second central moments are also commonly known by the terms

area, mean u and variance o . Other characteristics of @(¢) are its skewness,
defined by:

1 M3
y=— (2.41)
o

and its kurtosis or excess kurtosis:



M4

;z 3 (2.42)
o
The effect of differences in kurtosis is
instantly clear if one compares well- :Zig
known distributions with the same mean, —=0
variance and skewness, but a different _ij ,

kurtosis (figure 2.17). These distributions
can be written as special cases of the
Skew Exponential Power distribution
[Fernandez et al., 1995, Schoups and
Vrugt, 2010], which has the added

advantage that its skewness and kurtosis / \
can be varied gradually. An alternative, J L
)

response factor (-)

and in some cases more convenient way
of characterizing distribution functions is

by their cumulants. From a hydrologic ] o ‘
perspective, M, defines the effect of a figure 2.17: Well-known distributions with
roo different kurtosis (resp. uniform, Wigner

stationary excitation of unit strength semicircle, normal, hyperbolic secant, Laplace
(e.g., stationary precipitation). In time double exponential (source: Wikipedia)).
series analysis literature, M| is called

the gain. u, on the other hand, is the mean delay or response time to an

instantaneous input (e.g., a sudden shower of precipitation). The standard deviation
o is a measure for the temporal ‘dispersion’ of an impulse.

time (days
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2.3.5 Responses of elementary groundwater systems

2.3.5.1 Recharge on a system with a uniform internal head
A consequence of the law of mass conservation is that the amount of water in a
volume must increase when the inflow at a certain time step exceeds the outflow.
When we simplify the functioning of a soil column to a simple linear reservoir with
inflow at the top and outflow at the bottom, analogous to [Knotters and Bierkens,
2000], the water balance is given by (figure 2.18):

r—quE (2.43)

where

q :discharge per unit area and time
[LT]

h : groundwater head at location z [L]

S storativity [-]

r :recharge per unit area and time [LT"]

When considering surface water, the
storativity S equals 1 as one millimeter of
precipitation causes a rise in water level of
one millimeter. In groundwater systems,
however, S is smaller because only the
free pore space is available for additional
storage of water (in phreatic systems), or
because the pore space can only change a
little by compression or expansion of the
grain skeleton, water, or included gas
bubbles (in confined aquifers). Equation
(2.43) contains two different variables,

g and £, that are normally both

unknown, while the third (7 ) is normally given. In order to solve the equation, we
need a second, independent relationship between ¢ and %, which we find from

Darcy's law:
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figure 2.18: Water balance of a linear reservoir
system.

q= (2.44)

c

where ¢ is the drainage resistance [T] and d the drainage level [L]. Elimination of ¢
from (2.43) yields the following first order differential equation:



sdh_d=h (2.45) (
dt c 1/8

¢S=0.05

It is noted that equation (2.45) does not
contain any reference to a spatial
dimension. The internal head of the
system is uniform, and only a difference
in head with the outside world is
specified, without a direction.
Graphically (as in figure 2.18) and
intuitively, however, it may be

convenient to picture the head — o0 =
difference as a vertical column of water, time (days)

which of course requires the vertical figure 2.19: Example IR functions of the reservoir

dimension. If we solve (2.45) for an . .
; f 2.18 for d t val cS .
impulse of recharge and use (2.34) , we system of figure for different values of

find that the impulse response function [-] is an exponential and equals that of a
single, linear reservoir (see also section 2.3.1):

response factor (-)

1 t
o(t)= Eexp(—g) (2.46)

As for any linear system, also in this case the groundwater level fluctuations can now
be found through convolution. The linear reservoir, however, has the remarkable and
useful property that the fluctuations in level may also be computed recursively. In
other words, the value of A(t) at any time step may be computed from A(t — At)

and the total input over the time step R, , as [De Zeeuw and Hellinga, 1958]:

h(t)={h(t—At)—-d} exp(—%) +Rc{l— exp(—%)} +d (2.47)

Equation (2.47) is equivalent to an ARX(1) model (equation (2.4) ) in discrete time
[Knotters and Bierkens, 2000]. The fact that A can be computed recursively, allows the
response parameters [ ¢,S | to change piecewise over time. Consequently, equation
(2.47) can also be applied to non-stable or non-linear systems (where ¢ and/or S are
a function of ).

2.3.5.2 Recharge on a system with a one-dimensional head gradient

In a system with a one-dimensional, horizontal head gradient, the water balance
equation is given by:

%4, _gon_, (2.48)
Ox ot
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figure 2.20: Water balance of a system with a one-dimensional, horizontal head gradient and parallel
surface waters.

Under phreatic conditions, the saturated thickness H [L] of an aquifer depends

on /i (and therefore on tand x). If H —his small relative to H , however, we can
approximate H as constant. In case of an impermeable base, fully penetrating ditches
and a distance between the surface waters L [L] that is much larger than H , we can

also approximate the flow as horizontal [Dupuit-Forchheimer approximation, Dupuit,
1863, Forchheimer, 1901]. Darcy's law may in such a case be written as:

g, =—KH dn (2.49)
dx
where
KH : transmissivity [L’T"]
K : permeability [LT"]

Elimination of ¢ from (2.48) and (2.49) yields the following second order differential
equation:



o’h oh
KH@ZSE—I" (250) 15

Here, the differential equation contains
one spatial dimension, allowing the
heads in the system to depend on the
location. Again, we use a second,
vertical dimension to graphically
represent the system (figure 2.20).
Equation (2.50) can be solved analytically
for the effects of recharge. For
groundwater problems, the solution has

response factor (-)

SLA2/KH

been found first by Glover and was time (days)
pgbllshed n [Dumm' 1954] and also figure 2.21: Example IR functions of the system of
discussed in [Krajjenhoff van de Leur, figure 2.20 for different values of C .

1958]. When the water level at the
boundaries is constant (h,_, =h,_, =d), the recharge is an impulse and (2.34) is
used, the impulse response function [-] may be found and be written as:

0(t) =

14 & 1 -n’7°KHt . .
—— Z —exp( nr 3 t)sm Y (2.51)
ST ,izs..1 S L

where x [L] defines the position of the location under consideration. The response of
such a system is not only a function of the storativity and resistance, as in the linear
reservoir case, but also of the relative position or centrality C [-] of the location under
consideration, which we define by:

E , xS£
_JL 2 (2.52)

2(L—x) L

—’ x>_

L 2

In this way, the centrality is 1 if the location is in the center of the system and O if it
lies on its boundaries. In figure 2.21, example IR functions are plotted for different
values of C, which shows the difference in behavior depending on the location. In
short: in the center of the system, the level can only drop after the levels near the
boundaries have dropped first. Near the boundaries, the water level drops quickly at
first but stabilizes later on because of water flowing in from the center.
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2.3.5.3 From infiltration to recharge in the unsaturated zone

Up until this point, we have
neglected the fact that in reality
recharge is difficult to measure
and generally unknown. Recharge,
however, can be seen as the
outcome of the processes in the
unsaturated zone, of which the
driving forces are precipitation p

and (potential) evaporation e .
The latter are generally available ;
from meteorologic stations, and Percolation £
can therefore be used as input if  zone

we are able to model or mimic

the unsaturated zone processes.

In case of unsaturated flow, the Saturated
water balance equation and zone
Darcy's law again take different

shapes, because of the varying ' ]

water content and permeability. If ~ figure 2.22: Schematic representation of the unsaturated
we consider one-dimensional, zone.

vertical flow only, the water balance equation is given by:

-+ Field capacity
-+ Wilting point

Root zone

% _08 (2.53)
oz Ot

and Darcy's law by:
g=K (3)% (2.54)
dz

where

z : depth [L]

4 : volumetric water content [-]

K (%) : unsaturated permeability [LT"]

By combining the equations above, we find the following differential equation for
flow in the unsaturated zone:

0 oh| 09
—| K(F)— |=— 2.55
82{ ( )62} ot (2.39)



which is a modified form of Richards’

equation [Richards, 1931]. The ] —:5;6
unsaturated zone is generally divided —— = w4
into a) the root zone, where there is f OS2
direct input and uptake of water, b) the
percolation zone, where water primarily
percolates downwards due to
gravitational force and c) the capillary
zone, in which there is capillary contact
and possible feeding from the saturated
zone. As it is nearest to the driving I
forces, the water content in especially //

the root zone is highly dynamic and / - N
consequently, because of the varying time (days)

permeability K (J), its functioning is figure 2.23: Example IR functions of a linearized
highly non-linear. In a wet state, when unsaturated zone (convection-dispersion equation)
the soil is at field capacity, permeability ~ for different values of o .

is high, evaporation is at its potential

rate and precipitation can infiltrate and percolate freely. In a dry state, capillary
pressure is high, the permeability of the soil is greatly reduced and evaporation and
percolation are strongly limited. The effect of variable storage of water in the root
zone is sometimes modeled conceptually as a reservoir in which uptake or evaporation
stops at the so-called wilting point, and from which water only percolates at field
capacity (figure 2.22). The fact that such non-linear behavior cannot be described with
a linear model can account for the ubiguitous seasonal patterns in the residual series
of linear time series models. It can also be a reason for combining time series models
with more or less complex models of unsaturated zone processes [e.g., De Keizer,
2003, Berendrecht et al., 2006] .

flux [LTA-1]

In the percolation zone, in situations with deeper water tables, the water content is
less variable and its main effect is retardation and dispersion of infiltrating water
[Besbes and de Marsily, 1984, Parlange et al.,, 1992]. When Richards’ equation is
linearized around some constant, ‘average’ water content &, using Taylor series

expansion, it transforms into the convection-dispersion equation [Jury and Roth, 1990;
Zwamborn, 1995]. The convection-dispersion equation can consequently be used to
describe the ‘average’ effect of the unsaturated zone on the damping and retardation
of precipitation and evaporation pulses. Here, we define zto be zero at the top of the
percolation zone. If we apply the following initial conditions:

{3(z<o, t=0)-9.=1
(2.56)

9(z>0,t=0)-3 =0

and boundary conditions:



Hz=-0,t)-8, =1
(2.57)
Hz= oo,t)-% =0
and the step response function Q [-] to be:
Q(z,t) =8(z,t)- 8. (2.58)

the following solution to the convection-dispersion equation may be found [Crank,
1957]:

Q(z,0) = %erfc{zz_D‘;t} (2.59)

where
D (effective) diffusion-dispersion coefficient [L* T"]
v (effective) propagation velocity [LT"]

The impulse response @ [T']is the derivative of (2.59) or [e.q., Jury and Sposito,
1985; Maas, 1994]:

dQ(z,t)  z (z-w)?
d¢ 4 7Z'Dt3 4Dt

0(z,t) = ! (2.60)

A shortcoming of (2.59) is that it also predicts upward dispersion beyondz=0.
When the boundary conditions are chosen such that upward dispersion is prevented
(8(z=0,t)- 9. =1), a second term is introduced in the step response function [Rifai
et al., 1956]. The contribution of this second term, however, rapidly decays with
distance, so that only (2.60) remains at some distance from the boundary [see Maas,
1994, page 61]. 8 in this case is not a response in level but in water content, and its
area or zeroth moment equals one because of the principle of mass conservation.
Please note also that the propagation velocity v is the velocity at which the pulse or
pressure wave propagates. It is not the (effective) velocity of water itself in the
unsaturated zone. The velocity of water is much smaller than that the pressure
propagation velocity, and equals the recharge rate in a linearized situation. The first

([ T) and second (o [T”]) central moments of @ are given by:

(2.61)




Background and theory

In figure 2.23, some example IR functions are plotted that have the same, average
arrival time g, but a different standard deviation o . An outcome of the convection-

dispersion equation is that the spatial (vertical) distribution of water pulses is
symmetric, which is a consequence of the linearization of Richards’ equation around
the average water content. In dynamic, non-linear reality, the ‘wetting’ front will be
sharper because of the increased permeability when the water content is high. On the
other hand, macro pores and preferential flow will increase the flux at relatively early
arrival times and consequently counteract the sharpness.

2.3.54 Convolution of response functions

In section 2.3.5.3, we have discussed the effect of the unsaturated zone in delaying
and damping precipitation pulses. As recharge is generally unknown, however, we
can not obtain a separate estimate of the properties or response of the unsaturated
zone through time series analysis. Instead, if we use precipitation as input and
estimate its effect on the groundwater level, we obtain an estimate of the response of
the combined saturated and unsaturated zone. If linear systems are placed in series,
the output of one is input to the other, so their combined effect equals:

h(t) = _[ 0.(t-1,) .[guz (t—7)p(r)drdr, (2.62)

where 6_and 6,, are the response functions of the saturated and unsaturated zone,
respectively. Mathematically, equation (2.62) equals a single convolution integral with

Convection- Glover &
Dispersion eq. Dumm

Saturated /\/\ A
Zone \/

Output
h(f)

Combined
Response

figure 2.24: Combination of the responses of the unsaturated and saturated zones.



a combined response that is found by convoluting the separate responses:
t
6.(t) = j 6._(t-1)0,.(r)dr (2.63)

In figure 2.24 the process and example responses are illustrated. Depending on the
situation, the combined response can take the shape of a function that rises gradually
at first, due to the effect of the unsaturated zone, until the peak is reached. After that,
the response slowly decays as recharge diminishes and groundwater drains towards
the surface waters or drainage means. In short, the combined response takes the
shape of a skewed distribution function. When a signal is transferred through n linear

systems placed in series, their k™ -order impulse response moments combine in the
following way [e.g., Maas, 1994]:

MO,tatal = HMk,ﬂ k= 0,
= (2.64)
Mk,total = ZMkk,i, k>0.

i=1

Although there is no closed mathematical expression, for time series analysis purposes
it is well possible to use for instance the convection-dispersion and Glover’s equation
as separate solutions for the unsaturated and saturated zone and combine them
numerically via convolution [see also Bierkens and Walvoort, 1998, Bierkens and Bron,
2000]. When doing so, however, the parameters of both equations prove to be highly
correlated and both responses are consequently difficult to separate [Kruithof, 2001].

2.3.55 Other situations and excitations

The previous sections served to illustrate the shapes that responses of groundwater
systems take from a physical point of view. As we only discussed elementary
groundwater systems, the text can hardly serve as an overview of the possible
variability in responses of groundwater systems. For a thorough treatment on the
existing analytic solutions in various geohydrologic situations, we refer to [Bruggeman,
1999]. In the coming sections, however, we will step away from the traditional,
physical viewpoint and introduce the use of behavioral response functions that have
general usability but no (apparent) physical meaning, and discuss its consequences. A
point that remains here is the fact that we only discussed the effects of precipitation
and evaporation. As the dimensionality of a system can have a pronounced effect on
its response, so does the dimensionality or spatial distribution of the excitations. In
contrast to precipitation that has areal coverage, rivers, ditches and other surface
waters can be seen as line features in the horizontal plane, and pumping wells as
points. In figure 2.25, schematizations are given of a pumping well according to
Hantush’ well function [Hantush, 1956, Veling and Maas, 2010] and a river or canal
according to the polder function [Bruggeman, 1999]. In both schematizations, there is



r-

figure 2.25: Schematization of a pumping well according to Hantush (left), and a river according to
the Polder function of Bruggeman (right).

an aquifer with transmissivity KH and storativity S and an aquitard with resistance ¢,
without storage. Furthermore, both the pumping well and the river fully penetrate the
aquifer. A difference, however, is that in the differential equation for which Hantush'’
well function is derived a radial symmetric head gradient is assumed, whereas in the
situation of the polder function the head gradient has bilateral symmetry. As a
standard well test yields a step response, here we seek the impulse response or
derivative of Hantush’ well function with respect to time. The impulse response
function describes the response to an instantaneous extraction of a unit volume of
water and equals:

2
r-S t

exp(— - 2.65

47 KHt p( 4KHt CS) ( )

g(t) =—
In the polder function, the excitation is not a pumped amount but a rise in surface
water level. Also here, the polder function is a step response, whose derivative equals:

2
xS 1 (2.66)

! exp(— -
/4 T KH? 4KHt S
x2S

24  Distribution functions as response models

o) = -

241  The skew-Gaussian convolutional limits

In statistics and probability theory, assumptions about the probability distribution or
‘behavior’ of variables are commonly made without physical justification or physical
analysis of the system to which they are related. An appropriate distribution is simply
selected from a limited set of candidates, based on their match with the available



observations. On the one hand, such a practice is formed out of necessity, as
probability theory is generally applied to variables generated by ‘systems’ whose
physical properties and processes are not or only incompletely known (and some
processes are intrinsically of a stochastic nature). On the other hand, this practice is
also adequate, as a limited set of probability distributions prove to match a wide
variety of cases, the Gaussian distribution being the most prominent example. For
hydrologic applications, the use of models that do not require the explicit definition
and parameterization of the physical, spatial structure of a system is very appealing.
By excluding the spatial structure, the degree of freedom in the modeling problem is
strongly reduced, and so is the problem of equifinality described in section 2.1.3. Next
to that, only for a limited number of schematizations exact, analytic solutions are
known. In practice, for use in a time series model, therefore there is often no response
function that adequately matches the physical structure of the system, known or
unknown, under consideration. Here, we therefore follow on the path laid down by
Jury and Maas in trying to describe the behavior of groundwater systems with simple
functions, without assuming or explicitly referring to a physical structure. In solute
transport modeling, the problem is restricted to matter going in and coming out of a
system, while the travel time of individual particles differs because of the
heterogeneity of the porous medium. Here, it may seem logical to model the transfer
of solutes as a (travel time) distribution function. The use of distribution functions in
modeling groundwater level responses, however, is perhaps less obvious and to this
date remains somewhat heuristic. All in all, there are three main arguments for
assuming that (skewed) distribution functions can also be used for modeling the
behavior of systems in case of groundwater heads:

e The combined, physically-based response of elementary versions of the
saturated and unsaturated zone takes the shape of a skewed distribution
function, as shown in section 2.3.5. Also, Hantush’ well function and
Bruggemans' polder function are essentially skewed distribution functions
(see later on).

e As moments of higher order are of decreasing significance in characterizing
probability distributions, so does the effect on the performance of a time
series model decrease with the order. Consequently, a given function does
not have to match the ‘true’ response of a system exactly in order to yield
acceptable results, as long as the first few moments match.

e When considering the transfer of a signal through a porous medium, the
latter can be thought to consist of a series of n sections or subsystems. In
[Maas, 1994] it is shown that transferring a signal through # linear,
independent systems is mathematically equivalent to adding up n random,
independent variables. In both cases, the combined response or probability
distribution is a convolution of the individual distributions (see also section
2.3.5.4). Consequently, the central limit theorem of statistics also applies,
under fairly general conditions, to the transfer of signals. This means that like
probability distribution functions, also impulse responses will approach a

Gaussian distribution with mean n and variance no” when n approaches
infinity and the systems are independent and identical (in line with equation



(2.64)). Maas also shows that before reaching this limit, impulse responses
will tend to a skew-Gaussian shape. Furthermore, he shows that these
convolutional limits also hold for parallel series of systems with lateral
interactions.

The central limit theorem and skew-Gaussian convolutional limit of [Maas, 1994],
however, are not directly applicable to the case of groundwater heads. If we,
analogous to Maas, consider a porous medium as a series of identical sections or
subsystems, we can distinguish three types of input-output relationships (figure 2.26).
In the first case, the response of individual sections is independent of the others. This
is approximately the case for transport of solutes and percolation in the unsaturated
zone. Only in this case, the response of the combined system is simply a convolution
of the separate responses and the convolutional limits directly apply. In the second
case, the response of individual sections depends on the properties of the system in
total (or n in case of identical sections of fixed size), which is generally the case in
saturated flow problems. When, for example, hypothetically ‘adding’ sections to a

system at whose boundaries a constant head difference Ak is imposed, the length

A
Ax of the system changes and therefore so do Ehor the M, ; of individual sections.

h(— 0,() [ 0t (= --— 0() I h.0
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figure 2.26: Three types of input-output relationships, when considering a porous medium as a series
of identical sections: a) signal h(t) travels through sections with independent @(t), b) as a), but

with dependent O(t,n), c) as b) but with h,,,(t) and q,,(t) (partly) at the same location.



Also, physically identical sections do not

necessarily have the same M, ; in such cases.

As the individual responses are not / / !
independent and identical, the central limit
theorem and skew-Gaussian limit are not

directly applicable. Remarkably, however,
impulse responses of several systems that fall in

this category, like the Polder function, Hantush’ =)

Well function and convection-dispersion °

equation, are also of skew-Gaussian nature and °

are special cases of one distribution function ;c]

(see later on). In the third case, 6,(t,n) b
o

depends on the properties of the system in
total also. Here, however, the output signal

h,,(t) is obtained from the same location as

where the input g, (¢) (at least partly) enters
the system. This is for example the case with
inputs that have areal coverage, like recharge  figure 2.27: Cascade of reservoirs as

or seepage, and their effect on the phreatic physical analog of the gamma distribution.
groundwater level. Because in this case, the

signal does not have to travel first, there is no delay in the initial response #(0) and in
principle 8(0) is also independent of the surrounding system. In case of recharge,

1
6(0) equals 5 in line with equations (2.46) and (2.51). Consequently, in such cases,

the response does not attain a (skew-)Gaussian shape with increasing system size, as
6(0) does not approach zero.

24.2 The Pearson type III, scaled gamma and generalized moving Gaussian
distribution

An example of a distribution function that matches the skew-Gaussian convolutional

limits of [Maas, 1994] (i.e. it can be seen as the output of a series of independent,

identical systems) is the Pearson type Il distribution function. This function is also used

by Jury (with b=0) and Maas for modeling solute transport, and is given by:

a"(t—b)" " exp{-a(t—b)} (> b
[(n) ’ - (2.67)
0(t)=0 , t<b.

0(t) =

where a,b and n are parameters. When b equals zero (no delay), equation (2.67)
reduces to what is known as the gamma distribution. The gamma distribution does
have a physical analog, as it describes the transfer function of a series of coupled
linear reservoirs (figure 2.27), also known as the Nash cascade in surface water
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figure 2.28: Example curves of the scaled gamma distribution, illustrating its variability. In a) the
drainage resistance ( Aa =1,n =1), in b) the ‘storage coefficient’ (a = 0.01,n=1) and in c) the
‘centrality’ of the location and/or ‘influence’ of the unsaturated zone (A =400-n,a = 0.01 ) were
varied.

hydrology [Nash, 1958]. In that respect, the parameter n denotes their (not necessarily
integer) number and a equals the inverse of the reservoir coefficient. In case of
groundwater level responses, the response does not describe the transformation of
one flux into another, but the transformation of a level or flux into a level. In that case,
a conservation law does not necessarily apply and (2.67) has to be multiplied with a
factor 4 in order to allow the area to differ from one. In the absence of a delay b,

the result is given by:

n n-1
T(n) (2.68)

0(t)=0 . t<0.

In the following, we shall refer to (2.68) as the scaled gamma distribution function
(SG df). In figure 2.28, example curves of the SG df are plotted for different values of
A, a and n, to illustrate its flexibility and the effects of the different parameters.
When used for modeling groundwater head series, the parameters in principle merely
define the shape of the SG df and have no direct physical meaning. In case of the
response to precipitation and evaporation, however, the parameters can be related to
geohydrologic parameters in general terms, in the following way, to illustrate the
range of physical variability the SG df can cover:

A — equals the area of the SG df. It also is the ratio of the mean convexity of the
groundwater head above the local drainage base to the mean groundwater
recharge. A therefore by definition equals the (local) drainage resistance. With
increasing drainage resistance, the decay rate a of the response decreases
(a=1/ A). In simple words, the water table will drop slowly when the drainage
resistance is high.



Aa - As outlined in section 2.3.5.1, a single linear reservoir (a SG df where n=1)
equals a simple physical model of a one dimensional soil column, discarding
lateral flow and the functioning of the unsaturated zone. Such a system has an
exponential response, whose y-intercept or maximum Aa is determined by the
storage coefficient or porosity and moisture content of the soil. The lower the
storage coefficient, the higher the water table will rise due to a unit impulse of
precipitation, but the higher the drainage resistance A when the decay rate a is
kept constant. For n#1, however, the y-intercept of the SG df is either zero or
infinite, in which case the storage coefficient cannot be determined exactly.

n — as stated denotes the (non-integer) number of linear reservoirs, and allows the
SG df to gradually shift from a function that is steeper than exponential
towards a Skew-Gaussian and finally a Gaussian shape (figure 2.28c). In this
behavior, two physical properties are combined. First, this behavior resembles
the effect of the relative position of a location within a system (see section
2.3.5.2). Second, and especially for n > 1, this behavior resembles the effect of
convection and dispersion of water in the unsaturated zone (see sections
2.3.5.3 and 2.3.5.4). With increasing n, the influence of the unsaturated zone
increases and pulses of precipitation and evapotranspiration are increasingly
dispersed and delayed.

In spite of the fact that the variation described above is of course still very limited as
compared to the variation found in reality, the SG df generally proves to capture the
main dynamic properties of geohydrologic systems well. In [Von Asmuth et al., 2002],
the performance of the SG df in modeling the groundwater heads in a dune area at
15 locations was tested, and compared to ARMA(1,s) transfer functions of optimal
order. Both approaches gave highly comparable model performances and shapes of
the response functions. The performance of the SG df was even slightly better when
validation in stead of calibration results were compared, confirming its usability. After
this study, the so-called PIRFICT time series model containing the SG df as impulse
response was successfully applied to tens of thousands of groundwater head series by
von Asmuth and many others.

In [Bakker et al., 2008], it was pointed out that impulse responses according to the
scaled gamma distribution (equation (2.68)), Hantush' well function (2.65) and
Bruggeman's polder function (2.66) are all special cases of the following function:

O(t) = At° exp(—at —?) (2.69)

with v as a fourth parameter. In fact, this holds for the solution to the convection-
dispersion equation of equation (2.60) as well, indicating that (2.69) matches the
behavior of a variety of systems with convection-dispersion or diffusion type processes.
In [Veling, 2010], equation (2.69) is named the generalized moving Gaussian
distribution, its mathematical properties (moments, cumulants, derivatives) are given,
and its performance in approximating responses according to the convection—
dispersion equation for several boundary conditions, along with a measured response



curve, is discussed and compared to expansions based on the pure Gaussian
distribution. Glover's equation (2.51), however, is not an exact, special case of (2.69),
in line with the fact that as discussed before, here the initial response is fixed to the
inverse of the storativity. Perhaps, in case of shallow water tables, (2.68) and (2.69)
may therefore not be optimal for modeling the early time effects of e.g., precipitation
using high frequency data. In [Veling, 2010] and elsewhere, distribution functions like
(2.68) or (2.69) are referred to as approximate. The term approximate, however,
seems not completely adequate, as (2.69) exactly matches the physically-based
solution for some schematizations, whereas for others, it is approximate. Next to that,
our reference is not the exact solution to some approximate schematization, but
reality itself, which any model will always only approximate. In principle, an
‘approximate’ response function may better fit the real world behavior than an ‘exact’,
physically-based solution. Use of the term behavior, on the other hand, stresses that
the spatial structure of the system under consideration does not have to be explicitly
defined to model its dynamics. The term behavior is also used in such a sense in the
context of systems theory, system identification and equifinality [e.g., Whitehead and
Young, 1979, Polderman and Willems, 1998, Beven, 2006].

2.4.3 Matching temporal moments with spatial models

A direct consequence of the fact that the spatial structure of a system does not have
to be defined in a time series model (which is comparable to the statement made by
[Jury and Roth, 1990], discussed in section 2.1.3), is that time series models can not
be used to make predictions about locations other than those observed. This of course
is an important limitation. However, in the following we shall see that the outcomes
of time series models can be matched with those of spatial models by transforming
ordinary spatiotemporal differential equations into moment-generating differential
equations. The concept of moment-generating differential equations has been
introduced to subsurface hydrology first by [Harvey and Gorelick, 1995], who used it
for analyzing solute transport, and independently found by [Maas, 1995]. An
elaborate treatment of using moments in the field of solute transport can be found in
[Govindaraju and Das, 2007]. [Li et al., 2005] used moments to characterize the
drawdown in pumping tests. The use of moment-generating differential equations
and moment matching for groundwater heads, or systems with multiple excitations in
general, requires the use of a time series model to estimate and separate the impulse
response functions. This was proposed by [Lankester and Maas, 1996] and [Von
Asmuth and Maas, 2001]. Actual practical testing of the method was performed in
[Bakker et al., 2008], whereas in [Bakker et al., 2007] moment matching was used for
transient modeling of groundwater heads using analytic elements.

In section 2.3.5.2, we have derived a differential equation for the case of one
dimensional, horizontal flow. Application of the same procedure to a system with two
dimensional flow and a homogeneous, isotropic aquifer yields the following
differential equation:
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figure 2.29: East to west cross-section of the dune area near Wijk aan Zee (The Netherlands),
showing the surface level and the course of M, [Van de Vliet & Boekelman, 1998].

KHV?*h = S% —r
ot

2 2

(2.70)

where V?is the Laplacian FJFF If we replace the recharge in (2.70) by a Dirac
X v

delta function, the head by definition equals the impulse response function & :

KHV?*6(t)=S % -3(2)

In order to obtain the n™ - temporal moment of @, both sides of equation (2.71) are

2.71)

multiplied with " and integrated with respect to time from —oo to 400, which gives:

v? T "0(t)dt = T ‘"

S 000,k

KH ot

This yields, using the definition of temporal moments given in (2.39):

- j £"3(¢)dt

(2.72)



Background and theory

VM, = L , n=0
IEH (2.73)
VM, = My > 0

Note that the factor time is not present in equation (2.73). For n =0, equation (2.73)
is mathematically identical to the equation of stationary groundwater flow and can be
solved using an ordinary groundwater model using the finite difference, finite element

or analytic element method. For higher n, M, can be solved using the moments of
order n—1 as input. [Van de Vliet and Boekelman, 1998] used the finite element
code TRIWACO to obtain M, and M, from a dune area in The Netherlands. In
figure 2.29, an east to west cross-section of the modeled dune area is given. The
values for M|, obtained from TRIWACO proved to be highly comparable (most
differences were less than 5%) to the values obtained from analysis of time series
generated by the same groundwater model. The results for M, were not comparable,

perhaps because the retardation in the unsaturated zone was not adequately treated.
An advantage of the analytic element method is that its continuous spatial
mathematics combine elegantly with the continuous time PIRFICT method of time

figure 2.30: Color image of M o created with the analytic element method [Bakker et al., 2007] in an

area with shallow water tables and a detailed drainage pattern (created with TimML by Frans Schaars,
Artesia (www.artesia-water.nl)



series analysis developed in this thesis. As it is a gridless method, the analytic element
method allows for the precise placement of ditches, streams and pumping wells.
Furthermore, moments can be computed analytically at the exact location of an
observation well, which circumvents scale and discretization problems. The power of
the analytic element method becomes especially clear in areas with shallow water
tables and a detailed drainage pattern, as is the situation in large parts of the
Netherlands (figure 2.30).
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Abstract:

In this chapter, a method of transfer function-noise (TFN) modeling is presented that
operates in continuous time and uses predefined impulse response (IR) functions. The
resulting class of models is referred to as PIRFICT (Predefined IR Function In Continuous
Time). It provides a useful tool for standardized analysis of time series, as it can be
calibrated using irregularly spaced data and does not require a model identification phase
prior to calibration. In the methodological section, the discrete ARMA (AutoRegressive-
Moving Average)-type TFN model of Box and Jenkins [1970] is presented and transformed
into continuous time to obtain the PIRFICT model. The discrete ARMA transfer function,
which is made up of a variable number of parameters, is replaced by a simple analytic
expression that defines the IR function. From the IR function, block response functions are
derived that enable the model to handle irregularly spaced data. In the example
application, the parameter estimates and performance of the ARMA and PIRFICT model
are compared using a data set of 15 piezometers and a simulated series. It was found that
the estimated transfer and BR functions of both models follow the same general pattern,
although the ARMA transfer functions are partly irreqular. The performance of both
models proves to be highly comparable for all piezometers.




3.1 Introduction

Time series models can be used to model the dynamic behavior of a wide range of
variables. Once a time series model is calibrated to a limited set of observations, it is
thought to represent the dynamic properties of the system that generated the
observations. The model can then be used to make real time forecasts of future values
of the output variable and its uncertainty, to predict values at non-observed periods
and to quantify and separate the influence of different variables on the output signal.
An extensive overview of time series modeling theory was first published by Box and
Jenkins [1970]. In univariate time series models, the modeled time series is assumed to
be generated by a linear transformation of a random input signal. The input signal is
considered to be a discrete white stochastic process, while the characteristic response
of the analyzed system is estimated by minimizing the likelihood function, or a least
squares criterion, of the noise series. Transfer Function-Noise (TFN) time series models
are used whenever a time series can be modeled by linearly transforming one or more
deterministic input series, while the residuals of the transfer model are auto-correlated.
As these conditions are often met in hydrology, TFN models have been used on many
hydrologic variables, including time series of groundwater head [Tankersley et al.,
1993; Gehrels et al., 1994, Van Geer and Zuur, 1997]. Most time series can also be
modeled by mechanistic models that operate according to the physical laws of the
analyzed system, for example by a transient distributed groundwater model such as
MODFLOW in the case of time series of groundwater head. The use of TFN models is,
however, often preferred over the use of mechanistic models, because TFN models
often yield more accurate predictions and are less complicated than mechanistic
models [Hipel and McLeod, 1994]. In addition, because of their stochastic nature, TFN
models are well equipped to model the behavior and uncertainty of phenomena that
are not well explained by physical laws only. Apart from these favorable properties,
there are also drawbacks to the use of TFN models as described by Box and Jenkins.
First, TFN models require very specific knowledge from the analyst, as he or she has to
be able to perform an iterative model identification procedure. Furthermore,
traditional time series models can only operate on time series that are equally spaced
in time and are non-interrupted, while the frequency of all input and output variables
is coupled and has to be equal.

In time series literature [e.qg., Box and Jenkins, 1970, Hipel and McLeod, 1994, Ljung,
1999] often little attention is paid to the fact that time is a continuous phenomenon.
Most time series models simply divide time into fixed portions, and only perform
calculations with time series that are observed in accordance with their time
discretization. For many applications, this does not pose a serious problem, as the
frequency of the measuring equipment can easily be adapted to match the demands
of the time series model. In hydrologic practice, however, the analyst will often have
to make do with the data available. Time series of the groundwater level, for example,
are often collected manually and tend to be non-equidistant and contain missing data.
[Bierkens et al., 1999] published a possible solution to this problem. In their article
they show that an ARX(1,0) model (i.e. an AutoRegressive-eXogenous variable model
[Hipel and Mcleod, 1994]) that operates on a daily frequency can be fitted on
irregularly observed time series with the aid of a Kalman filter, because the Kalman



filter estimates the variance of the one-step ahead prediction error or innovation series
at non-observed time steps. Although this 'KALMAX' approach to a large extent
alleviates this problem for simple exponential systems, it does not offer a satisfactory
solution for time series of slow systems with a non-exponential response, e.g., large
groundwater systems with thick unsaturated zones [Gehrels et al., 1994]. An
adequate daily frequency TFN model for such complex, slow systems would require an
ARMAX (i.e. an AutoRegressive-Moving Average-eXogenous variable [Hipel and
McLeod, 1994]) or full scale TFN model with too many parameters to be calibrated
smoothly, as the number of parameters is coupled to the model frequency. Moreover,
using the KALMAX approach, all input series still have to be available with equidistant,
but small, time steps. Another consequence of time discretization is that the model
order and parameter values depend on the frequency of observation. Because of this
dependency, a transformation is necessary to couple time series models with different
frequencies [Koutsoyiannis, 2001]. Problems can also occur with the scaling of
possible autoregressive (AR) parameters, as they asymptotically approach a value of 1
when the frequency increases.

The topic of model identification has received much attention in time series literature,
as it is an important and difficult part of time series analysis. In general, the
approaches and methods proposed by several authors are very diverse. Following
[Knotters, 2001], they can be subdivided into three main categories. The first category
is formed by iterative procedures of identification, calibration and diagnostic checking.
Such procedures are normally based on stochastic realization theory and/or statistical
hypothesis testing, and include the traditional and still much practiced procedure that
was proposed by Box and Jenkins [1970]. A general disadvantage of this approach is
that the results of the model identification procedure can be ambiguous [Hipel and
McLeod, 1994] and the process itself is rather heuristic and can be very knowledge
and labor intensive [De Gooijer et al., 1985]. Second, the model order can be
identified using automatic model selection procedures, using information measures,
Bayesian methods and/or the one-step-ahead prediction error. Among the most used
criteria are Akaike’s final prediction error (FPE) criterion, information criterion (AIC)
and Bayes information criterion (BIC) [Akaike, 1970, Akaike, 1974, Akaike, 1979].
Both AIC and FPE, however, are not consistent but asymptotically overestimate the
true order of time series models [Shibata, 1976]. Although many of the available
measures have desirable characteristics, there is not one definitely superior method,
and a coherent and systematic framework which indicates when to use a particular
method is lacking [De Gooijer et al., 1985]. A third category of model identification
procedures is formed by procedures that use physical insight into the system, in
contrast to the above mentioned methods that are based only on the data itself. In
the data-based mechanistic modeling methodology [e.g., Young and Beven, 1994,
Price et al., 2000] physical analysis is combined with statistical model identification.
TFN models are identified directly from the data but are only accepted as a reasonable
representation of the system if they have a valid physical interpretation. [Knotters and
Bierkens, 2000] went one step further and used physical analysis to limit the set of
candidate TFN models to one. In their study, the ARX(1,0) model is chosen as the
most appropriate linear time series model for time series of the groundwater level on
the basis of a water balance of the phreatic groundwater zone.



In this paper we present a method of transfer function-noise modeling in continuous
time, which uses predefined impulse response (IR) functions. The resulting class of TFN
models is referred to as PIRFICT models (PIRFICT stands for Predefined IR Function In
Continuous Time), and circumvents a number of limitations of discrete TFN models
linked to time discretization and model identification. The paper is organized as
follows. First, the theory and basic equations of discrete TFN models are given and
subsequently transformed into continuous time to obtain the PIRFICT model. Next, the
implementation of the PIRFICT model is elucidated step-by-step, and is summarized at
the end of the methodological section. In the example application, the performance
of the PIRFICT model is compared to that of traditional ARMA-type TFN models and
finally, discussion and conclusions are given. For reasons of simplicity, the theory is
developed and illustrated using a single input TFN model with the groundwater level
as output series and precipitation surplus as input series, but the equations can be
readily extended to include multiple input series.

3.2  Methods and theory

3.2.1 The discrete ARMA TFN model

For linear, undisturbed phreatic systems that are influenced by precipitation surplus
only, the following single input discrete TFN model can be used to model
groundwater level fluctuations:

h=h +n +d (3.1
h=eB)p,=>6,p,, (3.2)
i=0
n,=oB)a, = Z@ia,_i (3.3)
i=0
where
t  :discrete timestep (te N, [-])
h  :observed groundwater level, relative to some reference level [L]
hoo predicted groundwater level, attributable to p and relative to d [L]
p :precipitation surplus [L]
d :level of hwithout precipitation, or in other words the local drainage level [L]
n  :residual series [L]
® :deterministic transfer function [-]
B : backward shift operator [-], defined as B'p, = p, ,
® :noise transfer function [-]
a :discrete white noise process with zero mean [L]



In ARMA TFN models the transfer function @(B) is defined as a fraction, where the
numerator is a so-called moving average (MA) function @(B), and the denominator
an autoregressive (AR) function 5(B), so that ©(B) = w(B)/5(B)'. The weights

©,,9,,...0, of the transfer function are normally referred to as the impulse

response (IR) function, but from a continuous point of view this response is actually
the response to an input series with the shape of a block (see section 2.3). To avoid
confusion, we will use the term transfer function in the discrete case and reserve the
term IR function for the response to an actual instantaneous impulse. In the model
identification phase of discrete TFN models, the model order is defined by the choice
of a delay time and the number of MA and/or AR parameters, which together form
the nodes of the transfer functions in equations (3.2) and (3.3), and define their
general structure:

@(B) = Bb Cl)(B) — Bb a)O + CI)IB + 0)2B22+ "a)nr—l Bnr—l
§(B) 1+51B+52B +‘.5nans
34
o(B) &(B) 1+6B+6,B> +..0 »B” (3.4)
= ¢(B) - 1+¢1B+¢2B2 _,’_“(pannq
where

nr:number of MA parameters of the transfer model
ns :number of AR parameters of the transfer model
np :number of MA parameters of the noise model

ng :number of AR parameters of the noise model
b :delay time

Thus, the order of an ARMA TFN model is usually specified as [nr,ns,np,nq,b] .
Although it is often not explicitly mentioned, the modeler also has to specify the time
discretization A, of the groundwater level series and Az, of the precipitation series,

yet the options are normally restricted in practice, because of data availability and
because Af, =At,for ARMA models. We therefore specify the order of an ARMA TFN
model as [nr,ns,np,nq,b][At, = At,]. The overall effect of moving-average

parameters on the model structure is that they provide the transfer function freedom
of shape with respect to real time from b-Az,to (b+nr)- Az, , while an additional

AR parameter causes the tail of the IR function to be exponential (see figure 3.1).

" Although other authors also use this interpretation and notation, it is incorrect. The

correct notation is @(B) ="' (B)w(B) (see also paragraph 2.2), which is not really a

fraction and only has a symbolic meaning. This point, however, only concerns the
notation and not the contents of this chapter.
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figure 3.1: Example ARMA transfer function of a model
with order [10 1 0 1 3][30.4], illustrating the portions of
the transfer function that are determined by the MA and
AR parameters.

It can be readily seen that the limitations of discrete TFN models with regard to
irregularly observed time series follow directly from Egs. (1-3). In these equations, time
is considered to be a dimensionless index ¢ € N, such that each time step is equal to
one, regardless of the discretization in real time. Furthermore, the same index is used
for h and p, so the sample intervals of the input and output series have to be
identical. Consequently, the analyst is forced to lower the frequency of all time series
to the lowest one available and thus disregard relevant information about the
distribution of the input series in between the time steps.

3.2.2 The continuous time PIRFICT model

Most processes modeled with TFN models, such as precipitation and groundwater
level fluctuations, are in reality not discrete but continuous. In continuous time, the
transformation of a time series with a linear, time-invariant transfer function is given
by a convolution integral [Quimpo, 197 1]. Thus, equations (1-2) can be written in
continuous time as:

h(t)=h(t)+n(t)+d (3.5)

ﬁ@zjﬂbﬁﬁﬁﬁr (3.6)

—00

Unlike the transfer function of discrete TFN models, the IR function 8(¢) of a
convolution integral does not depend on the observation frequency of the input series.
It describes the dynamic response of a system to an instantaneous impulse and is
time-invariant and an integral property of a specific system [Jury and Roth, 1990,



Maas, 1994]. The IR function, in hydrologic terms, describes the way in which the
water table responds to an instantaneous impulse of precipitation surplus. In that
respect it is similar to the instantaneous unit hydrograph used in surface water
hydrology [e.g., Dooge, 1973]. Equation (3.3) can be transformed to continuous time

by replacing the discrete white noise process a, by a continuous white noise process.
The residual series n(t) can then be modeled as a colored stochastic process, which is
given by the following stochastic integral:

n(t)= jqﬁ(t -0)dW(7) (3.7)

where W (¢) is a continuous white noise (Wiener) process [L], with properties

E{dW (1)} =0, E[{dW(t)}*]1=d¢, E[dW(t,)dW (t,)]=0,t, #¢,. To allow for
discretely available data in continuous time with non-equidistant intervals we use ¢ in
real time, and index ¢ with i instead. A series of N discretely available observations

of a continuous process, such as groundwater level fluctuations, can then be written
as:

h(t.) = [h(ty)sh(t,), () B(E)] (3.8)

The drainage level d in equation (3.5) is usually unknown, but can be eliminated
from the equations by summing both sides of equation (3.5) for all time steps (from

t=t, tot, ), dividing its result by N, and assuming that the drainage level is
constant, which gives:

N N N
Zh(ti) Zh(ti) Z"(ti)
_i=0 i=0 i=0

d - - =h-h-n (3.9)
N N N

Combining equations (3.5) and (3.9) gives an overall equation for a continuous TFN
model of which the components are all centered about their respective temporal
averages (the overbar symbols), and in which d is no longer present:

{h(t)—z}:{hA(t)—hT}Jr{n(t)—r_z} (3.10)

In the continuous case, the model order is defined by choosing continuous
mathematical functions to represent the IR functions. The mathematical functions are
selected on physical grounds, by an iterative procedure of model identification,
estimation and diagnostic checking, or with the use of automatic model selection
criteria. There are, however, several important differences with the discrete model
identification procedure. First of all, when chosen carefully, a continuous IR function



can have a flexible shape and be equivalent to a series of ARMA transfer functions.
Second, the model identification procedure is simplified, because the model frequency
does not interfere with the model order. Third, a continuous IR function can be
objectively chosen as the function that represents the physics of the analyzed system
best. A physically-based IR function on the one hand reduces the sensitivity of the
model to coincidental correlations in the data, but on the other hand it can reduce the
fit if for some reason the physical assumptions prove incorrect. In ARMA TFN models
the model order can be chosen on physical grounds [Young and Beven, 1994], but
with models that contain MA parameters the exact shape of the transfer function
cannot.

Here we choose the Pearson type lll distribution function (PIll df), with an extra
parameter A that adjusts the area, to describe the response of the water table to
precipitation surplus:

0t) = 4 an(t—b)"—?&%{_a(z—b)} G.11)

with [a,n,b, A] being parameters. The physical basis of the Pl df lies in the fact that it

describes the transfer function of a series of coupled linear reservoirs [Nash, 1958],
the parameter n denoting their number, a equaling the inverse of the reservoir
coefficient normally used, and & being the delay time. The extra parameter 4 is
necessary because in the case of equation (3.6), where a precipitation surplus series is
transformed into a groundwater level series, the law of conservation of mass does not
apply. Mathematically, n is not restricted to integer values, which further increases
the flexibility of the PIIl df IR 1
function. The PIll df can take ool
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based on a simple physical model of a one dimensional soil column, discarding lateral
flow and the functioning of the unsaturated zone. In this sense the Plll df forms an
extension to their method, as it includes the ARX model but can for example also
describe the combined response of a saturated and layered unsaturated zone.

As the residuals, which are thought to be the output of the noise model, are the
result of a variety of causes (e.g., errors in the observations of the input and output
series, errors in the model parameters, simplifications or errors in the model concept),
it is difficult to make a clear choice of the noise IR function on physical grounds. We
therefore choose a simple AR(1) noise model, and rely on diagnostic checks to test its
adequacy. The choice of an AR(1) model equals the choice of an exponential IR
function in continuous time [e.qg., Box and Jenkins, 1970, Chatfield, 1989]. In order to
get an exponential noise model with an appropriate innovation variance function,
here we use an IR function of the following form [Von Asmuth and Bierkens, 2005]:

#(t) =205 exp(-at) (3.12)

with the parameter ¢ determining the decay rate of ¢ and af denoting the
variance of the residuals.

3.2.3 Evaluation, parameter estimation and diagnostic checking

When the IR functions have been chosen, the PIRFICT model is identified and can be
evaluated. In the following, we will describe the different steps in the implementation
of the PIRFICT model. First, the available time series have to be transformed to
continuous series, as most time series are not available as continuous series due to the
discrete observation process. Many collected time series, however, can be regarded as
the change in the primitive function of some underlying continuous process, as is the
case with precipitation surplus:

P, =P) - Pt.) = | p(r)dz 313

liny

When precipitation surplus data are only available at discrete intervals, the continuous
series p(r) cannot be reconstructed exactly, but it can be approximated by assuming

that the distribution of p is uniform during the period ¢, , to ¢, [Ziemer et al., 1998].
Equation (2.36) can then be written as:

p@)=—L— 1 2>y, (3.14)

L=l

1

In this way, the higher the frequency of observation, the more ¢, —¢,_, approaches
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t =0. Here we define the initial

value of p from t=—-ooto t=0to be p, the temporal average of the precipitation
surplus series used for the simulations (but when available a historical average could
also be used). With the aid of equation (3.14), the transfer model (equation (3.6)) can
now be evaluated using the block response (BR) function. The BR function ©(¢) can be
obtained by convoluting the IR function with a "block’ of precipitation surplus with
unit intensity over a period At, which equals:

o(t) = jH(r)dr (3.15)

t—At

To make the BR function equivalent to the discrete transfer function, it has to be
divided by At in order to scale it to a block input with unit area. In figure 3.3 some
example BR functions of a single linear reservoir are plotted for different time steps.

The predicted groundwater level series /" can be obtained by adding the responses of

all "blocks’ of precipitation. Because @ is a continuous function, 4" is also continuous
and for every observation of /& a sample of the residual series n is obtained.

Next, the noise model (equation (3.7)) is evaluated in order to obtain a series of
innovations v . To evaluate the noise model without having to use a Kalman Filter
(which is computationally expensive) we will derive a direct relation between the
residuals nand the innovations v . Consider the innovation series v as the non-
equidistantly sampled change in the solution to the stochastic integral describing the



residual series:

v(t)= j #(t —7)dW (1) (3.16)

t—At

When the noise IR function ¢ equals equation (3.12) , equation (3.7) can be written
as:

n(t) = exp(—eAd)n(t — A+ j J2ac? expi-a(t— 1)} dW(r) (3.17)

t—At

which is known as an Ornstein-Uhlenbeck process [Uhlenbeck and Ornstein, 1930]. By
combining equations (3.16) and (3.17), v can be calculated from the available data
as:

v(t) = n(t) —exp(—aAt)n(t — At) (3.18)

Subsequently, the parameter set ¥ =[A4,a,n,b,] contained in the IR functions has
to be estimated from the data. By adjusting the value of the parameters the time
series model can be calibrated on a set of observations of the groundwater level series
h(t,) by minimizing a certain objective function. Bierkens et al. [1999] use a log-
likelihood function [Schweppe, 1973] as objective function for the innovations of a
Kalman filter with an observation error variance of 0, to get a maximum likelihood
estimate of the model parameters (under the assumption that the innovations are
Gaussian). However, for reasons of efficiency, we seek an objective function that can
be expressed in terms of individual innovations. From (3.12) and (3.16) we have:

ol (At,¥) = {l —exp(—2aAt)} o> (3.19)

With (3.19) the likelihood function can be approximated by the following weighted
least squares criterion [Von Asmuth and Bierkens, 2005]:

N 1(/ ﬁ {l—exp(—2aAt,)}

S () = i=1 2 ] )
W] h(t)} ; -y Vit ) (3.20)

with vz(tj.,‘{f) calculated from the residual series using equation (3.18). From

equation (3.20), a Jacobian matrix can be easily obtained, so it can be minimized with
respect to ¥ using a Levenberg-Marquardt method. This makes the parameter



estimation problem much more efficient than using a Kalman filter in conjunction
with a log-likelihood function and some global optimization algorithm.

Finally, the accuracy and validity of the model results is checked by examining the
auto- and crosscorrelation functions of the innovations, the covariance matrix of the
model parameters and the variance of the IR functions. The covariance matrix of the
parameters C(¥) is estimated using the Jacobian matrix obtained from the calibration

routine and & . From the covariance matrix, also the correlation between the
parameters is calculated. The variance of the IR function € can be obtained by:

o2 = (69(’)2 2+(@>2o§+(w> 2(69(’))(69(’))C(A a)+
a on oa (3.21)
2(522’))(59(’))C(A n)+ 2(590))(52@))%”)
n

Assuming a normal distribution, a confidence interval for 8 can be plotted as +/- 2 & .
As in discrete TFN models, serious model inadequacy can be detected by examining
the autocorrelation function of the innovation series v (which indicates whether the
white noise assumption holds) and the crosscorrelation function of v and the input
series p (which indicates whether there are still patterns left in the innovation series
that could be explained by the input series). The autocorrelation and crosscorrelation
functions at lag & are defined in the same way as in discrete TFN models, but
because of the non-equidistant sampling a tolerance around lag & of £ 0.5k is
implied. A similar approach is used in the field of geostatistics to obtain spatial
variograms [Journel and Huijbregts, 1978]. An example of the autocorrelation
functions of an ARMA and a non-equidistant PIRFICT model is given in figure 3.4.

1

0.5

correlation coefficient(-)

time lag (-)

figure 3.4: Autocorrelation functions of an [10 0 1 1 0][30.4] ARMA TFEN model and a [30.4 30.4]
PIRFICT model. The dotted lines denote the 95% confidence interval. From the figure it can be seen
that for both models, the autocorrelation functions are very similar and the white noise assumption is
valid.



3.24 Summary of method

In summary, the method described above consists of the following steps. First, for
every input series an IR function is chosen, which in principle can be any continuous
function or combination of functions, but in practice will often be based on the
physical laws of the analyzed system. The input series are assumed to be uniformly
distributed in between the time steps and transformed into continuous series using
(3.14). The transfer convolution integral (equation (3.6)) can now be evaluated using
block response functions for every block pulse, to obtain a continuous prediction of
the output series. Using (3.18), a sample of the innovation series is obtained for every
observation of the output series, whether or not equidistant. An estimate of the
model parameters is made with the aid of a Levenberg-Marquardt algorithm, which
numerically minimizes weighted least squares criterion (3.20) that is based on the
likelihood function of the innovations. Finally the accuracy and validity of the model is
checked using the auto- and crosscorrelation functions of the innovations, the
covariance matrix of the model parameters and the variance of the IR functions.

3.3  Example application

3.31 Set-up and data set

The example application is devised to illustrate the performance of the PIRFICT model
in practice by comparing its calibration and validation results and parameter estimates
with those of ARMA TFN models fitted on the same data. For this purpose,
groundwater level series from 15 piezometers are selected, all lying in a dune reserve
in the province North-Holland, The Netherlands, near the town of Egmond.
Piezometers are selected at locations that are little disturbed by the groundwater
abstraction in the area [Rolf and Lebbink, 1998], thus allowing the groundwater level
series to be modeled with precipitation surplus as a single input series. The
groundwater level in all piezometers is well observed in the same period, with
observations taken manually about the 14th and 28th of every month, so that the
model results are little influenced by a difference in length of the calibration period or
the number of observations in that period. For the calibration process, observations of
the groundwater level from 1-1-1990 until 1-1-2001 are used and observations of the
precipitation surplus (precipitation minus potential evaporation) starting from 1-1-
1987. The precipitation series is available on a daily basis and is observed by the
Provincial Water Company of North-Holland in the dunes near the town of Castricum,
whereas the daily potential evaporation series originates from a station of the Royal
Dutch Meteorologic Institute near the town of De Kooy.

As the performance of models may be dependent on the properties of a data set, the
example application is not solely focused on assessing the performance of both
models for this specific data set, but also on clarifying the mechanisms which
influence model performance. First of all, we will illustrate the performance of a range
of ARMA TFN models, their dependence on user defined choices such as model order
and time discretization, and the dependence of the results of PIRFICT models fitted on
the same data from an example series. For this purpose, piezometer 19AZW246_1 is
selected. At this location the water table showed the slowest response to precipitation



surplus, which makes it especially suited for illustrating the beneficial properties of the
PIRFICT model. Next, we will identify a single ARMA model order for all 15
piezometers, and compare the calibration results with those of the PIRFICT model. For
six of the piezometers, observations that were taken before the calibration period are
available, and for these series a validation is also performed. Unfortunately, the
observations in this period are only available on a quarterly basis and not suited for a
cross-validation. Finally, a small simulation experiment is performed to confirm some
hypotheses based on results from the real world data.

3.3.2 Single series

In order to be able to calibrate an ARMA model on a specific time series, the model
order has to be identified first. As Knotters and Bierkens [2000] have shown, the
response of the saturated zone to precipitation, under the assumption of vertical flow,
shows exponential decay and therefore equals an ARX model. However, the first
ordinates of the response function can also be non-exponential and the response can
be delayed when horizontal flow and the functioning of the unsaturated zone are
taken into account. Therefore, we only consider ARMA models with order

[nr,1,0,1,b][At, = Az, ], i.e. models in which the transfer model contains one auto-

regressive and a variable number of moving-average parameters, in which the noise
model one auto-regressive parameter and there is a delay time. The number of
moving average parameters nr is chosen to be 5, 10 and 20, also dependent on the
time discretization, which covers the range of probable model orders. The time
discretization is chosen in accordance with the observation frequency and such that
the response of the system can be described adequately with a reasonable number of

parameters. In the case of these time series this means that At, = 15.2, 30.4 or 60.8

days, so that exactly 24, 12 or 6 groundwater level observations are available every
year. As ARMA models require equidistant time series for their calibration and the
groundwater level measurements are taken approximately the 14" and 28" of every
month, the groundwater level series has to be made equidistant. In this application,
an equidistant series starting from 1-1-1990 is obtained by linearly interpolating the
groundwater level between the two nearest observations. Observations of the
precipitation surplus are available on a daily basis, and an equidistant series is
obtained by taking the sum of the daily series for every time interval.

As both the input and output time series are modified by the interpolation and
resample operations required for ARMA models, PIRFICT models are fitted for every
data set obtained this way. To make a distinction between the results thus obtained,

the PIRFICT models are tagged as [Af,,A¢,] and as (non)equidistant, which in this

case does not indicate a difference in model order but a difference in the data set
used. The calibration results of the different ARMA models and the PIRFICT model are
given in table 3.1, expressed in the form of a number of criteria. In the table, first the
root mean squared error (RMSE) and root mean squared innovation (RMSI) are given,
which form a measure for the error of the transfer model and the variance of the
noise process, respectively. Because the variance of the groundwater level series and



table 3.1: Calibration results for ARMA TFN models of different order and PIRFICT models
calibrated on the same data (piezometer 19AZW246_1).

ARMA TFN models

[nr,ns,np,nq,b] [51010] [101010] [201010] [201010] [51010]

[At, = A, ] [30.4] [30.4] [30.4] [15.2] [60.8]
RMSE (cm) 17.82 16.39 17.08 16.58 17.33
RMSI (cm) 8.61 8.42 8.06 7.04 10.41
EVP (%) 82.35 85.08 83.79 84.83 83.59
PIRFICT model
RMSE (cm) 16.25 16.41 17.43
RMSI (cm) 9.03 7.27 10.52
EVP (%) 85.32 85.14 83.39

the residual series can be influenced by interpolation and resampling operations, also
the explained variance percentage (EVP) is given. The EVP is defined as:

2 2
O — O,
EVP=—"0_""0 %100% (3.22)
O

A logical way of comparing model results seems to be the use of automatic model
order selection criteria such as AIC and FPE. However, both criteria use the innovation
variance or their likelihood for determining the best model order, which are
influenced by the sample frequency, so these criteria cannot be used to compare
models with different sample frequencies or data sets. From the results in table 3.1 it
can first of all be seen that the differences between the fit of both models are small.
Although the PIRFICT model does show the lowest RMSE and highest EVP, the
variation caused by differences in observation frequency and model order is larger
than the differences between both model types. The optimal result for the ARMA
model appears to be given by the [10 1 0 1 0] [30.4] model, so we can identify this for
the moment as the optimal model order. As expected, the RMSI of both models varies

with the time lag between the observations of the output series. When A¢, = 15.2,

the RMSI lies in the order of 7 to 8 cm, whereas the RMSlis 9 to 10 cm when At, =

60.8. Furthermore, the results show that the RMSI of the ARMA TFN model decreases
when the number of parameters increases, while the RMSE shows an optimum for the

[10 1 0 1 0] model for At, = 30.4. This phenomenon could well be attributed to the

fact that the models are calibrated by minimizing the RMSI (which is linked to the
noise part of the model) rather than the RMSE (which is linked to the transfer model).
Because of this, adding extra parameters and thereby overfitting the data will result in
a gradually improving fit of the noise model, but can at the same have a negative
effect on the fit of the transfer model. Overfitting behavior, or the generally higher
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figure 3.5: BR functions of several TEN models of piezometer 19AZW246_1. a) Three [nr 101 0]
[30.4] ARMA models with nr =5, 10 and 20. b) An [10 1 0 1 0][30.4] ARMA model and a PIRFICT

model using the same data. c) three [10 1 0 1 0][ At ] ARMA models with At =15.2, 30.4 and 60.8.
d) Three PIRFICT models with At, = Al‘p =15.2, 30.4 and 60.8. The dotted lines denote the 95%

confidence interval of the nb = 5 model in a), both models in b), and the At = 30.4 model in c) and d).

number of parameters of an ARMA model, could also explain the fact that the RMSI
of the ARMA TFN model is lower than that of the PIRFICT model, while its RMSE is
higher.

The parameter estimates of the different models can best be compared by plotting
the estimated BR functions. In figure 3.5, the transfer functions of three [nr 10 1
0][30.4] ARMA models are plotted, with nr =5, 10 and 20. The results appear to be
significantly influenced by the model order, as the transfer functions of the nr =10
and 20 model lie partly outside the confidence interval of that of the nr =5 model.
The number of MA parameters for the case nr =135 is apparently too low to model the
slow response of the system well. According to this figure and the RMSE, in this case
10 MA parameters just about suffice to model the first part of the response of the
system, while the remainder of the response function can be described adequately by
a single AR parameter. From figure 3.5b it can be seen that the response of the



PIRFICT model follows the response of the [10 1 0 1 0][30.4] ARMA model rather
closely. The results of both models should therefore be highly comparable, as the only
difference in the transfer functions is the irregular pattern of the ARMA model around
the smooth curve of the PIRFICT model. In figure 3.5¢ the order of the ARMA model,
in the traditional sense, is kept constant while the sample frequency is varied,
resulting in three [10 1 0 1 0][A¢] ARMA models with At = 15.2, 30.4 and 60.8. As
expected, the parameter estimates of the ARMA model prove to be also significantly
influenced by the sample frequency, which interferes with the model order when time
is used as a dimensionless index. Finally, in figure 3.5d, the BR functions of three
PIRFICT models are plotted, calibrated on the same data as the ARMA model (i.e.

At =15.2, 30.4 and 60.8). From the results, the first two BR functions prove to be
almost identical, while the model apparently has difficulties estimating the first part of
the BR function correctly for Az = 60.8, although it does not differ significantly. This
effect is probably caused by the increasing time interval and/or decreasing number of
observations, as the ARMA [60.8] model estimates the transfer function in about the
same way.

3.3.3 Multiple series and validation study

For a broader comparison between the ARMA and PIRFICT TFN model, both models
are calibrated on time series from 15 piezometers with observations ranging from 1-1-
1990 until 1-1-2001. For reasons of comparability and objectivity, no Box and Jenkins
style iterative model identification procedure is performed for each separate
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figure 3.6: Simulations from a [10 1 0 1 0][30.4] ARMA model and a [30.4 30.4] PIRFICT model
calibrated on observations of the water table depth of piezometer 19AZW246_1 between 1990 and
2001. From the figure it can be seen that the simulation results in both the calibration and validation
period are similar.



piezometer to obtain the most appropriate model order (in our case defined by nr,b
and At,). Instead, a[100 1 1 5][30.4] ARMA model is calibrated on all piezometers,

which proves to give the transfer function just about enough MA parameters to
model the slowest response of the 15 piezometers well (see section 3.2). For all
models, a delay time is applied, which has shown to improve both the calibration and
validation results. As expected, the improvements are greatest for the PIRFICT model
because of its predefined shape. On the basis of a manual model identification
procedure, the delay time for the 15 piezometers is chosen tobe b=[126 000 3 1
131366815 0]days. It is applied by shifting the precipitation series along the time
axis. Shifting the input series rather than the response function makes it possible to
apply delay times which are smaller than the discrete-time interval, and by doing so
the delay time could be kept equal for the ARMA and PIRFICT model. The PIRFICT
model is first calibrated using the same data as the ARMA model, which is therefore
denoted as equidistant [30.4 30.4], and second using non-equidistant [30.4 1] data.
The results should therefore show the combined effect of the interpolation operations
needed to make the data equidistant and the effect of summing the daily
precipitation surplus series into 30.4 day totals. In addition, for six of the piezometers,
a validation is performed on the observations taken before 1-1-1990. A time plot of
the available observations in both the calibration and validation period for piezometer
19azw246_1 is shown in figure 3.6, along with predictions of a [10 1 0 1 0][30.4]
ARMA model and a PIRFICT model using the same data. The figure clearly shows that
the observation frequency in this period is not equal to that of the calibration period,
but has been changed at the end of 1989 from 4 times a year into 24 times a year, on
average. Because the frequency of the observations is much lower than the frequency
of the predictions, the predicted values are linearly interpolated to match the dates of
the observations, and not vice versa as in the calibration routine. For the PIRFICT
model, the simulated values do not have to be interpolated, as the simulated water
table depth is continuously defined.

The average results of all 15 table 3.2: Average calibration and validation results of
piezometers are summarized in the ARMA and PIRFICT model for 15 and 6 piezometers
table 3.2. As in table 3.1, the respectively.

RMSE, RMSI, and EVP are given,
along with the validation RMSE.
Again, the differences are small as

ARMA PIRFICT  PIRFICT
[101010] [30.430.4] [30.41]

the average RMSE of the [10 1 0 30.4] €qul.  non-equr.
1 b][30.4 30.4] ARMA model, RMSE (cm) 12.42 12.56 12.50
with a difference of only 0.8 RMSI (cm) 7.20 7.65 7.89
millimeter, almost equals the EVP (%) 88.66 88.37 88.36
RMSE of the non-equidistant V-RMSE (cm) 15.76 15.64 15.38

[30.4 1] PIRFICT model. In 7 out

of the 15 piezometers the fit is

slightly better when the PIRFICT model is used, whereas 8 piezometers show a better
result with the ARMA model. At the same time, however, the RMSI of the ARMA
model is lower for all piezometers, whereas the opposite is true for the validation
RMSE. The lower RMSI is probably to a certain extent caused by the interpolation
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figure 3.7: Transfer functions of a [10 1 0 1 b][30.4] ARMA TFN model and a PIRFICT model
calibrated on the same data from piezometers 19AZL5038_1, shown in a), and 19AZW195_1 shown
in b). The dotted lines denote the 95% confidence intervals.

operations that were carried out on the data to make it equidistant, which tends to
smooth high-frequent variations of a signal. This is corroborated by the fact that the
PIRFICT model yields a RMSI that is 2.4 millimeter smaller for the equidistant data than
for the non-equidistant data. However, the RMSI of the ARMA model is on average
4.5 millimeter smaller than that of the [30.4 30.4] PIRFICT model while the VRMSE of
the ARMA model is higher. This, again, points to overfitting behavior of ARMA
models. The ARMA model is able to produce a lower value of the objective function
using the same data, but apparently the correlations fitted are to some extent
coincidental as they are accompanied by a higher VRMSE. When the response
functions of both models are compared, the smooth continuous BR functions prove to
fit the general shape of the more irregular discrete transfer functions well for all
piezometers, indicating that the PIRFICT model can adequately model phreatic systems
with a relatively fast, intermediate and slow response (figure 3.7a and b and figure
3.5b).

3.3.4 A small simulation study

Because we were not able to perform a cross-validation and cannot determine the
‘true’ response of the real world phreatic systems, there is only indirect evidence that
the irregular shape of the ARMA transfer function is to some extent coincidental or
due to overfitting behavior. In order to have more direct evidence, we performed a
short study in which we simulated a groundwater level series by transforming a daily
frequency precipitation surplus series in a synthetic system with a known response (a
Plll IR function with 4 = 1500, a=0.002, n=1.5, b=0). To the series thus obtained,
we added a residual series that was generated by convoluting a ‘discrete white noise’
series of normally distributed random numbers with a known, exponential noise IR

function (a = 25, o, =2.5 cm on a daily frequency). From the series thus obtained

the parameters that we should have retrieved using the TFN models are known exactly.
The parameter estimates of a [10 1 0 1 0][30.4] ARMA model and a PIRFICT model are
depicted in figure 3.8 as BR functions, along with the true BR function of the synthetic
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34 Discussion and conform the ‘true’ response of the synthetic system.

conclusions
The method presented has shown to circumvent a number of the limitations of
discrete ARMA Transfer Function-Noise models. First, the PIRFICT model can be
calibrated on data at any frequency available, because it operates in a continuous time
domain and the time steps of the output variable are not coupled to the time steps of
the input variables. Thus, also the frequency of the input series can be irregular.
Second, compared to the combined ARX model and Kalman filter, the PIRFICT model
offers a further extension of the possibilities of calibrating TFN models on irregularly
spaced time series, because the shape of the transfer function is not restricted to an
exponential. Third, using the PIRFICT model, the model identification process is
simplified because the model frequency does not interfere with the model order and
parameter values, and the flexibility of a single continuous IR function can be such
that it comprises a range of ARMA transfer functions. Furthermore, the model can be
readily identified using physical insight. Although the method is presented in the form
of a single input TFN model for time series of groundwater head, it is in fact quite
general, and could be used for a variety of single or multi input, (non) hydrologic
problems (i.e. for the same purposes that ARMA TFN models are used, see
introduction). The continuous time approach probably offers most advantages in cases
where the above mentioned limitations occur, where the analyst is interested in the
functioning of a system on different or small time scales, in the automated analysis of
large quantities of time series, or in assessing time invariant response characteristics of
systems. While the PIRFICT model probably performs best when the dynamic behavior
of a system can be expressed in the form of a simple analytic formula, this should not
pose a restriction to the use of the model, as the shape of the IR function can also be
generalized by using sums of PlIl df (or other) functions.



It was shown in the example application that the PIRFICT model yielded comparable
parameter estimates when the sample interval was varied, as long as the series of
observations was sufficiently long and dense. As expected, the results of the ARMA
TFN model proved to be influenced by user defined choices such as model order and
time discretization. As for model performance, the PIRFICT model gave results
comparable to those of the discrete ARMA models for all series analyzed. A first
indication of this can be found in the fact that the estimated BR and transfer functions
of both models show the same general behavior (but the ARMA transfer function is
partly irregular while the PIRFICT BR function is smooth). Second, the average
calibration RMSE of the non-equidistant [30.4 1] PIRFICT model of the 15 piezometers
was on average only slightly higher than that of the ARMA TFN model, whereas the
validation RMSE was actually slightly lower. Although the differences are small, they
could well be explained by the different structure of the transfer function of both
models, which influences their overfitting behavior. As the shape of the transfer
function of ARMA models is partly free, the model is also free to fit coincidental
crosscorrelations between the input and output series, which will result in a lower
calibration RMSE, a higher validation RMSE and a partly random pattern of the
transfer function. Because of the use of a predefined IR function, the estimates of the
PIRFICT model are forced to follow a certain physical behavior. This on the one hand
makes the model less sensitive to overfitting behavior (next to its generally lower
number of parameters) and can therefore yield better estimates, but can on the other
hand also negatively influence the results when the physical assumptions prove
incorrect or are to rough. These hypotheses were corroborated by the results of the
simulation experiment, in which the response of the synthetic system was a Plll
distribution and therefore equal to that of the predefined IR function in the PIRFICT
model. For all series analyzed, the Pl df, or a system of serially coupled linear
reservoirs, has shown to model the response of the water table to precipitation
surplus adequately.
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Abstract:

In this chapter, the background and functioning of a simple but effective continuous time
approach for modeling irreqularly spaced residual series are presented. The basic
equations were published earlier in [Von Asmuth et al., 2002] where they were used as
part of a continuous time transfer function noise (TFN) model. It is shown that the methods
behind the model are build on two principles: first, the fact that the equations of a Kalman
filter degenerate to a form that is equivalent to 'conventional' autoregressive moving
average (ARMA) models when the modeled data are considered to be free of
measurement errors. This assumption, in comparison to the 'full' Kalman filter also yields a
better prediction efficiency [Ahsan and O'Connor, 1994]; second, the mathematical
equivalence between discrete-time AR parameters and continuous exponentials and the
point that continuous time models provide an elegant solution for modeling irregularly
spaced observations [e.g., Harvey, 1989]. Because simple least-squares methods do not
apply in case of modeling irregular data, a sum of weighted squared innovations (SWSI)
criterion is introduced and derived from the likelihood function of the innovations. In an
example application, it is shown that the estimates of the SWSI criterion converge to
maximum likelihood estimates for larger sample sizes. Finally, we propose to use the so-
called innovation variance function as an additional diagnostic check, next to the well-
known auto and crosscorrelation functions.




41  Introduction

One of the immediate consequences of the stochastic nature of natural processes is
that the predictions of a deterministic model will never match a set of observations
completely. The difference between the model predictions and the observed time
series forms a time series of its own, called the ‘residuals’. Residuals are ‘caused’ by
errors in the observation process, errors in the model parameters, simplifications or
errors in the model concept and/or numeric errors when evaluating the model
equations. Furthermore, the value of a model residual at a certain time instant is often
correlated with its value at earlier time instants, so residuals cannot simply be modeled
as a set of independent Gaussian deviates. Explicitly modeling the behavior of the
residuals of a transfer or deterministic model can have several purposes. First, when a
noise model is fitted to the residuals, it can be used for stochastic simulation. This is
especially useful in case one is interested in the probability of extremes, as such
probabilities are underestimated when using only the deterministic model [e.qg.,
Knotters and Van Walsum, 1997]. Second, because of the autocorrelation in the
signal, the noise model can also be used to yield predictions of the residuals at
unobserved time steps, either for smoothing, forecasting or updating purposes. Such
applications, which are widely used in the meteorologic sciences and are often
referred to as data assimilation [McLaughlin, 1995, Kalnay, 2002], make optimal use
of both model prediction and observations and can significantly improve the accuracy
of the predictions of the combined model. Third, optimization algorithms for
estimating the model parameters and their covariance matrix often assume that
model errors are uncorrelated. Correlations between the input, predicted output and
the residual series hamper an independent estimate of the model parameters,
whereas autocorrelation in the residuals causes the variance of the parameters to be
underestimated. ‘Whitening’ of the residuals with a noise model thus improves the
parameter estimates of transfer or physical-deterministic models [Bryson and
Henrikson, 1965; Te Stroet, 1995].

In light of the problem of adequately dealing with residuals or more in general noise
corrupted signals, one can discern two directions in the methods used. First, there are
statistical time series analysis methods, which are popular in fields of science like
econometrics or social sciences. Their application developed rapidly after the
publication of the comprehensive text book by Box and Jenkins [1970]. In the
univariate version of these models, which are classified under the name autoregressive
integrated moving average or (X)ARIMA, a series of observations of a given variable is
modeled using only the temporal correlation structures in the data itself. In the
multivariate case, also data of other, explanatory variables is used (transfer part of the
model), while the errors of the transfer model are modeled with a separate univariate
or so-called noise model. The combined model is referred to as a transfer function
noise (TFN) model. Second, there are the filtering methods, of which Wiener can be
considered the founder [e.g., Wiener, 1949]. Such methods were first applied in the
field of control, navigation and communication engineering, where the problem of
extracting useful information from signals that are noise corrupted arises most
naturally. Here, the introduction of the Kalman filter [Kalman, 1960] was an important
factor in the rapid spreading of its application across the more exact sciences, owing
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figure 4.1: Schematic representation of a combined deterministic-stochastic model of a system under
the influence of system noise, measurement noise, and an input signal.

to its generality, simplicity, and ease of application. Nowadays, the Kalman filter is
applied across a wide range of disciplines for modeling the behavior and uncertainty
of phenomena that are not well explained by physical laws alone.

The distinction made above, however, is somewhat artificial, because both methods
are closely related. Apart from the fact that their mathematical treatment and
notation differs, there are two important differences. First, in the Kalman filter a
distinction is made between noise that perturbs the state of the system itself, and
noise perturbing the process of measuring that state (figure 4.1). In ARIMA models,
on the other hand, there is only one noise term uniting all sources of uncertainty in
the modeled signal. However, the Kalman filter is often also applied for pure
prediction problems where measurement error is assumed to be absent. In Ahsan and
O'Connor [1994], it is shown that in that case, the Kalman gain becomes redundant,
and the filter equations reduce to a simpler form equivalent to that of an ARMA
model. A second important difference, one that was not discussed by Ahsan and
O'Connor, lies in dealing with irregular data. On this point, ‘conventional’ discrete-
time ARMA models have an important practical drawback, as they cannot be readily
applied to data with missing observations, while also the frequency of the input and
output variables is coupled and has to be equal. Over the years, there has been a lot
of effort in solving this problem, in the time series literature [Jones, 1980, Harvey and
Pierse, 1984, Little and Rubin, 1987] but more recently also specifically focused on
hydrologic problems [Bierkens et al., 1999, Koutsoyiannis, 2001, Berendrecht et al.,
2003; Yiand Lee, 2004]. Mostly, these solutions involve a state space representation
(SSR) of the model equations embedded in a Kalman filter. This way, missing
observations can be easily handled by simply omitting the updating equations while
retaining the prediction equations. Furthermore, to estimate the ARMA parameters, a
likelihood function is constructed using the prediction errors and their variances, as
simple least-squares methods no longer apply.



In this paper, we specifically focus on dealing with irregular data, and argue that also
in that case the Kalman filter can be reduced to a more simple form. Furthermore, we
will solve the problem in a continuous time domain using a simple Ornstein-
Uhlenbeck based (OUB) noise model. Continuous time models are often considered to
be more fundamental than their discrete-time counterparts, and can provide an
elegant solution for modeling irregularly spaced observations and data with mixed
frequencies [Harvey, 1989]. For many variables, the process generating the
observations can be regarded as a continuous one even though the observations
themselves are only made at discrete intervals. In the economic sciences, already a
good deal of the theory is based on continuous time models [Khabie-Zeitoune, 1982,
Bergstrom, 1990, Brockwell, 2001]. The basic equations of the OUB noise model
were published earlier in [Von Asmuth et al., 2002] where they were used as part of a
continuous time transfer function noise (TFN) model. In that paper, we mainly
restricted ourselves to describing how the transfer part of the model transforms
irregularly spaced input series. The noise model, however, deals with the prediction
errors in the output, the parameter optimization process, and stochastic simulation
applications. Because of its stochastic nature, its properties are fundamentally
different from those of the transfer model, and certainly as important in light of
dealing with irregular data. Therefore, its background and functioning are described
separately in the current paper. The OUB model is equivalent to an AR(1) model,
which is often used to model the residuals in hydrologic applications, and we will
show that it also in this case suffices to effectively whiten the residuals.

The paper is organized as follows: first, the forecasting mode of an AR(1) model, the
equations of the time update in the Kalman filter, and the OUB model are discussed,
and it is shown that they are mathematically equivalent. Next, specific attention is
paid to the methods for estimating the model parameters. As an alternative for the
maximum likelihood (ML) function, a sum of weighted squared innovations (SWSI)
criterion is derived and introduced. In an example application, both optimization
criteria are compared and it is shown that the SWSI criterion converges to the ML
function for larger sample sizes. Finally, the way the prediction error or innovation
variance varies with the time step is investigated, because that is a crucial part in
handling data with irregular time steps correctly. In the appendix, the main derivations
are given in detail.

42  Methods and theory

421 Irregular data and the AR(1) model

For a general treatment on the functioning of ARMA models we refer to [Box and
Jenkins, 1970]. Here we will restrict ourselves to an AR(1) model and aspects that
concern handling irregular data, because of the equivalency with the OUB model
discussed later on. The AR(1) model is given in mathematical terms by:

i, =@n, +a, 4.1)

where



deviations of the residual series nfrom its mean E(n,)
autoregressive parameter

discrete white noise process with properties E{a,} =0 (so that a, =a,),
E{at2}= O'j, Ela,a,.;]=0for i#0

Q€ ™

t+i

In ARMA models in general, a white noise series at equals the series of one-step-
ahead prediction errors, or innovations. For the AR(1) model, an estimate of at is

obtained by subtracting the one step ahead prediction ﬁt‘ﬁH = pn,_, from the

observed value of 7,. Because of this, a missing observation of 7 at time ¢ implies

that @, and a,,, can not be calculated. Prediction of 7, using 7,_, or more time steps
back does not offer a straightforward solution, because the lead time influences the
prediction error or variance of a, , which should be stationary. Therefore, a time series
must be complete and given at regular intervals in order to be able to fit an ARMA
models on the data. The forecasting mode of ARMA models, however, does provide
the necessary equations to predict over a variable lead time and to quantify the
accompanying prediction error [see Box and Jenkins, 1970]. For the AR(1) model, the
prediction and its variance are a function of the time lag | and given by:

’%Hl = ¢lﬁz
2l 4.2)
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figure 4.2: Schematic representation of the functioning of an AR(1) model combined with a
‘degenerate” Kalman filter. The (*) denotes a residual, whereas the (+) denotes a predicted residual.
The model predicts missing values of the residual series at every time step, along with the prediction

error variance.



where

i : unbiased prediction of 7,,, given the available observations up to time step ¢

t+1 t+1

o? - variance of prediction error e

[ t+1

In other words, the main reason that ARMA models can not cope with irreqular data
are that parameter estimation and estimation of missing values can not be done
simultaneously. In [Brubacher and Wilson, 1976], this was already recognized and
they devised a technique that regenerates the residuals using the forecasting and
backcasting mode of ARMA models, but according to [Hipel and McLeod, 1994, p.
695] in practice it was not very convenient.

422 The combined AR(1) model and ‘degenerate” Kalman filter

We refer to Ahsan and O'Connor [1994] for an extensive treatment on how the
Kalman can be ‘degenerated’ to a simpler form in the pure prediction scenario, and
how the state space representation in general relates to ARMA models in standard
notation. To facilitate comparison, here we will use standard notation. In figure 4.2, a
schematic representation of a combined AR(1) model and the ‘degenerate’ Kalman
filter is given. When observations are missing or scarce, the value of a cannot be
determined for every time step. Instead, an irregularly spaced innovation series v is

estimated. While o is a constant, ai depends on the time lag between two
observations. In this approach, fitting the model to an irregular series yields an
estimate of @, of, v and a specific variance O'fl for every v . The parameters are

estimated by optimizing a ML function, made up of the innovations and their
variances. The equations of the Kalman filter are evaluated recursively, while different
actions are taken depending on whether or not n is available at a time step. Starting

with initial conditions ﬁo and 0620 , the following equations are evaluated in the so-
called time update [after Bierkens et al., 1999]:
ﬁt = (/)ﬁt—l

2 _ 2 2 2
o, =0,+¢ 0,

&

(4.3)

where
A, prediction of 7, in the time update
ﬁt : prediction of 7, in the measurement update

o2 :variance of the error in the time update

€

When an observation is available, the measurement update is evaluated:
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If, however, no observation is available:
i, =1, (4.5)

The recursive application of equations (4.3),(4.4) and (4.5) mathematically equals the

forecasting mode of an AR(1) model as described by (4.2), because after a time lag /
the error in the time update is:

ol = (1+@* +..+¢

€4

2l
(=g
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(4.6)

Hence, in the SSR ‘the forecasting mode’ of the AR(1) model that handles predictions
over variable lead times is part of the basic model equations. However, even in the
‘degenerate’ form, the recursive evaluation of the equations in SSR becomes
computationally increasingly inefficient with an increasing model frequency. Even
more so when it is used in combination with a deterministic model, because also that
has to operate on the same frequency. Next to that, the autoregressive parameter ¢

becomes badly scaled as it asymptotically approaches the value of 1 when the time
step At (in real time units) approaches 0. Finally, operating on a high frequency also

fi(t-at) ii(f) () = _[d)(t—r)dW(t)

t=At

n(t)—

real time —>»

: v
* a(t-ar) e ™

figure 4.3: Schematic representation of the functioning of the Ornstein-Uhlenbeck based model. The
(*) denotes a residual, whereas the (+) denotes a predicted residual. The model directly predicts the
value of the residual series for the next observation available.



poses a problem for ARMA type transfer models, because the number of MA
parameters increases linearly with the frequency [Von Asmuth et al., 2002].

4.2.3 The Ornstein-Uhlenbeck based model

In figure 4.3, a schematic representation of the functioning of the OUB noise model is
given. In this approach all time series and functions, including the noise process, are
regarded as being continuous. Equation (4.1) can be transformed to continuous time
by writing it in moving-average form:

A=y ¢a,_ 4.7)

and replacing at by a continuous white noise process dW (¢) . The residual series n
can then be modeled as a continuous stochastic process, given by:

t
i(t) = j #(t-7)dW (1) (4.8)
where
@ : noise impulse response function

W (t): Wiener process [L], with properties E{dW (£)} =0, E[{dW (t)}*]= pdt,
E[dW (1,)dW (t,)]=0for ¢, # ¢, .
B aparameter [L'T"]

As in the Kalman-filter approach, the model does not yield an estimate of the white
noise series dW (t), but instead gives an estimate of the innovation series v . v is
modeled as the irregularly sampled effect of the noise process on the residual series
between time steps t— At and ¢, which is given by:

)= [ ge—r)dw () (4.9)

t—At

For the noise impulse response (IR) function the following exponential is chosen, so
that (4.8) reduces to an AR(1) model when it used on data with regular time steps:

2
#(t) = 2“;" exp(—at) (4.10)




with o defining the decay rate of the noise, and & denoting the variance of the

residuals. With the choice of an exponential IR-function, equation (4.8) can be written
as [see e.g., Gardiner, 1994]:

2
2a0;

i(t) =exp(—aAt)ii(t — At)+ j expi—a(t—7)}dW(7) (4.11)

t—At

which is known as an Ornstein-Uhlenbeck process [Uhlenbeck and Ornstein, 1930;
Gardiner, 1994]. By combining equation (4.9) and (4.11), the innovation series v can
be calculated from the available residuals using simply:

W(t) = ii(t) — exp(—aAt)ii(t — At) (4.12)

(in figure 4.3 illustrated by the

dotted exponential). Because of its continuous formulation, (4.12) gives an exact
solution and only needs to be evaluated once for every observation of x. This can
reduce computation times substantially, compared to a recursive algorithm which
discretizes At in small time steps.

where the last term on the right side equals 7

tlﬁ/—A/

4.2.4 Parameter estimation and SWSI criterion

Next to the equations discussed in the previous section, an important aspect of
dealing with irregular data lies in the optimization methods used. For fixed time steps,

0'2 is constant and minimizing the sum of squares of a yields exact ML estimates,
under the assumption of a Gaussian distribution. This is, however, also conditional on
the choice of the starting values a, and n,, and is therefore called the conditional
sum of squares [Box and Jenkins, 1970]. With a variable af(t), simple least-squares
methods are no longer straightforwardly applicable. Instead, a likelihood function is
constructed and maximized using the Kalman filter estimates of v and crf(,) at every

time step [see e.qg., Schweppe, 1973, Mélard, 1984]. The likelihood function, however,
is a rather complicated expression and flexible algorithms are needed in order to
maximize it [Hipel and McLeod, 1994] . In the following, we will show that also for
irregular data, a simple least squares criterion can be derived using the innovation

variance function (IVF) that defines the general relationship between af(,)and At . For
ARIMA models, when the set of parameters that is estimated is ¥ =[y,¥5,...,¥, ],
and assuming that a is a series of N random variables which are normally
independently distributed (NID(O, 0'2 ), then their joint pdf can be written as:



N N 2

P(a, |'¥,ay,n) = (2767) 2 exp(d ;“’2 ) (4.13)
i=1 a

in which a, and n, denote the initial conditions of a and 7. Using (4.13) the log
likelihood function of ¥ is given by:

N 2
(¥ |a,,a0,n0) = —0.5N In(27) 05N In(02) — 0.5(> 1) (4.14)

i=1 O-a

For the likelihood function of continuous time innovations, we first adapt the discrete
notation to allow for discretely sampled, irregularly spaced observations. For this
reason we use ¢ in real time, and index that with i instead. A data set O of N
observations of a continuous process like n is then given by:

O =[n(t,)s1(ty )y n(ty)] (4.15)

As stated earlier, the innovation variances af(,) that are otherwise individually

estimated and stored for every time step, can be jointly described by the IVF as a
function of the time step At (and the parameter set ¥ ). In the example application,
we will pay more attention to the IVF as it plays a crucial function in handling irregular
data. The likelihood function can now be written as [Schweppe, 1973

A(¥|0) =-0.5N In(27) —o.siln{oz(m. ¥ — o.siM .16)

2
i-1 im0, (A, )

In order to reduce the amount of parameters that has to be numerically optimized, we
will start with eliminating E{n(#)} . For sample sizes usually considered, the mean of a
time series can be adequately estimated as [Box and Jenkins, 1970]:

N

2. n(t)

_i=l
Ein(0} ==— 4.17)

Hence, we can estimate 7 directly from data set O . Because o (At,¥) is a function
of the time step, it cannot be straightforwardly estimated from the available

innovations. However, using (4.9) and (4.10), O'f(Al‘,‘P) can be written as a function
of the residual variance as [Gardiner, 1994]:

ol (At, ) = {l —exp(-2aAt)}o,> (V) (4.18)



which in turn can yield an estimator for O'nz(‘P) using the individual innovations (see
appendix):

N
2
z{l exp(— ZaAt)} (t:%)

i=1
o, 2(9) = N

(4.19)

With (4.18) and (4.19) in (4.16), we can now eliminate O'f (At, @) form the equations,
and the likelihood function can be written as (see appendix):

N
N ]K/H {1—exp(—2aAt,)}
2

i=1 2

vi(t;,9)
— 1- —2alt. 7’ (4.20)

A(¥|0)=~0.5N In(27) — 0.5N In[ £ exp( = ) 1.

0.5N

Thus, the only parameter that has to be numerically optimized for the noise model is
a , defining the decay rate of the noise. Because the first and last terms in the
likelihood function are constant, an estimate of ¥ can be obtained by minimizing the
following criterion:

\/ ﬁ {1 —exp(-2aAt;)}

1—exp(-2aAt;)

S*(¥|0)= Z

Jj=1

vi(t,,¥) (4.21)

which may be referred to as the Sum of Weighted Squared Innovations (SWSI)
criterion. The SWSI criterion is similar to other weighted least squares criteria, as also
here the weights reflect the variances of the innovations. For optimization and
parameter estimation, we can now use standard nonlinear least squares regression
methods [see e.g., Snedecor and Cochran, 1967]. First, the partial derivatives of (4.21)
are obtained, either numerically or analytically, and used to construct a Jacobian
matrix:



s, a5,
o, B

J=| e (4.22)
| 04, B, |

Using J the model is calibrated on a set of observations with a Levenberg-Marquardt
optimization algorithm [Marquardt, 1963] that adjusts ¥, while minimizing S{¥ |O} .
Then, the covariance matrix of the parameters can be estimated with:

. 2

2 min(S7) 71y (4.23)
N-p

Next, &, is estimated using (4.19). The model results can be checked by examining

the covariance matrix and the variance of the IR-function. The variance of the IR-
function ¢ equals:

207

var{g(t)} ={ exp(—at) —1rJ2a0? exp(—at)}? var(a) (4.24)
N

A confidence interval for ¢ can be plotted as +/- 2 o, when assuming a normal

distribution for « . As in the ARIMA approach, serious model inadequacy can be
detected by examining the autocorrelation function of the innovation series v (which
gives an indication on whether the white noise assumption holds) and the
crosscorrelation function between v and the transfer model input series p (which

indicates whether there are still patterns left in the innovation series that could be
explained by the input series). The autocorrelation and crosscorrelation functions at
lag k are defined in the same way as in discrete TFN models, but because of the
irregularity of the time steps, a tolerance around lag k£ of + 0.5k is implied. A proof
for the fact that, like AR(1) models, the innovations of the continuous model are not
autocorrelated, nor crosscorrelated with observations of the process n itself, is given
in the appendix. This makes the model suitable for simulation purposes, and also is a
prerequisite for the parameter estimation process.

425 Summary of method

When the parameters of a combined deterministic or transfer model and noise model
are estimated simultaneously, the procedure is as follows (see also figure 4.4). First,
using the initial values of ¥, the deterministic model is evaluated in order to get a
time series of residuals. Under the assumption of exponential noise decay (equation
(4.10)), the innovation series is obtained from the residual series using equation (4.12).



Next, the SWSI criterion is Initial estimate

calculated by weighting the Optimisation method =y e, I
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squared innovations according to s
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average of the innovation
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Observations

Residuals

Evaluate
noise model

Innovations

Compute
SWSI-criterion

no

- yes

Diagnostic
Check

43  Example
applic ation figure 4.4: Procedure for applying the noise model in

combination with a deterministic model.

431 Set-up and data set

The effectiveness of a combined AR(1) model and Kalman filter in modeling irregularly
observed hydrologic data has already been shown rather elaborately [Bierkens et al.,
1999, Berendrecht et al., 2003, Yi and Lee, 2004]. Therefore, we will not focus on
that here. The mathematical equivalency of the OUB model and the AR(1) model are
straightforward, so logically its results will also be equivalent. Instead, we will first
focus on comparing the SWSI criterion with the likelihood function. Logically, if the
minima of both criteria are identical, they will yield identical parameter estimates and
therefore also identical model predictions. Second, we will examine the innovation
variance function, which is crucial for handling irregular data in both the OUB and the
Kalman filter approach. We will illustrate that also in this case, the model effectively
whitens the residuals and the assumption of exponential noise decay is therefore valid.
As a test case, we will use the noise model in conjunction with a continuous transfer
function model in the context for which it was developed, i.e. modeling the residuals
of groundwater level observations. In the simple case where groundwater level
fluctuations are influenced by precipitation surplus only, the combined transfer
function noise model is given by:

h(t) = je(t —o)p()dr +nt) +d (4.25)

where
t :time [T]



S =

n
d

: observed groundwater level, relative to some reference level [L]
- precipitation surplus [LT"]
- impulse response function [-], for which a scaled gamma distribution is chosen,
b"t"" exp(~bt)
['(n)
- residual series [L], modeled conform equation (4.11)
- local drainage level, relative to some reference level [L]

ie. 0(t)=4

More details on the background of the transfer function model can be found in [Von
Asmuth et al., 2002]. The TFN model is calibrated on a 15-year (1981-1996)
groundwater level series observed with a daily frequency. However, this series is not
totally complete but 8.75% of the observations are missing. The series originates from
a piezometer located on the main meteorologic field of the Royal Dutch Meteorologic
Institute at the town of De Bilt in the center of the Netherlands [see also Bierkens et
al., 1999]. The precipitation surplus is obtained from daily averaged observations of
precipitation and potential evapotranspiration at the meteorologic field. A time plot of
the available groundwater level observations is given in figure 4.5.
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figure 4.5: Time plot of the available groundwater level observations (dots) from piezometer 32c10034
relative to the national reference level (h+NAP), the predictions of the transfer model (full line), the

model residuals (n) and the innovation series (v).



The parameter set ¥ of the table 4.1: Calibration results, estimated parameters and
combined model is integrally characteristics for piezometer 32cl0034.

estimated using a numerically Piezometer 32¢l0034

derived Jacobian matrix and the

methods described in the previous — R? 0.665

section. As d is eliminated from RMSE 11,0 cm

the equations, the parameters RMSI 3,6.cm

that have to be estimated are A (+/-2) 61.6 (+/-4.2)day
A,b,n from the transfer model, b (+-2) 0.28 (+/- 0.02) day’
along with @ from the noise no (+-2) 1.88 (+/- 0.06)
model. For this purpose, all o (+-2) 18.2 (+/- 3.2) day’”

available observations in the
period were used. The results of the TFN model are given in figure 4.5, as time plots
of the observations and predictions, and of the residuals and innovations. The

parameter estimates and calibration results (coefficient of determination ( R?), root
mean squared error (RMSE), root mean squared innovation (RMSI)) are listed in table
4.1. The autocorrelation function of the innovations, for which a time lag increment
of one month is chosen in order to reveal seasonal patterns in the autocorrelation,
indicates that the white noise assumption holds (figure 4.6). Because of the large
number of available observations, the autocorrelation function is rather smooth and
the accompanying confidence interval narrow.

4.3.2 Comparison of the likelihood function and the SWSI criterion

Plots of both functions were made by varying two of the parameters around their
estimated value, while keeping the others constant (ceteris paribus). The parameters
were varied +/- 0.5 half their estimated value. In order to make both functions
comparable, they were normalized by respectively setting their maximum and
minimum to zero, and dividing the result by the range. In figure 4.7, a contour plot of
the normalized log likelihood function and SWSI criterion for the first two parameters
of the transfer model (A and b) is given. The figure shows that the contours of both
objective functions are almost identical, which confirms that the SWSI criterion yields
almost exact ML estimates. This can be expected, as the only difference between the
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figure 4.6: Autocorrelation function of the innovations of the OUB model. The dotted lines denote the
95% confidence interval. The autocorrelation function indicates that the white noise assumption
holds.



ML function and SWSI criterion is that in first case o (for the minimal time step) is
part of the parameter set to be estimated, while in the SWSI criterion af is assumed
known and implicitly approximated with Equation (4.19). This approximation
converges to the true value of o;f for large N . Consequently, a comparison of

0'5 (W) estimated as a parameter with the likelihood function or estimated afterwards
using the SWSI approach will exemplify the likeness of both criteria for all parameters.
Using the SWSI criterion aj(llf) is estimated from the data in the following way:

S| 1—exp(2a) } 2 @
O_i(w):lz_;‘{l—exp(—2aAti) V()

n

(4.26)

sz(tl.,l}’)
which is equivalent to equation (4.6) for fixed At when “=——is replaced
n

by af (?), and ¢ =exp(—) . In figure 4.8, the likelihood function of the innovations
is plotted and compared to aj(IP) obtained with equation (4.26) (i.e. 0.0013 m2).

o o o
iN o o

normalized ML and SSWI criteria
o
[

parameter b

parameter A

figure 4.7: Contour plot of the normalized log likelihood function of the innovations (dotted lines) and
the SSWI criterion (full lines) as a function of the parameters A and b (ceteris paribus). The marker
(*) denotes the estimated values. From the figure it can be seen that both functions are almost
identical.
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figure 4.8: Plot of the log likelihood function of the innovations as a function of the parameter O'j .

The dotted line denotes the value of O'j (¥) obtained with the SWSI criterion. The minimum of the
log likelihood function proves to coincide well with the value obtained from the SWSI criterion.

From this figure, the estimate of of(ly) proves to coincide well with the maximum of
the likelihood function for this parameter.

4.3.3 A check on the innovation variance function

Because the IVF is a key factor in both the derivation of the SWSI criterion and in
general for stochastic modeling at mixed frequencies, in the following we will
examine it more closely using the data of section 4.3.1. For this purpose, the
groundwater level series was resampled at frequencies At = [1,2,3.....75] days. The
transfer and noise model were evaluated using the estimate of ¥ obtained with the
daily series, which logically should be optimal. Thus, a residual and innovation series
were obtained for every sample frequency. As stated earlier, the daily series was not
complete and therefore also the resampled series were not. Because of this, only
those innovations and residuals were selected from the resampled series for which
At; equaled the sampling frequency exactly. Both the innovation and residual

variance of the resulting series were estimated and plotted in figure 4.9. In the same
figure, equation (4.18) being the theoretical IVF, is plotted together with the 95%
confidence interval of the estimates. The latter is given by [Snedecor and Cochran,
19671
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Figure 4.9 thus allows for a comparison between the estimated and theoretical IVF. A
check on whether the estimated variances differ significantly from the theoretical IVF
could well be used as a further diagnostic check on the validity of the model, next to
checking the auto- and crosscorrelation functions. From figure 4.9 it is concluded that

the estimates of the innovation variance 0'3 (At, ) do not significantly differ from

the theoretical IVF, although the agreement is less for the intermediate time steps.
This points to the fact that the parameter «, defining the decay rate of the noise
model, could be sensitive to the sampling frequency. Therefore, special care has to be
taken when the assumption of exponential decay for the noise model does not, or not
well, hold and/or when the model is used for simulations at a different frequency than
that of the data with which it was calibrated. A standard diagnostic check like the
autocorrelation function of the innovations will not provide enough information on
this point.

44  Discussion and conclusions

A comparison of the AR(1) model, ‘conventional’ or embedded in a Kalman filter, and
the Ornstein-Uhlenbeck based noise model shows that their equations for respectively
the forecasting mode in the AR(1) model, those handling the predictions and their



variance in the time update of the ‘degenerate’ Kalman filter, and the continuous
time innovations are mathematically equivalent. The continuous equations, however,
are more general, give an exact solution and are computationally more efficient as
they are not evaluated recursively. Because of its simplicity, the OUB model can be
easily implemented for modeling irregularly spaced errors of various deterministic
models. The continuous time approach, however, makes it especially suited for
combination with analytic models or continuous time transfer models. A restriction of
the OUB model in its present form, is that it is limited to processes that show
exponential decay. Work is needed to further generalize and test the approach, for
example using continuous time ARMA models in general [e.g., Brockwell, 2001], non-
Gaussian OUB models [Barndorff-Nielsen and Shephard, 2001] or by superposition of
OU type processes [Barndorff-Nielsen, 1999].

It was shown that from the likelihood function normally used for irregularly spaced
innovations, a weighted least squares (SWSI) criterion can be derived. The main
difference between both functions is that in the first case, the innovation variances
are calculated by relating them to the innovation variance of the minimal time step,
which itself is estimated as a parameter, and stored for every time step. In the latter
case, the innovation variances are implicitly related to the variance of the residuals,
and in turn approximated implicitly with equation (4.19). This approximation
converges to the true value for large sample sizes, so parameter estimates that are
based on the SWSI criterion should approximate the ML estimates well for sample
sizes usually considered. With the aid of the SWSI criterion, the parameters and their
covariance matrix can be estimated using standard nonlinear least squares regression
methods. The use of such methods is more efficient than minimizing the log-
likelihood function with some global optimization algorithm, and a Monte-Carlo
approach to estimating the parameter variances. The SWSI criterion itself could also
be used for optimizing AR(1) models, in the ‘conventional’ sense or embedded in a
Kalman filter.

By comparing the estimated innovation variances for different time steps with the
theoretical innovation variance function (IVF), the validity of exponential decay for the
noise model can be checked. The impulse response function is reflected in the
behavior of the IVF. Thus, a plot of both functions and the accompanying confidence
interval is useful as a diagnostic check. Such a check provides additional information
on the validity of the model, especially in light of its application at mixed frequencies.
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Abstract:

In this chapter, the methods behind the PIRFICT (Predefined Impulse Response Function
In Continuous Time) time series model are extended to cover more complex situations
where multiple stresses influence groundwater head fluctuations simultaneously. In
comparison to ARMA (Auto-Regressive Moving Average) time series models, the PIRFICT
model is optimized for use on hydrologic problems. The objective of the paper is twofold.
First, an approach is presented for handling multiple stresses in the model. Each stress has
a specific parametric impulse response function. Appropriate impulse response functions
for other stresses than precipitation are derived from analytic solutions of elementary
hydrogeologic problems. Furthermore, different stresses do not need to be connected in
parallel in the model, as is the standard procedure in ARMA models. Second, general
procedures are presented for modeling and interpretation of the results. The multiple-
input PIRFICT model is applied to two real cases. In the first one, it is shown that this
model can effectively decompose series of groundwater head fluctuations into partial
series, each representing the influence of an individual stress. The second application
handles multiple observation wells. It is shown that elementary physical knowledge and
the spatial coherence in the results of multiple wells in an area may be used to interpret
and check the plausibility of the results. The methods presented can be used regardless of
the hydrogeologic setting. They are implemented in a computer package named
Menyanthes (www. menyanthes.nl).




5.1 Introduction

Transfer function noise (TFN) models are a convenient tool for modeling the evolution
of a wide range of variables. The general theory of time series analysis [Box and
Jenkins, 1970] originally stems from the statistical sciences. Because of their statistical
background, the so-called ARMA (i.e. Auto-Regressive Moving Average) time series
models can be applied to all sorts of data, as long as the behavior of the system to be
modeled is sufficiently linear, or can be linearized by transforming the data. Time
series models are especially useful for modeling systems whose behavior can not, or
not easily, be described in terms of physical laws and properties (e.g., economical
data). In addition, TFN models are often used in hydrology and other sciences,
because they are relatively easy to construct and at the same time they can yield very
accurate predictions.

When an ARMA type TFN model is applied to a data set, the so-called model order
has to be specified. The model order includes the number of auto-regressive and
moving average parameters in both the deterministic and stochastic parts of the
model, and the delay time of the transfer function. Box and Jenkins devised an
iterative model identification procedure to guide the modeler in finding the optimal
model order. First, an initial model order is chosen based on statistical criteria like the
crosscorrelation function between the explained and explanatory variables. Second,
the parameters of the model are estimated by minimizing the variance of the
‘innovations’ or one-step ahead prediction error, using an optimization algorithm.
Third, the adequacy of the model is checked diagnostically, using statistical criteria like
the auto- and crosscorrelation functions of the innovations. If the model does not yet
meet the criteria, the model order is updated, and the procedure is repeated until the
modeler finds the results satisfactory. A disadvantage of this approach is that the
results of the model identification procedure can be ambiguous [Hipel and McLeod,
1994] and the process itself is rather heuristic and can be knowledge and labor
intensive [De Gooijer et al., 1985].

Von Asmuth et al. [2002] presented the principles of a new type of TFN model that is
optimized for use on hydrologic problems and operates in a continuous time domain.
In this approach, the discrete transfer function used in ARMA models is replaced by a
simple analytic expression that defines the impulse response function. The resulting
class of models is referred to as PIRFICT (Predefined Impulse Response Function In
Continuous Time). Von Asmuth et al. [2002] showed that PIRFICT models overcome a
series of limitations of ARMA TFN models, including the use of irregular or high
frequency data and the modeling of systems with a long memory. In addition,
application of the PIRFICT model does not require a Box-Jenkins style model
identification procedure. Since the transfer functions are confined a priori to physically
plausible behavior, there is no need to identify the ‘order’ of the transfer functions on
statistical grounds. Therefore, application of the model is standardized, which
facilitates implementation in a computer package such as Menyanthes (www.
menyanthes.nl). When the PIRFICT method was introduced [Von Asmuth et al., 2002]
we restricted ourselves to the case of a single input / output series. Here, we will
extend the method to cover more complex, real world situations where multiple



stresses influence head fluctuations at one or multiple observation wells
simultaneously.

Two important aspects of dealing with complex data sets are addressed in this paper.
The first one is the treatment of different types of stresses within the model. Different
stresses require different parametric impulse response functions. Von Asmuth et al.
[2002] used a scaled gamma distribution for modeling the effect of precipitation
surplus. Here we will introduce analytic solutions of elementary hydrogeologic
schematizations as guides to develop appropriate impulse response functions for
other stresses. . We will also show that from a physical point of view, different
stresses do not always have to be connected in parallel and get a separate transfer
function, as is the standard procedure in ARMA TFN modeling. The second aspect
deals with the interpretation and checking of the plausibility of the results. While the
time series literature commonly involves the analysis of individual time series, using
the PIRFICT approach one can analyze and process all available series of heads in an
area in batch. Given that they are part of the same hydrologic system, the results of
neighboring observation wells may show a spatial coherence which yields valuable
extra information as regards the properties of the system and the plausibility of the
results. In this paper, however, all series are still modeled separately, and the resulting
spatial patterns are analyzed a posteriori. Future research will include methods to
impose spatial coherences a priori in the model.

This paper is organized as follows. First we discuss how different types of stresses are
dealt with in the model. We illustrate the approach by analyzing a single series being
influenced by precipitation, evaporation, groundwater withdrawal and river level
fluctuations. Second, results are presented for a case where data are available from
multiple observation wells. A discussion and conclusions are given at the end of the

paper.

52  Methods and theory

521 From a single to a multiple input model

The basic equation of an ARMA model, which is discrete in time, is equivalent to the
following convolution integral in continuous time [Von Asmuth et al., 2002]:

hy(0) = [R (D)0t —7)dr (5.1)
where
t time [T]

hoo predicted head [L] attributable to stress i.
R, :value of stress i
6. : transfer or impulse response function of stress i .



In ARMA time series models, multiple stresses are dealt with by connecting them in
parallel and assigning a separate transfer function to each. The output series is then
obtained by summing the separate effects of all stresses. For the case where a number
of N stresses influence the head, the equations of a continuous time TFN model may
be written as:

h(t) = ZN: h (1) +d +n(t) (5.2)

i=l1

where

h  :observed head [L]

d :local drainage level relative to some reference level [L]
n  :residual series [L].

Several main types of stresses can be distinguished. These types include precipitation
( p), evaporation (e ), groundwater withdrawal (or injection) (w), surface water level

(s ), barometric pressure (b), and (hydrologic) interventions (m ). Please note that
tidal fluctuations, on whose effect a large volume of papers is devoted, are included in
the s -type. From a physical point of view, a groundwater system is likely to respond
to different types of stresses differently, but there are also certain stresses that will
cause a very similar response. In the latter case, separate stresses do not necessarily
need separate response functions. For instance, the effect of evaporation e on the
head 4 is essentially the same as that of precipitation p, but it is negative, and may

be modeled as:

t

h,(t) = j —e(r)f0,(t~7)dr (5.3)

—00

where 8, is the response of the system to precipitation, and f is a reduction of e as

compared to the reference evaporation series. The evaporation factor f is a

parameter that depends on soil and land cover and should not be confused with the
crop factor [e.g., Penman, 1948], as the latter is used for a crop that is optimally
supplied with water, while f also incorporates the average reduction of the
evaporation due to actual soil water shortages. For sake of simplicity, we consider f
to be constant. Although it may actually be a function of time, the use of an average
reduction factor is in fact already an improvement upon traditional ARMA modeling
practice, where f is often simply ignored. In case of the barometric pressure b, which
co-determines the loading on a (semi)confined aquifer, we propose to use the time
derivative in the convolution:



= - 200

—00

0,(t-r7)dr (5.4)

in order to be able to use an impulse response function 6, that behaves similar to the

other stresses, as a step change of b will result in a quick increase of %, followed by a
slow decay whenever the aquifer is not completely confined.

Interventions are defined as structural changes to a hydrologic system, like forest
clearing, construction of ditches or drainage systems, etc. In general, the nature of an
intervention determines the manner in which it should be modeled. For example, if

the intervention causes a sudden change in actual evaporation on time ¢, , such as a
forest clearing, it may be modeled as:

h ()= jm(r)kap (t—7)dr (5.5)

where m(t)=0 for t<t¢, and m(¢)=1 for t>¢,, and k is a parameter

representing the change caused by the intervention. Another example is a change in
the level of a floodgate. This intervention itself acts as an independent stress on the
system, and in such cases a new response function 8, should be estimated. It is noted
that it is possible that the hydrogeologic properties of the system are changed
significantly by an intervention. In that case, the response of the system to all stresses
is changed, and equation (5.1) becomes:

h(t) = fR,. (0)0, (¢t —)dr + j R(0)0, (t-7)dr (5.6)

t, +At

where 6, and @, are the response functions before and after the intervention,

respectively. A transition period of At, during which the system shifts from one state
to another, should be omitted from the data. The length of this period depends on
the response time of the system.

5.2.2 Response functions for different types of stresses

Under a wide variety of hydrogeologic settings, the response of an impulse of
precipitation surplus may be simulated accurately with a scaled gamma distribution
function (SG df), given by [Von Asmuth et al., 2002]:

a"t"" exp(—at)
0,(t) = AT (5.7)



where 4,a and nare parameters that define the shape of 6, . The choice of this

impulse response function was based on physical arguments, and it was shown that
the SG df was (at least) as effective as an ARMA type transfer function of optimal
order. Although the SG df is very flexible, it proves to be less effective for non
distributed types of stress. For groundwater withdrawals (stress type w) and surface
water level fluctuations (type s ), we propose to use response functions inspired on
analytic solutions of simple hydrogeologic schematizations. Notice that the crucial
issue in selecting a parametric impulse response function is whether the range of
shapes it can take is sufficient to approximate the true response of the system
accurately. In this sense, our viewpoint is that of time series analysis, where the only
assumptions regarding the transfer model are that the system is linear and that the
‘model order’ is adequate. Here, we assume that the functions chosen can capture
the essential behavior of the stress type regardless of the exact hydrogeologic setting.
A systematic comparison of the performance of different impulse response functions
for different types of stresses, however, falls beyond the scope of this paper and will
be dealt with in an upcoming paper.

For withdrawals (stress type w) we choose the well formula of Hantush [Hantush,
1956] as a blueprint. The Hantush formula assumes a fully penetrating well in an
aquifer of infinite extent, with transmissivity KH [L°T"'] and storage coefficient S [-],
covered by a storage-free aquitard with resistance ¢ [T]. While a standard pumping
test yields a step response function, here we are looking for an impulse response
function, which is the derivative of the step response function with respect to time:

2
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where r denotes the distance between the observation and the pumping well. Since
we intend to use this formula in other hydrogeologic settings as well, we convert this
equation to the following parametric impulse response function:

2
(24

0W(z)=—§exp(— - - A1) (5.9)

where a, f and y are just parameters that no longer have a transparent physical

meaning (except for cases where Hantush' assumptions happen to be satisfied). For
surface water fluctuations (stress type s ) we choose the so-called polder function of
Bruggeman as a blueprint [Bruggeman, 1999]. This function represents a sudden unit
increase of the water level at the boundary of a one dimensional semi-confined
aquifer of semi infinite extent. The derivative gives the impulse response function &,

i.e. the response to a very short rise and fall of the surface water level:
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where x denotes the distance between the surface water feature and the observation
well. We convert the physical parameters to the abstract parameters ', 8’ and a

0,() =~ (5.10)

scaling factor »', so that 6, becomes:

' 2

0,(1) = ———=——=exp(~=— B"1) (5.11)
1’ﬁﬂ r e
2
(24

For stress type b (the barometric pressure) we chose the SG df, i.e. the same impulse
response function as used for precipitation and evaporation, because pressure is a
distributed type of stress, too. The adequacy of a time series model based on these
impulse response functions may be checked with the aid of the methods described
and illustrated in the coming sections. The practical usefulness of these impulse
response functions has been demonstrated through application to thousands of wells
in Europe, Australia, and North and South America.

5.2.3 Parameter estimation

The first step in the parameter estimation process is the evaluation of the model
equations using an initial estimate of the parameters, which will result in a time series
of model errors or residual series. When modeling hydrologic data, the value of a
model residual at a certain time is often correlated with its value at earlier times, so
residuals cannot simply be modeled as a set of independent Gaussian deviates. Here,
the model residuals are modeled with a separate noise model, which is given by:

n(?) =j¢(z -0)dW (7) (5.12)

where ¢ is the noise impulse response function and W is a continuous white noise

(Wiener) process [L]. This is equivalent to an AR(1) model embedded in a Kalman-filter
under the pure prediction scenario in discrete time, when the response function ¢ is

an exponential [Von Asmuth and Bierkens, 2005]. In that case, the one-step-ahead
prediction error or innovation series v of the noise model may be obtained as:

v(t) =n(t) — n(t — At)exp(—aAt) (5.13)

The noise model is important for the parameter estimation process and for dealing
with irregularly spaced data, but also for prediction, forecasting and stochastic



simulation purposes. For further details we refer to [Von Asmuth and Bierkens, 2005],

as the parameter estimation process itself is not influenced by the fact that the
transfer model contains multiple stresses.

524 General modeling procedure
The model identification procedure devised by Box and Jenkins [1970] is that, first, the

model order is specified, second, the parameters are estimated, and third, the model

results are checked. The adequacy of the model results may be checked with statistical

criteria like the autocorrelation and crosscorrelation functions of the innovation series
v . The autocorrelation function indicates whether the white noise assumption holds,

which is a prerequisite of the algorithms used for the estimation of the model

parameters and their covariance; it also indicates whether the order of the noise
model is adequate. The crosscorrelation functions between the innovation series v

and the different input series indicate whether there are patterns left in the innovation

series that could be explained by the input series. This gives an indication of the
adequacy of the order of the transfer functions, but also of possible non-linearity in
the relationships. If the model does not meet these so-called diagnostic checks, the
model order is is updated. This procedure is repeated until the optimal model order is

identified [Box and Jenkins, 1970].

As stated earlier, there is no need
for identifying the order of the
transfer model on statistical
grounds in the PIRFICT approach,
as the impulse response functions
are chosen on physical grounds
and span a whole range of ARMA
model orders [Von Asmuth et al.,
2002]. In both cases, however,
the modeler also has to identify
the stresses that influence the
groundwater dynamics, decide
which stresses to use, and check
the results. Stresses that are not
incorporated in the model can
lead to erroneous results when
their dynamic behavior is
correlated with one or more of
the other (already considered)
stresses. On the other hand, the
model may have difficulty in

uniquely identifying all influences when there is a high number of stresses, a lack of
pronounced dynamics of the stresses, or a low quality or scarcity of the data. The
diagnostic checks introduced by Box and Jenkins are devised to assess whether the
TFN model is adequate and optimal in a statistical sense, which remains important
especially for the noise model, but does not exclude the possibility that the model
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figure 5.1: Proposed procedure for modeling time series of
ground water heads in complex situations. The procedure
for identifying the noise model is that of [Box and Jenkins,
1970]. When both the plausibility and diagnostic checks
are met, the results can be accepted for further use.



results are influenced by non-causal correlations. Here, we propose the use of
plausibility checks to guide the modeler in assessing whether the results of the
transfer model are physically realistic. The resulting modeling procedure is illustrated
in figure 5.1.

The plausibility checks include the model residuals 7, the evaporation factor f, the

local drainage base d , and the moments of the impulse response functions and their
standard deviations. The model residuals, uniting all factors that are not accounted for
by the model, are an important aid in identifying possible unknown stresses that may
be a source of model distortions. Non-random patterns of the residuals in space or
time reveal the fact that there are still stresses missing in the model. The patterns
themselves often give enough information to pinpoint the nature and location of the
missing stresses. The evaporation factor f is important, as the seasonal cycle in the
evaporation is often present in other natural or anthropogenic stresses such as
groundwater withdrawals for agricultural or drinking water purposes as well.
Regarding the drainage base, an estimate that is too low or too high may be caused
by the influence of stresses that are not incorporated in the model or that are not well
guantified. This can easily happen with stresses that do not show pronounced
dynamics, such as more or less constant seepage or withdrawal rates. In addition, the
moments of the impulse response functions of the different stresses provide relevant
information. Moments can be used to characterize the functioning of the
groundwater system and can be related to its geohydrologic properties [Von Asmuth
and Maas, 2001, Von Asmuth and Knotters, 2004]. In contrast to physical parameters
that are only defined in the context of a certain schematization, moments are related
to common statistical terms and are more generally applicable. The j " moment of an

impulse response function is defined as:

M, = [ V0@t (5.14)

. . M, .
where M, represents the area under the impulse response function, x=—=% is the

0

. . M . . .
mean of the impulse response function, and o =—2 — * is the variance. Matching
0
of moments is a common technique for solving differential equations, a.o. in transport
modeling [e.g., Yu et al., 1999, Luo et al., 2006].



table 5.1: Model results and parameter estimates for the groundwater head series observed in well
46DP0032

EVP 92.0 %
RMSE (m) 0.068
Drainage base (m) 11.53

Input series Stress type Parameter Value o}
VENRAY Precipitation AM, p) 299.2 3
b 0.003117 0.00033
n 0.898 0.025
EINDHOVEN Evaporation f 116 0.076
P.S. BERGEN Pumping well a 2.58 2.4
s 0.0522 0.027
V4 0.00585 0.03
M, -3.63E-05 5.68E-06
SambeekBoven River a' 0.02527 0.094
B 0.0368 0.13
7' 0.7656 0.057
M 0.7279 0.0939

5.3  Example application

5.3.1 Single series

The functioning and results of a multiple input PIRFICT model on a single well located
in the northern part of the province of Limburg (the Netherlands) are presented in this
subsection. The well, with the national code 46DP0032, has two screens. We consider
only the top one, which is located 13 meters below the surface. The well is located on
the edge of the floodplain of the river Meuse, in an aquifer that consists of coarse,
gravelly sands overlain by finer sands which originate from river deposits. In addition
to the river level fluctuations, the head is influenced by precipitation and evaporation
and by a pumping station near the town of Bergen where groundwater is withdrawn
for drinking water production.

Time series data of all stresses are available. The precipitation and potential
evaporation series originate from stations of the Royal Dutch Meteorologic Institute in
Venray and Eindhoven, respectively. The river levels were monitored at a dam in
Sambeek, downstreams of well 46DP0032; the pumping rates were obtained from
the drinking water company of Limburg. The parameters of all three impulse response
functions are optimized using the methods described in Von Asmuth and Bierkens
[2005]. Here, we will consider the results of the transfer part of the model and of this



individual series only, after the first run of the model. The model results and
parameter estimates are summarized in table 5.1. In the table, two parameters are
given that define the goodness of fit: the explained variance percentage (EVP) and the

Root Mean Squared Error (RMSE). In the definition of EVP, the residual variance O'j(t)

is weighed according to the variance a,fm of the original signal in the following
manner:

2

2
O — O
EVP=—"0_ "0 %100% (5.15)

O )

The results of the time series model are shown in figure 5.2, where the measured

N

heads & (dots) and predicted heads Zhi + d (solid) are plotted together in the upper
i=1

graph, while A, is plotted for every stress in the graphs beneath.
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figure 5.2: The ground water head fluctuations in well 46DP0032 (top) decomposed in four partial
series due to (from top to bottom) rainfall, evaporation, river level fluctuations and a pumping
station. Adding the partial series and the estimated drainage base (d , see table 5.1) results in the
predicted series.



Thus, the groundwater level series is decomposed into four partial series, which show
the effects of the individual stresses. For example, it may be observed that the recent
series of wet years in the Netherlands (1999-2002) has led to an overall increase in the
groundwater levels. Furthermore, the effect of evaporation doesn’t vary much from
year to year, but shows a distinct seasonal pattern as it is mainly influenced by
temperature and solar radiation. The river level has little effect as it is maintained by
dams, except for high-water events when the river leaves its channel and enters the
floodplain. In those cases, the head responds very quickly and shows distinct peaks.
Finally, heads show a gradual decline since 1994 due to the groundwater withdrawal
that started around that time. Note that these distinct differences in dynamic behavior
allow the time series model to distinguish the effects of the individual stresses. Also
note that the frequency of the groundwater level observations changes around 1992
from four times a year to once a week. This does not pose a problem for the model,
as the impulse response equations are continuous in time and predictions are not
fixed to a certain time discretization.

For each of the different stresses, an impulse response function is estimated (although
not always independent from the other stresses, see equations (5.3) to (5.5)). The
impulse response function forms the heart of the time series model and represents the
response of heads to a unit impulse of the stress. The shape of the impulse response
function depends on the position of the observation well and the properties of the
system. As an example, the impulse response function of the level of the river Meuse
is plotted in figure 5.3. From the graph, one can infer that the heads indeed respond
quickly to a rise and fall in river level, as the impulse response function (solid line)
peaks in less than half a day. Apart from its dynamic response, one is often also

0.7
b |
+ 05f - L =T
— o . _ .
o - - - -
8 04f = -~
L N 7/
s 0.3F /
<3 :
é 1N — — — Step Response
02f SN Impulse Response
| ER NG IR 95% Cont. Int.
O1RHA "N\
J'_-'z SN
0 S LT e e
0 2 4 6 8 10

Time (days)

figure 5.3: Estimated impulse and step response functions of observation well 46DP0032 for the
level of the river Meuse (measured at dam Sambeek-Boven).
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figure 5.4: Spatial distribution of the explained variance percentage (EVP), in plan view (left figure).
Model performance in general is lowest near the 15 pumping well screens, which are clustered in two
rows (red dots in right figqure).

interested in the stationary influence of a certain stress. This is represented by the step
response function (dashed line), which is the integral of the impulse response function
with respect to time; the step response represents the response of the system to a
sudden and then ongoing rise of the river level. The level that the step response

function approaches towards infinity is the zeroth moment (M), also known as the

gain in the time series analysis literature. Using (5.11), we can obtain M|, for stresses
of type s as:

M,, :j 6.(t)dt=y' exp(-2a’) (5.16)
0

In the case presented, M|, for the river Meuse is 0.73 meter, which means that a

river level rise of 1 meter will eventually lead to a groundwater level rise of 73
centimeters on this location. For as long as the assumption of linearity holds, the
zeroth moment can be used for quick scenario calculations, as the multiplication of

M, and a planned rise in the river level yields a prediction of the groundwater level
rise. Note that the standard deviation of M, _ is reasonable, whereas the standard

deviation of parameter « is large (a similar case is true for M, of the groundwater
withdrawal). This is caused by the covariance between the parameters.
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figure 5.5: Groundwater withdrawal history at location ‘Harlingerland’. The flow rate is obtained by
summing the rates of the individual pumping wells.

5.3.2  Multiple series

We will illustrate the procedure in which the results from multiple observation wells
may be interpreted and checked in a second application. This application concerns a
drinking water production area with multiple observation wells located in the north-
western part of Germany, in an area called ‘Harlingerland’ near the Town of Esens.
Groundwater is withdrawn by the drinking water company Oldenburgisch-
Ostfriesischer Wasserverband at a current rate of 9 million cubic meters a year. The
fifteen pumping wells are clustered in two rows, which are more or less placed in
series (figure 5.4). The well screens are located at a depth of 25 to 40 meters from the
soil surface. The withdrawal rate history (figure 5.5) shows a marked increase in the
period from 1972 until 1976. Such a rate change is very important for a reliable
estimate of the influence of a pumping well, as it will have caused a marked
drawdown. Furthermore, the withdrawal rates show a distinct seasonal cycle, caused
by factors like the increased watering of yards in dry periods. The withdrawal rate is
obtained by summing the pumping rates of the individual wells. Data on the
individual wells, which are controlled separately, is only available since 1992. Anyway,
use of the individual pumping rates is not straightforward, as the number of 15 wells
is too high to estimate their influence independently. Groundwater dynamics are
recorded at 116 observation wells with a total of 139 screens in a circle with a radius
of 5 kilometers around the pumping wells. The screens depths range from less than 1
to more than 90 meters from the surface. Part of the wells are monitored every two
weeks, and the other part monthly. The period in which the wells were monitored
differs from well to well, with the earliest measurements dating back to 1964, while
other wells were installed as recently as 1999. In some of the wells, monitoring



table 5.2: Range of model results and parameter estimates for all 139 groundwater head series.

Parameter Minimum (+/- 20) Median Maximum (+/- 20)
EVP 38.1 85.9 97.5
M, 59 (+/- 1.3e3) 864 6580 (+/- 3.5eb)
M, 172 (+/-122) 790 7976 (+/-5913)
M., 1.93e-8 (+/- 4.1e-5) 4.50e-5 1.25 e-2 (+/- 0.20)
f 0.09 (+/- 0.31) 1.20 4.29 (+/- 87)
d -3.21 1.26 7.01

stopped in 1975, while in some others the period between 1975 and 1998 is missing.
The aquifer in the area consists mainly of sands; in some parts a clay layer separates
the phreatic from the deeper aquifer.

The head fluctuations are modeled with precipitation, reference evapotranspiration
and groundwater withdrawals; there are no rivers or other important fluctuating
surface waters in the area. Results of the 139 time series models are summarized in
table 5.2, where the minimum, median and maximum value of the parameters in all
139 models are given, along with their 95% confidence interval. The median value of
EVP points out that the fit of most models is good, although there are clearly outliers
in the results, as the extremes of most parameter estimates are not within a range
that is physically plausible. This does not mean that the estimates are necessarily
biased, as most extremes are accompanied by large standard deviations. For these
cases, a confidence interval of +/- 2 o includes the value zero, but also a realistic value,
indicating that the quality or quantity of the data is not sufficient to determine the
value of that parameter.

The only estimate in table 5.2 that does seem biased is the minimum value for the
evaporation factor f, which is very low (upper 95% limit is 0.4). In this case,

however, the zeroth moment of the evaporation M, , which is defined as:

M,, = j 16, (t)ydt = f4 (5.17)
0

does have a large confidence interval (+/- 941), as the influence of precipitation itself
(A) cannot be determined from the data accurately (the probable cause is that the
period in which data are available for this particular series only spans 16 months, with
one observation per month).



Results of series F2320151_1

Head - refl (m)

Head - refl (m)

figure 5.6: Head observations and predictions of wells F230151(near the pumping station) and
B2311630 (at some distance), giving an indication of good and bad model fits.

To determine the reason for the lower EVP of some models, its spatial distribution is
plotted (figure 5.4). From the figure, it is clear that the model fits are lowest in the
immediate vicinity of the pumping wells. This suggests that the influence of the
individual wells is not modeled correctly, which is indeed the case, as the withdrawal
rate of the total well field is incorporated in the model, not the rates of the individual
wells. The individual model fits (figure 5.6) give the same indication. Near the well
field, the head fluctuates wildly when the individual pumping wells are shut on and
off. The predictions, however, only follow the general drawdown pattern. At some
distance, the predictions fit the head fluctuations much better. The model fit is also
lower in some of the shallower wells. The head series in those cases show distinct
signs of (threshold) non-linearity [e.g., Knotters and De Gooijer, 1999]. The PIRFICT
method can currently handle threshold non-linearity for precipitation and evaporation,
but not yet for other stresses, so this was not considered further at this time.

Next, we focus on the estimated influence of the well field, which was an important

objective for doing the time series analysis of this site. Using (5.9), we find that the
zeroth moment of a well is given by [Hantush, 1956]:

M, =[6,(0)dt =27 K, (2a) (5.18)
0
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figure 5.7: Estimated gains (dots) for the well field in the different observation wells, presented in
west-east (left) and north-south (right) cross sections. The error bars indicate the 95% confidence
interval of the estimates.

in which K, is the modified Bessel function of the second kind and zeroth order
[Abramowitz and Stegun, 1964]. First, we remove all wells with estimates of M.,

with large confidence intervals, as they are of little value and only blur our view on the
other results; we choose a cut-off value of 8e-05. The 34 series that were disregarded
all lack the period from 1972 to 1976 in which the withdrawal rate was increased

significantly. In figure 5.7, the spatial distribution of the 105 remaining M|,

estimates and their confidence interval is plotted in two cross sections, one parallel
and one perpendicular to the series of pumping wells. As expected, the M,
estimates are highest near the pumping wells; the left row of wells, which have
deeper screens, cause stronger drawdowns than the right row. In the perpendicular
cross section, the pattern of M|, = approximates the shape of a drawdown cone. The

M, ,, estimates at shallow well screens are clearly lower than at deeper well screens;

this may be caused by a resistance layer or by recharge from ditches or creeks. This is
in line with the head series of these observation wells (not shown here), where head
differences between higher and lower screens range up to 4 meters. Although the
model fit is low in the vicinity of the pumping well screens (within a radius of about

200 to 300 meters), all in all, the M|, , estimates seem nevertheless reasonable. The

estimates of other parameters near the wells, however, are clearly biased. In figure 5.8
cross sections are shown of the EVP and M, for the observation wells in the vicinity

of the pumping wells. The low values of EVP near the pumping well screens correlate
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figure 5.8: West-east cross sections near the pumping wells, showing the percentage of variance
accounted for (left) and the estimated gain of the evapotranspiration (right) in the different
observation wells. The values of both are lowest near the pumping well screens (the red markers in the
figure bottom right).

with the low values of M, . Asitis not logical for the influence of evapotranspiration

to be that heterogeneous in deeper soil layers, this indicates that the influence of
evapotranspiration is overestimated and partly correlates with the effect of the
individual pumping wells.

5.4  Discussion and conclusions

In this paper, the PIRFICT model for time series analysis was extended to handle
multiple inputs. For stresses other than areal recharge, analytic solutions of simple
hydrogeologic schematizations were used as a guide to develop appropriate impulse
response functions. Different stresses are not necessarily connected in parallel in the
model, as is the standard procedure in ARMA models. A case with a single
observation well was used to illustrate how the model can effectively decompose
head series into partial series that each show the effect of an individual stress. In the
example with multiple observation wells, it was shown that, next to its a priori use in
defining the impulse response functions, physical knowledge is also valuable in
checking the consistency and plausibility of the model results a posteriori. The
parameter values should fall within a range that is physically plausible. The
spatiotemporal patterns observed in the variables supply important and independent
feedback on the results, as there is no spatial dependency imposed on the models. By
focusing on the model residuals, missing stresses, processes or other sources of error
may be readily identified. High error levels are a possible source of bias in the
estimates, as other stresses may partly compensate missing stresses when their
influence is correlated. In this case, the main source of error was the fact that the
behavior of the individual pumping wells was not accounted for. In spite of this, the



overall drawdown pattern of the well field in total, which is often the factor of
interest, was represented well. The spatial distribution showed that the estimates for
the evaporation series were clearly biased. Such a problem may be corrected by
incorporating data on the missing factors in the model (in this case the pumping at
individual wells). If such data are not available (as in this case), the bias can be
reduced by constraining the optimization problem to a realistic range, based on the
values and patterns in the surrounding observation wells. Future research will include
methods to impose a spatial coherence a priori in the model, so that the individual
dynamics of a high number of pumping wells can be incorporated in the model, and
the results of neighboring observation wells are linked and remain plausible.

The presented time series model may be applied to decompose series of head
fluctuations into partial series, representing the influence of individual stresses. This
enables the evaluation of individual effects of a stress, such as hydrologic
interventions, pumping wells, climatic changes and surface water levels. Furthermore,
the presented model may be used for forecasting, gap filling, scenario studies, trend
analyzes, and optimization and control of hydrogeologic systems (using more or less
standard time series analysis methods, see e.g., Hipel and MclLeod [1994]. The PIRFICT
approach is particularly suited for the batch processing of many series, it uses a small
number of parameters, and it is not limited by irregular or high-frequency data.
Although here, we specifically focus on groundwater heads, the approach presented
can also be applied to (contaminant) transport problems, or for that matter, to
hydrologic problems in general. In the field of transport, the scaled gamma
distribution has proven to be well usable also (it matches the convection dispersion
equation [see e.g., Jury and Roth, 1990; Maas, 1994]), whereas in other fields, care
has to be taken to select appropriate impulse response functions and methods for the
processes and stresses occurring there.

An attractive feature of time series models is that they are based on relatively few
assumptions and the fits are generally high; the model lets the data more or less
speak for itself. As such, time series models are a valuable tool for preprocessing
groundwater level series before calibrating a groundwater model. Using time series
models, missing stresses or series that are influenced by hydrologic interventions may
be readily identified. Also, series may be identified that are not suitable for model
calibration, for instance because they represent a hydrologic feature that is not
incorporated in the model, such as perched water tables. One step further, transient
groundwater models may be calibrated directly on the moments of the impulse
response functions estimated with time series analysis [Van de Vliet and Boekelman,
1998, Von Asmuth and Maas, 2001], which requires the calibration of steady models
only. Moments of the impulse response functions can also be modeled spatially with
the analytic element method, creating a possibility for transient modeling with analytic
elements [Bakker et al., 2007].



Abstract:

For e.qg., visual interpretation, mapping or empirical modeling purposes, the amount of
information contained in a full spatiotemporal description of the groundwater table
dynamics is simply too large. For such purposes, the data has to be compressed without
loosing too much information. Methods have been developed to visualize the
groundwater regime in overall graphs, or statistically characterize the dynamics with a
limited set of parameters. More recently, methods have been sought to identify the
properties that determine the dynamics of a groundwater system. In such approaches, it
is believed that the spatial differences in the groundwater dynamics are determined by
the system properties, while its temporal variation is driven by the dynamics of the input
into the system. In this chapter, a method is presented that links the dynamics of the input
to the spatially variable system properties, and results in a new set of parameters that
characterize the groundwater dynamics (GD). While the dynamics of the input are
characterized by its mean level and annual amplitude, the functioning of the
groundwater system is characterized by its impulse response (IR) function. The IR
function can for instance be estimated empirically using a time series model.
Subsequently, the input and system characteristics are combined into a set of parameters
that describe the output, or groundwater dynamics, using simple analytic expressions. It
is shown that these so-called GD characteristics (the mean depth, convexity, annual
amplitude and phase shift), can describe the groundwater dynamics in detail (for as far as
the time series model can). In the example application, the GD characteristics are
compared to other methods for characterizing the groundwater regime, using two
example series of groundwater level observations. It is shown that the so-called MxGL
statistics (Mean Highest, Lowest or Spring Groundwater Level) that are often used have
some important drawbacks, as they filter out the low-frequency dynamics of a system
and mix-up annual with higher frequencies. Consequently, it is concluded that the
capability of MxGL statistics in characterizing the groundwater dynamics at different
locations is less than that of GD characteristics.
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6.1 Introduction

In deltas, wetlands, and other low-lying areas, the groundwater table can usually be
found at shallow depths. In about 50% of the Dutch soils, for example, the mean
highest groundwater level (MHGL) is less than 40 cm below the soil surface [Van der
Sluifs, 1990]. In such areas, the groundwater table and its temporal variability can be
of great economical as well as environmental importance. Of course, the most visible
and direct economical impact of groundwater dynamics occurs through groundwater
(related) inundation or droughts [Baker et al., 1988, Jarrett, 1991, Leeuwis-Tolboom
and Peters, 2002]. In urban areas, high groundwater levels can cause flooding of
tunnels or basements, while for instance the wooden pile foundation of buildings can
be damaged when water tables drop below the pile heads. In agricultural areas, high
groundwater levels can cause crops to perish, agricultural fields to become
inaccessible for machinery and harvesting, whereas moisture availability and growth is
reduced when the capillary fringe drops below the root zone [Feddes, 1981, Kroes et
al., 2000]. Wetlands and other groundwater dependent sites are known to harbor
many rare and species rich animal and plant communities, and can be very vulnerable
to changes in the hydrologic circumstances [e.g., Grootjans, 1985, Witte et al., 1992].
Apart from this direct impact, the hydrology of an area also greatly determines soil
formation and other site conditions for agricultural crops or spontaneous vegetation
[Porporato et al., 2003]. Because of its economical impact, however, the groundwater
regime has been adapted by man in order to optimize agricultural production and
minimize water hazard. Moreover, the groundwater regime has often also been
influenced by factors such as groundwater abstraction, land reclamation, urbanization
and canalization of rivers and streams. Because of the strong spatial dependence of
groundwater flow, such interventions did not only influence the groundwater levels in
their immediate vicinity. Also in nearby and more remote areas, groundwater levels
dropped, negatively influencing agricultural production during dry periods and
threatening groundwater related habitats. In order to optimize and balance the
interests of economical and ecological land use purposes, knowledge about the
spatiotemporal dynamics of the groundwater table is very important.

The amount of information contained in a full description of the groundwater
dynamics is simply too large for, e.g., visual interpretation, mapping or empirical
modeling purposes. For such purposes, the data has to be compressed without
loosing too much information. In models that empirically explain the influence of the
groundwater regime on phenomena related to it, for example, the number of
explanatory variables should be kept as low as possible, in order to avoid overfitting
behavior or coincidental correlations. Consequently, methods have been developed to
visualize the groundwater regime in overall graphs, or to statistically characterize the
dynamics with a limited set of parameters. Examples of graphs that describe the
groundwater regime at a certain location are groundwater hydrographs, regime
curves or frequency of exceedence graphs. A groundwater hydrograph, of course,
forms the most straightforward plot of the information. A regime curve displays the
average annual course, and is used, e.g., to test whether the course of the
groundwater in a certain year deviates from the normal pattern. Frequency of
exceedence graphs give information about the extreme levels that occur at a certain
location, and can be used to identify which natural habitats and ecosystems can occur



at which groundwater regimes [e.g., Nieman, 1973]. Examples of statistical
characteristics that describe the groundwater regime are the Mean Highest, Mean
Lowest and Mean Spring Groundwater Level (MHGL,MLGL,MSGL, together referred
to as MxGL statistics [Van Heesen, 1970, Van der Sluijs and De Gruijter, 1985]). Such
statistics are used, for instance, to analyze or model the relationship between the
groundwater regime and factors such as crop growth [Feddes et al., 1988, Van Dam,
2000], soil conditions or ecology [Grootjans, 1985, Witte et al., 1992, Van Ek et al,,
2000]. Furthermore, they are used to generate and display spatial information about
the groundwater regime [e.g., Van Heesen, 1970, Boucneau et al., 1996, Bierkens et
al., 2000, Hartung, 2002] for urban and rural planning purposes or policy making.
More recently, methods have been sought to identify the properties that determine
the dynamics of a groundwater system. Such methods regard the problem from the
viewpoint of system identification or time series analysis [Box and Jenkins, 1970, Hipel
and Mcleod, 1994, Ljung, 1999], or use the somewhat less sophisticated multiple
regression methods. Here, the groundwater system is seen as a black box that
transforms series of observations of the input or explanatory variables into a series of
the output variable or groundwater level. In groundwater systems that are not
disturbed by groundwater abstraction or other influences, the climatologic conditions
can be considered the only input. This approach can be used to characterize or map
the spatial variation in the groundwater dynamics, as it is believed that the spatial
differences in the groundwater dynamics are determined by the spatial variation in the
system properties, while its temporal variation is driven by the dynamics of the input
into the system. The spatial variation of the input or climatologic conditions is taken to
be low (at least on a small scale) and can therefore be neglected. Examples of studies
where this approach is followed can be found in [De Castro Ochoa and Munoz
Reinoso, 1997; Lammerts et al., 2001, Von Asmuth and Maas, 2001, Hartung, 2002].
There are important drawbacks to the methods described above. Low-frequency
dynamics in the meteorologic conditions pose a problem for all methods that are
based on groundwater level observations only, as the groundwater level can vary
considerably between periods. Van Heesen [Van Heesen, 1970], for example, already
prescribed a minimal observation period of 8 years for the calculation of MxGL
statistics, while Knotters and Van Walsum [Knotters and Van Walsum, 1997] showed
that there is still considerable variation in the groundwater dynamics above the 8 year
time scale. In order to filter out long-term fluctuations more effectively and thus
obtain temporally invariable or climate-representative statistics, Knotters and Van
Walsum have recommended the use of 30 year periods for the calculation of MxGL
statistics. Since groundwater level series are generally not available over such long
periods, they use a time series model to extend limited series of observations to 30
years. However, even with climate-representative MxGL statistics, a disadvantage is
that much information is lost, as MxGL statistics focus only on the annual
groundwater cycle and filter out the other frequencies (by selecting the extreme and
spring levels every year, and then averaging over the observation period). Although
the use of system characteristics seems promising for local studies in undisturbed
groundwater systems, they can not take into account effects of spatial variable or
non-stationary influences (e.g., global climate change). The spatial variability in
climatologic conditions is often low on a small scale, but it can be significant for



research on larger scales or in mountainous terrain and also other influences such as
groundwater abstraction are often non-stationary and spatially variable.

In this paper, a method is presented that links the response characteristics of
groundwater systems to the dynamic behavior of the input, and combines them into
parameters that describe the groundwater dynamics. By doing so, the limitations of
using system characteristics can be circumvented, while the key characteristics of the
output can be easily identified. Furthermore, knowledge is gained on the relationship
between input dynamics, system properties and output dynamics. The method is
based on the use of a continuous time Transfer Function Noise (TFN) model, which
estimates the Impulse Response (IR) function of the system from the temporal
correlation between time series of groundwater level and precipitation surplus. As
stated earlier, the use of a time series model is necessary to correct for non-average
meteorologic circumstances in the observation period. In an earlier paper [Von
Asmuth et al., 2002], it was shown that this so-called PIRFICT-model has practical
advantages, but the same background and general applicability as Box & Jenkins TFN-
models, which are widely used in the field of groundwater hydrology and beyond
[Tankersley et al., 1993; Gehrels et al., 1994, Hipel and McLeod, 1994, Van Geer and
Zuur, 1997]. For information about the parameter estimation process and model
validation and application aspects, we refer to [Von Asmuth et al., 2002].

The paper is organized as follows: first, the theory and background are given, and are
summarized at the end of the section; in the example application, the GD
characteristics are compared to MxGL statistics, regime curves and frequency of
exceedence graphs, using data from two different groundwater systems; last, but not
least, a discussion and conclusions are given.

6.2  Methods and theory

In this section the methods will be developed with which the meteorologic input,
system properties and output dynamics are described, estimated and linked to each
other.

6.2.1 Meteorologic characteristics

In order to characterize the variability of precipitation and evaporation, several
methods could be used. First of all, because of the annual meteorologic cycle, a time
series of precipitation surplus is periodic and a fast Fourier transform of the series is
used to estimate and characterize its amplitude spectrum (figure 6.1a). Indeed, in the
spectrum we see a clearly isolated peak at annual frequency, while the power in the
rest of the signal appears to be rather randomly and uniformly distributed over both
the lower and higher frequencies. Because of this, we can rely on a simple but
effective method to estimate the average precipitation surplus intensity and its annual
amplitude. A disadvantage of using Fourier analysis in order to obtain the annual
amplitude is the fact that it requires the specification of a spectral window, which can
be somewhat subjective when the annual frequency is not well isolated. To start with,
the average level p of the precipitation surplus is, logically, obtained with:
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figure 6.1: a) Amplitude spectrum of the precipitation surplus series at the town of De Bilt (period
1983-2001), showing an isolated peak at annual frequency. b) Average annual course of the
precipitation surplus and a sine with the same frequency, phase and amplitude.
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with 7, and 7, denoting the start and end of the period over which the

meteorologic characteristics are calculated. Next, time is split into year Y and Julian

day D, and the precipitation surplus is averaged over Y, which effectively filters out
its yearly course p:

Ype
Y. p(Y.D)
ﬁ(D)zY‘;—Y, 1< D <365 (6.2)
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Because the temperature largely determines the annual evaporation cycle and is more
or less harmonic, so is the precipitation surplus, and the annual amplitude can be
obtained by matching a sine to the yearly course (figure 6.1b).

6.2.2 Response characteristics

The functioning of linear systems can be completely characterized by their impulse
response (IR) function [Ziemer et al., 1998, Von Asmuth and Maas, 2001]. In this
section, we will describe the methods with which the IR function is estimated, and use
its moments to avoid restricting ourselves to the specific type of IR-function used in
our model. An elegant way to obtain estimates of the response of hydrologic systems
is the use of a transfer function noise (TFN) time series model [Box and Jenkins, 1970].



For groundwater systems, the response could also be obtained using a deterministic
groundwater flow model such as MODFLOW. Here the use of an empirical time series
model is preferred over the use of deterministic models, because the construction of
time series models is less time-consuming and often also yields more accurate
predictions of the groundwater level [Hipel and McLeod, 1994, Knotters, 2001]. In
TFN models, a series of groundwater level observations is modeled as a linear [or non-
linear, e.g., Tong, 1990, Knotters and De Gooijer, 1999] transformation of the time
series that influence the groundwater level. The deviations between predicted and
observed output are modeled with a separate so-called noise model. Where the
transfer function in discrete Box-Jenkins models is seen as the response to a
momentary impulse, from a continuous point of view it is actually the response to an
input series with the shape of a block. As such, it is not an invariant system
characteristic, because it is still dependent on the observation frequency. Because of
this, and because Box-Jenkins TFN models have some important limitations as they
only operate on a regular frequency, here we use a continuous time TFN model. For
the simple case of a linear, undisturbed phreatic system that is influenced by
precipitation surplus only, the following single input continuous TFN model can be
used to model the relationship between groundwater dynamics and precipitation
surplus [Von Asmuth et al., 2002]:

h(t)=h(t)+d + n(t)

h(t) = j p(0)0(t - 7)dr (6.3)

n(t)= [¢(t-0)dW (x)

where

t :time [T]

h : observed groundwater level [L]

h : predicted groundwater level [L] attributable to p and relative to d

p  : precipitation surplus intensity [LT"]

d - level of hwithout precipitation, or local drainage level, relative to some

reference level [L]

n - residual series [L].
o : transfer impulse response function [-]
o - noise impulse response function [-]

W (t) : continuous white noise (Wiener) process [L], with properties E{dW (¢)} =0,
E[{dW(¢)}*]=d¢, E[dW (t,)dW (1,)]=0,t, #t,.



TFN models are identified by choosing mathematical functions, or in the discrete case
a set of so-called Auto-Regressive and/or Moving Average (ARMA) parameters, to
represent the transfer and noise IR functions. Model identification can be done
iteratively, using the correlation structures in the available data and model diagnostics,
or based on insight into the physical behavior of the analyzed system. On the basis of
physical argumentation [Von Asmuth et al., 2002], we choose the following functions
as IR-functions:

o) = 4 a"t"" exp(-at)
I'(n)

#(t) = \/2050'5 exp(—at) (6.5)

with a,f denoting the variance of the residuals. The physical meaning of (6.5) and its
parameter set ¥ =[A4,a,n,] are explained in section 2.4.2. ¥ is estimated from the

available data using a Levenberg-Marquardt algorithm and an objective function
based on the likelihood function of the noise model [Von Asmuth and Bierkens, 2005].
The local drainage level d is obtained from the data in the following way:

N N N
Zh(ti) Zh(ti) Z"(ti)
_i=0 _i=0 _ =0

N N N

(6.4)

(6.6)

with N being the number of groundwater level observations. @ is a scaled version of
the gamma distribution function (SG df, [Abramowitz and Stegun, 1964]) and can,
because of its flexible nature, adequately model the response of a broad range of
groundwater systems, e.g., those with a simple exponential response [Knotters and
Van Walsum, 1997, Bierkens et al., 2000], a Gaussian response [Chen et al., 2002] or
more in general with a range of ARMA-type responses [Von Asmuth et al., 2002]. For
other, linear or approximately linear, systems, the SG df will probably capture the
most important characteristics of the systems response well. Under the assumption of
linearity, the deterministic part of the groundwater dynamics is completely determined
by the IR function. As such, the characteristics of the IR function (i.e. its moments)
could well be used to characterize the dynamics of groundwater systems for
economical, ecological or other purposes. By using moments, the estimates of various
types of TFN models and IR functions can be easily compared. The moments of the IR
function have the added advantage that they can be obtained not only from time
series models, but from analytic or distributed groundwater models as well [Von
Asmuth and Maas, 2001]. The parameters A,a and nof the SG df are related to the

first three moments in the following manner [Abramowitz and Stegun, 1964]:

o0
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with i being the moment order.

6.2.3 Combination into GD-characteristics

Often not the system properties, but the behavior of the groundwater level itself is of
direct interest for water management or other purposes. In the following we will
derive a set of GD characteristics from the moments of the estimated IR function and
the dynamic characteristics of the precipitation surplus series. When a TFN model is
calibrated on a limited set of observations, an estimate of the mean groundwater level
h and annual amplitude % can be obtained using the step and frequency response
functions. The step response function is the response of a system to an input series
with unit intensity and the shape of a step, and equals:

a(t) =j 0(r)dr (6.8)
0

The step response function asymptotically reaches a constant level that is known as
the gain [Box and Jenkins, 1970] and equals the zeroth moment M, of €. 1In
hydrologic terms, it is the level to which the water table rises when the precipitation

surplus intensity would be constant and of unit intensity. From this, 4 can be
estimated in the following way, taking in mind that the rise starts from the local
drainage base d :

h =d+pM, (6.9)

with M equalling Awhen & equals a SG df (see (6.7)). Because most economical
and ecological activity takes place at surface level (s ), often the groundwater depth
(s- /1 ) is of more interest than the groundwater level (% ). However, the use of a

reference level s or d that varies in space introduces another degree of freedom,
that is compensated by specifying the convexity or mean distance of the groundwater

table from the local drainage base (h —d ).

The frequency response is the Fourier transform of the impulse response function, or
the response of a system to an input series in the shape of a sine with unit amplitude
and frequency & [Ziemer et al., 1998]:

2(r) = jsin(gz)e(z—r)dr (6.10)

—00

When we solve equation (6.10) for a system with a SG df shaped IR function, we find
(see appendix):
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with A4 being the average amplitude of the precipitation surplus over a certain period
(figure 6.1b). The last term of (6.11) is the phase response function. From this a factor
n can be obtained that equals the phase shift between the annual groundwater and

precipitation surplus cycle:
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6.24 Summary of method

In summary, the method proposed
consists of the following steps (see
figure 6.2). First, the key dynamic
characteristics of the input to the system .
are calculated, for univariate time series M
models being the mean and annual 2
amplitude of the precipitation surplus.
Second, an estimate of the response of
the groundwater system is made, that is
characteristic of its functioning. For this
purpose, a continuous time series model
is used and calibrated on time series of
groundwater level observations and
precipitation surplus. From the IR
function, moments can be derived and
used as system characteristics. Third,
both system and input characteristics are  figure 6.2: Relationship between input, system
combined into characteristics of the and output characteristics.
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output or groundwater table dynamics, using simple analytic expressions. The arrows
in figure 6.2 illustrate the way in which the groundwater dynamics are determined by
the properties of the system and the input, but the links can also be used vice versa.

The average groundwater depth s —# , for example, is determined by the distance of
the soil surface from the local drainage level s—d, and by M, and p , but vice

versa, p , or the average groundwater recharge, can also be estimated when M,

and h —d are known. The deterministic part of the groundwater dynamics is
completely determined by the four parameters that describe the output (for as far as
the response of the real world systems fits the SG df response), since for linear
systems, the transformation of input to output is completely determined by the IR
function.

6.3 Example application

6.3.1 Set-up and data set

In the example application, the performance of the GD-characteristics in
characterizing the groundwater dynamics is compared to that of MxGL statistics,
regime curves and frequency of exceedence graphs. For this purpose, two series of
groundwater level observations are selected that originated from rather different
hydrologic systems, and also show a different type of dynamic behavior. Furthermore,
both piezometers are undisturbed by groundwater abstraction, hydrologic
interventions or other influences, thus allowing them to be modeled with precipitation
surplus as the only input series. The first series originates from a dune reserve in the
province of North-Holland, The Netherlands, near the town of Egmond. The dunes in
that area form an approximately 1-5 kilometer wide ridge between the sea and the
adjacent polder area, so the system is relatively large and isolated. The terrain is
undulating and the soil consists of Holocenic aeolian sands. The groundwater level in
this piezometer (19CNL5281) is well observed, with observations taken manually
about the 14" and 28" of every month in the period from 5-12-1982 until 29-1-2001.
As input for the time series model, observations of the precipitation and potential
evaporation are used starting from 1-1-1973. The precipitation series is available on a

table 6.1: Calibration results, estimated parameters and characteristics for piezometers 19CNL5281
and 32c10034.

Piezometer 19CNL5281 32¢10034

R 0.919 0.815

RMSE 11.2 cm 8.4 cm

A (+/- 20) 1396 (+/- 336) 172 (+/- 16)

a (+/-20) 0.0019  (+/- 0.0006) 0.0151 (+/- 0.0040)
n (+/-20) 1.0687 (+/- 0.0442) 0.6723 (+/- 0.0557)

[MLGL MGL MSGL MHGL]
(h—dh h n]

[3.77 4.02 4.18 4.3]
[2.08 4.03 0.2190.8]

[0.75 0.96 1 1.26]
[0.24 0.96 0.14 33.3]



daily basis and is observed by the Provincial Water Company of North-Holland in the
dunes near the town of Castricum, whereas the daily potential evaporation series
originates from a station of the Royal Dutch Meteorologic Institute near the town of
De Kooy. The second series originates from a piezometer (32cl0034) located on the
main meteorologic field of the Royal Dutch Meteorologic Institute at the town of De
Bilt in the centre of the Netherlands [see also Bierkens et al, 1999]. The terrain is flat,
lies at the edge of an ice-pushed ridge that is a remnant of the glaciers that covered
the north of the Netherlands during the Saalien ice age, and borders a small river
named the ‘Biltse Grift’. The series is observed with a daily frequency during a 16-year
period (5-1-1981 until 1-1-1997). However, the series is not totally complete but
8.75% of the observations are missing. The precipitation surplus is obtained from
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figure 6.3: Time plot of the available groundwater level observations for piezometers 1I9CNL5281 and
32cl0034, together with the predictions (transfer part, at daily frequency) from the time series model.



daily averaged observations of precipitation and potential evapotranspiration at the
same meteorologic field, starting from 1-1-1971.

6.3.2 Comparison of MxGL statistics and GD-characteristics
In order to get an estimate of the response of these systems, a single input continuous

time-TFN model (equation (6.3)) was calibrated on the data of both series, with a R?
(coefficient of determination) of respectively 0.919 and 0.815. The results are
summarized in table 6.1. Time plots of the available groundwater level observations
for both series, together with output from the TFN models, are given in figure 6.3.
Subsequently, MxGL statistics and GD characteristics were calculated using the
piezometer data and the estimated IR functions. By definition, MxGL statistics are
calculated from series with an interval of 14 days, so where necessary, the piezometer
data was resampled to match this frequency. The MHGL and MLGL are calculated as
the average of the HG3 or LG3 (i.e. the average of the three highest, respectively
lowest values in a certain year) over a number of years. The MSGL, on the other hand,
is the average-of-the-average of the three values neighboring the first of April (or
October on the southern hemisphere) of every year. The MxGL statistics and GD
characteristics have to be calculated over the correct period in order to make the
results comparable. Note that the period used for calculating the meteorologic
characteristics p and p does not equal the period used for calculating the MxGL

statistics. The reason for this is that the groundwater system has a memory, and the
precipitation surplus p outside the period of groundwater level observations also has

a certain influence. Therefore, p has to be weighted according to its influence on the
groundwater level series, or in other words the following block response function:

o(t) = j O(r)dr (6.14)

t=(the=tp)

with ¢,, and t,, denoting the start and end of the period from which groundwater
level observations are available. Using (6.14), the weighted average and weighted
amplitude of the precipitation surplus were calculated as:

the
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The application of a weighted average and amplitude implies that GD characteristics
can be readily calculated for any period or climatologic scenario, or using any
weighting (when for instance the recent climatologic circumstances are deemed more
important than those of 30 years ago). However, the use of a 30-year period
representing the present day climate (as suggested in [Knotters and Van Walsum,
1997] and also used in the meteorologic sciences [Sluijter and Nellestijn, 2002]),
remains a logical choice for many applications. The MxGL statistics and GD
characteristics of both piezometers are plotted in figure 6.4, together with a regime
curve obtained analogous to equation (6.2). The figure clearly shows that MGL and

h are almost equal, while MHGL-MLGL is greater than the annual amplitude 4 for
both piezometers. Remarkably, MHGL-MLGL for piezometer 19CNL5281 almost
equals MHGL-MLGL for piezometer 32cl0034. Consequently, the MHGL and MLGL do
not differentiate very well between the dynamics of these two, hydrologically different,
systems. There is, however, a difference between their response amplitudes. From
their amplitude spectra (figure 6.6), but also directly from the groundwater
hydrograph (figure 6.3), it can be seen that the high frequency fluctuations of the
small and fast meadow system are more pronounced than those of the bigger and
slower dune system, while the opposite is true for the annual amplitude. Logically, the
high frequency fluctuations influence the extremes (HG3 and LG3). Apparently, the
different behavior in the high frequencies compensates the difference in the annual
amplitudes, and results in comparable MHGL-MLGLs. A factor that does differentiate
between both piezometers is the Mean Spring Groundwater Level (or more exactly
MSGL-MGL) which is, in contrast to MHGL and MLGL, not a result of fluctuations in
several frequencies, but is in fact an ordinate of the annual groundwater cycle. This
factor is closely related to the factor 7 (see table 6.1), which equals the phase shift

between the annual groundwater and precipitation surplus cycle. Shifting the
sinusoidal groundwater cycle in time will alter the value on the first of April and hence
the MSGL. However, logically also the amplitude of the annual cycle is of influence to
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figure 6.4: Comparison of MxGL statistics and GD characteristics for piezometers 1I9CNL5281 and
32cl0034, respectively. From the figure it can be seen that MHGL - MLGL is larger than two times

the annual amplitude, and does not differentiate much between these systems. MGL and h are
almost equal and their lines are hard to distinguish.
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piezometers 1I9CNL5281 (a) and 32cl0034 (b), and respective annual, mean and total frequency of
exceedence graphs (c and d).

the MSGL.

6.3.3  GD-characteristics and fluctuations of non-annual frequency

A common method to illustrate and quantify the long-term variability of the
groundwater level at a certain location is to plot both the mean (i.e. the regime curve

E(D)) and two or more percentiles of the distribution function of A(Y | D) (figure

6.5a and b). An alternative is the use of frequency of exceedence graphs (i.e. the
cumulative relative distribution of A(Y, D)), which however do not contain

information about the period of occurrence of the extremes (figure 6.5¢ and d). Here
we have used a 90% confidence interval, and also plotted the MHGL and MLGL to be
able to compare the annual, higher and lower frequency fluctuations. From the results
it can be seen that both systems react rather differently to different frequencies in the
input signal. For the slower system, it is clear that the low frequency fluctuations are
large, and MHGL and MLGL are by far respectively lower and higher than the
extremes that can occur in climatologically non-average years. For the fast system the
high frequency fluctuations are more pronounced, and MHGL-MLGL exceeds the
average annual cycle. The finding that different hydrologic systems react differently to
fluctuations in different frequencies is in fact reported in many other publications [see
also Gehrels et al., 1994, Leduc et al., 1997; Molenat et al., 1999, Chen et al., 2002].
The proportionality of fluctuations of different frequency within a signal can be
examined in more detail by looking at its amplitude spectrum, obtained with a fast
Fourier transform (figure 6.6a and b). From the amplitude spectrum, it can again be
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seen that the annual amplitude of the slow system is higher than that of the faster
system. Both systems, however, also show a very distinct overall pattern in their
amplitude spectrum. Because in the frequency domain, the amplitude spectrum of the
groundwater level series is the result of a multiplication of the amplitude response of
the system and the amplitude spectrum of the precipitation surplus, it may be
worthwhile to examine the amplitude responses of both systems. Using equation
(6.11) and the parameters obtained with the time series model, we have plotted both
amplitude responses in figure 6.6¢, together with their 95% confidence interval, that
was calculated with:
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with the variances o> and covariances O'j,a being obtained from the Levenberg-

Marquardt optimization routine. The amplitude responses prove to coincide well with
the amplitude spectra of both systems. This is in fact not that surprising, as we also
found that the amplitude spectrum of the precipitation surplus was rather flat, apart
from the peak at annual frequency (figure 6.1a). From its amplitude response, the
slow dune system appears to act as a low pass filter on the precipitation surplus
fluctuations, which is corroborated by the fact that the high-frequency fluctuations of
the water table are small. A similar result was also found in [Chen et al., 2002] in a
research aimed at predicting average annual groundwater levels. According to
[Gehrels et al., 1994], this phenomenon can be explained by the buffering effect of
the unsaturated zone, but it can also occur with other types of inputs, e.g., infiltration
of surface water, and because of a delay in the response of the saturated zone in the
centric parts of a system [De Zeeuw and Hellinga, 1958]. The amplitude response of
the fast piezometer again proves to be slightly lower than that of the slow system at
annual frequency, but both are equal for a frequency close to a year. The fact that the
amplitude responses of different systems almost cross at annual frequency indicates

that the groundwater regime can still vary considerably when s —/& and & are equal.
Therefore, we have to look at the non-annual frequencies in order to further
differentiate between different systems. Except for the annual cycle, however, there
are no other distinct signals at isolated frequencies, so it is difficult to get one well-
defined characteristic for fluctuations at lower or higher frequencies. We can,
however, given the fact that the amplitude spectrum of the precipitation input is
rather flat, use our knowledge of how systems reacts to and amplify signals at
different frequencies. From (6.12) it is clear that the amplitude response, when the
frequency & decreases, reaches an asymptotic level that equals 44 . The zeroth

moment M, in other words, determines the magnitude of the groundwater level
fluctuations towards the lower frequencies, so the low frequency fluctuations are
covered by specifying / —d . Vice versa, this also means that M, is hard to estimate
from a time series of groundwater level observations of limited length, or in a period

in which inter-annual fluctuations are small, and it could be worthwhile to use prior
information on d, e.g., obtained from the level of surface waters in the vicinity. As an

alternative for using & —d , the distribution function of 4(Y,D)could also well be

used, e.g., in constructing a ratio between the annual amplitude and the 95%
percentile of A(Y,D). Such a parameter or ratio has the advantage that its dimension

is [L], and it therefore gives a more direct indication of the magnitude of long-term
fluctuations. However, an analytic solution for this can not easily be found so it has to
be solved numerically, which can be rather time consuming when for instance the GD
characteristics have to be generated spatially.

The fourth and last GD characteristic is the phase shift between the annual
groundwater and meteorologic cycle, which is related to the groundwater level
dynamics in the sense that slow systems have a large phase shift, and are at the same
time not very sensitive to high frequency fluctuations. In order to illustrate the
relationship between phase shift and the amplitude spectrum of the groundwater



level fluctuations more clearly, we have plotted the amplitude response of several

synthetic systems with fixed s—#, & —d and h, but varying i1 (figure 6.6d). The
figure clearly shows that 7 determines the proportionality between the magnitude of

the higher and lower frequencies, while M|, determines the asymptote of the

amplitude response towards the lower frequencies. The phase shift was also identified
as an important characteristic of groundwater systems in [Larocque et al., 1998;
Manga, 1999, Lee and Lee, 2000, Chen et al., 2002]. In the latter publication,
however, one phase shift is applied for the three basic frequencies that were
identified in the precipitation surplus input, while the phase response is in fact a
function of the frequency (see e.g., equation (6.11) or [Ziemer et al., 1998]).

6.4  Discussion and conclusions

The methods in this paper were developed and illustrated using a single input time
series model. The range of geohydrologic variety that the time series model covers is
given in section 2.4.3, and validation results are given in [Von Asmuth et al., 2002].
The methods of estimating GD-characteristics can be readily extended to include other
influences such as groundwater abstraction or fluctuating surface water levels, as for
linear systems, the stationary draw-down and annual amplitude attributable to a
secondary factor can simply be added to that of precipitation surplus. Only in the case
where other factors have a very different dynamic behavior, this has to be taken into
account in the form of additional parameters to be able to better characterize the
dynamics. A special case of another factor that influences the groundwater level is the
noise that enters the system through the noise model. However, as the expected value
of white noise is zero and its frequency spectrum is flat, both its stationary influence
and its power at annual or any other specific frequency can be neglected. A limitation
that arises from the use of a linear time series model is that it does not hold for non-
linear systems. Future research will have to tackle this problem with the aid of non-
linear time series models.

In the usefulness of the method presented, two aspects are of importance. The first is
the direct link between the dynamics of the input, the properties of the groundwater
system, and the dynamics of the groundwater table that is developed in this study.
Using this link, one can correct for non-average meteorologic conditions in the
observation period, in the same sense as MxGL statistics are made ‘climate
representative’ [Knotters and Van Walsum, 1997] by using simulations over an
historical 30 year period. Here, however, the key characteristics of the groundwater
dynamics can be also readily obtained for any climatologic scenario, without having to
simulate future meteorologic time series. This adds flexibility to the method necessary
for dealing with non-stationary influences. Next to climate change, also factors such
as groundwater abstraction can cause the groundwater dynamics to be non-stationary,
so that the historical 30-year period does not necessarily reflect the current or future
state. The system properties, in terms of the moments of the IR function, can be
estimated using a time series model, but also with the aid of deterministic
groundwater flow model such as MODFLOW [Von Asmuth and Maas, 2001]. The link
described can thus be used vice versa also, to make estimates of the input or recharge



to an aquifer using groundwater level observations and the systems’ response, as was
proposed earlier in [Chen et al., 2002].

A second important aspect is the way in which the groundwater dynamics at a certain
location are characterized. In fact, the application of a time series model is not
necessary to derive GD characteristics if long term observations of the groundwater
level are available, as GD characteristics can also be inferred from the local drainage
base and frequency analysis on the data itself (please note, however, that such
information is also not error free). The four GD characteristics are the mean depth, the
convexity, the annual amplitude and the phase shift between the annual groundwater
and meteorologic cycle. By looking at their relationship with the impulse and
amplitude response function, it is shown that GD characteristics each contain
information about a separate aspect of the groundwater dynamics, and together can
describe the dynamics in detail (at least, for as much as the time series model can). In
the example application, it is shown that the methods for calculating MxGL statistics
form a rather heuristic combination of averaging and selecting extremes, and that
they do not differentiate optimally between different groundwater systems. As the
extremes or highest (HG3) and lowest levels (LG3) in a year are the result of both the
annual cycle and the fluctuations in higher frequencies, both frequencies interfere in
the calculation of MxGL statistics. This is the reason that MHGL-MLGL exceeds the
amplitude of the annual cycle, either calculated with the time series model or using a
regime curve. Furthermore, the MxGL statistics are the results of averaging over a
longer period (minimally 8 years), which effectively filters out lower frequency
fluctuations and the corresponding inter-annual extremes. The extreme levels and
their duration, however, often are of great interest because of their disproportionate
economical damage or ecological influence. Thus, it is concluded that the capability of
MXxGL statistics in differentiating between groundwater regimes at different locations
is less than that of GD characteristics.

Because GD characteristics provide a compact way of describing the groundwater
dynamics at a certain location, they can be of use to get a better understanding on
the relationship between groundwater dynamics and other factors, such as soil
conditions or ecology. Next to that, they can be used to map the groundwater
dynamics for planning purposes or policy making. In ecological sciences, for example,
there is still little deterministic knowledge of how plant species are related and/or
adapted to the groundwater dynamics at a certain location, and often use is made of
expert knowledge [e.g., Runhaar et al., 1987, Ellenberg, 1991]. Identifying the main
characteristics of the groundwater dynamics can help to get a clearer picture of which
part of the dynamics (e.g., the extremes, the average conditions or the low levels in
summer) are important for the survival of endangered species.
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7.1 Introduction

71.1  Time series models: their strong points and limitations

Dynamic systems are ubiquitous in System
our environment, both natural
and man-made, and form the
subject of many different scientific
disciplines. Consequently, the

theory and techniques for : ;
analyzing and modeling collected : el
time series data have a vast i

1

application area. One may discern I

different disciplines such as time
series analysis, system
identification, control engineering,
signal processing and filtering,
depending on the type of system
addressed, their physical
functioning, the available data
and the problem to be solved. The
theory and techniques used in
these disciplines, however, are often remarkably similar. The ARIMA (AutoRegressive
Integrated Moving Average) time series models are most widely used, although there
has been a diversification of methods. The application of ARIMA models developed
rapidly after the publication of the text book by Box and Jenkins [1970]. Although it
took some time before the methods and principles were picked up in the hydrologic
sciences, this was amply compensated by the publication of the voluminous book by
Hipel and McLeod [1994]. In their book, Hipel and McLeod present many different
applications, as well as several extensions to the ARIMA models as published by Box
and Jenkins. Relatively simple data-based models like the ARIMA time series model are
still widely applied in the environmental sciences, despite the rise of physically-based,
spatially-distributed models. Advantages of time series models over physically-based,
distributed models are their relative accuracy, ease of construction, and well-
developed statistical background. The first two points follow directly from the fact
that a time series model treats a physical system firstly as a ‘whole’. The effective,
overall behavior of a system at a certain location is modeled without requiring the
explicit definition of its entire spatial structure (figure 7.1). In contrast, physically-
based, distributed models start bottom-up from the so-called representative
elementary volume (REV), and almost inherently invite the inclusion of all detail above
that scale. As a consequence, such models generally require a great amount of data,
while the larger part of the model still is the result of correlations, extrapolations and
assumptions, which cannot be verified or validated [see e.g., Konikow and Bredehoeft,
1992, Oreskes et al., 1994]. Such problems, which are more or less intrinsic to the
REV scale approach, have lead some to proclaim that it will prove to be a dead end for
complex, environmental systems, while others designed alternative approaches on

boundary

Output

%

figure 7.1: Schematic representation of an open physical
system. The spatial structure of environmental systems is
generally far more complex than their temporal behavior,
and largely unknown. The structure does not have to be
explicitly defined for modeling the behavior.
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larger aggregation scales [e.g., Reggiani et al., 1998, Reggiani et al., 1999, Beven,
2002].

ARIMA models, however, also have several limitations. First of all, there is the problem
of identifying the model order. A time series modeler has to identify the order of an
ARIMA model, which contains at least 5 terms in case of a model with a deterministic
component or Transfer Function-Noise (TFN) model. These terms define the number of
parameters in different parts of the model, and the delay time [Box and Jenkins, 1970].
In addition, a modeler has to define a suitable degree of differencing to induce
stationarity in the case of non-stationary series, and also has to choose the model
frequency, which however interferes with the model order [Von Asmuth et al., 2002].
Although Box and Jenkins devised a specific iterative procedure for identifying the
model order, its results can be ambiguous [Hipel and McLeod, 1994]. The procedure
itself is to some extent heuristic, subjective and knowledge and labor intensive [De
Gooijer et al., 1985]. The use of ARIMA models thereby requires an adequate
understanding of the underlying theory. The available time series analysis literature is
difficult for outsiders, as it has a strong statistical focus and uses a specific
mathematical notation, jargon and viewpoint. The second problem is the handling of
irregular or high-frequency data. In hydrological practice, where irregular data are
common, the fact that ARIMA models can not deal with that poses a serious problem.
High frequency data can also cause problems, as it causes the autocorrelation in the
data to become high, autoregressive(AR)-parameters to become badly scaled, and the
effect of moving average(MA)-parameters to be limited [Von Asmuth et al., 2002].
Third, there is the problem of extrapolating results. Because of the data-based nature
of time series models, there is a risk in extrapolating results to situations for which no
data are available, e.g., for scenario calculations. Extrapolation to other points in
space or situations where the system itself is changed is impossible without additional
knowledge or techniques. Fourth, and in spite of their simple nature, ARIMA models
are easily over-parameterized. This means that it will generally be difficult to separate
the different effects and get correct, reliable and unique parameter estimates, when a
system is affected by many inputs, when input(s) do not change much over time
and/or are cross-correlated. The problem is compounded by the fact that the MA-part
of ARIMA models is parameter-inefficient, especially when dealing with high-
frequency data.

71.2 Recent developments and use of physical insight

A possible solution to the above mentioned limitations is to use physical knowledge
on the functioning of a system and/or to combine the strong points of data- and
physically-based methods. Relatively recent, attention is paid to the fact that the
transfer function of time series models, which describes the response of systems
through time, should have a physical basis, at least when applied to physical
phenomena like groundwater level fluctuations (although this was already proposed
by Van Geer [1987]). In the process of incorporating physical insight in the use of time
series models, the following approaches can be distinguished. First, physical
knowledge may be used for model identification, to a posteriori select the correct
model order from a subset of predefined candidate models. The selection is based on



the question whether or not the results and computed transfer functions are plausible
from a physical-hydrologic perspective [Young and Beven, 1994, Price et al., 2000]. A
simple example is precipitation, which should result in a rise and not a lowering of the
water level. A second approach is the reversal of this process, in which case the model
order is selected a priori based on a physical-hydrologic analysis of the system. This
approach follows Knotters and Bierkens [2000], who selected the ARX(1) model
(which is equivalent to an exponential response function) for modeling the
relationship between precipitation surplus and water table depth, based on an
analysis of the functioning of a simplified soil column. A third approach is to replace
the statistically oriented, discrete-time ARIMA model structure by a model structure in
which continuous-time response functions are used [Von Asmuth et al., 2002, Von
Asmuth and Bierkens, 2005]. This approach to time series analysis is named the
Predefined Impulse Response Function In Continuous Time (PIRFICT) method. Analytic
solutions to geohydrologic problems may be used directly as response functions in this
method, i.e. functions that are more complex than the ARX(1) model proposed by
Knotters and Bierkens. As a result, time series models are forced to show a certain,
physically-plausible behavior in response to different excitations. Simple distribution
functions like the scaled gamma distribution prove to fit the behavior of many
hydrogeologic systems, regardless of their specific properties and structure. Other
developments include a solution to the problem of modeling irregular or high-
frequency data [see Bierkens et al., 1999; Berendrecht et al., 2003; Yi and Lee, 2004;
Von Asmuth and Bierkens, 2005], non-linear time series modeling [Knotters and De
Gooijer, 1999; Berendrecht et al., 2004], and the combination of time series and
spatially distributed models (see sections 2.2. and 2.3).

71.3 Scope and outline of paper

The methods related to the PIRFICT approach were presented and tested in several
papers. It was shown that the PIRFICT method allows for the incorporation of physical
behavior, reduces the number of parameters, simplifies model identification and
avoids problems related to the data frequency in time series models [Von Asmuth et
al.,, 2002, Von Asmuth and Bierkens, 2005]. The PIRFICT method was extended and
tested to include complex situations with multiple stresses of different types [Von
Asmuth et al., 2008]. The use of time series model results and/or impulse responses in
distributed models was addressed in [Von Asmuth and Maas, 2001, Bakker et al.,
2007, Bakker et al., 2008]. In the present paper, a synthesis is given of the methods
and results, while specifically focusing on the interface between data and physically-
based methods. In addition, the program Menyanthes is presented, in which the time
series analysis methods that were developed are incorporated (and future
developments will be). Finally, an example application is given where data from
multiple locations are analyzed, illustrating the use of spatial patterns and physical
insight to interpret results. The PIRFICT method is applied to groundwater head series,
as in all the above mentioned papers, but it is not restricted to that. The case of
groundwater heads may therefore serve as an example for linear or linearized systems
in general, in or outside the environmental sciences.
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7.2  Methods and theory

721 Differential equations, impulse responses and convolution

While many papers start from the time series analysis viewpoint, we choose to start
from a physical viewpoint here to better serve the non-specialist community. The
construction of a physically-based model for the dynamics of an arbitrary variable
starts with the derivation of an appropriate mathematical expression, commonly a
differential equation, for it. Differential equations are derived from two types of
equations [e.qg., Bear, 1972]:

e The continuity equation(s)
e The constitutive equation(s)

For groundwater, the continuity equation is found by applying the principle of mass
conservation (while in other cases, also other conservation laws may apply, like those
for energy or momentum). In simple words, this principle states that no mass can
disappear without reason and it is valid for all types of masses. In case of water, it is
known as the water balance equation. The constitutive equation specifies a property
of the specific medium under consideration, which in case of groundwater is Darcy’s
law. This equation treats a representative elementary volume (REV) of a porous
medium as a continuum, thereby disregarding the spatial variability below this scale
(consisting of grains and pores, or molecules on an even smaller scale).

A standard technique for solving differential equations of linear dynamic systems
exactly is to determine their solution for a Dirac delta function 6 [Dirac, 1947] as
input p . The delta function has the following properties:

o(t) =0, t#0

j S(t)dt =1 7.1

and can be thought of as the limit of (for instance) a Gaussian distribution function

with mean zero and a variance that also approaches zero. In words, the delta function
is an instantaneous pulse or impulse of unit area. The impulse response function @ is
defined as the effect of & asinput p on the state & of a system, i.e. the deviation in

time from an otherwise steady state d . In terms of groundwater head and
precipitation, @ can be thought of as the response to a very short shower of unit
height, when the head is otherwise constant or equals the local drainage base. In
mathematical terms, @ is defined by the following conditions:



0(t)=h(t)—d
h(t)=d, t<0 (1.2)
p(t)=95(t)

If & and d are known, A can be obtained for an input p that varies arbitrarily in
time through convolution (Duhamel’s principle [Duhamel, 1833)):

h(t)—d = [ 0t =) p(r)dr =[ 0() p(t — T)d7 = (0% p)(2) (7.3)
-0 0

where the last form is just a compact way of symbolizing a convolution product.
Equation (2.35) implies that the dynamics of an arbitrary, linear, dynamic system at a
certain location are completely governed by the dynamics of the input and the
impulse response function. The impulse response function & completely characterizes
the dynamically relevant, physical properties of a system, and is as such an integral
property thereof. @, however, is a function of the location in the system, and of the
specific excitation under consideration.

7.2.2  Methods of constructing response functions

The solution to (2.35) only fits the dynamics of a system exactly if 8 (and p) are also
exactly known (and the system is linear and time-invariant). Of course, @ is never
known exactly in practice, but there are several methods to obtain an approximation
for it. The first, bottom-up and nowadays mainstream approach, is to construct a
spatially-distributed model to solve the governing differential equation. Distributed
models may be transformed into sets of impulse responses, as outlined in [Sahuquillo,
1983]. Although this procedure is not common, its advantages over the direct use of
the distributed model are its computational efficiency and the fact that the differential
equation can be solved continuously in time by doing so. A second approach starts
top-down and approximates & as an ARMA transfer function. In that case, (2.35) is
approximated by discrete convolution:

! 0
h—d=3 0.p =) 0p =0B)p,=©*p), (74)
i=0

i=—00

where ¢ is a discrete time index (1 € N ), ® is the transfer or block response function
and B is the backward-shift operator defined by:

Bbpt =Pip (7.5)

@ can be written symbolically as [see section 2.2, Box and Jenkins, 1970]:
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e(B) ="' (B)w(B) (7.6)

where 0(B) is the autoregressive operator (not to be confused with the Dirac delta

function), and @(B) the moving average operator. The actual computation of 4, is
done recursively as:

h—d-06,(h_—d)—..=0,(0,_, —d)=ao,p, + @ p,_ | +..+ B D,_,s (7.7)
where nr and ns define the number of parameters or order of the transfer function.
Although ARMA models are used in a variety of sciences and are usually perceived as
‘black box’ models, ARX(1) models may be seen as representing the physics of a
simple soil column [Knotters and Bierkens, 2000] and an ARX(nr) model as
representing a (linear) distributed groundwater model with nr cells (see section 2.3.1).
The recursive computation of (7.7) is computationally less demanding than the direct
evaluation of (7.3) or (7.4) and as ARMA models have a long history, this was
probably an important advantage. With modern technology, however, this is not an
issue anymore, and consequently as a third approach, ® and/or 8 can also be
approximated in other ways.

7.2.3 The PIRFICT method and use of distribution functions

Von Asmuth et al. [2002] presented a new method of time series analysis, called the
PIRFICT method. A difference with ARIMA-type and kindred time series models,
whether discrete or continuous time [e.g., Brockwell, 2001; Young and Garnier, 2006],
is that it is formulated as a (continuous time) convolution integral (7.3), instead of as a
temporal difference or differential equation. In this formulation, & may in principle be
an arbitrary continuous
mathematical function having a
known integral. The PIRFICT
method has several practical
advantages [Von Asmuth et al.,
2002], and facilitates the
integration of data and physically-
based methods in two ways. First,
the physical behavior of a system
may be implemented directly in
the model as response function &,
for example as analytic solution to o
the differential equation in a
specific situation. Elementary
physical principles may be used to
reduce the degrees of freedom in
the model, e.g., by limiting the . ) o
sign of the effect to either positive figure 7.2: Skewed impulse response function with mean
or negative or by sharing 1 and variance & .

response factor (-)

H time (days)



parameters of response functions across several inputs [Von Asmuth et al., 2008].
Continuous response functions also tend to contain fewer parameters than their
ARMA counterparts, because the number of parameters is not linked to the model
frequency, as in ARMA models [Von Asmuth et al., 2002]. Second, the results of time
series models and physically-based, distributed models can be matched using
moments of the impulse response functions (which in principle is also possible for
ARMA-models, by correcting the moments of the transfer functions obtained for the
model frequency). The use of moments to characterize response functions, as is
common practice with statistical distributions, has been proposed independently by
Nash [1959], Jury and Roth [1990] and Maas [1994]. A more recent notion is that
moment-generating differential equations may be derived directly from partial
differential equations [Maas, 1995, Harvey and Gorelick, 1995, Govindaraju and Das,
2007], which provides a direct link between time series and distributed models [Von
Asmuth and Maas, 2001, Bakker et al., 2008].

Although system-specific, physically-based analytic solutions may be used for @, a
more general approach is also possible. A first step in this direction was taken by
several authors, who independently and for different problems, observed that impulse
response functions typically take the shape of a skewed distribution function (figure
7.2). A pioneer in this respect was Nash [1958], who proposed the use of the gamma
distribution for modeling the transformation of rainfall into run-off. The gamma
distribution is given by:

a"t"" exp(—at)

o(t) = ()

(7.8)

where a and n are parameters. The physical analog of the gamma distribution is a
cascade of linear reservoirs, also known as the Nash cascade. The use of distribution
functions for modeling the transfer of solutes through soil was suggested by Jury
[1982] and Maas [1994] (discussed are the lognormal, gamma and Pearson type |l
distributions). Jury and Roth [1990] showed that their shapes have a striking similarity
with that of the impulse response solution to the physically-based convection-
dispersion equation. When using distribution functions as response function, the
temporal behavior of a system is defined, but the physical or spatial structure is not. In
that sense, they are not ‘physically-based’. Jury and Roth, however, consider this a
relative issue and point out that it is a curious phenomenon that physically-based laws
like the convection-dispersion equation are commonly accepted merely because their
solution can be manipulated into matching the shape of the outflow concentrations.
Similar statements are made by Beven in the context of his equifinality thesis [e.g.,
Beven, 1993, Beven, 2006]. For groundwater heads, the use of distribution functions
is perhaps less intuitive. Von Asmuth et al. [2002] and numerous studies afterwards
showed that a scaled gamma distribution (the gamma distribution multiplied by a
constant) may be used effectively to model the head response to recharge, and that it
yields results that are at least as good as those of ARMA models (in terms of
calibration and validation error). In fact, skewed distribution functions prove to be
applicable as response functions also outside the earth sciences, e.g., in psychology
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[McGill, 1965] or pharmaceutics [Sun, 1998]. Maas [1994] gives a partial explanation
for the wide area of application. He shows that transferring a signal through # linear,
independent systems is mathematically equivalent to adding up » random,
independent variables. Consequently, the central limit theorem of statistics also
applies to the transfer of signals through linear systems and like probability
distribution functions, impulse response functions will approach Gaussian distributions
when n approaches infinity. Maas also shows that before reaching this limit, impulse
responses tend to have a skew-Gaussian shape. Bakker et al. [2008] point out that the
scaled gamma distribution as well as Hantush’ well function [Hantush, 1956, Veling
and Maas, 2010] and Bruggeman'’s polder function [Bruggeman, 1999] are all special
cases of the following function:

O(t) = At° exp(—at —?) (7.9)

where A,v,b are parameters. Veling [2010] named (7.9) the generalized moving
Gaussian distribution and gave its mathematical properties. In [Von Asmuth, in print],
it is pointed out that the central limit theorem and skew-Gaussian convolutional limit
of Maas [1994] are not directly applicable to the case of groundwater heads. From
(7.9) , however, it follows that a variety of systems with convection-dispersion or
diffusion-type processes do tend to the same, skew-Gaussian and relatively simple
behavior.

7.3 Software architecture

731 Why Menyanthes?

The methods discussed in section 2.3 were developed within the scope of a PhD
research project that initially encompassed three fields of modeling: time series,
groundwater and eco-hydrologic modeling [Von Asmuth and Maas, 2001]. The three
‘leaves’ in this research led to naming the developed computer program after
Menyanthes trifoliata, the scientific name of the Marsh trefoil or Bogbean. As the
natural habitat of Menyanthes trifoliata is on the verge of ground and surface water,
as it is threatened by anthropogenic influences and also is one of the wonderful
flowers in such areas, it serves as the natural ambassador for this research.

7.3.2 Information systems hierarchy and data management

For several reasons, Matlab was chosen as programming environment for Menyanthes
(see www.mathworks.com). Matlab is a versatile tool for mathematical computing
and analysis, which incorporates a high-level, matrix-oriented programming language
that allows scientists and engineers to easily express their own algorithms. In addition,
Matlab applications may be compiled into stand-alone applications, which greatly
reduces the effort for both developing the methods and implementing them in user-
friendly programs. Furthermore, Matlab is strong in data management and (2D and
3D) visualization, which, as discussed below, are important facets of Menyanthes. The
design of Menyanthes reflects the goal to integrate empirical and physically-based
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methods. We use the data—
information-knowledge-wisdom
hierarchy (DIKW) of Ackoff [1989]
as a metaphor, and distinguish a
corresponding hierarchy in
information systems (figure 7.3).
This concept was adopted from
[Rowley, 2007], and adapted to
reflect that knowledge on how a
system functions generally
crystallizes into models in the
earth and technical sciences. In
that view expert and decision
support systems are higher up in
the hierarchy, and contain a
reflection of the wisdom that is
necessary to make the right figure 7.3: Knowledge and information systems hierarchy,
decisions. The functionality of after [Rowley, 2007].

Menyanthes starts bottom-up

with a database, in order to keep a close link with the original observations. The
PIRFICT method can operate on time series data as-is, so there is no need for the
interpolation, gap filling and /or time discretization steps that accompany ARMA
models. Menyanthes incorporates various tools and functions for processing,
visualizing and checking time series data. The basic philosophy with regards to data
management is that the original data are never deleted or modified. Changes and
corrections are stored ‘on top’ and can always be reevaluated and undone. A
relatively new development is that groundwater monitoring is increasingly being
performed with the aid of pressure sensors. Pressure sensors, however, show specific
problems and types of errors [Von Asmuth, 2010, Sorensen and Butcher, 2011] and
Menyanthes contains tools for specifically dealing with these problems.

7.3.3 Data analysis and visualization

Analysis and visualization tools are the primary means of transforming crude data into
useful information, at the second level of the DIKW hierarchy. In case of
environmental systems, data sets are essentially 4D (x, y,z,¢ ) and the amount of

information contained in them is simply too large for direct use in, e.g., visual
interpretation, mapping, or empirical modeling purposes. For such purposes, the data
has to be compressed without losing too much significant information. Specific
methods have been developed for groundwater heads to visualize the dynamics in
overall graphs such as frequency of exceedence graphs or regime curves (figure 7.4a) ,
and for statistically characterizing the dynamics with a limited set of parameters (for
which time series models can be of use, [see Knotters and Van Walsum, 1997, Von
Asmuth and Knotters, 2004]). In Menyanthes, parts or characteristics of (groups of)
groundwater level time series may be presented in various ways and in 2D or 3D.
Visualization extracts information but also aids validation of the data. For example,
outliers are typically easily detected in a simple plot of a set of groundwater level
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figure 7.4: Examples of visualization of series of groundwater level observations and their
characteristics (a) regime curves (b) in a 2D cross-section.

series. On the other hand, visualization also aids ‘visual system identification’, as
spatial patterns in the groundwater heads reveal much of the basic structure and
functioning of a system (e.g., figure 7.4b). As environmental systems are usually
heterogeneous and have layers with variable resistance, monitored locations at
different depths can be more or less isolated from each other and display different
behavior. The depth of well screens and monitored locations is therefore important to
understand the observed behavior, and 2D or preferably 3D visualization is needed to
interpret data and modeling results correctly.

7.34 Main screen and modeling tools

The time series modeling tools and methods discussed in the previous section are at
the third level of the DIKW hierarchy, and form the heart of Menyanthes. The set-up
of the main screen (figure 7.5) follows the schematization of an open system as
depicted in figure 7.1, which adds to the intuitiveness of the user interface. The upper
right quadrant is devoted to groundwater level series (the output), the lower right
guadrant to explanatory series (the input) and the lower left quadrant for model
properties and results (the system). The fourth and final quadrant in the upper left-
hand corner contains a map, in which spatial selections can be performed and data
are presented in top or cross-section view (figure 7.4b). A separate screen is used for
3D visualization. In principle, the same visualization tools are used for the data
themselves and for checking and interpreting time series model results. Each time
series is modeled independently of the other series. Spatial patterns that emerge from
the results of multiple time series therefore yield valuable and independent
information on the spatial structure and functioning of a system, and for checking the
plausibility of results [Von Asmuth et al., 2008]. Menyanthes offers the possibility to
use both PIRFICT and ARMA(1, ns ) type response functions for time series analysis.
This allows both methods to be compared directly, as was published in [Von Asmuth
et al, 2002]. It can also serve to asses the validity of the continuous response function
used. In addition, Menyanthes also contains methods of non-linear time series
modeling, following the threshold or TARSO approach [Knotters and De Gooijer,
1999]. These methods are useful for modeling systems with periodic run-off or
periodically uncovering drainage means.
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figure 7.5: Main screen of Menyanthes, consisting of four quadrants. The set-up and coloring (dot
markers) reflect the system schematization and colors in figure 7.1.

7.3.,5 Simultaneous time series analysis

One of the foremost advantages of the PIRFICT method is that it greatly reduces the
amount of effort needed for model identification. As stated in the introduction, the
iterative Box-Jenkins style model identification procedure for defining the number of
parameters in an ARMA model can be very knowledge and labor intensive [De Gooijer
et al., 1985], whereas functions like the scaled gamma distribution are very flexible
and may be used effectively to model the response of a system regardless of the
hydrogeologic setting of the observation wells [Von Asmuth et al., 2002]. The PIRFICT
method allows for the use of a standard response function for a specific type of input,
and model identification consequently reduces to the problem of identifying which
inputs or stresses influence the dynamics of a system [Von Asmuth et al., 2008]. In
case of groundwater heads, or any environmental variable for that matter, stresses
tend to have a spatial effect and influence all locations within a certain region.
Assessment of the region of influence of a certain stress (for instance groundwater
extraction) is in fact one of the possible applications of time series models. Using the
PIRFICT method, stress identification therefore generally applies to all observation
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explanatory series that are set, are

set for all locations selected in listbox one for which they are used. An example is the
type of impulse response function used for a certain stress [see Von Asmuth et al.,
2008], which can be selected in the drop-down menu that is marked with a three.
When appropriate settings, explanatory series and response functions are chosen, the
model parameters can be optimized by pressing the ‘estimate’ button, after which the
models are optimized one-by-one. Details on the optimization procedure and noise
model, which are also based on a continuous-time formulation, are presented in [Von
Asmuth and Bierkens, 2005]. The model identification procedure of Box and Jenkins
includes diagnostic checking of results, using statistical methods and criteria.
Correlations that are valid from a statistical viewpoint can, of course, be non-causal or
physically non-plausible. The example application will demonstrate how physical
insight may also be of use for checking the plausibility and adequacy of time series
analysis results.

7.3.6  Menyanthes versus alternative software

The combination of time series modeling tools and the focus on geohydrologic
systems and their corresponding data make Menyanthes unique in its sort, and hard
to compare to other software. There is, of course, software that overlaps and is
comparable to part of the functionality of Menyanthes. Hydrogeologic modeling
software such as Visual Modflow (see www.swstechnology.com), Groundwater



Modeling System and Groundwater Vistas (see www.scisoftware.com) solve the
differential equation for groundwater flow, using the finite difference method.
Software like MLAEM (see www.scisoftware.com) or TTim (see ttim.googlecode.com)
use the analytic element method for this. See, e.g., [Reggiani and Schellekens, 2005;
Todini, 2007] for more information on models that (also) deal with surface water
hydrology. Menyanthes differs from such models in the sense that it only models the
temporal and not the spatial dynamics, and it models groundwater heads instead of
flow. For application in practice, an important property of Menyanthes is that it does
not require any geohydrologic schematization or parameterization. There are of
course also other time series modeling packages like Matlab‘s System Identification
Toolbox [Ljung, 2011], the Captain Toolbox [Taylor et al., 2007], or R [Cryer and Chan,
2008]. Compared to these, the user interface of Menyanthes is more ‘friendly’ to non-
specialist hydrolgeologists, as its primary focus is on the groundwater system itself,
and not on the statistical aspects and properties of the models and data. Also,
Menyanthes uniquely contains the PIRFICT method, which enables the fast and easy
analysis of large numbers of time series simultaneously.

74  Example application

74.1 Time series decomposition

Standard time series models are linear, which may pose limitations to their usability.
Linearity, however, also has a number of advantages and many applications are based
on it. Whereas equation (2.35) only applies to the single input case, it can be readily
extended to multiple inputs using superposition, which is valid for linear systems. In
case of n inputs, their combined effect is obtained simply by summing the individual
effects:

W) -d =36, * p,)(0) (7.10)
i=1

As stated previously, the 8. ‘s in (7.10) are not necessarily independent. Parameters

can be shared across several inputs in order to reduce their number. Also, for different
types of inputs, different response functions can be used [see Von Asmuth et al.,
2008]. A consequence of (7.10) is that time series models can decompose time series
into partial series showing the effects of individual inputs (figure 7.7). This property
enables intervention analysis as described by [Hipel et al., 1975, Hipel and McLeod,
1994, Ch. 19]. Time series are decomposed in an ‘explained’ and an ‘unexplained’
part (even for the single input case), allowing for trend detection or the quantification
of anthropogenic influences when there is only one natural factor such as
precipitation surplus [e.g., Rolf, 1989, Gehrels, 1999, Yihdego and Webb, 2011]. In
the case of multiple inputs, the primary interest is usually the impact of one of these
inputs, such as pumping [e.g., Von Asmuth et al., 2008, Harp and Vesselinov, 2011]
or hydrologic measures. More in general, time series analysis can reveal much of the
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functioning of a system and of the interactions between its parts [e.g., Lee and Lee,
2000, Fabbri et al., 2011]. An archetypical application of time series models lies in the
area of ‘control engineering’, where the problem is how to manipulate the inputs into
a system to obtain the desired output. For hydrogeologic purposes, this means that
time series models can be used to optimize (or identify problems with) the water
management in an area [e.qg., Bidwell et al., 1991, Lee et al., 2005].

7.4.2 Impact of hydrologic measures in a Dutch dune area

As an example, an application of Menyanthes is presented in which the primary aim is
to assess the impact of hydrologic measures. Other application examples include the
characterization of groundwater dynamics [Von Asmuth and Knotters, 2004], the
assessment of the influence of pumping [Von Asmuth et al., 2008], the development
of maps of the risk of extreme levels [Manzione et al., 2010], the evaluation of effects
of climatic changes on stagnant surface water [Lehsten et al., 2011] and trend
detection and impact of land use changes [Yihdego and Webb, 2011]. The area under
consideration here is part of the Amsterdam Water Supply dunes, which is the area
that has supplied the city of Amsterdam with water since the nineteenth century. The
area contains facilities for storing and infiltrating surface water (figure 7.8), and
pumping wells for groundwater extraction. It is perhaps the most intensively
monitored hydrogeologic system world wide. The focus is on the southern part, which
is relatively undisturbed by the water supply activities. Two main canals were dug in
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figure 7.7: Groundwater level series decomposed into partial series showing the effects of individual
inputs. The figure shows results from one of the 438 locations in the example application.



Chapter 7
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figure 7.8: Location of the 438 selected piezometer screens (red dots) and meteorologic stations (green
dots). The Van Limburg Stirumkanaal (left) and Oosterkanaal (right) are indicated by a blue line,
whereas a red arrow shows the location of the transects of figure 7.10.

this part of the dune area, and drain the system. The canal in the West near the sea is
called the ‘Van Limburg Stirumkanaal’, whereas the canal in the East near the polder
area is appropriately called the ‘Oosterkanaal’ or eastern canal. In order to increase
the natural value and restore the ecological functioning of the area, to raise the
groundwater levels and increase the area of (threatened) wet dune slack ecosystems,
hydrologic measures were taken in the period from 1995 to 1996. As part of these
measures, the Van Limburg Stirumkanaal was backfilled with sand and the level of the
Oosterkanaal was raised by 50 centimeters. In addition, the few pumping wells that
were present in the area were closed (pumping station Noordwijk and artesian wells
bordering the Oosterkanaal). Finally, also the level in the storage canals was raised. In
springtime following the completion of these measures in 1997, considerable crop
damage was recorded in the flower bulb fields neighboring the dune area. The
damage was estimated to be around three million dollars, and as the cause allegedly
was oxygen shortage or ‘drowning’ of the bulbs, a link was made with the measures
taken by the water supply company, which was blamed for the damage [e.g.,
Olsthoorn, 2000]. While previous attempts to quantify the effects of these measures
using ARIMA models failed, a new attempt was made when Menyanthes became
available. A summary of the results of this investigation are presented in the following,
while restricting ourselves to the effects of the measures on the groundwater heads at
the monitored locations.
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In the area where the measures were taken, 680 locations (piezometer screens) are
monitored by the water supply company. Precipitation data was collected at five
different locations in a transect going from the sea to the polder area (see figure 7.8,
one of which is 'RM3" in figure 7.7). Reference evaporation data was obtained from
the meteorologic station ‘Leiduin’ of the water supply company (‘RV03’ in figure 7.7).
Apart from these and the dates of the hydrologic measures, no other data were used.
However, not every available time series proved to be usable for the analysis. From
these 680 screens, series were selected that had measurements both some time
before and after the measures, span a period that is not too short and contain a
sufficient number of measurements in total. Based on these criteria, 438 screens of
194 observation wells were selected for the analysis (figure 7.8). As the area is
relatively undisturbed by the current water supply activities, only the effects of natural
stresses (precipitation and evaporation) and those of the measures were taken into
account. Each measure thereby has a different effect in different parts of the system,
but all measures were taken in a relatively short period (considering the long memory
of the dune system). Their effect is therefore strongly correlated, and it is not possible
to separate and estimate the individual effects directly from the data. It is, however,
possible to estimate the combined effects of the measures, by modeling them as a
shifted, single Heaviside step function H (t) or step trend as input series. This function

may be defined by:
t
H(t)= [8(r~T)dz (7.11)

and it changes instantaneously from zero to one at time T', for which the 28" of
February 1995 is chosen here (the date that the Van Limburg Stirumkanaal was
backfilled). In words, a step function represents a sudden and lasting change in an
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figure 7.9: A step change in the input is transformed by the system into a sigmoid-shaped effect.
When the change is not linked to one of the other input series, it has its own independent response
function.



input series. The effect of a step function on the output, which is called the step
response function, is generally not instantaneous but it has a gradual, sigmoid-like
shape (figure 7.9). When the step change is not linked to one of the other input series
(as, e.g., a sudden change in evapotranspiration by forest clearing would), it should be
given its own independent impulse response function, for which a scaled gamma
distribution is used here. An example of results for a single series was already shown
in figure 7.7. It may be seen from the lower graph in this figure that the response of
the dune system is indeed slow, and the estimated effect of the measures has not
reached its stationary value after 8 years, at the end of the time series. Four output
screens of Menyanthes are shown in figure 7.10. They contain results from multiple
series in 2D cross-sections. In Menyanthes, the model performance is characterized in
several ways, one of which is the explained variance percentage (EVP). The EVP is
defined as:

2 2
EVP = =21 x100% (7.12)
)

where o} and o denote the variance of the groundwater level observations and

error or residual series respectively. The EVP for each series is plotted as a colored dot
at the location of its piezometer screen in figure 7.10a. The estimated effect of the
measures, based on a selection of screens that are placed higher than -15m-+ref, is
plotted in figure 7.10b. As the effects are still non-stationary and increasing, the
estimated final effect can only be found through extrapolation and is therefore
inexact. The estimated effect on 31-8-2003, at the end of the time series, is used here,
along with its confidence interval (+/- 20 ). Next to that, the values of the local
drainage base and the estimated evaporation factor are shown in figures 7.10c and d,
respectively. In all figures 7.10a) to 7.10d), spatial patterns emerge from the individual
results. The EVP’s, for instance, are clearly highest in the shallower screens (and range
even up to 98.4%), while the lowest values can be found on the Western side near
the sea. From this simple pattern, several conclusions may be drawn. First, there must
be a (semi)confining layer at a depth of about -10 to -20 meters + ref (which
corresponds with soil profile data), as otherwise, the lower screens would not behave
differently than the higher screens . For this reason, only the shallower screens are
depicted in figure 7.10b). Second, low EVP's indicate that there are factors missing in
the models, and the spatial pattern clearly points to the tide as being one of them. A
logical candidate for a second missing factor is the pumping that is going on in the
Northern part of the area. The influence of pumping, like that of the tide, spreads
much farther in a confined layer, explaining why these factors are not necessary to
model the dynamics in the shallower, phreatic screens adequately. From the pattern
that is visible in the effects in figure 7.10b), the individual effects of the backfilling of
the Van Limburg Stirumkanaal and the rise of the level of the Oosterkanaal are visible.
The effect of backfilling a canal is logically highest near the canal itself (and ranges up
to 1m74, on 31-8-2003). Similarly, the effects of a rise in canal stage is highest at the
canal. The effects gradually fade in the direction of the sea and the polder area, and
towards the middle of the dune area. The local drainage base shows a gradient going
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evaporation factor.

from the sea towards the (actively drained) polder area. Next to that, the phreatic
screens in the center of the dune system clearly show a higher drainage base. This
may be due to the fact that the precipitation surplus creates a ‘lens’ of fresh water
that floats on top of the salt water beneath. The estimated evaporation factor is
clearly lower beneath the confining layer, and even reaches negative values. As this is
physically implausible, it suggests that the evaporation factor estimates below the
confining layer are biased, probably due to the fact that the effects of pumping are
not taken into account and the model performance is low. As water usage often
shows a seasonal pattern, the effects of pumping are easily correlated with those of
evaporation. In all figures, also several ‘outliers’ are visible. These outliers in part
concern the same locations, and the results at these locations should be checked for
plausibility. The results of the phreatic screens, however, where the model
performance is high, are much more coherent. Additional detail on the modeling
procedure, the model output, its interpretation and plausibility is given in [Von

Asmuth et al., 2008].

Note that the filling in of a canal or drainage means can also be seen as a change in
system properties, making the system time-variant. In principle, time-variant systems



can not be modeled with one response function. In such cases, time series should be
split up into periods in which the system is invariant, and be modeled separately. From
a physical-hydrologic viewpoint, however, the issue of time-variance proves to be
ambiguous, as the filling in of a canal can also be seen as a change in its flux from
some value to zero, leaving the system unchanged. The approach presented above
follows the latter viewpoint, and the generally very good model performance and
plausible results add to the confidence in it.

7.5  Discussion and conclusions

Among the limited number of user-friendly tools for time series analysis that exist,
Menyanthes has a special position. Menyanthes first integrates a variety of functions,
starting from the (data)base of the DIKW pyramid, above which are visualization and
analysis tools, and ending with the time series modeling tools on top. The
combination of these functions strengthens each one of them. For example, the
visualization tools and close link with the data are useful during the time series
modeling process. Vice versa, time series models may also be used for improved
characterization and visualization of a system’s dynamics. They can even be of use for
data management, e.g., for error or outlier detection. Second, Menyanthes facilitates
the use of physical principles and physical interpretation. In this respect, the PIRFICT
method of time series analysis has a parallel with the data-based mechanistic
methodology [Young and Beven, 1994, Young, 1998]. A difference is that physical
laws or physically inspired behavior are implemented a priori in the model, in addition
to the use of physical insight to check or select results a posteriori. Furthermore,
temporal moment matching allows for a direct link between time series and spatially-
distributed, physically-based models. Scrutiny should, however, be practiced in the use
of physical insight. The choice of a predefined continuous response function within
the PIRFICT method is an assumption, whose adequacy may be checked in
Menyanthes by comparing results with those of ARMA models. Also, the assessment
of the physical plausibility of model results should be made carefully. Time series (and
also physically-based) model results may be influenced by non-causal cross-
correlations. On the other hand, unexpected model results are not necessarily
implausible, but may lead to new insights.

The possible applications of the PIRIFCT method are essentially the same (and as
broad) as those of ARMA time series models. An attractive feature of time series
models in general is that they are based on relatively few assumptions and the fits are
generally high; the model lets the data more or less speak for itself. As such, time
series models may be a valuable tool for preprocessing groundwater level series
before calibrating a distributed model. Using time series models, missing stresses or
series that are influenced by hydrologic interventions may be identified readily. Also,
series may be identified that are not suitable for use in model calibration, for instance
because they represent a hydrologic feature that is not incorporated in the model,
such as perched water tables. A specific feature of the PIRIFCT method is its increased
efficiency and ease of use. The finding that skew-Gaussian distribution functions
prove to fit the behavior of hydrogeologic (and other) systems well in general, allows
for all time series in an area to be modeled in batch. Batch modeling is not ‘only’ a
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practical advantage, but the simultaneous visualization and analysis of results from
multiple locations literally adds another dimension to the technique and its results (i.e.
the spatial dimension). Whereas the spatial structure that is implemented in physically-
based models is based on inferences and assumptions that cannot be truly verified (as
was argued in the introduction), there is no spatial dependency imposed on the time
series models. Spatial patterns that emerge in time series analysis results are therefore
obtained independently, and may yield valuable information on both the model
results themselves and the functioning and properties of systems. Furthermore, effects
of individual stresses that cannot be separated through time series analysis of
individual series alone, may become separable on the basis of the observed spatial
patterns. The spatial visualization and analysis tools of Menyanthes greatly enhance
the use and interpretation of these patterns. As Menyanthes facilitates a shift in focus
from data and statistical aspects of time series towards the physical properties of
systems and spatial variation thereof, the term ‘system identification’ as coined by
Zadeh [1956] and adopted by, e.g., Ljung [1999], becomes more appropriate than the
term "time series analysis’ that has its origin in sciences like econometrics. To date,
Menyanthes is used on three continents, in six countries, by 76 different organizations.
A few hundred ecologists and hydrogeologists have followed a course on
hydrogeologic time series analysis and use of Menyanthes [Von Asmuth et al., 2006],
and several tens of thousands of groundwater level series have been analyzed with it.
The program and its methods therefore prove to fulfill a need that is hard to fulfill
otherwise. As stated, the fact that standard time series models are linear is a strong
point, but also a limitation. Methods of non-linear time series analysis following the
threshold concept have been added to Menyanthes, and prove to be of value. The
authors welcome initiatives to test the methods on a wider range of systems, and
extend its functionality with other (non-linear) processes.






Summary and conclusions



81  Objectives, contributions and background

As perhaps is not uncommon in research, the initial objectives differ from the final
results presented in this thesis. Initially, the primary objective was to improve current
methods with which the relationship between groundwater dynamics (and impact of
hydrologic measures) and the species composition of groundwater dependent
ecosystems is modeled. In the alternative proposed originally by [Maas, 1995], a key
notion is that the spatial differences in groundwater level dynamics are mainly
determined by the spatially variable properties of groundwater systems, while the
variation through time or temporal dynamics are mainly driven by the spatially less
variable meteorologic dynamics. Consequently, it was hypothesized that spatial
differences in vegetation are also primarily determined by system properties, or in
other words, that they can be modeled more accurately by ‘filtering out’ the temporal,
meteorologic dynamics. To be more specific, Maas proposed the use of time series
models for inferring the so-called impulse response function from series of
groundwater level observations, which in turn can be characterized using statistical
moments (see section 2.3.4). Moments are scalars and constants in linear, time-
invariant systems. Together with the spatially less variable driving forces, they
completely characterize the (deterministic part of the) dynamics at a certain point in
space. As an additional advantage, moments can also be simulated spatially using a
standard distributed groundwater model. The scope of this research thus initially
encompassed three fields of modeling, i.e. time series, groundwater and eco-
hydrologic modeling. These fields of modeling together constitute the method of
impulse response moments, from which moments can be derived and between which
they can be mutually exchanged. Although it was envisaged that the link between
time series models and groundwater models would be a subject in its own right, at
the time the existing ARMA time series models were thought to be well developed
and to be directly usable without modification. ARMA models, however, turned out to
have several important limitations (see section 2.2.3). What followed was a process of
improving and adapting time series analysis methods to the needs set by the initial
objectives of this research (but not limited to that). As such, most of the actual
contributions of this thesis are in the field of time series analysis.

Appreciating the contents of this thesis requires some knowledge of its background,
i.e. the methods and theory on (hydrogeologic) time series analysis and system
identification. In chapter 2, a basic introduction is therefore given, and different views
on the subject are presented. First, some thought is given to the systems approach in
general, as to date, most hydrologist are less familiar with system identification
methods than with physically-based, spatially-distributed models. In short, the system
viewpoint can be characterized by the fact that in essence it is top-down. The system
viewpoint treats a groundwater system firstly as a ‘whole’ and not bottom-up, as an
aggregate of cells, layers and/or elements. Having said this, also from the systems
perspective, there are different ways in which time series or observed dynamics can be
perceived and modeled. Time series analysis is a method that originates from the
statistical sciences. In principle, it does not require any knowledge of the physical
functioning of the system under consideration and basically, it can be seen as a
variant of simple, linear regression. From a physical point of view, on the other hand,



the central concept is the so-called impulse response function. Impulse response
functions can be inferred from a data set through time series analysis, but also using
‘purely’ physically-based methods, either analytic or numeric. A link between time
series and distributed models can, as stated previously, be established using moments
of impulse response functions. Moments can be generated directly and spatially using
moment-generating differential equations, implemented in a standard groundwater
model. Convolution of an impulse response function with a time series that describes
the dynamics of the driving force yields a simulation of the groundwater level
dynamics at a certain location (see section 2.3.2). It can serve as an alternative method
for solving partial differential equations or groundwater models, next to current
methods as the analytic element, finite element or finite difference method.
Examination of the impulse responses of several elementary groundwater systems
yields insight in its shape, as a function of elementary physical variation.

In this thesis, a ‘mix’ between statistical and physically-based time series modeling
methods is developed and presented. In this approach, which was named the PIRFICT
method, the time series analysis problem is formulated in a continuous time domain,
having a convolution integral as its basis. It allows for the use of (continuous)
distribution functions that have a statistical origin, as well as physically-based analytic
response functions. Distribution functions of skew-Gaussian nature, however, like the
scaled gamma distribution, prove to fit the behavior of a wide range of systems quite
well. The PIRFICT method has several advantages over ARMA models and perhaps
most importantly, it allows for the application of time series analysis methods on a
large scale and in a standardized, less knowledge and labor intensive fashion. As for
application in practice, an important step is that a user friendly computer program
named Menyanthes was developed, which contains most of the methods presented.
Use of the methods and tools developed allows researchers and (eco)hydrologists to
infer the effects, impulse responses and moments of different driving forces effectively
from a given data set, and separate them. Simply put, this thesis provides the
methods and tools that are better put up to the original tasks set for it. In the next
sections, a summary and conclusions of the different steps taken and peer reviewed
papers published are given.

8.2  Time series modeling using continuous response functions
As discussed in section 2.2.3, the traditional methods for time series analysis (the
discrete-time AutoRegressive-Moving Average (ARMA) -type transfer function noise
model of [Box and Jenkins, 1970]) have several limitations. In chapter 3, an alternative
method is presented that is formulated in continuous time and has a convolution
integral at its basis. In this so-called PIRFICT model, in principle any analytic function
can be used as impulse response function, as long as it has a known integral or step
response function. A scaled gamma distribution, however, whose physical analog is a
cascade of linear reservoirs, proves to fit the groundwater level response to
precipitation and evaporation closely in general. This is shown in the example
application of chapter 3 (and in many later results). Furthermore, the results of the
PIRFICT model prove to be equivalent to those of ARMA models, which can be
concluded from the fact that the transfer functions of both models have the same



general shape, when the models are applied to the same data. ARMA transfer
functions, however, show an irregular pattern in the part that is influenced by MA
parameters, whereas the shape of the gamma distribution is smooth. On the other
hand, the performance of both models in terms of calibration and validation RMSE
(Root Mean Squared Error) also proved to be highly comparable. When comparing
results from 15 piezometer series, the only difference found was that the calibration
error of the PIRFICT model was slightly higher, whereas its validation error was
actually slightly lower. Although the differences are small, they can be explained by
the different model structure. As the shape of the MA part of an ARMA transfer
function is free, it is also free to fit coincidental cross-correlations between input and
output. Such ‘overfitting’ behavior will result in a lower calibration RMSE, a higher
validation RMSE, and in a partly coincidental or random pattern of the transfer
function, as was found in the example application. Because the continuous response
functions of the PIRFICT method are smooth and in general have fewer parameters, it
is less sensitive to overfitting. However, the choice of a specific response function in
the PIRFICT method also imposes restrictions on its shape. These restrictions can also
negatively influence the model results, when the function chosen does not adequately
match the ‘true’ response. All in all, the PIRFICT method has the following attractive
features:

e The parameters in the PIRFICT approach are in principle constants and
insensitive to the data frequency. This is important when aiming to assess
time invariant response characteristics of systems, as in the original objective
of this thesis. The example application of chapter 3 shows that, as expected,
the results of ARMA models do depend on model order and data frequency
(which, however, may also be ‘repaired’ given the continuous time viewpoint).

e Because the equations are continuous in time, the model can simulate and
operate on data at any frequency. The frequency of the input and output do
not have to be equal and can even be irregular. In comparison to the
combined Kalman filter and ARX model approach [Bierkens et al., 1999], the
PIRFICT method is more general. In principle any analytic response function
can be used, not only the exponential function of the ARX model. As
discussed in section 2.3.5, this is important in many situations, e.g., for taking
into account the relative position in a system, for modeling the effects of the
unsaturated zone and excitations other than precipitation and evaporation.

e Use of the PIRFICT approach strongly simplifies the model identification
procedure. The continuous time formulation firstly enhances physical insight
in the model structure and its results. The physical functioning of a specific
system, including its physically-based parameters, can in principle be directly
implemented in the model, in the shape of an analytic solution. The order of
ARMA models, on the other hand, contains at least six terms (when including
the frequency). Its definition is a complex and partly subjective matter. The
model order has to be identified more or less manually, or simply put, the six
terms or numbers have to be ‘'manually optimized’ by the modeler. In
contrast, response functions like the scaled gamma distribution have a wide
applicability; they are very flexible and comprise a range of ARMA model



orders. When using such functions, model identification generally reduces to
identifying which factors influence a certain system. After that, the same
model can be applied to all piezometers in an area, regardless of their
geohydrologic setting and location. This feature, together with the previous
point, makes the PIRFICT method especially suited for standardized and
automated analysis of large numbers of time series.

8.3 A continuous noise model for autocorrelated data of

irregular frequency
Groundwater head series, and most environmental time series for that matter, share
the common feature that the observations (and the errors of any model applied to
them) are autocorrelated. In short, autocorrelation means that the value of a variable
at a certain time step is correlated with the values at previous time steps. Whenever
model errors are autocorrelated, they cannot be modeled as simple, independent
Gaussian deviates, as such a practice would yield inefficient parameter estimates and
covariance estimates that in general are too low (see also section 2.2.2). In such cases,
the model error should be modeled in a way that accounts for the autocorrelation, as
is the case when a separate, so-called noise model is used.

In chapter 4, a continuous time noise model is presented that can handle irregularly
spaced data and whose basis is the so-called Ornstein-Uhlenbeck process. Because of
the continuous time formulation, it combines well with the PIRFICT model. It is,
however, not restricted to that, and can be applied for modeling irregularly spaced
residuals of various deterministic models. For gaining insight in its functioning, a
comparison is made between the AR(1) model, ‘conventional’ or embedded in a
Kalman filter, and the Ornstein-Uhlenbeck based (OUB) noise model. In this respect,
the Kalman filter is treated in the pure prediction scenario or its ‘degenerate’ form
[Ahsan and O'Connor, 1994], meaning that the variance of measurement noise is
regarded to be zero or negligible compared to the other sources of noise. It is shown
that the equations for handling the predictions in the time update of the ‘degenerate’
Kalman filter, those of the forecasting mode in the AR(1) model, and those yielding
the innovations in the continuous noise model are mathematically equivalent. The
OUB model, however, is exact and computationally more efficient, as it is not
evaluated recursively. Also, because of its simplicity, the OUB model can be easily
implemented. A limitation of the OUB model, however, is that it is limited to
processes showing exponential decay.

As for the optimization process, a simplification that is made is that a weighted least
squares criterion was derived from the likelihood function used otherwise. This
criterion was named the Sum of Weighted Squared Innovations (SWSI) criterion.
Parameter estimates based on the SWSI criterion converge to maximum likelihood
estimates for larger sample sizes. An advantage of the SWSI criterion is that it can be
optimized using standard nonlinear least squares regression methods, e.g., the
method of Levenberg-Marquardt, which are very computationally efficient. Next to

the OUB model, also the SWSI criterion can be used in combination with other models,
e.g., for the innovations of a Kalman filter when exponential decay is assumed.



Last but not least, this chapter introduces the innovation variance function as a tool
for diagnostically checking the validity of the response function of a noise model. This
check can be performed by comparing the estimated innovation variances for
different time steps with the theoretical innovation variance function, accompanied by
its confidence interval. The innovation variance function provides additional
information on the validity of a model, especially in light of its use on data of irregular
frequency.

84  Modeling groundwater head series subjected to multiple

stresses
In ARMA transfer function noise models, the standard procedure for modeling time
series that are subjected to multiple stresses is simply to connect them in parallel in
the model. In other words, each individual stress is assigned its own, independent
transfer function, and their effect is summed to give the total (deterministic)
prediction. Although the same procedure could be followed in the PIRFICT approach,
the subject deserves more attention than that, because:

e The scaled gamma distribution (see section 2.4.1) generally fits the response
to precipitation and evaporation well, but not necessarily that to other types
of stresses. In chapter 5, impulse response functions for other stresses are
derived from analytic solutions to the appropriate elementary geohydrologic
problems.

e The response to different types of stresses can be a function of the same,
physical parameters. In such cases, the number of parameters and degrees of
freedom in the model can be reduced by taking this into account. An
example is evaporation, whose response can be modeled as the reverse of
that of precipitation, apart from a reduction factor.

e In time series literature, the focus lies on analyzing individual series, using
statistically based methods and criteria. In case of groundwater heads,
however, a physical-hydrologic perspective, in combination with the
simultaneous analysis of multiple series, can be very helpful. It can even be a
necessity, when results from single series are ambiguous.

The PIRFICT approach all in all calls for a different perspective on modeling procedures
and interpretation of results. As it is more complex than the single input case, in the
multiple input case also the interpretation of results is more complex. Physical
knowledge can, as stated, be very valuable in checking the consistency and plausibility
of results, and forms a welcome addition to statistical diagnostic checks. First and
logically, the parameter values should fall within a range that is physically plausible.
Next to that, whenever multiple locations are monitored and analyzed, spatial
patterns supply important and independent feedback on the results. These patterns
are independent, as there is no spatial dependency imposed a priori on the individual
models. Via the model residuals and their patterns, missing stresses, measures or
other sources of error may be readily identified. High levels of error can cause
parameter estimates to be biased, as other stresses may partly compensate missing



stresses when their influence is correlated. A stress whose estimated effect is easily
biased is evaporation, as it displays a seasonal pattern that easily correlates with other
(seasonal) factors. An example is given in chapter 5, where the spatial distribution in
the evaporation factor clearly showed its bias. In this case, the main source of error
was the fact that the behavior of the individual pumping wells was not accounted for,
whereas the total pumping rate indeed displayed a seasonal pattern. Such a problem
may be solved by incorporating data on missing factors in the model, in this case the
pumping of the individual wells. If such data are not available (as in this case), the bias
can be reduced by constraining the optimization problem to a realistic range, based
on the values and patterns in the surrounding observation wells.

Next to these methodological issues, chapter 5 serves as an example of the fact that a
time series model can effectively decompose head series into partial series, which each
show the effect of an individual stress. This is perhaps one of the foremost ‘practical
values’ of a time series model. Under certain conditions, by doing so, the effect of
individual hydrologic measures or factors such as groundwater pumping can be
identified and quantified. Furthermore, in the model also the effect of changes in the
level of the stresses is contained, by means of the individual response functions. This
allows its results to be used for scenario calculations, optimization of groundwater
heads and/or their management.

8.5  Characterizing groundwater dynamics based on response
properties
As discussed in section 1.1, the initial aim of this thesis was to improve current
methods for modeling the relationship between the groundwater level and
groundwater dependent vegetation. Maas [1995] proposed the use of moments of
the impulse response function as system characteristics, in stead of statistics
describing the groundwater level dynamics themselves. Descriptive statistics are
influenced by climatic variation and only capture certain aspects, whereas moments
are constants and completely characterize the dynamics. However, it is not the
moments but the groundwater level itself that determines growth conditions in wet
ecosystems (together with other abiotic and biotic factors, and more or less direct).
Moments may not ne directly or uniquely usable for eco-hydrologic modeling,
because:

e Moments are constants, whereas ecosystems are not. While it may be an
attractive feature in relatively stable ecosystems, this limits the direct use of
moments in modeling the dynamics of ecosystems, e.g., in response to
climatic dynamics.

e In densely populated areas like the Netherlands, (ground)water levels are
often managed and/or influenced by anthropogenic activities. In such cases,
not one but several sets of moments are of importance, and the activities
themselves are spatially variable also.

e Wet ecosystems by definition have high water tables, resulting in
predominant non-linear behavior. Also in case of non-linearity, not one but
several sets of moments are of importance.



In order to describe the problem more accurately, different methods for characterizing
the groundwater level dynamics are discussed in chapter 6. Also, the relationship
between groundwater level characteristics and impulse response moments is
investigated, based on the scaled gamma distribution and PIRFICT approach to time
series analysis. In order to provide alternatives, a frequency domain analysis of the
dynamics and response of systems was made. From this, a method was developed
that combines the temporal dynamics of the input (characterized by its mean level and
annual amplitude) with the spatially variable impulse response moments. This method
results in a new set of parameters that characterizes the output or groundwater
dynamics (GD), using simple analytic expressions. These so-called GD characteristics
are the mean depth, convexity, annual amplitude and phase shift of the groundwater
level, and it is shown that they characterize the groundwater dynamics in detail (for as
far as the time series model does). The link between input, moments and GD
characteristics can also be used vice versa, for instance to make estimates of the
recharge to an aquifer, analogous to what was proposed earlier in [Chen et al., 2002].

In the example application in chapter 6, the GD characteristics are compared to other
methods of characterizing the groundwater regime, using two series of groundwater
level observations. It is shown that the so-called and often used MxGL statistics (i.e.
the Mean Highest, Lowest and Spring Groundwater Level) have some important
drawbacks and do not differentiate well between different groundwater regimes. In
MXxGL statistics, different aspects of the fluctuations are mixed up, as the three
highest (HG3) and lowest levels (LG3) in a year are the result of both annual and
higher frequencies. By averaging the xG3 over a longer period (minimally 8 years),
low-frequency dynamics and inter-annual extremes are effectively filtered out, and are
consequently disregarded. By averaging the three extreme values in a year, and by
imposing an observation period of 14 days, the MxGL statistics also do not reflect the
annual extremes directly. Both the annual and inter annual extreme levels, however,
are of great interest because of their disproportionate economic damage or ecologic
influence. Consequently, it is concluded that the capability of MxGL statistics in
characterizing the groundwater dynamics at different locations is less than that of GD
characteristics. The methods by which GD-characteristics are obtained can be readily
extended to include excitations such as groundwater pumping or surface water levels.
For linear systems, the stationary level and annual amplitude of the effect of all
stresses can simply be summed. Only when stresses have a very different dynamic
behavior, such an approach does not adequately characterize the dynamics and
additional characteristics might be needed. A special case of another factor that
influences the groundwater level is the model error or noise that enters the system.
However, as the expected value of white noise is zero and its frequency spectrum is
flat, both its stationary influence and its amplitude at annual or any other specific
frequency can be neglected.

All'in all, GD characteristics provide a compact way of describing the groundwater
dynamics at a certain location. They can be used not only for eco-hydrologic modeling,
but whenever the amount of information contained in a full spatiotemporal
description of the groundwater level dynamics is simply too large, e.g., visual



interpretation, mapping or empirical modeling purposes. As an additional advantage,
GD characteristics can be readily obtained for any input (e.g., climatic) scenario using
the analytic expressions given. This adds flexibility to the method, which is necessary
for dealing with situations where groundwater level fluctuations are non-stationary.
Non-stationarity is caused by climatic changes, but also factors like groundwater
pumping. In such cases, the characteristics of an historical 8- or 30-year record of
measurements do not adequately reflect the current or future state.

8.6  Menyanthes: software for groundwater head data

In two ways, this chapter provides a synthesis of the contents and results of this thesis.
First, it contains a short overview of the methods developed and results obtained, in
relation to alternative methods. While many papers approach time series analysis
methods from a statistical viewpoint, this chapter starts from a physical viewpoint to
better serve those that are not initiated in time series analysis. It furthermore focuses
specifically on the interface between data and physically-based methods, as that is the
main characteristic of the PIRFICT method and their integration reflects the original
objectives of this thesis. Second, the program Menyanthes is presented, which was
developed within the scope of this research, and in which most of the methods
developed and functionality needed for performing the research were incorporated. In
that sense, Menyanthes also provides a synthesis of the methods and results, as they
are joined in the program.

Among the limited number of user-friendly tools for time series analysis that exist,
Menyanthes takes a special position. Menyanthes first integrates a variety of functions,
starting from the (data)base of the DIKW pyramid of [Ackoff, 1989], above which are
visualization and analysis tools, and ending with the time series modeling tools on top.
The combination of these functions strengthens each one of them. For example, the
visualization tools and close link with the data may be valuable during the time series
modeling process. Vice versa, time series models may also be used for improved
visualization and characterization of the dynamics of hydrologic systems. They can
even be of use for data management, e.g., for error or outlier detection. Second,
Menyanthes has a strong physical-hydrologic focus, and facilitates the use of physical
principles and physical interpretation. In this respect, the PIRFICT method of time
series analysis has a parallel with the data-based mechanistic modeling (DBM)
methodology [Young and Beven, 1994, Young, 1998]. A difference is that physical
principles or physically inspired behavior can be implemented a priori in a PIRFICT
model, in addition to the use of physical insight to check or select results a posteriori
as in the DBM approach. Scrutiny should, however, be practiced in the use of physical
insight. The choice of a predefined continuous response function within the PIRFICT
method is in fact an assumption, whose adequacy may be checked in Menyanthes by
comparing results with those of ARMA models. Also, the assessment of the physical
plausibility of model results should be made carefully. Time series (and also physically-
based) model results may be influenced by non-causal cross-correlations. On the other
hand, unexpected model results are not necessarily implausible, but may lead to new
insights.



The possible applications of the PIRIFCT method are essentially the same (and as
broad) as those of ARMA time series models. An attractive feature of time series
models is that they are based on relatively few assumptions and the fits are generally
high. As such, time series models may be a valuable tool for preprocessing
groundwater level series before calibrating distributed models. Using time series
models, missing stresses or series that are influenced by hydrologic interventions may
be readily identified. Also, series may be identified that are not suitable for use in
model calibration, for instance because they represent a hydrologic feature that is not
incorporated in the model, such as perched water tables. One step further, temporal
moment matching allows for a direct link between time series and spatially-distributed,
physically-based models [Von Asmuth and Maas, 2001; Bakker et al., 2007; Bakker et
al., 2008]. A specific feature of the PIRIFCT method is its increased efficiency and ease
of use. The finding that skew-Gaussian distribution functions prove to fit the behavior
of hydrogeologic (and other) systems well in general, allows for all time series in an
area to be modeled in batch. Batch modeling is not ‘only’ a practical advantage, but
the simultaneous visualization and analysis of results from multiple locations literally
adds another dimension to the technique and its results (i.e. the spatial dimension).
Whereas the spatial structure that is implemented in physically-based models is based
on inferences and assumptions that cannot be truly verified (as was argued in the
introduction), there is no spatial dependency imposed on the time series models.
Spatial patterns that emerge in time series analysis results are therefore independent
and free of assumptions (except for the fact that the representativeness of input series
may vary in space), and may yield valuable information on both the model results
themselves and the functioning and properties of systems. Furthermore, effects of
individual stresses that cannot be separated through time series analysis of individual
series alone, may become separable on the basis of the observed spatial patterns. The
spatial visualization and analysis tools of Menyanthes are important in this respect,
and greatly enhance the use and interpretation of these patterns. As such, the
methods and functionalities of Menyanthes facilitate a shift in focus from data and
statistical aspects of time series towards the physical properties of systems and spatial
variation thereof. The term ‘system identification’, as coined by [Zadeh, 1956] and
adopted by [e.g., Ljung, 1999], thus becomes more appropriate than the term ‘time
series analysis’, which has its origin in sciences like econometrics.

To date, Menyanthes is used on three continents, in six countries, by 76 different
organizations. A few hundred ecologists and hydrogeologists have followed a course
on hydrogeologic time series analysis and use of Menyanthes [Von Asmuth et al.,
2006], and several tens of thousands of groundwater level series have been analyzed
with it. The program and its methods therefore prove to fulfill a need that is hard to
fulfill otherwise. As stated, the fact that standard time series models are linear is a
strong point, but also a limitation. Methods of non-linear time series analysis
following the threshold concept [Knotters and De Gooijer, 1999] have been added to
Menyanthes, and prove to be of value. Initiatives to test the methods on a wider
range of systems, and extend its functionality with other (non-linear) processes are
welcomed.



Samenvatting en conclusies
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91  Doelstelling, bijdrage en achtergrond

De oorspronkelijke doelstelling van dit promotieonderzoek verschilt, zoals wellicht niet
ongebruikelijk bij onderzoek, van de uiteindelijke resultaten die hier gepresenteerd
worden. Doelstelling van het onderzoek was oorspronkelijk het verbeteren van de
gangbare methoden waarmee de relatie tussen grondwaterdynamiek (en ingrepen
daarin) en grondwaterafhankelijke ecosystemen gemodelleerd wordt. In het
oorspronkelijk door [Maas, 1995] voorgestelde alternatief, staat de notie centraal dat
ruimtelijke verschillen in grondwaterdynamiek hoofdzakelijk worden bepaald door de
ruimtelijk variérende eigenschappen van het grondwatersysteem. De variatie in de tijd
ofwel temporele dynamiek daarentegen, wordt hoofdzakelijk gedreven door de
ruimtelijk minder variabele meteorologische dynamiek. Hieruit kan vervolgens de
hypothese afgeleid worden dat ook de ruimtelijke verschillen in vegetatie
hoofdzakelijk afhangen van systeemeigenschappen, of dat deze, in andere woorden,
wellicht nauwkeuriger gemodelleerd kunnen worden door de meteorologische
dynamiek ‘weg te filteren’. Om preciezer te zijn, Maas stelde voor om met behulp van
tijdreeksmodellen de zogenaamde impulsresponsfunctie af te leiden uit tijdreeksen
van de grondwaterstand, en die op zijn beurt te karakteriseren met statistische
momenten (zie paragraaf 2.3.4). Momenten zijn scalair en constant in lineaire,
stabiele systemen, en ze bepalen samen met de ruimtelijk minder variabele, drijvende
krachten volledig (het deterministisch deel van) de dynamiek op een gegeven plaats in
de ruimte. Een bijkomend voordeel is dat momenten ook ruimtelijk gemodelleerd
kunnen worden met behulp van een standaard grondwater model. Het onderwerp
van dit proefschrift omvatte dus oorspronkelijk drie velden van (eco)hydrologische
modellering, te weten tijdreeks-, grondwater- en ecohydrologische modellen. Uit elk
type model kunnen momenten afgeleid worden. Tezamen vormen ze de
impulsrespons-momenten-methode, waarbinnen momenten onderling uitgewisseld
kunnen worden. Alhoewel voorzien was dat de link tussen tijdreeks- en
grondwatermodellen niet eenvoudig te leggen is en een aparte studie zou kunnen
vergen, was destijds de inschatting dat de bestaande ARMA-tijdreeksmodellen
uitontwikkeld en zonder meer bruikbaar zouden zijn. Bij het begin van het
promotieonderzoek bleek echter al gauw dat ARMA-modellen verschillende
belangrijke beperkingen kennen (zie paragraaf 2.2.3). Wat hierop volgde was een
proces van het aanbrengen van wijzigingen en verbeteringen in de tijdreeksanalyse
methodiek, om ze beter bruikbaar te maken voor de oorspronkelijke doelstellingen
van dit onderzoek (maar niet beperkt daartoe). Het grootste deel van de eigenlijke,
uiteindelijke bijdragen van dit proefschrift ligt dan ook op het vlak van de
tijdreeksanalyse.

Het kunnen plaatsen van de inhoud van dit proefschrift vergt enige kennis van haar
achtergronden, te weten de theorie en methodiek van tijdreeksanalyse (van
grondwaterstanden) en systeemidentificatie. Hoofdstuk 2 bevat daarom een basale
introductie op het onderwerp, vanuit verschillende gezichtspunten. Allereerst wordt
enige aandacht besteed aan de systeembenadering in het algemeen, omdat de
meeste (eco)hydrologen op het moment minder vertrouwd zijn met systeem
identificatie en haar methoden dan met op de fysica gebaseerde, ruimtelijk
gedistribueerde modellen. De systeembenadering kan kortweg gekarakteriseerd



worden door te stellen dat haar gezichtspunt in essentie ‘top-down’ is. Een
grondwatersysteem wordt daarbij in eerste instantie als ‘geheel’ benaderd, en niet
‘bottom-up’ als een verzameling van cellen, lagen en/of andere elementen. Hier zij
echter opgemerkt dat er ook vanuit systeemperspectief verschillende manieren zijn
waarop tijdreeksen en/of de waargenomen dynamiek beschouwd en gemodelleerd
kunnen worden. Tijdreeksanalyse is een methode die haar oorsprong vindt in de
statistiek. Tijdreeksanalyse kan opgevat worden als variant van eenvoudige, lineaire
regressie, en voor het toepassen ervan is in beginsel geen kennis nodig over het
fysieke functioneren van het beschouwde systeem. Vanuit fysisch oogpunt, aan de
andere kant, neemt de zogenaamde impulsresponsfunctie, of kortweg impulsrespons,
een centrale plaats in. Ze kan uit metingen afgeleid worden via tijdreeksanalyse, maar
ook via ‘puur’ fysisch gebaseerde, analytische dan wel numerieke, methoden. De link
tussen tijdreeks- en grondwatermodellen kan, zoals gezegd, gelegd worden via de
momenten van de impulsrespons, die ruimtelijk gesimuleerd kunnen worden via
zogenaamde moment-genererende differentiaalvergelijkingen, geimplementeerd in
een willekeurig grondwatermodel. Convolutie van de impulsrespons met een tijdreeks
die de dynamiek van de drijvende kracht beschrijft, geeft een simulatie van de
grondwaterspiegeldynamiek op een bepaalde plek. Het kan dienen als alternatieve
methode voor het oplossen van een grondwatermodel of partiéle differentiaal
vergelijking, naast gangbare methoden als de analytische elementen, eindige
elementen of eindige differentie methode (zie paragraaf 2.3.2). Beschouwing van de
impulsrespons van een aantal elementaire grondwatersystemen geeft inzicht in de
vorm ervan, als functie van elementaire fysische variatie.

Als onderdeel van dit proefschrift is een nieuwe methode van tijdreeksanalyse
ontwikkeld, die als zodanig een 'mix’ vormt tussen statistische en fysische gebaseerde
methoden van tijdreeksmodellering. In deze benadering, die PIRFICT-methode
gedoopt is, is het tijdreeksanalyseprobleem geformuleerd in continue tijd, en het heeft
een convolutieintegraal als basis. De formulering staat het gebruik van (continue)
verdelingsfuncties uit de statistiek toe als responsfunctie, maar ook fysisch-gebaseerde,
analytische functies. Verdelingsfuncties die de vorm aannemen van een scheve
normale verdeling, zoals de geschaalde gamma verdeling, blijken echter in het
algemeen goed in staat het gedrag van een reeks van systemen te beschrijven. De
PIRFICT-methode heeft een aantal voordelen ten opzichte van de traditionele ARMA-
modellen en -methode. Het heeft als wellicht belangrijkste eigenschap dat het op een
gestandaardiseerde, en minder kennis- en arbeidsintensieve manier, toegepast kan
worden op een groot aantal meetreeksen tegelijk. Een belangrijke stap in de
toepassing van de ontwikkelde methoden in de praktijk is de ontwikkeling van een
gebruiksvriendelijk computerprogramma geweest, genaamd Menyanthes. Het gebruik
van dit programma en de daarin opgenomen methoden stelt onderzoekers en
(eco)hydrologen in de praktijk in staat om de effecten, impulsresponsfuncties en
momenten van verschillende invioedsfactoren af te leiden uit de data, en te scheiden.
Kort gezegd levert dit promotieonderzoek de methoden en hulpmiddelen die nodig
zijn voor het uitvoeren van de taken die het oorspronkelijk ten doel gesteld waren. De
nu volgende paragrafen bevatten de samenvatting en conclusies van de verschillende
stappen uit het onderzoek, en de wetenschappelijke artikelen die het heeft
opgeleverd.
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9.2 Tijdreeksmodellering met behulp van continue

responsfuncties
De gangbare methoden voor tijdreeksanalyse (de discrete ARMA (AutoRegressive-
Moving Average) transferruis-modellen van [Box and Jenkins, 1970] hebben, zoals
besproken in paragraaf 2.2.3, verschillende beperkingen. In hoofdstuk 3 wordt een
alternatieve methode gepresenteerd die geformuleerd is in een continu tijdsdomein.
De basis van deze zogenaamde PIRFICT-methode is een convolutieintegraal. Binnen de
PIRFICT-methodiek kan in principe elke analytische functie als impulsrespons gebruikt
worden, zolang deze een bekende integraal of staprespons heeft. Een geschaalde
gammaverdeling, met als fysisch analoog een cascade van lineaire reservoirs, blijkt
echter in staat om de respons van de grondwaterstand op neerslag en verdamping in
het algemeen nauwgezet te kunnen beschrijven. Dit blijkt uit de beschreven
toepassing in hoofdstuk 3 (en uit de vele latere resultaten). De resultaten van het
PIRFICT-model blijken equivalent te zijn met die van ARMA-modellen, wat
geconcludeerd kan worden uit het feit dat de transferfuncties van beide modellen
globaal dezelfde vorm aannemen, wanneer de modellen toegepast worden op
dezelfde data. De transferfuncties van ARMA-modellen vertonen echter een
onregelmatig patroon in het deel dat beinvloedt wordt door MA-parameters, terwijl
de vorm van de gammaverdeling glad is. Ook de prestaties van beide modellen, in
termen van de kalibratie- en validatiefout ofwel Root Mean Squared Error (RMSE),
blijken in hoge mate vergelijkbaar. Bij het vergelijken van de resultaten van 15
stijghoogtereeksen kwam als enige verschil naar voren dat de kalibratiefout van het
PIRFICT-model iets groter en de validatiefout juist iets kleiner was. De verschillen,
hoewel klein, kunnen verklaard worden door het verschil in modelstructuur. Omdat
de vorm van de ARMA-transferfunctie vrij is in het MA-deel, kan het deels ook vrijelijk
afhangen van toevallige kruiscorrelaties tussen in- en uitvoer. Dergelijk
‘overfittingsgedrag’ zal resulteren in een kleinere kalibratie-RMSE, een grotere
validatie-RMSE, en in een deels toevallig of random patroon van de transferfunctie,
zoals gevonden is in de voorbeeldtoepassing. Omdat de continue responsfuncties van
het PIRFICT-model glad zijn, en in het algemeen minder parameters hebben, is het
model ook minder gevoelig voor overfitting. Hier zij echter gesteld dat de keuze van
een specifieke responsfunctie ook beperkingen stelt aan de vorm ervan. Deze
beperkingen kunnen de modelresultaten ook negatief beinvloeden, wanneer de
gekozen functie niet goed overeenkomt met de ‘werkelijke’ respons. De PIRFICT-
methode heeft al met al de volgende, attractieve eigenschappen:

e De modelparameters zijn in de PIRFICT-benadering in principe constanten en
onafhankelijk van de datafrequentie. Dit is belangrijk wanneer beoogd wordt
de niet-tijdsafhankelijke responskarakteristiecken van systemen vast te stellen,
zoals in de originele doelstellingen van dit proefschrift. De resultaten van
ARMA-modellen blijken in hoofdstuk 3, zoals verwacht, wel afhankelijk van
de modelorde en datafrequentie (wat vanuit de continue tijdsgedachte echter
wel te repareren’ zou zijn).

e Het PIRFICT-model kan, vanwege het feit dat de modelvergelijkingen continu
zijn in de tijd, voorspellingen doen en overweg met data met een willekeurige
frequentie. De frequentie van modelinput en output zijn daarbij niet



gekoppeld, en kunnen bovendien onregelmatig zijn. De PIRFICT-methode is in
vergelijking met de gecombineerde Kalman-filter- en ARX-modelbenadering
[Bierkens et al., 1999] bovendien meer generiek. In principe kan elke
analytische responsfunctie gebruikt worden binnen het model, niet alleen de
exponentiéle functie van het ARX-model. Dit is, zoals aan de orde is gekomen
in paragraaf 2.3.5, in veel situaties van belang, bijvoorbeeld wanneer
rekening gehouden moet worden met de relatieve positie binnen een
systeem, met de effecten van de onverzadigde zone, en met andere factoren
dan neerslag en verdamping.

e Het gebruik van de PIRFICT-benadering vereenvoudigt in hoge mate het
probleem van de modelidentificatie. De continue formulering bevordert
allereerst het fysisch-hydrologische inzicht in de modelstructuur en —
resultaten. Het fysische functioneren van een specifiek systeem, inclusief de
fysisch gebaseerde parameters, kan in principe direct geimplementeerd
worden in het model, in de vorm van een analytische oplossing ervan. De
modelorde van ARMA-modellen omvat, ter vergelijking, tenminste zes
getallen (wanneer ook de frequentie in beschouwing wordt genomen). Het
definiéren ervan is een complexe en ten dele subjectieve aangelegenheid. De
modelorde dient min of meer handmatig geidentificeerd te worden door de
modelleur, of kort gezegd, de zes getallen dienen ‘handmatig
geoptimaliseerd’ te worden. Responsfuncties als de geschaalde
gammaverdeling zijn echter breed toepasbaar, zeer flexibel van aard zijn, en
ze omvatten een reeks van ARMA-modelordes. Bij gebruik daarvan komt
modelidentificatie doorgaans neer op het identificeren van de factoren die
een systeem beinvloeden. Hierna kan hetzelfde model toegepast worden op
alle peilbuizen uit een gebied, ongeacht de geohydrologische situatie en
locatie. Deze eigenschap maakt, samen met het punt hierboven, dat de
PIRFICT-methode in bijzonder geschikt is voor gestandaardiseerde en
geautomatiseerde analyse van grote aantallen tijdreeksen.

9.3 Een continu ruismodel voor reeksen met autocorrelatie en

een onregelmatige frequentie
Reeksen van de grondwaterstand (en daarmee ook de fouten van modellen die erop
toegepast worden) delen de eigenschap dat de verschillende waarnemingen in de
reeks autocorrelatie vertonen. Autocorrelatie betekent kortweg dat de waarde van
een waarneming op een bepaald tijdstip samenhang vertoont met de waarde op
vorige tijdstippen. Modelfouten die behept zijn met autocorrelatie kunnen niet
eenvoudigweg opgevat worden als onafhankelijke, normaal verdeelde afwijkingen.
Een dergelijke praktijk zou inefficiénte parameter schattingen opleveren, en
schattingen van de (co)variantie die in het algemeen te laag uitvallen (zie ook
paragraaf 2.2.2). In dit soort gevallen dienen de modelfouten gemodelleerd te
worden op een manier die recht doet aan de autocorrelatie, bijvoorbeeld door het
gebruik van een apart, zogenaamd ruismodel.

In hoofdstuk 4 wordt een ruismodel gepresenteerd dat geformuleerd is in continue
tijd, en dat overweg kan met data met een onregelmatige frequentie. De basis ervan
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is het zogenaamde Ornstein-Uhlenbeckproces, en het wordt kortweg aangeduid met
OUB (Ornstein-Uhlenbeck based)-model. Het OUB-model past vanwege de
formulering goed bij het eerder beschreven PIRFICT-model, maar de bruikbaarheid
ervan is daartoe niet beperkt. Het kan gebruikt worden voor modelfouten met een
onregelmatige frequentie van allerlei deterministische modellen. Om inzicht te
verkrijgen in haar functioneren wordt het OUB-model vergeleken met het AR(1)-
model, in conventionele zin en ingebed in een Kalman-filter. Het Kalman-filter wordt
daarbij behandeld in haar ‘gedegenereerde’ vorm [Ahsan and O'Connor, 1994], ofwel
in een scenario waarbij het slechts voor het voorspellen van meetwaarden gebruikt
wordt. Dit betekent in concreto dat de variantie van de fout in de metingen zelf
geacht wordt nul te zijn, dan wel verwaarloosbaar klein in vergelijking met andere
foutenbronnen. Hoofdstuk 4 laat zien dat a} de vergelijkingen voor het doen van de
voorspellingen in de zogenaamde tijdsupdate van het ‘gedegenereerde’ Kalman-filter,
b) die van de voorspellingsmodus van het AR(1)-model, en ¢) de vergelijkingen
waarmee de innovaties in het OUB-model berekend worden, wiskundig equivalent
zijn. De voorspellingen van het OUB-model zijn echter exact. Ze zijn bovendien
rekenkundig efficiénter, omdat ze direct en niet recursief geévalueerd worden.
Vanwege haar eenvoud is het OUB-model bovendien eenvoudig implementeerbaar.
Het model is echter beperkt tot processen die een min of meer exponentiéle demping
vertonen.

Voor wat betreft het optimalisatieproces, ook dit is vereenvoudigd door een gewogen
kleinste kwadraten criterium af te leiden uit de zogenaamde Likelihood-functie die
normaliter gebruikt wordt. Dit criterium is het ‘Sum of Weighted Squared Innovations
(SWSI) criterion” gedoopt. Parameterschattingen op basis van het SWSI-criterium
convergeren naar zogenaamde ‘Maximum Likelihood’-schattingen voor grotere
aantallen metingen. Een voordeel van het SWSI-criterium is dat het geoptimaliseerd
kan worden met standaard niet-lineaire regressiemethoden, zoals de methode van
Levenberg-Marquardt, die rekenkundig erg efficiént zijn. Naast het OUB-model kan
ook het SWSI-criterium gebruikt worden in combinatie met andere modellen,
bijvoorbeeld voor de innovaties van een Kalman-filter, wanneer daarbij exponentieel
verval wordt aangenomen.

In dit hoofdstuk wordt tenslotte ook de zogenaamde innovatievariantie-functie
geintroduceerd, als hulpmiddel voor het diagnostisch toetsen van de validiteit van de
responsfunctie van een ruismodel. Deze toets kan uitgevoerd worden door de
geschatte innovatievarianties voor verschillende tijdstappen te vergelijken met de
theoretische innovatievariantie-functie en haar betrouwbaarheidsinterval. De
innovatievariantie-functie levert additionele informatie op over de validiteit van een
model, in het bijzonder met oog op haar toepassing op tijdreeksen met een
onregelmatige frequentie.

94  Het modelleren van stijghoogtereeksen die beinvloedt

worden door meerdere factoren
Bij ARMA-transferruismodellen is de standaard procedure voor het modelleren van
tijdreeksen die worden beinvloedt door meerdere factoren, eenvoudigweg het parallel



verbinden ervan in het model. Anders gezegd, elke individuele factor krijgt hierbij zijn
eigen, onafhankelijke transferfunctie toegewezen. De effecten van alle factoren
worden gesommeerd, wat aldus de totale (deterministische) voorspelling oplevert.
Alhoewel in de PIRFICT-benadering dezelfde procedure gevolgd zou kunnen worden,
verdient het onderwerp meer aandacht dan dat, omdat:

e De geschaalde gamma-verdeling (zie paragraaf 2.4.1) is in het algemeen
goed bruikbaar als respons op neerslag en verdamping, maar niet
noodzakelijkerwijs voor andere typen factoren. In hoofdstuk 5 worden
impulsresponsfuncties voor andere factoren afgeleid uit de analytische
oplossing van het toepasselijke, elementair geohydrologische probleem.

e De respons op verschillende typen factoren kan een functie zijn van dezelfde
fysische parameters. In zulke gevallen kan het aantal parameters en
vrijheidsgraden in het model gereduceerd worden door hiermee rekening te
houden. Een eenvoudig voorbeeld is de respons op verdamping, die
gemodelleerd kan worden als omgekeerde van de respons op neerslag,
afgezien van een reductiefactor.

e In de tijdreeksanalyse literatuur ligt de focus op het analyseren van individuele
reeksen, op grond van statistische methoden en criteria. In geval van
grondwaterstanden kan echter een fysisch-hydrologisch perspectief, in
combinatie met de analyse van meerdere reeksen tegelijk, erg behulpzaam
zijn. Het is zelfs noodzakelijk, wanneer de resultaten van individuele reeksen
geen klaar antwoord bieden.

De PIRFICT-benadering werpt al met al een ander licht op de modelleerprocedures en
de interpretatie van resultaten. De interpretatie van resultaten is bovendien
ingewikkelder in geval van meerdere invloedsfactoren dan bij een enkele factor,
omdat ook het model ingewikkelder is. Fysisch-hydrologische kennis kan, zoals
gezegd, erg behulpzaam zijn bij het toetsen van de consistentie en de plausibiliteit van
resultaten, en vormt een welkome aanvulling op de statistische, diagnostische toetsen.
Allereerst dienen de geschatte parameterwaarden logischerwijze binnen een fysisch
plausibel bereik te liggen. Wanneer er bovendien metingen zijn verricht op meerdere
locaties, kunnen ruimtelijke patronen belangrijke en onafhankelijke ‘feedback’ geven
op de resultaten. Deze patronen zijn onafhankelijk, omdat er geen ruimtelijke
afhankelijkheid vooraf is opgelegd aan de individuele modellen. Via de modelfouten
of residuen en de patronen daarin kunnen missende invloeden, maatregelen of
andere foutenbronnen eenvoudig opgespoord worden. Bij een slechte fit kunnen de
parameterschattingen afwijkingen vertonen, omdat de invloeden die wel
meegenomen zijn deels kunnen compenseren voor de ontbrekende factoren,
wanneer deze correlaties vertonen. Een factor wiens geschatte effect vaker zulke
afwijkingen vertoont is verdamping. Verdamping vertoont een seizoensafhankelijk
patroon dat snel correleert met andere seizoensafhankelijke factoren. Een voorbeeld
hiervan is te vinden in hoofdstuk 5, waar de ruimtelijke verdeling van de geschatte
verdampingsfactor duidelijk wijst op een dergelijke afwijking. In dit specifieke geval
was de belangrijkste foutenbron in het model het feit dat er geen rekening werd
gehouden met het gedrag van de individuele onttrekkingsputten, terwijl de totale
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onttrekkingshoeveelheid een seizoenspatroon laat zien. Een dergelijk probleem kan
verholpen worden door de ontbrekende informatie mee te nemen in het model, in dit
geval de onttrekkingen van de individuele putten. Wanneer die informatie niet
voorhanden is (zoals in dit geval), kunnen de afwijkingen beperkt worden door het
optimalisatieprobleem in te perken tot een realistisch bereik, gebaseerd op de
waarden en patronen in de omliggende waarnemingsputten.

Naast deze methodologische kwesties dient hoofdstuk 5 ook als voorbeeld van het
feit dat een tijdreeksmodel in staat is om stijghoogtereeksen effectief te ontbinden in
deelreeksen, die de invloed tonen van de afzonderlijke factoren. Dit is wellicht een van
de belangrijkste praktische toepassingen van een tijdreeksmodel. Op die manier kan,
onder bepaalde voorwaarden, het effect van afzonderlijke hydrologische maatregelen
of factoren als grondwateronttrekkingen in beeld gebracht en gekwantificeerd
worden. Het model levert bovendien een schatting op van het effect van
veranderingen in de invloedsfactoren, in de vorm van de individuele responsfuncties.
De resultaten kunnen hierdoor ook gebruikt worden voor scenarioberekeningen, het
optimaliseren van de grondwaterstanden en/of het beheer daarvan.

9.5  Het karakteriseren van de grondwaterstandsdynamiek op

basis van responseigenschappen
Zoals besproken is in paragraaf 1.1 had dit proefschrift oorspronkelijk ten doel het
verbeteren van de gangbare methoden waarmee de relatie tussen grondwaterstand
en vegetatie in ecohydrologische modellen gemodelleerd wordt. Maas [Maas, 1995]
stelde het gebruik van momenten van de impulsresponsfunctie voor, als alternatief
voor het gebruik van statistieken die de grondwaterspiegeldynamiek zelf beschrijven.
Zulke beschrijvende statistieken worden beinvloedt door meteorologische variatie, én
ze kenmerken bovendien slechts een beperkt aantal facetten van de gemeten
dynamiek. Het zijn, welbeschouwd, echter niet de momenten, maar het is de
grondwaterstand zelf die de groeiomstandigheden in natte ecosystemen bepaalt
(samen met andere abiotische en biotische factoren, en meer of minder direct).
Momenten zijn daarbij niet altijd, of niet zonder meer, bruikbaar voor
ecohydrologische modellering, om de volgende redenen:

e Momenten zijn constant, terwijl ecosystemen dat niet zijn. Alhoewel dit
wellicht een aantrekkelijke eigenschap is voor relatief stabiele ecosystemen,
compliceert het het gebruik van momenten voor het modeleren van de
ecosysteemdynamiek zelf, e.g., in respons op klimaatdynamiek en -
verandering.

¢ In dichtbevolkte gebieden zoals Nederland wordt de (grond)waterstand
gewoonlijk actief beheerd of anderszins beinvioedt door menselijke
activiteiten. In zulke gevallen zijn niet één, maar verschillende responsfuncties
van belang, en dit soort activiteiten zijn bovendien ook zelf variabel in de
ruimte.

e Natte ecosystemen kennen per definitie hoge (grond)waterstanden, en
gedragen zich daardoor vaak sterk niet-lineair. De



grondwaterspiegeldynamiek kan ook bij niet-lineariteit niet volledig
gekarakteriseerd worden door middel van slechts één verzameling momenten.

Om de hierboven beschreven problematiek te verhelderen worden in hoofdstuk 6
verschillende methoden voor het karakteriseren van de grondwaterspiegeldynamiek
behandeld. In het hoofdstuk wordt bovendien een relatie gelegd tussen zulke
grondwaterstandskarakteristieken en momenten van impulsresponsfuncties. Als
uitgangspunt is hierbij de geschaalde gamma-verdeling en PIRFICT-benadering van
tijdreeksanalyse gekozen. Om tot alternatieve oplossingen te komen is een analyse
gemaakt van zowel de grondwaterspiegeldynamiek als de impulsresponsfunctie in het
frequentiedomein. Hieruit is een methode ontwikkeld die de temporele dynamiek van
de invloedsfactoren (gekarakteriseerd door haar gemiddelde en jaarlijkse amplitude)
combineert met de ruimtelijk variabele impulsresponsmomenten. Deze methode
resulteert in een nieuwe set van parameters die de uitvoer of grondwaterspiegel-
dynamiek zelf karakteriseren, en maakt gebruik van eenvoudige analytische formules.
Deze zogenaamde GD-karakteristieken zijn de gemiddelde diepte, opbolling, jaarlijkse
amplitude en faseverschuiving van de grondwaterstand. Het hoofdstuk laat bovendien
zien dat deze vier karakteristieken samen de grondwaterspiegeldynamiek in detail
karakteriseren (in dezelfde mate als het tijdreeksmodel). De beschreven relatie tussen
invloed, momenten en GD-karakteristiek kan ook in omgekeerde zin gebruikt worden,
bijvoorbeeld om de aanvulling van een aquifer in te schatten, analoog aan wat eerder
voorgesteld is door [Chen et al., 2002].

In de voorbeeldtoepassing in hoofdstuk 6 worden de GD-karakteristieken vergeleken
met andere methoden voor het karakteriseren van het grondwaterregime, voor twee
reeksen met sterk afwijkende eigenschappen. De vergelijking laat zien dat de
veelgebruikte, zogenoemde GxG-waarden (d.w.z. de Gemiddeld Hoogste, Laagste en
VoorjaarsGrondwaterstand) belangrijke nadelen hebben, en niet goed onderscheid
maken tussen de verschillende regimes. Bij de berekening van GxG-waarden worden
verschillende facetten van de fluctuaties door elkaar gehaald, aangezien de drie
hoogste (HG3) en laagste (LG3) standen in een jaar een resultante zijn van zowel de
jaarlijkse als hogere frequenties in het signaal. Door het middelen van de xG3-
waarden over langere periodes (minimaal 8 jaar) worden bovendien de lagere
frequenties en langjarige extremen effectief weggefilterd, en dus buiten beschouwing
gelaten. Doordat de drie extreme waarden in een jaar gemiddeld worden tot xG3, en
doordat een waarnemingsinterval van 14 dagen voorgeschreven is, reflecteren de
GxG-waarden bovendien de jaarlijkse optredende extremen niet goed. Zowel de
jaarlijkse als langjarige extremen zijn echter van groot belang vanwege de
disproportionele ecologische invloed en economische schade die er uit ontstaan. Al
met al kan geconcludeerd worden dat GxG-waarden minder goed in staat zijn om de
grondwaterspiegeldynamiek op verschillende locaties te karakteriseren dan GD-
karakteristieken. De methodiek waarmee GD-karakteristieken worden verkregen kan
eenvoudig worden uitgebreid naar situaties waar meerdere factoren invioed hebben,
zoals grondwateronttrekkingen of oppervlaktewaterstanden. Voor lineaire systemen
kan het stationaire niveau en de jaarlijkse amplitude van het effect van alle
invloedsfactoren gesommeerd worden. Bij factoren met een sterk afwijkend
dynamisch gedrag voldoet deze benadering echter niet volledig, en zijn wellicht
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aanvullende karakteristieken nodig. Een bijzondere factor die van invloed is op de
grondwaterstand is de modelfout, c.q. de ruis die het systeem beinvlioedt. Omdat de
verwachtingswaarde van witte ruis nul is, en het frequentiespectrum vlak, kan echter
zowel de stationaire invloed als de specifiek jaarlijkse amplitude ervan verwaarloosd
worden.

GD-karakteristieken vormen al met al een compacte methode voor het beschrijven
van de grondwaterspiegeldynamiek op een bepaalde locatie. Ze kunnen niet alleen
toegepast worden in het kader van ecohydrologische modellering, maar in alle
gevallen waar de hoeveelheid informatie in een volledige beschrijving van
grondwaterspiegeldynamiek in ruimte en tijd eenvoudig te groot is. Dit is bijvoorbeeld
het geval bij karteringsdoeleinden, visuele interpretatie van de gegevens, of
empirische modellen. Een bijkomend voordeel is dat de effecten van veranderingen in
de invloedsfactoren op de GD-karakteristieken, bijvoorbeeld verschillende
klimaatscenario’s, eenvoudig berekend kunnen worden met behulp van de gegeven
analytische formules. Deze eigenschappen geven de methode de flexibiliteit die nodig
is om om te kunnen gaan met situaties waarbij de grondwaterspiegeldynamiek niet-
stationair is. Klimaatverandering kan een oorzaak zijn van dergelijke niet-stationariteit,
maar ook menselijke ingrepen zoals grondwateronttrekkingen. In dit soort gevallen
zullen karakteristieken van de metingen van de afgelopen 8 of 30 jaar de huidige of
toekomstige toestand niet goed weergeven.

9.6  Menyanthes: software voor grondwaterstandsgegevens

Dit hoofdstuk vormt in twee opzichten een synthese van de inhoud van de rest van dit
proefschrift. Het hoofdstuk geeft allereerst een kort overzicht van de ontwikkelde
methoden en behaalde resultaten, in relatie tot alternatieve methoden. Terwijl veel
publicaties de tijdreeksanalysemethodiek primair vanuit een statistisch oogpunt
benaderen, begint de tekst hier vanuit de fysica, in de hoop het materiaal voor een
breder publiek toegankelijk te maken. Het hoofdstuk richt zich bovendien specifiek op
de combinatie van data- en fysisch-gebaseerde methoden. Die combinatie is niet
alleen karakteristiek voor de PIRFICT-methode, de integratie ervan is ook een van de
oorspronkelijke doelstellingen van het onderzoek. In dit hoofdstuk wordt, ten tweede,
het programma Menyanthes gepresenteerd. Menyanthes is ontwikkeld in het kader
van dit promotieonderzoek, en de meeste functionaliteiten die voor het onderzoek
nodig waren of er uit voort komen zijn er in opgenomen. In dat opzicht vormt
Menyanthes ook een synthese van de inhoud van het proefschrift, omdat de
ontwikkelde methoden en behaalde resultaten in het programma samenkomen.

Het programma Menyanthes neemt tussen het (toch al beperkte) aantal
gebruiksvriendelijke programma’s voor tijdreeksanalyse dat verkrijgbaar is, een
speciale positie in. Menyanthes integreert allereerst verschillende functies. De
functionaliteit begint bij de (data)basis van de DIKW piramide van [Ackoff, 1989],
wordt aangevuld met visualisatie en analysefuncties daarbovenop, en eindigt met
tijdreeksmodellerings-functies. De kracht van deze combinatie van functies is groter
dan die van de som der losse onderdelen. De visualisatiefuncties en directe link met de
data kunnen bijvoorbeeld waardevol zijn gedurende het tijdreeksmodelleringsproces.



Tijdreeksmodellen kunnen vice versa ingezet worden om de visualisatie en
karakterisatie van de dynamiek van hydrologische systemen te verbeteren. Ze kunnen
zelfs een bruikbaar hulpmiddel zijn voor databeheer, bijvoorbeeld voor het detecteren
van fouten en outliers. Menyanthes heeft, ten tweede, een sterk fysisch-hydrologische
inslag en vergemakkelijkt de toepassing van fysische principes en fysisch-
hydrologische interpretatie. In dat opzicht heeft de PIRFICT-methode een parallel met
de data-based mechanistic modeling (DBM) methode voor tijdreeksanalyse [Young
and Beven, 1994, Young, 1998]. Een verschil met die methodiek is dat fysische
principes of gedrag dat is geinspireerd op de fysica a priori in een PIRFICT-model
kunnen worden opgenomen, naast het gebruik van fysisch inzicht a posteriori bij het
controleren en selecteren van resultaten zoals in de DBM-methode. Bij het gebruik
van fysisch inzicht dient echter wel enige terughoudendheid betracht te worden. De
keuze van een bepaalde continue responsfuncties in de PIRFICT-methode komt in
principe neer op het doen van een aanname. De toepasselijkheid van die functie kan
binnen Menyanthes gecontroleerd worden door de resultaten ervan te vergelijken met
die van ARMA modellen. Ook de vraag of modelresultaten al dan niet fysisch-plausibel
zijn dient met zelf-kritisch vermogen beantwoord te worden. De resultaten van
tijdreeks- (en fysisch gebaseerde) modellen zijn, aan de ene kant, mogelijk beinvioedt
door niet-causale kruiscorrelaties. Onverwachte resultaten zijn, aan de andere kant,
niet noodzakelijkerwijs onwaarschijnlijk, maar kunnen ook tot nieuwe inzichten leiden.

De mogelijke toepassingen van de PIRFICT-methode zijn in essentie gelijk aan (en even
breed als) die van ARMA-tijdreeksmodellen. Een aantrekkelijke eigenschap van
tijdreeksmodellen is dat er betrekkelijk weinig aannamen aan ten grondslag liggen, en
dat de nauwkeurigheid ervan in het algemeen groot is. Tijdreeksmodellen zijn als
zodanig een waardevol hulpmiddel voor het voorbewerken van grondwaterstands-
reeksen, voorafgaand aan het kalibreren van een ruimtelijk model. Ontbrekende
invlioedsfactoren en reeksen die beinvioedt worden door hydrologische ingrepen
kunnen met behulp van tijdreeksmodellen eenvoudig geidentificeerd worden.
Daarnaast kan tijdreeksanalyse behulpzaam zijn om reeksen te identificeren die
ongeschikt zijn voor modelkalibratie, bijvoorbeeld omdat ze een hydrologisch object
of fenomeen vertegenwoordigen dat niet in het model opgenomen is, zoals een
schijnspiegelsysteem. Nog een stap verder gaat het zogenaamde ‘matchen’ van de
momenten van tijdreeksmodellen en ruimtelijk gedistribueerde, fysisch gebaseerde
modellen [Von Asmuth and Maas, 2001; Bakker et al., 2007; Bakker et al., 2008]. Een
eigenschap die specifiek is voor de PIRFICT-methode is de grote efficiéntie en het
gebruiksgemak. De constatering dat scheef-normale verdelingen het gedrag van
grondwater (en andere) systemen in het algemeen goed kunnen beschrijven, maakt
het mogelijk om alle tijdreeksen in een gebied groepsgewijs te modelleren. Dit is niet
‘alleen’ een praktisch voordeel. De gelijktijdige visualisatie en analyse van de
resultaten op meerdere locaties voegt letterlijk een dimensie toe aan de techniek van
tijdreeksanalyse (zijnde de ruimtelijke dimensie). Terwijl de ruimtelijke structuur die is
opgenomen in fysisch gebaseerde modellen gebaseerd is op afleidingen en aannamen
die niet werkelijk geverifieerd kunnen worden (zoals betoogd in de inleiding van
hoofdstuk 9), is er geen ruimtelijke afhankelijkheid opgelegd aan de tijdreeksmodellen.
De ruimtelijke patronen die verschijnen in tijdreeksanalyseresultaten zijn daarom
onafhankelijk en vrij van aannamen (afgezien van het feit dat de representativiteit van
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invoerreeksen kan varieren in de ruimte), en leveren waardevolle informatie over
zowel de modelresultaten zelf als de eigenschappen en het functioneren van
systemen. De effecten van individuele invioedsfactoren die niet gescheiden kunnen
worden op basis van tijdreeksanalyse van de afzonderlijke reeksen alleen, kunnen
daarbij wellicht wel geschat en gescheiden worden op basis van de waargenomen
ruimtelijke patronen. De ruimtelijke visualisatie- en analysefuncties van Menyanthes
vervullen in dat opzicht een belangrijke rol, en ondersteunen het gebruik en de
interpretatie van dergelijke patronen. De methoden en functionaliteiten van
Menyanthes brengen aldus een verschuiving van aandachtspunt teweeg van data- en
statistische aspecten van tijdreeksen naar het gedrag en de fysische eigenschappen
van systemen, en de ruimtelijke variatie daarvan. De term ‘system identification’, zoals
gesuggereerd door [Zadeh, 1956] en overgenomen door [e.g., Ljung, 1999], wint
hiermee aan toepasselijkheid, en is te prefereren boven de term ‘tijdreeksanalyse’, die
zijn oorsprong vindt in wetenschappen als de statistiek en econometrie.

Menyanthes wordt op het moment van schrijven gebruikt op drie continenten, in zes
landen, door 76 verschillende organisaties. Een paar honderd ecologen en hydrologen
hebben een cursus gevolgd omtrent de analyse van geohydrologische tijdreeksen en
het gebruik van Menyanthes daarbij [Von Asmuth et al., 2006]. Enige tienduizenden
grondwaterstandsreeksen zijn inmiddels met het programma geanalyseerd. Het
programma en de daarin opgenomen methoden blijken aldus een behoefte te
vervullen die niet eenvoudig op een andere manier te vervullen is. Zoals gezegd is het
feit dat traditionele tijdreeksmodellen lineair zijn een kracht, maar ook een beperking.
Niet-lineaire methoden voor tijdreeksanalyse die uitgaan van de drempelbenadering
[Knotters and De Gooijer, 1999] zijn opgenomen in Menyanthes, en blijken van
waarde te zijn. Initiatieven die gericht zijn op het testen van de methodiek op een
breder bereik van systemen, of op het verbreden van de functionaliteit met andere
(niet-lineaire) processen worden door de auteurs verwelkomd.
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Appendix A

Derivations

A.1 Auto- and crosscorrelation functions of the residuals and
innovations

The autocorrelation of the innovations equals (with t""< t'< t):

t 2 t' 2
E{v(:)v(:’)}:E{j /2“%6“(’-” dW(r)j 2"‘%5““-” dW(7)}=0 (A.1)

due to the properties of the Wiener process ( E{dW(¢)dW(¢)}=0 ift#1¢). Using (11),
the autocorrelation of the residuals can be written as (for t'< 1):

E{i(0)i(t)} = E(e™ )i )it ) +ii(t') j ﬂ e “HAW(T)} (A2)
which gives:
E{i@ii(t)} =e " o} (A.3)

Using (12), the crosscorrelation between residuals and innovations equals, for any t'<
t:

E{v(H)n(t"} = E{n()n') - e n(t —At)n(t"} (A4
which gives, using (A.3):
E{V(t)ﬁ(t V)} — e—a(t—t') 02 _ e—aAt e—a(z—At—t') 02 — 0 (AS)

n n

A.2 Relation between residual variance and individual
innovations

Starting with (4.18), we can write the innovation variance as an expected value and
get:

o (V)= ( =7y JE(? (4, 9)} (A.6)



using every v(¢,) individually, N single sample estimates of 63 (t;,¥) can be
obtained with:

w (0)= ( 2, W (1, ) (A7)

next, we can get a more accurate estimate if we average the N estimates of
AD .
G, (t,9):

N 1 ,
Z(l_w)‘/ (4,9)

62 (w) =1 -"F - (A3)

A.3 SWSI (Sum of Weighted Squared Innovations) criterion

Given the following log likelihood function:

2
t., v
AT |0} = —0.5N In(27) 0. 52111{0 (At,,w)} 0. szM (A9)
i=1 (At lP)
we can replace 0'5 (At,, B) by O'f(ﬂ) using (4.18) and get:
—20At; Vz(t'akp)
M¥ |0} =—0.5N1In(27) - 0. SZln{(l e 2)a ) —0. SZW (A.10)
i=l1 i=l1 ' Gn
next, we get by placing N/a,f (¥) in the last term outside the summation sign:
N
AP |0} =—0.5N1n(27)-0.5) In{(1-e>* )0, } -
i=1
N 1 (A.11)
Z(W)Vz (#,9)
N T 1-e™
05—
o, N
and replace in both terms af (v) by (A.8) to get :
N
1 2
N Zl_e—ZaAtj 4 (tj’kp)
M| 0} =—0.5NIn(27) - 0.5 In{(1-e 2" )L 1—0.5N (A.12)

i=1 N
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In the last term several items have thus been eliminated. Because the sum of several
logarithms is the logarithm of their product, (A.12) equals:

N
N Zl_wvz(’wqj)
M| 0} =—0.5NIn(27) - 0.5In[] [ {(1—e )= © I 1]1-0.5N (A.13)
i=1

As it is constant for any set of the model parameters ¥, the summation term can be

placed outside the product sign, giving:
N

> v
AW |0} =—-0.5N In(27) — 0.5 In[ {Z=——° Wi -e2)3] ... (A14)

N
0.5N

which equals, by taking an N™ power root to the power of N, and placing N

outside the logarithm
N

Z }ZaAt» Vz(tj’ly) N
MY |0} =—0.5NIn(27) — 0.5N In[-L I-e ~ N/H(l —e 2] - ... (A.15)
i=l1

0.5N

The N™ power root of the product term is the geometrical mean which is also
constant given n(¢;) and can be placed inside the summation term:

N N’H(l —ZaAt
> vz(t )

1— —2aAtj

A{W| 0} =—0.5NIn(27) — 0.5N In[L=: - 1-05N  (A.16)

As the first and last terms of the likelihood function are now constant, (A.16) can be
maximized by minimizing a sum of weighted squared innovations:

N
I I —2 aAt

S2{(w |0} = Z = Vz(zj,xy) (A.17)

Jj=1 —¢C




A4 Amplitude and phase response of a scaled gamma

distribution function
(derivation thanks to Kees Maas)

The amplitude and phase response of a scaled gamma distribution function (SG df,
see section 2.4.1) can be found by convoluting it with a harmonic signal f(¢) with

time ¢ and frequency &

fty=e*
which gives:
g = Teig(H)Aﬁef‘” dr=4 i ]E(ar)'r1 e
> I'(n) I'(n)y

The gamma function I'(n) equals [Abramowitz and Stegun, 1964]:

C(n)=k" [ e™de (9n>0,%k>0)
0

Using (A.20), (A.19) can be written as:

< T(n) 4
g()= A= = e
LD (14i8y  1+i2)
a a

Next, by replacing i in the first part of (A.21), we have:

. n $
A i&(t——atan=)
g =——"pe  °
&
I+
a

—ar(lﬂé)
a

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

Ergo, the amplitude response of a SG-type IR function to a harmonic signal (A.18) is:

A
a5,

2
a

And its phase response is:

(A.23)
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n atan é (A.24)

a

A.5 Impulse response of a system of linear reservoirs
(derivation thanks to Kees Maas)

In matrix notation, the vector of impulse reponses of a system of n linear reservoirs is
(see section 2.3.1):

1 1
0=—— -A .
oo exp( Z)LJ (A.25)

where the exponential is a so-called matrix exponential. One of the possible
definitions of a matrix function f(A) is:

f(A)=Ef(AE™ (A.26)

where E is the matrix of eigenvectors of A, and A the matrix of eigenvalues. If all

reservoirs are identical, A is symmetricand E™' =E" . Combining (A.26) and (A.25)
in that case yields:

— At
6, en ey - ,|° € € - €y
— At
0, lje e oo, e e, €p . €, 0 (A27)
: a4,
gn € € - €y e_ﬂ”’ € € - €y 0
Because the last columnvector mostly contains zeros, this equals:
— At
6 e en - 6, | ° €
— Ayt
0, I O T I e € (A.28)
. a4, .. . .
en € €n Cin e At €ln

or



e

6 € € e, || én
o. 1 le, e e e e
) 1 € - 6
vy n || G2 (A.29)
: A .
gn €1 ©€n - €, e, C_i"t
so that:
Y
e, e
1 e, e
_ 12
0. = cdy [eil €r - ein] (A.30)
l .
Y
e, e
or;
0 - 1 oY
T Zey.elje (A.31)
G4y =i

In case of non-identical reservoirs, we first use a similarity transform in order to get a
symmetrical matrix, as:

A*=JAJ! (A.32)

where J is:

J= 4y (A33)

and A and A* are similar. Because A * is symmetric, (A.32) can be written as:
A*=JAJ ' =JEAE'J"' = (JE)A(JE) ' =(JE)A(JE)" (A.34)
so that:

A=J"JE)A(JE)"J (A.35)
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and:
f{AY=J'JE)f{A}JE) J (A.36)

In our reservoir case, this yields:

1

<l

0= J'(JE)exp{-At}(JE)'J 0 (A.37)

which may be written as:

1 < At
0. = a.e (A.38)
ClA() ; )

In words, the solution is a weighted sum of exponentials, in which the weights
a depend on the eigenvectors of A .
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Curriculum vitae

Jos von Asmuth werd geboren op 9 juni 1970 te Eindhoven. Hij haalde zijn
gymnasium diploma aan het Eindhovens Protestants Lyceum' in 1988. Nadat hij bij de
Vrije Hogeschool” te Driebergen het zogenaamde propaedeutische jaar gevolgd had,
ging hij biologie studeren aan de Landbouwuniversiteit te Wageningen’. Hij studeerde
in 1995 af met het predicaat Cum Laude in twee oriéntaties en met drie
afstudeeronderwerpen. De hoofdrichtingen van zijn studie waren vegetatiekunde,
landschapsecologie en geografische informatie systemen. Aansluitend aan zijn laatste
stage werkte hij een viertal jaren bij de Meetkundige Dienst® van Rijkswaterstaat, op
het gebied van ecologische kartering, monitoring en analyse. In die periode groeide hij
uit van projectmedewerker, via projectmanager tot innovatiecoérdinator.

Om zich inhoudelijk verder te verdiepen begon hij, na een korte positie als interim
secretaris van het ProGIS-programma van het ministerie van Landbouw, Natuurbeheer
en Visserij’, in 1999 aan een promotieonderzoek aan de Technische Universiteit te
Delft. Dit onderzoek, dat in nauwe samenwerking met Kiwa N.V.° is uitgevoerd,
omvatte oorspronkelijk de integratie van drie typen modellen, te weten tijdreeks-,
grondwater- en ecohydrologische modellen. Met dit doel voor ogen is de nadruk van
het promotieonderzoek uiteindelijk vooral bij het eerste onderdeel komen te liggen, te
weten tijdreeksanalyse en haar toepassing op, en relatie met, de fysica van
grondwater. Jos heeft als onderdeel van het onderzoek een nieuwe methode voor
tijdreeksanalyse ontwikkeld, de zogenaamde PIRFICT-methode. Hij heeft deze en
andere methoden voor het analyseren van (grond)waterspiegelfluctuaties bovendien
vormgegeven in het gebruiksvriendelijke programma Menyanthes.

Nog tijdens het promotieonderzoek hebben Jos en Kiwa gezamenlijk besloten om
zowel methodiek als programma in praktijk te brengen, en het gebruik ervan waar
nodig te faciliteren. Jos is vervolgens in 2003 in dienst van Kiwa getreden, als
ecohydroloog en hoofdauteur van Menyanthes. Het programma wordt ten tijde van
het verschijnen van dit proefschrift gebruikt op drie continenten, in zes landen, door
76 verschillende organisaties. Naar schatting enige honderden (eco)hydrologen
hebben inmiddels een één- of tweedaagse cursus gevolgd die door hem, Martin
Knotters en Kees Maas ontwikkeld en gegeven is. Enige tienduizenden
grondwaterstandsreeksen zijn inmiddels met behulp van Menyanthes geanalyseerd.

Jos is lid van het deskundigenteam ‘Nat Zandlandschap’ van het ministerie van EL&I,
van de redactie van het hydrologische tijdschrift Stromingen, van de webredactie van
de Nederlandse Hydrologische Vereniging en van de DINO-gebruikersraad van TNO.
Hij kreeg in 2005 de ‘Best Poster Award’ op het symposium van het Water Research
Centre Delft, voor zijn poster over tijdreeksanalyse met drempel-niet-lineariteit.

' Thans het Christiaan Huygens College

? Thans het Bernard Lievegoed College for Liberal Arts

® Thans Wageningen University & Research centre

“ Thans de Data-ICT-Dienst van Rijkswaterstaat

® Thans het ministerie van Economische Zaken, Landbouw en Innvovatie (EL&I)
® Thans KWR Watercycle Research Institute
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