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Abstract
Logging in the Amazon is primarily selective, with individual commercial trees cut down, leaving the
others untouched. The direct effects of selective logging are difficult to quantify using remote sensing
techniques due to the small extent of treefall gaps left after logging, and the quick canopy regrowth
that follows. In this thesis, the time series of five vegetation indices (NDVI, NDMI, NBR, EVI,
MSAVI) derived from Landsat 7 ETM+, Landsat 8 OLI and Sentinel-2 MSI imagery were evaluated
for detecting selective logging features in three study sites in the Amazon. Logging roads and log
decks could be identified both manually and automatically using imagery from any of the sensors,
given enough history for building a stable seasonal model. Skid trails could not be identified using
any sensors. Treefall gaps could not be reliably identified using Landsat imagery, but 43% of treefall
gaps in known treefall locations could be manually identified in Sentinel-2 MSI imagery. From the
vegetation indices, NDMI was the most sensitive to reflectance changes in treefall gaps after logging,
followed by NBR, due to their sensitivity to changes in forest internal shadowing. NDVI was sensitive
only to soil and non-photosynthetic vegetation uncovered after logging. Changes in EVI and MSAVI
reflected changes in both internal shadows and uncovered soil and non-photosynthetic vegetation,
but the magnitude of change was the lowest of all indices tested. This study shows that it is possible
to detect treefall gaps in Sentinel-2 imagery, and potentially automate it in the future, so that
estimates of selective logging volumes could be based on direct observations of treefall gaps, rather
than assuming a correlation between roads or log decks and the volume of timber harvested.

Keywords: selective logging, treefall gap, logging road, skid trail, log deck, time series, Landsat,
Sentinel-2, BFAST, Amazon, Peru, Guyana
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1 Introduction
Selective logging is a process by which particular commercial species of trees in a forest are cut down
for timber production according to criteria such as size and species. This type of logging has become
common practice in tropical forest areas, where high biodiversity leads to a highly complex forest
structure with trees of different sizes, shapes and properties. Commercial trees tend to be spread
over an area, mixed with trees of lower commercial value. Once a large tree is cut down, it is likely
to fall on neighbouring trees. This causes a disturbance in the area, especially if only the tree stem is
extracted, leaving the canopy (large branches and foliage) on top of the understory and forest floor.
This disturbance can be visible from above in the form of logging gaps, with a crown zone where the
top of the tree canopy had fallen, and trunk zone where the trunk had fallen, arranged in an elliptical
pattern from the tree stump.

Selectively logged forests most often remain forests after the logging event (Asner et al., 2006),
but they are disturbed, as wood from large trees is removed from the ecosystem, causing forest
degradation. Succession is initiated at the points of disturbance, resulting in the replacement of
mature, climax community trees with young pioneer species. Selective logging may be done illegally
(Rutishauser et al., 2015), in which case the result is loss of biodiversity and lowered forest resilience.
However, it could also be part of sustainable forestry practices, in which case trees are selected and
logged in a way that reduces this negative impact to the forest and creates favourable conditions
for succession in managed forests (West et al., 2014; Keller et al., 2004). This practice is called
Reduced-Impact Logging (RIL). Selective tree dieoff may also be caused by natural events, such as
windstorms and landslides (Frolking et al., 2009).

Even though selective logging is widespread in tropical forests, little is known about the real scale
of logging activities. Selective logging is difficult and expensive to detect and quantify due to the
remoteness of the affected forests, problematic accessibility, and the disappearance of logging traces
over time due to regrowth. While remote sensing approaches have been employed for detecting
selective logging in the past (Shimizu et al., 2017; Frolking et al., 2009; Broadbent et al., 2006;
Keller et al., 2004), their success has been limited. A typical current-day selective logging operation
leaves four types of traces that are potentially detectable using remote sensing: logging roads, which
are built for easier transportation of logs to sawmills by lorries; log decks, which are clearings in which
logs are stored until they can be picked up by the lorries; skid trails, which are made by skidders in
order to gain access to the location of the felled tree and drag the logs to the log decks; and treefall
gaps, which are formed in the forest canopy when a tree is cut down (Asner et al., 2002). The two
former logging features are rather distinct and have been successfully detected from satellite imagery,
however, their prevalence is not necessarily a direct indication of the magnitude of the performed
selective logging activities. In some selective logging campaigns, depending on the logging intensity
and distance to major roads, only minor roads are made and log decks are omitted entirely; skidders
can carry logs one by one to the nearest existing road, rather than mandating the creation of new
roads and log decks (Read, 2003). Thus treefall gaps and skid trails are the most direct evidence of
selective logging intensity. In comparison to all of the other logging features, treefall gaps are by far
the most spatially extensive (Asner et al., 2002).

The detection of treefall gaps and skid trails from optical satellite imagery so far has been challeng-
ing. While there are some cases in which the treefall gaps have reportedly been detectable (Frolking
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1 Introduction

et al., 2009), either very high resolution, long revisit time sensors were needed (Read, 2003), or
the differences in reflectance compared to unlogged forest were found to be minimal (Asner et al.,
2004; Broadbent et al., 2006). With the advent of new satellites and sensors, such as Landsat 8
and Sentinel-2, the ability to detect such small variations in the canopy should improve due to higher
spatial resolutions and more frequent revisit times. In the tropical regions, the revisit time is partic-
ularly important due to frequent cloud cover, especially during the rainy season, which may inhibit
monitoring selective logging sites shortly after the logging event has happened.

If it is doable to detect and track individual treefall gaps in time, it would also allow for estimating
the length of succession in the particular area. While full secondary forest regrowth after logging
may take up to 125 years (Rutishauser et al., 2016), the canopy closure at the selective logging
site happens much faster, estimated at 3-6 months depending on the size of the disturbance and
the chosen definition of recovery (Broadbent et al., 2006). Precise knowledge on selective logging
event frequency, their intensity and the recovery time after selective logging is important for the
countries in the area for setting logging policies, and as a contributor to forest degradation forms
a key part of the United Nations Reducing Emissions from Deforestation and forest Degradation
(REDD+) programme. It is also important to monitor such activity in order to minimise illegal
logging and allow for more precise estimation of existing and historical carbon stocks (Piponiot et al.,
2016; Pinard and Cropper, 2000), as well as for climate change modelling (Rutishauser et al., 2015).
However, so far such estimation has been challenging (Piponiot et al., 2016) and thus it has only
been performed based on chronosequences, which are forest plots of different timespan since logging
(Broadbent et al., 2006), or extrapolated from recovery rates (Rutishauser et al., 2015). Making
use of the full archive of satellite imagery to construct a time series could potentially allow for a
more precise estimate of regrowth time as well as per-tree statistics, while eliminating bias which may
otherwise arise due to the different locations and logging times of the investigated plots. In the long
run, a system could be developed that detects such selective logging events and provides for both
near-real-time monitoring of selective logging events and information on whether and when selective
logging has occurred in the past. This would in turn enhance the knowledge on the current and past
state of tropical forests, provide information on how widespread selective logging is and help quantify
its effects on the tropical forest ecosystem. In addition, knowing the location of disturbances and
their canopy recovery times would allow for a more accurate large-scale estimation and monitoring
of biomass and carbon stocks in tropical forests by enhancing tropical forest post-logging regrowth
models (Herault et al., 2010).
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2 Problem definition and research
questions

While satellite image time series trajectory analysis has been relatively well-established in the recent
years, few studies focus on the detection of small-extent selective logging features (skid trails and
treefall gaps) using this technique. Most studies of tropical forest regrowth make use of chronose-
quences of plots with different age instead. However, time series analysis is well-suited for this
purpose, because it allows detecting the disturbance time and regeneration length in a much more
precise manner. In addition, time series analysis is not affected by site-specific effects, as is the case
with chronosequences.

Another advantage of using satellite imagery for detecting selective logging is that it is spatially
exhaustive. Satellites constantly monitor surface reflectance over the entire globe, it is not limited
to a select number of test plots. With the advent of the Sentinel-2 programme, the public now has
access to data that is of much finer spatial resolution (10×10 m, as opposed to 30×30 m of Landsat)
while maintaining a short revisit time. This new data may allow better detection and monitoring of
selective logging sites, including treefall gaps and skid trails, compared to what was possible before.

The goal of this thesis is to evaluate the potential and added value of new satellite imagery for
detecting selective logging events by employing time series detection methods on Sentinel-2 and
Landsat 8 imagery in three areas in the Amazon region where known selective logging has occurred.
The research questions that the thesis aims to answer are:

1. How well can selective logging events be detected by employing time series methods on optical
satellite imagery?

2. What is the sensitivity of different vegetation indices for detecting selective logging treefall
gaps?
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3 Data and methods
To assess the detectability of selective logging events, three areas of interest were selected in the
Amazon rainforest where selective logging is known to have taken place. Five vegetation indices
derived from Landsat 7, Landsat 8 and Sentinel-2 imagery were used to construct time series in order
to test detection of selective logging features, especially treefall gaps. High resolution imagery from
the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) programme and
very high resolution imagery from DigitalGlobe satellites were used for validation.

3.1 Sensor characteristics
3.1.1 Landsat 7 ETM+ and Landsat 8 OLI
Data from two Landsat missions was used to obtain long-term dense time series of ground observations
at 30 m resolution. Landsat 7, launched in 1999, carries the Enhanced Thematic Mapper Plus
(ETM+) instrument that captures imagery in 3 visible light bands, one Near Infrared (NIR) band,
two Shortwave Infrared (SWIR) bands, one thermal band and one broadband panchromatic band
(U.S. Geological Survey, 2017a). Landsat 8, launched in 2013, carries the Operational Land Imager
(OLI) instrument that captures imagery in comparable bands to ETM+, but also adds an additional
thermal band as well as coastal aerosol and cirrus bands (U.S. Geological Survey, 2017b). Both of
the satellites have a revisit time (at the study sites) of around two weeks, and continue transmitting
images to this day, although in 2003 Landsat 7 experienced a Scan Line Corrector failure that
resulted in it transmitting 22% less data than before. The Landsat collection data is available
from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center
Science Processing Architecture (ESPA) system preprocessed into ground reflectance (Level 2A), as
well as vegetation indices derived from the reflectance products. The products are in the Universal
Transverse Mercator (UTM) coordinate system.

3.1.2 Sentinel-2 MSI
Sentinel-2 is a satellite launched in 2016 by the European Space Agency (ESA) that carries the Multi-
spectral Imager (MSI) instrument, which captures 12 optical bands at varying spatial resolutions: the
three visible bands and the NIR band are available in 10 m resolution; the two SWIR, three red edge
bands and narrow-band NIR in 20 m resolution; and coastal aerosol, cirrus and water vapour bands at
60 m resolution (SUHET, 2015). The Sentinel-2 products are available from the ESA Sentinel Data
Hub at the Level 1C processing level (top-of-atmosphere radiance). Due to how recent the satellite
is, its imagery was only used for the Guyana 2017 field campaign area (see section 3.3). The logging
gaps from the 2013 and 2014 selective logging sites would be indistinguishable from the surroundings
by 2016.
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3.1.3 ASTER and DigitalGlobe
ASTER is a joint NASA-Japan government mission and an instrument (comprised of three separate
sensors) on board the Terra satellite, launched in 1999, which captures images in 14 spectral bands
with varying resolutions: 15 m for the two visible bands (green-yellow and red) and two NIR bands
(nadir and backwards-facing), 30 m for six SWIR bands and 90 m for five thermal bands. The
revisit time for the images taken during the day varies from 0 to 11 times per year. Since 2016,
the data is freely available through the USGS Land Processes Distributed Active Archive Center as
Level 2 (surface reflectance) products (NASA LP DAAC, 2006). On April 6, 2008 the SWIR sensor
overheated, resulting in completely saturated and thus unusable SWIR bands from that date up to
the present (Meyer et al., 2015).

Images from the DigitalGlobe satellite fleet (GeoEye-1, WorldView-2), available through Google
Earth, were also used for validation. These images are displayed in red, green and blue visible bands
and have a pan-sharpened spatial resolution of 0.5 m. The revisit time in the areas of interest vary
but is very long (several years per visit).

3.2 Vegetation indices
Five vegetation indices, as defined by U.S. Geological Survey (2017c), were compared in this study
and are described in the following subsections. Soil Adjusted Vegetation Index (SAVI) and Nor-
malised Burn Ratio 2 were not used due to their similarity with Modified Soil Adjusted Vegetation
Index (MSAVI) and Normalised Burn Ratio (NBR), respectively. In the case of Landsat imagery,
precomputed vegetation indices were used, and for the other imagery, vegetation indices were derived
from the imagery manually.

3.2.1 NDVI
Normalised Difference Vegetation Index (NDVI) is a commonly used vegetation index that is a ratio
between the red and NIR bands:

NDV I =
ρNIR − ρRed

ρNIR + ρRed

where ρNIR is the surface reflectance in the spectral band centred around 830 nm and ρRed is the
surface reflectance in the spectral band centred around 660 nm (Tucker et al., 1979).

NDVI is easy to interpret and has a range of 0-1, but it is known to be insensitive to small changes
in areas with dense vegetation, as the vegetation index saturates (Huete et al., 1999). In addition,
cloud shadows over vegetation have NDVI values close to 1, because the values of the red band are
close or equal to zero.

3.2.2 EVI and MSAVI
In order to overcome the shortcomings of NDVI, two more complex vegetation indices have been
developed: Enhaced Vegetation Index (EVI) and the SAVI family. EVI is designed to not saturate
with high biomass the way NDVI does, and reduce atmospheric and background noise (for instance,
thin clouds are compensated for). It requires the use of the blue visible band and several coefficients,
and in this study the default ones adopted by NASA were used:

EV I = 2.5 · ρNIR − ρRed

ρNIR + 6 · ρRed − 7.5 · ρBlue + 1

12



3.3 Field campaigns

Landsat 7 ETM+ Landsat 8 OLI Sentinel-2 MSI
Study site Logging

date
Known
logged trees

Obser-
vations

Stable
history

Obser-
vations

Stable
history

Obser-
vations

Stable
history

Peru 2013-11 9 731 Yes 180 No 0 No
Guyana 2014 2014-11 9 335 Yes 93 No 0 No
Guyana 2017 2017-01 16 672 Yes 186 Yes 70 No

Table 3.1: Summary of satellite imagery used for each study site. Observations are the total number
of images processed for the study site, stable history indicates whether there were enough
observations before the logging event to allow for analysis based on time series.

Here, ρBlue is the surface reflectance in the blue band (centred around 485 nm in ETM+) (Huete
et al., 1999). Cloud shadows have a low EVI value, as opposed to NDVI.

The SAVI family was developed for solving the issue of vegetation on different soil backgrounds
having an effect on NDVI. MSAVI is a modification of SAVI to maximise the reduction in soil back-
ground effects and increase the dynamic range of the vegetation signal (Qi et al., 1994). In this case
the coeffiecients employed by NASA were used as well:

MSAV I =
2 · ρNIR + 1−

√
(2 · ρNIR + 1)2 − 8 · (ρNIR − ρRed)

2

In the study area, MSAVI visually appears very similar to EVI, the main apparent difference is the
lack of atmospheric noise reduction in MSAVI. However, MSAVI does not require the blue band,
which allows calculation of MSAVI with the ASTER sensor that does not capture the blue band.

3.2.3 NDMI and NBR
Normalised Difference Moisture Index (NDMI) and NBR are vegetation indices that are a normalised
ratio between reflectance in the blue band and the SWIR band (Key et al., 2002). The difference is
the wavelength of the SWIR band:

NDMI =
ρNIR − ρ1600
ρNIR + ρ1600

NBR =
ρNIR − ρ2220
ρNIR + ρ2220

ρ1600 indicates surface reflectance in the SWIR band centered around 1600 nm, whereas ρ2220
indicates surface reflectance in the SWIR band centered around 2220 nm. These vegetation indices
are related to moisture in that water interferes with reflectance in the SWIR region, and dry leaf
biomass has a similar reflectance in NIR as in SWIR, whereas a healthy leaf has lower reflectance in
SWIR (Cibula et al., 1992).

NBR is commonly used for selective logging detection, as it is perceived to be more sensitive to
disturbance events (Schneibel et al., 2017; Shimizu et al., 2017). Both NBR and NDMI are insensitive
to cloud shadows, since they appear to lower the reflectance in both NIR and SWIR equally.

3.3 Field campaigns
To be able to detect treefall gaps and other selective logging features, the exact location of trees that
have been selectively logged and the time of logging was needed. For this purpose, the metadata
of selective logging site lidar scans by Gonzalez de Tanago Menaca et al. (2017) was used. Data
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3 Data and methods

about three areas of the Amazon during different years was used (see figure 3.1), where a team of
researchers from Wageningen University & Research (WUR) took lidar scans of a number of trees
that had been selected to be logged. Not all of the trees that had been logged in the selective logging
campaigns were scanned, and a number of scans were taken of trees that ended up not getting logged.
In this study, only the metadata (site location information) of the lidar scans were used, not the lidar
scan data itself. Satellite imagery of each of these areas was used in order to attempt detection of
selective logging features, see table 3.1 for a summary.

3.3.1 Peru, 2013
The first field campaign was in November of 2013 in the Madre de Dios region, Peru. The selective
logging operation took place in a forest east of the village Planchón, which is 37 km north of the
region’s capital city Puerto Maldonado. This region has a dry and a wet season, the latter spans from
December to March. In the region, agricultural areas are encroaching upon previously intact forest
(Scullion et al., 2014). Around Planchón, the agricultural fields are gradually expanding towards the
forest from the Interoceanic Road that crosses Puerto Maldonado and goes through Planchón to
Bolivia and Brazil.

The selective logging campaign was carried out by local villagers who obtained a permit for selective
logging and harvesting of Brazil nuts (Bertholletia excelsa Humb. & Bonpl.) in a Brazil nut concession
in a natural forest. The villagers did not have logging equipment such as skidders; instead, logs were
processed on the spot using chainsaws, and the resulting planks were transported from the forest to
the nearest road on tricycles. The larger trees in the study area have a canopy crown size of 20-30
m.

Ten trees to be cut down were scanned from 8 positions arranged in 30 by 50 m rectangles.
The trees that were slated for logging were located on one end of the rectangle and were cut in a
way so that they fall towards the middle of the plots. The location of each of the positions was
determined using two separate Garmin Global Positioning System (GPS) devices (except for the first
tree, therefore it was excluded, resulting in 9 known treefall locations). After logging, the same sites
were scanned a second time. In this study, the centroid of all the measured points for each scanning
site was used as a the approximate location of the treefall gaps. The scan dates both before and
after logging were recorded. The actual logging event happened in between the two dates, which
were between 2 and 6 days apart.

In addition to the logged tree data, there were also point locations of treefall gaps (seven in total)
that were made prior to the time of the scanning campaign. These gaps are likely to have been the
result of previously logged trees in the selective logging campaign (although there is a chance that
some of them have been created in earlier selective logging campaigns). In the case of gaps, only the
post-logging date was recorded. Therefore in total 16 points from the Peru campaign were analysed
for changes in reflectance following a selective logging event.

The area in which selective logging was known to take place was covered by Landsat images of
path 2, rows 68 and 69. 731 Landsat 7 ETM+ images and 179 Landsat 8 OLI images of this area
were processed in this study.

3.3.2 Guyana, 2014
In both of the Guyana selective logging campaigns, logging was carried out using RIL conventions
by the Guyana Forestry Commission, a governmental organisation responsible for supervising forest
concessions as well as granting and renewing logging permits in them. Lidar scanning was done as a
research partnership between it and WUR under the project SilvaCarbon. The scans in these study
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3.3 Field campaigns

Potential treefall locations [41]
Peru 2013 campaign [16]
Guyana 2014 campaign [9]
Guyana 2017 campaign [16]

LegendN

Figure 3.1: Study sites with potential locations and numbers of selective logging treefall gaps, in the
context of South America.
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sites were made by making plots of 30 by 40 m, and scanning from 13 positions. The trees were cut
from a side towards the middle of the plot as well.

The second field campaign of those used in this study took place in the east of the Cuyuni-Mazaruni
region of Guyana in November 2014. The nine selectively logged trees that were scanned in this area
are located in the Wineperu concession of the Vairtana company, 40 kilometres south of the region’s
capital, Bartica. The town is connected to the selective logging sites by a road. The sites are very
close to the road, 300 m away at most. Like the Peru campaign, the trees were scanned before and
after the selective logging event. The area of selective logging was covered by Landsat images of
path 231, row 56. In this study, 332 Landsat 7 ETM+ images of this area were processed in total.

3.3.3 Guyana, 2017
The third field campaign took place in the East Berbice-Corentyne region of Guyana in January 2017.
The area where the trees were scanned is a very remote area at the end of a logging access road
originally built in 1997 by the UNAMCO logging company, going south from the town of Kwakwani.
After UNAMCO was closed in 2007, the road went unused until 2013, when the Ro-Anc company
bought the concession and extended the road. For ease of timber extraction, a number of new primary
logging roads (20 m across, gravel) were built in the logging site starting from 2014. Kwakwani is
85 kilometres north of the selective logging site.

In this campaign, a large number of inventoried trees were scanned, but trees were logged only
in 16 of the locations. In some of these locations, clumps of more than one tree was inventoried
and logged, with different heights and Diameter at Breast Height (DBH), up to a total of 26 trees.
The DBH class (20-40 cm, 40-60 cm, 60-80 cm, 80-100 cm and over 100 cm) of each tree was
recorded. Some of the logged trees were relatively small (20-40 cm DBH) and below the canopy of
larger trees. In addition, no post-logging scans were made, so it is unknown when exactly the logging
events happened. In this study it was assumed that the logging happened a similar time after the
pre-logging scan as in the previous campaigns.

The area of selective logging was covered by the Sentinel-2 granules 21NUE and 21NUF, and
Landsat tiles with paths 230 and 231, row 57. 185 Landsat 8 OLI images and 70 Sentinel-2 MSI
images of this area were processed in total.

3.4 Preprocessing workflow
Satellite imagery of all the products used were available either in the Level 1C (top-of-atmosphere
radiance) or Level 2A (top-of-canopy reflectance) processing levels. For use with time series-based
methods, this data had to be preprocessed further. All preprocessing past Level 2A data was done
using the R programming language (version 3.3.1), and the produced scripts were made available
online at <https://github.com/GreatEmerald/master-logging>. A flowchart of the process
is shown in figure 3.2.

3.4.1 Top-of-canopy reflectance (Level 2A) processing
Sentinel-2 imagery is currently made available as Level 1C products. These products were processed
into Level 2A products by using the sen2cor software, version 2.3.1 (Mueller-Wilm, 2016). sen2cor
was set to use the 940 nm bands for water vapour correction, cirrus correction was enabled, a Digital
Elevation Model from the Shuttle Radar Topography Mission was used for terrain correction and
ozone column content data was set to be taken as best approximation from the metadata. All the
other satellite imagery was already available in Level 2A and for those images this step was skipped.
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3.4 Preprocessing workflow

Level 1C
satellite imagery

Atmospheric
correction

Level 2A
satellite imagery

Vegetation
index calculation

Cloud masking

Mosaicking,
extent matching

Time series
stacking

Cropping to
bounding box

Point bounding
box calculation

Reference points

Time series
break detection

Figure 3.2: Satellite imagery preprocessing chain from imagery available for download into space-time
cubes for time series analysis. Grey blocks are input and output data, rounded blocks are
scripts that process the data.
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3 Data and methods

3.4.2 Vegetation index calculation
For Sentinel-2 imagery, vegetation indices were calculated by using the formulae in section 3.2. In
the case of NDMI and NBR, due to the lower spatial resolution of the SWIR bands (20 m vs 10 m),
the SWIR bands had to be resampled to 10 m resolution by subdividing each pixel into four. Both
nearest neighbour and bilinear interpolation resampling methods were tested.

For Landsat imagery, the vegetation indices were provided pre-calculated by ESPA, so this step
was also skipped.

In the case of ASTER imagery, the post-2008 SWIR bands are oversaturated, and the blue band
is not captured by the ASTER sensor, so only NDVI and MSAVI were calculated for this imagery.

3.4.3 Cloud masking
Clouds and cloud shadows had to be masked out from the satellite imagery to prevent spurious
extremely high and low value observations in the time series. While some vegetation indices are
insensitive to thin clouds and cloud shadows, all clouds and cloud shadows were masked in order
to have consistent imagery for all vegetation indices in order to compare them. Masking involves
replacing the reported reflectance values in clouded or shadowed areas of the images with Not
Available (NA) values.

For Landsat data, clouds detected using the Fmask algorithm (Zhu and Woodcock, 2012) and
included in the pixel QA raster were masked out. Only pixels marked as clear (66 and 130 for
ETM+, 322 for OLI) were kept, all other values were filtered out. This was done by using the
R package bfastSpatial, development branch (Dutrieux and DeVries, 2014). In addition, values
marked as oversaturated (reflectance values set to 20000) or fill (reflectance values set to -9999) in
the reflectance images themselves were masked out as well.

For Sentinel-2 data, scene classification maps generated by sen2cor were used to mask out areas
marked as no data, saturated, dark area, cloud shadows and all types of clouds.

3.4.4 Mosaicking
All of the study areas except for Guyana 2014 were located on the edge between two Landsat tiles
or two Sentinel-2 granules. In order to make use of all the data available, tiles/granules from the
same sensor taken at the same date were mosaicked together. Since the data that was mosaicked
was in the form of vegetation indices, the rule applied when a pixel was covered by two images was
to keep the higher pixel value of the two. This allows for filling in gaps left by masked out clouds
and selecting the highest quality pixels. Since cloud shadows and clouds usually lower the value of
vegetation indices, selecting higher values filters out the effects of clouds that were not detected (and
thus not masked out in the cloud masking phase) and prevents negative outliers in the resulting time
series.

In addition to mosaicking, in this step all tiles were padded with NA values in a way so that the
extents of all images would match, in preparation for the time series stacking step.

3.4.5 Time series stacking
To make use of per-pixel vegetation index time series, all observations had to be stacked into one file
with multiple layers, each layer representing one (potential) observation and containing information
about the date of the observation. For Landsat data, this was done using the bfastSpatial package.
For Sentinel-2 data, a script for stacking was created from scratch.
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3.4 Preprocessing workflow

3.4.6 Cropping to treefall gaps
Tiles and granules cover a large area, whereas only the potential treefall gap areas were the focus
of this study. Consequently, to minimise the area to search through, images were cropped to the
area around the treefall gap reference points. First, reference points were transformed into the UTM
projection that was used by the Landsat images of the area, then a buffer of 75 metre radius (150
metre diameter) was made around each point. Next, a bounding box of each buffer was calculated,
and each time series stack was cropped to the bounding boxes. The result was one space-time cube
per each reference treefall gap per each sensor. The spatial dimensions of the Landsat space-time
cubes were 5 by 5 pixels, whereas Sentinel-2 spatial dimensions were 15 by 15 pixels.

3.4.7 Time series analysis
Lastly, pixels of the space-time cubes were analysed one by one by using the BFAST package which
implements the Breaks For Additive Season and Trend (BFAST) algorithm (Verbesselt et al., 2010)
to attempt detection of selective logging features. This is done by using trajectory analysis: a
seasonal model is fit to the data by making use of known stable history prior to a logging event.
Then, deviations from the values predicted by the model (residuals) are analysed at the time when a
selective logging event potentially could have taken place. If the magnitude of observations exceeds
a certain threshold, the first such observation is marked as a detected change.

In addition to treefall gaps, some nearby logging features such as logging roads and shifting cul-
tivation were analysed with BFAST as well. The individual layers of the space-time cubes were also
analysed visually, also in larger context and with comparison with higher resolution imagery from
ASTER, PlanetScope and DigitalGlobe imagery.

For Sentinel-2 MSI imagery analysis, BFAST could not be used due to the lack of stable history
to train the seasonal model on. The Sentinel-2A satellite started transmitting imagery in October
of 2015; and due to frequent cloud cover over the Amazon the image time series is sparse, with
too few observations to determine the natural variance of the vegetation indices. Instead, for this
imagery, the pixels of the known treefall location space-time cubes were inspected for visible changes
in the area. Pixels that showed changes in NDVI (44 in total) and NDMI (36 in total) in at least
two images following the logging event and stood out from the surrounding area were selected, and
Welch’s two-sample t-test was used to determine whether the differences in the vegetation index
values before and after logging are significant, as well as to compare the estimated true means of
each vegetation index before and after logging. For control purposes, the same tests were applied to
four pixels furthest away from the centre of each reference point, while still being in the space-time
cube of each known logged tree (106 m to the north-west, north-east, south-east and south-west
from the centre), with the assumption that no selective logging occurred that far away from each
reference point. Next, regressions were done between the area of each detected treefall gap and
the DBH of the largest tree logged at the associated reference point. The largest tree was chosen
because in several locations, clumps of trees of varying sizes were cut at once, and the smaller trees
would be felled in the direction of the gap created by the largest tree. Finally, Pearson’s correlation
between all of the tested vegetation indices was calculated within the extent of the space-time cubes
around the treefall gaps.
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4 Results

4.1 Logging feature detectability
4.1.1 Treefall gaps and skid trails
Sentinel-2

In the Guyana 2017 study area, which was the only study area that had Sentinel-2 coverage, no skid
trails could be identified using Sentinel-2 MSI imagery. From the 16 reference points of known logged
trees, 9 treefall gaps could be identified, but only 7 of them with confidence (see table 4.1). Two
of the reference points were within a 6 m distance from one another, which made them not distinct
from one another, and several more areas with potential treefall gaps overlapped (see figure 4.1). In
the other cases where the gap was not visible, an existing gap, logging road or log deck was nearby.
In the case there is an existing logging gap, according to RIL conventions the tree should be felled in
the direction of the gap in order to minimise canopy damage.

Of the treefall gaps that were visible, on average the changes in vegetation indices after logging
affected 5 pixels (500 m² area) in NDVI and 4 pixels (400 m² area) in NDMI. The correlations
between the size of the affected areas and the DBH of the logged tree were not significant in both
NDVI (r2 = 0.26, p = 0.13) and NDMI (r2 = 0.19, p = 0.21), see figure 4.2. Treefall gap sizes in
NDVI were correlated with DBH inversely, whereas in NDMI they were correlated directly.

When comparing all vegetation index values before and after the selective logging event in the pixels
where change was apparent, the values of each vegetation index tested were significantly (p < 0.003)
lower after logging than before it (see table 4.2 and figure 4.3). In figure 4.4 is an example of how
the NDMI and NDVI time series of a treefall gap pixel looks like, compared to a pixel not on a treefall
gap.

Landsat

In Landsat imagery of the Guyana 2017 study area, only 3 gaps within the vicinity of the known
logged trees could be identified, compared to 9 in Sentinel-2 MSI imagery. The rest of the gaps were
not visible either due to cloud cover in Landsat scenes, or due to pixel border effects: gap centre going

Study site and
year

Known logged trees Logged trees with
known logging date

Identified gaps (low
confidence)

Identified gaps (high
confidence)

Peru, 2013 16 9 1 0
Guyana, 2014 9 9 4 0
Guyana, 2017 16 0 9 7

Table 4.1: Summary of known logged tree locations and identified treefall gaps. Trees with known
logging date are trees with records of dates both before and after logging (the others were
missing either one of the two dates). High confidence for gap identification means that at
least two vegetation indices indicated a change and the change was persistent at least in
two subsequent images right after the logging date.
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Figure 4.1: Sentinel-2 MSI true colour image subset from the Guyana 2017 study site. White circles
indicate the 75 m radius around known logging locations. (a): site prior to known selective
logging (January 13, 2017). The dark parts on the right are cloud shadows. (b): site
after known selective logging (February 12, 2017).
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Figure 4.2: Regressions between the apparent gap size and the DBH of the largest tree logged at
the location of each gap, grouped by vegetation index. The points are jittered to avoid
overplotting. Precision of DBH is 20 cm, precision of gap size is 100 m², sample size is
10 gaps.
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Figure 4.3: Distribution of vegetation index values before and after the known logging event in affected
Sentinel-2 MSI pixels of the Guyana 2017 study site. The line in the middle of the box
represents the median, the hinges of the box represent the 1st and 3rd quartiles, and the
whiskers represent 1.5 of the interquartile range, circles are outliers.
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Vegetation index Mean before logging Mean after logging Change magnitude p-value
NDVI in affected pixels 0.798±0.014 0.743±0.020 -0.055±0.024 <0.001
NDMI in affected pixels 0.300±0.010 0.150±0.017 -0.150±0.019 <0.001
NBR in affected pixels 0.599±0.012 0.481±0.017 -0.118±0.021 <0.001
MSAVI in affected pixels 0.494±0.020 0.438±0.017 -0.056±0.026 <0.001
EVI in affected pixels 0.504±0.019 0.463±0.019 -0.041±0.027 0.003
NDVI control 0.819±0.017 0.840±0.020 0.021±0.026 0.117
NDMI control 0.306±0.011 0.289±0.012 -0.018±0.016 0.036
NBR control 0.611±0.013 0.601±0.014 -0.009±0.019 0.338
MSAVI control 0.524±0.016 0.583±0.018 0.059±0.024 <0.001
EVI control 0.525±0.015 0.588±0.016 0.063±0.022 <0.001

Table 4.2: Change in vegetation index magnitude after a known logging event in the Guyana 2017
study area. Affected pixels are contiguous pixels with visually apparent change less than
75 m away from the location of known logged trees, control are four pixels 106 m away
from each location of a known logged tree. Errors are 95% confidence intervals.
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Figure 4.4: Time series of all Sentinel-2-derived NDMI and NDVI values for an example pixel where a
treefall gap appeared, compared to a control pixel where no selective logging happened.
The vertical lines indicate the date after which the selective logging event happened. The
two low values in NDVI at the end of 2016 come from cloud shadows (NDMI compensates
for them).
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4.1 Logging feature detectability

through the boundary of 2 or 4 pixels, therefore dispersing the signal into several pixels. That makes
the treefall gaps unidentifiable due to a low signal-to-noise ratio. The gaps that can be identified in
Landsat imagery also show a smaller magnitude of change due to the larger area covered by each
pixel (900 m² compared to 100 m² in Sentinel-2 MSI).

BFAST analysis of Landsat imagery in the Guyana 2017 study site yielded only a single detection
of a treefall gap, and only when using NDMI. The other two gaps, while visible when inspecting the
time-space cube (the value of the pixel changes compared to the surroundings), are not detected by
BFAST due to the low magnitude of change (see figure 4.5).

No treefall gaps could be detected using BFAST in other study sites. In the case of Landsat 8 OLI
imagery of the Guyana 2014 site, a lot of false positives were generated due to too few observations
in stable history (which was a period of less than one year, not enough to determine the natural
variability). When using Landsat 7 ETM+ imagery of the same areas, no breaks were detected.

Skid trails were not visible from any of the satellite imagery used, in any of the study sites. In RIL,
skid trails are planned in advance in a way that minimises the damage done, which means that there
are no changes to the top of canopy that would be visible from satellite imagery.

ASTER

ASTER imagery of all the study sites were useful for better visualisation of the forest structure and the
effects of forest features to vegetation index values, due to the finer pixel size compared to Landsat.
However, the combination of a long revisit time and frequent cloud cover resulted in only one or two
usable images per year, which is not enough for time-series-based analysis nor for statistical analysis.
A comparison of images taken before and after the logging events (over a year apart) showed no
outstanding differences. At 15 m resolution, individual trees cannot be visually picked out unless they
stand apart from other trees or have a different seasonal cycle compared to neighbouring trees.

Another limiting factor of ASTER imagery is the range of digital numbers. Whereas Landsat and
Sentinel-2 use the range of 0-10000 for digital numbers of each band, ASTER uses the range of 0-
1000. This affects the range of derived vegetation index values: the smallest step between two values
is 0.005. Any value in between is clamped to one or the other side and may not be distinguishable
from the surroundings if neighbouring trees have similar values, which happens at the higher end of
vegetation index saturation.

4.1.2 Clearcut areas, logging roads and log decks
Larger-scale disturbances associated with selective logging, such as main logging roads as well as
clearcuts or slash-and-burn activities, were detectable from both Landsat and Sentinel-2 imagery.
Given sufficient historical data, BFAST could be used to automatically detect such disturbances and
determine the approximate time at which they happened, using any of the tested vegetation indices
(see figures 4.6 and 4.7).

While the detection of such disturbances was possible, the presence of these disturbances varied
greatly across the different study sites: in Peru and Guyana 2014, the selective logging campaigns
were carried out close to an existing road, therefore no additional disturbances that would indicate
that selective logging had occurred appeared in that area. In Guyana 2017, logging roads and log
decks were built specifically for facilitating the selective logging campaign, some of them several years
in advance (see figure 4.6). The Peru study site was the only one where land use was being changed
from forest to shifting cultivation or rangelands, next to the selective logging site. The Landsat time
series in that area was unique, with multiple points of disturbance spaced out over several years (see
figure 4.7, top). The NDVI values after a clearcut go down quickly, and take a year to recover to
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Figure 4.5: BFAST Monitor analysis of an NDMI time series for two Landsat 8 OLI pixels where
treefall gaps are visible in Sentinel-2 MSI imagery of the same areas. Top: no change is
detected due to too low magnitude of change, and some unfiltered clouded pixels in the
history period. Bottom: change is detected successfully, as indicated by the red dashed
line.
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Figure 4.6: BFAST Monitor analysis of Landsat 8 OLI NDVI time series in the Guyana 2017 study
site. Top: the central pixel of a log deck built in 2016. Bottom: a pixel on a road built
in 2014. The increase visible in 2016 is due to the shifting of the road one pixel to the
north in that image, which could be due to georeferencing issues or different sun-sensor
angle.
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Figure 4.7: Landsat 7 ETM+ time series of a pixel in a shifting cultivation plot in the Peru study
site. Top: NDMI. Several disturbance and regrowth cycles are visible and the first one
is detected by BFAST Monitor. Bottom: NDVI. Only the largest disturbance is visible
and is detected, but the NDVI values after the disturbance are higher than before it.
The negative outliers in 2010-2015 are cloud shadows that influence NDVI values but not
NDMI.
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4.2 Vegetation index comparison

their pre-disturbance values; after that point, NDVI values exceed those of the original undisturbed
forest (see figure 4.7, bottom).

4.2 Vegetation index comparison
For treefall gap detection, as discussed in section 4.1.1, there were significant differences in means
before and after a selective logging event in all of the tested vegetation indices. However, the
magnitude of change differed among the vegetation indices (see figure 4.3), and so did the ability to
detect larger logging features such as logging roads and log decks (see figure 4.7).

4.2.1 NDVI
NDVI was found to be less sensitive to changes in forest structure than the other vegetation indices
tested; on average NDVI values in pixels covering treefall gaps decreased from 0.80 to 0.74 (see table
4.2). In cases where the forest floor consisted mainly of non-photosynthetic vegetation or bare soil,
or if the forest floor was damaged, NDVI was a reliable indicator of treefall gaps and other logging
features (see figure 4.6), however, fewer gaps can be seen in NDVI than in other vegetation indices
(see figure 4.8). In other words, if a gap was visible in NDVI, it was clear that it was a treefall gap,
but not all gaps were visible in NDVI.

One unique property of NDVI was found to be its relation to shadows. Since NDVI is a ratio of the
reflectance in the red band and the reflectance in the NIR band, when vegetation is shadowed (e.g.
by a cloud shadow of a shadow from a neighbouring tree), the reflectance in red becomes close to 0
and thus NDVI becomes close to 1. Thus forests all appeared to have high NDVI values (0.8-1.0),
except where there were gaps in the canopy. In addition, land cover change (such as from forest to
grasslands or silviculture) changed the mean NDVI value, as seen in figure 4.7. Whether the change
was an increase, decrease, or a change in seasonality depended on the properties of the new land
cover type.

4.2.2 NDMI and NBR
The SWIR-based vegetation indices NDMI and NBR were the most sensitive to changes in forest
structure from all the vegetation indices tested, as seen in figure 4.3. After a logging event, mean
NDMI values in affected pixels decreased from 0.30 to 0.15, whereas NBR values decreased from
0.60 to 0.48. The relative magnitude of change was higher in NDMI than in NBR. NDMI values
differ more within forests, revealing their structure, whereas NBR tends to vary less within forests
but highlight only particularly large disturbances (see figure 4.8). However, the two indices are highly
correlated with one another (Pearson’s correlation: 0.94), as the only difference between them is the
choice of the SWIR wavelength.

The SWIR-based indices turned out to be highly sensitive to internal shadows within forests, but
insensitive to cloud shadows, because unlike the red band, NIR values are higher than zero when a
cloud shadow is over vegetation, and cloud shadows reduce the reflectance in NIR and SWIR almost
equally. This is a useful property, because it allows the use of pixels that for other vegetation indices
would not be useful, and it also helps when the cloud shadow masks are not perfectly reliable (as is
often the case). Sensitivity to internal shadows comes from the NIR band, whereas the SWIR band
is smooth and does not capture internal shadows, but is good at capturing the high reflectance from
bare soils.

One issue of calculating NDMI and NBR is that the SWIR band often times has a coarser resolution
than the visible and NIR bands due to lower amounts of energy returned from the land surface at
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Figure 4.8: Comparison of the five vegetation indices derived from a Sentinel-2 MSI image of February
12, 2017, less than a month after the selective logging event.
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those wavelengths. This is the case in Sentinel-2 and ASTER imagery. Therefore in order not to lose
information from the NIR band, the SWIR band data has to be upsampled to match the NIR band
pixels. This can be done by using nearest neighbour interpolation or bilinear interpolation. Testing
of both interpolation methods revealed that in forests, nearest neighbour resampling leads to block
artefacts and could be misleading, whereas bilinear interpolation was more appropriate, however the
differences are overall small for gaps. The largest differences were within logging roads, where the
road outlines would become blurred when using bilinear interpolation and blocky in a salt-and-pepper
pattern when using nearest neighbour interpolation.

4.2.3 EVI and MSAVI
The other two vegetation indices tested, EVI and MSAVI, are both complex indices that were designed
to overcome the deficiencies in NDVI. Even though the approaches differ, the result is largely the
same: both vegetation indices are highly correlated in forests (Pearson’s correlation: 0.94). The two
indices are in between NDVI and the SWIR-based indices in sensitivity: they capture bare soils and
non-photosynthetic vegetation like NDVI does, and are sensitive to internal shadowing like the SWIR-
based indices. However, they are less sensitive to either compared to the other types of vegetation
indices, thus the overall sensitivity to selective logging events is rather poor (see figure 4.3).

EVI is unique in that it compensates for the presence of thin clouds and cloud edges. This is a
useful property, since while most cloud masking approaches are good at detecting thick clouds, thin
ones are much more difficult to detect. However, unlike the SWIR-based indices, EVI is affected by
the presence of cloud shadows. EVI was also the vegetation index that is least correlated with any
of the others except MSAVI: 0.68 correlation with NDMI and 0.69 correlation with NDVI and NBR.

MSAVI is highly correlated with EVI, and the main difference between the two is that MSAVI does
not share the property of atmospheric noise correction and thus is affected by light clouds. On the
other hand, only the red and NIR bands are required to calculate MSAVI, whereas EVI also requires
the blue band, which is not always captured (e.g. by ASTER).
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5.1 Selective logging feature detection
5.1.1 Detection possibilities
The results showed that the ability to detect selective logging treefall gaps from Landsat imagery is
extremely limited, which confirms the findings of Asner et al. (2002) and Asner et al. (2004). Even
when the location and appearance time of the canopy gap is known, the 30 m resolution of Landsat
is not enough to reliably detect changes, neither in an automated way nor manually. While the tree
crown size in the Amazon rainforest tends to reach 30 m in diameter, it is very rare that the pixel grid
would align with the gap left by logging a particular tree. The more common case is for the gap to be
split into two or four pixels, in which case the effect that the logging event has to vegetation index
values is too low to be discernible due to the influence of the surrounding untouched vegetation.

However, the results showed that the 10 m resolution of Sentinel-2 MSI is enough to visually detect
most treefall gaps, and that it should be possible to detect the gaps in an automated way in the
future, when Sentinel-2 imagery time series grow in length so as to allow using time-series-based
detection methods. The identified treefall gap size did not significantly correlate with the DBH of the
felled tree, unlike ground measurements are known to (Jackson et al., 2002), however, the sample size
was too small to draw conclusions. This shows that more research is needed to better understand the
use of Sentinel-2 MSI imagery for treefall gap detection once the imagery archive length increases,
as well as to better identify the relation between tree size and treefall gap size using a larger sample
of trees.

From the other selective logging features identified by Asner et al. (2002), skid trails were not
identifiable from any of the satellite imagery used, whereas large logging roads and log decks were
both identifiable and automatically detectable from both Landsat and Sentinel-2 imagery. These
findings are similar to those of Read (2003).

All in all, logging features that were possible to detect were:

1. Moderate size gaps in dense forests with a soil background: If the forest floor is bare
soil or non-photosynthetic vegetation, as in Guyana 2017 study site, then the treefall gaps
are identifiable by a change in NDVI (see figure 5.1, case B). This is due to photosynthetic
vegetation strongly absorbing light in the red band and strongly reflecting light in the NIR
band. These types of gaps are also discernible visually by inspecting the NDVI values, as fresh
treefall gaps are small and thus stand out from intact forest. However, they do not stay visible
for long due to canopy and forest floor regrowth.

2. Small gaps in dense forests: If the treefall gaps are too small to cover a pixel size area, or
if the forest floor is vegetated, the gaps can still be identified indirectly using NDMI due to
a shift in the forest texture, as new internal shadows from nearby trees appear on the edges
of the newly created gap (see figure 5.1, case C). This allows for identifying selective logging
of smaller trees, however, it is an indirect indicator of gaps. Shadows may also shift due to
sun-sensor angle geometry, potentially confounding automated detection algorithms.
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Figure 5.1: A simple theoretical 2D model of changes in vegetation indices in a forest following
selective logging of two trees. Orange arrows indicate the sun zenith angle, black lines
indicate pixel boundaries of a nadir-facing satellite sensor. At timestep t1 all three pixels
have high NDVI and NDMI values. After logging at timestep t2, pixel A has high NDVI
and NDMI, pixel B has low NDVI and NDMI, pixel C has high NDVI but low NDMI
values. In case of a smaller gap, pixel B would have the same values as pixel A, and so
NDVI would not be useful for gap identification.
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3. Logging roads: Detecting the presence and the building time of logging roads was possible in
an automated fashion in the Guyana 2017 study site using Landsat imagery. This is in line with
other studies on logging roads (Kleinschroth et al., 2016). However, new roads were built only
in one of the three study sites. The other two sites were in close proximity to an existing major
road, which is convenient for carrying out selective logging because no new road construction
is needed. Therefore while it is useful to detect logging roads and they are one of the easiest
logging features to identify using automated time series methods, roads alone are not sufficient
to locate all cases of selective logging nor to estimate the intensity of the performed selective
logging.

4. Clear-cuts: When deforestation happened as part of slash-and-burn agriculture or shifting
cultivation, as the case was in the Peru study site, it was possible to identify using methods
based on time series in an automated way. Since the area that is affected is large, Landsat
imagery can be used for this purpose, and its long archive is advantageous for analysing the
imagery using time series methods. In case of tree plantations or shifting cultivation, these
methods can be used to determine the time it takes for the canopy to regrow and reach pre-
harvest levels, though the estimates depend on how fast the vegetation index used saturates
(see figure 4.7). However, this type of logging is already relatively well-understood and is not
usually considered to be selective logging.

While detecting these logging features from satellite imagery was possible, doing so is nonetheless
a challenge due to the complexities involved. A number of scenarios under which automatic detection
of treefall gaps would become more challenging or give erroneous results have been identified in this
thesis. The causes of these scenarios fall under two categories: vegetation change issues and issues
with satellite imagery itself.

5.1.2 Detection challenges related to vegetation change
The first detection challenge is posed by the effects of vegetation seasonality. In the Amazon region,
both deciduous and evergreen trees mix, and deciduous trees may not have the same leaf senescence
cycle across different species. Individual trees that had dropped their leaves have lower NDVI values
(and show up as white in true colour imagery) and are typically surrounded by trees with intact leaves.
As such, they may not be easily distinguished from treefall gaps; even the fact that the leaves of
such trees regrow next season may not be a good differentiator, since canopy regrows rapidly after
selective logging too. Time series methods are supposed to be able to deal with such seasonality by
use of seasonal models, however, this assumes the availability of sufficient stable history to determine
a pixel’s seasonality, and that the pixel is homogeneous (covers only a single tree) and its area covered
is constant (perfect coregistration of images).

The second challenge is that while the methods employed here are suitable for detecting gaps in
dense forests, they might not be suitable for sparser forests whose understory receives a sufficient
amount of light to be photosynthetic, or for stand-alone trees. In those cases, the logging event
would not have an effect on the vegetation indices. The most notable change in this scenario would
instead be the disappearance of the shadow of the logged tree, which would increase NDMI rather
than decrease it. This issue may be compounded by seasonality issues (logging a leafless tree in a
sparse area would also increase NDVI), and RIL schemes may also preclude the creation of visible
logging roads and decks in such areas.

The third challenge that was identified is selective logging happening next to an existing gap.
Especially in RIL, if a gap or logging road already exists next to a tree slated for logging, it will be
felled in the direction of the existing gap or road. The result is that a new gap does not appear.
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The existing gap may widen, but the change would be subtle compared to the usual case of logging
creating an entirely new treefall gap.

The fourth challenge relates to logging targets: in some cases, the trees slated for logging may
not be the ones occupying the upper layer of the canopy, but rather be in the understory. This was
the case in the Guyana 2017 study site, where multiple trees of different sizes would be cut, not
necessarily only the largest ones. In such a case, no change would be visible from optical remote
sensing imagery at all, since the canopy of taller trees would cover such an event up, similar to how
it covers skid trails.

5.1.3 Detection challenges related to satellite imagery
The spatial resolution of a sensor and the division of the raw data into pixels has an effect on what
area a given pixel covers. The coarser the resolution, the larger the area that is integrated over to
obtain the reflectance value, which dilutes the effect of a logging event. The effect is made worse
if the canopy of a particular tree falls on the boundary between two or even four pixels, since the
integrated area doubles or quadruples in such a case, effectively making it impossible to detect such
a logging event. At a resolution of 10 m (100 m² area), there is a reasonable chance that at least
one pixel will fall within the crown of a single tree or exclusively within a newly created treefall gap,
but at a 30 m resolution (900 m²) this chance is much lower. As such, whether the logging of a
particular tree can be detected may come down to luck of whether the pixel grid aligns favourably or
not. In addition, good coregistration of images is important for time series methods; if the images
shift by a pixel in between acquisitions, one observation in the time series may refer to a completely
different neighbouring tree compared to a subsequent observation.

Another issue with optical remote sensing imagery is the cloud cover, which is very frequent over the
Amazon and especially during the rainy season. Dense clouds obscure the tree canopies, whereas light
clouds and cloud shadows change the reflectance values. Different vegetation indices react differently
to such atmospheric effects: NDMI and NBR can largely compensate for cloud shadows, EVI can
compensate for light clouds and cloud edges, whereas the other tested indices are affected by both.
Compounding the problem is unreliable cloud and cloud shadow detection algorithms employed by
different preprocessing methods. While the fmask algorithm for Landsat data continues to be refined
(Zhu et al., 2015; Qiu et al., 2017), it is not yet reliable enough to mask all instances of clouds and
cloud shadows (e.g. see figure 4.7, bottom: the single-date downward spikes of lower NDVI values
are all caused by cloud shadows, but may be detected as logging events; the time series includes only
the pixels marked as completely clear in the quality control layer). While temporal outliers could be
removed using temporal filtering methods, it would also risk removal of true selective logging effects.

Imagery archive length is an issue as well. While Sentinel-2 MSI imagery was found to be sufficient
to detect larger treefall gaps, its archive only dates back to late 2015. Given cloud cover, this was not
enough to build a stable history for time series analysis. The same issue occurred with Landsat 8 OLI
data in the Peru study site: while there were enough points for the algorithm to attempt analysis, the
history was too brief and so the algorithm reported numerous false positives. The archive lengths are
always growing, so the situation is expected to get better in the future (especially for Sentinel-2, with
the launch of the Sentinel-2B satellite in 2017), but the detectability of historical selective logging
events will largely stay as it is now.

Lastly, while time series analysis is powerful and the increasing lengths of pixel times series allows
for more opportunities of detection, it comes at a cost of very large volumes of data that have to
be processed. For example, Sentinel-2 MSI imagery before the end of 2016 is available in collections
of granules with a download size of around 5 Gibibytes (GiB), and after that in single granules with
a size of around 0.5 GiB. A full time series consisted of 70 such granules. Landsat imagery was
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Figure 5.2: Texture analysis of the Guyana 2017 study site Sentinel-2 image of February 12. Black
corresponds to a standard deviation in NDVI of 0.0044, white to 0.0921 in a 3 by 3 pixel
moving window.

smaller, with around 0.3 GiB download for 5 vegetation indices per tile, but the time series was much
longer, with 731 tiles of ETM+ and 179 tiles of OLI imagery to process for the Peru study site alone.
Intermediary results of each processing step had to be stored for algorithm validation purposes as
well, multiplying the disk space required. The imagery was processed using an 8-thread Intel Core
i7-3770 processor with 16 GiB Random Access Memory (RAM), and yet it took around a week to
download and preprocess the time series of a single sensor for a single study site. In addition, some
preprocessing steps had high RAM requirements, for instance, the Sentinel-2 atmospheric correction
software sen2cor required over 8 GiB of RAM to process a single granule, precluding the ability to
process several granules at a time on this hardware.

5.2 Comparison of vegetation indices
Of the five vegetation indices tested (NDVI, NDMI, NBR, EVI, MSAVI), three groups were identified
according to how the indices perform in forests and what changes are evident when a selective logging
event occurs. The sensitivity to selective logging features and other properties of the indices differed
(see figure 4.8), and a combination of several indices may be advantageous for detection purposes.

5.2.1 NDVI
NDVI was unlike other vegetation indices tested in that shadows cause high rather than low values
of the vegetation index. This makes NDVI especially useful for initial detection of selective logging
treefall gaps. As long as the background behind the canopy is non-photosynthetic and the gap
size compared to sensor spatial resolution allows for it, gaps in NDVI stand out clearly from the
surroundings. Forests appear rather homogeneous in NDVI, since internal shadowing causes an
increase in NDVI, but a small one, since NDVI is close to saturation (0.85-0.95) in forests in the first
place. A gap with a soil background visible causes a marked decrease in NDVI.

One possible application for NDVI in treefall gap detection would be in spatial texture analysis.
Asner et al. (2002) used variance in a 3 by 3 pixel moving window on Landsat ETM+ imagery as
an indicator of texture, and while it did not result in useful detection of treefall gaps, it could be
useful in combination with Sentinel-2 MSI imagery (see figure 5.2, cf. figure 4.1). There is a number
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of spatial texture analysis methods, such as the median above 90th percentile used by Hamunyela
et al. (2016), and more research is needed to determine the most appropriate method specifically for
treefall gap detection.

5.2.2 NDMI and NBR
While NBR is a highly popular index for logging detection (Shimizu et al., 2017; Schneibel et al.,
2017), the related NDMI had a more pronounced change in values after a selective logging event,
the most of all indices tested (see figure 4.3). Thus NDMI is the most useful single vegetation index
for detecting selective logging events of all the ones tested in this study.

Furthermore, neither NDMI nor NBR are affected by cloud shadows, therefore more data can be
used (fewer pixels need to be discarded) when analysing these indices. NDMI is also less affected by
thin clouds compared to other indices, with the exception of EVI. This is a major advantage in the
Amazon region, where cloud cover is frequent, and was also useful in the cases when the built-in cloud
and cloud shadow detection algorithms for satellite imagery products failed to detect thin clouds and
cloud shadows properly.

However, while NDMI is highly sensitive to logging events, it is important to keep in mind that
its sensitivity to internal shadows is at least as strong as the sensitivity to newly appearing bare soil.
This property of NDMI is in part the reason why it is sensitive to selective logging events in the first
place, as trees with a small crown that get logged may only be detectable by shift in shadows. But
this means that there is a risk of false positives caused by internal shadows shifting due to a change in
sun-camera angle geometry in between image acquisitions, rather than real logging events. Thus for
methods based on time series, images taken at similar solar angles are necessary for consistency when
using NDMI or NBR. Another issue with these vegetation indices is the need for SWIR bands that
are often available at a lower spatial resolution than the visible and NIR bands. Bilinear interpolation
was found to work well for upsampling Sentinel-2 SWIR bands, but at a cost of blurring roads.

One way to get the best of both NDVI and NDMI could be to use NDVI for detecting the larger
selective logging features (newly built roads and log decks, large treefall gaps) in order to detect the
presence of a selective logging operation in an area, and then use NDMI to detect the smaller treefall
gaps in order to determine the intensity of the selective logging operation within the area.

5.2.3 EVI and MSAVI
EVI and MSAVI have been found to be sensitive to both internal shadows and bare soil, but less
sensitive to shadows than NDMI and less sensitive to bare soil than NDVI. This makes EVI and
MSAVI less useful than the other vegetation indices tested, since the treefall gaps do not stand out
from natural internal shadowing of a forest when looking at the spatial pattern, and the difference
in values before and after logging from time series is low compared to other vegetation indices (see
figure 4.3). The main useful property of EVI is that it compensates the effect that thin clouds (but
not cloud shadows) have on the vegetation signal underneath, whereas the main useful property of
MSAVI is that it only requires the red and NIR reflectance bands, so it can be derived from sensors
that capture few optical bands.

5.3 Comparison of sensors
Three types of sensor imagery were analysed in this study: Landsat (ETM+, OLI) 30 m, Sentinel-2
MSI 10 m, and ASTER 15 m. See figure 5.3 for a side-by-site comparison. In addition, 0.5 m
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Figure 5.3: Comparison of NDVI derived from different sensors in the Guyana 2017 study site. The
Sentinel-2 MSI and Landsat 8 OLI images were taken immediately following the selective
logging event, the ASTER image was taken two years prior (more recent images are
clouded). The completely white areas in the OLI image are masked out cloud shadows.
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resolution imagery from DigitalGlobe was used for validation. Each types of imagery have their own
strengths and weaknesses.

Landsat imagery has the coarsest resolution, which is insufficient for detecting treefall gaps. How-
ever, it has the longest archive and a short revisit time, which makes it ideal for detecting larger
selective logging features, such as major roads and log decks. It is also well suited for detecting
agriculture encroaching upon previously intact forests and other land cover changes. Thus Landsat
imagery can be used to quickly assess whether a (selective) logging campaign is underway in an area
(Frolking et al., 2009). However, it is unsuitable for quantification of the selective logging intensity,
since even though the area occupied by roads and log decks is correlated to the selective logging
intensity (Jackson et al., 2002), it does not correspond to the actual volume of wood cut linearly,
but rather levels off (Broadbent et al., 2006).

Sentinel-2 MSI imagery has the finest resolution, which is sufficient for detecting most treefall gaps.
However, it lacks in history in order to do so automatically at this point in time, since the archive only
goes back to the end of 2015, and there is very frequent cloud cover over the Amazon that lowers
the available number of observations. One solution would be to wait until the history grows longer.
In that case, only treefall gaps starting from the end of 2017 or later will be detectable. Another
solution would be to attempt to calibrate other sensors, such as Landsat, to Sentinel-2 imagery for
use as historical reference. However, such a task would be rather complex and potentially error-prone,
as sun-sensor angle geometry as well as spatial and spectral resolutions do not match.

ASTER imagery is of intermediate resolution and the archive goes back to 1999, matching Landsat
7. However, the revisit time is long, making this type of imagery only suitable for before-and-after
comparisons. The saturation of the SWIR sensor in 2008 and the small range of digital numbers
further lowers the utility of ASTER images for detecting selective logging. However, it is useful for
Landsat imagery validation purposes, since 15 m resolution is enough to distinguish forest texture
and individual trees in clearings.

Very high resolution imagery has the same limitations as ASTER: the revisit time is even longer
and fewer bands are captured. It is useful for validating treefall events and adjusting location data
collected in the field using a Global Navigation Satellite System, since the canopies of individual trees
are visible. Read (2003) used very high resolution Ikonos imagery and could also distinguish larger
treefall gaps and skid trails (which are not visible in any other imagery).

All in all, 10 m resolution like that of Sentinel-2 MSI is a good starting point for selective logging
detection and monitoring, since it allows for a frequent revisit time needed for time-series-based
methods, and allows for detecting treefall gaps, which is a direct measure of selective logging intensity.

5.4 Comparison with other studies
Detection of selective logging from satellite imagery has been attempted by several authors in the
past. One of the first such attempts was by Asner et al. (2002). The authors concluded that Landsat
7 ETM+ spatial resolution was insufficient to detect treefall gaps and skid trails (even when using
spatial texture analysis) and may be sufficient to detect log decks and roads depending on the type of
logging operation. These conclusions are fully in line with the findings in this study; log decks could
be identified in the Guyana 2017 site, but not in the two others due to the proximity of existing roads
which lowers the need for constructing log decks. In a follow-up study, Asner et al. (2004) evaluated
the use of spectral unmixing on the same Landsat 7 ETM+ imagery in order to increase sensitivity
to selective logging events, and concluded that spectral unmixing helps with detection of all types
of selective logging features. However, in the cases of RIL forest plots one year after logging, the
unmixed forest canopy fraction in treefall gaps and skid trails was still little different (>90%) than
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that of pristine forest (>95%). In addition, spectral unmixing requires a large library of endmembers
(samples of reflectance in pure pixels of a class) of the desired classes to be unmixed. Furthermore,
nowadays there are new fuzzy classification methods based on machine learning that can make use
of more than just reflectance data, which have the potential to increase the separability of treefall
gaps in Landsat data. On the other hand, the use of higher resolution imagery like that of Sentinel-2
MSI may make such methods unnecessary altogether.

A year after the last publication, Asner et al. (2005) developed a proprietary software package
called CLAS for performing large-scale deforestation and forest disturbance analysis based on the
aforementioned spectral unmixing method using Landsat 7 ETM+ imagery. The authors found that
their estimates of logged timber volumes were much higher than the previous studies had estimated.
However, given the difficulty of detecting treefall gaps and skid trails from Landsat imagery in RIL
plots, the estimates achieved are still likely to have been conservative.

Read (2003) compared Ikonos 1 m and 4 m resolution imagery with Landsat 7 ETM+ and concluded
that 1 m resolution was sufficient to identify most of the selective logging features (most, but not all
treefall gaps), whereas 30 m resolution was only sufficient for identifying major roads and log decks.
This is also in line with the findings in this study, as well as the findings of Asner et al. (2002).
DigitalGlobe imagery that was used in this thesis allowed the identification of individual trees that
have been cut down, but not treefall gaps per se, since the time of acquisition is several years apart
and the treefall damage is regenerated over this time.

Broadbent et al. (2006) attempted to identify known treefall gaps in RIL sites using NDVI and
spectral unmixing of 30 m ASTER imagery. The authors concluded that both NDVI values and the
photosynthetic vegetation fraction from spectral unmixing were significantly affected by the selective
logging event in all sizes of treefall gaps. This conclusion would appear to be inconsistent with both
that of the previous studies mentioned here, and the results of this thesis. However, the magnitude
of change in NDVI directly after harvest in small and medium gaps was reported to be from -0.01
to -0.015. This change is very small, and indeed at the edge of the digital number sensitivity of the
ASTER sensor: a change in 0.01 of NDVI corresponds merely to a change in 5 digital number values.
Variations in NDVI in residual forest over time were also shown to be around -0.01 in magnitude.
This suggests that while there are differences in NDVI values even in small gaps after logging, the
difference is not higher than natural variability and thus automated detection of treefall gaps using
30 m resolution imagery is not feasible after all. The magnitude of change in the photosynthetic
vegetation fraction was shown to be higher, but the same caveats as in the previous spectral unmixing
studies apply.

More recently, a number of publications have attempted to automate seletive logging detection by
using time series methods, most commonly using the software LandTrendr (Kennedy et al., 2010).
Fragal et al. (2016) analysed NDVI time series in LandTrendr in order to detect changes in forest
cover and differentiate between natural and anthropogenic forest disturbances in the Amazon region,
but focused on large disturbances rather than selective logging. Shimizu et al. (2017) used NBR
in order to detect selective logging in Myanmar using Landsat data, however, the authors did not
specify what they consider as the definition of selective logging: log decks, roads, treefall gaps and/or
skid trails. Any disturbance detected by LandTrendr was labelled as selective logging; however, the
results of this thesis and previous studies show that only deforestation, logging roads and log decks are
detectable from Landsat imagery, therefore the LandTrendr output very likely indicated only these
indirect measures of selective logging intensity which do not necessarily indicate the actual scale of
the selective logging operations like treefall gaps would. The validation in that study was restricted
to comparisons of detected disturbance intensity with reported logging intensity within forest blocks,
which makes it unlikely that the detected disturbances also included treefall gaps.

Another attempt at detecting selective logging using Landsat data using the spectral unmixing
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method was done by Grecchi et al. (2017). The obtained vegetation fractions were analysed in grid
cells of 300 m, and there was no distinction made between the different logging features. Whether
a cell is considered to be selectively logged was determined only by the intensity of disturbances,
validated by analysis of the same Landsat imagery. Given the results of this thesis, only the logging
roads and log decks would have been detected, therefore only an approximation of the area affected by
selective logging was obtained. Without knowledge of logging intensity, the area measurement alone
is not necessarily indicative of the harvested timber volume nor of the effect on the forest ecosystem,
and the threshold at which a cell was considered to be selectively logged rather than deforested is
likewise arbitrary.

All in all, studies so far have shown that it is not feasible to detect treefall gaps nor skid trails using
30 m resolution data, only logging roads and log decks that are not necessarily indicative of logging
intensities. Thus the findings of this thesis that detecting larger treefall gaps using 10 m resolution
Sentinel-2 data is possible is an important step towards much more precise estimations of the impact
of selective logging. The literature comparison also revealed the importance of understanding and
explicitly stating what logging features (logging roads, log decks, treefall gaps, skid trails) are nec-
essary for the author to consider an event as selective logging, since otherwise the results between
different studies are incomparable. The importance of validation using independent validation data
should also be stressed.

5.5 Recommendations
For further research, there are a number of areas that could be improved in order to further advance
the ability to automatically detect selective logging events from remote sensing data.

First of all, the availability of validation data is very important. In order to draw better conclusions,
more data from larger selective logging field campaigns would be needed, with more observations of
logged trees and their logging gaps. The locations of the logging gaps and other logging features,
their size, the size of the logged trees and such are all valuable data that could give further insight in
what is possible to detect and what is not. Given the results in this thesis, validation data specifically
from selective logging campaigns from 2017 onwards would be the most useful due to the availability
of Sentinel-2 MSI imagery. The availability of more imagery from higher-resolution sensors (such as
ASTER, Ikonos, SPOT) would also help validate the results of a selective logging detection attempt.

Extra processing for cloud masking, or improved methods for cloud masking, would help create
consistent time series. Since different vegetation indices can deal with certain types of clouds or cloud
shadows, different masking approaches for specific vegetation index types would allow making use of
partially clouded or shadowed pixels where they can be used, maximising available observations, and
masking out cloud influence for vegetation indices that cannot make use of such pixels. Temporal
cloud masking (discarding single-date negative outliers), masking based on spatial context such as
sNDVI (Hamunyela et al., 2016), or a combination of these methods might also improve methods
based on time series, however, it might also lead to discarding selective logging events as well. All of
these extra processing steps would also require more processing power and storage.

Improvements to the cloud masks provided in the quality control layers of satellite imagery products
would benefit all users of the imagery. There are several approaches to cloud masking available, such
as using thresholds of cloud indices to predict the presence of clouds (such as done by fmask or
PROBA-V quality control) or using machine learning to classify pixels as clouded or not (such as
done by Sentinel-2 sen2cor software). More research is needed to identify the best option, or a
combination of options, and to apply this knowledge to improve cloud masking for all the sensors.

In order to improve the ability to detect treefall gaps, more approaches can be tested. There are
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additional vegetation indices such as tasselled cap transformation, Normalised Difference Fraction
Index (Souza et al., 2005), Transformed Chlorophyll Absorption Ratio (Haboudane et al., 2002),
etc. that can be tested for suitability to detect treefall gaps. Spatial features such as various forms
of texture analysis and normalisation based on neighbouring pixels can also be tested, in order to
see whether making use of information in the surrounding pixels in time series analysis, rather than
looking at pixels individually, improves detectability. Trees neighbouring the site of a logged tree are
likely to have had similar changes in reflectance over time before the logging event, and divergent
ones after the event. However, unfiltered cloud cover or cloud shadows may also cause differences in
time series even in adjacent pixels.

Another option for detecting treefall gaps and other logging features, perhaps even from Landsat
imagery, would be to extend the spectral unmixing approach suggested by Asner et al. (2004) into
a fuzzy classification approach using machine learning methods. Such an approach would be able to
make use of all optical bands at once, as well as auxiliary data such as time series metrics, spatial
context, data from other sensors etc. and be possible to train on mixed pixels rather than assuming
a linear mixture. Such a trained fuzzy classification model could then be used to predict either the
location of treefall gaps directly, or a well-understood intermediary variable such as fCover that has a
direct relation with canopy gaps (such as done by Bacour et al. (2006)) in order to attempt to locate
the gaps using this variable.

One other option would be to make use of satellite imagery that is of even finer resolution than
10 m, such as that of the PlanetScope satellite constellation (which would be suitable for time series
analysis due to a short revisit time), Ikonos, QuickBird, GeoEye or other such satellites with very
high resolution sensors. At such spatial resolution, a tree canopy is represented by several pixels,
so object-oriented methods would be necessary to analyse such data, but it would allow tracking
individual trees over time by coregistering the unique canopy shapes and relations to neighbouring
trees between subsequent acquisitions and detecting any changes to the forest layout over time. The
downsides of using such an approach is the massive amounts of data that would need to be processed,
and the fact that most of the very high resolution imagery products are commercial and thus not
freely available.

Imagery from radar or lidar sensors could be either an alternative to optical imagery or used together.
Radar imagery would be useful in areas such as the Amazon due to its property of penetrating clouds,
and the various beam polarisations giving information about the structure of the objects on the ground.
A time series of radar imagery, such as from the Sentinel-1 satellites, would be more consistent than
optical imagery, barring speckle effects. Spaceborne and airborne lidar data would also be useful
for determining canopy structure changes; a shift in canopy height would be a good indication of a
selective logging event. However, currently there are too few operational spaceborne lidar sensors,
whereas airborne lidar campaigns are costly and thus lidar data is updated infrequently.

Lastly, data from multiple sensors, optical or otherwise, could be fused to enhance time series of a
specific location. For instance, Landsat 7 ETM+ and Landsat 8 OLI imagery have the same spatial
resolution and mostly the same optical bands, so imagery pooled together can be used to make time
series denser. However, images still need to be calibrated across sensors, since either or both spectral
information retrieval and geometric correction may not match precisely between sensors, resulting
in the difference between time steps being driven by differences between sensors rather than real
differences in reflectance on the ground. Fusing data from sensors that are even more different, such
as with different spatial resolutions and projections, is even more challenging. On the other hand,
a machine learning approach could make use of data from different sensors easier, as the data they
provide would be treated as separate variables, that may potentially help to predict the location of
selective logging features.
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6 Conclusion
1. 43% of all known treefall gaps were discernible with confidence from the surrounding forest in

Sentinel-2 MSI image time series, but none could be discerned with confidence from Landsat
7 ETM+ or Landsat 8 OLI imagery; skid trails were not discernible in any of the imagery,
whereas logging roads and log decks were discernible in all of the imagery. It was not possible
to automate detection of treefall gaps using Sentinel-2 MSI imagery because of the short time
series length and frequent cloud cover.

2. NDMI was found to be the most sensitive index to newly created treefall gaps (change magni-
tude of -0.15) due to its sensitivity to internal shadowing in forests but low sensitivity to cloud
shadows. NDVI was found to be a good indicator of large gaps with soil background. EVI was
found to be insensitive to thin cloud cover, but also less sensitive to newly formed treefall gaps
(change magnitude of -0.04).
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Acronyms
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer. 11–13, 18, 19, 25,

31, 38–41

BFAST Breaks For Additive Season and Trend. 19, 25–28

DBH Diameter at Breast Height. 16, 19, 21, 22, 33

ESA European Space Agency. 11

ESPA Earth Resources Observation and Science (EROS) Center Science Processing Architecture.
11, 18

ETM+ Enhanced Thematic Mapper Plus. 11, 13, 14, 16, 18, 25, 28, 37, 38, 40, 41, 43, 45

EVI Enhaced Vegetation Index. 12, 13, 24, 31, 36–38, 45

GiB Gibibytes. 36, 37

GPS Global Positioning System. 14

MSAVI Modified Soil Adjusted Vegetation Index. 12, 13, 18, 24, 31, 37, 38

MSI Multi-spectral Imager. 11, 13, 16, 19, 21–23, 25, 26, 30, 33, 36–42, 45

NA Not Available. 18

NBR Normalised Burn Ratio. 12, 13, 18, 24, 29, 31, 36–38, 41

NDMI Normalised Difference Moisture Index. 13, 18, 21, 24–26, 28, 29, 31, 33–38, 45

NDVI Normalised Difference Vegetation Index. 12, 18, 21, 24, 25, 27–29, 31, 33–39, 41, 45

NIR Near Infrared. 11–13, 29, 31, 33, 38

OLI Operational Land Imager. 11, 13, 14, 16, 18, 25–27, 36–39, 43, 45

RAM Random Access Memory. 37

REDD+ Reducing Emissions from Deforestation and forest Degradation. 8

RIL Reduced-Impact Logging. 7, 14, 21, 25, 35, 40, 41

SAVI Soil Adjusted Vegetation Index. 12, 13

SWIR Shortwave Infrared. 11–13, 18, 29, 31, 38, 40
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Acronyms

USGS U.S. Geological Survey. 11, 12

UTM Universal Transverse Mercator. 11, 19

WUR Wageningen University & Research. 14
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